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Abstract—Effective compression of hyperspectral images is
essential due to their large data volume. Since these images
are high dimensional, processing them is also another challeng-
ing issue. In this work, an efficient lossy hyperspectral image
compression method based on Enhanced Multivariance Prod-
ucts Representation (EMPR) is proposed. As an efficient data
decomposition method, EMPR enables us to represent the given
multidimensional data with lower dimensional entities. EMPR, as
a finite expansion with relevant approximations, can be acquired
by truncating this expansion at certain levels. Thus, EMPR can
be utilized as a highly effective lossy compression algorithm for
hyperspectral images. In addition to these, an efficient variety
of EMPR is also introduced in the paper, in order to increase
the compression efficiency. The results are benchmarked with
several state-of-the-art lossy compression methods. It is observed
that both higher peak-signal-to-noise-ratio values and improved
classification accuracy are achieved from EMPR based methods.

Index Terms—Hyperspectral images, lossy compression, En-
hanced Multivariance Products Representation, classification ac-
curacy, JPEG2000

I. INTRODUCTION

HYPERSPECTRAL (HS) images are comprised of mea-

surements of electro-magnetic energy distributed in hun-

dreds of narrow bands. Due to the rich information in both

the spectral and spatial domains, hyperspectral imagery (HSI)

has a wide variety of applications, such as assessment of

food quality and safety [1], [2], artwork authentication [3]

and examination of drug forgeries [4]. HSI is also employed

in biomedical engineering applications such as the classifi-

cation of corneal epithelium injuries [5], extraction of the

Manuscript received 16 May 2020; accepted 10 Oct. 2020. Date of
publication xxx; date of current version xxx. This work is partially sup-
ported by the National Young Researchers Career Development Programme
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properties of cornea tissues [6] and gastric cancer diagnosis

[7]. In addition, HSI is also widely used in many remote

sensing applications [8]–[12] including image classification

and pattern recognition [13], [14], and spectral unmixing [15].

Unfortunately, all of these applications come with the cost

of high memory requirements due to the huge amounts of

data. To this end, lossy or lossless compression of HS images

has been the focus of research publications in the last decade

[12], [15]–[29]. These compression algorithms adopt a variety

of approaches. Traditional 2D image compression algorithms

are applied to each band and achieve a compressed version

of the HS cube [27], [30], [31]. These methods can provide

satisfactory compression rates but fail to exploit inter-band

correlation. To this end, some of these methods are extended

to their 3D versions for compression of HS images [12],

[32], [33], though the extended methods inevitably suffer from

the high computational complexity. For this reason, sparse

representations via dictionary learning methods were proposed

[17], [26], [34]. Matrix and tensor decomposition as well as

factorization methods were also employed in HSI compression

[24], [25], [35]–[37]. Besides, wavelet based compression

methods are also developed to this end [12], [38], [39]. On the

other hand, with the rapid improvement in GPU technology,

Convolutional Neural Networks based schemes adopted to HSI

compression [40].

In this paper, a method called Enhanced Multivariance

Products Representation (EMPR) [41]–[45] for hyperspectral

image compression is proposed. As a finite data decomposi-

tion technique, EMPR enables multidimensional data to be

represented with lower dimensional entities. By truncating

this finite expansion at a certain level, an approximation for

the multidimensional data under consideration can be ob-

tained. This truncation also reveals a data reduction approach,

which allows EMPR to be utilized as an algorithm for lossy

compression of HS images [24], [35]. Thus, EMPR can be

considered as a tensor decomposition based lossy compression

method for HS images. In order to increase the compression

efficiency of the present method, an EMPR variation called

Iterative EMPR [45] is applied to HSI in this paper. In

addition to these approaches, EMPR is combined with the

JPEG2000 lossless compression method with the help of the

Discrete Haar Transform (DHT) [46]. It is observed that

higher PSNR values are achieved for several HS data sets

acquired by various sensors in comparison with a recently

published EMPR based method named as Tridiagonal Folmat
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Enhanced Multivariance Products Representation (TFEMPR)

[47]. TFEMPR is a sophisticated and recursive data reduction

method based on EMPR and represents a multidimensional

array as the product of two orthonormal and one tridiagonal

multidimensional array by using the concepts folmats and

folvecs [47].

In [24], it is shown that TFEMPR is a more efficient

method for compressing HS images in comparison with some

existing lossy compression methods. These methods include

Compressive-Projection Principal Component Analysis (CP-

PCA) [18], Generalized Orthogonal Matching Pursuit (gOMP)

algorithm [19], Specialized Interior-Point (SIP) representa-

tion [20], Least Absolute Shrinkage and Selection Operator

(LASSO) representation [21], Bayesian Compressive Sensing

(BCS) [22], Basis Pursuit (BP) algorithm [23] and Sparsity-

Based Hyperspectral Image-Compression algorithm [17].

In this paper, we propose a new Iterative EMPR approach

combined with JPEG2000 by using DHT. According to the

implementation and results, the proposed method is more

efficient in representing HS image data than TFEMPR [24] at

lower bit rates. Moreover, the proposed approach also outper-

forms two well-known lossy compression methods including

PCA+JPEG2000 approach [27] and the 3D SPECK algorithm

[48]. Besides, the proposed method is compared with two

state-of-the-art low rank tensor decomposition based hyper-

spectral image compression techniques. These techniques are

Patch-Based Low Rank Tensor Decomposition (PLTD) [36]

and Non-Local Tensor Sparse Representation and Low Rank

Regularization (NTSRLR) [49] methods. The results indicate

that the proposed approach outperforms the corresponding

lossy compression methods and preserve more detail at very

low bit rates. These findings represent the first important con-

tribution of this paper to the scientific literature. In addition,

our approach is further validated by comparing the results

of data classification in HSI. The resulting images after de-

compression are classified in comparison to the corresponding

ground truth images. It is shown that the proposed approach

yields higher overall accuracy and outperforms state-of-the-

art techniques [12] in HS image classification. In this work,

classification of HS images using EMPR based methods is put

into practice for the first time in the scientific literature. This

novel aspect represents the second important contribution of

this work.

The remainder of this paper is organized as follows. A

detailed explanation of EMPR for HSI is discussed in Section

II. Iterative EMPR and its combination with JPEG2000 are

described therein. The experimental setup, explanation of

compression rates of the proposed method, computational

complexity issues, are presented in Section III. Section IV

discusses the experimental results for performance evaluation,

including compression rate and classification accuracy for

comparison where the section is finalized with the comments

on parameter selection. Finally, some concluding remarks and

comments about future studies are provided in Section V.

II. ENHANCED MULTIVARIANCE PRODUCTS

REPRESENTATION (EMPR)

Enhanced Multivariance Products Representation (EMPR)

is an efficient data decomposition method [41]–[45]. It enables

multidimensional data to be represented in terms of lower-

dimensional components. Thus, it can be considered as a

series of lower dimensional structures instead of the high

dimensional original data.

From the scientific or engineering experiments, one of the

most important challenges in analyzing data is the “curse of

dimensionality” [50]. Therefore, managing this phenomenon

by reducing the number of dimensions becomes critical. To

this end, EMPR can be considered as an efficient tool for

addressing multidimensional problems.

Although EMPR is capable of decomposing N -dimensional

structures of data, the 3-dimensional case is considered in the

present paper without loss of generality. Since HS images are

represented in three dimensions (two spatial, one spectral), it

is more convenient to explain EMPR and its philosophy by

taking multidimensionality as three throughout the paper. On

the other hand, all formulations which will be given here can

easily be generalized to N -dimensional case. In this section,

EMPR for HSI will be introduced and discussed. An EMPR

based method, Iterative EMPR, will then be presented. The

combination of EMPR with JPEG2000 via Discrete Haar

Transform (DHT) will be given at the end of this section.

