130 research outputs found

    Reversible Image Watermarking Using Modified Quadratic Difference Expansion and Hybrid Optimization Technique

    Get PDF
    With increasing copyright violation cases, watermarking of digital images is a very popular solution for securing online media content. Since some sensitive applications require image recovery after watermark extraction, reversible watermarking is widely preferred. This article introduces a Modified Quadratic Difference Expansion (MQDE) and fractal encryption-based reversible watermarking for securing the copyrights of images. First, fractal encryption is applied to watermarks using Tromino's L-shaped theorem to improve security. In addition, Cuckoo Search-Grey Wolf Optimization (CSGWO) is enforced on the cover image to optimize block allocation for inserting an encrypted watermark such that it greatly increases its invisibility. While the developed MQDE technique helps to improve coverage and visual quality, the novel data-driven distortion control unit ensures optimal performance. The suggested approach provides the highest level of protection when retrieving the secret image and original cover image without losing the essential information, apart from improving transparency and capacity without much tradeoff. The simulation results of this approach are superior to existing methods in terms of embedding capacity. With an average PSNR of 67 dB, the method shows good imperceptibility in comparison to other schemes

    Digital watermarking : applicability for developing trust in medical imaging workflows state of the art review

    Get PDF
    Medical images can be intentionally or unintentionally manipulated both within the secure medical system environment and outside, as images are viewed, extracted and transmitted. Many organisations have invested heavily in Picture Archiving and Communication Systems (PACS), which are intended to facilitate data security. However, it is common for images, and records, to be extracted from these for a wide range of accepted practices, such as external second opinion, transmission to another care provider, patient data request, etc. Therefore, confirming trust within medical imaging workflows has become essential. Digital watermarking has been recognised as a promising approach for ensuring the authenticity and integrity of medical images. Authenticity refers to the ability to identify the information origin and prove that the data relates to the right patient. Integrity means the capacity to ensure that the information has not been altered without authorisation. This paper presents a survey of medical images watermarking and offers an evident scene for concerned researchers by analysing the robustness and limitations of various existing approaches. This includes studying the security levels of medical images within PACS system, clarifying the requirements of medical images watermarking and defining the purposes of watermarking approaches when applied to medical images

    ROI-based reversible watermarking scheme for ensuring the integrity and authenticity of DICOM MR images

    Get PDF
    Reversible and imperceptible watermarking is recognized as a robust approach to confirm the integrity and authenticity of medical images and to verify that alterations can be detected and tracked back. In this paper, a novel blind reversible watermarking approach is presented to detect intentional and unintentional changes within brain Magnetic Resonance (MR) images. The scheme segments images into two parts; the Region of Interest (ROI) and the Region of Non Interest (RONI). Watermark data is encoded into the ROI using reversible watermarking based on the Difference Expansion (DE) technique. Experimental results show that the proposed method, whilst fully reversible, can also realize a watermarked image with low degradation for reasonable and controllable embedding capacity. This is fulfilled by concealing the data into ‘smooth’ regions inside the ROI and through the elimination of the large location map required for extracting the watermark and retrieving the original image. Our scheme delivers highly imperceptible watermarked images, at 92.18-99.94dB Peak Signal to Noise Ratio (PSNR) evaluated through implementing a clinical trial based on relative Visual Grading Analysis (relative VGA). This trial defines the level of modification that can be applied to medical images without perceptual distortion. This compares favorably to outcomes reported under current state-of-art techniques. Integrity and authenticity of medical images are also ensured through detecting subsequent changes enacted on the watermarked images. This enhanced security measure, therefore, enables the detection of image manipulations, by an imperceptible approach, that may establish increased trust in the digital medical workflow

    A novel robust reversible watermarking scheme for protecting authenticity and integrity of medical images

