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Abstract	

Myoelectric controlled prosthetic hands represent an effective tool to restore functionality 

and enhance the quality of life for upper limb amputees. Such devices provide sensing, 

multifunctionality and more natural control. In the current state of the art solutions, the control 

is mainly accomplished through sophisticated motions encoding by using machine learning 

algorithms for residual forearm muscles.   Offline analysis and evaluation of motion detection 

accuracy for such algorithms on data sets are the main focus of current studies. However, there 

is a significant gap between laboratory evaluations and system integration in the complicated 

real-time environment. Because a sufficient and comprehensive analysis of complete 

prostheses requires a sophisticated synchronisation of data acquisition, motion classification, 

and timely prosthetic actuation with a wearable compact system, most prosthetic control lack 

the robust interface to facilitate all required functionalities in an acceptable manner for the 

majority of users. Even if advancements in data integration and computational power enable 

high prediction accuracy, the practical implementation of such technology is still being 

challenged by various influences, particularly those related to the fact that the signal sources 

are biological signals that change considerably by limb position, variations on muscle 

contraction, electrode shifting and amputation level. Therefore, most of the existing prostheses 

are passive, and their dexterity properties remain fixed with limited object grasping and hand 

gestures.  

 This research presents the design of a bypass socket and integrated real-time control system 

based on pattern recognition algorithms to control a prosthetic hand. This study covers a 

compact system development beginning with investigating the anatomy and natural dexterity 

of the human hand, motor control, and human-like physical manipulation for data collection, 

going through the sEMG feature extraction and finally implementing adequate embedded 

pattern recognition on a prosthesis prototype. 

 A wide range of techniques such as sEMG signals, data gloves, and force sensors was 

employed to collect data from able-bodied subjects. Popular pattern recognition algorithms 

such as k-Nearest Neighbours (k-NN), support vector machines (SVM), linear discriminant 

analysis (LDA) and artificial neural network (ANN) were used to differentiate individual finger 

manipulations and hand motions. The performance of classifiers with different muscle 

observation approaches and a variety of feature extraction methods with two windowing sizes 

and the various number of the electrode was compared against the publicly available data sets 

and similar studies.  
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The offline analysis results led to a novel bypass socket design to minimise electrode 

shifting, causing difficulty to use during model training and inconsistencies between users, 

which increases motion detection errors between the desired and performed motions. New 

electrode arrangement by socket prototype ensured the transmission of the most significant 

input from all muscles and standardised data acquisition between sessions, particularly 

considering the real-time conditions with a limited source of signals to stump and dynamic arm 

orientation. It provides a sufficient approximation to pattern recognition since it resists elbow 

rotation and provides immense practicality to achieve an intuitive embedded system.  

A combined dynamic data acquisition and control approach that yields high accuracy and 

robustness were implemented as the final strategy and tested in real-time with an able-bodied 

subject.   The development of control architecture is based on how humans maintain control 

stability during dynamic arm orientation over time, particularly in different amputation levels. 

The system performance was tested with real-time evaluation metrics such as motion 

completion rate, motion detection accuracy, reach and grasp experiments and timing of the 

system to detect and execute the intended motion. A significant improvement was observed in 

path efficiency, motion completion rate and motion completion time.  

The findings suggested that combining machine learning algorithms and dynamic data 

collection demonstrates high accuracy, almost 94% completion rate to predict the intended 

hand movement with  0.23 seconds of data processing and prediction in real-time. The real-

time tests results from healthy subjects indicated that the applied control architecture enables 

users to intuitively and smoothly control prostheses based on EMG data without significant 

delay. This advancement suggests that significant gains in the robustness from the use of the 

dynamic control system alleviate the standalone classification approach.  

In summary, data collection from dynamic arm posture and embedded control system with 

proposed bypass socket appears to be a promising approach for enhancing prostheses. The 

preliminary results demonstrated adaptability, facilitation, and simultaneous control of 

multiple joints without the requirement for retraining and switching between sessions.  
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Chapter	1 Introduction	
 

The human hand demonstrates extraordinary dexterity to explore, control, and modify 

objects and their environment. It shows remarkable behaviour to execute a variety of 

movements precisely with the help of complex kinematic structure, tactile sensory system and 

bidirectional communication with the brain. On the other hand, upper limb amputation 

significantly limits human autonomy, and severe amputation can result in a range of 

psychological and physical difficulties among amputees [1]. 

In the past, as sensory technology and control techniques became more advanced, 

developing the dexterities of robotic hands has evolved and become more prominent. Whereas 

the ergonomic and cosmetic aspects remain important issues for most researchers, the priority 

of regaining prosthetic hand properties is ongoing in many studies. Many companies (e.g., 

CyberHand, Otto Bock, SmartHand, and Michelangelo Hand) and research centres have 

recently focused on offering active robotic hands for patients. Several studies have developed 

myoelectric prostheses by combining muscle groups/muscle synergies hypotheses. This 

approach has enabled to control the wrist and fingers by measuring EMG signals generated as 

a sequence of muscle contraction, indicating patterns related to intended hand functions. 

However, such devices suffer from limited dexterity, low degree of freedom, and 

underperformed in real-life conditions. Consequently, according to research, up to 30% to 50% 

of amputees cannot properly use their prostheses [2],[3]. 

Due to the complexity of dynamic and under-actuation, dexterous object manipulation with 

a high degree of freedom remains  one of the significant challenges. In order to control 

sophisticated prostheses, the system needs a more advanced human-machine interface (HMI), 

including electromyography (EMG), electroneurogram (ENG) approaches, and appropriate 

data acquisition to interpret the raw data to robotics [4]. Furthermore, to mimic human hand 

behaviours and achieve high skills, a prosthetic hand must be capable of manipulating joints 

and simultaneously controlling independent fingers without significant time delay [5].  

Several mechanically sophisticated myoelectric prosthetic hands have been presented to 

users by using the muscle synergies hypothesis [6], [7].  In this context, the robotic learning 

control approach has been obtained using various modern classification and regression methods 

such as artificial neural networks (ANN) and support vector machines (SVM) [8]. This new 

approach has influenced pattern recognition to be improved beyond basic activities such as 

close and open the hand, wrist flexion, and extension. It has moved further to a new trend to 

simultaneously identify muscle actions to control individual fingers. Such an approach can 
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provide robust control and teach the robotic hand to adjust to unknown circumstances when 

required. However, it has been indicated that the pattern recognition technique associated with 

laboratory results to the real real world is not satisfying. According to the research [9] , the 

completion rate of real-time control by transradial amputees was 55%, while the classification 

accuracy was 85%. Thus, it has been suggested that the robust system in these algorithms is 

complicated and unreliable unless the real-time conditions are employed during model training. 

This study presents a control system approach to overcome the main drawback connected 

to dexterous manipulation as proposed by [10],[11]: limited functionality,  poor user interface, 

the accuracy of movement selection and response time delay.   

The functionality of the prothetic was improved by detecting the thumb abduction and 

independent fingers motions led by small muscles group using new sensory distribution. This 

is important since, in most research, the collaboration of thumb muscles is disregarded, 

particularly during precision grasping, because it is difficult to detect and separate from other 

muscle groups. The compactness and real-time control are key points that significantly affect 

controllability and response time, eventually the patient’s satisfaction. In this study, with the 

help of a synchronised embedded system, data acquisition, data processing, prediction and 

motion execution was achieved within 0,23 seconds.   

In general, prediction accuracy is the most crucial performance parameter in prostheses. 

However, the majority of studies have used offline assessments such as accuracy, recall, and 

precision to verify their findings, which only evaluates the performance of algorithms rather 

than prostheses. Furthermore, these laboratory results do not satisfy real-time conditions 

because it is challenging to synchronise all devices in a physical world. Real-time validation 

tests were carried out using a bionic hand to assess motion selection and motion completion 

time in this research. In addition, to enhance the prediction performance of the prosthetic, 

sEMG data were collected from the subjects while performing several dynamic and static arm 

postures. 

Finally, in particular, for individuals with a high level of amputations, the capability of 

performing a large variety of finger and hand motions is limited due to the lack of muscles and 

incompatibility of data collection. A machine learning model with appropriate parameters on 

sEMG with new sensory modality and the embedded system was developed to improve the 

finger and grasps classification (>90%)  and improve the robustness of the prosthetic hand for 

high-level amputation. The developed bypass socket with the embedded control to conduct 

real-time tests is shown in Figure 1.1.   
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Figure 1:1: The main parts of the system: (a) linear actuator, (b) the mini controller, (c) mini PC, (d) EMG 
electrodes, custom-made prosthetic socket. 

 

This study's original contribution was as follows: 

1. Demonstrating that the generic approach with machine learning algorithms and feature 

extraction methods yielded the best prediction accuracy when using the proposed 

sensory modality and embedded control system.  

2. Controlling a high degree of freedom prosthetic hand solely using sEMG data from 

upper limb muscles in real-time. 

3. Creating a live pipeline between components to deliver real-time data (0.23 sec) and 

continuously producing human-like behaviour for prostheses.  

4. Developing and testing a potential low-cost multifunctional prosthesis control with 

novel sensory distribution and wearable socket. 

 

1.1	Research	Aim	and	Objectives				

This research aims to develop a motor learning-based control system that differentiates 

independent finger/hand motions and enables users to manage a multifunctional prosthetic 

hand in real-time. 

The objectives to achieve the proposed aim are: 

1. Investigate human hand physiology, biomechanics, motor control, and discover the 

interaction and basic logic between components for continuous control.  

2. Research machine learning algorithms and feature extraction methods to discover how 

to transfer human hand skills to a system.  
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3. Design and conduct experimental protocol to examine the influence of sensory 

placements, number of electrodes, number of subjects and feature extraction methods 

on the pattern recognition performance.   

4. Develop an alternative sensory modality and bypass socket prototype, and test its 

general applicability and robustness with dynamic arm orientations. 

5. Create an embedded control architecture capable of collecting, processing, and 

differentiating user intentions and executing the projected motion with minimal time 

delay. 

6. Validate the dexterity and robustness of the developed control method on a prototype 

using real-time performance metrics such as motion completion accuracy and motion 

completion time.  

 

 

1.2	Thesis	Outline		
 

The structure of this thesis is organised as follows. 

Chapter 1 provides an introduction of this study, stating the aim and objectives of the 

presented research and providing the outline of this dissertation. 

Chapter 2 presents the studies that have been conducted in the field of upper limb prostheses 

to date, with the focus on electromyography-based prostheses. The literature review provides 

fundamental knowledge of anatomy and motor control of the human hand, and some control 

methods implemented in motion detection and prosthetic hand designs. This chapter also 

covered the fundamental paradoxes faced in this literature and their continuous improvement 

regarding stability and robustness. 

Chapter 3 describes the methodology followed, including the experimental setup, instruments, 

and automated used methods. Detailed information on data collection, feature extraction, and 

labelling of data are provided. 

Chapter 4 gives general reviews of appropriate data acquisition and popular machine learning 

methods for hand manipulation. This chapter’s focus is evaluating eight different time-domain 

features for data acquisition and four classification techniques to map the kinematic and 

dynamic motions of the human hand. A comparative approach was taken to demonstrate the 

effectiveness of classifiers and extracted features regarding high accuracy and low 

computational cost in various static arm positions. The effects of windowing length on 
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classification accuracy is also presented in this section. This chapter is quite important, since 

this data representation underlines stochastic control in the following chapters.  

Chapter 5 introduces the ideal testing conditions to improve the classification accuracy of 

myo-signals, mostly affected by interferences in real amputees’ lives.  Considering the 

classification accuracy concerning different arm positions and feature extractions methods, we 

analysed the direct effects of electrode placement on motion detection with a designed custom-

made socket to identify the uncertainties. In particular, the main motivation behind dexterous 

manipulation and the necessity of stochastic control in the field is emphasised. The need for 

the new socket design with positive and negative points are presented and discussed.   

Chapter 6 presents testing and validation results of control strategy on a developed prototype, 

a combination of commercially existing devices and new modifications. The performance of 

the real-time data acquisition and control in various iteration and learning approaches are 

analysed. This chapter provides real-time testing metrics and detailed evaluation of acquired 

data on a tendon driver robotic hand. The main purpose of this chapter is to achieve robust 

control that imitates motions from human counterparts.  

Finally, Chapter 7 presents the study’s implications and highlights the links between research 

objectives and their answers. It addresses overall contributions, work carried out in this 

research and summarises the raised question drawing from the study’s limitation. It brings a 

conclusion to this thesis and provides an outlook for possible future works. The above structure 

and the relations among the chapters are illustrated in Figure 1.2.  
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Chapter	2 Literature	Review		

2.1	Introduction	

There have always been attempts to develop a multifunctional robotic hand to provide the 

human hand's full functions. There was no particular effort or funding to develop 

multifunctional prostheses from the beginning of the 21st century until World War II. In the 

1960s and 1970s, there has been more investigation and funding to develop externally driven 

dexterous arm-hand systems. In general, upper limb prostheses have advanced significantly; 

however, because of the human-computer interface (HCI) limitation, the existing devices have 

significant challenges in providing the flexibility and function of biological hands. The statistic 

indicated that the electrical prostheses rejecting rate are around 30% [12] due to lack of 

reliability, high cost, and poor functionality [13].  

According to a survey, nearly 2 million amputees live in the USA [3], which was estimated 

to be doubled by 2050 [14]. The arm amputation levels are  57% for transradial and 23% for 

transhumeral, respectively, with the right limb being more frequently affected due to work-

related injuries or illnesses [15].  Although some advanced prosthetics hand have been 

developed, the cost of these devices varies from $25,000 to $75,000 [16], [17]. Considering 

these highlighted statistics, it is not surprising that a vast amount of researchers are focusing 

on improving the intuitiveness and robustness by working towards EMG based dexterous 

manipulation with sensory feedback.  

While numerous concepts and attempts have been made in the field of prosthetics, only a 

few procedures and technologies have been widely accepted and moved from laboratories to 

everyday clinical usage. Whereas most commercially available devices are based on (on/off) 

control or basic proportional control, modern multifunctional and hybrid prostheses now satisfy 

the demands of users. In multifunctional dexterous prostheses, classifiers are offline trained by 

collecting data while repeating the number of specified movement’s classes. The trained 

models are established sequentially in either online or offline implementation, in which the 

user takes action based on sets of EMG features. When the user gesture is identified, a control 

command from the prediction is sent to the controller, which then executes the full motion [18].  

This chapter discusses the current methods used for upper limb prostheses control and their 

potential improvements. First, human hand biomechanics and the central nervous system 

(CNS) were presented and thoroughly examined. Furthermore, most studies on the integration 

of human-machine interface and advancement in clinical and real-time control, particularly 

related to EMG-based assistive devices and their foundation formed the prostheses, were 
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investigated. The most critical challenges and gaps in existing devices, such as the complexity 

of human-machine interfaces, signal acquisition and operating modes, were also introduced. 

Finally, the potential solution with particular attention to muscle synergy and ML-based pattern 

recognition that mainly operate with either EMG, iEMG or both were discussed. The purpose 

is to enlighten the reasons initiating the development directions adopted in developing the 

control architecture presented in this thesis.  

2.2	Biomechanics	of	Human	Hand		

The human hand has 27 major bones, at least 18 joint articulations and more than 30 active 

muscles performing with 27 degrees of freedom (DoF). It empowers people to interact with 

objects, manipulate and modify their surroundings. In all of these capabilities, the human 

brain efficiently deals with the complexity of the degree of freedom of the kinematic system 

and the complications of mechanoreceptors, which play a critical part in encoding the timing, 

quantity of torque, and magnitude of distribution in finger joints. 

In humans, control and manipulation abilities are associated with advanced sensory 

(receptor) and actuator (muscle) systems. Mimicking this synergy is a challenging and time-

consuming undertaking. In robotics, the concept of advancing prosthesis control using haptic 

technologies that contribute to the effective management of desired activities has gained 

popularity. The majority of current researches aim to maximise the effectiveness of limited 

inputs while minimising duplication in order to identify the natural performance of the human 

hand [19].  

The hand movements are guided by a succession of muscular contractions that provide the 

necessary force. The hand muscles are multi-articulate, which implies that each muscle may 

command more than one degree of freedom. When the person moves his/her fingers, the tendon 

slips across the bones, producing a range of hand movements. The human hand can move at a 

rate of more than 40 rad/s (2290 degrees/s), and a healthy hand gripping can use up to 400N 

(90 lbs) of muscular strength. The average speed of daily living tasks (picking and placing) has 

been measured in an average range of 4rad/s (172 degrees/s to 200 degrees/s). The prehension 

force activity of daily living tasks (ADL) varies up to 67 N (15lbf). These properties are reliant 

on the interaction between the grasping surface and objects [3]. 

Studies in neuroscience [20], [21] have suggested that the central neural system (CNS) has 

a control mechanism that links the inner world of our motor system to the physical 

environment. The brain's perception and knowledge, which transfer through the motor system 

to muscles to create force and trajectory in the physical environment, infer human intention for 
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the unknown environment. The sensory feedback recreates the human response simultaneously 

while natural movements are performed in a close control loop. This sophisticated control 

offers new insights for understanding human hand behaviours and new perspectives for unique 

designs concepts that could be employed in the robotics system. A control model that includes 

intricacies of the physical environment may enhance the naturalness of prostheses.  

Although some anatomical properties of the human hand and motor behaviours were 

successfully reproduced in several pioneering research, conventional concepts of these designs 

have been challenged by experimental results. Compared to the human hand’s performance, 

currently presented artificial mechanisms and learning methods are far from ideal properties 

such as speed and force can achieve clinical performance speeds of of 3 rad/s and forces of 110 

N (25 lbs), none of these devices can reach human-like manipulation and control level.  

2.3	Upper	Limb	Prostheses		

Prostheses are devices that have been developed to replace the loss of a specific limb in the 

human body. A considerable proportion of commercial prostheses for hands and legs with feet 

are in the early stages have been created for aesthetic objectives. However, with rapid 

advancements in robotics and control, it has become possible to improve functionality and 

construct articulated dexterous prostheses. Thus, according to the interaction between patient 

and devices, prostheses can generally be divided into two groups as active and passive 

prostheses. The passive prostheses have been further subdivided into two categories as 

aesthetic and functional. Prostheses have been designed as aesthetic is accompanied by the 

healthy hand in such tasks requiring two hands. The passive functional hands have been 

designed to perform such specific tasks where users can use various end effectors [5]. On the 

other hand, body-powered active prostheses can be controlled by body activation, in which 

either body motion or electrical activation actuates the mechanism. Electrically powered 

prostheses can also be subdivided into three types, based on the control method: 

a. Myoelectric Prostheses, group of electrically activated devices controlled by the 

electromyographic (EMG) signal determined from the surface of muscles through 

electrodes placed on the muscle belly [9]; 

b. Button controlled prostheses, types of recently introduced devices in which different 

functions and motions are manually activated by buttons or software applications 

with the help of the remaining hand or muscles [9]; 
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c. Multifunctional hybrid prostheses, which are high-performance prostheses, combine 

different data acquisition methods and machine learning techniques for sophisticated 

control and precise manipulation [22]. 

Figure 2.1 illustrates a diverse group of prostheses based on activation and control policies. 

Passive prostheses have a simple man-machine interface without any direct information from 

the user's body, and intended activation is sent to devices that do not have any feedback and 

may or may not affect prostheses performance. However, active prostheses use different 

activation approaches and complex man-machine interfaces. This group of prostheses was 

separately discussed in the next section (section 2.3.2.2). To simplify the variety of concepts, 

methods, and implementations of different approaches, another section (section hybrid 

prosthesis) was created.  

 

Figure 2:1: The diagram of different types of prostheses. 

 

2.3.1	Passive-Unpowered	Prostheses	

 Passive prostheses are a group of prostheses and instruments that are either static or 

adjustable and do not provide users a wide variety of functions. Devices in this category include 

semi-active hands and customised tools. There are numerous varieties of passive prostheses 

described in the literature, and they are frequently referred to by various names and phrases. 

Passive prostheses are classified into two types: aesthetic and functional. The main advantage 

and disadvantage of passive protheses is presented in table 2.1.  
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2.3.1.1.	Functional		Prostheses		

Regarding cosmetic purposes, these passive hands are covered with a cosmetic outer glove 

and soft plastic. Highly realistic hands are preferably painted and individualised for different 

sizes and colours. These custom designed passive prostheses serve only one function or 

incorporate specialised features to assist a specified task. This group of devices can adapt from 

tools and may lead to more than one function. In the past, due to the lack of sophisticated 

control, amputees operated their devices for non-prehensile work, pushing and pulling objects. 

Device capacity is frequently defined as the mode of prehension functions that are mainly 

employed in daily life. Figure 2.2 demonstrates prehension patterns and equivalent passive 

devices (tools ) [3]. 

            
 

                             
 

 
Figure 2:2: Schematic of the prehension patterns of the passive prostheses   (a,b) palmar prehension, (c) tip 
prehension, (d) lateral prehension, (e) hook prehension, (f) spherical prehension, (g,h) cylindrical prehension 
(Reproduced from [3]). 

2.3.1.2.	Aesthetic	Prostheses	

According to the literature, this class of prosthesis has been classified into two groups: static 

and dynamic appearances. The surface's shape, colour, and finish were assigned to the static 

group. On the other hand, the dynamic group is associated with the mechanical device's 

motions and determines which functions are carried out. This form of prosthetic hand required 

manual labour, with the aesthetic aspect taking precedence over the functional aspect. 

According to Biddis et al. [12], this type of prosthesis must have two qualities: first, it must be 

undetectable, and second, it must make the user feel comfortable while wearing it. The role of 

this prosthesis in regular life is described as passive adaptive, meaning it provides stability, 

pushing, pulling, and holding in a passive manner. According to Kejlaa et al. [23], the primary 

motivations for using aesthetic prostheses are mental comforting rather than daily activities. 

Aesthetic prostheses are commonly utilised in social situations because they boost self-esteem 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
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and allow users to engage in both professional and social activities.. Figure 2.3 shows an 

example of the aesthetic passive prosthesis.  

 

Figure 2:3: Passive aesthetic prosthetic had [reproduced from [24] ]. 

Aesthetic prostheses are lightweight, and the socket system is only required to keep them in 

place. However, regardless of functioning, various dissatisfaction has been reported for this 

group of prostheses, such as heat issues on the socket part, glove complications, and difficulties 

wearing clothes. The primary prostheses design, as well as their pros and limitations, are 

summarised in table 2.1. 

 

Table 2:1: Variety in Upper Limb Prostheses 

Type  Main Advantages  Main Disadvantages  

Passive  Lightweight. 

Best cosmetic appearance. 

Less harnessing. 

High cost due to custom 

made design.  

No function or least 

function.  

Low cost glove strain easily. 

Body Powered (Active)  Moderately costly. 

Moderately lightweight.  

High durability. 

Various prehensor is 

available for a number of 

activities.  

The number of body 

activities needed to operate. 

High harnessing. 

Least user satisfaction for 

cosmetic appearances.   

Limited sensory feedback. 

 

Battery Powered & Hybrid  Least or no harnessing.  

Moderate body motion 

required for operation. 

Moderate satisfaction for 

cosmetic appearances.  

Maximum functionality. 

Heaviest. 

High cost. 

Complex maintenance. 

Long therapy time for 

training. 
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2.3.2	Active	Prostheses		

2.3.2.1	Body	Powered	Prostheses		

The body-activated or body-powered prostheses are designed to perform such specific 

movements mechanically. The user operates the device by a cable attached to the shoulder or 

torso, and the planned action is translated directly into the remaining limb. The main drawback 

of this interface type is that the user can only open and close a claw as an end effector. The 

advantage of these prostheses is that it provides simple and intuitive control in a low degree of 

freedom [22]. In most body-activated devices, the user uses his/her muscles to operate the 

device, generally by a cable known as Bowden cable. This device has two parts, housing and 

an inner tension cable. The housing part connects two endpoints as a flexible bridge. The cable 

is custom-designed with constant length regardless of motion and slides through the housing 

part.  

After World War II, the Bowden cable was improved to design active prostheses for the 

United States veterans. In the terminal fitting, the cable pass through the prosthetic joints 

between two endpoints, and the physiological joint actuate the prosthetic joint. Some simple 

modification on the  Bowden cable has been done over the years and is still used nowadays [3]. 

Figure 2.4 illustrates the body-powered prostheses based on the activation and control scheme. 

 

 
Figure 2:4:  Schematic design of body-powered prostheses. (a) flexion by body forward motion, (b) shoulder depression 

for extension control (Reproduced from [3]). 
 

(a) 
(b) 
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2.3.2.2	Multifunctional	Prostheses	

2.3.2.2.1	Myoelectric	Prostheses	

Myoelectric control has been extensively used since it was introduced in the 1940s, and 

there is comprehensive literature outlining the different approaches of using EMG’s 

characteristics and properties. Historically, this has been considered a new age for prostheses 

technology. It has been improved as an intuitive method for natural control of prostheses since 

the same principle is applied to the mammalian to command their physiological limb. The basis 

of this approach is that it captures electromyographic signal (EMG) from electrical actions of 

muscles through sensors from the skin surface (non-invasive) or directly implements into 

muscles (invasive method). The process transforms a set of impulses and stretches in muscles 

fibres into physical actions, each of which could be modelled with a machine learning model 

or a transfer function. 

Numbers of processing methods of EMGs, such as amplification, rectification, and 

thresholding, have been applied to provide a DC signal representing the muscle contraction 

level to control the prosthesis. Traditional myoelectric control has one or two electrodes and 

reference electrodes, and EMG electrodes are positioned on the surface of the skin near the 

agonist and antagonist pair of muscles. One of the most positive points of this method is that it 

acts as a natural control of limbs, even there is only one way of information translation (from 

user to prosthesis).  

However, some drawbacks of the non-invasive method have been emphasised in the 

literature. For example, EMG data collection can be affected by several factors, such as the 

placement of electrodes, noise from the line, and skin surface. Training time, misclassification 

rate, and amputation level, such as unilateral and bilateral, are other negative points of this 

interface. The alternative data collection method (invasive method) can provide some 

advantages since it receives information directly from muscles. However, this alternative 

method is costly and for some clinical issues, such as infection and healing time, so it is 

unfeasible and cannot be applied to all users [22]. 

Chronologically, the first samples of electronically actuated hand prostheses were 

introduced by Reinhold Reiter in 1948 after the Second World War [25]. These early-stage 

myoelectric hands used on/off control to initiate actions. To determine a suitable activation 

threshold from a group of muscles, engineers have used the various intensity of muscular 

contractions. The magnitude of sEMG rises as muscle tension increases. The correlation is 

complex nonstationary, non-linear and associated with many factors, including the position and 



33 

 

orientation of sensors and noise. Although the electromyographic signal is non-linear, broadly 

monotonic, the user recognises this response as linear with the help of some signal processing 

techniques. This method has been used in literature with different control methods such as 

on/off, proportional control, or finite state machines.  

The simple control approach of the method allows some actions, such as a slight contraction 

to flex fingers, stronger contraction to extend fingers, and no muscle contraction, to bring the 

device to initiate position [8].  Figure 2.5 and figure 2.6 demonstrate the processed signal to 

control prostheses. 

 

Figure 2:5: Conventional myoelectric signal processing with one channel sEMG. 
 

 
Figure 2:6: One channel EMG amplitude-based prosthesis control scheme.  

 

The same control logic has been applied to two opposing muscle groups, such as flexor and 

extensor muscles in prosthetic devices [11]. Several thresholds have been used to differentiate 

which EMG activity is relevant and eliminate unwanted noises.   Even though both methods 

are fast and applicable to real-time control, the number of movements is limited, and the control 

is unlike smooth action to the human hand. Figure 2.7 demonstrates the processed EMG signals 

to control the prosthesis from two sides of the myoelectric. 

Off 
Close 
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Figure 2:7: Standart myoelectric processing scheme in two sites of myoelectrical control. 

 

 

 

 

 
 

Figure 2:8: Two-channel sEMG based prostheses control scheme.   
 

An alternative method to on/off control has been proposed by [15] and [16]. The aim was 

to vary the device action’s velocity and force continuously and proportionally to the recorded 

EMG signals from opposing muscle groups. This method has been recently used as 

proportional control. One of the mechanical outputs, such as force, velocity, or position, varies 

by user input within an essential continuous interval. This approach is being used in many 

Channel 
1 

Channel 2 

Hand  
Open 

    No 
Action 

Hand  
Close 
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clinical devices [17]. Although this method is mainly accepted for several movements, it is 

unsuitable for dexterous manipulation, such as individual finger manipulations.  

Since surface EMG signals are very weak at approximately 100 mV, these signals have been 

amplified and ranged between 1 to 5 V before they have been used. Amplifiers have been used 

to remove common signals and leave signals with capacity differences between two sensors. A 

DC signal is created after main EMG signals have been amplified and bandlimited using some 

non-linear signal processing, such as rectification or squaring. In order to obtain an on/off 

control, voltage is smoothed and compared with a logic circuit. The activation command is sent 

to the actuator when the amplitude is higher than a threshold value; otherwise, it remains off   

Most of the traditional upper limbs use pair muscles, as shown in figure 2.8. The described 

control method allows one degree of the freedom movement to be activated at a time. Another 

technique, called direct control, has been developed by [18] to accomplish more delicate 

movements by mapping individual EMG signals to the particular prosthetic activities. 

However, this technique needs to overcome the interference of many muscles contracting 

together, which causes crosstalk of the EMG signal and reduces individual muscle force  [19].  

This method performs well if one degree of freedom is expected, such as transradial 

amputee. On the other hand, if the wrist rotation is required, the patient must externally shift 

as described in the previous method or co-contract the forearms muscles to switch from one 

state to another. This method is not recommended since switching mode is slow and not robust. 

Other techniques, such as target muscle reinforcement or EEG control, have been used in those 

circumstances. Furthermore, using the same muscle pairs to control different joints is not 

straightforward for users to learn because the employed muscle might not be autonomously 

correlated with the joint’s degree of freedom. For example, biceps and triceps muscles could 

be associated to control finger motions [26].    

In another alternative control approach, muscles’ amplitude from a relaxed state to a fully 

contracted state is distributed to three different segments, as described in figure 2.8.   Each of 

these segments is associated with different specific activities. This method is inappropriate 

because users need to keep muscle contraction in the constant amplitude, which is biologically 

not straightforward. 

Nowadays, considerable progress in multifunctional prostheses with high degrees of 

freedom has been made. Several active prostheses with wrist articulations are under 

improvement or in clinical tests. Touch Bionic has introduced a multifunctional prosthetic 

device with individually controlled joints for finger and thumb manipulation. Otto Bock and 

CyberHand have also been offering various functions to users. However, these new devices do 
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not offer human-like robustness without sophisticated control methods that allow users to 

control joints individually. Figure 2.9 shows the advanced poliarticulated myoelectric hands. 

 

 

Figure 2:9: Commercially available prosthetic hands. (a) i-Limb [27], (b) Be-bionic [7] and (c) Mihellangelo 
hand[28] . 

 

Recently, I-LIMB [6] has introduced a multi-articulated five fingers hand. This device is 

one of the most advanced prostheses with individual finger manipulation mode. However, in 

the control aspect, the prosthesis is controlled traditionally with two inputs EMG signal, 

switches into different modes via a mobile application that is not different from other 

commercial devices. Furthermore, another drawback of these prosthetic hands is that there is 

no sensory or tactile feedback to improve the users’ experience, and the only sensory system 

is based on the user’s vision. As aforementioned, these limitations influence device 

acceptability significantly [7], [8]. 

Consequently, existent upper limb prostheses are mostly limited to previously described 

simple functions, such as power grip or flexion, extension, significantly far from dexterous and 

multifunctional control. From this perspective, a new pattern recognition control approach, 

hybrid control,  has been introduced to overcome these multifunctional control limitations [23], 

by offering more functions, even using the same number of sEMG channels [26].  

One of the factors causing the rejection of EMG based control prostheses is the 

unsatisfactory user interface and lack of robustness. Many attempts have been made to improve 

the robustness of prostheses [29]. They have improved the motion recognition rate by using a 

mixture model with feature extraction to classify several hand grasps and individual finger 

manipulations. This group of prostheses require external control activation to drive various 

motors in joint movement. The number of active joints can be increased or decreased manually 

via buttons/switches, software applications, or a pressure sensor placed on the muscle to trigger 

different functions (see Figure 2.10). They suggested that this switching mode could address 

(a) (b) (c) 
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some main challenges related to the non-linearity of EMG signals and dynamic arm 

orientations. Recently, mobile applications have commonly been used to easily and quickly 

change the prosthesis configuration without having a computer connection. These 

communications methods have advantages in the degree of freedom; however, the training time 

is long and is not robust [22]. 

 

 
Figure 2:10:  Gesture control of i-limb quantum upper limb prosthesis (Reproduced from [6]). 

 

2.3.2.2.2.	Hybrid	Prostheses		
Design and control of dexterous hands for multifunctional manipulation are exceedingly 

difficult due to dynamic complexity, under-actuation and control states. Although some 

multifunctional devices have been proposed in the past, most of these devices are controlled 

by direct control methods or on/off control [30]. Improving signal quality and providing 

prostheses for high-level arm amputation (such as transhumeral amputation or shoulder 

disarticulation) shown in figure 2.11 requires sophisticated and additional methodologies.  

 

     
Figure 2:11: Different levels of amputations (a) Shoulder disarticulation, (b) Transhumeral amputation, (c) 

Elbow disarticulation (Reproduced from [6]). 
 

b a c 
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This section presents the most commonly used methods to address operating and learning 

dexterous manipulation problems for hybrid data collection. They are (as shown in Figure 2.12) 

peripheral neural interface (PNI), targeted muscle reinvention (TMR) and brain-computer 

interface (BCI) [31]. 

 
Figure 2:12: Three neural machine interfaces of neuroprostheses (Reproduced from  [18]). 

 

2.3.2.2.2.1	Neural	Control	Prostheses	

The traditional myoelectric control method has major restrictins for controlling high-level 

arm amputetion due to the lack of control signals associated with arm movements. Furthermore, 

many patients have difficulty repeating muscular contractions or producing isolated EMG 

signals, and also electrode shifting and skin conditions can affect sEMG, making control 

unreliable. A new approach called neuroelectric control has been considerably investigated and 

used for neural control of multifunctional prostheses [32]. In a neural-based control prosthetic 

hand system, the subject’s intention for movements is detected from neural or invasive 

muscular signals using epimysial or superficial electrodes. Extraction of a neural signal can be 

detected around or inside the nerve. Several of the challenges associated with surface EMG 

recordings can possibly be alleviated by implanted electrodes. They can resist many external 

influences surface readings, allowing for more reliable data sources and continuous 

management. Furthermore, these implanted sensors can collect prioritised  EMG signals from 

muscles, enabling intuitive control of prostheses.  

After discovering activities related to limb movements are operated in the brain ( M1 and 

S1) cortical area, the pioneering work by [33] was conducted to control a prosthetic hand 

through the intraneural electrodes. Rossini et al. [34] have used electroneurographic (ENG) 

signals to operate a robotic hand and deliver sensory feedback by implementing a classification 
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technique. Recently, Raspopovic et al. [35] have implemented intrafascicular electrodes into 

the nerve of amputees to acquire data to control the robotic hand and elicit sensation for force 

control. Young et al. [36]  have achieved significant progress in developing implanted EMG 

recording for prostheses control.  The critical point in this research is that the electrodes are 

wirelessly powered by magnetic field energy. A similar approach was followed by  [37] using 

32 electrodes; however, the test was done on the animal model rather than the human. The full 

functional prosthetic hand have been developed by Posquina et al. [38], using implantable 

electrodes. After six months of training, the participant who received the implants has managed 

to successfully perform 22 motions in real-time. Pioneering research has been conducted by 

Polasek et al.[39]. They have implanted the first chronically implant into the nerve cuff of and 

upper limb amputees for pattern recognition. More recently, George et al. [40] have developed 

bidirectional neuromyoelectric prostheses with close feedback sensory systems implanted. The 

EMG signals were collected from the residual arm to manipulate six degrees of freedom 

prosthetic hand independently. The design mimics the natural sensory feedback of human 

motor control.  Figure 2.13 represents nerve intraneural  interface for implanted sensor for 

prostheses control. 

 

Figure 2:13: Implantation procedure  of intrafascicular microelectrodes into nerve fibre. (a)microphotographic 
view (b)illustration of the method, (c)exposed median nerve (d)signal transit cable (reproduced from [34]).  

 

Besides commanding prostheses, engineers and neuroscientists have developed a neural 

interface to enhance control abilities by ENG signals and by stimulating the PNS. Although 

the new concept improves control and sensory feedback efficiency, there are some significant 

concept problems, such as the nerve’s size, sensors’ performance, and recording difficulties. In 

a 

d 

b 
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addition, this method is only feasible for laboratory studies because of surgical issues and 

contamination by various noises in a surrounding environment. 

There are some further problems in this method while transmitting the signal out of the 

body. Generally, percutaneous wires are used in this method, which can be easily infected by 

interferences. Finally, prosthetic hand control is required to perform for a long time (several 

years); however, the implanted hardware are not durably in service (maximum six months to 

one year), this is one of the critical issues [18].  

2.3.2.2.2.2	Targeted	Muscles	Reinvention	(TMR)	
 

Implementing a multifunctional prostheses strategy to people with above elbow amputation 

is not straightforward since the remaining muscles in the residual arm for control are not 

accessible. To address this problem, the connection between prostheses and remaining muscles 

has been made by surgery, and this new surgical method is called targeted muscle reinvention 

(TMR). The arm muscles do not biomechanically function at any amputation level because of 

limb loss, but the nerve attached to those muscles is still active. With the TMR surgical method, 

the remaining nerves are transferred and reused as a motor command in myoelectric control. 

