50 research outputs found

    Advanced Interfaces for HMI in Hand Gesture Recognition

    Get PDF
    The present thesis investigates techniques and technologies for high quality Human Machine Interfaces (HMI) in biomedical applications. Starting from a literature review and considering market SoA in this field, the thesis explores advanced sensor interfaces, wearable computing and machine learning techniques for embedded resource-constrained systems. The research starts from the design and implementation of a real-time control system for a multifinger hand prosthesis based on pattern recognition algorithms. This system is capable to control an artificial hand using a natural gesture interface, considering the challenges related to the trade-off between responsiveness, accuracy and light computation. Furthermore, the thesis addresses the challenges related to the design of a scalable and versatile system for gesture recognition with the integration of a novel sensor interface for wearable medical and consumer application

    Review on EMG Acquisition and Classification Techniques: Towards Zero Retraining in the Influence of User and Arm Position Independence

    Get PDF
    The surface electromyogram (EMG) is widely studied and applied in machine control. Recent methods of classifying hand gestures reported classification rates of over 95%. However, the majority of the studies made were performed on a single user, focusing solely on the gesture classification. These studies are restrictive in practical sense: either focusing on just gestures, multi-user compatibility, or rotation independence. The variations in EMG signals due to these conditions present a challenge to the practical application of EMG devices, often requiring repetitious training per application. To the best of our knowledge, there is little comprehensive review of works done in EMG classification in the combined influence of user-independence, rotation and hand exchange. Therefore, in this paper we present a review of works related to the practical issues of EMG with a focus on the EMG placement, and recent acquisition and computing techniques to reduce training. First, we provided an overview of existing electrode placement schemes. Secondly, we compared the techniques and results of single-subject against multi-subject, multi-position settings. As a conclusion, the study of EMG classification in this direction is relatively new. However the results are encouraging and strongly indicate that EMG classification in a broad range of people and tolerance towards arm orientation is possible, and can pave way for more flexible EMG devices

    Bio-signal based control in assistive robots: a survey

    Get PDF
    Recently, bio-signal based control has been gradually deployed in biomedical devices and assistive robots for improving the quality of life of disabled and elderly people, among which electromyography (EMG) and electroencephalography (EEG) bio-signals are being used widely. This paper reviews the deployment of these bio-signals in the state of art of control systems. The main aim of this paper is to describe the techniques used for (i) collecting EMG and EEG signals and diving these signals into segments (data acquisition and data segmentation stage), (ii) dividing the important data and removing redundant data from the EMG and EEG segments (feature extraction stage), and (iii) identifying categories from the relevant data obtained in the previous stage (classification stage). Furthermore, this paper presents a summary of applications controlled through these two bio-signals and some research challenges in the creation of these control systems. Finally, a brief conclusion is summarized

    Fused mechanomyography and inertial measurement for human-robot interface

    Get PDF
    Human-Machine Interfaces (HMI) are the technology through which we interact with the ever-increasing quantity of smart devices surrounding us. The fundamental goal of an HMI is to facilitate robot control through uniting a human operator as the supervisor with a machine as the task executor. Sensors, actuators, and onboard intelligence have not reached the point where robotic manipulators may function with complete autonomy and therefore some form of HMI is still necessary in unstructured environments. These may include environments where direct human action is undesirable or infeasible, and situations where a robot must assist and/or interface with people. Contemporary literature has introduced concepts such as body-worn mechanical devices, instrumented gloves, inertial or electromagnetic motion tracking sensors on the arms, head, or legs, electroencephalographic (EEG) brain activity sensors, electromyographic (EMG) muscular activity sensors and camera-based (vision) interfaces to recognize hand gestures and/or track arm motions for assessment of operator intent and generation of robotic control signals. While these developments offer a wealth of future potential their utility has been largely restricted to laboratory demonstrations in controlled environments due to issues such as lack of portability and robustness and an inability to extract operator intent for both arm and hand motion. Wearable physiological sensors hold particular promise for capture of human intent/command. EMG-based gesture recognition systems in particular have received significant attention in recent literature. As wearable pervasive devices, they offer benefits over camera or physical input systems in that they neither inhibit the user physically nor constrain the user to a location where the sensors are deployed. Despite these benefits, EMG alone has yet to demonstrate the capacity to recognize both gross movement (e.g. arm motion) and finer grasping (e.g. hand movement). As such, many researchers have proposed fusing muscle activity (EMG) and motion tracking e.g. (inertial measurement) to combine arm motion and grasp intent as HMI input for manipulator control. However, such work has arguably reached a plateau since EMG suffers from interference from environmental factors which cause signal degradation over time, demands an electrical connection with the skin, and has not demonstrated the capacity to function out of controlled environments for long periods of time. This thesis proposes a new form of gesture-based interface utilising a novel combination of inertial measurement units (IMUs) and mechanomyography sensors (MMGs). The modular system permits numerous configurations of IMU to derive body kinematics in real-time and uses this to convert arm movements into control signals. Additionally, bands containing six mechanomyography sensors were used to observe muscular contractions in the forearm which are generated using specific hand motions. This combination of continuous and discrete control signals allows a large variety of smart devices to be controlled. Several methods of pattern recognition were implemented to provide accurate decoding of the mechanomyographic information, including Linear Discriminant Analysis and Support Vector Machines. Based on these techniques, accuracies of 94.5% and 94.6% respectively were achieved for 12 gesture classification. In real-time tests, accuracies of 95.6% were achieved in 5 gesture classification. It has previously been noted that MMG sensors are susceptible to motion induced interference. The thesis also established that arm pose also changes the measured signal. This thesis introduces a new method of fusing of IMU and MMG to provide a classification that is robust to both of these sources of interference. Additionally, an improvement in orientation estimation, and a new orientation estimation algorithm are proposed. These improvements to the robustness of the system provide the first solution that is able to reliably track both motion and muscle activity for extended periods of time for HMI outside a clinical environment. Application in robot teleoperation in both real-world and virtual environments were explored. With multiple degrees of freedom, robot teleoperation provides an ideal test platform for HMI devices, since it requires a combination of continuous and discrete control signals. The field of prosthetics also represents a unique challenge for HMI applications. In an ideal situation, the sensor suite should be capable of detecting the muscular activity in the residual limb which is naturally indicative of intent to perform a specific hand pose and trigger this post in the prosthetic device. Dynamic environmental conditions within a socket such as skin impedance have delayed the translation of gesture control systems into prosthetic devices, however mechanomyography sensors are unaffected by such issues. There is huge potential for a system like this to be utilised as a controller as ubiquitous computing systems become more prevalent, and as the desire for a simple, universal interface increases. Such systems have the potential to impact significantly on the quality of life of prosthetic users and others.Open Acces