A. Plain EMPR for HSI

Let H denote the 3-dimensional hyperspectral cube of size

n1 × n2 × n3. This means H has n3 spectral bands and each

band includes n1 × n2 pixels storing intensity values at the

corresponding wavelength. The EMPR expansion of this cube

can be expressed as follows

H = h(0)

[

3
⊗

r=1

s
(r)

]

+
3

∑

i=1

h
(i) ⊗







3
⊗

r=1

r 6=i

s
(r)







+

3
∑

i,j=1

i<j

h
(i,j) ⊗







3
⊗

r=1

r 6=i,j

s
(r)






+ h

(1,2,3). (1)

where h(0), h
(i) and h

(i,j) denote the zero-way, the one-

way and the two-way EMPR components, respectively and

⊗ denotes the outer product operation [41]–[45]. The EMPR

expansion is a finite sum hence it involves exactly 23 EMPR

components. [41]–[45]. In (1), h(0) is a zero-dimensional

entity which can be considered as a scalar, h(i) denotes one-

dimensional entities which are the vectors, and h
(i,j) stands

for the two-dimensional entities which can be considered as

the matrices. In addition to these, other entities involved in (1)

and denoted by s
(r) are called the support vectors whence they

are one dimensional entities [41]–[45]. Thus, s(1) and s
(2) are

the first and second support vectors residing on the first and

second spatial axes of the 3-dimensional hyperspectral cube H,

respectively. Similarly, s(3) denotes the third support vector

laying on the third axis which defines the spectrum of H.

Thus, one can easily verify that s(r) is a vector composed of nr
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elements where nr is a positive integer (r = 1, 2, 3), assuming

that the size of H is n1 × n2 × n3. Support vectors bring

flexibility to EMPR expansion and must be chosen carefully

where the details of this selection will be given later in this

section. This selection is critical since it has a direct impact on

the representation efficiency of the relevant EMPR expansion.

As indicated above, as H is 3-dimensional, hence it should

be represented by means of the 3-dimensional entities, as

EMPR has an additive nature. Besides, three suitable support

vectors should be required in order to construct the corre-

sponding entities. By multiplying these support vectors with

the relevant EMPR components following the outer product

definition, 3-dimensional but less complicated structures are

obtained. These new entities, acquired by the multiplication of

an EMPR component with relevant support vectors, are called

the EMPR terms [41]–[45]. Consequently, it is convenient to

name the EMPR term including h(0) and all three correspond-

ing support vectors as zeroth EMPR term. Similarly, the term

including h
(i) and all the corresponding support vectors except

the i-th one is called i-th EMPR term. Accordingly, the term

composed of h(i,j) and all the corresponding support vectors

excluding the i-th and j-th ones, respectively, are called (i, j)-
th EMPR term. All EMPR terms are of the same size as H

which is n1 × n2 × n3, but rank-one.

In order to adjust the contributions of each intensity value

in H, three weight vectors including weighting ratios can be

utilized in EMPR expansion. The weight vectors are composed

of non-negative real values and must satisfy the following

conditions
∥

∥

∥
ω

(1)
∥

∥

∥

1
= 1,

∥

∥

∥
ω

(2)
∥

∥

∥

1
= 1,

∥

∥

∥
ω

(3)
∥

∥

∥

1
= 1. (2)

In (2), it is clear that the sum of all elements for each weight

vector should be equal to 1. This property holds due to the sta-

tistical necessities and it facilitates the relevant computations

in the determining process of EMPR components.

However, the EMPR components should satisfy the follow-

ing constraints

np
∑

ip=1

ω
(p)
ip

s
(p)
ip

h
(1,...,m)
i1,...,im

= 0; 1 ≤ p ≤ m ∈ {1, 2, 3} (3)

where ω
(p)
ip

and s
(p)
ip

are the ip-th elements of the p-th weight

vector ω
(p) and p-th support vector s

(p), respectively while

h
(1,...,m)
i1,...,im

denotes the (i1, . . . , im)-th entry of the correspond-

ing EMPR component h
(1,...,m). The equalities in (3) are

called vanishing conditions and lead to two important features

of EMPR components, which are the mutual orthogonality and

the uniqueness under a certain set of support vectors.

By utilizing the vanishing conditions in (3) with the help of

the weight vectors given in (2) and the pre-selected support

vectors, the zero-way EMPR component, i.e. h(0), can be

calculated uniquely as follows

h(0) =

n1
∑

i=1

n2
∑

j=1

n3
∑

k=1

ω
(1)
i ω

(2)
j ω

(3)
k s

(1)
i s

(2)
j s

(3)
k Hijk. (4)

It is worth noting that the right-hand side of the equation

(4) denotes a weighted sum of H multiplied by the relevant

support vector elements over the whole hyperspectral cube.

Thus, h(0) associates to a special weighted average value of

H.

Besides, (4) can be re-expressed by following the tensor

product definitions of multi-linear algebra given in [51] as

follows

h(0) = H ×̄1

(

ω
(1) ©∗ s

(1)
)

×̄2

(

ω
(2) ©∗ s

(2)
)

×̄3

(

ω
(3) ©∗ s

(3)
)

where ©∗ denotes the Hadamard (or elementwise) product and

×̄i stands for the mode−i tensor-vector product [51]. These

notations are widely used in tensor algebra due to their concise

formulation. On the other hand, we do not intend to follow

these symbols since we have exactly 3-ways in our analyses.

Here, we prefer explicity rather than compactness in notation,

though all EMPR components can be expressed using the

above-mentioned tensor product definitions.

After giving the details about the evaluation process of

the zeroth EMPR component, we can proceed with the one-

way EMPR components. By combining (2) and (3) again, the

corresponding elements of three one-way EMPR components

for H are computed uniquely as follows

h
(1)
i =

n2
∑

j=1

n3
∑

k=1

ω
(2)
j ω

(3)
k s

(2)
j s

(3)
k Hijk − h(0)

s
(1)
i ,

h
(2)
j =

n1
∑

i=1

n3
∑

k=1

ω
(1)
i ω

(3)
k s

(1)
i s

(3)
k Hijk − h(0)

s
(2)
j ,

h
(3)
k =

n1
∑

i=1

n2
∑

j=1

ω
(1)
i ω

(2)
j s

(1)
i s

(2)
j Hijk − h(0)

s
(3)
k . (5)

while three two-way EMPR components can be obtained

uniquely as

h
(1,2)
ij =

n3
∑

k=1

ω
(3)
k s

(3)
k Hijk − h(0)

s
(1)
i s

(2)
j

−h
(1)
i s

(2)
j − s

(1)
i h

(2)
j ,

h
(1,3)
ik =

n2
∑

j=1

ω
(2)
j s

(2)
j Hijk − h(0)

s
(1)
i s

(3)
k

−h
(1)
i s

(3)
k − s

(1)
i h

(3)
k ,

h
(2,3)
jk =

n1
∑

i=1

ω
(1)
i s

(1)
i Hijk − h(0)

s
(2)
j s

(3)
k

−h
(2)
j s

(3)
k − s

(2)
j h

(3)
k (6)

in a similar manner. The three-way EMPR component which is

the last element of the right-hand side in (1) can be calculated

by subtracting the EMPR terms whose explicit definitions are

given in (4), (5) and (6) respectively from the original data H.

By applying truncations to the right-hand side of the expan-

sion in (1) at certain levels, an approximation for H can be

achieved. To this end, if only the zeroth EMPR term is taken

into consideration, which means the rest of EMPR terms are

neglected, the zeroth order EMPR approximant is acquired.

The higher (first and second) order EMPR approximants can



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 4

be obtained in a similar manner and all approximants can be

stated explicitly as follows

π0 = h(0)

[

3
⊗

r=1

s
(r)

]

, π1 = π0 +
3

∑

i=1

h
(i) ⊗







3
⊗

r=1

r 6=i
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(r)






,

π2 = π1 +

3
∑

i,j=1

i<j

h
(i,j) ⊗







3
⊗

r=1

r 6=i,j

s
(r)






. (7)

Finally, one of the most important issues in EMPR, which is

the selection of the support vectors will be explained. Initially,

the support vectors should satisfy the following criteria

np
∑

ip=1

ω
(p)
ip

[

s
(p)
ip

]2

= 1; p = 1, 2, 3. (8)

which means that all support vectors should be normalized

under the corresponding weight vector. The normalization

procedure is essential as the support vectors should only

indicate the direction due to the fact that the contribution

coefficients are stored as the elements of EMPR components.

Any convenient set of support vectors can be selected as

long as they satisfy the conditions in (3) and (8). To this end,

the vectors whose elements are given explicitly as

S(1)
i =

n2
∑

j=1

n3
∑

k=1

ω
(2)
j ω

(3)
k Hijk,

S(2)
j =

n1
∑

i=1

n3
∑

k=1

ω
(1)
i ω

(3)
k Hijk,

S(3)
k =

n1
∑

i=1

n2
∑

j=1

ω
(1)
i ω

(2)
j Hijk. (9)

can be assessed as the support vectors of an EMPR expansion,

after normalization according to the conditions in (8). Al-

though this selection is not the optimal case, the corresponding

support vectors in (9) can be determined without any apparent

difficulty and utilized in an EMPR process as long as they

do not vanish [52]. Moreover, it is easy to recognize that

each formula in (9) depicts a weighted average of H over all

axes of the corresponding 3-dimensional cube excluding one

direction (axis). Thus, the formulas in (9) specify averaged

directions for the data under consideration. To this end, the

support vectors chosen by the utilization of the formulas in (9)

are called Averaged Directional Supports (ADS) [52]. These

support vectors can be encountered in almost in all of EMPR

applications existing in the scientific literature [41]–[45].