Firstly, the myoelectric signal muscle source is reinvented, and then it determines the nerve 

corresponded to intended movements [41]. Figure 2.14 schematically illustrates TMR 

techniques on the patient with shoulder disarticulation. This method is one of the most powerful 

man-machine interfaces, since users can intuitively and simultaneously control their 

prostheses. It has been proposed that patients who have TMR surgery can perform 16 different 

motions of the elbow, wrist, thumb, and fingers [22]. As an alternative method obtaining EMG 

signals and isolating and amplify signals to enhance amplitude, this method can overcome the 

problem of shoulder disarticulation. This method allows patients to manipulate multiple arm's 

degrees, using the standard reconstructive method without the need for implantable devices 

[42]. The method is now a clinically available medical procedure for upper-limb amputees, 

with more than 40 patients undergoing it around the world [43]. A recent study [44]  has 

revealed the potential of TMR combined with pattern recognition methods in allowing people 

with above-elbow amputations to control a multifunctional prosthetic in real-time. After the 

surgery, the performance of the prostheses was evaluated using real-time control metrics such 

as block transfer, clothespin test. In order to compare the effectiveness of TMR method,  

Hargrove et al.  [45] have conducted a series of real-time and virtual tests on Southampton 

hand using combined pattern recognition and TMR methods. With both virtual and physical 

tests, all 8 participants displayed the capacity to perform elbow/ wrist rotation and dynamic 
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object manipulation. They claimed that subjects who have TMR surgery have statistically 

achieved better performance than direct control. 

 

 
  

Figure 2:14: The targeted muscle reinvention method (Reproduced from  [46]). 
 

Notably, the TMR method does not only provide multifunctional control but also optimises 

the signal for focal control [47]. Clinical research showed that TMR contributes to a rich source 

of the external control signal, which improves classification accuracy and good repeatability 

[48]. Furthermore, some other promising technologies, such as implantable myoelectric 

electrode systems (IMES), could benefit from TMR.  This telemeter system can alleviate some 

surface EMG signal issues to stabilise and make robust operation easier for advanced prosthetic 

hand systems [47].  

Although TMR provides significant advantages over direct sEMG, some issues with 

myoelectric prosthesis control still exist. For example, current commercial systems depend on 

EMG volume and separating the surface EMG signals of distinct muscles is challenging. 

Furthermore, while the consistency of the EMG signal is still critical for a successful control, 

the TMR technique adapts the human brain to recognise that the prosthesis is a property of the 

body and provides an efficient interface to the user for self-development.        

2.3.2.2.2.3	Brain-Machine	Interfaces	(BMIs)		

The last sophisticated source of control information for prosthetic hands is BCI. The 

majority of current research in this field aims to provide control and communication to people 

with severe spinal cord injury or critical motor signal translation impairments. As technology 

advances and the hazards of implant placement reduced, such procedures can offer the 

opportunity for individuals in the future [49]. The brain-machine interface is a physical 

environment where electrical signals from the brain are detected and processed to control the 
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prosthesis. Two commonly used methods in these interfaces are electroencephalography (EEG) 

and electrocorticography (ECoG).  The first method (EEG) is a non-invasive approach that 

provides the brain’s electrical activity via wearable electrodes individually from the scalp [50]. 

Even though the second technique (ECoG) is a very similar method [51], because the electrodes 

are placed in the brain specified location, directly connected to the cerebral cortex, it is an 

invasive method. The data acquired with this method has been used to control the 

multifunctional prosthesis without the intermediate muscle requirement (see Figure 2.15).  

 

  

Figure 2:15 The electrode implanted on brain with ECoG electodes. (a), before placement, (b) after placement, radiograph 
(c) the location of electrode grid (d) (reproduced from[52] ) 

The common implantation of BCIs is to interpret changes from the EEG signals since it 

reflects the activation changes at a certain point in the brain and does not need surgery [53].   

However, identifying those regions is a big challenge, as the measurement may represent the 

sum of brain signals travelled from many disparate brain regions. McMullen et al. [54] have 

demonstrated a harmonic system to record grasp types, hand posture, and reaching parameters 

and decode the signal from synchronised intracranial electroencephalographic (iEEG) signals 

to control a robotic arm system.    The movement-related iEEG signal has been used to develop 

a simultaneous and individual online control of dexterous manipulation. Recently, ECoG 

signals have been gathered directly form subject’s cortex to manipulate multifunctional robotic 

system [55]. Simlarly, Osborn et al.[49] have demonstrate the efficacy of targeted 

neuromuscular electrical stimulation to enhance neuropathic sensation and motion decoding in 

a b 
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the amputee subject. The BCIs is an alternative method to classical EMG control because of 

the potentiality of finer long-time signal stability.   

The safety and stability of the interface are two of the most problematic aspects of the iEMG 

approach. Furthermore, it is challenging to acquire required or reproducible signals because of 

iEMG records single or multi signals from hundreds of individual fibres. The interface requires 

extensive signal processing and deep learning algorithms that are not straightforward in real-

time control to deal with massive datasets.Therefore it is suggested that pattern recognition 

techniques are necessary to improve prosthesis control [22],[56]. 

2.3.2.3	Prostheses	Feedback		

This section provides a summary of the mechanical and somatosensory feedback. 

Particularly, the recording techniques, the state-of-the-art applications on neural and sEMG 

based prostheses, and their current challenges from clinicians, engineers, and rehabilitation 

perspectives are summarised. 

Multifunctional systems have been tested, identifying independent movements up to 16 

classes using EMG, EEG, and some other BCI method. High-level amputees such as bilateral 

shoulder disarticulation patients have achieved higher than 92% accuracies in pattern 

recognition trials [15]. Following these advances, the goal of many researchers is to reduce the 

number of electrodes to a reasonable number for a different level of amputations while 

achieving similar or higher accuracy.  Early presented works have demonstrated advancement 

in functionality, speed, and quality of signal acquisition for prostheses control. Users have 

reported that their prostheses are more convenient when they perform tasks with their hybrid 

hand than traditional control [47], [57]. This man-machine interface has enhanced 

somatosensory further, in which the received signals were directly connected to median and 

ulnar nerves.  

Although current hybrid methods have improved prostheses’ performance, lack of sensory 

feedback to perform independent movements for close loop in a prosthetic hand is a significant 

obstruction. Most of the current prostheses rely on visual feedback by carefully observing the 

device rather than knowing any descriptive detail of grip force or position [58]. Therefore, to 

establish human human-like dexterity, neurological impulses from the central nervous system 

for prosthetic devices is critical.  There are various sensory feedback interfaces to provide 

intuitive control for prostheses, and these can be summarised in the following. 

Sensory information can be decoded in a variety of methods, including somatosensory 

stimulation to mechanical or electrical vibration. For example, the first method is  
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“vibrational”, in which the sensory information from tactile pressure is converted into an 

electrical current pulse that stimulates patients’ residual skin through vibration. It was 

proposed to enhance prosthetic devices performance controlled via EMG signals [59].  

Secondly, “force sensory” has a similar logic to vibrational approach with one exception: when 

the pressure increases, it causes a series of pressures on the subject's skin.  Lastly, “electrical” 

refers to the sensory information provided by a low level electrical impulse to stimulate and 

simulate the feeling of touch when skin-object connection is accomplished [60].  Figure 2.16 

shows sensory feedbacks for the control system and user. 

 

 
     Figure 2:16:  Block scheme of sensory-based control systems to deliver haptic information. (Reproduced 

from [61]). 
 

Recent approaches intended to imitate tactile receptors’ nature by using skin behaviour and 

the receptor's neuromorphic model. A neuromorphic model was presented by Thakor et al. 

[62], with a biologically inspired epidermis receptor to provide stimuli sensory feedback to 

users. They have added force sensors to a myoelectric prosthesis’s fingertip to control the 

strength and stability of object grasping. In this work, the system was tested on subjects, and 

specified objects were gripped without any damage.  

Non-invasive vibrotactile feedback was developed by Clemente et al. [63], to address some 

challenges regarding continuous control.   An embedded control system and sensory  were 

added to the fingertip to inform users and upgrade the effectiveness of robust control[64]. 

Whilst in some other study on close feedback Farina et al. [65], have compared vibrotactile 

feedback of the previous research using Michelangelo commercial prosthetic hand. They have  

presented that by using electrotactile feedback, the presicion control can be improved by 23%.  
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In the studies of Raspopovic et al. [35] and Ciancio et a [66], they have proposed that the 

ideal multifunctional prosthetic hand should be controlled by peripheral sensory interface to 

precisely characterise motion and contact with objects.  The researches have shown that 

amputees can induce the sensation of missing hands and even fingers by stimulating specific 

sensory systems, either invasive or skin surface in their remaining stump, using mechanical or 

somatosensory stimuli [40], [67].  

Somatosensory is an alternative approach to the aforementioned traditional force and 

pressure-based sensors. In this method, the communication is derived between the artificial 

hand and the peripheral nervous system (PNS). It is the newest form of sensory system for 

protheses control and rehabilitation of motor disease.  However, there are some limitations for 

further studies since it is not straightforward to control the stimuli signal, and it needs a surgical 

procedure [35], [66], [68]. Furthermore, the dimension and geometry of the electrode inside 

the nerve play an essential role in selecting a specific sensory response. 

 

2.4	Machine	Learning	Methods	and	Pattern	Recognition		

Many studies have been conducted to design and develop dexterous prostheses for several 

decades. Priority has been given from the mechanic system to haptic, from control algorithms 

and machine learning to raise degrees of freedom. Most of the studies have been done to 

improve movement speed and force generation capacity to make the robotic hand convenient 

for multifunctional manipulation. 

The traditional perspective for electromyography prostheses control is employing two input 

EMGs pattern recognition to directly operate a limited degree of freedom (moving from one 

state to another). This control approach has been commercially available for a powered 

prosthesis for upper-limb amputees. However, this classical control model is not reliable and 

functional as expected due to the instability of EMG signals and lack of functionality.  

In contrast to the simple EMG classification approach, to improve a prosthetic hand's 

performance and manipulation skills, a new control method with multiclass classification has 

been proposed in up  to 27 different classes  [37].  This newly proposed control method called 

sEMG pattern recognition-based control includes conducting EMG signal acquisition, feature 

extraction, multi-label classification, and multifunctional prosthesis control. 

Pattern recognition was proposed to the prosthetic research community in the 1970s. The 

aim was to provide a sequence of muscle actions. The raw EMG signals are pre-processed, 

such as windowing and feature extraction, for multifunctional control by classifying different 
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muscle activation [69]. However, this approach was not widespread until the 1990s when it 

became possible to obtain more new content of EMG signal; the ideas based on pattern 

recognition control algorithms have been rising  [46]. 

This method is based on the theory that EMG signals accommodate detailed information of 

intended motions. Different feature extraction methods have been deployed, and classification 

techniques have been used to identify several arm and hand manipulations. While the pattern 

has been discriminated against in different classes, a responsible command is delivered to the 

controller to execute motion, as illustrated in figure 2.17. This new control method's main 

benefit is that the user has intuitive control, and the classifier has fast differentiation for each 

multiple movements.  

 
Figure 2:17:  Schematic of EMG based prosthesis control (Reproduced from  [18]). 

 

Although several practical implementation problems are awaited, much research has been 

done to investigate next-generation technology's practicality for microprocessor-driven 

myoelectric prosthesis [18].  The progress has been improved by increasing the number of 

EMG signals, which enhanced the classification's accuracy and allowed multifunctional control 

[70]. This has influenced pattern recognition to be developed beyond basic movements such as 

close and open hands, wrist flexion, and extension. It has moved further to a new trend in 

identifying muscle actions to control individual fingers [71].  

Whilst there has been a significant advancement in pattern recognition, there are several 

drawbacks when users have control and interaction in real-life situations.   The main challenge 

is the degradation in classification and motion execution when the user performs the wrong 

movements since pattern recognition is only capable of one exercise in sequence and 

corresponds to the introduced pattern. Also, during the movement execution, the effect of 
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displacement of electrodes, muscle size, muscle fatigue can significantly affect the EMG signal 

quality and, eventually, classification accuracy [72].    

The previous attempts have improved the classification and control methods by using 

different feature sets and classifiers through surface EMG recording. Some studies have 

discovered that invasive EMG detection may have advantages over non-invasive methods for 

dealing with non-stationary EMG signals. The complexity of invasive methods and their 

superiority have been discussed in [37], [73]. They have examined and compared surface and 

intramuscular methods using data recorded from the untargeted and targeted surface to achieve 

the superior method.   

The studies showed that the association of pattern recognition methods in laboratory results 

to the real world is insufficient. It has been suggested that the completion rate of real-time 

control in pattern recognition by transradial amputees was 55%, while the classification 

accuracy for offline data was 85% [74], [75]. Thus it was shown that limited studies had 

achieved a sophisticated real-time control and the robust system in these algorithms is 

complicated and unreliable for most of the studies [26].  

The most explicit statement regarding using the EMG signal for controlling a 

multifunctional prosthetic hand is given in section 2.3, and further details are presented in 

section 2.4. The following sections go through the comprehensive method of pattern 

recognition control and the various machine learning strategies. 

2.4.1	Data	Acquisition	and	Feature	Extraction	

     The surface electromyography (sEMG)-based control system has been employed in several 

studies and has demonstrated the capacity to operate a high degree of DoF prostheses. The 

control scheme is associated with the amplitude of limbs' muscles described with features 

extracted from EMG measurements. Different feature extraction strategies have been shown to 

improve the number of states from EMG data and solve issues with nonstationary muscle 

signals. Figure 2.18 depicts the formal content of data capture and interpretation of the EMG  

signal. 



48 

 

 

Figure 2:18: Stages of signal processing for electromyography and pattern recognition. 
 

The feature selection has a significant effect on the achievement of EMG based pattern 

recognition. In the early version of commercially available prosthetic hands, the steady 

amplitude of EMG signals has only been used as their features. After data acquisition 

technology has been improved, signals have been filtered, generally utilising bandpass filters 

to minimise noise (low pass) and motion effect to eliminate undesired effects and improve 

signal quality (high pass). Most EMG signals, accounting for approximately 90% of the power 

spectrum, ranging from 20 Hz to 450 Hz. The lower cut-off frequency varies, but the most 

commonly utilised range is 10 Hz to 200 Hz. 

In order to provide more informative signals and enhance classification performance, 

multivariate feature sets have been suggested. For more intuitive control, the EMG signals of 

the upper limbs are often pre-processed based on time-domain features, such as root mean 

square, mean absolute value and variance of the electromyographic signal. Although the 

autoregressive model has been used in some researches  [76]–[79],   time-domain features have 

been widely favoured since they need less computation and perform better in real-time control 

than frequency domain features [77], [80], [81]. 

Electromyography signal features are employed on windowed raw sEMG data. The 

recorded EMG signals from the subject have been segmented into various analysing windows. 

The window size is generally 100-300 ms. Occasionally, overlapping is applied to maximise 

the value of continuous data in terms of computer capability [82]. However, the progress delay 

in real-time control because the signal buffering causes duration. Figure 2.19 depicts the 

visualisation of feature extraction from window length and associated overlaps. Windowing 

provides a way to evaluate only necessary data, reducing analysis, computing memory, and 
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eliminating superfluous information (redundancy). However, increasing training window 

length may cause bias problems and underfitting of the data.   

 
Figure 2:19: Segmentation of windows analysis of EMG signal 

 

The ideal control performance for rapid prehensor prosthesis has been recommended to be 

100 ms, while delays of more than 200 ms have been reported to be detrimental to users [83]. 

However, laboratory research on pattern recognition has usually reported their findings in 300 

ms for high pattern recognition accuracy. The efficiency of prostheses generally degrades as 

window length is reduced because of time delay [26]. Furthermore, in order to reduce 

disparities between electrodes, data is often normalised, and the mean zero and standard 

deviation of each dimension or electrodes are determined [5]. 

According to a recent study, attempts to map sEMG signals to finger and hand motions have 

been successful (up to 80-95 %) [84]. Even though there is a remarkable approach for 

processing EMG signals, there is no standard protocol for extracting data from experiments 

[85]. Likewise, there is no strict rule governing the types of filters and machine learning 

approaches [86]. Therefore, each research group has taken a unique strategy to achieve high 

accuracy and sophisticated control. 

The majority of recent research on pattern recognition-based control has employed 

classification accuracy as the performance metric. To increase classification accuracy, 

researchers explored a variety of machine learning algorithms ranging from fuzzy logic 

classifiers [87], [88] to Gaussian mixture model[77], [89], [90], linear discriminant model[21], 

[91] to nearest-neighbour [81], [92] and recently multilayer neural network [31], [93]. Since 

this study aims to develop a control method for a dexterous prosthetic hand using  EMG signals, 

the following sections contain substantial literature on current advanced ML approaches. All 
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of the approaches covered in this and subsequent sections are summarised in Tables 2.3, which 

provide a summary by classifier type, feature extraction methods, and the number of subjects 

and electrodes.  

According to recent studies, the sEMG pattern recognition based on deep learning can 

achieve higher detection performance than its competitors, such as LDA, SVM, LR, GMM and 

MLP. These sophisticated learning methods can achieve high accuracy in offline tests with 

large data sets and long enough training time; however, in the case of pattern recognition, the 

iteration time and generalisation capability are priorities. Furthermore, the performance of 

these deep learning methods relies on the size of accessible large data sets and computing 

processors, which in most case scenarios is not feasible on real-time control. Therefore in the 

following sections, the most practical and popular ML tools were analysed regarding their 

computational cost, practicality and feasibility of employing in real-time control. 

2.4.2	Linear	Discriminant	Analysis		

Linear discriminant analysis (LDA) is one of the most extensively used machine learning 

methods in pattern recognition for prostheses control. It has mostly been employed as a 

dimensionality reduction method for pre-processing. However, since it is capable of dealing 

with overfitting problems, it is often used as a linear pattern classifier. The first idea was 

proposed in 1948 to separate two classes, and then it was theorised  as a multi-class linear 

discriminant [94]. LDA generally uses a method similar to the principal component analysis, 

but it secures class discrimination axes information for data categorisation. It defines the 

feature direction on new vector space (w), projects data from two groups and separates them 

as much as possible (see Figure 2.20). Therefore, it has been used as a classifier in some 

practical control problems since it reduces computation cost.   

 In order to create large datasets, researchers have employed additional electrodes/channels 

and feature extraction methods to recognise more patterns. However, this leads to high 

dimensionality and complexity. Thus, in the literature, LDA has been employed as a pre-

processing step for dimension reduction and a classifier [95]. Figure 2.21 illustrates the control 

strategy for LDA methods in the study [74]. 
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Figure 2:20: Illustration of two dimensional, two category data projected on w vector. S1 and S2 are the 
distance of each data group projected, and m1-m1 is the means of samples for each class. 

 

Figure 2:21: Schematic of three future projection methods (Reproduced from [95]). 

 

After TMR surgery, a real-time feature extraction approach and classification were 

developed to control a virtual robotic hand [41].  The LDA has been used in their study as the 

main classifier for real-time control and clinical tests. The shape of the decision border is the 

main distinction between linear and nonlinear classifiers. In order to establish a parallel set of 

LDA classification to differentiate boundaries between similar motion classes, Zhao et al.  [96] 

have suggested a classification technique for combined motions. Many studies [97],[98] have 

demonstrated the performance of LDA with TD characteristics for real-time control of 

prosthesis. A comprehensive classification performance evaluation of NLR, MLP, SVM and 

LDA has been done by Bellingegni et al. [99] with time domain features. Linear discriminant 

analysis has been used with high dimensional datasets because of its robustness properties. Its 
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classification performance has been compared to that of more sophisticated classification 

methods such as  SVM and ANN while needing less processing time in [100].  

Reach and grasp movements are essential daily activities that require dynamic arm motions. 

An attempt to detect grasping intention from sEMG during dynamic arm orientation has been 

made by Batzianoulis et al.  [97] with below elbow amputee. The classification performance 

of four popular methods has been compared regarding their practicality and computational cost 

[101].  Another research has been conducted using several variants of limb postures to define 

a feature chart for sEMG signals using  TD and FD features [102]. A novel classification 

approach using LDA  for muscular contraction was investigated by Patel et al.[103]. The 

authors compared online and offline control findings with LDA and PCA methods and claimed 

that this strategy might give more consistency and natural control during multifunctional 

dynamic tasks. Similary as in [104], it has been used in regression based approach to cotrol a 

prostheses in real-time. Since it is a practical method in term of model training and 

implementation without compromising classification in was used in [105] to compare the 

accuracy performance between able-bodeid and amputee participant. Batzianoulis et al. [97] 

have used LDA to compare the performance of three pattern recognition methods.  

The main advantage of  LDA is that it provides a straightforward approach for establishing 

a practical conclusion just by using input information based on biological properties of EMG 

signals, which are not consistently reproducible. Despite the fact that LDA does not require 

complexity in its methods and is pragmatic, LDA accuracy is limited by feature size. As a 

result, a comparison of the most often used classifiers with different factors such as computing 

cost, applicability, and robustness will offer insight into selecting a suitable classifier for real-

time control. 

2.4.3	Support	Vector	Machines		

Support vector machine (SVM) has proven to be a supervised learning tool, with associated 

learning models that analyse features for classification and regression. They linearly build a 

model that distributes data into categories by creating a hyperplane between them (see Figure 

2.22). Using kernel functions, the algorithms can be transformed into non-linear classification 

(see Figure 2.23). The kernel function can be polynomial, sigmoidal, and radial based functions 

[106]. The decision boundary is the primary distinction between these functions. The theory 

has been introduced in  [107]. In the original algorithm, SVMs separate only two different data 

sets. However, adapted approaches for combining several SVM to classify multiclass data sets 
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have been presented. The goal is to create a model that predicts unseen target tasks using known 

training data. 

 
Figure 2:22: Schematic of Linear SVM optimal hyperplane. 

 
Figure 2:23: Schematic of non-linear SVM in high dimensional space. 

Because of its processing efficiency on big and high-dimensional datasets, the SVM offers 

significant advantages as a classification method for biological signals. Only a subset of 

training data is used in the decision-making process for new classes; thus, only these points are 

maintained in memory, which improves memory efficiency and offers the capability for real-

time control. Although the training process for this classifier takes a long time due to  high 

dimensionality and non-linear datasets, the method achieves good classification performance 

with kernel functions [108], [109].  

Precise prediction is one of the most important aspects of prosthetics control; hence SVM 

algorithms is a popular method and commonly used for offline and online classification of 

sEMG signals. SVM has been employed to control a four-finger hand with thirteen active DoFs 

to operate active prosthesis while minimising computational cost [3]. Another research has 

used SVM to control CyberHand through neural signal (ENG) and surface EMG signal [34]. 
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In order to verify the reliability and compatibility of neural signals SVM has been used as a 

decisive method in  [110]. Similary, Castellini et al. [111] have compared three machine 

learning methods on real-time control and has claimed that the SVM classifier's accuracy is 

over 90%. The performance of a real-time system with a novel socket has been tested in terms 

of end-to-end recognition and executing time by using SVM with able-bodied and healthy 

subjects.   Several feature extraction methods and kernels have been evaluated with a multiclass 

LS-SVM to predict the classes of five repetitions of reported motions of 27 people in [86]. In 

another study Pizzolato et al. [112] have compared the performance of six EMG data 

acquisition setups on 41 similar hand motions using two classification algorithms, SVM and 

Random Forest. 

Support vector machines have been demonstrated to be ideal classification algorithms. 

However, it has been proved empirically that accuracy is equivalent and is dependent on 

individuals, feature extraction methods, and the number of classes [113], [114]. Furthermore, 

since SVM has a high capacity to handle large data sets and its flexibility to adapt new 

information, it has been employed in numerous studies to categorise surface electromyography 

for neuromuscular disorders diagnosis  [115]. Gu et al. [116] has tested and mapped eight 

different kernel functions for EMG pattern recognition for prostheses control. 

Besides the extensive memory requirement during training sessions when large data sets are 

acquired, this method operates very efficiently once learning is completed. Even though the 

ideal sets of SVM rules and functions are challenging to be determined to characterise the 

system behaviour, the studies conducted in literature have suggested that the SVM has a high 

capability to imitate human decision making more accurately than other classifiers. For 

example, Guo et al. [117] has compared eight combinations of feature extraction methods by 

using two classifiers (SVM and ANN) and achieved 88% prediction accuracy. The authors also 

claimed that SVM performed better than ANN in real-time experiments. An sEMG based real-

time reach and grasp tests have been taken in [97] by employing SVM. The authors have 

conducted a series of dynamic arm motions and successfully reduced the time delay between 

user intention and device response using practical SVM kernels.  

Despite the fact that SVM is a common classification approach, there have been several 

concerns about SVM algorithms. Since it contains many kernel functions, it is challenging to 

choose an appropriate kernel and its parameters. Other disadvantages include algorithmic 

complexity and a lack of transparency. Additionally, the SVM technique necessitates greater 

system memory and processing time during the training stage since it memorises system 

samples based on rules in the membership functions; thus, the method is more prone to 
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overfitting problems if the learning rate is not tuned appropriately. As a result, various more 

intelligent decision-making algorithms (such as ANN and TD learning) have been suggested 

as superior to SVM approaches by combining the benefits of detecting nonlinear and 

complicated data with flexible learning algorithms. 

2.4.4	k-Nearest	Neighbour		

The k-nearest neighbour (k-NN) is an instance-based (memory-based) supervised method 

that has been used to address classification and regression problems. It is a straightforward 

approach that establishes the hypothesis directly from presented training data. As a result, when 

a new prediction is required from an unseen data instance, the most relevant instance is recalled 

from stored memory and returned to differentiate the new requested instance (see Figure 2.24). 

The classifier predicts test samples based on ! training samples, where ! is the number of test 

samples' nearest neighbours. As a result, the inclusion of !  -values might degrade the 

performance of the k-NN method. If ! is too small, the classifiers algorithm does not offer any 

advantages and may cause ovefititng. To avoid such issue, it is suggested that the ideal value 

of ! be determined empirically by hiring different ! -values. In nearest-neighbour learning, the 

targeted data can be either discrete or real-time. For real-time valued data, the Euclidean 

distance is employed as a similarity metric, whereas the Hamming distance is applied for 

discrete data. The strategy is particularly beneficial for real-time control after model training 

[8]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:24: Schematic illustration of k-NN methods for k=2. 

Although the high accuracy of surface EMG-based classifiers is necessary for prosthesis 

control, the computational cost is also critical for intuitive control [116]. Because k-nn provides 

substantial advantages in terms of practicality, it has been widely employed in prosthetics 

control.  A combination of k-nearest neighbour (k-NN) and genetic algorithm (GA) to classify 

two pair of EMG signals placed on the superficial layer for finger flexion has been conducted 
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in [76].  In another study, k-NN has been used for online control of a prosthetic hand [118]. As 

another example of individual finger decoding, data from 16 channels while performing 12 

individual finger movements has been differentiated in [119]. In the study, they have achieved 

an accuracy rate of 80%. A detailed comparison between k-NN, LDA and quadratic 

discriminant analysis (QDA) for prostheses control has been made in  [101].  Rasheed et al. 

[120] studied an adaptive fuzzy k-NN for  classification of sEMG from four channels. They 

have incorporated diverse characteristics, using a modified classification approach, multiple 

kernels, and reached 91 % classification accuracy. Christodoulou et al. [121] have employed 

k-NN to extract sEMG features from 40 patients' for diagnosis. The purpose of the study was 

to distinguish between patients' movements that had neuromuscular problems and those that 

did not. Similarly, Atzori et al. [81] have investigated finger and wrist movement classification 

by employing various methodological approaches, features, and classification techniques. They 

have  created data sets based on different measurement methods, features, and classification 

methods. Concerning numerous methodological aspects, 70% average accuracy has been 

achieved.   

Although k-NN is an effective tool for classification in real-time control, it has some 

drawbacks. Because it saves training data, this learning method requires a larger memory, 

making it computationally infeasible for wearable technologies Furthermore, particularly for 

large data sets, this method takes a long time to search through the complete training data set 

to discover the nearest neighbour and extract the output. As a result, there is a delay and a lack 

of intuitiveness, especially if additional training is necessary for new users.     

2.4.5	Artificial	Neural	Network		

Neural networks (NN) are data modelling techniques inspired by the topology of human 

neural networks. They offer a robust error strategy for training data to approximate real, vector, 

and discrete test data. Algorithms have been effectively applied to EMG-based control for hand 

motion detection and exoskeletons, either by combining component analysis such as PCA, ICA 

or by considering raw signals. Backpropagation techniques like gradient descent and Adam 

optimiser have been used to optimise network parameters to match input-output training sets. 

Artificial neural networks (ANNs) offer considerable benefits in high-dimensional space and 

uncertainty, which are characteristics of EMG data[122]. Furthermore, it is suggested that ANN 

is a powerful tool for multiclass classification since it performs well with large data sets and 

hence does not need complicated feature extraction methods in the data processing. 
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Artificial neural networks (ANNs) are mathematical functions implemented on parallel 

processing units, and it employs statistical approaches comparable to those used in the 

previously presented machine learning method. The perceptron defines a hyperplane to divide 

the inputs into two spaces. By implementing different kernel functions, the perceptron 

separates multiclass by checking the inputs. Figure 2.25 illustrates a multilayer ANN with 

seven inputs. The weight values can be calculated offline by given data samples. By giving 

instances one by one instead of the whole sample, the neural network can adapt itself slowly in 

online learning. 

 

 

Figure 2:25: Schematic of ANN layers and neurons. 

 

Developing an active prosthesis for a different level of amputation is a big challenge. 

Researchers have developed different electromyographic (EMG) measurement methods to 

acquire intended movement performed by users. Many machine learning techniques have been 

implemented to obtain control commands from limb activities. However, most of these 

approaches provide discrete motion control, despite the fact that daily human activities are 

continuous control. The fundamental disadvantage of the EMG signal as a control mechanism 

is its non-linearity and non-stationarity [123]. Therefore many studies have used neural 

network classifiers to tackle this issue since ANN  can solve both linear and non-linear data 

mapped from EMG signals. 

The data size, physical environment, and the user may need to be changed over time; 

therefore, the pattern recognition must be retrained depending on performance metrics. Thus, 
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when working with big data and high-dimensional features, ANN provides substantial benefits 

in terms of robust control of prostheses since it eliminates the need to store training data. 

Furthermore, since they strengthen the robustness of extracted features, ANNs offer significant 

benefits in overcoming challenges during dynamic upper-limb motion control.  

Recently, different ANN architectures have been used in several prosthesis research 

projects.. Hudgins et al. [124] have established one of the first examples to successful control 

a multifunctional prosthesis based on EMG signal classification using ANNs. In this 

groundbreaking work, they have increased the number of states per channel to minimise the 

user's effect. Gu et al. [116] have employed a probabilistic ANN with backpropagation to 

control a robotic arm simultaneously. Throughout the training, the novel adaptive approach 

efficiently updated classifiers in real-time. In order to estimate non-linear samples in real-time 

control, a multilayer perceptron (MLP) has been used in [83].  The study claimed that a real-

time control had been achieved within 125 ms without any execution time delay. They also 

have investigated the influence of feature extraction and ML parameters, and the research 

outcome showed that feature size and signal processing methods have more effect on class 

separability than MLP parameters.   

Motor control provides robust responses by analysing structural and functional changes. 

After movement is conducted, the input data are updated by correctness via sensory feedback. 

The integration of this topology into a robotic system has substantially improved the 

intuitiveness of prostheses.  A notable attempt using this topology is presented in [125]. An 

adaptive neuroprosthetic controller to map data from neurological states to prosthetics to 

improve the robustness of devices has been developed. The research has employed Hebbian 

reinforcement learning (HRL) and claimed that the adaptive controller performance increased 

by 6% after the third day. It is suggested that the system must discover more postures and 

differentiate large EMG data sets in order to adjust a controller without the requirement of 

manual calibration. Thus, Zhao et al. [78] have presented a Levenberg-Marquart (LM) based 

framework for obtaining high-dimensional characteristics for real-time control of a bionic 

hand. 

Data-driven learning has shown to be an effective method for performing multitask with 

minimum human involvement. A generative neural network approach has been employed in 

[31] to build a multifunctional arm-hand manipulator. Similarly, based on a dynamic 

probabilistic model, Bu et al. [126] have developed an innovative EMG pattern recognition 

system. They integrated Hidden Markov Model (HMM) techniques with NN to establish a 

stochastic strategy to differentiate six hand gestures. 
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ANN has been used to operate a multifunctional myoelectric prosthetic hand using a variety 

of alternate approaches. The majority of multifunctional myoelectric control system 

implementations have relied on assumptions derived from provided features, such as 

multichannel EMG signals or statistical datasets describing hand or finger motions. Once a 

pattern has been found from training data sets, other unknown patterns can be determined 

[114]. When a new specimen is received for real-time control, the incremental learning 

mechanism updates the model parameters while maintaining the original network topology. A 

number of reviews discussed deep learning algorithms for big data in detail [127]–[129].    

Although the use of deep learning to sEMG is still in early stages, three types of 

model(Unsupervised Pre-trained Networks (UPN), Convolutional Neural Network (CNN) and 

Recurrent Neural Network (RNN)) have already been utilised to assess the biological signals 

and manipulate prostheses. A deep belief network (DBN) has been used as an alternative to 

conventional ML  models to differentiate five hand motions [130]. A deep belief network 

(DBN) has been used as an alternative to conventional ML  models to differentiate five hand 

motions. Geng et al. [131] have investigated the performance of CNN for recognition of 

independent finger raw data collected from EMG   without preprocessing and feature extraction 

methods. Similarly, Cote-Allard et al. [132] have used the spectrograms feature of EMG 

signals collected from two subjects with eight electrodes to classify seven hand-arm gestures. 

Although this approach significantly benefits from large data sets, the method is significantly 

influenced by data size, model parameters, and computational cost. A detailed comparison of 

the CNN method with conventional methods has been made in [133] by usin publicly available 

Ninapro datasets.   

In contrast to conventional ML methods, RNNs use time-series data to create feed-forward 

processing. It saves information of previous inputs and creates a model in the present. For 

sEMG based pattern recognition, this can provide a significant advantage to deal with dynamic 

arm orientation and non-linear biological signals. Laezza et al. [134] have evaluated the 

performance of three deep learning models for sEMG signal in this study. The research 

outcomes showed that RNN achieved 91.81%,  higher than CNN and RNN (89%, 90.4%), 

respectively. Similarly, the performance of SVR and RNN has been compared for predicting 

upper limb joint rotation in [135]. 

     Researchers have developed many alternative ANNs techniques for prosthesis control as a 

classification or regression method. Generalisation, working in high-dimensional space, 

learning directly from training data sets in real-time, and adaptability to varied situations are 

all key advantages of ANN. However, because of the long training period of ANN and the 
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complexity in establishing the right size of the architecture and function parameters, various 

alternative approaches to ML have been deployed to deliver a straightforward solution with 

high precision and accuracy. 

2.4.6	Principal	Component	Analysis				

Principal component analysis (PCA) is a statistical approach widely used in various 

application fields, including computer vision, image compression and pattern recognition. It 

has been extensively employed in EMG signals to discover patterns in high-dimensional data 

when graphical representation is ambiguous. PCA is a practical tool that can compress data 

without sacrificing useful information. It does not remove features but instead transforms them 

with smaller dimensions by decreasing duplication and noise. 

Many academics have used PCA to visualise data to find the association between motions 

and sEMG signals [56], [136], [137]. An exploratory investigation was carried out in [138]  to 

command a 16 DoF robotic hand with a two-dimensional control signal by reducing sensory 

input from 50 distinct grab actions. To characterise the high degree of human hand synergies, 

researchers frequently investigate the reduced dimension to identify the pattern by the 

proportion of total variance determined by PCA [139].  As a pioneering study, Santello et al. 

[140] have conducted research to characterise the human hand by PCA. They have defined the 

number of degrees of freedom and hand posture distribution according to fingers that create 

force and synergy. In another work, Braido et al.  [141] have used PCA to explore the behaviour 

and coordination of fingers by reducing the large dimensionality of the raw data into a more 

comprehensible and manageable format. Some other unique PCA approaches have been 

developed to enhance the classification accuracy of EMG-based control.  Hargrove et al. [73]  

have used PCA, a set of motion-class-specific filters to correlate the acquired signals. In this 

approach, the decreased number of features is prioritised for classification. They compared the 

classification results of pre-processing and non -processing EMG features (see Figure 2.26). 

In the previous work, Zhang et al. [95] have used five time-domain features for four-channel 

EMG data and compared the performance of Linear discriminant analysis (LDA) results with 

and without PCA. In the first step of the study, PCA was used for feature projection, and then 

LDA was used as a classifier. Similarly, Jun-Uk et al.  [83] have employed PCA for four-

channel EMG data to reduce dimensionality and simplify the progress of the classifier for real-

time control. 
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The redundancy problem in control has been described in [142] as such a task that can be 

accomplished in several ways. For example, different finger joint combinations can bring the 

fingertip to the same final point. This is a characteristic problem of deciding one possible 

solution out of many. Such a decision can be made by the sensorimotor system robustly, but it 

is a problem in control to be addressed. The correlation of control signals determines control 

action direction, and PCA can always create a minimal number of represented components for 

large datasets. Thus, Gabiccini et al. [139] have employed this principle as fundamental control 

law in their motor control based research. In the circumstances of few inputs, it is relatively 

simple to distinguish the limb actions, as they spread different graph regions. On the other 

hand, combined high dimensional can only be separated by PCAs or ICA. Atzori et al. [86] 

have used a similar approach to distinguish data of 52 different movements from multiple 

subjects. 