    Get PDF
    It is of great importance in telemedicine to protect authenticity and integrity of medical images. They are mainly addressed by two technologies, which are region of interest (ROI) lossless watermarking and reversible watermarking. However, the former causes biases on diagnosis by distorting region of none interest (RONI) and introduces security risks by segmenting image spatially for watermark embedding. The latter fails to provide reliable recovery function for the tampered areas when protecting image integrity. To address these issues, a novel robust reversible watermarking scheme is proposed in this paper. In our scheme, a reversible watermarking method is designed based on recursive dither modulation (RDM) to avoid biases on diagnosis. In addition, RDM is combined with Slantlet transform and singular value decomposition to provide a reliable solution for protecting image authenticity. Moreover, ROI and RONI are divided for watermark generation to design an effective recovery function under limited embedding capacity. Finally, watermarks are embedded into whole medical images to avoid the risks caused by segmenting image spatially. Experimental results demonstrate that our proposed lossless scheme not only has remarkable imperceptibility and sufficient robustness, but also provides reliable authentication, tamper detection, localization and recovery functions, which outperforms existing schemes for protecting medical image

    Implementation of Reversible Data Hiding Using Suitable Wavelet Transform For Controlled Contrast Enhancement

    Get PDF
    Data Hiding is important for secrete communication and it is also essential to keep the data hidden to be received by the intended recipient only. The conventional Reversible Data Hiding (RDH) algorithms pursue high Peak-Signal-to-Noise-Ratio (PSNR) at certain amount of embedding bits. Considering an importance of improvement in image visual quality than keeping high PSNR, a novel RDH scheme utilizing contrast enhancement to replace the PSNR was presented with the help of Integer Wavelet Transform (IWT). In proposed work, the identification of suitable transform from different wavelet families is planned to enhance the security of data by encrypting it and embedding more bits with the original image to generate stego image. The obtained stego image will be transmitted to the other end, where the receiver will extract the transmitted secrete data and original cover image from stego image using required keys. It will use a proper transformation for the purpose of Controlled Contrast Enhancement (CCE) to achieve the intended RDH so that the amount of embedding data bits and visual perception will be enhanced. The difference of the transmitted original image and restored original image is minor, which is almost invisible for human eyes though more bits are embedded with the original image. The performance parameters are also calculated

    Reversible Data Hiding scheme using modified Histogram Shifting in Encrypted Images for Bio-medical images

    Get PDF
    Existing Least Significant Bit (LSB) steganography system is less robust and the stego-images can be corrupted easily by attackers. To overcome these problems Reversible data hiding (RDH) techniques are used. RDH is an efficient way of embedding confidential message into a cover image. Histogram expansion and histogram shifting are effective techniques in reversible data hiding. The embedded message and cover images can be extracted without any distortion. The proposed system focuses on implementation of RDH techniques for hiding data in encrypted bio-medical images without any loss. In the proposed techniques the bio-medical data are embedded into cover images by reversible data hiding technique. Histogram expansion and histogram shifting have been used to extract cover image and bio- medical data. Each pixel is encrypted by public key of Paillier cryptosystem algorithm. The homomorphic multiplication is used to expand the histogram of the image in encrypted domain. The histogram shifting is done based on the homomorphic addition and adjacent pixel difference in the encrypted domain. The message is embedded into the host image pixel difference. On receiving encrypted image with additional data, the receiver using his private key performs decryption. As a result, due to histogram expansion and histogram shifting embedded message and the host image can be recovered perfectly. The embedding rate is increased in host image than in existing scheme due to adjacency pixel difference

    Assessment of perceptual distortion boundary through applying reversible watermarking to brain MR images