Before concluding this subsection, it becomes useful to

present the similarities and differences between EMPR and

the well-known CANDECOMP/PARAFAC [51]. Both EMPR

and CANDECOMP/PARAFAC are the tensor decomposition

methods and composed of finite number of elements. In CAN-

DECOMP/PARAFAC, the tensor on the focus is represented

in terms of rank-one tensors.

For EMPR, the target tensor is expressed as the sum of four

rank-one tensors (0th, 1st, 2nd and 3rd EMPR terms), and four

terms whose ranks are greater than one (4th, 5th, 6th and 7the

EMPR terms) each of which is order 3 (or 3-dimensional).

In CANDECOMP/PARAFAC, the vectors used to construct

the rank-one tensors by following the outer product are de-

termined via convex optimization. Instead, in EMPR, initially

a group of support vectors is selected, and the corresponding

EMPR components (scalar, vectors and matrices) are deter-

mined by following the weighted mean approach as shown in

Eqs. (4), (5) and (6).

B. Iterative EMPR

If we notice EMPR expansion in (1) and approximants in

(7), it is possible to write down the following

h
(1,2,3) = H− π2 (10)

where h
(1,2,3) could be marked as the residual term of the

EMPR expansion of H. Although h
(1,2,3) can be considered

as residual, it contains information about the hyperspectral

cube H. By neglecting this term in the corresponding EMPR

expansion, which also means dealing with the second order

EMPR approximant, some information (which may be im-

portant) belonging to H is ignored. Thus, the quality of the

corresponding representation can be affected negatively. In

order to reduce this possible undesirable effect, the EMPR

procedure is applied to the residual term to take this neglected

information into account. To this end, the operation in (10) can

be considered as the zeroth iteration of the Iterative EMPR

process. If we denote the zeroth residual term as

{H}(1) = h
(1,2,3) (11)

and apply the second order EMPR approximation to {H}(1)

{H}(1) = {π2}(1) +
{

h
(1,2,3)

}

(1)
(12)

is obtained where {π2}(1) and
{

h
(1,2,3)

}

(1)
stand for the sec-

ond order EMPR approximant and the corresponding residual

term of the first iteration, respectively.

If we continue to apply the relevant EMPR process to the

residual term of each iteration consequently
{

h
(1,2,3)

}

(m)
= {H}(m)−{π2}(m) ; m = 0, 1, 2, . . . (13)

is achieved, where (m) denotes the iteration number of the

corresponding Iterative EMPR process and {H}(0) = H.

This iteration scheme can be pursued until a satisfactory

compression efficiency is achieved. On the other hand, each

iteration brings more data to be stored. If the iteration number

of the Iterative EMPR process is selected as m, the data-rate

value to be attained becomes m times bit-per-pixel-per-band

(bpppb) value of the original EMPR procedure. This issue will

be discussed in Section III.

C. Combining EMPR with JPEG2000 using DHT

The Discrete Haar Transform (DHT) is the most funda-

mental wavelet transforms in the scientific literature [46]. It

helps to split a 1-D signal of even size, say 2N , into two 1-D

signals of size N . These two equally sized signals involve the
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low band and high band characteristics of the input signal,

respectively. If we denote any 1-D signal of size 2N as s[·],
the DHT of this signal can be obtained as follows

l[k] =
s[2k] + s[2k − 1]√

2
, h[k] =

s[2k]− s[2k − 1]√
2

;

k = 1, . . . , N (14)

where l[·] and h[·] stand for the low frequency and high-

frequency components of signal s[·], respectively.

The DHT can be implemented on the hyperspectral image H

by applying it to the spectral signal of each pixel consecutively.

Thus, it becomes possible to say that n1 × n2 signals of

size n3 are split into two equal parts according to their

spectral correlations. In this way, each spectral signal of

H is partitioned as the low frequency and high frequency

portions. If we gather the low frequency portions and sort

them to their pixel positions, the low band cube Hlow is

obtained while the high frequency components form the high

band cube, Hhigh. Both Hlow and Hhigh have a size of

n1 × n2 × (n3/2). As we mentioned before, the computation

of the EMPR terms depends on weighted averages, and this

property enables EMPR to represent high correlated data sets

much better than that of the low correlated ones. Thus, it

becomes rational to apply EMPR or Iterative EMPR toHhigh

portion of the corresponding HS data set H. On the other

hand, the other portion, Hlow, which contains the spectrally

low correlated information of H and can be compressed

using an efficient and easy to implement lossless compression

algorithm such as JPEG2000 [53], as illustrated in Fig. 1. As

Fig. 1: Application of DHT to H and obtaining two equally

sized cubes Hlow and Hhigh. Hlow is the low frequency part

while Hhigh stands for the high frequency part of H.

we mentioned before, the computation of the EMPR terms

depend on weighted averages. This property enables EMPR to

represent high correlated data sets much better than that of the

low correlated ones. Thus, it becomes rational to apply EMPR

or Iterative EMPR to Hhigh portion of the corresponding HS

data set H. On the other hand, the other portion, Hlow, which

contains the spectrally low correlated information of H can be

compressed using an efficient and easy to implement lossless

compression algorithm such as JPEG2000 [27], as can be seen

in Fig. 1.

After the application of the EMPR based algorithm and any

suitable lossless compression method, the obtained sub-cubes

are combined with the help of Inverse Discrete Haar Transform

(I-DHT) [46] using the following equations

s[2k] =
l[k] + h[k]√

2
, s[2k − 1] =

l[k]− h[k]√
2

;

k = 1, . . . , N (15)

and finally, a lossy compressed version of H is obtained. In

addition, this approach can be considered as a hybrid way of

compression since the encoding part is composed of both lossy

and lossless encoders. Although the application of higher level

DHT is possible in our case, it is not used in this work. In the

present paper, all calculations related to DHT are performed

using only the first level.

III. IMPLEMENTATIONS

A. Data Sets Used

In this paper, ten different hyperspectral data sets are utilized

to validate the performance of the proposed approach. These

data sets are selected from various sensors to fully demonstrate

how EMPR and Iterative EMPR perform with data collected

from sensors with different characteristics. These data sets are

handled after cropping in order to make a fair comparison

with the state-of-the-art [9], [24], [27], [36], [48], [49]. All

the specifications about the utilized data sets can be found in

Table I and the corresponding pseudo-color images of the first

four of them are shown in Fig. 2. Additionally, the pseudo-

color images for the Hhigh and Hlow parts of Low Altitude

and Cuprite data sets are presented in Fig. 3. It is easy to

observe from Fig. 3 that sub-figures (a) and (c) including

Hhigh parts of the relevant images are capable of presenting

edges since they include high frequency spectral signatures

for the corresponding data sets. On the other hand, Hlow

parts included by (b) and (d) sub-figures looks similar to their

original pseudo-color images shown in Fig. 2 as they include

the low frequency terms of the corresponding spectral signals.

As stated earlier, EMPR depends on weighted averages, thus

the selection of three weight vectors is important in repre-

senting the hyperspectral cube under consideration. Although

any weight vector mentioned in Section II and satisfying

the conditions in (2) could be utilized, the simplest case,

which is the equally distributed weights, are used in these

implementations. Thus, these weight vectors are given as

follows

w
(1)
i = 1/n1, i = 1, . . . , n1

w
(2)
j = 1/n2, j = 1, . . . , n2

w
(3)
k = 1/n3, k = 1, . . . , n3. (16)

Additionally, selection of the support vectors is another

crucial issue in EMPR’s representation efficiency. Although

it is possible to optimize the support vectors in EMPR, this

is not carried out here as it is beyond the scope of this

paper. Thus, it becomes a rational approach to deal with the

Averaged Directional Supports (ADS) whose formulations are

given explicitly in (9).