In order to increase motion recognition accuracy and differentiate more patterns, descriptive 

information of muscles and the number of features must be increased. This is likely to cause 

high dimensionality of the feature vector problem. Thus, the projection of movement’s feature 

vectors using PCA gives some intuition about the mapping from high dimension into low 

dimension spaces. It reduces the processing time of classification and meets the demands of 

real-time control. Since PCA is one of the well-known methods to give insight into the 

connection between hand manipulation and sEMG signals, it has been used to reduce planning 

and learning complexity and generate well-defined features.  

Considerable research is required to create and optimise learning algorithms and datasets to 

gather appropriate information from able-bodied to amputee participants. All of the ML 

approaches mentioned in this study show promise, provide inspiration and practicality in 

prostheses, and highlight the potential to develop a more sophisticated sEMG based pattern 
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Figure 2:26: Schematic diagram of EMG pattern recognition with PCA dimensionality reduction. 
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recognition system. Table 2.2 outlines the various learning approaches and feature extraction 

strategies available for prosthetic hand control. 
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Table 2:2: Summary of EMG-based protheses reseaches that have used ML  techniques. 

 
Ref. Year Input Data Number of 

Classes 
Number of  
Electrodes 

Machine Learning 
Model 

Data Features 

[143] 2001 EMG 6-class 4-channel PCA, LDA STFT, WPT WT, 

[126] 2003 EMG 6-class 6-channel ANN MAV 

[77] 2005 EMG 6-class 4-channel GMM, MV AR, RMS 

[113] 2005 EMG 8-class 7-channel SVM MCV 

[78] 2005 EMG 3-class 2-channel NN AR, MAV 

[144] 2005 EMG 6-class 5-channel GMM, MLP, LDA AR, RMS 

[5] 2006 EMG 6-class 10-channel SVM MCV 

[70] 2006 EMG 4-class 4-channel MLP STFT 

[83] 2006 EMG 9-class 4-channel PCA, MLP WLT 

[145] 2008 EMG 18-class 8-channel SVM MCV 

[146] 2008 EMG 6-class 16-channel SVM WT 

[111] 2009 EMG 5-class 10-channel MLP, SVM, LWPR MCV 

[147] 2009 EMG 12-class 32-channel MLP MAV, WA, WL 

[138] 2010 EMG 3-class 2-channel PCA MCV 

[75] 2010 EMG 11-class 12-channel LDA MAV, ZC, WL, SSC 

[118] 2011 EMG 7-class 9-channel k-NN MAV 

[148] 2011 EMG 7-class 9-channel SVM MCV 
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Table 2:2: Continued 

Ref. Year Input Data Number of 
Classes 

Number of  
Electrodes 

Machine Learning 
Model 

Data Features 

[119] 2011 EMG 12-class 16-channel LDA, SVM, k-NN MAV, WL, ZC, SSC 

[101] 2011 EMG 5-class 2-channel k-NN, LDA, QDA IAV, RMS 

[149] 2012 EMG 6-class 2-channel LDA Multi feature 

[86] 2012 EMG 52-class 10-channel PCA, SVM RMS 

[71] 2012 EMG 10-class 2-cahannel SVM, k-NN WL, ZC, SSC, AR 

[150] 2013 Ultrasound 6-class - PCA - 

[100] 2013 EMG 10- class 4-channel LDA, QDA, RFS RMS, WL 

[151] 2013 EMG 9-class 4-channel LDA, SVM, QDA, k-NN MAV, ZC, WL 

[96] 2013 EMG 3-class 6-channel LDA MAV, ZC, WL 

[152] 2013 EMG 25-class 8-channel LDA, SVM MAV, ZC, SSC, WL 

[54] 2014 ECoG 4-class 128-channel PCA, LDA MCV 

[95] 2014 EMG 9-class 4-channel PCA, LDA MAV, RMS, ZC, WL, SSC, 

[153] 2014 EMG 5-class 192-channel ANN, NMF, LR RMS 

[154] 2014 iEEG 2-class 4-channel LDA AR 

[155] 2015 EMG 6-class 12-channel LDA MAV, WL, AR, MV 

[156] 2015 EMG 4-class 8-channel  MAV, ZC, MCV, RMS, WL, 

[157] 2016 Ultrasound 11-class - k-NN - 

[158] 2016 EMG 8-class 8-channel SVM MAV 
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  Table 2:2: Continued  

Ref. Year Input Data Number of 
Classes 

Number of  
Electrodes 

Machine Learning 
Model 

Data Features 

[56] 2017 EEG 2-class - MLP, NB, k-NN, PCA DWT 

[159] 2017 iEMG 3-class 8-channel LDA, SVM MAV, WL, ZC 

[84] 2017 EMG 6-class 14-channel RF (random forest) MAV, WL 

[116] 2018 sEMG 14-class 8-channel LDA, SVM DFT, WT, WPT 

[103] 2018 EMG 5-class  PCA, LDA MCV, MAV 

[160] 2018 EMG 5-class 2-4 channel LR, CC, SC - 

[161] 2018 EMG 8-class 8-channel CNN, SVM - 

[162] 2019 EEG 4-class 57-channel ESI - 

[64] 2019 iEMG, EMG 4-class 4-channel k-NN MAV 

[17] 2019 EMG 10-class 5-channel R-LLGMN, HMM MAV 

[163] 2019 EMG 3-classs 8-channel SVM TC, SC 

[164] 2019 EMG 4-class 6-channel NLR RMS 

[165] 2019 EMG 6-class 32-channel N/A KF 

[166] 2019 EMG 4-class 8-channel LDA ACCmmg 

[167] 2019 EMG 5-class 16-channel RLS-DF RMS 

[168] 2020 sEMG 6-class 8-channel SNN RMS 

[169] 2020 EMG 4-class 8-channel LR - 

[170] 2020 EMG 4-class 8-channel LR RMS 
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  Table 2:2: Continued  

Ref. Year Input Data Number of 
Classes 

Number of  
Electrodes 

Machine Learning 
Model 

Data Features 

[171] 2020 EMG 8-class  16-channel CNN - 

[172] 2021 EMG 5-class 8-channel CNN RMS 

[173] 2021 EMG 6-class 6-channel CNN MAV, SSC, ZC, WL 

[174] 2021 iEMG 12-class 16-channel CNN, RNN, SC, SSC, WL, RMS, MAVS 
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2.5	Challenges	and	Research	Scope	

Since the 1970s sEMG has been employed as a popular  control interface for upper limb 

prostheses. A variety of promising non-invasive, wearable myoelectric prosthetic hands have 

been created and are widely available. Despite mechanical and control systems developments, 

commercially available prostheses are far from human-like dexterity and intuitiveness. 

Comfort and functionality are the most common reasons for prosthesis dissatisfaction, 

according to the literature reviewed for this study. Some other research and reviews have also 

supported this viewpoint  [10], [11], [175],[176].  Cosmetic appearance, lack of sensory system, 

lack of robustness, muscle contraction level, electrode shifting, variability in arm position, 

socket fitting problem, and high cost are other issues that must be addressed. 

Following the review's findings, sEMG was frequently employed to detect muscle patterns 

for prostheses control. Innovative techniques, muscle reinvention, and neuromuscular signal 

recording have been devised to deliver muscle signals for different categories of users. These 

method have produced control signals for various functions, including anticipating individual 

finger flexion, object grabbing, and other qualities previously mentioned. However, most 

studies used limited hand and arm posture, and just a few studies used reaching and grasping 

actions to assess their control system. Furthermore, most existing research does not provide 

answers for amputees who retain a small number of biceps and triceps muscles. 

As a result of the current findings, advanced data collecting and machine learning 

methodologies are necessary to meet the issues that have arisen due to the environment and 

subject availability. Despite the fact that some large datasets were created from various subjects 

and a significant number of hand and arm postures, most studies evaluated their research 

outcomes using metrics like accuracy, recall, precision, R2, and F-Score. However, since real-

time control requires adaption, non-stationary signal, synchronisation, and continuity, this 

analysis fails to represent online scenarios. 

Currently, there are several studies using ML approaches to control sEMG-based 

prostheses; however, in many cases, these studies lack a standard for their concepts, 

parameters, signal processing, real-time validation testing, and type of hand/finger motions. 

Moreover, the majority of these studies are either unreplicable due to unrealistic settings or 

unfeasible due to being highly sophisticated and cannot be transferred from laboratories to real-

world conditions. Therefore, there is a significant gap between laboratory research and clinical 

use of prostheses, despite all of the most remarkable advancements in machine learning and 

sensory advances [177]. Following this review, this study aims to develop a sEMG based 
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pattern recognition to find answers for four main challenges  presented in the literature as 

follows: 

User friendly: Any prostheses should be intuitive and natural. The user should be able to 

control it easily. This will be accomplished by the use of a bypass socket and a novel sensory 

modality. 

Independent function’s control: Multifunctional hand should have a high degree of freedom 

and should execute each function without the help of any external application or switching 

functions. Independent finger and thumb abduction control will be used to accomplish this. 

Simultaneous multifunction control (parallel control): Amputees should be able to coordinate 

and perform multi joints simultaneously and effectively without damaging other functions. To 

do so, a regression method will be used to process several functions at the same time and 

separately. 

Fast Response: Prostheses should respond immediately after receiving command signals and 

sensory feedback. Data acquisition, processing, motion prediction, and execution were 

optimised to process in 0.23 seconds with the new embedded control in this study. 

       The literature studies outcomes were analysed based on surveys and reviews conducted in 

[176],[178],[179],[180]. This chapter summarises the primary control approaches based on the 

aforementioned main challenges (see Table 2.3), which were asked in the surveys to actual 

prostheses users. 

 
Table 2:3: Comparision Between Some Approach for Control of Prosthetic Limbs 

Approach Main Advantages Main Disadvantages 
Surface Electromyography 
(sEMG) 

Non-invasive. 
Easy implementation. 
 

Non-natural control 
strategies without ML 
methods.  
Not easy to learn operating.  

Implantable 
electromyography (iEMG) 

Improve the quality of EMG 
signals. 
Provide focal information. 

As an EMG. 
Costly. 
 

Targeted Muscle 
Reinvention (TMR) 

More natural control strategy. 
Effective sensory feedback.  
Focal data acquisition.  

Require surgical process. 
More suitable for shoulder 
level amputation.  

Implantable Peripheral 
Interfaces (PNI) 

Potentially selective and 
versatile for natural sensory 
feedback. 

Limitations regarding 
controllable DOFs. 
Invasiveness. 
Acquisition of noisy signals.     
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2.6	Summary	

The myoelectrical (EMG) signal is one of the most extensively utilised sources for 

prediction and controlling upper limb prostheses. Sophisticated ML algorithms, considerable 

advancement in hardware systems and continuous development of large data have made 

remarkable progress in artificial prostheses in recent years. Deep learning significantly 

improved the accuracy of sEMG based pattern recognition and reduced the interferences 

caused by environmental conditions, and it boosted the robustness and intuitiveness.  

This chapter investigated the applicability and efficiency of ML methods in sEMG based 

pattern recognition. It analysed the key approaches used in developing prosthetic hands, 

including signals processing, feature extraction techniques, different types of classifiers, socket 

design,  sensory modality, and performance evaluation methods. Finally, the current problems 

and opportunities for clinical implementation of these approaches were identified and 

discussed.   

Prostheses have gained greater capability over the years as wearable sensors and machine 

learning approaches have advanced. Studies have revealed that amputees may be able to restore 

at least several of their lost limb functions using sEMG based pattern recognition. Although 

non-invasive prostheses have shown promising results, several real-world problems must be 

addressed. To begin with, myoelectrical prostheses have limited control and intuitiveness. 

Secondly, control of prostheses is typically unnatural, with a poor human-machine interface 

(HMI). Finally, despite the fact that laboratory-based studies shown excellent accuracy (almost 

96 %) in offline testing, real prostheses users reported frustrated dissatisfaction with their 

devices (about 65-75 %). 

Studies have developed novel adaptive algorithms, unique approaches for sensory 

modalities, merging post-processing, and alternative model training. These strategies have all 

demonstrated varying levels of success in offline research and online control. Although 

computational skills have improved intuitiveness, the reliability of the EMG signal has 

remained one of the key challenges. The investigations have developed into alternative data 

collections, such as targeted muscle reinvestigation (TMR) and electroneurographic (ENG) 

signals, in order to discover and analyse more reliable EMG signals. The novel method has 

dominated research in the fields of pre-processing and removing artefacts in the real-time 

management of EMG data. Following these improvements, several researchers have attempted 

to mimic the nature of tactile receptors by combining the skin behaviour neuromorphic model 

of the receptor for sensory feedback. 
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However, although the recordings from focal locations improved pattern recognition 

accuracy, the stiff form and propagation of anchoring pressures can harm nerves and may cause 

significant damage. Early studies revealed that implanted electrodes could regenerate a reliable, 

though limited, capacity; on the other hand, it is far from worldwide use because it has some 

potential to nerve fibre loss and a resulting loss in cardiac response. 

Furthermore,  even though contemporary hybrid approaches have enhanced prosthetic 

performance with sensory feedback to execute the autonomous movement, they have also 

introduced new drawbacks, such as higher costs, design problems, and increased user training 

load. Lastly, in order to reduce the problem's complexity and give a dependable solution to 

instability, a compact combination of all compartments that enables permanent and continuous 

connection with users has been proposed. However, many systemic problems connected to 

human-machine interfaces, such as crosstalk, motion artefacts, limb position variations, muscle 

force, and especially processing time in real-time control, diminish the functionality of the 

prosthesis. In terms of classification performance, signal processing and feature extraction play 

an essential role in obtaining adequate performance for motion detection. Several domain 

characteristics have been proposed throughout the observation method, including signal 

amplitude, muscle conditions, and signal type.  

This chapter highlighted the important parameters of feature extraction methods and pre-

processing in each domain. Popular ML tools for enhancing sEMG based controlled prosthetic 

hand in considering highlighted rejection rate were also presented. Data collecting principles, 

sensory feedback, machine learning methodologies, and real-time controls were investigated 

to deal with myoelectrical instability. Finally, the most important notion of mechanical 

advances in terms of socket and electrode location was underlined in this chapter.
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Chapter	3 Methodology:	Forearm	Muscle	Activity	and	
Electromyography	

3.1	Introduction	

Surface electromyography (sEMG) based control was first introduced in the early 1950s and 

1960s as threshold-based control to simply control prostheses (open and close functions) for a 

primary degree of freedom grippers. The control method was introduced to regain at least the 

most basic tasks of daily life. For cost and convenience reasons, the proposed threshold-based 

control is still used in a substantial number of commercial prostheses. However, the idea of 

detecting multifunctions of the hand using pattern recognition algorithms for amputees has 

lately gained popularity. This concept has advanced thanks to a range of machine learning 

technologies. The researchers aim to comprehend amputees' intentions better and expand the 

possibilities for advanced multi-fingered prosthetics. 

Despite considerable progress, clinical applications of these technologies remain limited due 

to the incapacity of some pattern recognition algorithms to deal with non-stationary 

myoelectrical (EMG) signals. Muscle fatigue, variable conductivity, electrode shifting, and 

user pattern change have all been seen to disturb sEMG signals. Furthermore, changes in arm 

position and velocity of motion change the data, resulting in degradations and the requirement 

to retrain a new model with varying arm orientations. 

This chapter aims to undertake a series of experiments using the current popular techniques 

to better understand gripping and single finger patterns and build a sufficient real-time-control 

model and control interface for a prosthesis. Numerous experimental circumstances from the 

literature were employed to analyse EMG signal fluctuations, detect motions as precisely as 

possible, and minimise some of the previously-mentioned disadvantages in clinical and 

practical implementations. 

3.2	Experiment	Methodology		

3.2.1	Participants		

These EMG tests aim to assess the motor control strategy of human upper limbs and imitate 

its effectiveness for controlling upper limb prosthetics. This experiment's data was utilised to 

create a control method for transradial amputees. An able-bodied participant participated in 

EMG tests. The participant is 26 years old, a righthanded male. The participant has no 
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musculoskeletal or motor control disease or limitation that could cause restraint of the self-

selected activity speed or naturalness of manipulation. Five healthy males between the ages of 

24 and 28 volunteered for this study's second part, which aimed to assess muscular fatigue and 

individual participant effect on classification performance. All of the participants were right-

handed. The reason behind the right-hand decision is because, according to statistics, the arm 

amputation levels are  57% for transradial and 23% for transhumeral, respectively, with the 

right limb being more frequently affected due to work-related injuries or illnesses [15]. The 

contents of the trials were explained to volunteers, and they were instructed not to engage in 

any physical activity between their trials, due to physical exercise has been proven to generate 

muscle fatigue, and long-term muscle training has been shown to cause sEMG data to be 

misrepresented between trial sessions [181], [182].  A variety of issues, including the fact that 

each person has a varied muscle contraction level, range of arm motion, and limb size, 

challenge implementing real-time control systems.  

Although there are no standards for experimental protocol or number of subjects, which 

makes it difficult to compare EMG results between studies, the majority of research has been 

conducted with healthy participants. Therefore, researchers have employed various subjects 

from 3 subjects [183], [184] to 220 subjects [185]. In fact, the number of subjects is more 

closely related to the type of MLs deployed and the purpose of the investigations. Some studies 

attempt to collect as much data as possible from various types of subjects in order to develop 

a publicly available database [186], [187]. Those research focused on specific activities with 

small number of individuals, which may lack generalisability in daily living activities in the 

literature have focused on real-time implementations of prostheses. Peerdeman et al. [188] 

conducted a systematic literature review and concluded that the majority of studies only 

conducted experiments on able-bodied subjects due to the difficulty of recruiting amputated 

subjects. Previous research has shown that control accuracy for amputees is comparable to that 

of able-bodied people, if not slightly lower and more unstable [189],[190]. It has been 

hypothesised that amputees suffer to obtain high accuracy and execute activities on time [191]. 

It is unclear if this is due to a lack of sensation or a lack of motor control.  In [192], Al-Timeny 

et al. collected sEMG data from ten able-bodied and six below-elbow amputees. They achieved 

98 % accuracy for able-bodied subjects and 90% accuracy for amputee subjects. More 

information about the number and type of subjects can be found in [175], [176].   
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3.2.2	Materials	and	Sensors		

As the main data acquisition component, we recorded corresponding EMG signals using 

Delsys™ Trigno Wireless System®, with recently released Quattro sensors. These electrodes 

were developed with high accuracy and allow more precision muscle detection as they have a 

small size. As stated in the last chapter, there is a debate in the literature concerning the ideal 

electrode location on muscles and electrode crosstalk. As a result, thanks to the electrode's size, 

this newest electrode has removed electrode placement issues. To assess the kinematics of the 

human hand, a setup was employed to combine seven EMG sensors and a data glove. The 

wireless VMG 30™ data glove provides up to 30 high accurate joint angles, capturing all the 

human hand motions. More importantly, the flexion and extension of two joints and abduction/ 

adduction of each finger were illustrated on the computer screen for tracking purposes. Force 

sensors are included in the glove's fingerprint, allowing for the gathering of both force and 

pressure data. The VMG 30™ data acquisition sensory was used to minimise the uncertainties 

on the contact points in object manipulation and perform accurate repetition of each trial. 

In the static arm trials, the subjects were instructed to establish their first natural position, 

which they could use to grab and hold objects. It may be feasible to check if the initial 

manipulation was detected and the fingers returned to their original place by measuring the 

force and posture of the trial. A workstation computer (Intel i7 @2.6 GHz with Windows 10) 

was used for data collection and storage. Delsys EMGWorks Analysis and Matlab tools were 

used to analyse the obtained data. 

  3.2.3	Equipment	Calibration	and	Participant	Preparation		

The muscle activation signals (EMGs) from the participant's upper limb were captured to 

examine how the muscles were engaged during the finger and object manipulation trials. The 

Delsys system calibration was made via its patented software. The detail of the procedure is 

available in Delsys online documentation; under the section, calibrate a Delsys system [185]. 

The system stores the calibration information for each sensor that has been paired in default. 

When a new experiment is initiated, the calibration file is used to precisely display measured 

signals in most cases without manual calibration. 

For data glove calibration, the VMG 30™ software provides an open API for the 

construction of hand simulation, visualisation, and calibration of kinematic outputs. Calibration 

takes less than a minute and is easy to implement. It displays calibrated sensor data in the 

MotionBuilder in an interface [193]. The participant's upper limb was equipped with EMG 

surface electrodes and a data glove. The electrode placement was made based on palpation, as 
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recommended in [118].  The participant's skin surface was prepped for reliable data collecting 

since it is suggested to attach the electrodes to the user's skin with the hair removed and 

cleansed . 

The EMG signals can be influenced by a variety of variables that, in most cases, are 

unrelated to finger position and behaviour [194]. Many of these aliasing signals have a negative 

impact on the quality of EMG signals, interfering with control and classification performance. 

The experiments were conducted while keeping all of these concerns in mind and researching 

ways to avoid them.  The muscle contraction signals were recorded for muscle groups while 

participans were asked to contract muscles for ten seconds  and maintain a steady contraction 

for at least three seconds. Several studies have investigated the effect of sampling rate, sessions 

duration and the number of repetitions. For example, Khushaba et al, [195] and Pizzolato el at. 

[112]  have conducted their experiment with six repetitions with each trial in 5s. To avoid data 

biasing, the 3s time duration was decided to ensure maximum muscle contraction was recorded. 

The approach is comparable to previous biomechanics research investigations such as [81], 

[86], [112]. 

3.2.4	Electrode	Placement	

The data collection setup for each session was meticulously repeated in terms of the muscle 

architecture of the forearm. The electrodes were assigned after finding the best position of each 

muscle, which was accomplished using the palpation method while the user repeatedly 

contracted the inspected muscles and in accordance with the standard protocol provided for 

non-invasive (sEMG) signal detection [196].  

The electrode orientation was determined by the place of the muscle observation. Due to the 

appropriate size of electrodes, four micro Quattro sensors were primarily planted to assess the 

dense sampling of muscles stationed in the proximal area of the forearm. The remaining three 

sensors were placed on the primary activity areas of the flexor digitorum superficialis and 

flexor digitorum profundus muscles. The precise placements of muscles were determined based 

on their importance in motor control of human hand motions. Furthermore, a high number of 

transradial amputees can still reach the majority of these muscles. The VMG 30™ system was 

used to collect hand manipulation sequences and finger motions, and this system was then used 

to analyse hand kinematic activity. This integrated system is not ideal for real-time control due 

to its complexity and interactive display of joint angle changes, but it is suitable for machine 

learning model training. Figure 3.1 displays the capture manipulation system and the placement 

of 7 electrodes on the arm to targeted  muscles. The number of the sensor was decided after an 
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extensive literature review such as [22], [191]. In another review Farell et al. [37] have 

compared different numbers of electrodes and their influence on pattern recognition. The 

compatibility of the system, number of subjects, experiment duration, ML methods and 

feasibility of employing the maximum number of the electrode have been effective in this 

decision. Numerous studies have been conducted with a different number of electrodes. A 

detailed review that compared the number of electrodes and sampling rate is given in [176]. 

Furthermore, the literature chapter discusses in depth the number of electrodes, ML algorithms, 

and feature extraction techniques (see table 2:2). Regarding classification accuracy, it has been 

suggested that using at least four electrodes is reasonable as employing less than four causes a 

large decrease in classification accuracy. It is recommended that the quantity of sensor must be 

kept at least in the range of  4 to 6 to ensure that it does not compromise the detection 

performance. It has been demonstrated that using more than 8 sensors does not significantly 

improve classification performance [37], [197]. 

The subjects were  told to perform basic finger motions and manipulate all hand joint axes 

in accordance with the targets. The goal of this experiment was to explain static hand postures 

and identify the form synergy of the grasped items. These object gripping types were chosen 

as a form of "prioritisation" of grasps based on how frequently they are utilised in daily life 

[103],[198]; accordingly, sphere, tripod, and cylinder (prismatic) shapes were chosen. 

Appendix D represents the object specifications. 

 
Figure 3:1: The experimental setup shows EMG data acquisition and data gloves for capturing finger 

orientations and postures.  
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Because the targeted muscles are so close together, a thorough examination of their structure 

and activity, as well as accurate EMG sensor positioning, is required. Each finger manipulation 

and object grabbing was investigated independently in the experiment using Delsys sEMG 

sensors on the required muscles. As indicated in table 3-1, we placed our seven electrodes over 

the right forearm muscles. These muscles were chosen since they are primarily in charge of 

controlling the actions of the fingers and wrist. In the experiment, individual flexion and 

abduction of the thumb, as well as extension and flexion of the index finger, middle finger, 

ring, and little fingers were conducted, as shown in table 3-1. Individual finger categorization 

is proposed in order to differentiate unlearned combined actions and control prosthetic hand 

fingers naturally. 
Table 3:1: Description of Muscles and Joints Interested 

 

Muscles 
Examined Fingers and Joints 

Affected Fingers Flexed Joints Extended 
Joints 

Flexor Pollicis Longus  Thumb   

Extensor Policis Brevis  Thumb  MCP 

Extensor Policis Longus  Thumb  IP 

Extensor Indicis  Index finger  PIP, MCP 

Extensor Digitorum  Index, Middle, Ring, Pinky   MCP, PIP 

Flexor Digitorum 
Superficialis Index, Middle, Ring, Pinky PIP, MCP  

Flexor Digitorum  Profundus Index, Middle, Ring, Pinky DIP, PIP  

 
 

Table 3:2: Conducted Experiment and Subject Number 
 

Basic Finger Motions 
Number of sessions 5 
sEMG (FPL, EPL, EPB, EI, ED, FDS, FDP) 7 
Total number of movements 6 
Number of repetitions 3 

Hand Gesture 

Number of sessions 5 
sEMG (FPL, EPL, EPB, EI, ED, FDS, FDP) 
Total number of movements 

7 
3 

Number of repetitions 3 

 

3.2.5	Experiment	Composition	

The experiment setup was made up of four major components. The tests were designed to 

collect seven channels of sEMG signals from a subject's extrinsic muscles as they performed 
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simple finger movements and object grabbing. At the start of the individual finger 

manipulation, the initial component aims to determine the relevant signal composition for 

model training. EMG signals were collected from precisely selected sites on the user's forearm. 

The experiment was conducted in an indoor laboratory using a PC running Delsys 

EMGWorks Analysis software and DataGlove (VRML/Cosmo) software. The subjects 

repeated six-finger gestures three times as presented on the second computer screen for each 

trial. Five valid trials were obtained for each manipulation, yielding a total of 30 valid EMG 

trials for each participant. The participants were instructed to relax their muscles during the 

testing and were fully informed of the experiment outcomes. The participant was given the 

necessary time to become familiar with the trials. The trials were computed after DataGlove 

collected the finger's and hand's initial locations and confirmed the finger was in a natural 

posture. To track finger positions, a data glove and an EMG capture device were used to create 

a synchronised system. EMG data recording began when all sensors were linked and ended 

after the finger achieved the desired postures. The finger manipulation tests were aimed to 

collect data for ML training and validate the efficiency of varied electrode placements, variable 

arm postures, and muscle changes by different persons on healthy participants. After pre-

processing, the data from each trial were saved as training data. Figure 3.2 depicts six distinct 

finger motions used for data collecting. The finger motions were chosen based on their 

frequency of employment in daily living activities as derived in [86] and [199]. The experiment 

does not need to follow any specific sequence because the datasets for the ML model were 

randomised to avoid biased data.  

 
Figure 3:2: Different movement classes (individual finger) considered in this study. 
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The experiment aims to collect data from all finger motions, from flexion/extension through 

abduction/adduction, using forearm sEMG signals to create a dataset for pattern recognition. It 

has been reported that independent finger manipulation will significantly improve functionality 

and intuitiveness  [147]. The methodology is best suited for natural control because it represents 

data from single fingers rather than a wrist or elbow to control prostheses. These datasets allow 

the control of active prostheses with a high degree of freedom. Independent finger detection 

can also improve the precision of object grabbing as presented in [187], [198]. 

The second part of the trails is based on motion prediction, with the subjects being asked to 

construct the finger configuration required for object grabbing by applying forces to the fingers 

and measuring their amplitude. The object gripping trials were carried out to collect training 

and testing data for three different types of motions (see Figure 3.3) and were paused by resting 

time to minimise muscular fatigue issues. The data collection approach resembled finger 

manipulation activities. The individuals were instructed to grip three described objects with the 

right hand as naturally as possible. The items for the gripping trials were 3D printed using the 

standards outlined in [198]. The subjects were asked to determine initial posture, which they 

could use if they were to grasp and hold the objects. After the initial manipulation, the subjects 

were asked to apply force and trials were recorded, and fingers returned to their initial position. 

Since the aim of experiments is to record data and mimic the fingers' kinematic motion, subjects 

were asked to concentrate on performing full-motion rather than applying force. In total, three 

manipulations were performed in each experiment, with five repetitions in a total of 15 trials 

per subject. The items were chosen from the literature to cover the most often used hand 

movements in daily life. Each activity set lasted 10 seconds, and participants were given 

sufficient rest time. The subject's forearm was simply supported throughout the trials to prevent 

any movement. Figure 3.3 depicts the setup for the object gripping trial. The type of motion 

(here represent three objects) were decided based on the literature that indicates these three 

motions are frequently used in daily household and working condition [198], [200]. Although 

there are no standards for object selection, most of the literature followed certain motions 

representing main muscle activities (see table 3.2) derived from [201], [202]. 
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Figure 3:3: Presentation of three hand manipulations (objects grasping). Three objects are ball grasping 

(sphere), cylinder grasping, precision control pinch grasping, and hand open (relax) position. 

 

Considerable efforts have been made to reduce the effect of arm mobility by using new 

training protocols that take into account independent parameters. In this methodology,  a 

dynamic strategy for training a classifier with increased generalisation ability that incorporates 

different EMG changes in data collecting was taken. A total of three-arm postures were used 

in training methods, which affect elements such as upper-limb muscle tension and sEMG 

distribution.  The literature shows that a large portion of data has been collected from static 

arm-hand posture is presented in [176].  

The identical electrode array, finger, and hand grabbing actions were used in the third and 

fourth groups of experiments. In these trials,  subjects were asked to hold their arm in three 

different positions in order to assess the effects of arm orientation on EMG signal amplitude 

and motion detection performance. The experimental setups were identified from the literature 

[118], [119]. EMG data representing different arm positions were collected for each class of 

motion and used for pattern classification. In this the last stage of the experiments, the subjects 

were asked to sit on a chair and start with their upper limb relaxed vertically (figure 3.4(a), and 

then the subjects were asked to perform a series of finger motions in this position. For the 

second arm position, after having maintained their arm in the horizontal position, the subjects 

were asked to flex his arm from the elbow to bring the forearm in the vertical (up) position (as 

a
 

b 

c d 
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shown in figure 3.4(b)). The third group of the experiment was conducted while the subject’s 

arm was on the table in a horizontal position (figure 3.4(c)). In the forearm mobility 

experiments, the subjects were asked to relax their arm and flex/extend his finger to the 

maximum degree as they felt comfortable. 

 

      
Figure 3:4: Experimental setup showing the arm's positions to perform finger motions and objects grasping 
with targeted muscle investigation. (a) the arm on the horizontal table position, (b) arm upright, (c) arm up-

down (vertical). 

3.3	Data	Processing		

The EMG data were collected using the aforementioned experimental settings to identify 

muscle activation patterns and amplitude from all channels in order to categorise the label of 

each window. Because it is difficult to classify samples from raw data and overcome some 

limitations of raw data, raw sEMG signals for Quattro and Trigno electrodes were pre-

processed at 2 kHz before being used as a control command. Raw sEMG signals were band-

pass filtered and normalised in relation to the muscle contraction levels promised. To minimise 

noise and movement artefacts, a 4th order Butterworth band-pass filter in the frequency range 

of 20-450 Hz was used, as the major energy of the EMG signal is stored at this frequency. 

EMG data segmentation enhances prediction accuracy and control precision. Therefore data 

processing and windowing size must also be chosen carefully since it has a considerable impact 

on real-time control performance, as inconvenient windowing size causes motion execution to 

be delayed. 

 Larger windowing sizes have been recommended for high classification performance in 

several machine learning algorithms, such as SVM and LDA; nevertheless, this causes 

classifier decisions to be delayed and results in high prostheses rejection rates. Windowing 

sizes ranging from 50 to 300 ms have largely been documented in the literature[176] . 

According to studies[100], [187], the best results have been obtained with small incremental 

a b c 
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windowing sizes. In this study, two distinct window sizes were used to evaluate alternative 

windowing sizes. Chapter 5 contains a detailed explanation of the influence of widowing size. 

For comparison reasons, signals were firstly segmented at a windowing size of 125ms 

(window overlap: 0.0625 s). Because the intensity of sEMG signals varies from subject to 

subject, the level of the signals was adjusted using a variable gain amplifier. For performance 

comparison, a larger windowing size, 300 ms (with 150 ms overlap), was employed, and details 

are presented in chapter 5. Notably, the segment size must be greater than the processing and 

decision period in order to prevent the sliding window problem. Therefore, such a compromise 

in accuracy is essential to enable appropriate time for decision making while the new sample 

is gathered during continuous control. 

Electromyography signals are generally derived in the form of time-domain (TD), frequency 

domain (FD), and time-frequency domain (TFD) features. Time-domain features have most 

commonly employed as they are derived from various signal magnitudes in a specified period. 

On the other hand, frequency domain (FD) features to utilise the power spectrum for feature 

extraction have been used in [100], [102]. Thus, the studies based on the sEMG signal have 

proved that the best results can be achieved in the time domain features [117], [176], since the 

delay for TD computation is less than for other domains such as FD and AR. Furthermore, 

autoregressive (AR), time-domain autoregression (TD-AR), and wavelet transform (WT) has 

also been employed as feature extraction methods. A detailed review of feature extraction 

methods and their implementation is given in chapter 2. In this chapter, six features of raw 

signal in time domain were computed for each window: Root Mean Square (RMS), Mean 

Absolute Value (MAV), Integrated Absolute Value (IAV), Waveform Length (WL), Simple 

Square Integration (SSI), and Average Amplitude Change (AAC). In order to compare different 

denoising methods and to improve comprehension of EMG data,  two-periodic  TD features,  

kurtosis analysing (KA)[203] and peak activation level [204] were also used . Some of these 

features have already been used in some earlier works  [95], [199]. The type of feature 

extraction methods was chosen from the literature [112], [205] that highlight these processing 

methods are more practical for real-time control since they do not  require high computational 

power.  Figure 3.5 illustrates pre-processed sEMG data collected from the human counterpart 

(subject 1, male 26 years old, right handed) while the user exhibits sequences of inserted 

(flexion and extension) actions.The figure was created from one subject to illustrate the effect 

of feature extraction methods. The EMG signals were analysed in MATLAB using custom-

written code, and a mathematical explanation is provided in Appendix B. 
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Figure 3:5: Illustration of eight feature extraction methods for ring finger manipulation. 

Figures 3.6 and 3.7 (acquired from subject 1 during five trials for representation) illustrate the 

pre-processed and amplified EMG data for finger motion and object grasping trials. The 

divided sections depict the occurrence of motion throughout the course of 10 seconds per 

motion. 

 
 

Figure 3:6: The composition of the sEMG signal from an able-bodied subject while performing six individual 
finger motions. Each colour represents the RMS value of the seven channels used in the experiment. 

 
 
 

M
us

cl
es

 A
ct

iv
ity

 

Segments 



83 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3:7: The composition of sEMG signal from an able-bodied subject while performing three objects grasping 
Each colour represents the RMS value of seven-channel used in the experiment 

Training data points were normalised to obtain mean zero and standard deviation in each 

dimension or electrode. The data sets for each user was split into 70% training and 30% for 

testing sets. Consequently, feature representation is the value of each EMG signal (i.e., seven 

channels for six movements or three grasping) from each channel. As illustrated in figure 3.8, 

these feature vectors are provided as the input value of our classifier. 

 
Figure 3:8: The block diagram of proposed data processing. The process comprises four parts: EMG 

measurement, EMG signal processing, feature extraction, and data segmentation. 
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3.4	Electromyography	(EMG)	Data	
 

The muscles' data was collected for each of the three arm conditions with seven channels 

from each session. All channels were examined at the same time, and the data for each muscle 

was chosen using a mapping system that allocates a digit number to each muscle (representing 

electrode). This method was chosen for the examination of targeted muscles because each 

electrode position and targeted muscle are documented before each session (see figure 3.8) 

The primary goal of this chapter is to evaluate the methodology, namely electrode 

positioning, number of electodes, signal processing methods, and actually observing the 

sEMG for individual finger could identified for different arm positions. In the discussion, 

sEMG data from five subjects were analysed for assessment of muscle fatigue and subject 

influence on data set. Furthermore, because various subjects reflect different levels of muscle 

contraction, summarising the results of five participants in the same graph is difficult. For 

example, it was observed that for some subjects, the sEMG signals for EPL and ED muscle 

were significantly weak compared to other participants, however this does not affect the pattern 

recongition performance because pattern reconition is not rely on  the magnitude of sEMG 

signal rather the pattern in the signals. Therefore, the results for subject 1 were shown in figures 

to avoid misrepresentation, with the exception of the figures in the discussion that compare 

participant influence.  However, the figures represented for subject 1 are the average data from 

five trials.  In Chapter 4, the major comparisons between participants, processing methods, 

classification approach, and electrode number were presented. 