    Body swarm interface (BOSI) : controlling robotic swarms using human bio-signals

    Get PDF
    Traditionally robots are controlled using devices like joysticks, keyboards, mice and other similar human computer interface (HCI) devices. Although this approach is effective and practical for some cases, it is restrictive only to healthy individuals without disabilities, and it also requires the user to master the device before its usage. It becomes complicated and non-intuitive when multiple robots need to be controlled simultaneously with these traditional devices, as in the case of Human Swarm Interfaces (HSI). This work presents a novel concept of using human bio-signals to control swarms of robots. With this concept there are two major advantages: Firstly, it gives amputees and people with certain disabilities the ability to control robotic swarms, which has previously not been possible. Secondly, it also gives the user a more intuitive interface to control swarms of robots by using gestures, thoughts, and eye movement. We measure different bio-signals from the human body including Electroencephalography (EEG), Electromyography (EMG), Electrooculography (EOG), using off the shelf products. After minimal signal processing, we then decode the intended control action using machine learning techniques like Hidden Markov Models (HMM) and K-Nearest Neighbors (K-NN). We employ formation controllers based on distance and displacement to control the shape and motion of the robotic swarm. Comparison for ground truth for thoughts and gesture classifications are done, and the resulting pipelines are evaluated with both simulations and hardware experiments with swarms of ground robots and aerial vehicles

    Machine Learning for Hand Gesture Classification from Surface Electromyography Signals

    Get PDF
    Classifying hand gestures from Surface Electromyography (sEMG) is a process which has applications in human-machine interaction, rehabilitation and prosthetic control. Reduction in the cost and increase in the availability of necessary hardware over recent years has made sEMG a more viable solution for hand gesture classification. The research challenge is the development of processes to robustly and accurately predict the current gesture based on incoming sEMG data. This thesis presents a set of methods, techniques and designs that improve upon evaluation of, and performance on, the classification problem as a whole. These are brought together to set a new baseline for the potential classification. Evaluation is improved by careful choice of metrics and design of cross-validation techniques that account for data bias caused by common experimental techniques. A landmark study is re-evaluated with these improved techniques, and it is shown that data augmentation can be used to significantly improve upon the performance using conventional classification methods. A novel neural network architecture and supporting improvements are presented that further improve performance and is refined such that the network can achieve similar performance with many fewer parameters than competing designs. Supporting techniques such as subject adaptation and smoothing algorithms are then explored to improve overall performance and also provide more nuanced trade-offs with various aspects of performance, such as incurred latency and prediction smoothness. A new study is presented which compares the performance potential of medical grade electrodes and a low-cost commercial alternative showing that for a modest-sized gesture set, they can compete. The data is also used to explore data labelling in experimental design and to evaluate the numerous aspects of performance that must be traded off

    Optimized Biosignals Processing Algorithms for New Designs of Human Machine Interfaces on Parallel Ultra-Low Power Architectures

    Get PDF
    The aim of this dissertation is to explore Human Machine Interfaces (HMIs) in a variety of biomedical scenarios. The research addresses typical challenges in wearable and implantable devices for diagnostic, monitoring, and prosthetic purposes, suggesting a methodology for tailoring such applications to cutting edge embedded architectures. The main challenge is the enhancement of high-level applications, also introducing Machine Learning (ML) algorithms, using parallel programming and specialized hardware to improve the performance. The majority of these algorithms are computationally intensive, posing significant challenges for the deployment on embedded devices, which have several limitations in term of memory size, maximum operative frequency, and battery duration. The proposed solutions take advantage of a Parallel Ultra-Low Power (PULP) architecture, enhancing the elaboration on specific target architectures, heavily optimizing the execution, exploiting software and hardware resources. The thesis starts by describing a methodology that can be considered a guideline to efficiently implement algorithms on embedded architectures. This is followed by several case studies in the biomedical field, starting with the analysis of a Hand Gesture Recognition, based on the Hyperdimensional Computing algorithm, which allows performing a fast on-chip re-training, and a comparison with the state-of-the-art Support Vector Machine (SVM); then a Brain Machine Interface (BCI) to detect the respond of the brain to a visual stimulus follows in the manuscript. Furthermore, a seizure detection application is also presented, exploring different solutions for the dimensionality reduction of the input signals. The last part is dedicated to an exploration of typical modules for the development of optimized ECG-based applications
    corecore