On the other hand, it is noted that three levels of EMPR

approximations could be handled for representing an HS cube

via certain EMPR approximants in (7). In this section, all

results are obtained by performing the second order EMPR

approximant, that is π2. This preference occurs since the

zeroth and the first EMPR approximants result in too low
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TABLE I: Hyperspectral data set specifications

Name (H) Samples (n1) Lines (n2) Bands (n3) Bit depth Sensor Cropped to

Jasper Ridge (JR) 2587 614 224 16 AVIRIS 512× 512× 224

Low Altitude (LA) 1432 614 224 16 AVIRIS 512× 512× 224

Lunar Lake (LL) 3689 614 224 16 AVIRIS 512× 512× 224

Cuprite (CU) 512 614 224 16 AVIRIS 512× 512× 224

Botswana (BO) 1476 256 145 16 HYPERION 256× 256× 144

Pavia Uni. (PU) 610 340 103 16 ROSIS 256× 256× 102

92AV3 C 145 145 224 16 AVIRIS 144× 144× 184

Salinas B (SA) 512 217 224 16 AVIRIS 144× 144× 184

Washington DC MALL (WA) 1280 307 191 16 HYDICE 1280 × 307 × 190

Indian Pines (IP) 145 145 224 16 AVIRIS 145× 145× 200

bpppb values hence the comparisons with other methods

become impossible.

All experiments are carried out using MATLAB R2020a on

AMD Ryzen 7 3700X CPU @ 3.60GHz processor and 32 GB

memory under Linux Ubuntu 18.04.4 LTS operating system.

(a) (b)

(c) (d)

Fig. 2: Pseudo-color images for the data sets: (a) Jasper Ridge,

(b) Low Altitude, (c) Lunar Lake and (d) Cuprite

B. Compression Rates

Although we only deal with π2 in this section, bit-per-pixel-

per-band (bpppb) values for the zeroth, first and second order

EMPR approximants for an HS cube of size n1 × n2 × n3

are calculated by pursuing the evaluation approach followed

in [24], [25] as

bpppb(π0) =
32 · (m+ 1) · (1 + n1 + n2 + n3)

16 ·N
bpppb(π1) = bpppb(π0) +

32 · (m+ 1) · (n1 + n2 + n3)

16 ·N

bpppb(π2) = bpppb(π1) +
32 · (m+ 1) ·

(

N
n3 + N

n2

+ N
n1

)

16 ·N
(17)

(a) (b)

(c) (d)

Fig. 3: Pseudo-color images for the half cubes after performing

DHT: (a) Hhigh for Low Altitude, (b) Hlow for Low Altitude,

(c) Hhigh for Cuprite and (d) Hlow for Cuprite

where m stands for the iteration number (no iteration, Plain

EMPR when m = 0) and N = n1×n2×n3. Since all HS cubes

in Table I are composed of 16-bit values, the denominators

of the above formulae are multiplied by 16. On the other

hand, since the EMPR algorithm deals with floating numbers,

nominators are multiplied by 32 which corresponds to single

precision.

It is important to note that if n1, n2 and n3 are assumed as

infinitely large which means that the HS cube to be dealt with

is of infinite size, the bpppb values decrease and converge to

zero. This suggests that smaller bpppb values can be achieved

while dealing with large HS data sets.

As stated above, only bpppb(π2) is on the focus in this

work which means that encoder generates and transmits a

scalar h(0); three vectors, h(1), h(2) and h
(3); three matrices

h
(1,2), h(1,3) and h

(2,3) and three support vectors, i.e. s(1), s(2)

and s
(3). After the transmission process, decoder combines

these components by following outer product and summation
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operations according to the last row in Eq. (7).

If EMPR or Iterative EMPR combined with DHT whose

details are given in subsection II-C, bpppb values for the

corresponding representation can be determined as

bpppb(EMPR+JPEG2000) = bpppb(π2)

+ bpppb(JPEG2000) (18)

where bpppb(JPEG2000) is calculated by performing

JPEG2000 lossless compression to each band of Hlow

consecutively. As one of the most straightforward methods

for compressing a multi-band image with JPEG2000, this

method is called JPEG2000 band-independent fixed-rate

(JPEG2000-BIFR) [31] where the fixed-rate is just 1.0
as in our case, whence we prefer to employ the lossless

compression here. After the compression of each band,

the size of the encoded band is calculated in bytes and

accumulated across all the bands to form the total size of the

corresponding Hlow. The total size for the Hlow half cubes

after band-wise JPEG2000 implementation is given in Table

II for comparison.

TABLE II: Sizes of low band half of HS cubes after JPEG2000

implementation

HS Cube Size in bytes

JR 1529974
LA 3002795
LL 175563
CU 272770
BO 16519
PU 15753
WA 317842
IP 18800

For implementation, the imwrite function in MATLAB

is called for each spectral band in order to compress the low-

frequency part Hlow using JPEG2000 lossless compression

with the compression mode as ‘lossless’. MATLAB uses Dis-

crete Wavelet Transform in 5 decomposition levels with 5× 3
kernels following the LRCP (Layer, Resolution, Components,

Position) order in its embedded encoding scheme.

C. Computational Complexity

Since EMPR is based on weighted averages, its implemen-

tation requires many additions and multiplications. The precise

number of these operations depends on the size of the HS cube

under consideration.

If the cube H is assumed to be of size n1×n2×n3, N stands

for n1n2n3 and the weight vectors in (16) are utilized, the

following numbers of floating point operations for calculation

of EMPR components are given in Table III.

In Table III, one can easily verify that the addition amount

for each EMPR component is the same. Also, the number of

multiplications decreases while the order of the term increases

since the number of nested sums diminishes. Also, the number

of subtractions increases when the order of the term increases

according to the definitions in (4), (5) and (6).

Nevertheless, the floating point operations which are re-

quired for calculating ADS vectors including normalization

processes are tabulated in Table IV.

TABLE III: Operation counts for calculating EMPR compo-

nents

Component Addition Multiplication Subtraction

h(0) N 3N + 3 −

h(1) N 2N + 3n1 n1

h
(2)

N 2N + 3n2 n2

h
(3)

N 2N + 3n3 n3

h(1,2) N N + 5n1n2 3n1n2

h(1,3) N N + 5n1n3 3n1n3

h(2,3) N N + 5n2n3 3n2n3

TABLE IV: Operation counts for for calculating ADS (includ-

ing normalization)

Support Addition Multiplication Division Square Root

s
(1)

N + n1 4n1 n1 1

s(2) N + n2 4n2 n2 1

s(3) N + n3 4n3 n3 1

Since the representation in (1) involves outer products and

the summation of three-way arrays, each of size n1×n2×n3,

the floating point operations required to construct the EMPR

approximants are given as follows

fl(π0) = 9N + 6(n1 + n2 + n3) + 6

fl(π1) = 15N + 4(n1 + n2 + n3) + fl(π0)

fl(π2) = 12N + 8(n1n2 + n1n3 + n2n3) + fl(π1) (19)

According to the analysis above, the computational complexity

of the Plain EMPR with equally distributed weights and ADS

is

O (36n1n2n3) ≈ O
(

n3
)

. (20)

It is known that the computational complexity of single-level

DHT of a 1-dimensional signal of size n is O(logn) which is

the same as the Inverse DHT [54]. Since we have n1×n2 1-D

signals of size n3 in our case, the corresponding computational

complexity of DHT in the proposed approach becomes

O (n1n2 logn3) ≈ O
(

n2 logn
)

. (21)

IV. RESULTS

In this section, the performances of the proposed meth-

ods are presented using tables and figures. Moreover, the

results obtained are compared with the TFEMPR [24],

PCA+JPEG2000 [27], 3D SPECK [48], PLTD [36], NTSRLR

[49] and 3D DCT [12] lossy compression methods in order to

contrast the efficiency of the proposed approach.

A. Evaluation Metrics

For fair comparisons, some universal metrics which are

utilized to measure the performance of the methods in signal

and image processing are employed. These metrics are the

mean squared error (MSE), maximum absolute error (MAE),

signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR)

and structural similarity index (SSIM) [55]. If H and Ĥ stand

for the hyperspectral cube under consideration and its EMPR
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based representation (or compression), the abovementioned

metrics can be defined mathematically as follows

MSE(H, Ĥ) =
1

N

n1
∑

i=1

n2
∑

j=1

n3
∑

k=1

(

Hijk − Ĥijk

)2

,

MAE(H, Ĥ) = max{|H− Ĥ|},

SNR(H, Ĥ) = 10 log10

( ‖H‖2F
MSE(H, Ĥ)

)

,

PSNR(H, Ĥ) = 10 log10

(

peakval2

MSE(H, Ĥ)

)

,

SSIM(H, Ĥ) =
[

ℓ(H, Ĥ)
]α [

c(H, Ĥ)
]β [

s(H, Ĥ)
]γ

,

(22)

where peakval in above PSNR formula is taken as 216 − 1
since the data sets in Table I are stored as 16 bits.