3.4.1	Objects	Grasping	Trials		

The data for this study were obtained with seven sensors on the forearm of five able-bodied 

subjects while they grasped three items, as illustrated in figure 3.9. The crosstalk signal would 

be significantly reduced with smaller electrodes and a shorter inter-electrode spacing. With the 

exception of movement artefacts such as wrist rotation caused by the same subject, same 

muscles, and various experimental approaches, the noise is steady. The muscle behaviours for 

grabbing three different objects were similar for each trial. The similarity is that a peak has 

occurred along with active muscles. However, the muscles’ combination of grasping ball and 

cylinder is more powerful than pinch grasping. Participants applied limited fingertip force 

because flexor digitorum profundus muscle is predominant in the first two grasping types. The 

variation of EMG amplitude during object grasping tasks was significantly smaller than finger 
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manipulation tasks. The reduction of EMG amplitude could be attributed to stability and 

control over the force required to hold the objects. 

 

 
 

Figure 3:9:  Electrode placement on the right forearm. The Quattro sEMG sensor pairs were distributed: over 
extensor pollicis Brevis muscle (CH1); over extensor digitorum muscle (CH2); over flexor digitorum profundus 

(CH3); and over flexor digitorum superficialis. 

It is suggested that there is a strong relationship between sEMG signals and force. While 

forces in muscles increases, so do the sEMG signals. This is because there is influence from 

other muscles, also referred to as cross-talk [206]. This impact may be an issue in 

biomechanical research or rehabilitation studies since it might mislead therapy and create a 

misunderstanding of diagnosis. However, in the case of pattern recognition, this may not result 

in a misleading conclusion. However, electrodes must be placed above specific muscles in 

order to take exact measurements and evaluate muscle function in relation to identical 

activities. 

Throughout the trials, flexor muscles were seen to be more active for all trials, and this was 

owing to the anatomical nature and accessibility of the muscles under consideration. The 

second peak was noticed following the first peak because the extensor digitorum (ED) muscles 

contracted when extending the fingers while the flexor muscles relaxed (as seen in figure 3.10). 

Mini Quattro Delsys Trigno 
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Figure 3:10: Flexor and extensor muscles composition (MAV value) during pinch grasping trials while the 

participant’s arm is in horizontal positions. 

During the trial, flexor digitorum profundus (FDP) and flexor digitorum superficial (FDS) 

muscles were predominantly active during the initiation and maintaining the PIP and DIP joint 

functions. Maximum activation occurred around full force grasping. During the pinch grasping, 

the extensor indices activation was dissimilar in ball grasping or cylindrical grasping trials. 

This was with the exception of large activation of the number of fingers and muscles. The 

extensive activation during object contacting and the second peak after releasing the grasping 

suggested that the participant's muscles are relaxed in the initial phase of movements. Notable, 

muscle activation time for the extension is significantly less than flexion activation time; this 

is because the subject applied force around three seconds. 

When the subject hand is in a rest position, there is a force balance between intrinsic and 

extrinsic muscles. As suggested from studies [207], [208], we know extrinsic muscles are 

responsible for forceful grasping, flexion, and extension of the MCP, DIP, and PIP joints; 

therefore, when there is an intention of nerve, the balance is lost and force from extrinsic 

muscles are predominant. Carpi muscles are in charge of wrist extension and were not 

examined during the trial as we maintain minimum action in wrist rotation. For the object 

grasping in almost all tests, the pollicis muscles are more active as they apply force at the joint 

for abduction and extension of the thumb. Figure 3.11-3.13 demonstrates the right arm's muscle 

compositions during three objects grasping: ball grasping, cylinder grasping, and pinch 

grasping. 
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Figure 3:11: Muscles composition during ball grasping trials. The figure represents the MAV value of flexor 
digitorum profundus (FDP) and flexor digitorum superficialis (FDS) while the subjec’s arm is horizontal. 

 
Figure 3:12: Muscles composition during cylinder grasping trials. The figure represents the MAV value of flexor 
digitorum profundus (FDP) and flexor digitorum superficialis (FDS) while the subject’s arm is horizontal. 
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Figure 3:13: Muscles composition during pinch grasping trials. The figure represents the RMS value of flexor 
digitorum profundus (FDP) and flexor digitorum superficialis (FDS) while the subject’s arm is horizontal. 

 

Three scenarios were developed to test whether changes in elbow angle (forearm position) 

elicited EMG amplitude during object gripping and flexion and extension of individual finger 

motions. First, we looked at hand muscle EMG activity when the participant held the presented 

items (ball, cylinder, and pinch) in three distinct forearm postures (as shown in figure 3.4). We 

completed the trials on the same subject to guarantee that any EMG signal variations were 

caused by arm position and not by separate individuals. We asked the participant to repeat the 

identical pressures and finger trajectories as much as feasible. 

Figures 3.14-3.16 demonstrate the EMG signals of the flexor digitorum profundus (FDP), 

flexor digitorum superficialis (FDS), and flexor pollicis longus (FPL) alter considerably with 

different arm postures (! < 0.001 ). This suggests that the arm posture of able-bodied 

participant influence muscle distribution. Some muscles, such as the brachioradialis, are placed 

in the forearm's posterior region and allow wrist flexion and extension. This research does not 

look at the biceps and triceps muscles in charge of forearm flexion and extension, respectively, 

from the shoulder to the elbow. Although physiological variations in the upper extremities may 

occur from subject to subject, resulting in differing muscle group compositions, EMG data 

demonstrated strong reproducibility across movement cycles for all trials and motions. Figure 

3.14-3.16 depicts the change in muscle composition throughout three distinct arm positions: 

horizontal on the table, vertically upright, and vertically down. 
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Figure 3:14: Flexor and extensor muscles composition during ball grasping while subject’s arm was horizontal 
on the table. Data represents the MAV value of flexor pollicis longus (FPL), flexor digitorum superficialis (FDS) 

and flexor digitorum profundus (FDP). 

 
Figure 3:15: Flexor and extensor muscles composition during object grasping while subject’s arm was vertically 
up position. Data represents the MAV value of flexor pollicis longus (FPL), flexor digitorum superficialis (FDS), 

and flexor digitorum profundus (FDP). 
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Figure 3:16: Flexor and extensor muscles composition during object grasping while subject’s arm was vertically 

down position. Data represents the MAV value of flexor pollicis longus (FPL), flexor digitorum superficialis 
(FPS), and flexor digitorum profundus (FDP). 

3.4.2	Finger	Manipulation	Trials		

       The trials for seven sensors followed a similar pattern to the object gripping studies. 

Because the participants were instructed not to apply force to the fingertips, the muscle 

activation amplitude for moving individual fingers is less intense than that for grabbing the 

items. When compared to object grabbing, the variance in EMG amplitude for finger 

manipulation was substantial. The same strategy was taken in all cases; the subjects were asked 

not to rotate their wrist, as it would be expected in real  amputation conditions. Extensor 

muscles were more engaged during phases than object gripping trials (see Figure 3.17). The 

highest level of activation occurred near the end of finger flexion. Peak activation of the 

extensor pollicis longus (EPL) and extensor digitorum (ED) occurred around extension 

beginning, allowing fingers to be extended. 
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Figure 3:17: Raw EMG signal composition during ring finger flexion and extension while subject’s arm was in the 
table (horizontal position). Data represents extensor digitorum (ED) and extensor pollicis longus  (EPL). 

 
Figure 3:18: Representation of MAV values of ring finger flexion and extension. 

As shown in the figures, it was impossible to investigate the beginning and sequencing of 

finger digits. Furthermore, the graphic does not indicate which finger joint flexion occurs first. 

Figure 3.19 demonstrates that when flexion is commenced, the extrinsic muscle group plays a 

significant part in executing the flexion of the MCP, DIP, and PIP joints for a short period of 

time, whereas the extensor muscle remains tense for a longer period. The statistical data show 

that the average EMG amplitude is larger for ring movements than for thumb flexion. 
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According to Figure 3.20, the extensor pollicis longus (EPL) muscle most influences finger 

EMG amplitude. The research also shows that there is no significant difference in identification 

ability amongst extrinsic muscles (! = 0.7390); however, a significant difference between 

trials was observed (! =0.0001). 

 
Figure 3:19: The sEMG value representation of flexor and extensor muscles during ring manipulation. RMS 

results for Extensor Digitorum (ED) and Flexor Digitorum Superficialis (FDS) while the subject’s arm was in the 
horizontal position. 

 
Figure 3:20: Extensor and flexor muscle behaviours during thumb abduction while subject’s arm was horizontal 

on the table. Data represent the RMS value of sEMG signals. 
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The same approach was used to investigate the influence of arm postures on EMG levels 

and motion identification performance as it did for object grabbing. The same scenarios were 

tested again to see if changes in elbow angle affected the amplitude of EMG activity during 

finger flexion and extension. We examined the EMG activity of hand muscles while the 

participants moved individual fingers in various forearm postures. We completed the trials on 

the same subject to guarantee that any EMG signal variations were caused by arm position and 

not by separate individuals. We requested the participants to repeat the identical pressures and 

finger trajectories as much as possible. Flexor muscle activations show that EMG muscle 

activation levels do not change considerably with arm position (as seen in figure 3.21-3.23). 

During single finger manipulation trials, the average EMG amplitude of flexor muscles in the 

horizontal position was found to be lower than in the vertical and downward positions. 

 
Figure 3:21: The demonstration of MAV values of flexor pollicis longus (FPL), flexor digitorum superficialis 

(FDS), and flexor digitorum profundus (FDP)  while ring finger flexion in horizontal arm position. 
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Figure 3:22: The demonstration of MAV values of flexor pollicis longus (FPL), flexor digitorum superficialis 

(FDS), and flexor digitorum profundus  (FDP) while ring finger flexion in arm upright position. 

 
Figure 3:23: The demonstration of MAV values of flexor pollicis longus (FPL), flexor digitorum superficialis (FDS) 

and flexor digitorum profundus (FDP) while ring finger flexion in arm vertical down position. 

 

Almost the same muscle patterns were observed in the examination of extensor muscles 

during varied arm postures. When the participant's arms were in a vertical posture, the 

activation of the extensor pollicis longus was greater than that of the extensor digitorum. The 

comparison of figures demonstrates that in the observed action, the muscle fibres had a biphasic 

form with the identical electrode setup. The phases were reflected in the direction of muscular 



95 
 

membrane alterations, as stated in the literature. Muscle amplitude is influenced by the 

diameter of the muscle fibres, the distance between active muscles, and the acquisition point. 

Figures 3.24-3.26 show the composition of extensor muscles during ring finger flexion. 

 
Figure 3:24: The demonstration of RMS values of extensor digitorum (ED) and extensor pollicis longus (EPL) 

while subject’s arm was in the horizontal position. 

 
Figure 3:25: The demonstration of RMS values of extensor digitorum (ED) and extensor pollicis longus (EPL) 

while subject’s arm was in the upright position. 



96 
 

 
Figure 3:26: The demonstration of RMS values of extensor digitorum (ED) and extensor pollicis longus (EPL 

while subject’s arm was in the vertical down position. 

3.5	Discussion	

3.5.1	Influence	of	Arm	Mobility		

Several studies on able-bodied and amputee people have been conducted to investigate the 

effects of arm trajectory and, in particular, user mobility on classification performance [209], 

[210]. According to studies, arm position variation considerably impacts classification 

performance in offline and offline tests. Various classification approaches have been offered 

to remove such influences [4],[211]. The user's arm position would unavoidably change while 

manipulating the number of upper limb motions. Thus, if the user performs an action that 

differs from the arm posture used for model training, classification performance suffers 

significantly because the pattern changes. Among other factors, arm position variation has a 

significant impact on intuitiveness and performance degradation in real-time control. 

Therefore, it is ultimately one of the major causes for the high rejection rate of EMG control-

based prosthesis. Some studies recommended alternative training protocols, such as 

multilocation setups in which the participants perform a trajectory for collecting data to train 

the ML model to reduce the effects of arm position volatility. However, it is uncertain if it has 

the same impact on amputees because they have almost lost a big section of their residual limb; 

most arm muscles are inaccessible. 
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Because it has been argued that dynamic hand motions are more reflective of real-time case 

scenarios, the subjects were instructed to execute five repetitions of multiple finger 

manipulation in three distinct arm postures to examine the impact of arm mobility on 

classification performance (see Figure 3.4). Other research [166], [212] have demonstrated a 

comparable experimental protocols.  

The effect of arm position on classification performance was calculated after removing the 

mean baseline EMG and then normalising the EMG amplitude values by respective hand 

motions. Classifiers were trained using time-domain features, as previously reported. The final 

assessment (see Figure 3.27) demonstrates that the classification performance for RMS with 

SVM is 87.4 % when the subject's arm is vertical downwards and 81.2 % when it is horizontal, 

with a 6.2 % difference. The average classification for the ANN using RMS was 85.8 % when 

the subject's arm was vertical downwards and 87.2 % when the subject's arm was upright; the 

difference is 1.4 %. These findings show that, whereas arm position dramatically modifies 

muscle shape and EMG amplitude value, it has no significant effect on certain classifiers' 

performance such as ANN but significant effect on LDA and k-NN in three distinct arm 

positions (! = 0.3692).  

 
Figure 3:27: The classification performance of four classifiers and two arm positions for objects grasping for 

RMS and MAV features in 125ms windowing size. (DWN) represents arm vertically in down positions and (UP) 
in the upright position (HRZ) horizontal   

The evaluation for finger manipulations reveals (see Figure 3.28) that RMS classification 

performance with SVM was 81.6 % while the subject's arm was upright and 80.25 % when it 

was vertical down, a 1.35 % difference. The average classification in the ANN  with MAV was 

79.8 % when the subject's arm was upright and 79.4 % when the subject's arm was vertical 

down. These findings suggest that, with the suggested electrode orientation, arm position has 
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no tangible effect on classification performance for some classifiers for finger manipulation. 

This could be due to the fact that there is no fingertip force for each individual finger, hence it 

does not greatly alter EMG patterns. 

 
Figure 3:28: The classification performance of four classifiers and two arm positions for finger manipulation for  

RMS and MAV in 125ms windowing size . (DWN) represents arm vertically in down positions and (UP) in the 
upright position (HRZ) in horizontal position.  

 

Yang et al. [209] have investigated the effects of arm position change on amputees using 

traditional single positioning and multilocation configurations. They have claimed that using 

multilocation to improve motion completion rate considerably reduce the influence of arm 

position changes (almost 8%). Gu et al.  [116] have reported that, the model trained with arm 

mibility  protocol significantly increase  pattern recognition performance, it has been 

discovered that the traditional (single position) arm position has a motion completion rate of 

64.6 %, which is 8.7 % lower than the multilocation arm position for real-time control. 

Similar research has been conducted in [212] and [213]. In these studies, a dynamic motion 

collection procedure has been followed for the able-bodied participants, and the classification 

accuracy for the k-Nearest neighbour classifier was reported as 68-72%. Therefore, the subject 

mobility has been reported to have significant effects, about 8.98% degradation on motion 

classification performance. 
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3.5.2	Muscle	Fatigue	and	Influence	of	Individuals	

Several studies have demonstrated good accuracy for multiclass motion detection in 

electromyographic control-based prostheses [86],[112],[187]. Even though the offered 

approaches achieved high-performance levels of more than 90%, prosthesis users are still 

unable to sustain continuous motion detection in real-time and experienced long-term usability 

concerns.  

The effect of experiment repetition that indicates the muscle fatigue influence is displayed 

in figure 3.29. There were statistically significant differences between trials based on RMS 

feature classification error change (2.35-6.09%). The comparison between each repetition 

shows some differences, but that does not particularly prove muscle fatigue effects. The 

experiment did not show a further decrease in the last experiments; on the contrary, the 

classification error decreased. This improvement in classification performance may be 

attributed to the fact that the participant performed the series of experiments several times and 

trained his muscles, leading to muscle contraction level adaptation. However, because of the 

small number of people employed in the trials, it is difficult to generalise the results. The 

statistical differences were observed for different features and classifiers and presented in 

Appendix C 

 
Figure 3:29: Classification performance of SVM with six features. The movement repetition has different 

classification accuracy. 

The results indicate that (see Figure 3.30) there was no correlation between subjects and 

their pattern recognition performance (! < 0.0001). This significant variation implies that, 

while the signals may give some consistency across multiple individuals, they may also 

generate some unwanted overshoot at different finger locations for different participants. This 
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might also imply that the levels of EMG signals alter over time, possibly as a result of electrode 

shifting. As a result, it is undesirable for practical application of the myoelectrical control 

system. 

 
Figure 3:30: Summary result for offline analyses in the able-bodied subjects. The figure illustrates subjects have 

significant classification performance differences. 

Most studies in the literature collected data on a single day or over a short time, causing 

sEMG data collected in laboratories to differ from real-time applications. The long-term effects 

of EMG signals have been reported in a few studies [149], [211]. Phinyomark et al. [100] have 

collected data for 21 days with identical motion sequences and with the same subject to 

investigate the long-term usage influence on EMG signal. They have also researched the 

influence of various conditions, such as after some physical activities. In this study, it has been 

shown that the classification accuracy is not significantly different  (~2.45%). This might be 

owing to subject-to-subject variance in muscle contraction level. 

In order to provide a good comparison of prosthetic hand usability in real-time and evaluate 

convenient acquisition setup, Pizzolato et al. [112] have conducted a  series of experiments and 

highlighted that fatigue and subject adaptation do not significantly influence muscular 

response. However, he acknowledges that there are significant variations with respect to 

movements and subjects since subjects present different muscular characteristics. Muller et al. 

[214] have used BCI  with ten EEG electrodes to evaluate the power decrease in EMG signals. 

They have conducted a test on an amputee subject for three days, and their results showed that 

there is power degradation on some frequency almost 4%. Hwang et al. [215] have conducted 

a similar experiment with able-bodied subjects. The outcome of their research indicated muscle 
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fatigue in long-term use; however, they claimed this did not change classification performance 

significantly. 

 

3.6	Summary		

This chapter discusses multifunctional upper limb prostheses based on pattern recognition 

and their manipulation using sEMG signals. A database containing kinematic and sEMG data 

from the forearm of 5 able-bodied participants while performing six fingers and three object 

grasping was created for ML model training.   The experimental protocol and analysing 

techniques were derived from the existing literature. A comparative approach was taken to 

analayse and discuss the compatibility of methodology with some publicly available datasets 

such as [86],[112].   

The data collection is based on seven sEMG Delsys Trigno electrodes to collect signals for 

different arm positions in order to extend prostheses functionality. On the same subjects and 

motions, the muscle contraction levels for targeted electrode allocations were acquired to 

compare the effectiveness of the electrode allocation approaches using consistent feature 

engineering and data processing. The data acquisition setup both for targeted and untargeted 

approaches produced comparable results to early literature [22], [100], [187],[216] . Given the 

fact that these experiments do not include data from hand amputees, it has been demonstrated 

that sEMG collected from able-bodied subjects can also be used as surrogate datasets from 

amputees [191]. 

Individual finger classification was the focus of the experiments. The investigation results 

revealed that the combined feature extraction and machine learning methods can achieve higher 

than 84% accuracy, with only 6% variation between participants. The variation between 

subjects can be interpreted as additional clinical variables that may have influenced the 

participant's ability to induce muscle contraction, although the procedures were equal. The 

results show that there are no significant statistical differences when the number of movement 

repeats is considered for the same subject ( ! = 0.5367) , though there are significant 

differences when various movements and participants are included (!  =0.0044). This is 

reasonable since muscles change when participants change, resulting in varying muscular force 

and, thus, alters sEMG signal amplitude. 

This chapter also examined the performance of two distinct windowing methods in offline 

classification accuracy on the collected training datasets. The average accuracy was (87-89%) 

for 125 ms windowing length and (89-92%) for 300 ms windowing length, which is comparable 
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to some classification accuracy reported by [81], [84]. In trials, the variations between 

experiment repeats were 4.5 %, but some significant changes occurred, notably in the WL and 

ACC feature extraction approaches. Nonetheless, the effect appears to be substantial only in a 

few classification methods, including LDA and k-NN.   

The goal of this chapter is to demonstrate the disparities and lack of experimental standards 

in the literature and provide and validate a sEMG database by independent finger signal 

categorization using popular classifiers. The database generated reliable results, while effective 

classifiers reached or surpassed similar research, achieving average accuracy greater than 84%, 

whereas earlier publicly available databases gained 79.77% and 69.83% for Ninapro DB1 and 

DB2, respectively. 

Although the approach and datasets are comparable to the literature, categorisation 

inconsistencies can occur due to a variety of circumstances. To begin with, research has shown 

that the age and gender of the individuals might have a considerable impact on sEMG 

amplitude. Second, the number of classes and the sampling rate affect the results presented in 

reference studies. Finally, the number of electrodes and their location on the forearm differ 

between studies. 
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Chapter	4 Comparison	of	Classification	Strategies	and						
Feature	Extraction	Methods	for	Prosthetic	Control	

 

4.1	Introduction		

Several signal types were investigated in the preceding chapter to develop more reliable 

sEMG signal datasets for real-time prosthesis control. In order to maintain a more consistent 

pattern recognition system, this chapter discusses and tests the developed sEMG database 

utilising a range of classifiers, feature extraction methods, windowing sizes, and electrode 

allocation procedures. Besides that, this chapter conducts extensive research to assess the real-

life test conditions, such as movement repetitions, signal classification accuracy rate, and ML 

parameters tuning, to eliminate the effect of these factors and improve the findings. 

In recent decades, studies have focused on developing sEMG based control method to 

differentiate hand and finger movements as accurately as possible. Different numbers of 

electrodes have been paired with muscles to remap a variety of hand and finger motions. In a 

simple approach, two electrodes of the EMG signal were analysed for four elbow and forearm 

motions in [217]. In another study, Huang et al. [218] collected sEMG signals for four pairs of 

surface electrodes to determine seven hand movements. Other studies have researched hand 

and arm movements predictions with a large number of surface electrodes, such as eight 

electrodes [219] or even more with 32 electrodes [147]. It is suggested that more muscle 

information increases prediction accuracy in offline and online trials. However, due to limited 

skin surface area and the finite number of sensors, it is not feasible to characterise 21 (DoFs) 

under the control of 29 superficial arm muscles. Therefore, it is suggested that determining new 

feature extractions with different classification methods could make significant differences in 

developing prostheses' performance.    

Many classification approaches have been presented for motion classification, and as a 

result, good accuracy results for various features and subjects have been achieved. Using our 

data sets from various scenarios, we utilised five classification approaches for eight feature 

extraction methods. Eight time-domain features with two windowing lengths (125 ms and 300 

ms with half overlap) were evaluated to investigate the influence of feature sets on the 

classification of human hand gestures. Larger windowing sizes have been recommended for 

high classification performance in several machine learning algorithms, such as SVM and 
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LDA; nevertheless, this causes classifier decisions to be delayed and results in high prostheses 

rejection rates. Windowing sizes ranging from 50 to 300 ms have largely been documented in 

the literature [176] . According to studies[100], [187], the best results have been obtained with 

small incremental windowing sizes. The effect of windowing size on classification accuracy is 

presented in [216]. The sEMG data were acquired from 5 able-bodied volunteers while they 

performed six finger and three hand motions with varying arm orientations (as presented in 

chapter 3). 

Although several features and classification algorithms have shown strong classification 

performance, not all methods are computationally suitable for real-time prosthesis control in 

clinical application. Recent enhanced approaches enable machine learning systems to rapidly 

execute user intented motion. However, they lack the precision and accuracy required to 

perform planned motions on a continual basis. Some experiments in the literature have used 

unrealistic settings such as sensor number, electrode location, windowing size, and learning 

parameters, making it impossible to integrate smooth hand motions in an acceptable 

computation time. The classification performance eight  time-domain features  for two 

sampling rates was examined using five prominent machine learning methods with k-folds 

(k=10) cross-validation for the first goal of this study. In this comparative evaluation, the 

learning algorithms (SVM, LDA, k-NN, ANN, and LR) were trained and assessed for practical 

considerations and real-time application utilising sEMG features from all defined 

circumstances. In addition, we showed the efficacy of classifier performances and derived 

features in terms of amputation level and different number of subjects. This chapter discusses 

the implications of windowing length, electrode placement, electrode number, and learning 

parameter on classification accuracy, as well as their possible influences on real-time control.  

4.2	Statistical	Analysis	of	Machine	Learning	Methods	

With eight feature methods and five popular classification methods described in section 2.3 

and section 3.2, representing a total of 40 combinations and introduced functions, we have 

achieved successful results regarding motion detection. Some of these features have already 

been used in some earlier works [22], [95]. The type of feature extraction methods was chosen 

from the literature [112], [205] that highlight these processing methods are more practical for 

real-time control since they do not  require high computational power.  This study demonstrated 

that six independent finger movements can be differentiated across different experiment 

sessions and features extraction methods. It presents the accuracy differences between different 

electrode placements, such as targeted surface and untargeted surface electrode placement. The 



105 
 

findings are expressed in terms of accurately classified finger motions. The findings revealed 

the difficulty in identifying separate finger activities caused by the anatomical anatomy of the 

human arm muscular system. The resutls revealed a disparity between real-time and offline 

control in the literature.  

According to limited study on individual finger motion detection, with some differences 

from earlier literature, above 80% accuracy with same data sampling frequency and 

methodology is suitable for real-time control of  multifunctional prostheses and movement 

recognition [151]. The number of classes, the length of windows, sEMG feature extraction 

methods, machine learning classifiers, and the number of subject and electrode placement 

approaches all influence classification accuracy. Variable combinations were investigated, and 

the impacts of variables were statistically presented in this chapter to develop intuitive 

prosthetic control. 

All statistical data were generated using statistical and Machine Learning Toolbox and 

functions in MATLAB 2017a (MathWorks, Natick, USA). All statistics were generated using 

the functions that were provided in toolbox. The effects of subjects and different trials were 

analysed using a two-way analysis of variance (ANOVA) with repeated experiments on each 

data set. The least square difference (LSD) multiple comparisons were used to examine 

differences across variants.  Statistically significant differences (!<0.05) across models and 

motions were denoted by a ‘*’, indicating that the average accuracy obtained from different 

movements and methodologies differs considerably.  

4.3	Feature	Selection	

With the experimental setup described in Chapter 3, EMG datasets were collected to identify 

the activation pattern and amplitude of muscles from all channels in order to categorise each 

window. Because it is difficult to classify samples from raw data and to overcome various 

constraints of raw data, and prevent misclassification, we pre-processed raw EMG signals as 

described in Chapter 3 section 3.3. Appendix E has a comprehensive mathematical explanation 

as well as custom-written MATLAB scripts. 

4.4	EMG	Based	Motion	Prediction	Algorithms	

To control prostheses, the information extracted from EMG signals is fed into classifiers, 

which map a variety of patterns. Thus, classifiers and their parameters must be carefully chosen 

in order to discriminate the introduced features with high accuracy. Following the acquisition 

of the ideal parameters and kernels, the trained model is utilised to create a control command 
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for prosthesis in real-time. A range of techniques, varying from deep learning to linear 

classifiers, have been employed to classify sEMG data. The next subsections provide a 

complete evaluation of parameters as well as the efficacy of classifiers on pattern recognition. 

4.4.1	Approach	1	(Linear	Discriminant	Analysis)	

The prediction accuracy, complexity, and computing cost of classifiers are all related and 

considerably effective in real-time control. As a result, the choice of classification technique 

should also be based on computing cost rather than only classification accuracy, especially in 

embedded real-time control. In this study, linear and non-linear classifiers were compared in 

order to give valuable insight into the selection of relevant machine learning approaches for 

pattern classification. 

Linear Discriminant Analysis (LDA) is a supervised linear classification approach that has 

been widely used to classify biological data. The singular value decomposition "svd" was 

employed as a solution in this investigation since it outperforms both in classification and has 

benefits on big feature sizes. As discussed in section 2.4.2, this approach has also been applied 

in several studies for online control of prostheses. LDA is a efficient method for dealing with 

multiclass supervised classification problems [98]. The optimal recognition rate obtained for 

this approach for individual fingers and hand gestures is shown below. 

The LDA classifier was implemented using eight time-domain features in the first portion 

of the preliminary analysis, with initial data sets divided 70 % training 30% testing with k-fold 

(k=10) cross-validation. The feature samples were randomly shuffled until a proportional class 

number is achieved. F1 scores were used to evaluate the performance of each finger class, 

whereas accuracy metrics were used to evaluate the performance of each feature. Figure 4.1 

depicts LDA's performance for six features of targeted muscle electrode placement. Due to 

representation concerns, the findings of two periodic features (kurtosis analysis and peak 

activation level) were not included in this main chapter; however, more information is provided 

in appendix C. As shown in Figure 4.1, MAV performed best with a mean accuracy of (84 

±3.8) %, whereas SSI performed worst with a mean accuracy of (67±8) %. The two-way 

ANOVAs test for the three key features RMS, MAV, and IAV indicated no statistically 

significant differences ( !  =0.7643). This is most likely because the mathematical 

differentiation of these features is comparable. There was a significant difference across trials 

(! =0.0044) and the other features such as SSI, WL, and AAC (! =0.0221). 



107 
 

 
Figure 4:1: Offline classification accuracy of six features for targeted (TR) muscles. 

 

The F1Score of each finger for each targeted muscle is shown in Figure 4.2. Individual 

finger research yielded the best classification performance for ring finger flexion, with an 

average (90 ± 5) % identification, and the worst classification performance for middle finger 

flexion, with an average  (72 ±6) percent recognition. Except for the SSI feature, there was a 

statistically significant categorization difference between ring flexion and middle finger flexion 

(!<0.0001). These findings are consistent with the anatomical nature of the human arm 

muscular system, as described in Chapter 3. 

 
Figure 4:2: Offline prediction performance of six individual fingers motion in targeted (TR) muscle trials 

 

The same parameters with the same windowing size were used to characterise the effects of 

introducing untargeted muscle electrode implantation. Figure 4.3 shows the accuracy of six 

features for seven electrodes placed around the arm with the untargeted muscle condition. 

MAV had the best classification performance (87 ±5) %, with no significant statistical 
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difference across features (! = 0.97); nevertheless, the ANOVA test reveals a significant 

variation between each trials (! = 0.0025). 

 
Figure 4:3: The classification accuracy of six features for untargeted (UT) muscles  

It was observed that there are no statistically significant differences between six finger 

movements(! > 0.7684) for three main features. Similar to targeted muscle investigation, SSI, 

WL, and AAC features showed slightly lower performance. The examination of the test results 

and figure 4.4 show that features have similar behaviour while the mean F1Score varies from 

95% for ring flexion to 84% for index finger flexion.  

 
Figure 4:4: Offline prediction performance of six individual fingers motion for untargeted (UT) muscles.  

 
Figure 4.5 shows that the two factors, two levels (targeted/untargeted), and repeated 

measurements discovered a statistically significant difference between targeted and untargeted 

electrode placement. The results appear to show that the best performance for the UT strategy 

over the TR condition is saturated by the performance of the targeted (TR) and untargeted (UT) 

schemes. When figures 4.1 and 4.3 are compared, statistics reveal that using untargeted muscles 
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improves classification accuracy and delivers improved classification performance by an 

average of 5% (∼83 % to ∼88 %). 

 

 
Figure 4:5: Classification accuracy obtained by different electrode placement for TR  (targeted) and UT 

(untargeted): The figures represent (a) (LDA+RMS); (b) (LDA+MAV); (c) (LDA+IAV). 

 

Performance results for recorded data with a windowing size of 300 ms are also included in 

this section. Despite the good performance of the 125 ms windowing size, it is worthwhile to 

experiment with different windowing sizes and choose the appropriate real-time control 

method. The size of the windowing has a considerable influence on the prediction of individual 

finger motions, according to findings in this study. The pre-processed data sets are fed into 

LDA in the prediction tasks. Offline accuracy for TR increases by 3% (from 83 to 86%) for 

RMS (see Figure 4.6). Similarly, the performance of UT for MAV increased by 4%, from 87 

to 91 percent (see Figure 4.7). However, the consequences of such advancements must yet be 

examined clinically in order to completely determine their relevance. 
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Figure 4:6: Feature extraction performance for targeted (TR) muscles in 300 ms windowing size. 

 
Figure 4:7: Feature extraction performance for untargeted (UT) muscles in 300 ms windowing size. 

The results of Linear Discriminant Analysis suggest that this model's capacity to recognise 

the relationship between EMG data and finger patterns for prosthesis control is satisfactory. It 

also shows that the RMS and MAV features outperform other EMG features (see Figures 4.6 

and 4.7). There is, however, a significant difference between six finger motion detection, which 

may be insufficient for real-time applications on users. Furthermore, it appears that the higher 

performance provided by nonlinear SVM kernels and ANN is required to attain acceptable 

performance for non-stationary EMG signals. 

Figures 4.3 and 4.7 demonstrate the averaged classification accuracies obtained with LDA 

throughout five tests with five able-bodied people; these results are close to early studies 

presented in [95], [100]. Similarly Bellingegni [99], have achieved 91.9% using six ottobock 

electrodes with FT features.  Mayor et al. [199], have achieved far superior signal 

classification; however, our results present a more realistic scenario because the related paper 

used mean amplitude value and FD as input features with 400 ms windowing size. According 
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to Daley et al. [105], the able-bodied subject group have achieved a higher accuracy rate by 

(95%). The higher accuracy observed for the subject group could be attributed to a higher 

number of sensors and more sophisticated electrodes, which may have contributed to the 

acquisition of more representative sEMG signals. The corresponding accuracies achieved in 

[97] and [212] were 72% and 81.6%, respectively. Although the model accuracy is a fair 

comparison, the model parameters and feature sets are valuable information for model 

employment. Thus, this study decided to employ more straightforward features and windowing 

sizes to avoid overload signal processing, which causes a significant problem in real-time 

control. 

4.3.2	Approach	2	(Support	Vector	Machines)	

Different combinations of eight feature extraction methods and two electrode placement 

approaches with varying arm positions were tested by employing the support vector machine 

(SVM). SVMs are an essential feature in this research for minimising user impacts (training 

for new instances) and adapting the system to unknown new surroundings and new users 

because they exhibit somewhat superior performance. The  SVM model with efficient 

coefficient C and kernel was achieved with grid search method. The grid search have identified 

RBF kernel to determine high accuracy for non-linear dataset, which is specific feature of 

sEMG signals. Based on the previously described feature extraction settings, other parameters 

(such as gamma and C) were selected by prior knowledge and user experiences after trials. The 

subsets were randomly shuffled until an optimal proportionate class accuracy was achieved.  

As previously stated in section 2.4.3, the SVM approach was employed with Keras in Python 

3.5 by utilising open source libraries. The developed platform enables users to configure 

various regularisation settings and parameters. 

This learning approach shown to be robust across the trials and could be employed 

independently from subjects and sessions. Upon these advantages, the technique is ideal for 

controlling dexterous prostheses with a high number of active degrees of freedom.   In this 

section, the potential use of SVM and its parameters with different feature extraction methods 

were evaluated and presented. The figures demonstrate the results of the SVM classifier with 

six features; because the remaining two characteristics are not practical techniques for 

biosignal, they were provided in Appendix C for presentation purposes. The proportion of 

successful categorization between six groups for targeted and untargeted muscle research is 

shown in statistics for each feature and finger movement. For each activity, the performance 
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metric were calculated independently. The ultimate accuracy provided in offline testing is the 

mean of the accuracies of five different subjects from five trials. 

In terms of recognition performance, statistics show that the IAV feature has the highest 

rate, with an average accuracy of (91±2.3) %, while the SSI feature has the lowest rate, with 

an average accuracy of (84±7) %. RMS and MAV characteristics are shown to have the second 

and third highest recognition accuracy, respectively. The two-way ANOVAs revealed no 

significant differences between the three main features (! = 0.8312); their differences (2.53 

%) were nearly identical because the mathematical calculations were similar, but there were 

significant statistical differences between trials (! = 0.0266) and remaining features (! =

0.053). Figure 4.8 depicts the experimental findings of offline performance. 

 
Figure 4:8: The classification accuracy of six time-domain features in 125 ms windowing size for targeted 

(TR) muscles. 

Individual finger analysis (see Figure 4.9) found that ring finger flexion provides the best 

classification results, with a (95± 3.5) %, whereas pinkie finger flexion outperforms thumb and 

index flexion (94±2.1). However, the lowest performance was reported in middle finger flexion 

with (85±4.9) % detection for IAV. These results suggest that the FDS muscle mostly facilitates 

finger motions while moderately inhibiting them during thumb abduction and flexion. 
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Figure 4:9: Offline prediction accuracy of six individual fingers for targeted (TR) muscles in 125 ms 
windowing size.  

The average accuracy for seven electrodes placed around the arm for individual finger 

recognition is shown in Figure 4.10. RMS and MAV features  were marginally better than IAV 

in terms of performance among the eight features (89 ±5% vs. 88±7%). The SVM classifier's 

recognition accuracy rates reduce to a bare minimum (87 ±5) while using the WL feature. For 

untargeted muscles, there were no statistical changes across key features (! = 0.8362 ),  

however, statistical differences exist between trials (! = 0.0001). Furthermore, there are no 

significant changes among six finger motions (! = 0.3558), with the exception of the WL 

feature. The mean F1-Score varies from 96 % for flex ring to 87 % for thumb abduction, 

according to the data analysis in figure 4.10. The analysis of test findings and figure 4.11 reveal 

that characteristics have similar statistics, and data show similar behaviour in targeted muscle 

conditions. Furthermore, the recognition rate is distributed consistently throughout the recorder 

muscles but not uniformly among the types of afflicted fingers. 

 
Figure 4:10: The classification accuracy of six time-domain features for untargeted (UT) muscles in 125 ms 

windowing size. 
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Figure 4:11: Offline prediction accuracy of six individual fingers for untargeted (UT) muscles in 125 ms 

windowing size. 
 

In the targeted muscles study, the average recognition drops in classification accuracy and 

generates the best control performance with an average of 2% (∼89 % to ∼91 %) in comparison 

to figure 4.8. However, as discussed in section 2.6, the degree of amputation and the feasibility 

of untargeted muscle implication may compensate for this disparity and provide advantages. 