    Get PDF
    The digital medical workflow faces many circumstances in which the images can be manipulated during viewing, extracting and exchanging. Reversible and imperceptible watermarking approaches have the potential to enhance trust within the medical imaging pipeline through ensuring the authenticity and integrity of the images to confirm that the changes can be detected and tracked. This study concentrates on the imperceptibility issue. Unlike reversibility, for which an objective assessment can be easily made, imperceptibility is a factor of human cognition that needs to be evaluated within the human context. By defining a perceptual boundary of detecting the modification, this study enables the formation of objective guidelines for the method of data encoding and level of image/pixel modification that translates to a specific watermark magnitude. This study implements a relative Visual Grading Analysis (VGA) evaluation of 117 brain MR images (8 original and 109 watermarked), modified by varying techniques and magnitude of image/pixel modification to determine where this perceptual boundary exists and relate the point at which change becomes noticeable to the objective measures of the image fidelity evaluation. The outcomes of the visual assessment were linked to the images Peak Signal to Noise Ratio (PSNR) values, thereby identifying the visual degradation threshold. The results suggest that, for watermarking applications, if a watermark is applied to the 512x512 pixel (16 bpp grayscale) images used in the study, a subsequent assessment of PSNR=82dB or greater would mean that there would be no reason to suspect that the watermark would be visually detectable. Keywords: Medical imaging; DICOM; Reversible Watermarking; Imperceptibility; Image Quality; Visual Grading Analysis

    Reversible Data Hiding scheme using modified Histogram Shifting in Encrypted Images for Bio-medical images

    Get PDF
    Existing Least Significant Bit (LSB) steganography system is less robust and the stego-images can be corrupted easily by attackers. To overcome these problems Reversible data hiding (RDH) techniques are used. RDH is an efficient way of embedding confidential message into a cover image. Histogram expansion and histogram shifting are effective techniques in reversible data hiding. The embedded message and cover images can be extracted without any distortion. The proposed system focuses on implementation of RDH techniques for hiding data in encrypted bio-medical images without any loss. In the proposed techniques the bio-medical data are embedded into cover images by reversible data hiding technique. Histogram expansion and histogram shifting have been used to extract cover image and bio- medical data. Each pixel is encrypted by public key of Paillier cryptosystem algorithm. The homomorphic multiplication is used to expand the histogram of the image in encrypted domain. The histogram shifting is done based on the homomorphic addition and adjacent pixel difference in the encrypted domain. The message is embedded into the host image pixel difference. On receiving encrypted image with additional data, the receiver using his private key performs decryption. As a result, due to histogram expansion and histogram shifting embedded message and the host image can be recovered perfectly. The embedding rate is increased in host image than in existing scheme due to adjacency pixel difference

    PERFORMANCE EVALUATION AND COMPARATIVE ANALYSIS OF WATERMARKING ALGORITHM BASED ON ADAPTIVE PREDICTION METHOD

    Get PDF
    Now a days digital watermarking appeared as a solution for copyright detection, protection and maintenance of important data. This paper deals with a new reversible watermarking algorithm based on adaptive prediction error expansion, which can recover original image after extracting the hidden data. Embedding capacity of such algorithm depend on the prediction accuracy of the predictor. The method can embed secret data into 3×3 image block order by exploiting the pixel redundancy within each block. It has been observed that proposed method of reversible watermarking provide much better results in terms of Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) in comparison to existing literature

    Reversible difference expansion multi-layer data hiding technique for medical images

    Get PDF
    Maintaining the privacy and security of confidential information in data communication has always been a major concern. It is because the advancement of information technology is likely to be followed by an increase in cybercrime, such as illegal access to sensitive data. Several techniques were proposed to overcome that issue, for example, by hiding data in digital images. Reversible data hiding is an excellent approach for concealing private data due to its ability to be applied in various fields. However, it yields a limited payload and the quality of the image holding data (Stego image), and consequently, these two factors may not be addressed simultaneously. This paper addresses this problem by introducing a new non-complexity difference expansion (DE) and block-based reversible multi-layer data hiding technique constructed by exploring DE. Sensitive data are embedded into the difference values calculated between the original pixels in each block with relatively low complexity. To improve the payload capacity, confidential data are embedded in multiple layers of grayscale medical images while preserving their quality. The experiment results prove that the proposed technique has increased the payload with an average of 369999 bits and kept the peak signal to noise ratio (PSNR) to the average of 36.506 dB using medical images' adequate security the embedded private data. This proposed method has improved the performance, especially the secret size, without reducing much the quality. Therefore, it is suitable to use for relatively big payloads
    corecore