On the other hand, ℓ(·), c(·) and s(·) residing in the last

formula of (22) stand for the similarity of luminance, contrast

and structure, respectively. The exponents of these factors, i.e.

α, β and γ are taken as 1 and regularization constants involved

by these factors are taken as C1 = (0.01)2, C2 = (0.03)2

and C3 = C2/2 by default. SSIM is defined for 2D images

to measure the similarity between two images for human

perception [55]. For HS images, SSIM values are computed

between two spectral bands at the same wavelength. Then, the

average of these SSIM values is calculated and presented as

SSIM.

B. Objective Evaluation

In Fig. 4, PSNR values which correspond to bpppb varying

from 0 to 0.5 for three AVIRIS data sets are presented.

Each data set in Fig. 4 is of size 512 × 512 × 224 and

can be considered as big HS data sets. It is obvious from

Fig. 4 that, for each AVIRIS HS cube, PSNR increases

while the bit rate or the number of iteration increases.

Besides, EMPR+DHT+JPEG2000 combination yields consis-

tently higher PSNR values than Plain EMPR for each HS cube.

This is especially true for the low bit rates, which means less

than 0.1 bpppb, where a gain of about 25 dB is achieved

by performing EMPR+DHT+JPEG2000 combination rather

than Plain EMPR. On the other hand, this gain decreases

when using more iterations. At 0.5 bpppb value, PSNR values

for Plain EMPR is about 83 dB, compared to 90 dB for

EMPR+DHT+JPEG2000.

Fig. 5 depicts the comparison of distortions between

the three AVIRIS data sets and their corresponding EMPR

based compressed representations by using SSIM. As can

be seen, SSIM values increase while the bit rates in-

creases for all AVIRIS data sets for both Plain EMPR and

EMPR+DHT+JPEG2000 when applied to the HS cube. In

Fig. 5, SSIM values at initial iterations are under 0.5 which

seem to be quiet low for Jasper Ridge and Low Altitude

data sets. This lack of similarity can be fixed by increas-

ing the number of iterations. Especially after the fourth

iteration, SSIM values from the Plain EMPR compressions

grows rapidly for each HS cube and approaches to 0.92
for Jasper Ridge and Lunar Lake, and about 0.89 for Low
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Fig. 4: bpppb vs PSNR results of EMPR and

EMPR+DHT+JPEG2000 for Jasper Ridge, Low Altitude and

Lunar Lake.
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Fig. 5: bpppb vs SSIM results of EMPR and

EMPR+DHT+JPEG2000 for Jasper Ridge, Low Altitude and

Lunar Lake.

Altitude data set. Nonetheless, Plain EMPR cannot outperform

EMPR+DHT+JPEG2000 combination for SSIM. SSIM values

obtained by EMPR+DHT+JPEG2000 compression seem to

be stable and vary between 0.92 and 0.99 for the bit rates

changing from 0 to 0.5 for all AVIRIS data sets.

After analyzing the representation and similarity perfor-

mance of EMPR and EMPR+DHT+JPEG2000 combination

for three big AVIRIS HS cubes, the next issue is the com-

parison of the computation costs. In Fig. 6, it is obvious that

the computation time for EMPR+DHT+JPEG2000 is less than

Plain EMPR for each HS cube. The gap between the com-

putation times of Plain EMPR and EMPR+DHT+JPEG2000

tends to increase. Since the size of each cube is the same,

the measured computation times from different data sets are

similar for both Plain EMPR and EMPR+DHT+JPEG2000

methods. Also, all computation times increase linearly since
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Fig. 6: bpppb vs computation time results of EMPR and

EMPR+DHT+JPEG2000 for Jasper Ridge, Low Altitude and

Lunar Lake.

the amount of computation is equal in each iteration. Although

the computational complexity of the JPEG2000 procedure is

higher than EMPR, it is implemented just once before starting

the EMPR iterations. Additionally, the Iterative EMPR method

is applied only to the high-frequency part of the HS cube, in-

stead of the whole data set, which halves the computation cost.

Moreover, DHT and Inverse DHT algorithms whose computa-

tional complexities are lower than EMPR and JPEG2000 in our

case are also applied just a single time. All these assumptions

are consistent with the results in Fig. 6 and show that the

computation time of Plain EMPR is approximately 3.5 times

higher than that of EMPR+DHT+JPEG2000 combination for

the HS data sets of size 512× 512× 224 under consideration.

In order to show the efficiency of the proposed method, it

is important to compare the results obtained with other lossy

compression algorithms. To this end, the proposed method will

be compared with TFEMPR which is superior to several lossy

compression algorithms such as CPPCA, SIP, gOMP, BP and

LASSO as shown in [24]. In Table V, PSNR comparisons of

TABLE V: Image Quality Performance (PSNR) Comparison

of the Proposed EMPR Based Method with TFEMPR for

Jasper Ridge, Low Altitude and Lunar Lake.

bpppb Method JR LA LL

0.1
TFEMPR 70.99 70.71 73.67

EMPR+DHT+JPEG2000 85.29 82.97 85.54

0.3
TFEMPR 80.50 78.75 81.06

EMPR+DHT+JPEG2000 88.95 87.00 87.92

0.5
TFEMPR 83.51 82.01 83.04

EMPR+DHT+JPEG2000 90.75 88.82 89.71

EMPR+DHT+JPEG2000 combination with TFEMPR for the

fixed bit rates 0.1, 0.3 and 0.5 are given.

It can be observed from Table V that

EMPR+DHT+JPEG2000 outperforms TFEMPR for all

fixed bit rates. The proposed approach yields higher PSNR

values at each fixed bit-rate for all three AVIRIS HS cubes.

The difference between the PSNR values of both methods

is significant which is about 14 dB at 0.1 bpppb. This gap

decreases for cases of 0.3 bpppb and 0.5 bpppb while the

number of iterations grows.

C. Results from Other Data Sets

It is important to address the efficiency of

EMPR+DHT+JPEG2000 combination using data sets

collected with other sensors. To this end, Botswana data

set from HYPERION sensor Pavia University data set from

ROSIS sensor and Washington DC Mall data set from

HYDICE sensor are employed. The results of the proposed

method and TFEMPR are tabulated in Table VI and Table

VII, respectively.

TABLE VI: MSE, MAE and PSNR Comparison of the Pro-

posed EMPR Based Method with TFEMPR for Botswana.

bpppb Method MSE MAE PSNR

0.1
TFEMPR 838 1538 67.09

EMPR+DHT+JPEG2000 411 816 70.19

0.3
TFEMPR 340 1280 71.01

EMPR+DHT+JPEG2000 214 704 73.03

0.5
TFEMPR 160 576 74.29

EMPR+DHT+JPEG2000 128 584 75.24

TABLE VII: MSE, MAE and PSNR Comparison of the

Proposed EMPR Based Method with TFEMPR for Pavia Uni.

bpppb Method MSE MAE PSNR

0.1
TFEMPR 1036 5704 66.17

EMPR+DHT+JPEG2000 334 3346 71.10

0.3
TFEMPR 227 1427 72.77

EMPR+DHT+JPEG2000 100 2813 76.33

0.5
TFEMPR 75 636 77.56

EMPR+DHT+JPEG2000 50 554 79.31

In Table VI and Table VII, the methods are com-

pared according to Mean Squared Error (MSE), Maxi-

mum Absolute Error (MAE) and PSNR values. In Ta-

ble VI, it is clear that EMPR+DHT+JPEG2000 combina-

tion yields lower MSE and higher PSNR values at each

of three bpppb rates. On the other hand, MSE value for

EMPR+DHT+JPEG2000 is a bit higher compared to TFEMPR

at 0.5 bpppb while EMPR+DHT+JPEG2000 approach gives

lower MAE at 0.1 and 0.3 bpppb. Similarly, in Table VII,

EMPR+DHT+JPEG2000 approach results in lower MSE and

higher PSNR values at 0.1, 0.3 and 0.5 bpppb for Pavia Uni.

data set. MAE values of EMPR+DHT+JPEG2000 combination

at 0.1 and 0.5 bpppb are also lower than Plain EMPR, but Plain

EMPR gives lower MAE at 0.3 bpppb. Consequently, Table

V, Table VI and Table VII show that EMPR+DHT+JPEG2000

combination outperforms TFEMPR in several objective assess-

ments (MSE, MAE, PSNR) for the HS data sets of various

sizes and acquired by different sensors.