Figure 4.12 shows that there is no significant statistical difference between targeted and 

untargeted electrode placement based on two factors and two levels (targeted/untargeted) 

repeated measures. On the other hand, the untargeted muscle features used for classification 

performed slightly worse than the targeted muscle. The new sensory array was put near the 

motoneuron pool, and the electrodes were adequately scattered, according to these findings. 
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Figure 4:12:  Classification accuracy obtained by different electrode placement for TR  (targeted) and UT 
(untargeted) electrode placement: The figures represent (SVM+RMS) ; (b) (SVM+MAV); (c) (SVM+IAV). 

 
    Another crucial issue for motion detection is the size of the feature windowing. Using a 

larger windowing size increases the individual finger's motion recognition accuracy, as 

previously indicated in the literature. It should be noted that the SVM outperformed the LDA 

in terms of windowing size despite using the same pre-processing data. In contrast, the 

magnitude of the recognition rate for SVM is higger than that of LDA. After the data were pre-

processed in 300 ms, there was a constant improvement. Figure 4.13 shows that the 

classification performance of the given six features improved by 3% from 90% to 93.0% for 

RMS and 2% from 89.0% to 91.0% for MAV. 

 
Figure 4:13: Offline performance of six time-domain features for targeted (TR) muscles in 300 ms 

windowing size. 
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Figure 4:14: Offline performance of six time-domain futures for untargeted (UT) muscles in 300 ms 

windowing size. 

 
The statistics acquired after data processing by using the SVM approach to features reveal 

that the data is sufficiently usable, and the classification results are comparable to those 

published in the literature (e.g., [58], [97], [117]) under similar settings and with a similar 

number of classes. As presented in [212] the average classification accuracy was attained with 

six classes is (80.4 %). According to Mayor et al. [199], the SVM classification performance 

for two participant groups (able-bodied and amputees) was 97.6% and 94.3%, respectively. 

They reported that it was challenging to perform some muscular contractions with the group 

of amputee participants.  Li et al. [220] evaluated the performance of SVM with amputee 

participants, finding that it recognises 11 hand gestures with a 71.3 %. Their investigation, 

however, contained twelve channels of sEMG signals.  Similarly, Al-Timemy et al. [221] 

examined six sEMG channels with 89 %, including nine hand-finger gestures. A comparison 

between three non-linear classifiers (NLR, SVM and SVM) was carried out in [99]. Their 

analysis revealed no statistically significant difference between the three methods, with SVM 

performing the highest performance (93.3%). Despite the fact that the reported papers used 

comparative test settings, the duration of windows, feature size and data ratio used in 

segmentation has a significant influence, as accuracy tends to rise proportionally to the length 

of sEMG data used in model training. 

There is a significant disparity in the accuracies obtained by various research. According to 

Cene et al. [187], some studies achieved 99% accuracy regarding the metrics employed, 

unbalanced data and SVM parameters. However, test conditions' overall performance and 

representativity are decisive in real-time conditions. In some studies, the FD features are often 

employed to extract features from amplitude-based metrics to improve accuracy. 
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In terms of classification outcomes, the analysis also demonstrates that, when compared to 

other techniques in this study, the SVM method is one of the strongest practical classification 

approaches.  The results show that SMV has a remarkable potential for the real-time control of 

the prosthesis. This statement was supported by statistical analysis and practical application in 

Chapter 5. 

4.3.3	Approach	3	(k-Nearest	Neighbour)	

The k-NN approach was used to examine data sets employing eith features extraction 

methods, two windowing sizes, and two electrode allocation conditions. This method has been 

shown to be one of the most practical classifiers in the literature for predicting finger motions 

based on sEMG data [118]. Using cross-correlation between data and the Euclidian distance 

measure, adequate performance of k-NN classifiers was achieved. The Euclidian distance were 

used after detailed comparions and also it has been shown to be more appropriate for for 

regression in TD features.  Thus, using prepared data sets, the Euclidian distance between 

inputs is stored for the EMG pattern with the eight best-related points (4 = 8), and the output 

is calculated as the average. The final model was obtained after trying various 	4  values. 

Although a low degree 4  value (such as 4  =2) outperformed in the comparison, it was 

suggested that this value be avoided because it causes significant variance and a lack of 

generalisation in the model. 

The experimental results for the offline training features are depicted in figure 4.15, which 

are the average recognition rate of six time-domain features. As indicated in the graph, the IAV 

feature performed best, with an accuracy of (85-90) %, slightly better than the RMS (84-90) 

%. The two-way ANOVAs test revealed no significant differences between the three primary 

features  (!=0.2227), but a significant difference between trials (!=0.003). According to the 

statistics, SSI has an average recognition accuracy of 79 %, which is in line with the worst 

performance on these tests. 
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Figure 4:15: The classification performance of six features for targeted (TR) muscles in 125 ms windowing 

size.  

Ring finger flexion had the best average recognition rate for individual fingers  (93 ±4.1) 

%, while middle finger flexion had the lowest performance (81 ±6.36) % (see Figure 4.16). 

Except for the SSI feature (!=0.0341), statistics revealed no significant variations between 

individual finger recognition (!=0.2858).  

 
Figure 4:16: Offline prediction accuracy of six individual finger motions for targeted (TR) muscles in 125 ms 

windowing size. 
According to the test results, the average recognition rate for seven electrodes placed around 

the arm (UT muscle condition) with six movement classes was highest in RMS (89 ±2.55) % 

and lowest in AAC (85 ±4.62) % for untargeted muscles. Furthermore, there are no significant 

statistical differences between features (!=0.9985) but slight differences between trials. The 

examination of test results and figure 4.17 show that characteristics have similar statistics, 

whereas variable data has similar behaviour in targeted muscle conditions. 
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Figure 4:17: Offline performance of six time-domain features for untargeted (UT) muscles in 125 ms 

windowing size. 

However, statistical differences between six finger movements for untargeted muscles 

occurred, as expected. The ring finger flexion had the highest average recognition rate for the 

individual finger (93 ±3.78) %,  whereas the middle finger flexion had the lowest performance 

(86 ±9.9) %. Statistics revealed that, with the exception of WL, there are no significant 

differences in feature extraction approaches (!>0.7834), but there is a significant statistical 

classification difference between individual finger recognition ( ! <0.0067). Figure 4.18 

displays the relationship between average classification performance and the number of output 

classes, along with the mean and standard deviation for each class for untargeted muscle.  

 
Figure 4:18: Offline prediction performance of six individual fingers for untargeted (UT) muscles in 125 ms 

windowing size.  
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(a) 

In the context of electrode placement, two levels (targeted/untargeted), repeated-measures 

discovered a statistical difference in k-NN approaches between targeted and untargeted 

electrode placement, as illustrated in figure 4.19. The performance of motion detection 

improved when the muscles datasets were switched from targeted to untargeted. From targeted 

to untargeted muscle inquiry, the average recognition improves offline classification accuracy 

by 1% (88% to 89 %). 

   

 
Figure 4:19: Classification accuracy obtained by different electrode placement, targeted (TR) and 

untargeted (UT): The figures represent (a) (k-NN+RMS); (b) (k-NN+MAV); (c) (k-NN+IAV). 

The realistic solutions primarily attributed to data quality and surface recording to study the 

number of factors that restrict repeatability in pattern recognition and, therefore, on the clinical 

test of prosthesis control. As previously stated, differing windowing sizes have a major impact 

on recognition performance without considerably increasing complexity of the ML model. As 

a result, offline evaluation using the same data sets was used to reduce variability and more 

fully assess different learning approaches. The same classifier with 300ms windowing size for 

targeted and untargeted sensory locations was used to enhance finger motion identification and 

further development. According to the findings, the difference in offline prediction has grown 

in this scenario, from 87.8 % to 90.6 % for RMS (see Figure 4.20). When the pre-processed 

data was sent into the classifier, there were minor changes in classifier performance for targeted 
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and untargeted sensory location. Untargeted muscle performance improved from 88% to 91.4 

% (see Figure 4.21). As with other classifiers, it is realistic to expect to see a considerable 

difference between various features. 

 
Figure 4:20: Offline performance of six time-domain features for targeted (TR) muscles in 300 ms 

windowing size. 

 
Figure 4:21: Offline performance of six time-domain features for untargeted (UT) muscles in 300 ms 

windowing size. 

 

In comparison to the articles that employed comparable approach and classifiers, as shown 

in table 2:2, this research finding for the k-NN was somewhat less accurate but compatible in 

their baseline considering similar feature size and outperformed the referred research with 

smaller electrodes and databases. The paper of Rasheed et al. [120] had a similar accuracy 

compared to our method. Kanitz et al. [119] have used several classifiers (k-NN, LDA and 

SVM) to classify a dataset created with sixteen channels from six subjects. Their best results 

reached 64% using the k-NN method. The performance of k-NN was evaluated with six feature 
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extraction methods in According to their study, the classification rate of all features is above 

80%. Similarly, the effect of the arm posture and the weight of the prosthetic device was tested 

in  [222] by employing the k-NN method, and their findings revealed that the socket fitting 

issue has a significant degradation in classification (almost 24%). In [101], a comparison of k-

NN and LDA was made, and the study indicated that k-NN achieved  (84.6%) accuracy higher 

than LDA (81.1 % ). Atzori et al. [191] used the k-NN method to compare pattern recognition 

performance between able-bodied subjects and amputees. Their results indicated that the 

classification accuracy for the amputee subjects was 62%, which was 15.6% less than the able-

bodied subjects. 

Because of its simplicity and low training time, the k-NN classifier was employed as a 

comparison approach. The offline experimental findings show that k-NN performs adequately 

but somewhat worse than the other mentioned approaches, such as SVM and ANN. However, 

because it is computationally inefficient for big datasets due to the enormous amount of 

memory required for sample storage, it appears that other proposed approaches, like as ANN 

and SVM, are more ideal for their generalisation capacities. 

4.3.4	Approach	4	(Artificial	Neural	Network)		

The multilayer ANN is a well-known classification and regression method that has been 

extensively employed in many pattern recognition and EMG classification. In this study, a 

three hidden dropout multilayer neural network was adopted for classification and real-time 

control. The model contains 128 units (nodes) at the hidden layers and the output layer with 

one neuron for each class to be identified. The number of neurons was determined after a set 

of trials. The network was trained using “ReLU” activation function in two hidden layers, and 

the softmax function was used for the output layer. To optimise weights, a back-propagation 

algorithm with an adaptive “Adam” optimiser was employed. The input and output of the 

neural network are pre-processed, seven EMG signals from forearm muscles to determine 

finger/hand motions. The number of hidden units for the model was identified experimentally 

based on classification accuracy and testing error.  

Time consumption is a significant issue for motion detection during training and real-time 

control.  Achieving reasonable motion detection and motion execution time depends on the 

initial value of the parameters. Therefore in this study, the number of initial parameters and the 

number of hidden layers was kept as minimum as possible, while the optimum motion 

recognition was the priority. 
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The algorithms were developed in Python 3.5 using open source libraries that allow the 

users to change and decide the optimum parameters for each trial.  Since real-time control of a 

multifunctional hand is our aim, we kept the number of layers and units lower as much as 

possible due to the number of units and layers corresponding to the complexity and 

computational cost. For example, in this study,  during the ANN training process, it was 

observed that the optimum training performance generally needs a longer time to train the 

model.  The fastest time of ANN training may be shorter than SVM for some parameters; 

however, the recognition performance was significantly worse in most features. 

A comparison was made for EMG features by performing ANN between the different means 

of accuracy for the same subjects and data sets. The aim was to show the differences between 

the four learning models.  All samples referred to the EMG signals are features for 125 ms or 

300 ms window size in 2 kHz. The main criteria behing windowing size and fature extraction 

methos  are presented in section 3.3.   In order to keep the large data sets number for training, 

the dataset was split for training (70%) and testing (30%). A performance measured by k-fold 

cross-validation was averaged and compared to detect overfitting problems. Although this 

approach is computationally expensive, since it is required only in the training process, it offers 

advantages avoiding wasting a large portion of datasets. 

In order to obtain a good generalisation, the training data stages was stopped after 1200 

epochs. This number was identified after determining the convergence of training features for 

some trials. As there is no clear method to identify the number of neurons and layers, several 

different configurations for satisfying results were tested. All other network parameters, such 

as weights and biases, were randomly selected in the initial stages.   

The training of ANN is often computationally costly, but after a successful training and 

testing phase, ANN can be presented with a sequence of new samples and find out the intended 

action in a short time. The network can be retrained and used to implement this model in real-

time for new users or calibrate prostheses. Thus, the coefficient numbers can be reduced to 

obtain a shorter training time with a reasonable performance drop.   

The fundamental reason for employing this model was to create an adaptive controller 

capable of mapping and parameterizing the relationship between neural states and optimal 

action. According to this assessment, the controller provides an effective way for autonomous 

control of a dexterous prosthetic hand. A single finger can be controlled continuously with 

some modifications, and the control parameter can be customised for each grasping pattern. 

This method could also be integrated with sensory feedback for precise motion detection 

strategy or sensation. The introduced feedback could categorise sensory information from 
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various sources to decide whether any disturbances are detected, such as slipping or 

disconnection. With this close feedback, the desired grasping could be updated, and the new 

position command can be provided. The benefit of this approach could be that the grasping can 

be established without requiring the user to continually monitor the supplied force on the 

prosthesis and provide neutral and intuitive control. 

Figure 4.22 demonstrates the ANN model's average classification accuracy for six time-

domain features with targeted muscle condition. According to the neural network model, the 

best performance was attained with RMS accuracy ranging from (91-96) %, while MAV came 

in second with (93-95) %. The SSI and WL characteristics reached recognition accuracy rates 

higher than 86 and 89 %, respectively.  The ANOVA test reveals a statistical difference 

between trials  (!=0.0012). The repeated ANOVA test revealed (see figure 4.22) that there is 

no significant difference between the three primary features (!=0.3033), however, prediction 

performance for SSI, AAC, and WL falls to 81.2 %, 83.2 %, and 83.7 %, respectively, similar 

to other learning approaches. 

 
Figure 4:22: The offline performance of six time-domain features for targeted (TR) muscles in 125 ms 

windowing size.   

Regarding sEMG signal classification for individual fingers, it was observed (as seen in 

figure 4.23) that the ANN successfully classified six finger movements with high success rates.  

The highest average recognition rate was found for for ring finger flexion  (95 ±1.53) %, and 

the lowest performance was for thumb abduction with an average recognition rate of (90 ±4.53) 

%. Statistics showed a significant statistical difference between individual finger recognition, 

especially for SSI features (!=0.027). 
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Figure 4:23: Offline prediction accuracy of six individual fingers for targeted (TR) muscle in 125 ms 

windowing size. 
 

The same ANN model was applied to the untargeted muscle data sets condition. The average 

accuracy for seven electrodes placed around the arm with six movement classes was reported 

equal to 89 % for MAV features (see Figure 4.24). There were no significant statistical 

differences between features (!=0.939), but a significant difference between trials (! =0.0002). 

 
Figure 4:24: Offline performance of six time-domain features for untargeted (UT) muscles in 125 ms 

windowing size. 

Statistical differences between six fingermovements recognition  were discovered, as ring 

finger flexion had the highest average recognition rate for individual fingers (93%). Thumb 

abduction had the lowest performance, with an average of (80.1 ±11) % for MAV features, as 

shown in figure 4.25. 
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(a) 

 
Figure 4:25:  Offline prediction accuracy of six individual fingers for untargeted (UT) muscles in 125 ms 

windowing size. 
 

As a result of comparing targeted and untargeted muscle conditions, repeated assessments 

revealed a statistical difference between targeted and untargeted electrode placement for ANN, 

as illustrated in figure 4.26. In the comparions, the feature extracted for the targeted muscle 

state outperformed the untargeted muscle features. 

  

 
Figure 4:26: Classification accuracy obtained by different electrode placement targeted (TR) and 

untargeted (UT): The figures represent: (a) (ANN+RMS); (b) (ANN+MAV); (c) (ANN+IAV). 

The comparison between figure 4.22 and figure 4.24 showed that the average motion 

recognition increases in classification and provides the best performance with an average of 
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(∼89% to ∼93%) in targeted muscles.  However, as described in section 2.5, the level of 

amputation and practicality of untargeted muscle implication may compensate for this 

difference and offer advantages because the feature extraction and electrode shifting in the long 

term may cause some delay and misclassification in targeted muscle conditions.  

The ANN maps large data sets as input vectors and sets to maximally separate between 

outputs variables/classes at a high level. The default parameters of ANN as used for 125 ms 

were used with 300 ms winndowing size for comparison. As expected, accuracy decreased for 

all features since ANN performs better with large data sets. The performance of ANN for 

individual finger motion recognition in 300 ms showed that motion differentiation is 88.20% 

for RMS and 87.40% for MAV. These results show that poor classification performance 

occurred with large windowing sizes since these results are lower than 125 ms windowing size. 

Figures 4.27 and 4.28 show data sets' performance in 300 ms for TR and UT muscle conditions. 

 
Figure 4:27: Offline performance of six time-domain features for targeted (TR) muscles in300 ms 

windowing size. 

 
Figure 4:28: Offline performance of six time-domain features for untargeted (UT) muscles in 300 ms 

windowing size. 
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With seven channels, an average accuracy of >95% for nine movement classes problem was 

achieved across five able-bodied subjects in 125 ms windowing size  (see figure 4:22 and 4:24), 

whereas for 300 ms windowing size, seven EMG channels provided >84% accuracy for 

individual finger movements (see figure 4:27 and 4:28). Those findings are an improvement 

compared to earlier research by Chunk et al. [223], in which six classes of finger motions were 

categorised using 8 EMG channels with 85 % accuracy for able-bodied subjects. When the 

number of channels increased to 8 for able-bodied subjects the classification performance 

reached  to 95 % in [117]. Zhai et al. [224] had achieved similar results compared to findings 

in this study.  The authors employed CNN and SVM methods to classify the NinaPro database; 

their results have reached an average of 78.8%. Kuzborskij et al. [225] have compared the 

performance of seven feature extraction methods and five classifiers in three windowing sizes 

using the same database. Their findings demonstrated that no classifier-feature-window 

combination exceeded 80% accuracy, but was sufficiently close. In [226] the ANN approach 

was used to do a complete evaluation of classification performance in terms of subject number, 

windowing size, number of channels, and various movements. Their results revealed that the 

best performance was 76 %. 

ANN has been utilised in a variety of approaches to investigate various decoding paradigms 

that interpret human motor intent from nerve signals and control prostheses in real-time. Luu 

et al. [174] have collected data from amputees' peripheral nerves and compared deep learning 

performance to traditional machine learning approaches. They stated that their average 

classification performance with CNN and RNN algorithms reached 99 % accuracy. In [17], a 

similar strategy was adopted. Deep neural networks were employed by Fukuri et al. to control 

a prosthesis in real-time. They used a closed feedback control system and achieved a 

classification accuracy of >90% for ten motions. They reported that the healthy subjects who 

received feedback had higher accuracy than those who did not receive feedback. 

The comparative experimental results suggest that data size has a significant effect on the 

performance of  ANN since large data sets can lead to the highest recognition accuracy rate 

among two windowing sizes. Although NN took more time for training than SVM, it takes less 

time at testing and real-time control.  Furthermore, similar accuracy behaviour shows that 

untargeted muscle conditions can perform as well as targeted muscle conditions. Therefore, 

using different electrode implementations should be made, not based on classification 

performance but on practicality, repeatability, and socket fabrication. Consequently, it appears 

to be clear that ANN offers significant advantages when control of individual fingers with large 
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dataset is expected. However, the practical implementation has to be assessed in a standalone 

test, in which users are introduced to control devices in their daily lives.   

4.4	Discussion		

The significance of datasets and learning algorithms in pattern recognition for EMG-based 

prosthesis control was discussed in this chapter. EMG signals have an important role in a 

variety of applications, including rehabilitation devices, prosthetics, and the diagnosis of 

neuromuscular disorders. Various filtering methods have been used in the literature to obtain 

high accuracy and eliminate artefacts.  As a consequence, the goal of this research was to 

develop appropriate data processing and ML algorithms for EMG signals in order to obtain 

precise real-time control while maintaining an acceptable computational time for real-time 

control.  

The results of machine learning techniques and feature extraction methods for individual 

finger movements are summarised in each subsection. Through statistical analysis, the average 

RMS recognition rate for ANN was (93.4 %), higher than SVM (90.4%), k-NN (87.8%), and 

LDA (82.8%). Similar results were observed for MAV features as the performance of ANN 

was (94%), higher than SVM (90%), k-NN (86.6%), and LDA (83.4). The average 

classification performance of the four approaches is depicted in Figure 4.29.   

Although targeting muscle condition enhances classification accuracies marginally for some 

machine learning techniques such as ANN (88.8 %) and SVM (89.4), the targeting surface does 

not offer an advantage in LDA (87 %) and k-NN (88.8 %) approaches, as shown in Figure 5.30. 

Due to the importance of repeatability and socket manufacturing, instead of placing such 

electrodes over specific muscle bellies, it can be simplified as in the second (untargeted) 

condition by ranging sensors symmetrically throughout the forearm's circumference. A valid 

comparison should be made according to experimental conditions and pattern recognition 

methods; however, it is practical to compare these results with some early studies such as [102], 

[117].   
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Figure 4:29: Average classification accuracy by different learning approaches for targeted (TR) muscles in 

125 ms windowing size.  

 
Figure 4:30: Average classification accuracy by different learning approaches for untargeted (UT) muscles in 

125 ms windowing size. 
 

The findings indicated that the combination of ANN and RMS is a more accurate choice for 

classifying individual finger movement than the other three models. Although SVM and ANN 

achieve comparable recognition accuracy rates during the training phase, ANN achieves 

superior accuracy and practicality in online tests with larger data sets. Furthermore, the SVM 

needs the user to carefully pick the training samples for each iteration and does not provide 

generalisation for all data sets, resulting in longer time consumption and delays in real-time 

control. 

The second purpose of this chapter is to evaluate the several common machine learning 

algorithms on sEMG data with appropriate electrode placement in targeted and untargeted 

muscle circumstances. In all cases, there were no statistical differences between the three key 

characteristics MAV, IAV, and RMS. The first conclusion that can be derived from these 
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results is that the feature extraction techniques can give enough muscle synergy since high 

accuracy was attained by using the provided feature extraction methods. Individual finger 

classification in 300 ms windowing size has obtained a high motion identification rate for both 

targeted and untargeted muscle conditions. Figure 4.31 shows how the performance of LDA 

(90.8 %), SVM (91.6 %), k-NN (92 %), and ANN (86 %) compares to previous research (e.g., 

[112], [216]). Figure 4.32 demonstrates that for the targeted muscle (TD) condition LDA (85.2 

%), SVM (91.8 %), k-NN (89 %), and comparable classification behaviours were achieved 

with ANN(87.4 %). Despite methodological variations in some literature, such as the number 

of sensors, subject group, and processing technique, the results are equivalent to [22] and [187]. 

 
Figure 4.31: Offline performance of four classification methods for untargeted (UT) muscle in 300ms 

windowing size. 

 
Figure 4.32: Offline performance of four classification methods for targeted (TR) muscle in 300ms 

windowing size. 
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The final goal of chapter  was to assess the general applicability of such approaches and to 

confirm statistical variations in classifiers among users. The possibility of making it portable 

for real-time clinical studies, verification in everyday living activities (ADL), and future 

industrial exploitation since real-time application of new methodologies was analaysed. The 

effectiveness of these four machine learning algorithms for individual finger motions using 

EMG signals from healthy subjects were compared. In this chapter, the impact of data sets 

including typical sampling rates and windowing sizes (125 ms and 300 ms) on a range of hand 

and finger actions in various arm orientations was also tested. Except for ANN, the given 

findings reveal that when the windowing size was reduced from 300 ms to 125 ms, the 

classification performance of all suggested feature sets declined dramatically. These results 

show that a small windowing size does not give enough signal information for accurate LDA, 

SVM, and k-NN classifiers. Almost all of the literature has come to the same conclusion: big 

windowing size outperforms traditional ML methods except ANN. A complete comparison of 

different windowing sizes can be found in [112] [187]. 

This investigation also suggests that in comparing 6-7 sensors placements for targeted and 

untargeted muscles, the motion detection performance for all features decreased significantly 

(!<0.001) by reducing the number of sensors. This drastic result for these features could be 

explained because of the loss in signal content and fall in required minimum information. Also, 

despite time-domain features achieved high accuracy (91-86%), when using 125 ms 

windowing and 300 ms windowing, some of the features significantly decreased the accuracy, 

such as WL, AAC PEK, KUR features (more comparison of features are presented in Appendix 

C).  Phinyomark et al. [102]  have evaluated the influence of feature extraction methods on 

pattern recognition for able-bodied subjects and have reported a similar conclusion.  The 

decreased performance for these features could be an insufficient number of data points in each 

analysing window. Theoretically, they have a different mathematical definition as their benefit 

depends on windowing size. It was suggested in [216] that performance is susceptible to the 

chosen parameters and indicated that the number of data points to be as large as possible for 

practical implementations, especially for nonlinear classifiers such as ANN methods.    

The findings in this study suggest that the approaches, based on proposed parameters and 

methodology,  can identify finger motions and is capable of predicting intended hand patterns 

with high accuracy. The process is presented to be robust and can be implemented to recognise 

independent finger motions. With this classification performance, the strategy is ideal for 

controlling the high degree of freedom prostheses.  
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4.5	Summary	

In this chapter, a combination of eight time-domain feature extraction methods and four 

classifiers, with two different windowing lengths and two electrode placement approaches, 

were investigated to recognise human hand motions using sEMG signals as inputs. The 

comparative experiment results demonstrated that features extracted from RMS and MAV 

could lead to the highest recognition accuracy in both 125 ms and 300 ms windowing length, 

while RMS seems more practical for real-time implementation with an overall 2% higher 

recognition performance than MAV. For classification methods, although artificial neural 

networks (ANN) perform better for 125 ms windowing size than SVM in offline learning, SVM 

seems more accurate than ANN in 300 ms windowing size. However, since SVM requires a 

longer time for training than k-NN and LDA, The real-time implementations may lead to some 

training progress delays. Consequently, the combination of SVM with RMS is recommended 

when the highest accuracy is required. On the other hand, ANN with RMS may provide higher 

and stable motion detection if absolute real-time performance is necessary.  

The experimental result for able-bodied subjects showed a similar pattern during all trials; 

however, more sensors, such as seven sensors placement, offer significantly higher 

classification accuracy than six sensor placements. This effect seems significant, except for 

SVM. Therefore, when choosing the number of sensors, care should be taken as it could have 

more influence in real-time control. 

Since some earlier studies suggested that offline classification results do not have an 

accurate correlation with real-time performance, a detailed evaluation and validation of this 

physical prototype methodology are necessary. Therefore, to improve the robustness of 

practical applications and reduce delays in real-time applications, a windowing size of around 

65-125 ms in feature extraction with ANN will be ideal. Thus, a small segment of increment is 

suggested to improve accuracy and response time. In order to assess the performance of the 

combined system, these methods are applied to the real-time system in the following chapters 

for robot control. 
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Chapter	5 Mechanical	Design	and	Performance	Evaluation	of	
Socket	Prototype	against	EMG	Signals	Variation	

5.1	Introduction		

EMG-based pattern recognition is a favoured sensing modality for prosthetics control 

because it provides sufficient information directly related to muscle activity and provides 

natural and intuitive control. It is, nevertheless, sensitive to noise and artefacts generated by 

environmental changes. However, precise electrode allocating to specific muscles for each 

experiment is not straightforward, and it necessitates the use of supplementary 

equipment/procedures, such as ultrasound guidance or specific experiences. Although 

allocating electrodes to specific muscles improves performance for some linear pattern 

recognition algorithms, such as LDA and k-NN, this complex medical procedure may be 

unnecessary if a pattern recognition approach is established in which signal amplitude is not 

decisive. 

Implementing a wearable embedded system in the real-time prosthesis is difficult due to the 

lack of an interface for amputee bio-signal collection and adequate computing power for 

motion detection. Number of custom-designed and commercial sockets have been employed 

to evaluate prostheses performance from the standpoint of prostheses users. It is, however, 

impossible to evaluate all of the aforementioned factors at the same time in order to determine 

a successful data acquisition and training session. A practical, uniform and standard data 

acquisition technique are highly desired when applying pattern recognition-based control in 

practice. It was proposed that a data collection methodology synthesising dynamic muscular 

contraction, dynamic arm posture, and tolerance to non-stationary signals could generalise data 

for daily life [209]. 

The sEMG electrodes were placed on the surface of selected muscle areas in the early 

chapters, as  it is a common approach in the literature. Following a detailed examination of 

electrode placement and its impact on motion detection in chapter 4, it was discovered that the 

targeted muscle approach does not provide a significant advantage for pattern recognition but 

rather causes human error in the sEMG dataset since precise electrode allocation for each trial 

is complicated. 

In this chapter, a bypass socket was developed to test a new sensory modality with proposed 

pattern recognition methods presented in chapter 4.  The bypass socket is built with three major 

features: It allows for data collection while maintaining direct access to the main muscles of 
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the forearm for sEMG. It provides a wide range of movements for real-time functional 

assessments and standardises electrode placement for the users. 

Because it facilitates data collection from the main area (approximately 5 cm from the 

elbow), this technique ensures a consistent setup for all patients,  and it is applicable for a large 

number of transradial amputees. Although electrode placement around the forearm circle may 

not provide the optimal signal acquisition approach for hand motion detection, it can provide a 

reasonable approximation to pattern recognition in real-time.   

Furthermore, the use of a bypass socket, which minimizes electrode displacement and 

improves classification performance, allows dynamic arm position tests to be conducted 

without compromising pattern recognition performance. The findings of comparison revealed 

that the protocol with a new socket and dynamic arm position produced the highest 

performance (89%) compared to the targeted muscle condition. The results indicate that it is 

not necessary to include particular EMG variations in model training to obtain robust pattern 

recognition; rather, datasets from different conditions with standard training can give superior 

real-time control for multifunctional prostheses. A similar consideration appear in some early 

studies [199], [227]. Rather than associating electrodes to specific muscles as in traditional 

control, this method was used to recognise signals from all muscles uniformly. Furthermore, 

for some users, this is the only option because their stump prevents the electrode being allocated 

anywhere else.  

According to the findings of this chapter, incremental learning and new electrode allocation 

with bypass socket are effective in maintaining a stable level of performance. Following that, 

the approach was improved and used in chapter 6 to control a prosthetic hand with an embedded 

control system and feature extraction in online tests. 

5.2	Socket	Design	and	Learning	Framework	

Translating prostheses studies into practice has proven to be difficult due to the limitations 

of commonly used laboratory performance metrics [228]. The majority of the studies used data 

from able-bodied people's targeted muscles to assess classification accuracy; however, the vast 

majority of amputees lack access to these muscles. This unrealistic, unrepeatable technique 

leads to significant classification errors in pattern recognition for various reasons, including the 

lack of muscles, the volatility of patterns over time, and poorly acquired training data [37]. 

Another critical issue about sEMG is the electrode shifting during participant motion execution, 

and this appears to be most significant, particularly during the reach and grasping tests.  
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The capability of my-electrical prosthesis has been measured using pattern recognition 

accuracy performance with static arm postures. Despite the fact that the majority of the subjects 

had reasonably high scores in the offline test, their clinical validations differed greatly because 

real-life conditions necessitate system integration and dynamic arm manipulation for 

prostheses [229]. 

When the figures in Chapter 4 were compared, it was discovered that the subjects could do 

the same thing with untargeted muscles, if not slightly better. Such issues with targeted muscles 

were discussed in Chapter 4, and the same techniques proposed in that chapter was improved 

in a practical setting with bypass socket in this chapter. Furthermore, because the majority of 

classification errors occur when the arm follows a dynamic trajectory with targeted muscles, 

the regression machine can be used to start the classification only when the predicted force is 

above a threshold. However, because electrode switching and electrode displacement occur at 

some arm locations, particularly with traditional targeted muscles, this can only be done if the 

data is standardised at those locations. As a result, the new sensory modality can provide 

repeatable data collection for each trial, standardise data sets, and give ML methods more 

flexibility for tuning. 

As a result, a set of tests were taken to asses sEMG-based device with a fitting socket to 

perform clinically relevant procedures. The new untargeted electrode placement with bypass 

socket for sEMG experiments was designed to imitate the real-life conditions of transradial 

amputees. The experiment's layout was made to provide the data collection necessary for the 

participant to perform compensatory grasping and finger manipulation. The motivation behind 

electrode placement choice was to transmit the signal as intuitive as possible, as practical as 

possible and reproducible from user to user. With this electrode arrangement, no electrode 

could isolate a single muscle while ensuring that the most significant input to the data comes 

from all muscles. Similar methodological approach has been used in [187] and [230].  

Furthermore, anatomy studies [231] show that this location in the human arm stores a high 

concentration of muscle activity associated with hand motions, including palmaris longus, 

flexor digitorum superficialis, flexor digitorum profundus, extensor pollicis longus, flexor 

pollicis longus, flexor carpi radialis. The main motivation is creating an experience of every 

day for users to address the disparity between clinical tests and market expectations. This 

anticipation influenced this design regarding access to the intact limb, durability, and ease-of-

use.  

Access to intact limbs: By attaching a bypass socket to the elbow, it was possible to maintain 

electrodes locked in a sensory array that can handle hefty prostheses for a wide variety of user 
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sizes. The close contact configuration allows for the collection of high-density sEMG signals 

from extrinsic muscles performing finger and wrist motions. The bypass socket's contact area 

minimisation is an advantage of this socket over previous designs [165], [232],  since it allows 

the device to be used in the high level of amputation.  

Durability: The elbow cuff is inserted into bypass socket, allowing users to freely rotate 

their arm and shoulder while simultaneously keeping the electrodes in the approximately same 

spot, reducing electrode movement and thereby stabilising sEMG signals. The bypass socket 

limits the elbow angle of rotation to a minimum, providing for an adequate range of motion 

completion for daily living activities. In comparison to classic designs [212], the design 

decision optimises object manipulation tasks and posture freedom.  

Practicality: The overall design allows users and experimenters to be versatile. The 3D 

printed design enables researchers to adapt the size to certain users and sensors while also 

allowing them to conveniently switch between individuals. The intimate connection between 

skin and device allows able-bodied participants to test and evaluate pattern recognition from 

the perspective of amputee participants, providing a more realistic scenario. 

The primary goal of this design was to look into the feasibility of an sEMG based HMI in a 

relatively near to real-life circumstance. The socket and electrode array was designed to 

maximise mobility, integration with existing prostheses criteria, and reproducibility of data for 

ML. In terms of portability, all appropriate number of electrodes were implanted in a bypass 

socket, making the system comparable to a conventional bionic device and providing a 

platform for a compatible embedded system, as presented in chapter 6.  This assessment is 

critical because better and faster training could be obtained if the methodology that would best 

suit amputees is known ahead of time. 

5.2.1	Participant		

In order to identify hand movements using EMG signals,  pattern recognition tests on two 

able-bodied subjects (males, 26-32 years old)  with no known history of neuromuscular 

disorder were conducted. The number of subjects was determined by two major factors. To 

begin with, because the socket is custom designed, it was not possible to analyse the link 

between able-bodied and amputee participants and other factors such as type of limb deficit. 

Instead, the dimensions of two subjects' forearm were measured, and  3D-printed sockets were 

built,  a similar approach was taken in [165]. Furthermore, the influence of subject numbers on 

pattern recognition was discussed in chapters 3. The comparative results demonstrated that, 

while each subject has a different level of muscle contraction, the sEMG magnitude has no 
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significant effect on overall performance. The findings of the offline analysis for  the same 

participants were reported and compared in chapter 4.  A detailed analaysis about subjects 

influence has been presented in [175]. A custom-made socket  was designed for the able-bodied 

subjects in order to provide similar and appropriate training conditions and achieve good 

performance by removing potential training effects such as electrode installation for each 

session and electode shifting. Instead of comparing participants' performance, the custom-made 

socket was mainly constructed to increase dataset quality during repeated tests and improve 

pracricality.  

5.2.2	Experimental	Hardware		

Single fingers and object grasping activities were recorded using Delsys™ Trigno Wireless 

System® (model DE2.1, Delsys Inc., Boston, MA, USA). The corresponding sEMG signals 

were recorded  by applying 6 and 7 electrodes to the circumference of the forearm. The signals 

were sampled at a rate of 2 kHz with baseline noise, then it was amplified (3000) and bandpass 

filtered in 20-450 Hz.  Each electrode is assembled with a self-sufficient rechargeable battery 

(average 8 hours) and equipped with wireless operational space (40 m from wireless Delsys 

receiver base station).   

The sensor's number was chosen following a thorough analysis of the literature in [22] and 

[221]. Similarly,  Farell et al. [37] have compared the effects of varying numbers of electrodes 

on pattern recognition in a review. Huang et al [218] have also claimed that there is no 

significant difference between targeted and untargeted muscle conditions in the classification 

performance aspect. The literature results mainly revealed a considerable degradation in 

classification performance with each incremental decrease in the number of sensors. Although 

this decrease in the number of sensors is significant, the impact on accuracy was relatively 

small for  high number of sensors  [116]. Regarding classification accuracy, it has been 

suggested that using at least four electrodes is reasonable as employing less than four causes a 

large decrease in classification accuracy [105]. It is recommended that the quantity of sensor 

must be kept at least in the range of  4 to 6 to ensure that it does not compromise the detection 

performance [233]. The compatibility of the sensor controller, the duration of the experiment 

due to computational power, and the feasibility of using the maximum number of electrodes 

play key role in number of electrode.  As a result, tests were conducted employing a socket that 

can accommodate maximum 7 electrodes uniformly distributed around the circumference of 

participants' forearms (similar to [223]). Taking into account the size of electrodes (27x37x13 
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Plane of  
section 

mm), a maximum of seven sensors might be utilised on the circumference of the adult forearm 

using this sensory modality. 

The custom-designed socket was mainly employed to create the best data gathering 

environment for amputees. A housing mechanism in the socket and armband was used to place 

the sensors on the forearm. The elastic armband was worn over the electrodes to keep them 

adhered to the skin while collecting data. Electrode placement was done with great care since 

it is a critical stage in data reliability and classification accuracy. As illustrated in Figures 5.1 

and 5.2, seven electrodes are evenly spaced around the circumference of the forearm to cover 

the key regions of the muscles. 

 

 

                          
 

Figure 5:1: Cross-section view of electrode placement location around forearm. The cross-section view is passed 
into the zone between the elbow and wrist.  Electrodes are allocated around the peripheral circle of the forearm. 

 
Figure 5:2: Illustration of sensors placed on the residual limb of transradial amputees. 

 
All sensory information was transmitted to the data collection and storing workspace station 

(Intel i7 @2.6 GHz with Windows). Several experimental conditions influence the quality of 

signals, such as the location of  EMG electrodes, participants, muscle fatigue, and, most 

importantly, amputation level. To avoid such interferences and to verify the collected data are 

correlated to performed motions in real life, we simulated the experiment conditions and pre-

possessed signals using custom-written MATLAB (MathWorks) codes.   

View of 
cross section 

Anterior 

Custom-made socket 

EMG electrodes 

Foream stump 
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5.2.3	Implementing	Experiment	Protocol	within	the	Proposed	Approach		

It has been demonstrated that EMG signals can be altered by a range of factors unrelated to 

finger posture and movement in real-time situations [234]. Many of these aliasing signals have 

a significant impact on the quality of EMG signals, interfering with control and classification 

performance. It has been shown that electromyography (EMG) signals rely on the size and the 

position of the muscles, and therefore the EMG signal can be weak or strong [235].  

The performance and the feasibility of EMG-based control are limited to the intensity and 

the quality of muscles signals and appropriate electrode placement over correct muscles. In 

principle, each electrode must be placed accurately on the muscle's belly according to early 

studies.  However, this approach is problematic since the displacement of electrodes must 

always be in the same location. Therefore, it reduces the number of users to a specific group 

who have these muscles and makes these prostheses almost infeasible for Transradial and 

Transhumeral users. Besides this, physical conditions such as the users' weight can always 

cause electrode shifting, and the design always needs adjustment. Because the targeted muscles 

are close together, a detailed evaluation of their structure and precise EMG sensor placement 

are required. Due to the close proximity of the muscles, the individual experiment over the 

flexor carpi radialis would detect the undesired signal of activity from the flexor digitorum. As 

a result, the perception of the signal provided by hand gestures is always contaminated by 

internal and external variables, reducing prediction accuracy. 

A number of papers employ different aspects of dynamic arm modularity [215], [236].  

Paskett et al. [165] have examined the feasibility of controlling a multifunctional prosthesis 

with non-stationary sEMG signals collected from a dynamic system and suggested that in order 

to achieve an effective controller, the synergies should be obtained in a standardized feature 

space.  Significant progress has been made in alternative data recordings such as TMR and 

iEMG concerning some fundamental questions regarding optimization of control architectures 

for prostheses control [174]. The simulation of complex arm postures  showed that extreme 

arm posture changed muscle configuration significantly and suggested standardized data 

collection leads to better motion execution performance and generalization [98], [237]. Hwang 

et al. [215] have validated the approach on subjects and stated that mixture dynamic data 

collection with robust sensory modality could best account for smoothness and reliability. 

In this chapter, seven EMG sensors (Delsys, model DE2.1) were distributed on the 

participants’ right arm's circumference with a designed bypass socket to reduce electrode 

shifting, improve classification performance as it resists elbow rotation and provide 
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consistency for input data. This uniformly distributed electrode allocation has been shown to 

be efficient in some other studies [223] [227]. Castellini et al. [227] claimed that an amputee 

subject had achieved 95% accuracy with this new electrode arrangement, which is in line with 

some results from able-bodied subjects.  

The considerable variations between different sensor placements in each trial cause 

significant classification degradation, therefore, in traditional appraoches, the system must be 

retrained from scratch on a regular basis. This chapter proposes incremental learning with more 

standartised data collection, which updates with modest portion of the training data and allows 

for signal adaptation. As a result, this approach will improve and standardise electrode 

localisation for participants, swiftly convert biosignals, and improve ML model performance. 

This placement's general purpose is to provide a realistic data acquisition and  record as 

many different muscles as possible, since conventional targeted electrode placement does not 

cover the participant's stump with the short remaining arm. Due to wrist rotation not being 

possible for amputees, the wrist was fixed during trials to reduce the wrist rotation effects. 

These conditions were tested by comparing the motions detection performance of able-bodied 

participant with socket and non-socket conditions. 

The participants were sitting in front of a table with residual limb stabilised in a comfortable 

position. The participants were asked to perform the introduced finger and hand motion as 

naturally as possible, ensuring that only the desired finger moved by stabilising the wrist and 

rest of the fingers during each trial. The participants were also instructed not to apply force in 

the finger points as that would not be possible for amputees. The participants were ensured that 

they had a comfortable hand position with a designed platform for unforced biosignal during 

the experiments. The subjects were told to concentrate on completing motions rather than 

exerting forces. After being briefed on the nature and expected outcomes of the tests, the 

volunteers agreed to take part in the trials. The individuals were asked to perform three objects 

gripping and six single finger motions: thumb and finger flexion/extension. Thumb abduction 

and adduction were also assessed. The movement sets were chosen from the robotic and 

rehabilitative literature [81], to address the most common hand manipulations in everyday life 

activities.  

Throughout the trials, a second computer screen was placed in front of the individuals to 

display the animated finger activities as well as a timer. Each trial's data was collected five 

times for a total of ten seconds (3 s holding contraction time) for each participant. The 

activation time for each motion was derived from literature [81] [238].   The description of 

finger motion and protocol is given in Figure 5.3. Although there is no consensus on the best 
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data acquisition protocol, the uniform electrode placement has been proven to be effective with 

the combination of machine learning methods [72], [144] as the signal's high amplitude is not 

necessary for pattern recognition.  Some literature have followed a  similar data acquisition and 

electrode placement [187], [209], [191], with varying number of electrodes and movements.   

 

 

 
Figure 5:3: Total of six finger motions with Delsys electrode placed around the circumference of the forearm. 

These fingers are represented as index flexion, middle flexion, ring flexion, little flexion, thumb finger 
abduction, and thumb flexion. 

 

5.2.3.1	Static	Arm	Position	Effect	on	Motion	Detection	

Pattern recognition-based prostheses are utilised to restore basic hand functions and specific 

finger motions. Most of the study in the literature trains the patterns for various statistical 

gripping movements, such as executing muscular contraction while the arm is fixed on the 

table. However, several clinical research have found that training classifiers in a fixed arm 

posture reduces classification accuracy significantly [97], [182].  This section includes a 

comparative research on the myoelectrical-based learning strategy that distinguishes gripping 

and single finger motion intention in different arm orientations in order to produce a more 

natural and intuitive behavior to prostheses.  

This study employed innovative data collection protocol that produce more standardised  

EMG signal than the traditional targeted muscle-based system since amputees generally have 

a restricted number of muscles and data collecting locations.  Some other invasive methods, 

such as targeted muscle reinnervation (TMR) [238] or regenerative peripheral-nerve interfaces 

(a) (b) 

(c) (d) 

(f) (g) 
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(RPNI) [239], can capture more data and give more precise signal detection. These techniques, 

however, need surgery, induce infection, and are prohibitively costly. 

A sophisticated signal processing algorithm was applied in this work to operate high-DOF 

prosthesis with less EMG data to estimate discrete finger motions. The subjects were set in 

front of a table during the trials, watching a computer screen with the elbow in three different 

positions, as shown in Figures 5.4 and 5.5 The individuals were instructed to move their fingers 

using preset motions while keeping the same wrist angle throughout all trials in the first phase 

of the experiment. The individuals were requested to hold their arm upright and down during 

the identical finger motions in the second and third phases. Each finger manipulation lasted 10 

seconds, with at least 3 seconds devoted keeping the fingers in flexion. EMG data from three 

stages of arm orientation were captured, and the same signal processing approach as described 

previously was used. 

 
Figure 5:4: Experimental setup showing the positions of arm and electrode placement to perform six finger 

movements. (a) The arm on the horizontal table position, (b) arm upright, (c) arm up-down (vertical). 

 

 
Figure 5:5: Experimental setup showing arm and electrode placement positions with the socket to perform six 

finger movements. (a) The arm on the horizontal table position, (b) arm upright, (c) arm up-down (vertical). 

 

a b c 

a b c 
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5.2.3.2	Decoding	Hand	Motions	from	EMG	during	Reach	and	Grasp	Motions	

According to amputee studies [240], [241],[180], comfort and functionality are two most 

important factors in the acceptability of prostheses and assistive devices. To increase comfort 

and functionality, prostheses should recognise the desired motion immediately in order to 

provide an intuitive and natural control system. Such methods have been utilised to perform 

power grabbing and detect static hand movements. However, other studies indicate that it is 

insufficient to develop a generic control system that distinguishes distinct grabbing and finger 

actions from limited arm orientation. It has been claimed that it lacks robustness and 

intuitiveness since natural gripping necessitates dynamic limb postures [97], [182].  Few 

research in the literature have used able-bodied subjects to identify grasping intentions from 

EMG signals during reach to grab motion detection [242], [243]. Furthermore, some studies 

have conducted the same methodology on amputees [209], [244]. 

To examine the differences between research findings and more clinically relevant 

outcomes, dynamic variations in limb position was demonstrated in this study. The findings 

indicated that the training dataset with dynamic arm position might have an effect on the 

robustness of the myoelectrical-based control. The comparison was conducted by replicating 

the identical experimental settings with dynamic hand motions for gripping and manipulating 

the same items. Since the muscular activity and muscle orientation change from static arm 

positions to dynamic arm positions, the finger and wrist change orientation simultaneously, 

influencing the EMG amplitude, and so does detection performance. This approach is 

demonstrated in online validation tests in Chapter 6.  

For these experiments, participants were seated in front of a table with their elbow bent 

about 90 degrees and their hand in a relaxed position with palm downward, and fingers were 

in a natural, comfortable position (see Figure 5.6 (a)).   The participants were instructed to 

reach and grasp objects with the help of a simulation displayed on a second  PC screen. The 

participants started the arm trajectory as instructed to reach the object and asked to maintain 

their grasping for at least three seconds before returning to the initial position and then to 

consider the trial to be completed.  Objects were located at three different distances and heights 

(i.e., 10 cm, 20 cm, and 30 cm). To eliminate the influence of different speeds, the arm 

trajectory was illustrated on a computer screen and subjects were asked to follow and mimic 

the same trajectory.  
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Figure 5:6: Representative of the phases of motion of an able-bodied subject for dynamical hand motions. The 

experimental setup shows the arm's initial position and the subject performing grasping for three different 
positions. 

 
The data were collected while subjects performed pre-programmed single finger motions 

with and without the use of a bypass socket. The retrieved features were then utilised to suit 

the specifications of the amputee's real-life circumstances. The suggested system, seen in 

Figure 5.7, consists of a socket and seven sensors. Since this chapter's scope is not necessary 

to achieve a high level of accuracy but rather to investigate the practicality of electrode 

placement and the advantage of pattern recognition, the same data acquisition, windowing size, 

and classifications were used as described in section 4.3. Furthermore, sophisticated real-time 

performance necessitates a rapid and precise reaction to the user's intention. In order to reduce 

computational cost, improve the user experience and minimise the cost of the combined system 

experiments were also conducted with six channels in these trials. The discussion sections 

provide a full comparison between number of electodes. 

  
Figure 5:7: Different views of the custom-made socket for electrode placement in the circumference of users. 

5.3	Results		

This chapter introduces and evaluates a novel data collecting method for hand motion 

detection using a custom-designed socket. The categorization approach is based on the majority 

of the research studies mentioned in Chapter 2 and includes pre-processing with two alternative 

windowing sizes (125 and 300 ms). The time domain characteristics and classifiers utilised in 

a b 

a b c 
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this study are well-known (SVM, LDA, NN, k-NN) and have mostly been used in prior 

investigations, as discussed in Chapter 3.  

The first comparison was made on the number of sensors with six and seven sensors using 

the identical muscle positioning approach. At the same time, the second comparison of 

windowing sizes was carried out. It should be observed that in both cases, the data collecting 

setup and filtering processes are the same. Therefore, motion classification performance should 

be a qualitative assessment of the dataset. In order to achieve optimum performance, "Adam" 

optimiser and "grid search " were implemented four classification techniques to ensure that 

the data sets with the embedded system allow the highest detection of single finger motions 

and hand gestures in real-time. The Adam optimiser determines individual learning rates for 

each NN parameter and ensures that learning progress is adaptive. It calculates the learning 

rate for each NN weight by estimating the first and second gradient moments. Grid search, on 

the other hand, optimises arguments like kernel and gamma of hyper-parameters for the best 

cross-validation score of SVM. The examination of feature extraction methods reveals that pre-

processing is still a substantial factor, even when muscle activation varies. Figure 5.8 depicts 

the accuracies of seven sensors for six classes of static arm position. Among the six feature 

extraction approaches, RMS performed the highest performance with an 89 % identification 

rate, while WL performed the lovest, with an 84.4 % recognition rate. When real-time control 

is necessary, it is advised that ANN be combined with RMS to offer better and more steady 

performance. Otherwise, the combination of SVM and three main features (RMS, MAV, IAV) 

may determine more accurate performance for offline motion recognition. However, the 

literature review suggests that a high classification accuracy might not secure a good real-time 

performance, and some sacrifices in offline classification may enhance the real-time 

performance. The comparison experimental findings demonstrate that offline results are 

average 5 % more accurate than the online control in all classifiers. 
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Figure 5:8: Classification performance of four classifiers when using untargeted (UT) muscles in 125 ms window 

length. The results represent average of five trials for two able-bodied subjects. 

The comparison of the same feature shows that SVM demonstrates similar results to k-NN 

in 300 ms windowing size. The highest classification performance was recorded as (91.4 ± 

4.5%) for k-NN, while SVM came in second with average recognition (91.2±6.4).  

 
Figure 5:9: Classification accuracy of four classifiers when using untargeted (UT ) muscle in 300 ms windowing 

length. The results represent average of five trials for two able-bodied subjects. 

 

Figure 5.10 shows that classification performance for able-bodied subjects in static arm 

postures follows a similar trend, with seven sensors providing greater classification accuracy 

than six sensors. Except for SVM, the number of sensors appears to have a substantial influence 
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on the majority of the classifiers. As a result, while selecting the number of sensors, caution 

should be made because it will have a considerable impact on real-time control. The highest 

average classification accuracy with six electrodes was obtained as 90% for SVM, and the 

highest average classification accuracy for seven electrodes was recorded as 92% with k-NN. 

Similar results  were achieved with some early studies [205],[245]. 

 
Figure 5:10: Comparison of classifiers and the effect of the number of electrodes in 300 ms windowing length. 
The results represent average of five trials for two able-bodied subjects. 

 

The classification findings and graphs indicate that sEMG signals and hand motions in the 

same conditions have a substantial association. Except for one trial, the data revealed no 

significant changes when the number of motion repeats was taken into account for same the 

same subject (! =0.2736). Because each participant has different anatomical characteristics, a 

large disparity between participants for some ML methods were observed. Figure 5.11 depicts 

the performance of classifiers on the two subjects. It is worth noting that, as seen in the picture, 

there is no significant difference between the two participants for SVM and k-NN, but 

significant difference for LR and ANN. 
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Figure 5:11: The comparison of classifiers between two subjects for RMS features in 125 ms windowing size. The 
results represent average of five trials for two able-bodied subjects. 

 

Various force patterns result in different average sEMG magnitudes due to muscle stump 

fitness and objects. Although certain recognition accuracies are quite low among the six 

movements, including thumb abduction, all average accuracy rates are higher than 88.4 %, with 

flex index finger motion average rate of 93 %. The average motion recognition performance 

for six different finger classes is shown in Figure 5.12 when the subjects’ arm is in a static 

posture. 

 
Figure 5:12: The F1 scores of selected finger motions with ANN (125 ms windowing length) while the subjects 

arm is horizontal. The results represent average of five trials for two able-bodied subjects. 

When evaluating alternative windowing sizes, the performance of a bigger window 

outperforms that of a smaller window for all classifiers except the Artificial Neural Network 

(see figure 5.14). The artificial neural network (ANN) is thought to be a valuable tool for 
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analysing the cause-effect connection in complicated and large data sets. It is one of the primary 

characteristics that characterizes deep learning. 

 
Figure 5.14: The effect of windowing length on classification performance.  The results represent average of 

five trials for two able-bodied subjects. 

 

The offline classification accuracy for previously stated classifiers and features were 

examined in three distinct static arm positions for object grabbing to analyse the static arm 

position influence on motion detection, as presented in section 5.2.3.1.  Figure 5.15 depicts a 

combination of six features and five classifiers. The findings reveal that the combination of 

ANN and AAC achieved the highest recognition rate performance (with an average of 96.4 %), 

while the combination of LR and SSI achieved the lowest rate (with an average of 79.8 percent 

). Although there are no significant differences between the three movements in terms of 

percentage of motion correctly classified (! = 0.2651), cylinder grasping outperforms pinch 

grasping. Ball grabbing, on the other hand, has the lowest performance (see Figure 5.16). 
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Figure 5.15: Classifiers' performance for six features while the subjects were performing object grasping 

(cylinder object) with an arm in a horizontal position. 

 
Figure 5.16: Three objects grasping and their standard error while the subjects’ arm were in the horizontal 
position. 

 

For individual finger detection (see Figure5.17), there is no significant difference between 

three different arm positions (! = 0.7879), with the best performance while the arm is in an 

upright position. For object grasping (see Figure 5.18), there is a significant difference between 

the three arm positions (! = 0.0059), and the best performance was recorded while the arm is 

in the horizontal position (for SVM 92.8 ±3.8).   
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Figure 5.17: Classification accuracy in different static arm positions for independent finger detection. 

Respectively, the blue line corresponds to the arm in an upright, red line down, and green line horizontal 
positions. 

 

Figure 5.18: Classification accuracy in different static arm positions for object grasping. Respectively, the 
blue line corresponds to the arm in an upright, red line horizontal, and green line down positions. 

 
As presented in the previous section 5.2.3.2, the performance of fice classifiers were 

compared for dynamic arm movements (as called reach and grasping). Figure 5.19 shows the 

average and standard deviation of classification performance for three grasping types during 

dynamic limb orientation. The accuracy was obtained with no significant differences for ANN 

and k-NN regarding model accuracy. Compared to static arm positions, it performed a more 

reliable method as it improved the average classification for ANN from 89% to 91.6%.  On 

average, the classification performance of 92% was obtained for the ANN for all grasping 

types, which indicate that high classification for some arm position is significantly improved 

and has a high potential for real-time control.    
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Figure 5.19: Classification accuracy rate in different distances. Respectively, the blue line corresponds to 10 

cm, the red line 20 cm distances, and the green line 30 cm distances.  

Figure 5.20 shows the averaged across grasping types for six feature and five classifiers for 

arm travelling to 30 cm. Overall performance for ANN with MAV feature was recorded for 

ball grasping 94.4%, cylinder grasping 93.6%, and pinch grasping 89.4%, respectively.  

 
Figure 5.20: Average classification performance for six features and five classifications while arm travelled 

from the initial position to 30 cm.  

Despite some variations from previous research, it is clear that the data collecting, pre-

processing, and learning model may be used for real-time motion identification for transradial 

amputees. It is worth mentioning that, in these experiments reaults are average of five trials for 

two subjects. The subjects were the same for entire experiments for comparison.  

It is suggested that several parameters affect classifiers' performance, such as the capability 

of amputees to provide movements, the degree of sensation, and the remaining forearm 

percentage. The influence of experimental conditions such as the effects of the movement’s 
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number and user influence, particularly the amplitude changes of sEMG were assessed in this 

section. One of the important issues for motion recognition is the time consumption for training 

and offline computation.  

	5.4	Discussion	

Pattern recognition control in electromyography (EMG)-based prostheses has great promise 

for providing intuitive control. Despite the fact that existing technology for upper-limb 

prostheses has shown high accuracy (almost >95 %) in offline tests, clinical deployment of 

prostheses does not yet deliver the same performance. The primary cause for the disparity 

between academicians' and practitioners' applications is specific variations in setting 

conditions, such as electrode allocation, muscle contraction variance with varied arm postures, 

and muscle fatigue. 

One of the goals of this research is to look at typical reasons for prosthetic rejection and to 

offer practical solutions for dexterous prostheses. As a result, an amputee-friendly (realistic) 

electrode distribution and pattern recognition using various data sets and classifiers were 

studied. Except for ANN, the results reveal that decreasing the windowing size from 300 Hz to 

125 Hz affects the classification performance of all eight characteristics. This study's findings 

include a comparison of forty-eight features (two windowing sizes with three arm positions), 

which reveal that with fewer electrodes, the classification performance of all assessed features 

drops drastically (!  <0.0001). The study's primary finding was that classifiers performed 

considerably better with dynamic arm posture datasets. Because NN works better with big and 

complex data sets, dynamic arm posture EMGs-based pattern recognition improved robustness 

against EMG signal fluctuation.  

The aim of this section is to discover a suitable collection of sEMG properties that provide 

superior performance for myoelectric-based control. According to the study, sensors positioned 

around the circumference of the forearm yielded the best classification performance 

87.52±6.25% for seven electrodes and 80.6±8.92% for six electrodes with commonly used 

EMG features (MAV, RMS, and IAV). With the same number of electrodes, the EMG features 

with given electrode distribution surpassed existing data sets (sEMG signal from static arm 

postures)  by 4%. The results determined for sEMG when investigating the influence of arm 

position were similar to those reported in [182], [210], where similarity is the degradation on 

some particular arm positions (arm down position), despite differences in methodology.  

Although the classification performance is comparable to earlier research, it differs for two 

primary reasons.  Previous researches examined the classification performance with different 
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hand gestures and wrist motions. This study focused on single finger manipulations and 

configuration. 

Most significantly, past research used a statistical arm position on the table to investigate 

individual muscles, which is not viable for a substantial majority of amputees. In contrast, this 

study evaluated alternative arm postures (three static and three dynamic) for superior classifier 

training in large data sets with varying windowing sizes. In particular, it offers a method for 

mapping EMGs for reaching and gripping activities. Using this method for real-time 

applications, the travel distance was  also considered forbperforming the preferred grasping. 

This is more lifelike and resembles a human hand. Despite the fact that no significant difference 

was detected while conducting motion at varied arm distances and trajectories, it offers a better 

detection performance while eliminating the impact of EMG reconcentration. 

The performance of a non-amputee subjects using a 3D-printed socket, which allowed to 

conduct and test the prosthesis system from the perspective of amputee was investigated. This 

unique custom-designed socket and electrode distribution allows a realistic access to adequate 

forearm muscles without the use of any extra procedures such as ultrasound or medical 

evaluation. The socket was primarily designed with multichannel arrays in mind, as compared 

to more sophisticated approaches [246] or commercial prostheses [247]. It preserves intact limb 

muscle access for sEMG, and it easily adapts to new users.  

Therefore, for real-time myoelectrical prosthesis, two feature sets (RMS and MAV) with 

seven sensors are suggested. Combining these features with the recommended number of 

electrodes would make the control architecture suitable for functional testing of the entire 

system on transradial amputees.  

5.5	Summary	

The study clearly shown that the datasets and electode allocation had a substantial impact 

on classifier performance in presenting a variety of hand and finger actions. The use of 300 ms 

window size instead of lower window size results in a drastic reduction in classification error 

for linear classifiers. In general, the study highlights the potential benefits of a method inspired 

by the practical execution of utilising electrodes around the circumference of the forearm data 

sets derived mostly from literature. The results also showed that arm posture had an effect on 

categorization accuracy. It is recommended that better accuracy can be obtained by using 

training data from varied arm postures during the training phase.  

There are two electrode placement procedures described in the literature. The first is the 

commonly utilised method of attaching electrodes to specific muscles, which necessitates prior 
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experience and results in humans error with each replacement. The methodology is fully 

detailed in chapters 3 and 4. As described previously in this chapter, the second technique is to 

install sensors around the circumference of the user's forearm. In this new sensory modality, 

electrodes are positioned in an array in a specific spot on the forearm. Although both methods 

have yielded considerable data for prosthesis control, the second strategy is more practical and 

consistent since it provides high pattern recognition and allows the prosthesis to be quickly put 

on and removed. The redesigned socket ensures consistency for each use by employing 

standard space between each electrode and precise placing on the arm with the unique design 

(the specifications for the new socket design are presented in Appendix D). This new sensory 

modality with socket eliminates the user's influence and unifies the experiences. 

The primary goal of the tests was to provide a realistic and meaningful assessment of EMG-

based control by utilising a new sensory system to optimise electrode localisation. The chapter 

introduces new tools and advice on selecting the best data gathering process, classifiers, and 

precise parameters for active prostheses control, with an emphasis on the application and 

intended outcomes. The findings of the chapter proposed some solutions to a significant 

problem, the placement of the electrode, which was caused by the various configurations of the 

amputation stump. The outcomes of this chapter will be used in the following chapter 

development by extending the analysis to real-time signals and constructing an embedded 

control unit for pattern recognition in individuals with transradial amputation. The system 

robustness and reliability will be validated, and the performance of the real-time control will 

be evaluated using standardised real-time test metrics. 
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Chapter	6 	Validation	 Test	 of	 Robust	 Control	 Strategy	 on	
Prosthesis	Prototype		

6.1	Introduction	
An intuitive, robust, and multifunctional myoelectric prosthetic hand with a high degree of 

freedom is an excellent opportunity for upper-limb amputees to regain their daily life activities. 

Although most advanced prosthetic hands are not even close to human-level dexterity, 

scientific advancement and early commercially available technologies demonstrate that 

dexterity may be achieved by analysing real-time electromyography signals (sEMG). 

According to literature, most of these techniques are based on identical data collecting and 

processing protocols, as discussed in earlier chapters. Classification, regression, and control 

algorithms have been developed to understand the intended movement of users. The motion 

detection results proposed in the literature vary by a large margin to 80-95% accuracy. This 

accuracy, however, is affected by a variety of factors, including amputation degree, the number 

of classes, experiment settings, and observed muscles. It is necessary to exhibit empirical 

investigation in the proposed control strategy to analyse theoretical advancement in the real 

environment [208], [229], [238].  

This chapter presents the outcomes of the proposed technique in real-time conditions and 

discusses the benefits and drawbacks in detail. It analayses sEMG based pattern recognition 

using the best-performing machine learning technique ANN and time-domain feature RMS 

(compare to other tested methods) on a physical prosthesis in a range of real-time evaluation 

metrics. These two approaches are well-known and have previously been used to control 

myoelectrical prostheses [17] [187].  

This chapter studied the feasibility of operating continuously in real-time despite a range of 

interferences such as electrical shifting, limb position, and muscle force alterations. This study 

employed the new sensory modality (discussed in chapter 5) to develop an embedded control 

for amputees. The embedded pattern recognition architecture was tested in real-time with a 

robotic hand that can perform six independent finger motions and several hand manipulations. 

The commonly employed evaluation techniques were used to measure clinical reliability, 

robustness, and motion recognition accuracy in real-time with object relocation and gripping 

tests.  
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6.2	User	Online	Prediction	Strategy		

Machine learning techniques have been chosen over traditional control systems for 

prosthesis due to their superior accuracy, durability, and practicability. The early studies 

reported high offline classification accuracies for prostheses. However, it has been suggested 

that the necessary motion detection accuracy for real-time applications has never been 

achieved.  

Obtaining robust control is crucial for extending sEMG-based pattern recognition into real-

world applications, as some articles (e.g., [84] [248]) have emphasised. Thus, in order to 

strengthen the robustness of control architecture, an ML and feature extraction based approach 

that was proven to be robust to develop such control were tested in this chapter. A wearable 

embedded prosthesis socket was developed with EMG electrodes to capture muscle 

contractions and feature extraction algorithms to preprocess biological inputs in real-time. The 

proposed methodology is believed to play a significant role in developing personalised 

prosthetic devices at a reasonable cost. The data is collected in real-time, and the motion 

prediction is executed concurrently with the patient's normal daily activities. The primary 

advantage of this control architecture in terms of the aforementioned fundamental issues is its 

intuitiveness and robustness. Unlike previous key pattern recognition studies [116],[156],[95], 

which remapped hand motions from the wrist or shoulder, this study used the hand's 

independent fingers to execute the original anatomical motions. Figure 6.1 depicts the 

suggested prediction model and control for continuous control. 
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Figure 6:1: Overview of the real-time control architecture. The control system comprises EMG signal acquisition 
and data processing, motion prediction, and prostheses control. 

 

The suggested control system consists of two segmented control strategies built in the C and 

Python programming languages. The user can initiate finger positions and operate individual 

fingers using this control architecture (see figure 6.2), which fills a gap in the numerous existing 

control methods for transradial amputation. Furthermore, unlike some early prosthetics control 

methods, this control approach is continuous, similar to human dexterity, thanks to the signal 

modulation and prediction shifts between movements without requiring a long wait to return 

to the initial (rest) posture. From the viewpoint of amputees, this is one of the most desired 

features since it enhances function transfer efficiency [118]. 

Consequently, the majority of upper-limb amputees may benefit from this non-invasive 

method, which does not require brain implants or other expensive interfaces like iEMG. This 

control design has the potential to make next-generation prostheses more natural and intuitive 

to use for amputees. 
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Figure 6:2: The block diagram of proposed data processing and function control. The process is a composition 
of six parts: sEMG data measurement, signal prepossessing, feature extraction, data segmentation, prediction 
and control. 
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6.3	Adaptable	Socket	Development	

One of the advantages of a myoelectrical prosthesis over a regular body-powered prosthesis 

is that there is no harnessing or reduced body powering. They appear more cosmetic and natural 

as they do not  have cables and straps. However, these prostheses have several drawbacks, such 

as hefty batteries and a large number of actuators to give high functionality. These prostheses 

require large number of electrodes to capture signals from targeted muscles in order to activate 

and operate the prosthesis while preserving skin surface contact. As a result, this association 

may create discomfort, may not be tolerated by particular user skins, or maybe interrupted by 

sweating. Maintaining proper contact between electrodes and skin might also be complicated 

if the prosthesis is not flexible and limb size or shape changes. 

Because proper electrode-to-skin contact is critical for recording correct EMG signals for 

control, a tight socket is required to minimise electrode displacement even if the user changes 

arm orientation. Although the degree of amputation is important in prosthesis fitting and 

control, an adequate user interface in socket design is an essential feature of the prosthesis's 

structure, storing the components and holding the device onto the remaining body part. 

Nevertheless, determining a well-fitting socket is challenging because the residual limb is 

frequently of variable shape and size. Hence, several studies [246], [249]  have proposed 

alternative designs to alleviate fitting concerns, such as custom-made sockets and 

osseointegrated implants (see Figure 6.3). 

 
Figure 6:3: A presented embedded system that allows biosignal data acquisition and sensory feedback motor 
control of prosthesis by [159]. The system has three units: neurostimulator (NS), mixed-signal processing unit 
(MSPU), and prosthesis control and communication unit (PCCU). 

 

Statistics and surveys of prostheses indicate that 79 % of commercial devices are too heavy 

[200]. Furthermore, the overall weight of devices has a major influence on the perceived weight 
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of the system. As a result, it is advised that heavy components such as actuators and batteries 

must be reduced as much as feasible  [200]. It is suggested that an ideal socket must be stable 

while handling several tasks such as slippage, finger manipulation, and soft tissue rotation 

[250].  Even if the socket is properly designed, keeping a consistent fit over time may be 

difficult since the form and size of the limb may differ from time to time for the same user. 

This variation can occur over time and over the course of a day. This is one of the most serious 

issues with non-invasive EMG-based controlled prostheses. Specific alternative socket designs 

have been proposed to avoid this physical challenge for control (adjustable electrode housing 

mechanism) [251]. 

A surgical alternative method was proposed to circumvent the effects of socket fitting 

difficulties, such as  the effects of volume changes and variations that cause comfort problems. 

Although this approach solves the majority of fitting issues, there are still challenges in the 

interface, such as obtaining reliable command signal, processing time, and continuous control. 

Thus researchers have proposed more direct EMG recording to regulate implanted 

myoelectrical method [252], [253]. In order to improve the socket comfort and increase 

acceptance of the device, researchers and prosthetists have developed new materials, 

production methods such as embedded systems [159], and new sockets to offer customised  

prostheses by maintaining or adding new functions for the daily life of individuals [160]. 

This section discusses the development of a wearable prostheses controller based on an 

improved new sensory modality (presented in chapter 5), intuitive pattern recognition, and a 

customised control architecture. The robotic hand is controlled directly by a wearable 

embedded system, which connects wirelessly with sensors and the controller to recognise 

patterns. The complexity of combining an effective embedded pattern recognition with a 

control architecture for intuitive user-prosthesis interaction was developed throughout the 

entire system. A robust feature extraction and data processing (dynamic data collecting)  was 

achieved with less delay using this methodology. The reliability of signal acquisition with 

suggested approach was improved to eliminate the influence of electrode shifting and electro 

signal interferences, which degrade the real-time performance of prostheses. 

6.3.1	Mechanical	Features	of	Prototype		

Myoelectrical-based control prosthesis have been widely researched in order to overcome 

the limitations of conventional data acquisition methods and meet the demands of all degrees 

of amputation. Several research projects to improve control methods [103], [160], [254], to 

enhance the mechanomyography as probing different electrode placement and data processing 
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[246], to the prospering prosthesis with sensory feedback [35], [64], [164], [255] are ongoing 

explorations.  New approaches increased the cost of the prosthetic hand and thus, increased the 

rejection rates due to the need to justify their cost quantitively [136].  The summary of upper 

limb rejection rates, up to 75 per cent, in the past quarter-century with social and technical 

aspects are given in [12]. The authors have claimed that advances in engineering and 

technology, materials, battery/charging units, and signal acquisition had decreased the rejection 

rate.  

This research concept was driven by the need for real-time data collection and operation of 

a dexterous prosthesis for upper body amputees. The empirical data from the able-bodied 

participant for varied sensor implantation supported the electromyography-based prosthesis 

socket design. An EMG-based embedded system with external power and a 3D printed and 

changeable prosthetic hand socket is the main design concept.  

In the inertial data collection unit for assessing finger movements, a microcontroller 

(Chestnut V1.0 PCB) was used to activate motors in the hand palm if the predictions are 

detected (see figure 6.4). A mini PC (Raspberry Pi 4B) to evaluate signals from electrodes and 

classify data in real-time is shown in figure 6.4(c). The socket elbow section was particularly 

designed to ensure accurate data acquisition. The surface and edge of the socket were treated 

with HTV silicone material to achieve a pleasant fit. The system's total weight, including 

electrodes and wires, is projected to be 670 g. 

 

                                         
Figure 6:4: The main parts of the system: (a) linear actuator, (b) the mini controller, (c) mini PC, (d) EMG 
electrodes, custom-made prosthetic socket. 

 

(a) (b
) 

(c) (d
) 
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The robotic hand was attached through an ABS plastic socket to the residual limb. To 

maintain stability, the socket was custom-made for each user out of silicon material, and the 

outer socket is held to the limb by friction. Commercially available sockets are manufactured 

of an elastic and long-lasting resin-based material or are supported by carbon fibre. The socket 

design is equivalent to several commercially available models [40], [256], in terms of size and 

aesthetics. The socket was built with a 280 cm length and 45 mm radius, corresponding to an 

adult man's arm size. 

The design was developed for two primary purposes. The first reason was that it was desired 

to have characteristics and a shape similar to a biological human arm. The second was to utilise 

it as the principal test of the developed control method's real-time performance. Since this 

study's main motivations are obtaining intuitiveness and robustness, the view was that the 

embedded control system would improve the data acquisition and real-time control with high 

accuracy, as new electrode orientation and machine learning algorithms provide better 

performance with the new sensory modality. 

Some research groups tested and validated their control strategy using commercially 

available sockets and hands. However, It was decided to develop a new socket to analyse the 

new electrode configuration and embedded ML system for this investigation. The mechanism 

is divided into two parts: the hand and the socket. The hand part was purchased for testing 

independent finger's motions since it does not need to be sophisticated if it delivers independent 

finger motions. 

6.3.2	Continuous	Data	Acquisition	System	

High performance has been attained in the virtual environment with offline and online data 

collecting from able-bodied and amputees. However, when users test the entire system in real-

time, the system does not deliver the same, or even close to the same, performance. According 

to studies, offline control has a success rate of 85-95%, whereas online control has a success 

rate of 65-73% due to the fact that real-world application requires physical equipment and 

synchronisation.  The most significant difficulty encountered by the user is a lack of robustness 

and adaptability in the embedded system to implement EMG pattern recognition techniques. 

Thus, issues concerning the adaptability and durability of wearable elements have a significant 

impact on prosthetic rejection rates. 

One of the significant disadvantages of pattern recognition algorithms is re-training for new 

users and new occasions. Composing training features and producing a new testing feature 

vector for each user and different arm postures is currently an issue that has to be addressed in 
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this method. Second, there is a lack of a complete device that enables an embedded system to 

integrate four real-time steps: data acquisition, feature extraction, predictions, and motion 

execution. It is necessary to process quickly enough (less than 300 ms) to consider the real-

time system. Thirdly, as many components in this system do not interact for precise time 

control, it is not feasible to achieve such a compact system to combine all components and 

algorithms in an embedded, powerful mini PC [160],[257]. 