PSNR values evaluated by EMPR+DHT+JPEG2000 imple-

mentation on Botswana, Pavia Uni. and Washington DC Mall

data sets compared with Plain EMPR results are given in

Fig. 7. Similar to Fig. 4, EMPR+DHT+JPEG2000 outperforms
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Plain EMPR. It results in gains of approximately 15 dB and 28
dB at approximately 0.03 bpppb for Botswana and Pavia Uni.,

respectively while the gain is 26 dB at about 0.015 bpppb for

Washington DC Mall. Another observation in Fig. 7 is that

DHT and JPEG2000 contribution to EMPR results in greater

improvement for two complex urban images Pavia Uni. and

Washington DC Mall than the Botswana data set.
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Fig. 7: bpppb vs PSNR results of EMPR and

EMPR+DHT+JPEG2000 for Botswana, Pavia Uni. and

Washington DC Mall

After comparing the proposed method and TFEMPR, it is

time to address the similarity characteristics of EMPR and

EMPR+DHT+JPEG2000 in detail via Fig. 7 and Fig. 8. The
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Fig. 8: bpppb vs SSIM results of EMPR and

EMPR+DHT+JPEG2000 for Botswana, Pavia Uni. and

Washington DC Mall

findings in these two figures are similar to those presented

in Fig. 4 and Fig. 5. In Fig. 7, EMPR+DHT+JPEG2000

combination yields higher PSNR values than Plain EMPR for

all HS images under consideration.

In Fig. 8, SSIM values for Botswana, Pavia Uni. and

Washingon DC Mall for bit rates changing from 0.015 to 0.5

bpppb are compared. The findings in Fig. 8 are consistent

with those in Fig. 5. SSIM values for Plain EMPR at initial

iterations or low bit rates are far smaller than the proposed

approach.

TABLE VIII: SNR (dB) and time (sec) comparison of the

proposed EMPR based method with PCA+JPEG2000 and 3D

SPECK for Cuprite, Indian Pines and Jasper Ridge at 0.5
bpppb.

Method / Data
CU IP JR

SNR Time SNR Time SNR Time

PCA+JPEG2000 50.5 7.2 40.2 0.4 44.1 6.9

3D SPECK 46.6 4.8 43.5 0.3 41.7 4.5

Proposed 53.0 138.3 42.6 4.3 53.3 184.6

After analyzing and comparing the compression efficiency

of the proposed method with TFEMPR via several ex-

periments, we also compared it with some other well-

known and efficient lossy compression algorithms exploit-

ing various HS data sets. The first is PCA+JPEG2000 ap-

proach presented in [27] while the second is called the

3D SPECK given in [48]. The performance in terms of

SNR of our proposed EMPR+DHT+JPEG2000 approach is

compared with these two techniques in Table VIII. Table

VIII denotes that EMPR+DHT+JPEG2000 approach outper-

forms both PCA+JPEG2000 and 3D SPECK methods at the

given fixed bit rate of 0.5 bpppb for the Cuprite and Jasper

Ridge data sets. In Table VIII, it can be noticed that the

3D SPECK algorithm preserves the details for Indian Pines

data set better than the proposed method, in which the SNR

value is slightly higher which is 0.9 dB. On the other hand,

EMPR+DHT+JPEG2000 approach manages to present 2.4 dB

higher SNR value than PCA+JPEG2000 method for Indian

Pines HS image.

Beside the rate-distortion values, related computation times

are also presented in Table VIII. It is obvious from Table

VIII that EMPR+DHT+JPEG2000 approach yields higher

computation times due to its number of iterations. To be

able to enhance the detail preserving ability of the proposed

approach, the number of iterations should be increased, while

the computation time grows linearly (Fig. 6). Also, the gap

between computation times decreases when the size of the

data set is relevantly small.

TABLE IX: PSNR (dB) comparison of the EMPR based

methods with two tensor based compression methods for

Indian Pines dataset at very close bit-rates (bpppb).

Method PSNR Rate

PLTD 36.67 0.0454

NTSRLR 41.15 0.05

EMPR 46.44 0.048

EMPR+DHT+JPEG2000 60.19 0.049

Although the computational complexity of the proposed

method is quite high, the evaluation of EMPR components

requires a large number of independent multiplications. This

problem can be fixed by using parallel programming concepts

and the overall computation time can be drastically reduced.
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EMPR is a tensor decomposition based method which can

be efficiently utilized in HSI compression. Then, it is important

to compare it with other state-of-the-art tensor decomposition

based methods. To this end, two important methods are

selected and PSNR results are presented in Table IX. These

methods are PLTD [36] and NTSRLR [49], respectively. In

Table tab:tensorbasedcomp, the rate distortion metric, PSNR,

is addressed at very low and close bit rates about 0.05. The

values for PLTD and NTSRLR are acquired from [36] and

[49], respectively. It is clear from Table tab:tensorbasedcomp

that the proposed method outperforms the other tensor de-

composition based techniques in the sense of preserving the

details. Moreover, EMPR without combining JPEG2000 also

yields higher PSNR values, which verifies that EMPR, alone,

stands as an efficient tensor-based lossy compression technique

for HSI.

As a last comment in this subsection, it is worth noting

that in [56], the compression ratio produced by applying 2D

JPEG2000 to each band of the AVIRIS data set consecutively

is 2.15 at most which is far less than our proposed method

regarding to the compression ratios at fixed bpppb values.

D. Classification and Overall Accuracy

In this subsection, the quality assured assessment, which

is the classification performance of our proposed methods is

evaluated. To this end, 92AV3 C, PaviaUni and Salinas B

are employed. The first reason for selecting these data sets

is that we have their ground truth images for evaluation.

The second reason is to compare the classification ability of

EMPR with an efficient lossy compression method based on

3D Discrete Cosine Transform (3D DCT) [12]. To this end,

the HS data sets and their corresponding ground truth images

are cropped. Thus, the sizes of 92AV3 C, Pavia Uni. and

Salinas B are reduced to 144 × 144 × 184, 144 × 144 × 96
and 144×144×184 respectively while the dimensions of their

ground truth images are reduced accordingly. These reductions

of sizes were adopted aiming for a fair comparison with the

3D DCT method [12], in which the same setting was used

in coding of hyperspectral images. The corresponding ground

truth images are shown in Fig. 9.

(a) (b) (c)

Fig. 9: Ground truth images for the data sets: (a) 92AV3 C,

(b) Pavia Uni. and (c) Salinas B.

The abovementioned HS data sets are classified using a

support vector machine (SVM) algorithm with the help of

an important open source SVM library called LIBSVM [57].

First, the encoded bands of Hlow are decoded consecutively

and the corresponding half cube of size n1 × n2 × n3/2 is

obtained. Then, the second half cube of the same size, which
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Fig. 10: Comparison of the classification accuracies of EMPR,

EMPR+DHT+JPEG2000 and original image for 92AV3 C

with available ground truth using 50% of all data as the

training pixels

is encoded by EMPR (or iterative EMPR) is constructed using

the EMPR components and the support vectors by following

Eq. (7). Two reconstructed half cubes are reunited by applying

the inverse DHT to each spectral signal of these two half cubes

whose pixel indexes match. After attaining the corresponding

lossy compressed version of the original data, the spectral

signals are extracted and used as feature vectors for training

or testing on the SVM for data classification.

The results obtained are reported as Overall Accuracy (OA)

for each HS cube. The presented OA values are the average of

10 independent SVM experiments for each data set. In each

experiment, 50% of the data is selected randomly for training

and the other 50% for testing. For each data set, the optimal

classification parameters are determined by grid-search and

cross-validation procedures after data normalization. Then the

model is trained using an SVM algorithm with the radial basis

functions (RBF) as the classification kernel and a testing phase

is applied. The same classification procedure is also employed

for the original HS cubes in order to compare the classification

results.