The approach outlined in this work aims to address a gap in the literature by developing an 

embedded control system. A system for real-time data acquiring, processing, and actuating a 

prosthetic hand was developed in this chapter. Figure 6.5 displays the suggested system's 

design, consisting of two major components: a micro PC for data processing and prediction 

and a mini controller for actuators. 

 

 
 
 
 
 
 
 
   
 
 

                                                  
                                    

                                                                                               
Figure 6:5: The diagram of system architecture for continuous transmission of data to the controller. (c) EMG 

electrodes around the arm send hand motion to the electronic compartment, (b) custom made socket interface 
(i) mini PC processing signals and detecting intended motion, (a) prosthetic hand (ii) mini controller for the 
actuator. The data is transferred from Delsys to the mini PC over Bluetooth, and then by wire from the mini PC 
to the micro controller through a serial peripheral interface. 

The robotic hand holds four linear actuators, a voltage regulator, and wiring components. 

The Delsys electrodes and Delsys box was used to continuously transmit EMG data to the mini 

PC in a complete prosthesis. In each window, seven data channels are filtered and cleaned from 

undesired disruptions. Real-time data is called via Python for model training and prediction 

through a wireless link between MATLAB and Python programmes. This communication 
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protocol was chosen for its ease of use and versatility to communicate with various host 

devices. The comunication protocol between components and detailed specifications for 

sensors  are presented in Appendix A. 

The interface provides  continuous data for new predictions when the finger movements or 

hand manipulation changes. The controller board was integraed to the system to provide digital 

signals to  each pin of four motors independently by pulse with modulation (PWM). The mini 

controller's (Chestnut V1.0 PCB) code was written in the Arduino integrated development 

environment to control each finger via linear motor (PQ12 motors). The setup code runs at the 

beginning for the initial position for prototype. The main loop continues forever once the 

Raspberry Pi receives the first message throughout each execution as part of the motion 

detection. The specifications for the new socket design and commercial parts are presented in 

Appendix D. 

The proposed control mechanism is a key and necessary component of the prosthesis, as 

well as the most important aspect of this research. It is divided into two stages. The first is a 

measurement of the participant's muscle activation EMG signals to identify the required 

pattern. The second step is to simulate the desired movement on the prototype, confirming that 

the system behaves similarly to an able-bodied user. The first portion is provided in Chapter 4 

and 5, covers a variety of topics, ranging from diverse electrode orientation to different feature 

extraction approaches and machine learning algorithms. This chapter presents the second 

portion, which serves the control architecture of robotic hand  and the validation in real-time. 

As described in earlier investigations, the suggested control approach has been effectively used 

to EMG  controlled prostheses [160], [212], [248]. This study aims to present and validate our 

data acquisition and motion detection to maintain more consistent signal acquisition.   

The goal was to employ more suitable sensors (e.g., 13E2200, Otto Bock). These are 

sophisticated sensors that read user input and respond to hand movements. This might allow 

for faster data recognition and lower computing costs. The data collecting box, like the Delsys 

system, must be connected to the PC through TCP/IP protocol using the Trigno Control Utility 

(TCU), which increases processing time. Adding multiple wireless connections increases the 

likelihood of connection loss and causes synchronisation issues. In doing so, the prototype may 

not 'drive' the user better, but it will boost intuitiveness and minimise movement response time. 

The EMG data were used to develop the control architecture obtained from untargeted 

muscles in the forearm's circumference. This concept was unlike other commercial prostheses 

for two reasons. The first approach to determining data from the arm's most dominant muscle, 

as presented in chapter 3, is the most common approach for some amputation levels. However, 
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this approach is not feasible for transhumeral (above-elbow) and transradial users. Also, it is 

challenging to maintain the same electrode positions each time of use as it requires precise 

electrode location, and electrode shifting and crosstalk are most likely. Besides, the aim was to 

develop the system as minimally invasive to reduce the number of electrodes and, eventually, 

the prototype's cost for desired control strategy. 

The features were obtained in the MATLAB program to identify meaningful information 

and eliminate unwanted interferences. As previously stated, the high accuracy of motion 

detection was accomplished in both electrode placement conditions; however, the second 

strategy, untargeted muscle, was favoured for practical reasons. Throughout development, the 

prototype's priority was to strengthen the robustness of active powered prostheses without 

sacrificing their multifunctions. 

6.4	Validation	Experiments	

It is challenging to evaluate the real-time control performance of EMG based prostheses due 

to the lack of standardisations on data collection, feature extraction and pattern recognition 

methods.  It is difficult to compare different experimental results when varied conditions, such 

as the number of sensors, classification techniques, diversity of individuals, electrode location, 

type of limb deficiency, and residual limb length, are taken into account. It was suggested that 

significant differences between participants and their performances could occur even in the 

same test conditions, especially considering there are not many multifunctional prostheses 

available to compare versions. 

The accuracy of the classification methods has been used to evaluate the effectiveness of 

pattern recognition algorithms in most prior research. However, classification accuracy is the 

capability of recognition algorithms and tools to differentiate different patterns in specific time 

sequences while the participant manipulates fingers or holds objects. These performance 

metrics are usually determined after post-processing and regularisation of the EMG signal. 

Thus they are not a realistic assessment for the real-time performance of electromyographic 

prostheses. Therefore, it is suggested to employe well established standardised testing 

protocols on prosthetic hands to see if the residual muscles could still offer accurate real-time 

prosthesis control using real EMG data. In this study, the object relocation and grasping tests 

were performed to assess the proposed system's clinical reliability, robustness, and motion 

recognition accuracy. 

The findings of the experiments showed that the robotic hand could successfully display six 

finger motions and four objects gripping, and the user did not encounter a significant time delay 
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for the control. The control methods demonstrated the capability to predict finger motions and 

object grasping quantitatively since their predicted motion trajectories have similar forms 

regarding their intended trajectories from the graphical display. It was discovered that hand 

gestures could be successfully differentiated across sessions in which electrodes on the arm 

were replaced, even after several days.  Some inconsistencies were discovered due to small 

shift between the end of some activities and the start of new ones.  

6.4.1	Participant	Details	and	Preparation	

In this experiemtns data were  determined from seven channels of sEMG signals from a 

human subject while grasping four different objects and manipulating individual fingers (seven 

electrodes over the circumference of the forearm is illustrated in figure 6.6). The arm and wrist 

have been constructed to keep rigid using a socket, as these components are frequently 

unavailable or immobilised in transradial and below elbow amputees. All finger phalanges 

were manipulated with natural speed while opening and closing the fingers for a total of 10 

seconds to establish realistic motion patterns during the EMG analyses.  The newly developed 

adjustable compact socket was used to apply muscle patterns that had been recorded and 

categorised on the robotic hand. 

  
Figure 6:6: Brunel robotic hand (a) and custom-designed socket. The bypass socket (b) is used for able-bodied 

subjects for data collection and practicality tests. 

 
This work employed two types of EMG datasets to examine the classification performance 

of six features and five ML models. The first dataset consisted of targeted muscle data collected 

using seven electrodes. This was the first example, and the complete outcomes are presented 

in chapters 3 and 5. The second dataset was a novel technique that used seven electrodes along 

the forearm circumference. The first case was chosen as it is a  common approach and has 

mainly been used in similar research [17], [103], [160]. The second scenario was chosen for 

practical implementation in order to evaluate if pattern recognition improves differentiation 

a b 
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performance while requiring no exact electrode placement. In the experimental setup, seven 

commercially available Trigno wireless EMG electrodes (Delsys Inc. Boston, USA) were 

placed around the circumference of the forearm, approximately 5cm distance from the elbow 

joint. The custom-made housing with electrodes was used for the able-bodied subject to 

determine the similar condition of amputees. The offline and online evaluation data was 

collected from an able-bodied subject (male, age 26 yrs.).  

The following procedure was used in the first portion of the tests. Before the experiment 

began, the subject was clearly informed about the objectives of the study. The experimenter 

recorded trials for model training when the subject had rested and was ready to begin. He 

manipulated the object as instructed for ten seconds after 3 seconds of rest between each 

manipulation. In total, the subject repeated each type of grasp and finger manipulations 25 

times. In the second part, the subject was asked to determine the initial posture to bring the 

robotic hand's fingers to the initial position, and then the subject was asked to perform hand 

manipulations for real-time (online) control of prosthetics. The subject's (able-bodied) arm was 

inserted into the socket attached to the right arm elbow, as shown in figure 6.6. Each hand 

manipulation was subjected to a total of 25 real-time tests, equivalent to offline data records. 

6.4.2	Data	Processing	and	Feature	Selection	

Feature extraction is essential to achieve a meaningful set of information that precisely 

characterise different hand motions in pattern recognition.  It is noteworthy, that a variety of 

feature extraction methods were analysed and presented in chapter 4. In order to obtain the 

most appropriate feature for this study, a preliminary assessment of different time-domain 

features in different windowing sizes, was conducted and presented in chapter 5.  

Several features could have been used for the real-time control of the prototype. Therefore, 

the feature with overall high performance and the computationally can easily be applied, is 

given the first preferences.  The overall best-performed feature, root mean square (RMS), was 

sampled at 2 kHz (0.0005 s sampling period) and bandpass filtered (20-450 Hz) using wireless 

data transfer method (TCU) from Delsys. The data values were streamed through the data port, 

and each value contains 4 bytes. The sampling period for each frame is 13.5 ms (0.0135 s). The 

RMS is accepted to be the most important since it represents the signal's capacity and has been 

extensively implemented in the field of sEMG based control [235], [248]. The mathematical 

explanation of all evaluated features is given in Appendix A. The evaluation results and average 

classification in different comparison conditions such as EMG signals for different electrode 

placement and various sensors and windowing sizes, are also presented in Appendix C. 



170 
 

Considering one of the main issues in the previous studies, which is to solve the influence 

of mobility, the EMG data set with different arm postures was trained and tested.  It has been 

suggested that the data set with different scenarios performed better since it includes a more 

robust approach and tolerates arm mobility [258]. An incremental window analysis approach 

was used to process EMG signals based on evaluation results and previously reported research.  

Since each sensor provide 3-axial ACCmmg signals (data of accelerometer), some researchers 

have also used these data sets as a feature to characterise the hand motion in hand mobility 

scenarios [211], [213]. For online evaluation, some previous research relied on some high-level 

features or raw MVC value for each movement; however, this approach was not taken to avoid 

dimension reduction process by automating signal processing and feature extraction.  After 

correctly labelling the function and obtaining high classification accuracy, system  does not 

need to retrain the classifier for the same user in each operation. Signals will be acquired online, 

and predictions will be made simultaneously. 

6.4.3	Experimental	Setups	Design			

Previous research proposed innovative clinical metrics for evaluating control system 

performance with virtual systems or by mimicking user performance in a real prosthesis. The 

virtual reality (VR) system has been used to simulate online manipulation of the prosthesis at 

various obstruction levels and degrees of freedom. When the classifier predicted the subject's 

intended move, the virtual human-machine interface was instructed to grab or rest in a custom 

software interface [26] [252]. The VR system has the substantial advantage of eliminating the 

need for mechanical implementation and socket design [92], [259]. In some applications, the 

virtual arms and fingers are intended to move virtual items or order arms into a specific posture 

[260],[229].  

The target achievement control (TAC) test is one of the most often utilised virtual 

environments for evaluating pattern recognition. Hargrove et al. [261], have controlled a 

virtuall hand prototype using the EMG signal. Similarly Simon et al.[260], have used a VR 

prosthesis to test a myoelectrical control system on a transradial amputee.  The test requires the 

artificial arm to be manipulated within ±5 degrees of the intended posture and a two-second 

continuing operation time to be considered as successful. 
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Figure 6:7: The virtual testing and rehabilitation environments; (a) object grasping and manipulation from [26], 
(b) artificial hand and arm posture control from [260]. 

Several standardised physical evaluation protocols for prosthesis tests have been devised 

and adopted. The box and block (B&B) test is the first established method for measuring the 

performance of the myoelectrical hand [165]. This is the most basic and extensively used test, 

and it is used specifically for grasping and object handling functional testing. In each round, 

the user is asked to move as many items as possible from one box to another in 60 seconds, as 

seen in figure 6.8. (a). The setup only requires limited DoF, focuses on the opening and closing 

of the prosthesis. The quantity performance metric is the number of blocks transferred 

successfully [262],[238].  

 
Figure 6:8: Illustrations of (a) box and block test from[165] and (b) clothespin relocation test from[160] 

The second most popular test is the clothespin relocation test (CPRT) [263]. A single round 

test requires users to pick up three pins from a horizontal bar, rotate them, and relocate them in 

a vertical bar (one at a time), as seen in figure 6.8 (b). The test requires more functionality and 

DoFs. Such a test has mostly been used in performance evaluation of wrist and fingers, i.e., 

opening and closing finger and pronation/supination of the wrist. The outcome of the test is the 

time taken to relocate three pins successfully. The exact evaluation of this test is not limited to 

a specific time [229],[262].   

a 

a b 

b 
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The bottle/block transfer (BBT) test is the third adopted test established by [103] to evaluate 

the robustness of the control system while manipulating heavy objects [17]. It requires the 

prosthesis to move three heavy bottles, 1 L of water (approximately 1 kg) from one location to 

another, 120 cm distance (see Figure 6.9 (a)). The mission completion time and the number of 

successfully transferred bottles are the performance outcomes of this test. The modified version 

of this test is the block turn test. It is a standardised test that requires picking up an object, 

turning it 90 degrees, and relocating it (see Figure 6.9(b)). The successful completion of a task 

in a single round in a limited time is the test's outcome metric [103]. The test requires high 

functionality and arm mobility [262]. 

 
Figure 6:9: The illustration of (a) bottle transfer (b) block (bottle) turn test from [103] 

In addition to the assessments mentioned earlier, several more clinical tests and assessments 

have been conducted with a focus on various purposes and functions. For hand impairment 

measures, for example, the Southampton hand assessment methodology has been developed. 

Despite the fact that numerous testing methodologies have been published in the literature, 

clinical tests are still limited in terms of practicality and functioning assessment. 

Aside from the practicality of the VR system, real-time systems offer advantages in that 

they involve the subject and enable reliable quantity evaluation of performance metrics such 

as motion completion rate and motion completion time. They also present more realistic 

settings and a range of limitations. For example, because mechanical and embedded systems 

require synchronisation of all integrated components, achieving such synchronisation in real-

world trials is challenging. Furthermore, because internal and external influences induce 

significant interferences in the EMG signal, dynamic signal collecting and socket fitting are 

challenging to maintain. 

In this study, the experiments with a real robotic hand and socket were performed 

immediately after training sessions. The subject was instructed to follow the procedure for each 

movement on the screen. A multi-degree freedom (DoFs) prosthetic hand that responds to the 

classifier outputs was connected to the embedded control system [264]. Once the participant 

performed finger motions, the real-time prediction from the classifier and the motions observed 

a b 
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in the robotic hand was recorded until the participant completed the activities. The movement 

offset was identified as the rest position. Each of six finger motions was randomly presented 

(on a computer screen), 25 times in each trial for 150 actions. The setup was the same as offline 

control, but the prosthetic hand outcomes were measured as performance metrics rather than 

the prediction accuracy of classifiers as presented in [17], [209].  These trials require the robotic 

hand to mimic the user's finger motion as accurately as possible. The round completion rate 

and real-time performance were evaluated as outcome measures similar to early literature 

[160], [169]. Finger motion tests in real-time are presented in figure 6.10. 

     

     
 
Figure 6:10: Type of finger movement proposed in this study: rest position (a); index flexion (b); middle finger 
flexion (c); ring flexion (d); little finger flexion (e); thumb flexion (f). 

 Three online test with varied difficulty levels was used for hand manipulation and object 

grabbing. The original test called the box and blocks (B&B) [103] is one of the simplest and 

most commonly used in upper limb prosthesis clinical evaluation. It consists of transferring an 

object from one location to another, one by one, in a fixed time (usually in one minute). The 

subject was asked to perform and hold four objects using the proposed control in our modified 

test. The second test required the participant to control multiple fingers simultaneously 25 

a b c 
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times, a total of 100 movements. This test is designed to assess the robustness and continuity 

of the control when transferring objects. As shown in Figure 6.11, the four most daily used 

items, representing the four most daily used hand manipulation, were placed on the table. The 

objects' weight is ignored in the tests as the objects are designed and preferred to be in 

lightweight materials (see Figure 6.12. The subject was instructed to pick up the object, one at 

a time, and grasp them for three seconds. The two-performance metrics, including completion 

rate and average completion time, were determined for each of four grasping actions. This test 

objectively evaluates the ability to grasp and hold objects in dynamic arm manipulation.  

 
Figure 6:11: Type of object grasping proposed in this study: spherical (a); precision (b); pinch(c); cylinder 

grasping(d). 

 

 
 
Figure 6:12: Representation of object grasping of the right forearm.  The prosthesis was connected to the PC via 
TCP/IP protocol for recording EMG signals for training and testing. 

 
In addition, for final evaluation, a bottle transfer test was used to test the consistency and 

continuous control approach (seen in figure 6.13). The most important aspect of this test is that 

it demonstrates adequate real-time control in various arm postures and path efficiency as 

presented in [208], [265], [266]. This test could be related to the fact that typical control 

a b c d 
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methods are incapable of producing continuous and efficient control for high-speed systems. 

Statistically, there is a considerable performance decrease after transitioning from middle to 

long distances. 

 
Figure 6:13: The illustration of  bottle/ block transfer test from the shortest distance (30 cm) to the longest 
distance (80 cm ) 

 
Before starting the test, the subject was briefed on the concept and outcome of the 

experiments. The subject was allowed to practice each task as much as was required for 

familiarisation.  After the experiments, each test was subjectively scored with the motion 

completion rate and mimicking performance over the user performance. 

6.4.4	Dynamic	Control	Method	in	Real-Time	

Myoelectric prostheses operate the actuators based on the user's intended motions predicted 

by ML algorithms. The motor command signals are delivered based on the highest predicted 

classes. A filter block in the suggested system was initially employed to derive the relevant 

part of EMG signals in the defined region (between 20 Hz and 450 Hz) using band-pass filtering 

to reduce noise and powerline interferences. The process must be fast and accurate in 

estimating the online EMG signal classes for simultaneous and intuitive control. Therefore, the 

EMG feature for analysing data and machine learning algorithms should be chosen wisely 

[267]. 

Artificial Neural Network (ANN) was used for validation tests because of its practicality 

and comparatively higher performance in classifying large  EMG data than the memory-based 

SVM classifier.   The model was developed and trained using a subset of the retrieved data set 

(70 %), with the remaining data sets used for testing. To avoid biassed data, overfitting, or 

underfitting, k-fold cross-validations with (k=10) were used. The k-fold cross-validation 

method is an iterative technique for evaluating the model's performance with the appropriate 

30cm 20cm 30cm 
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data set. The procedure was repeated five times in offline tests (for model training) and average 

accuracy was clacultaed. The optimal parameters then used for real-time control and validation 

tests. A regression-based approach was employed as an alternative machine learning method 

to sequence-based algorithms. Details of the regression method and results were presented in 

section 2.3. This different strategy was adopted to make control architecture more robust and 

intuitive. This method was introduced and compared to provide simultaneous control in other 

studies [160], [268]. 

6.5	Results	

In order to evaluate optimal control parameters and gain insight into clinically implementing 

sEMG based pattern recognition and continuous control of upper prostheses, three real-time 

performance metrics (motion selection accuracy, motion completion time and reliability) have 

been introduced and employed by research groups [41], [103], [208]. The myocontrol hand 

assessment has been broadly divided into two categories, those evaluating system performance 

based on offline metrics and those based on the online assessment using the virtual system, 

computer games, or physical tests. With the variety in testing conditions and control 

algorithms, the offline performance evaluation is mostly made using either classification 

accuracy or the 6^2   scores, the detail of offline assessment is presented in chapter 4 and 

chapter 5. However, it has been previously shown that offline results are not offering intuition 

regarding the feasibility of practical implementations of control methods in real-time [72], 

[161], [252]. Although algorithms and learning models have achieved peak performance, 

adapting these models to daily life conditions is not feasible due to various real problems, such 

as robustness, changes in arm positions, electrode shifting, and skin conditions.   

A variety of evaluation metrics have been employed in the literature to examine the 

performance of prostheses. The model accuracy is the most commonly used model [176], 

[267], [269], followed by recall [270],[199], precision [19], [223], and accuracy standard 

deviation per class [271]. These measurements, however, may produce biased results due to 

two factors: incorrect identification of true positives and unbalanced datasets. Furthermore, 

because these measures are used to evaluate established algorithms, some of these studies may 

not be feasible in real-time conditions due to the lack of computational power on prostheses, 

synchronisation, and processing time.  Yanez et al. [176] have provided additional analysis on 

offline metrics. 

In order to analyse the theoretical progress in the real environment, it is essential to 

demonstrate the empirical exploration in the proposed control approach [208], [229], [238]. In 
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the literature, nine real-time evaluation approaches have been offered in [175], [176]. The most 

popular methods used in clinical tests to determine if prostheses fulfil the minimum acceptable 

functionality are motion completion rate [260], motion completion time [98], and real-time 

accuracy [252].  

It is critical to evaluate the control architecture in task-related metrics and define statistically 

significant outcomes to accomplish real-time control. To validate prosthetic outcomes, 

assessments for the capacity of prostheses test, which evaluates the user's capacity to 

accomplish a series of tasks and requires physical prosthesis under the control of actual 

behaviour, were conducted in this section.   

	6.5.1	Motion	Selection	Accuracy		

      The test was devised to assess the efficacy of motion detection capability. It is the 

proportion of intended movement that is correctly identified in real-time with a prostheses 

prototype. This accuracy-based metric describes the control system's reliability. It demonstrates 

how well motor command signals (here represented by myoelectrical signals) can be translated 

into a correct motion recognition and the control signal for the prosthesis [72].  This 

performance criterion has been utilised by several researches to assess the capacity of 

myoelectric control. It provides a qualitative description of the control system, intuitiveness, 

and motion control while being in use. As a result, the test was used to evaluate the proposed 

control method and sensory modality reliability. The pre-trained ANN was used with the 

parameter mentioned above (see section 4.3.4 and 6.4.5) and the RMS feature in a windowing 

size of 125 ms for the real-time test. Figures 6.14 (a) and 6.14 (b) depict the offline performance 

of the ANN model over dataset from the able-bodied subject. 
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Figure 6:14: The offline performance of the ANN model. The model parameters were used for real-time tests, 
(a) model accuracy, (b) model loss with 256 iterations. 

 
The accuracy and F1 score derived from true-positive (TP), true-negative (TN), false-

positive (FP), and false-negative (FN) have been used to evaluate the classification 

performance of ML in the literature.   

 

                                                     Sensitivity=TP/(TP+FN)                                             (6.1) 

                                                     Specifity =TN/(TN+FP)                                              (6.2) 

                                                      Precision=TP/(TP+FP)                                               (6.3) 

                                         Accuracy=(Sensitivity+Specificity)/2                                    (6.4) 

 

                                         F1 Score = !∗#$%&'(')'(*∗+,$-'&'.%#$%&'(')'(*/+,$-'&'.%                               (6.5) 

 

 

(a) 

(b) 
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Confusion matrices were used to quantify the accuracy and F1 score  of the ML model on 

defined datasets. They summarise and visualise classifier precision, and accuracy for each class 

also provide information about the performance of the models as well as the reliability of 

parameters. The same evaluation measures have been adopted in the majority of pattern 

recognition-based prostheses control studies published in the literature, such as [212], [199], 

[223].  The confusion matrix (shown in Figure 6.15) shows which motion is the most difficult 

for each evaluation. Notably, it was reported that the subject experienced difficulty when trying 

to flex the index finger and thumb since thumb flexion predictions were often misclassified as 

index flexion. The performance of online results obtained during single finger motions is 

shown in table 6-1. The mean average of pre-collected data is significantly higher than the real-

time control performance. 

 

 

               
 
 
 
 
 
 

 
Figure 6:15: The confusion matrix of offline performance for learning model over able-bodied subject while the 
subject arm is in the table, where each label represents single finger motions. Darker cells indicate the number 
of incorrect predictions. Each class represents a binary number for practical reasons. 
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Table 6:1: Performance of Online Tests for Individual Finger Motion Detection 

Motions Number of 
Electrodes 

Motion detection rate (%) 

Vertical-Up Vertical-Down Horizontal 

Rest 7 92 96 92 

Thumb Flexion 7 94 92 92 

Index Flexion 7 90 88 88 

Middle Flexion 7 88 92 92 

Ring Flexion 7 90 94 90 

Little Flexion 7 94 90 88 

 

In the table, results for single fingers are presented for the online test with the able-bodied 

participant for three arm postures. The user achieved an average  >90% success rate for overall 

tasks. When comparing the same data and actions with offline accuracy, the table shows that 

the participant achieved relatively lower success with ~5% differences. 

Variations in the user's arm position occur when performing various actions in daily life. 

The influence is effective on upper limb amputation due to residual muscles that are located in 

prostheses sockets. A large number of conventional prostheses collect data from the electrodes 

embedded in the socket. Therefore, these designs lead to displacements on targeted muscles, 

causes variation in sEMG signals, and affects prostheses' control performance [201]. The 

implications of different arm positions were presented in chapter 5 for offline tests. 

Figure 6.18 demonstrates the average offline performance of data obtained while the user's 

arm is in a vertical up position. The comparison of Figures 6.16 and 6.17 shows the impact of 

arm position. High offline performance is generally achieved regardless of the user's arm 

position from training sessions (e.g., >95% accuracy). However, compared to real-time control 

performance shown in table 6-1, although a similar trend was observed for all online tests, the 

performance significantly decreased because non-stationary EMG signals are influenced by 

arm position. 
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Figure 6:16: The confusion matrix of offline performance for learning model over able-bodied subject while the 
subject arm is in vertical-up position, where each label represents single finger motions. 

 

The object grasping test was conducted by employing the same machine learning model and 

parameters. Figure 6.17 shows the performance of the offline model for object grasping tests. 

In this figure, it was observed that the subject experienced difficulty when trying to perform 

pinch and precision hand gestures. As shown in the confusion matrix, these two commands 

were often misclassified with each other. It is a natural result since muscle combinations of 

these two gestures are very similar and difficult to differentiate. Although collective muscle 

orientation is expected to perform better, object grasping performance is relatively lower due 

to arm mobility. For example, the average performance of four patterns for seven electrodes 

was recorded as 91% (see table 6-2).   
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Figure 6:17: Figure 6.17: The confusion matrix of offline performance for learning model over able body subject, 
where each label represents object grasping; cylinder, spherical, pinch, and precision. 

 
Table 6:2: Performance of Online Test for Object Grasping and Manipulation 

Type of motion 
 

Number of 
Electrodes 

Forearm Orientation Motion detection rate 
(%) 

Cylinder grasping 7 Free 94 

Ball grasping 7 Free 92 

Pinch grasping 7 Free 88 

Precision grasping 7 Free 90 

 

It was found that more accurate control and interaction are possible with longer training 

time. After several training sessions, misclassification tended to be reduced, and classification 

performance was improved by ~2%. This could be because the subject can somehow adjust his 

motions and corrects his sEMG signals. The real-time control experiments also showed that 

the high misclassification rate occurred in the transition and in the beginning phase of some 

specific finger motions, such as the thumb's flexion and the index finger's flexion. Commonly, 

a particular finger will move ahead of another finger, resulting in some crossovers in sEMG 

samples with the specified window and reduces the classification performance. This may cause 

a significant problem if a critical and precise execution is required. In order to avoid this 
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problem, a large threshold of sEMG signals can be preferred to improve the quality of training 

samples.  

6.5.2	Motion	Completion	Performance		

This test is established using time metrics to determine the number of successfully 

completed motions across the entire range of motions in a certain amount of time. It is a test of 

speed and precision. The time from the beginning to the end of the intended action is used to 

create the test. If a motion is completed in a reasonable amount of time, it is deemed successful 

[41], [272]. The tests were designed to show the impact of a variety of variables that influence 

prosthetics used. The results of this test, for example, demonstrate the control's sensitivity to 

distinguish between different numbers of motions as well as variations in prosthetic capabilities 

over time. The test also recommends the system's ability to quantify algorithms on a physical 

device in a continuous process. In addition, the test was used to determine prototype response 

time as well as the time delay between user and device. 

The experimental results showed that the grasping performance and stability was 

significantly improved compared to some previous research [165], [189], [190], [259]. Under 

this combined control method, the prosthetic hand can rapidly grasp objects with 83 % 

accuracy. It was found that the failure possibility, which was presented as the number of failure 

times divided by the total transporting times, was considerably reduced. Since the number of 

successful object transfers is one of the participant's motivations, some object release was 

observed before reaching the final position. For evaluating the hand functions in daily life, the 

subject performed the operational tasks several times. Apparently, objects with similar sizes 

and shapes cannot be differentiated accurately. Nonetheless, dropping possibility is reduced by 

a long-time training period. 

The experimental results for online assessment in the able-bodied subject for bottle/block 

transfer are shown in table 6-3. The average time to complete the bottle/ block transfer online 

test for the able-bodied is shown in table 6-3. The time taken to transfer the object was 7±2 s 

for 30 cm, 8±1 for 50 cm, 10±3 for 80 cm, respectively. 
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Table 6:3: Precision Results of the Bottle Transfer Test 

Distance (cm) Time(s) Number of 
Electrodes Task completion rate (%) 

30 7±2 7 92% 

50 8±1 7 82% 

80 10±3 7 76% 

 
Pattern recognition requires a sufficiently short time for motion classification and 

completion with acceptable delay.  Strazzulla et al. [273] conducted a real-time test and 

hypothesised that statistical difference occurs between two groups of subjects, naïve and 

experts. They have achieved a 95.6 % task completion rate in their work and claimed that expert 

participants completed the task faster than naïve ones. It is suggested that the subject could 

have performed more adequately with more experience.  

Although standard success metrics were used in this study, a comparison with other studies 

is difficult considering different experimental conditions, equipment, and subjects. Therefore, 

this study compared results with online TAC, bottle transfer test investigation, and real-time 

control of five-fingered prostheses [160], [164], [252], [273]. Farrell et al. [274] have  

presented a similar work with online control of object grasping. In that study, the required time 

for a task is 300 ms and the time given to execute the tasks is 20 s. They have achieved a 

completion rate of 95 %. In addition to that pattern recognition system in this reseach’s 

combined control architecture, the user has simultaneous control of multi fingers. The learning 

algorithm provides an additional pattern for individual fingers, which can interfere with other 

actions such as thumb flexion/ abduction, which mainly engages with common muscles.  

The experimental results show that five-finger hand [264], [275], combined with dynamic 

feature extraction and motion detection, has superiors features regarding dexterity and 

intuitiveness compared to traditional prosthetics hands [169], [212], [223]. However, due to 

the robotic hand's surface not being covered with any unique material or fabric, some sliding 

friction of the contact between fingers and objects is mostly degrading grasping stability.  

	6.6	Discussion		

The real-time validation requires an ML method trained with offline datasets and stores 

most of the necessary data to repeat pattern recognition, including measurement setups and 

signal processing methods. Online control provides a continual prediction of desired motions 

in real-time, which can be used to assess robustness and reliability. Despite the fact that it has 
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been proven to be essential to assess the control system's adaptability genuinely,  an assessment 

of real-time performance is typically deficient in previous studies [252]. As a result, real-time 

validation tests contains three real-time evaluations that present more realistic assessments of 

a control method's clinical efficacy. The real-time tests require the participant to perform the 

instructed actions randomly while analysing the critical success factors listed below.  

Selection time is a metric that indicates how long it takes the system to make the first 

accurate predictions, and it could be used to gauge sensitivity. This study also comprises a time 

frame for feature extraction, computing time for classification, and motion execution on the 

prototype. The proportion of required motions that were completed in a specified time is 

referred to as the motion completion rate. Continuity (robustness); through trials, it was 

discovered that the motion completion accuracy and completion time alone is not sufficient to 

depict the controller's consistency because these two metrics are heavily dependent on 

algorithms and hardware. As a result, the model prediction performance was also implemented 

during the motion completion for specificied distances. The tests oucomes are close to reality 

of real-life conditions. The findings are presented in section 6.4 and discussed in section 6.6.1.  

6.6.1	Reliability	During	the	Long-Term	Use	

The system's reliability with real-time data streaming is one of a key consideration when 

employing an EMG-based control approach. Standardized motion completion tests were used 

in this study to assess the control system's long-term reliability. This test was employed because 

the outcomes of this test are control robustness against a variety of variables such as arm 

position, changes in sEMG, and system continuity over time. In similar studies [98], [276], the 

test was used to investigate the clinical resilience and accuracy of pattern recognition on 

prostheses.  

The validation tests were split into two categories based on the sorts of evaluations used in 

the literature: offline ML  metrics and target achievement assessments. Offline measures were 

used to assess the algorithms competency and compare the results with previous studies. A 

detailed evaluation of offline and online  machine learning-based studies is presented in [98], 

[112]. According to a research [176], there are three main target achievement tests, and these 

tests were discovered to be most efficient and been employed in this study. The train and test 

methodologies differ amongst the researchers, thus, making it difficult to compare the 

methodology efficiency. Furthermore, given that many publications do not disclose these 

methods or the entire model structure, one important aspect to evaluate is the importance of the 

method, repeatability of methodology and average achievements.  
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During the tests, it was observed that the motion detection accuracy is unreliable over long 

periods of time (1.5-2 h). Changes in electrode placement, temperature, skin impedance, and 

some interference between the subject's skin and the electrode, which may interfere with signal 

quality, are all factors that influence this instability. Even the data acquisition source signal is 

nonstationary and changes over time. With more sophisticated electrodes and integrated 

systems, the effects of these variables can be minimised. Furthermore, a self-learning (adaptive 

model) technique is required for reliable, robust control applications. 

The presented control system and robotic hand had no sensory feedback/ sense of touch. 

Therefore, it was challenging to determine whether the object and robotic hand made contact 

and the proportion of force applied. Furthermore, the velocity and acceleration profile of the 

reach and grasp trials were not adequately coordinated with the wrist and shoulder in a 

synergetic manner since the participant was an able-bodied subject. Although it was not 

possible to determine how amputees' muscles are preshaped, Hargrove et al. [276] have 

assessed the effect of amputation level and have proposed that a comparable pattern of muscles 

is presented during reach and grip activities. Similarly,  Batzianoulis et al. [97], have tested the 

system performance with eight able-bodied participants and four transradial amputees using 

three different pattern recognition methods (LDA, SVM and NN). Their findings indicated that 

there is no significant motion detection differences (only 6%) but device response time. Daley 

et al.[105], have also compared the classification performance between able-bodied subjects 

and amputees and have claimed that although there is a classification accuracy difference 

between participants, the classification accuracy obtained from amputee subjects was not 

significantly affected by the number of electrodes and distribution of electrodes.  Young et al. 

[97] have pointed out that the reach and grasp motion is dynamic progress that has a negative 

impact on the classification performance during the natural coordination of motion. This 

studies' results complement the approach that the focus is on timing. 

In real-time evaluation, it was intended to reduce the time for data processing which cause 

lower classification performance and leads to a slower device response. Although the combined 

embedded system is customised to perform specific tasks in real-time, the control architecture 

was designed mainly to reduce cost and size and enhance prosthesis performance. The total 

response time for commanding the device is 0.23s, including EMG signal processing, motion 

recognition with multilayer neural network by the backpropagation algorithm, and 

commanding the end effector. The proportion of correct predictions is consistent with research 

highlighting the potential benefits of dynamic data acquisition [209],[277].  
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Many errors occurring after a certain time implies that the identification rate in the early 

stages of the movement is very high. Furthermore, some misclassification noticed immediately 

after or before such motion may be induced by the signal transfer from one label to its 

successor. On the other hand, significant accuracy degradation was not recorded during the 

slight signal and arm position changes, which makes it relatively robust and stable.  

6.6.2	Limb	Posture	and	Electrode	Shifting	Effects	

In the light of the observed limitation of commercial sEMG based control (such as signal 

cross-talk, electrode displacement during activities, and changes in muscle synergy), numerous 

invasive data collection strategies have been devised [66].  Implantable myoelectrical sensors, 

for example, have recently been used to provide reliable myoelectrical signals. Furthermore, 

sophisticated pattern recognition and machine learning algorithms have been used to improve 

the myoelectric prosthesis's robustness, adaptability, and HMI. Overall, the literature revealed 

that by increasing the datasets with varying hand posture and processing capability of sEMG, 

the existing barriers to clinical employment might be overcome. 

It has been indicated that the singal changes during real-time test due to arm mobility 

contributes a significant degradation in model performance and repetability. Hargrove  et al.  

[98] have highlighted the performance degradation caused by electrode shifting and sensory 

modality but indicated that this influence might be reduced by using dynamic arm position 

during model training. Similar findings have been reported by  Fougner et al.[236]   in relation 

to changes in residual arm position. Since then, various researchers have emphasised that 

training a pattern recognition algorithm with dynamic arm positioning helps significantly 

improve the control scheme's robustness.  

To improve prosthetic performance and minimize the associated issues, the system was 

tested using modified sensory modality with an embedded socket which eliminate arm position 

variations. An able-bodied subject used myoelectrical pattern recognition with real-time 

metrics to control a robotic hand in the standardised box/block (B&B) transfer and object 

grasping tasks. The subject performed the tests with  dynamic arm conditions, which causes 

the muscle alignment to shift dramatically as the arm moves. The results of these complex tests 

demonstrated that the control algorithms could achieve high prediction accuracy without 

substantial delay even with dynamic arm postures. 

Using human motor control as inspiration, investigated motion detection performance in 

relation to average muscle activity between different arm orientations led in generalisation over 

the variability of the EMG data, yielding the classification accuracy. Tables 6-1 shows the 
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outcomes of various arm postures and motion detection rates. There was a substantial link 

between accuracy groups. Extreme arm postures with mechanical load, on the other hand, were 

shown to pollute EMG signals and drastically reduce classification accuracy (by 14 % ). In 

comparison to some early investigations [86],[100], the  findings show that the novel electrode 

orientation strategy eliminates the problem of electrode shifting and arm orientation during 

motion detection.  

However, the key challenge with this technology is providing a dependable and adaptable 

socket for variations in user weight and age. The research indicates that the sensory array 

appears to be more resistant to limb postures and environmental variables compared to early  

studies[97], [104]. Although the electrode array and socket design allow the user to conduct a 

variety of natural motions, the socket, in the user's experience, marginally inhibits the complete 

extension of the elbow. However, it was not observed to be a barrier to task completion. The 

new sensory array and electrode location were developed to lower prostheses' cost and enhance 

practicality and comfort. 

6.7	Summary	

The practicality of employing the proposed electrode array with simultaneous feature 

extraction and motion prediction in compact online testing was presented in this chapter. The 

tests were conducted on the able-bodied subject in some standardised experimental conditions. 

In order to evaluate the control method in real-time, ANN regression and RMS signal features 

at 125 ms windowing size with 65 ms overlap were employed. The results showed that it is 

possible to detect the individual finger and grasping intention accurately. Due to the great 

accuracy of the motion detection techniques, the ML model and integrated feature extraction 

approach were validated on a custom-designed socket to test prosthetic devices. The control 

approach was assessed using a high functional five-fingered robotic hand. These experiments 

show that this combination of feature selection, number of sensors, and ML model may 

outperform studies using a greater number of sensors in terms of accuracy and dexterity [97], 

[223], [212]. The results were compared and proven with some early research to demonstrate 

the influence of sensor quantity and optimal performance in terms of computational cost and 

accuracy [92], [278].  

Simultaneous and proportionate control of a high degree of freedom is also a major priority 

in clinical test and device acceptancy, according to some studies [209], [279]. A  regression-

based real-time control was employed to allow the user to control hand motions without having 

to use an external switcher to switch between components and motions. Even with non-invasive 
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electrode placement, control became more intuitive and robust as processing performance and 

accuracy were improved. The implementation of a robust technique with embedded data 

processing and pattern recognition increased the speed of device response, functionality, and 

user satisfaction. This could be a feasible alternative to the traditional technique, which embeds 

electrodes into the prosthesis and uses limited sensors to monitor specified muscles. 

One of the main goals of the researchers is to create a hardware and software synchronisation 

to provide amputees with high dexterity and intuitiveness for prostheses. The embedded 

dynamic control maps hand synergies and eliminates disturbances such as electrode shifting, 

limp position, and delays, resulting in robust control of the entire work area and allowing more 

natural behaviour in the face of unpredictable events.
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Chapter	7 Conclusion	and	Future	Works	
 

7.1	Conclusion		

This study evaluates the most popular machine learning methods, time-domain features, and 

different muscle investigations to predict user intention from sEMG signals determined from 

healthy subjects. It presents an approach to enhance the motion detention performance, 

computation time and robustness through a systematic evaluation of the pattern recognition 

system. The proposed control architecture provides potential engineering tools and indicates 

how to choose the most appropriate classifiers, specific parameters for prosthetic control based 

on implementation and observed outcomes.   

 According to the findings of the study, the machine learning-based controller with new 

sensory modality and embedded control system has a high capability of correctly predicting 

desired hand motion patterns (92%) accuracy. The sEMG-based control architecture performed 

a smoother and more natural motion pattern in real-time than standard on/off or sequence-based 

techniques. These findings suggested that a biologically inspired control strategy might provide 

considerable advantages in operating multifunctional prostheses by increasing the degree of 

freedom and classification confidence. 

The combination of ML models and feature extraction approaches has been used in the 

literature with several electrodes to identify multiple classes. Although their immediate results 

have been reported as successful, the robustness of the suggested systems across sessions 

without retraining was not evaluated, and a considerable percentage of their motions were 

dependent on arm and wrist motions (pronation and supination). Thus, because a high degree 

of freedom and motion independence is necessary in daily living activities, they make the 

control technique less convenient for prosthesis. In addition  having session independence in 

this study, which makes the system more suitable for amputees' daily usage, the control 

architecture is more tolerant to wrist rotation and arm mobility, allowing high-precision 

manipulation of four fingers and the thumb, providing  a human-like behaviour to prosthesis.  

To address the study problem of robustness and capability to continue to operate despite 

numerous interferences such as electrode shifting, force fluctuations, and limb posture changes, 

a regression approach was taken in real-time control. This enabled to maintain continuous 

control while reducing the impact of variables that impede reliability. A live pipeline between 

input (EMG signal) to output (robot actions) was employed to improved human-machine 

interface.  
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Considering the effect of shifting the arm position in the block transfer test, the integrated 

data collecting and prediction system demonstrated significant robustness with a low frequency 

of dropping/failing the objects. Throughout five repetitions of each session, the system 

continued to provide real-time data within 0.23 seconds. Even with extremely identical 

movements, the user  did not experience a significant performance degradation. It was not 

possible to investigate  if the model can remain stable over a longer period of time (e.g., 

months) using the same classification model. However, if necessary, the model may be 

retrained in less than 7 minutes using the new user-friendly electrode modality.  

The classification of the myoelectric signal has been recovered using discrete signal 

decoding from wrist and elbow motions with a restricted degree of freedom in the majority of 

studies in the literature. However, this research employed a control mechanism that decoded 

individual finger movements. This considerably increased the intuitiveness and natural control 

of prosthesis. This strategy allowed differentiating additional tasks and performing them with 

a high degree of independence. Furthermore, the continuous control allows shifting between 

the different ranges of motion without triggers or a sequential control strategy. 

Then results suggest that by using standard ML methods (LDA, k-NN, SVM, ANN) with 

optimal parameter and kernels,  the created data sets and methodology are competable, as well 

as motion detection rates are comparable to those found in the literature under similar 

conditions, i.e., the same number of motions, number of electrodes, and electrode location. The 

high accuracy of  online tests verifies the electrode distribution, data collecting, experimental 

methodology with the novel socket design, and integrated data transfer/prediction approach. 

The findings clearly show that the system is highly reliable, since the repetition of the tests has 

no significant effect on the prediction accuracy rate.  

There is a substantial amount of research in the computational field for prosthesis 

development to enhance the interface for signal acquisition, data processing, and 

control/learning algorithms to achieve a smarter prostheses and meet user demands. In this 

study, a control method with a functional socket and a combined data acquisition, in which 

signal processing (live data pipeline) and motion prediction work together to optimise motion 

detection in appropriate time was developed. It is a big step toward developing an ideal and 

affordable prosthetic capable of restoring lost human hand functions. The online block transfer 

experiments demonstrated that the suggested control mechanism allows users to move items 

over a wide range of distances in stable manner.   In real-time tests, it also offers  the gripping 

of daily living  items with high precision (about 88%). 
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The summary of the key contributions and the novelties  of this study are thereof included: 

1. Demonstrating that the generic approach with machine learning algorithms and feature 

extraction methods yielded the best prediction accuracy when using the proposed 

sensory modality and embedded control system.  

2. Controlling a high degree of freedom prosthetic hand solely using sEMG data from 

upper limb muscles in real-time. 

3. Creating a live pipeline between components to deliver real-time data (0.23 sec) and 

continuously producing human-like behaviour for prostheses with good accuracy 

(94%).  

4. Developing and testing a potential low-cost multifunctional prosthesis control with 

novel sensory distribution and wearable socket. 

7.2	Research	Limitation	and	Area	of	Improvements		

1. The majority of recent studies have evaluated prosthetic performance on intact 

subjects and assumed that the findings apply equally to amputees [22]. Peerdeman 

et al. [188] conducted a systematic literature review and concluded that the majority 

of studies only conducted experiments on able-bodied subjects due to the difficulty 

of recruiting amputated subjects. Previous research has shown that control accuracy 

for amputees is comparable to that of able-bodied people, if not slightly lower and 

more unstable [189],[190]. It has been hypothesised that amputees suffer to obtain 

high accuracy and execute activities on time [191]. It is unclear if this is due to a 

lack of sensation or a lack of motor control.  In [192], Al-Timeny et al. collected 

sEMG data from ten able-bodied and six below-elbow amputees. They achieved 98 

% accuracy for able-bodied subjects and 90% accuracy for amputee subjects. It was 

discovered that the time required to execute activities for intact people increases 

when the tasks get more complex, from a single finger to combined actions. 

Furthermore, it has been identified that a small proportion of users who have 

relatively more active residual muscles have full control experience and successfully 

deployed the control method with an average of 93.5% in  [259]. On the other hand, 

Atzori et al. [191] have conducted experiments with five amputated and 40 intact 

subjects and have achieved 61.14% with amputee subjects. The literature 

comparisons have shown that the pattern recognition performance shows significant 

variety for amputees subject due to some considerable underlying motor control 
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problems. Therefore, this research can be further improved by undertaking a large 

number of amputees testing the optimised socket design. 

2. Another area  that can be invstigated further is close sensory feedback, particularly 

because it effects the experimental results by obscuring whether or not contact with 

the object  is established. This reseach suggest that the major source of instability 

was due to lack of sensory/tactile feedback and unresolved friction problem between 

objects and the robotic hand. As a result, the next goal of this study is investigating 

innovative smart sensory feedback and materials since it is suggested a sensory 

feedback will lead to physiological correction and exact relocation of residual 

muscles. 

3. In this study, a bypass socket that holds seven electrodes in an array was designed 

and tested since the new methodology provides flexibility by alternative data 

acquisition, requires less maintenance and is more easily wearable than bulky EMG 

sensors and sockets that are also prone to sweating and electrode shifting. The 

system was tested on able-bodied people as a first step, but it still has to be improved 

before it can be tested on amputees. The addition of a wrist rotation function between 

hand and arm might broaden this method to address the challenge of a large degree 

of freedom. 

4. Furthermore, synchronisation of components such as EMG sensors and the 

controller is crucial for accurate manipulation. To accomplish effective real-time 

control, the prototype's servo execution and data processing times must be ideal. 

Furthermore, the force generated by the robotic hand, particularly while grabbing an 

object, must be available to prevent the object falling problem. A suitable fingertip 

force might improve the accuracy of the item grabbing and also  block/transfer tests. 

For example, the digital servo used in our studies has a modest speed (0.3 sec/180 

deg at 4.8 V), therefore it takes longer to complete the whole cycle before it receives 

the new command. 

5. A modification of the socket prototype using lighter and more durable materials 

might lower system weight and enhance the weight-bearing test, which is one of the 

most common causes for prosthesis rejection. Even though it is outside the scope of 

this study, optimising the prototype with enough material would be a significant step 

forward. The long-term goal of this research is to further develop this combination 

electrode array and socket into a commercially marketable prosthesis. 
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6. Although data from healthy participants is critical for evaluating devices in this field, 

a large amputee participant pool might indicate more clearly what is required to build 

human-level prostheses. Further system testing with broad participant groups would 

allow enhancements and verify the general applicability of such approaches for 

completely validation of EMG-based  prosthetic hand for daily usage. Possibly a 

subject pool with more variety, such as diverse ages, sexes, ethnicity, and capacity 

would be an ideal bublicly open dataset. 

7. To avoid the non-stationary surface EMGs and the aforementioned environmental 

variation issues, implementing a self-learning/ reinforcement learning control 

strategy that  capables of mimicking muscle memory as a result of repetitive tasks 

would provide a continuous and robust approach to performing output control. 

Furthermore, in the next phase of this research, the  enhancement of  the adaptable 

socket for transradial amputees to elaborate the feasibility of making this device 

portable for clinical trials and assessment in daily living activities, as well as future 

industrial exploitation is planed.  

7.3	Possible	Application	Areas	of	this	Research		

1. The findings of this study point to the possibility of developing an intuitively 

operated upper-limb prosthesis. This was confirmed by controlling a prototype with 

real-time EMG signals transmitted from able-bodied people while performing hand 

and finger motions. These findings could have ramifications for the technique's 

robustness, which allows users to control the device effectively in various arm 

postures with high prediction performance. 

2. The findings of this study could be applied to the development of a sensory 

feedback-controlled prosthesis, in which sEMG signals provide continuous real-time 

data, and sensory feedback improves object gripping ability. This might be utilised 

to improve user sensation and natural control of prosthesis by better correcting user 

movement at appropriate times. A human operator may use the haptic user interface, 

such as stiffness, to control the robotic hand and provide robot-object contact force 

to the operator. 

3. According to the findings of this study, the integrated real-time system can be 

successfully applied to a variety of use cases, e.g., in teleoperation,virtual reality and 

and robotic surgery. The validation results back up the idea that prehensile patterns 

can be detected with the help of a collaborative mechanical and control system. This 
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could be useful in rehabilitation centres for therapeutic ways to stimulate paralysed 

users' hand functions. 

4. Some manual procedures performed during and after surgery, such as suturing, 

sewing up open wounds, and incisions, take time. Furthermore, the surgeon's fatigue 

may lead to severe consequences for some delicate operations. The automation of 

surgical procedures has the potential to lower costs while also addressing the lack of 

surgeons in operating rooms. As a result, the proposed pattern recognition and the 

intuitive device can assist in mitigating preventable errors. They can be employed as 

a powerful tool for optimising surgical efficiency and minimising human errors. 

5. While humans can efficiently conduct handover activities, there are various 

challenges when attempting to perform particular human-robot interaction (HRI) 

tasks using commercial robotic systems. In robotics, intuitive object manipulation, 

particularly collaboration with humans, is a hot topic. This research demonstrates 

that it is possible to design an intelligent strategy for natural and intuitive human-

robot interaction, precisely grasping and object manipulation. The emphasis of such 

an approach might be an intuitive tool in the operating room, manufacturing line, or 

harsh environment of chemical/nuclear plants. 

6. The control strategy, signal processing, and motion detection technique used in this 

study demonstrate the concept of a stable upper-limb prosthesis. Because it improves 

adaptability to non-stationary and time-dependent signals, the embedded system 

could be used in clinics with implanted neuroprostheses that connect the Brain-

Computer Interfaces (BCIs) system.  

7.4	Publications	of	Research		

1. Balandiz, K., Ren, L., Wei, G., (2021).  Motor Learning-Based Real-Time Control for 

Dexterous Manipulation of Prosthetic Hands (IEEE Transactions on Neural Systems and 

Rehabilitation Engineering). Manuscript submitted for publication. 

2. Balandiz, K., Ren, L., Wei, G., Towards Dexterous Manipulation through Motor Learning and 

Biomechanical Modelling. (Manuscript in preparation) 
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	Appendices	

Appendix	A:	Delsys	Trigno	Wireless	System		
The specification of the Delsys Trigno system and EMGworks software are presented in 

this appendix. The sensors detailed in this section are used throughout this research. The 

user’s guide, calibration and user interface were extracted is available from [280]. 

Trigno Avanti Sensors 
• 1x EMG, up to 6X IMU (sensor channel) 
• 27x37x13 mm (size) 
• 14 g (mass) 
• 4-8 hours (battery life) 
• 40 m in radio frequency (rf) mode (operating range) 
• 20-450 Hz (EMG Bandwidths) 
• 4370 sa/sec (EMG sampling rate, max) 
• 16 bits (sensor resolution) 
• 750 nV (EMG baseline noise) 
• 11mV/22mV rti (EMG input range) 

Trigno Quattro Sensor 
• 4x EMG, up to 6x IMU (sensor channel) 
• 25x12x7 mm (size) 
• 25 g (mass) 
• 2222 sa/sec (sampling rate) 

EMGworks 
• Software Development Kit (SDK) 
• Application Programming Interface (API) 
• Real-time synchronisation  
• Compatible with Python, C#, Unity 
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Application  
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Figure A:0:1: Illustration of data flow and SDK system. 
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Appendix	B:	Mathematical	Definitions	of	sEMG	Features		
In order to remove the artefacts, muscular signals were bandpass filtered and in the range of 

20 Hz to 450 Hz using 4th order Butterworth filter. The features were extracted from sEMG 

signals by employing sliding windows. The following eight-time domain features were 

extracted from each sEMG signals. It is recommended that the feature sets yield the 

classification performance and lead differences between very similar motion detection 

problems or datasets [102]. The theory of filters and specification ranges have been obtained 

from [194] for the essential digitising process. The filter results are presented in Figure xx to 

conclude which filters accurately describe the behaviour of sEMG signals. 

Mean Absolute Value (MAV)  is one the most popular feature extraction methods used in 

sEMG analysis for prostheses control. It is the average of the absolute value of the EMG 

amplitude over a specified segment [149]. The EMG signals from every electode can be 

depicted as a finite time series (X1, X2, X3 …..XN), where N is the number of specimens 

examined in the window. 
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Root Mean Square (RMS) is a derived model of Gaussian random process, which is 

regarding constant force and non-fatigued contraction[216]. The RMS value of a signal is 

derived as the square root of the signal's average squared value. It defines a continuous 

waveform; as the specified window passes the waveform, it sums up each amplitude's square 

and divides by the frame length.  
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Integrated Absolute Value (IAV) is an integrated absolute value of summation of EMG 

signal in a specified time window of N samples [35]. 
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Waveform Length (W.L.) is the measure of the complexity of sEMG signals[149]. It 

indicates the cumulative length of a signal wave over the segmented time.  The WL 

calculation's derived values represent a measurement of the waveform's intensity, frequency, 

and length of time. 
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Simple Square Integral (SSI) uses the energy of sEMG as a feature. It is the summation of 

square values of signal amplitude. It commonly employed as an energy index. To avoid noise 

in the EMG signal, the number of changes between positive and negative gradients between 

three successive sections is calculated using the threshold function. 
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Average Amplitude Change (AAC) is equivalent to the W.L. feature with averaged 
wavelength [100].  The time-domain properties can be approximated using AAC. 
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Kurtosis (Kurt) is a statistical analysis to characterise the variability of a dataset. It measures 

if the data is heavy-tailed or light-tailed according to normal distribution. It is a method 
commonly used for the measurement of symmetric/ periodic signals [281]. It compares the 
shape of the statistical distribution over the normal distribution. Where HI is the mean, J is the 
standard deviation, Yi is current specimens and the ; is the number of the points. 
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    Peak Activation Level (Maximum amplitude) shows the sequence of the time when sEMG 
is most active. The average peak exceeding the RMS  value is calculated. The process analyses 
and compares each sample to determine the one with greater amplitude.  
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Appendix	C:	EMG	Data	Classification	Performance	
Various methods for handling sEMG signals before feature extraction and preprocessing 

were used to enhance the prediction accuracy and response time of the real-time controller. 

Initially, the datasets were segmented from raw sEMG signals. sEMG signals were divided by 

varying windows, then filtered and rectified as feature sets.  The five most popular classifiers 

were employed, and human hand motions were differentiated in sequences. It has been pointed 

out that the feature sets have a significant influence on classification error [46]. A  statement 

by Farina and Jiang proved that the classification performance degrades by using small segment 

length (less than 125 ms), which differs from classifier to classifier, cause high bias on features 

[153]. Studies show that the accuracy increases when windowing length increases from 125 ms 
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to 500 ms due to large windowing size provides additional meaningful information 

corresponding to human actions. However, a large windowing size causes a certain processing 

delay and can not be implemented to operate the real-time application. It has been suggested 

that the response time should be less than 300 ms in order to achieve real-time control for 

prostheses [143]. To overcome drawbacks associated with segment length and classification 

methods, we compared the performance of classifiers for various windowing length and feature 

extraction methods in the figures below.   

 
Figure C:0:1: The performance of  SVM classifier in 125 ms window for RMS feature. 

 
Figure C:0:2: The performance of  SVM classifier in 125 ms window for MAV feature. 
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Figure C:0:3: The performance of  SVM classifier in 125 ms window for IAV feature. 

 
Figure C:0:4: The performance of  SVM classifier in 125 ms window for WL feature. 

 
Figure C:0:5: The performance of  SVM classifier in 125 ms window for SSI feature. 
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Figure C:0:6: The performance of  SVM classifier in 125 ms window for PEK feature. 

 
Figure C:0:7: The performance of  SVM classifier in 125 ms window for KUR feature. 

 
Figure C:0:8: The performance of  SVM classifier in 125 ms window for  AAC feature. 
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Figure C:0:9: The performance of  SVM classifier in 300 ms window for  RMS feature. 

 
Figure C:0:10: The performance of  SVM classifier in 300 ms window for MAV feature. 

 
Figure C:0:11: The performance of  SVM classifier in 300 ms window for IAV feature. 
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Figure C:0:12: The performance of  SVM classifier in 300 ms window for WL feature. 

 
Figure C:0:13: The performance of  SVM classifier in 300 ms window for SSI feature. 

 
Figure C:0:14: The performance of  SVM classifier in 300 ms window for PEK feature. 
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Figure C:0:15: The performance of  SVM classifier in 300 ms window KUR feature. 

 
Figure C:0:16: The performance of  SVM classifier in 300 ms window AAC feature. 

 
Figure C:0:17: The performance of Logistic regression in 125 ms for RMS feature. 
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Figure C:0:18: The performance of Logistic regression in 125 ms for MAV feature. 

 
Figure C:0:19: The performance of Logistic regression in 125 ms for WL  feature. 

 
Figure C:0:20: The performance of Logistic regression in 300 ms for RMS feature. 
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Figure C:0:21: The performance of Logistic regression in 300 ms for MAV feature. 

 
Figure C:0:22: The performance of Logistic regression in 300  ms for WL feature. 

 
 

 
Figure C:0:23: The performance of Logistic regression for (a)  finger detection (b)  object grasping in 125  

ms. 
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Figure C:0:24: The performance of Logistic regression for individual finger detection (a) in 125 ms, (b) in 

300 ms.  

 
 
 
 

 
Figure C:0:25: The performance of Logistic regression for six electrodes and seven electrodes in 300 ms. 

 
Figure C:0:26: The performance of Logistic regression for 125 ms and 300ms for finger detection. 
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Appendix	D:	Prototype	Part	Specifications	and	Drawings	
 

Table D:1 presents the details of the prototype part that were used from commercial sources. 

The CAD drawings of the parts and objects are also presented in this appendix. The socket part 

includes the control units such as Raspberry pi, battery, control unit chessboard and motors.  

 
Table D:0:1: Specifications of Commercial Parts. 

Part Manufacturer Key Dimension (s) Qty Ref. 

Dc motors(PQ12) © RS Components 
Ltd 

15x22x47 mm 
18-50 N 

4 [282] 

Raspberry Pi 4 © R.S. Components 
Ltd 

quad-core Cortex-A72 
(ARM v8 
85x56 mm 
2.4 GHz and 5.0 GHz IEEE 
802.11b/g/n/ac wireless 

1 [283] 

Chestnut V1.0 PCB © Open Bionics 45X57 mm 
Arm MO+SAMD21G18A 

 [284] 

Battery  © RS Components 
Ltd 

1,300 mAh, 7.4 V 1 [285] 

EMG electrodes 
(model DE2.1) 

Delsys Inc., Boston, 
MA, USA 

27x37x13 mm (size) 
14 g (mass) 
4-8 hours (battery life) 

7 [286] 

EMG electrodes 
 

Delsys Inc., Boston, 
MA, USA 

4x EMG, up to 6x IMU 
(sensor channel) 
25x12x7 mm (size) 
25 g (mass) 
2222 sa/sec (sampling rate) 
 

4 [286] 

 
 
 
 
 
 



209 
 

 

 

 
Figure D:1: Specifications of objects used in objects grasping experiments. (A) cylinder,  (B) dice, (C) sphere, 

(D) bottle.  
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Figure D:2: CAD designs of the socket. 
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Appendix	E:	Codes	Used	in	This	Study	
The Python, Matlab and C codes developed for data processing,  prediction and control of 

prototype in this research are presented in a digital copy. The list of descriptions and 

shortcuts are given below. 

Name Description 
Data Collection_M_EMG The Matlab scrips to obtain  the participant's raw EMG 

data for finger manipulation and object grasping. 

Matlab_Code_MAV Extracting EMG singal from valid files for feature 
extraction and to create the input labels. 

Matrix_create Feature creation and labelling for finger manipulation 
and object grasping. 

Graph_matlab Plotting the raw EMG signals and extracted eighth 
features.  

Func_compress_dw1d Processing EMG data for DWT features. 

Real_time_control Function for UI. The interface was created to initialise 
the python function. 

My_Real_Time_Prediction  The Matlab script to collect, preprocess data and sent 
the segmented data to Python for prediction. 

k-nn_for_EMG Python script for k-NN classification. The code was 
created to call data from the CSV file and score the 
labels and classifiers. 

LDA_for_EMG Python script for LDA classification. The code was 
created to call data from the CSV file and score the 
labels and classifiers. 

SVM_for_EMG Python script for SVM classification. The code was 
created to call data from the CSV file and score the 
labels and classifiers. 

My_NN_TF_3LAYER_Dropout Python script for 3 hidden layer ANN classification. 
The code was created to call data from the CSV file and 
score the labels and classifiers. The ANN was created 
in TensorFlow with the dropout method. 

Logistic_Regression  Python script for LR classification. The code was 
created to call data from the CSV file and score the 
labels and classifiers. 

Creating_Dictionary The python script was written for recording the 
predicted label for real-time control. The script saves 
each prediction in a txt file for real-time evaluation. 

Server_python  Function to create a TCP/IP server between Delsys box 
and Python. 
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Continous_Prediction_SVM The python script to create a data transfer server 
between Matlab and Python and predict the hand 
motions in real-time.  

Real-Time_Control The python script to create an online server between 
Matlab and Python acquired segments are then 
predicted and send to the controller to activate the 
motors. 

Servo_Control The script was written in C language to control servo 
motors on the robotic hand. 

Communication The script was written in C language to connect the 
Chesnut board to Raspberry Pi. 
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Appendix	F:	The	Theory	of	Machine	Learning	Methods	
 

1. Liear Discriminant Analaysis (LDA) 

Fisher's  [287] solution for two classes is provided below in order to gain an understanding 

of the mathematical operation of linear discriminant analysis.  The original method was 

developed to distinguish two classes, as shown below, and has since been improved to detect 

multiple classes. The direction vector w can be projected onto z space to separate two classes 

as much as possible, given the samples of two classes C1 and C2 from the original equation.  

 
T = U/>	

	
Assume V$ and V% are the means of samples form C1 and C2 classes. rt=1 if xt ∈ C1 and rt=0 

if input xt ∈ C2. 

V$ =
∑ U0>0L00

∑ L00
= U/V$ 

    

V% =
∑ U0>0L00

∑ L00
= U/V% 

 
The scatters of samples  are; 

 X12 = ∑ 	(Y3Z44 −[1)2\4 

 
J%% =<	(U/>0

0

−V%)%(1 − L0) 

 
To separate means of samples as much as possible |V$ −V%| must be maximum and  J$% + J%% 

small; therefore, the objective function can be written; 

 

^(U) =
(V$ −V%)%

J$% + J%%
 

rewriting the equation; 
 

(V$ −V%)% = (U/V$ −U/V%)% 
                                                                     =	U/(V$ −V%)(V$ −V%)/U 
                                                                     = U/?5U 
 
where ?5 = (V$ −V%)(V$ −V%)/ and the sum of scatter around the means can be rewritten 
as  
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X12 =<	(Y3Z4
4

−[1)2\4 

	= <	Y3(Z4
4

−[1)(Z4 −[1)3_\4 

= Y3`1Y 

where  
							`1 =<	(Z4

4

−[1)(Z4 −[1)3	\4	

 

Similarly,  J%% = U/?%w with  ?% = ∑ 	(>00 −V$)(>0 −V$)/(1 −	L0) and it concludes as 

J$% + J%%=U/?6w  where  ?6 = ?$ + ?% 

 
The objective function can be written as 
 

^(U) =
U/?5U
U/?6U

=
|U/(V$ −V%)|%

U/?6U
 

	
Taking the derivation	of		^(U)		with	respect	to	U	and	setting	it	equal	to	zero,	
 

U/(V$ −V%)
U/?6w

t2(V$ −V%) −
U/(V$ −V%)
U/?6w

?6wu = 0 

 
 
 Given that  Y3([1 −[2)/Y3`7_  is a constant  the equation can be concluded; 

U = v?6*$(V$ −V%) where v is constant (most of time equal to 1) and U can be calculated. 
 
 

 
For multiple classifications; 
 

w!(>|U! , U!8) = x > 0	yz	>{F!
							≤ 0	}Mℎ�LÄyJ�	Å	 

 

 

2. Support Vector Machines (SVM) 

As the original equation starts with two classes and each label -1/+1. The sample is Ç = {>0 , L0} 

where L0 = +1	if  	>0{F$   and L0 = −1 if  >0{F% 

U0>0 +U8 ≥ +1 for  L0 = +1 

U0>0 +U8 ≤ −1 for  L0 = −1 
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which can be rewritten as 

L0(U0>0 +U8) ≥ +1 

and the distance of >0 to discriminant is  

|U0>0 +U8|
||U||  

which L0	{{−1,+1} can be rewritten as 
L0(U0>0 +U8)

||U||  

 
if the determined value is assigned to Ü value which is margine that separates the hyperplance 

when it is optimal. 

 
L0(U0>0 +U8)

||U|| ≥ 	Ü 

 
In order ot maximize the margin, ||U||	must be minimum; therefore, the equation can be 

written as 

Vyá $
%
||U||%  subject to 			L0(U0>0 +U8) ≥ +1 

 
To solve the equation, the problem can be rewritten as an unconstrained problem using 

Lagrange multipliers à0: 

 

D9 =
1
2 |
|U||% −<à0[L0(U0>0 +U8) − 1]

"

0#$

 

 

=
1
2 |
|U||% −<à0L0(U0>0 +U8)

0

+<à0
0

 

 
The equation must be minimised for U and U8 and maximised with respect to à0 ≥ 0. 
 

ãD9
ãU = 0; 																	U =<à0

0

L0>0 

ãD9
ãU8

= 0;																	<à0
0

L0 = 0							 

 

D: =
1
2
(U/U) − U/<à0L0>0 −U8<à0L0

00

+<à0
0

 

 

= −
1
2
(U/U) +<à0

0
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=
1
2<<à0

;0

à;L0L;(>0)/>; +<à0
0

 

 
Which maximise the hyperplane for à0 , subject to constant ∑ à00 L0 = 0	and à0 ≥ 0 

The sets for >0  which à0 > 0 are the support vectors and U  weighted the sum of training 

instance for selected support vector are; 

	
L0(U0>0 +U8) = 1 

 
and it lies with the margin, thus U8  can be derived from any support vector. 

The class can be calculated w(>) = U0>0 +U8;	 Chooses F$if  w(>) > 0 and  F% otherwise. 

Some kernel functions have been proposed to calculate the support vector machine for non-

linear and non-separable data [288]. Lets assume the new dimention is calculated from basic 

functions and mapping from d-dimentional >  space to k-dimentional T  space, the basic 

function expension of design matrix is ϕ . 

 

T = 	ϕ(x) where T! = ϕ!(>), y = 1, 2, … . 4 

U =<à0L0T0 =<à0L0ϕ(x0)
00

 

and the dicrimnat is  

w(>) = U0ϕ(x) =<à0L0ϕ(x)
0

ϕ(x0)/ 

w(>) =<à0L0K
0

(x0 , >) 

 
Polynomial kernel with d degree and kernel funtion Κ;                

ë(í4, Z) = (ì + Z3Z4)< 

 
Gaussian (also known radial basis function) kernel;              

ë(í4, Z) = îíï ñ
|Z4 − Z|	2	

ó2 ò 	 

 
Sigmoid kernel;        
 

ë(í4, Z) = ôöõú(ùZ3Z4 + ì) 
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3. k-Nearest Neighboror (k-NN) 

The k-NN method adjusts the amount of smoothing applied to the data's local density. The 

amount of smoothing is determined by 4, the number of neighbours considered, which is much 

smaller than ; the sample size. Assume that the distance between û and ü is |û − ü| and that 

for each > sample is defines  

†$(>) ≤ †%(>)…… ≤ †"(>) 
 
If >0 is the data point †$(>) = min|> − >0| and if y is the index of the closest sample namely , 

y = ûLwVyá0|> − >0|, then for second †%(>) = Vyá!=>|> − >>|, therefore the estimeters is 

 

!̂(>) =
4

2;†?(>)
 

 
To determine a smoother estimate a kernel whose estimate decreases with increasing distance. 
 

!̂(>) =
1

;†?(>)
< R(

> − >0

†?(>)
)

"

0#$
 

 
this provides a kernel estimator with an adaptive smoothing parameter ℎ = †?(>). R(. ) that 

typically takes Gaussian kernel, where R is the number of the outputs. 

 
The multivariate kernel density is used to generalise the given sample with †-dimentional data  
 

!̂(>) =
1
;ℎ:< Rt

> − >0

ℎ u
"

0#$
 

with requirement that  
 

£ R(>)†> = 1
"

ℜ!
 

 
 

4. Artificial Neural Network (ANN) 

The perceptron is the basic processing element with associated input  >>{ℜ, • = 1,… , †	 and 

connection weight U>{ℜ and output ¶ is defined as;  

¶ =<U>
:

>#$

>> +U8 

The model is generally weighted with extra bias unit >8 which is always +1, and U8 is the 

intercept value to generalise it. The equation can be rewritten as; 

¶ = U/> 
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where U = [U8, U$, … , U:] and > = [1, >$, >%, … , >:] are augmented vectors. if the threshould 

function defined as J(. ) 

J(û) = x1												yz	û > 0
0								}Mℎ�LÄyJ�	Å 

then it can rewritten as; 

vℎ}}J� = ßF$					yz	J(U
/>) > 0

F%							yz	}Mℎ�LUyJ�
® 

The output function can be used to separate the classes; for example, the output value for the 

sigmoid function is; 

} = U/> 

¶ = JywV}y†(}) =
1

1 + �>![−U/>] 

 

When more than two classes are present, the output can be summarised as follows: 

¶! =<U!>
:

>#$

>> +U!8 = U!/> 

¶ = C> 

where U!> is the weight from input >>  to output ¶! and C is the R × († + 1) weight matrix of 

U!> for R perceptrons. 

The error on a single instance pair with index M, (>0 , L0) in online learning is 

 

Q0(U|>0 , L0) =
1
2 (L

0 − ¶0)% =
1
2
[L0 − (U/>0)]% 

 

and for • = 0,… , † the online update is  

∆YA
4 = ɳ(\4 − ¨4)ZA4 

Where ɳ is learning rate, which decreases by time for convergence, also known as stochastic 

gradient descent.   

The equations above are for a single perceptron that is unable to discriminate nonlinearity. 

Input data > is fed into input layer and the activation function propagates the value of hidden 

layer TB 

≠C = XÆØ[∞Æ±≤YC
3Z≥ =

ì
ì + îíï¥−≤∑ YCA

<
A#1 ZA +YCD≥µ
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The output value ¶! is perceptron of the second layer and it takes the hidden unit as it’s input. 

¨E = ∂E3≠ = <YEC

F

C#1

≠C +YED 

  
To update multilayer weights for a whole regression sample, where the (L0 − ¶0) is the error 

term 

∆∂EC = ɳ<(\E4 − ¨E4)≠C4
4

 

the accumulated backpropagated weight update is  
 

∆YCA = ɳ<∑<(\E − ¨E4)∂EC
E

∏
4

	≠C4 (ì − ≠C4 )ZA4 

∑ (L!0 − ¶!0)! ∂EC is the accumulated backpropagated error of the hidden unit ℎ from all output 

units.  

 
5. Principal Component Analaysis (PCA) 

To find the orthogonal set of L linear basis vector U>{6G, and corresponding scores T!{6H 

and >! training case; 

^(C, π) =
1
;<||>!

"

!

− >I∫||% 

Where empirical mean >I∫ = CT!  subject to C  which is orthogonal. The equation can be 

rewritten as follows; 

^(C, π) = ||Ç −Cπ/||J%  
 

Where π is a  ;>D matrix with T! in its orthogonal and ||9||J 	 is the Frobenius norm of matrix 

9 and can be defined as 

||9||J = @<<û!,>%
(

>#$

L

!#$

= ªML(9/9) = ||9(: )||% 

 
The optimal solution can be determined by setting the estimate  CΩ = :H, where :H contains D 

eigenvectors with biggest eigenvalues of covariant matrix which is ∑ = $
"
∑ >!"
!#$ >!/. Which 

assumes ZE	 have zero means. The variance of projection can be mazimise by æ|U$|æ = 1; 

and the cost function 
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^(U$) = U$/<U$ + ø$(U$/U$ − 1) 

 
where  ø$ is lagrange multiplier, the derivation of xx equal to zero will give ∑U$ = ¿$U$ 

in order to find second direction U%; 

^(U$, T$, U%, T%) =
1
;<||>!

"

!#$

− T!$U$ − T!%U%||% 

 
Optimising Y1 and ≠1 gives the similar solution as before and yields 

^(U%) = −U%/<U% +ø%(U%/U% − 1) + ø$%(U%/U$ − 0) 
 
Therefore the second eigenvector with second largest eigenvalue will be; 
 

<U% = ø%U% 
 
The values continoues in this way for each PCA direction.  In most cases, the largest few 

eigenvalues are much greater than others (λ$>λ% > λM). For example, assume m=10, the total 

variance would be T=100 and λ$=89, λ%=6.5….,λ$8. This means that the first two directions 

represent 95.5% of the total variation of data. 
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