In Fig. 10, the classification results of Plain EMPR,

EMPR+DHT+JPEG2000 combination and the original HS

cube for 92AV3 C data set are reported. The OA value for

original 92AV3 C is calculated as 93.68% after 10 random

experiments. On the other hand, Plain EMPR (no iteration)

result is above 98%. After the first iteration, the corresponding

classification accuracy starts to decrease. Nonetheless, OA

values for Iterative EMPR are always higher than the classifi-

cation accuracy of the original data up to the 12th iteration

which corresponds to approximately 0.5 bpppb. Following

this, the EMPR+DHT+JPEG2000 combination produces about

96% accuracy which is again higher than the classification

accuracy of original 92AV3 C. The corresponding accuracy

tends to decrease while the number of iterations grows, similar

to Plain EMPR. Nevertheless, after the 4th iteration, which
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corresponds to 0.16 bpppb, the accuracy drops below that of

the original HS cube. On the other hand, in paper [12], it is

reported that the 3D DCT method yields about 45% OA at 0.02
bpppb and the classification accuracy increases strictly whilst

the bit rate (bpppb) grows, though it always stays below the

accuracy of the original HS cube up to 1.0 bpppb. These results

show that Plain EMPR outperforms the 3D DCT, especially

at very low bpppb values.
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Fig. 11: Comparison of the classification accuracies of EMPR,

EMPR+DHT+JPEG2000 and original image for Pavia Uni.

with available ground truth using 50% of all data as the

training pixels

In Fig. 11, the classification results for Pavia Uni. data set

are reported. It is seen that Plain EMPR with no iteration yields

a slightly lower classification accuracy than the original data.

But on applying the first iteration, it rises above the OA of the

original data and stays above for the bpppb values from 0.08
to 0.5. On the other hand, EMPR+DHT+JPEG2000 approach

gives higher OA values than the original classification accu-

racy up to the third iteration, but then it tends to decrease ans

stays below the OA of the original data. In [12], it is reported

that the 3D DCT based method achieves at most 98.56%
for the corresponding cropped version of Pavia Uni. data set

which is lower than that of the original OA for this HS image.

Therefore, it is convenient to say that Plain EMPR outperforms

the 3D DCT method regarding to the classification accuracy

for Pavia Uni. data set at each bit rate up to 0.5 bpppb, while

EMPR+DHT+JPEG2000 approach yields better results than

the 3D DCT at low bit rates for the same HS data set.

In Fig. 12, the classification accuracy results for Salinas

B are presented.It is clear from the figure that both Plain

EMPR and the EMPR+DHT+JPEG2000 combination yield

higher classification accuracy than the corresponding original

data set. According to the results in Fig. 12, EMPR outper-

forms EMPR+DHT+JPEG2000 combination and the 3D DCT

method which is reported as 99.02% at most in [12] regarding

classification for bpppb values from 0.03 bpppb to 0.5 bpppb.

After comparing the classification performances of EMPR

based methods and the 3D DCT based lossy compression

algorithm, the next step is to compare their representation
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Fig. 12: Comparison of the classification accuracies of EMPR,

EMPR+DHT+JPEG2000 and original image for Salinas with

available ground truth using 50% of all data as the training

pixels

efficiencies. To this end, it is important to discuss the objective

assessments as well as classification. In Fig. 13, one can

see the SNR results for three data sets obtained by employ-

ing EMPR and EMPR+DHT+JPEG2000 combination. It is

obvious that EMPR+DHT+JPEG2000 combination results in

higher SNR values than Plain EMPR for all data sets. All the
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Fig. 13: bpppb vs SNR results of EMPR and

EMPR+DHT+JPEG2000 for 92AV3 C, Pavia Uni. and

Salinas B.

curves in Fig. 13 tend to increase except the one for Plain

EMPR of 92AV3 C. SNR values for 92AV3 C increase up to

the 3rd iteration and then decrease. After the 5th iteration, they

increase again then slightly reduce after the 7th iteration. On

the other hand, though its performance regarding SNR is lower

than EMPR+DHT+JPEG2000 combination, Plain EMPR can

outperform the 3D DCT based method at bpppb values less

than 0.5. In [12], it is reported that SNR values for all three

data sets tend to increase as the bit rate grows where SNR
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values at 0.5 bpppb for 92AV3 C, Pavia Uni. and Salinas B in

that work are about 30 dB, 29 dB and 31 dB respectively. It

is apparent from Fig. 13 that Plain EMPR outperforms the 3D

DCT method for each data set under consideration in terms

of SNR.

Fig. 14 shows SSIM results at bpppb values changing

from 0.03 to 0.5 obtained by employing Plain EMPR and

EMPR+DHT+JPEG2000 approaches to three data sets. The

results are similar to Fig. 5 and Fig. 8. At initial iterations,

Plain EMPR has low values of SSIM. After applying the

second iteration, SSIM value increases rapidly for each HS

data set while the number of iterations grows. For each data

set, EMPR is capable of achieving similarity ratios greater

than 0.9 after 0.3 bpppb. Additionally, SSIM values obtained

by the EMPR+DHT+JPEG2000 approach are always greater

than EMPR. If we compare the performance of the proposed

methods with the 3D DCT lossy compression algorithm in

[12] regarding structural similarity, it is seen that both EMPR

and EMPR+DHT+JPEG2000 approaches are more capable of

compressing HS data by preserving the similarity than the 3D

DCT method at lower bit rates. [12] reports that the SSIM
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Fig. 14: bpppb vs SSIM results of EMPR and

EMPR+DHT+JPEG2000 for 92AV3 C, Pavia Uni. and

Salinas B.

values at lower bit rates are less than 0.2 for each of the

corresponding HS data set. On the other hand, the 3D DCT

based method manages to increase the similarity while the

compression rate grows. At 0.5 bpppb, the 3D DCT based

method generates approximately 0.9 SSIM value. Thus, it

is convenient to say, EMPR based methods are much more

efficient than the 3D DCT at lower bit rates in terms of

similarity, though both EMPR+DHT+JPEG2000 and the 3D

DCT approaches result in similar SSIM values at higher bit

rates, which are 0.5 bpppb and further.

Before concluding this subsection, it is rational to analyze

the classification efficiency of the EMPR based methods using

a lower training ratio, say 10%, which is a more reasonable

training ratio for many applications in HS imagery. To this

end, the same HS data sets which are 92AV3 C, Pavia Uni.

and Salinas are taken into consideration again. The SVM clas-

sification method whose tuning details are given above are also

utilized in order to calculate the corresponding classification

accuracy of each data set.
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Fig. 15: Comparison of the classification accuracies of EMPR,

EMPR+DHT+JPEG2000 and original image for 92AV3 C

with available ground truth using 10% of all data as the

training pixels

In Fig. 15, the OA values of Plain EMPR,

EMPR+DHT+JPEG2000 approach and the OA value for the

original data for 92AV3 C HS cube using 10% as the training

pixels are presented. One can verify that Plain EMPR yields

higher accuracy ratios than the original data at each bit rate.

Moreover, Plain EMPR outperforms EMPR+DHT+JPEG2000

method regarding OA. Plain EMPR achieves its maximum

OA at the first iteration which corresponds to 0.08 bpppb.
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Fig. 16: Comparison of the classification accuracies of EMPR,

EMPR+DHT+JPEG2000 and original image for Pavia Uni.

with available ground truth using 10% of all data as the

training pixels

In Fig. 16, the classification results for Pavia Uni. are

reported for 10% trainig ratio. The results in Fig. 16 are

similar to those in Fig. 11. Again, Plain EMPR gives higher
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classification accuracy than the original data set for the

bpppb values changing from 0.1 to 0.5 and outperforms

EMPR+DHT+JPEG2000 method for all iterations except the

initial one, that is the zeroth iteration or no iteration.
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Fig. 17: Comparison of the classification accuracies of EMPR,

EMPR+DHT+JPEG2000 and original image for Salinas with

available ground truth using 10% of all data as the training

pixels

In Fig. 17, the related OA results are presented for Salinas

data set by amploying 10% of the all pixels as the training

pixels. It is shown that, Plain EMPR gives higher OA values

than the original data at each iteration except the seventh

one. On the other hand, the overall accuracies yielded by

both Plain EMPR and EMPR+DHT+JPEG2000 approaches

tend to decrease as the number of iteration grows with an

oscillatory behaviour. Also, it is clear from Fig. 17 that, Plain

EMPR outperforms EMPR+DHT+JPEG2000 regarding OA

for Salinas data set at 10% training ratio.

E. Spectral Analysis

In classification of HS images, investigating the spectral

similarity right along side the structural similarity is also

another important issue. To this end, the spectral angle (SA)

and the spectral correlation coefficient (SCC) metrics whose

formulations are given in (23) will be exploited.

SA(x, x̂) = arccos

( 〈x, x̂〉
‖x‖2 ‖x̂‖2

)

SCC(x, x̂) =
〈x− x, x̂− x̂〉

‖x− x‖2 ‖x̂− x̂‖2
(23)

In HS imagery, SA is utilized for measuring the spectral

similarity of the processed and the reference image, while

SCC is benefited to distinguish between positive and negative

correlations amongst the spectral signals.

In Fig. 18 and Fig. 19, average SA and SCC values for

increasing bit rates (number of iterations) for 92AV3 C, Pavia

Uni. and Salinas B data sets are presented, respectively. In

both figures, each value is calculated as the mean value of
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EMPR based methods

the corresponding metric determined for the all pixels of the

corresponding image.

It is shown in Fig. 18 that the SA values obtained by

performing EMPR+DHT+JPEG2000 are higher than the ones

obtained by the EMPR application to the corresponding data

sets, especially for the bit rates up to 0.25 bpppb. The

observations indicate that EMPR+DHT+JPEG2000 approach

preserves the spectral similarity better than the Plain EMPR

for the corresponding data sets. On the other hand, SA values

for each method and the data set tend to decrease while the

number of iterations grows.

In Fig. 19, it is clear that the spectral correlations for

each data set achieved by performing EMPR is low at ini-

tial iterations. But, after the first iterations, all coefficients

increase rapidly and catches the EMPR+DHT+JPEG2000 after

0.3 bpppb. Beside, EMPR+DHT+JPEG lossy compression

approach preserves the spectral correlation since the corre-

sponding values in Fig. 19 is always close to 1.0 for all bit
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rates.

F. On Parameter Selection

As we discussed in Section II, the proposed method is a

hybrid approach combining (Iterative) EMPR and JPEG2000.

EMPR, alone itself, is a promising method for the HSI

compression but has limited ability for preserving the image

details. This issue can be overcome by taking the residual

term into account, which means performing the EMPR on each

residual iteratively. Thus, an efficient method called Iterative

EMPR emerges. It is clear to observe from Fig. 4 to Fig. 8

that increasing the iteration count increases the corresponding

PSNR and SSIM values consistently for all HS data sets.

Moreover, by adding new residuals to the expansion, meaning

that performing more iterations also improves the spectral

similarity as one can observe from Fig. 18 and Fig. 19.

Besides, each iteration comes with an additional computation

cost and this cost can be considerably high for the HS data

sets whose sizes are quite large.

On the other hand, in contrast with the preserving the

details and spectral properties ability of Iterative EMPR, the

increment in iteration count reduces the classification accuracy.

EMPR depends on the weighted averages of the HS cube

and somehow denoises the raw data using these averages

which helps to improve the classification accuracy. Performing

additional iterations may cause the unenviable details which

can be considered as the noise. This phenomenon results in

reduced classification ability which is addressed through Fig.

14, Fig. 15, Fig. 16 and Fig. 17.

As a result, while determining the value of the iteration

number parameter, one should consider a trade-off between

the compression quality and computation time. Also, it is

important to remark that a few iterations may not increase

the computation cost drastically, while they can represent a

satisfactory amount of details.

V. CONCLUSION

A new and easy to implement high dimensional data

modelling method namely Enhanced Multivariance Products

Representation (EMPR) is proposed and utilized as an highly

efficient tool for the lossy compression of HS images. An

Iterative EMPR scheme is also proposed and its efficiency on

lossy compression is presented via several implementations,

which is compared with some state-of-the-art lossy compres-

sion algorithms.

The proposed EMPR based approaches are further sup-

ported with the decorrelation ability of the Haar transform

(DHT) generating two subband data sets. The high-subband

part which has a higher correlation is decomposed using

the EMPR approach while the low-subband part is com-

pressed using the JPEG2000 scheme in a lossless manner.

Consequently, the overall approach yields superior PSNR

values at the fixed bit-rates, when compared with another

state-of-the-art high dimensional modelling based recursive

lossy compression algorithm, TFEMPR and existing methods,

PCA+JPEG2000 approach and 3D SPECK algorithm. The

proposed approach also outperforms two state-of-the-art tensor

decomposition based HSI compression methods which are

PLTD and NTSRLR, respectively.

Combining EMPR with DHT and JPEG2000 also decreases

the computational complexity for sufficiently large HS data

sets. Results indicate that the proposed approach is especially

suitable for the lossy compression of HS data at low bit rates.

Another noteworthy issue is that increasing the iteration

number in Iterative EMPR approach improves the constructed

image quality while the data to be stored increases.

In order to assess the classification capability of the pro-

posed method, we employed an SVM procedure for several

HS data sets using their available ground truth maps. Ac-

cording to observed classification accuracy results, EMPR

has a greater capability of classifying HS images at low

bit-rates. Also, it outperforms one of the important lossy

compression algorithms based on the 3D DCT. This power

of EMPR is presented to the scientific literature for the first

time. These results show that EMPR is an efficient method for

feature extraction in HSI. On the other hand, it is observed

that, combining EMPR with DHT and JPEG2000 reduces

classification accuracy, though it increases the representation

quality. However, another observation shows that increasing

the iteration number in Iterative EMPR reduces the overall

accuracy.

In summary, the main contributions of this paper can be

highlighted as follows:

• An iterative EMPR scheme is proposed and applied to

HSI compression for the first time, which can improve

the bit-rate and preserve more details for effective com-

pression of HSI;

• Combining the iterative EMPR with JPEG2000 and DHT

has enhanced the representation quality of the corre-

sponding compression scheme;

• The proposed approach has outperformed several state-

of-the-art lossy compression methods;

• The feature extraction capability of EMPR has been

addressed and validated via the accuracy of data clas-

sification of SVM in HSI for the first in the scientific

literature.
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[24] Z. Gündoğar, B. U. Töreyin, and M. Demiralp, “Tridiagonal folmat
enhanced multivariance products representation based hyperspectral
data compression,” IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, vol. 11, no. 9, pp. 3272–3278, 2018.

[25] A. Karami, M. Yazdi, and G. Mercier, “Compression of hyperspectral
images using discrete wavelet transform and tucker decomposition,”
IEEE journal of selected topics in applied earth observations and remote

sensing, vol. 5, no. 2, pp. 444–450, 2012.

[26] W. Fu, S. Li, L. Fang, and J. A. Benediktsson, “Adaptive spectral–spatial
compression of hyperspectral image with sparse representation,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 55, no. 2, pp.
671–682, 2016.

[27] Q. Du and J. E. Fowler, “Hyperspectral image compression using
JPEG2000 and principal component analysis,” IEEE Geoscience and

Remote sensing letters, vol. 4, no. 2, pp. 201–205, 2007.

[28] K.-j. Cheng and J. Dill, “Lossless to lossy dual-tree bezw compression
for hyperspectral images,” IEEE transactions on geoscience and remote

sensing, vol. 52, no. 9, pp. 5765–5770, 2014.

[29] C. C. for Space Data Systems (CCSDS), “Low-complexity lossless and
near-lossless multispectral and hyperspectral image compression,” 2019.

[30] S. Mei, B. M. Khan, Y. Zhang, and Q. Du, “Low-complexity hy-
perspectral image compression using folded PCA and JPEG2000,” in
IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing

Symposium. IEEE, 2018, pp. 4756–4759.

[31] J. T. Rucker, J. E. Fowler, and N. H. Younan, “JPEG2000 coding strate-
gies for hyperspectral data,” in Proceedings. 2005 IEEE International

Geoscience and Remote Sensing Symposium, 2005. IGARSS’05., vol. 1.
IEEE, 2005, pp. 4–pp.

[32] B. Penna, T. Tillo, E. Magli, and G. Olmo, “Progressive 3-d coding
of hyperspectral images based on JPEG2000,” IEEE Geoscience and

remote sensing letters, vol. 3, no. 1, pp. 125–129, 2006.

[33] E. Christophe, C. Mailhes, and P. Duhamel, “Hyperspectral image
compression: adapting spiht and ezw to anisotropic 3-d wavelet coding,”
IEEE Transactions on Image Processing, vol. 17, no. 12, pp. 2334–2346,
2008.

[34] W. Jifara, F. Jiang, B. Zhang, H. Wang, J. Li, A. Grigorev, and S. Liu,
“Hyperspectral image compression based on online learning spectral
features dictionary,” Multimedia Tools and Applications, vol. 76, no. 23,
pp. 25 003–25 014, 2017.

[35] A. Sukhanov, S. Tuna, and B. U. Töreyin, “Lossy compression of hyper-
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