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Abstract 
Human-Machine Interfaces (HMI) are the technology through which we interact with the ever-increasing 
quantity of smart devices surrounding us. The fundamental goal of an HMI is to facilitate robot control 
through uniting a human operator as the supervisor with a machine as the task executor. Sensors, 
actuators, and onboard intelligence have not reached the point where robotic manipulators may function 
with complete autonomy and therefore some form of HMI is still necessary in unstructured environments. 
These may include environments where direct human action is undesirable or infeasible, and situations 
where a robot must assist and/or interface with people. Contemporary literature has introduced concepts 
such as body-worn mechanical devices, instrumented gloves, inertial or electromagnetic motion tracking 
sensors on the arms, head, or legs, electroencephalographic (EEG) brain activity sensors, 
electromyographic (EMG) muscular activity sensors and camera-based (vision) interfaces to recognize 
hand gestures and/or track arm motions for assessment of operator intent and generation of robotic 
control signals.  While these developments offer a wealth of future potential their utility has been largely 
restricted to laboratory demonstrations in controlled environments due to issues such as lack of 
portability and robustness and an inability to extract operator intent for both arm and hand motion.  

Wearable physiological sensors hold particular promise for capture of human intent/command.  EMG-
based gesture recognition systems in particular have received significant attention in recent literature. As 
wearable pervasive devices, they offer benefits over camera or physical input systems in that they neither 
inhibit the user physically nor constrain the user to a location where the sensors are deployed.  Despite 
these benefits, EMG alone has yet to demonstrate the capacity to recognize both gross movement (e.g. 
arm motion) and finer grasping (e.g. hand movement).  As such, many researchers have proposed fusing 
muscle activity (EMG) and motion tracking e.g. (inertial measurement) to combine arm motion and grasp 
intent as HMI input for manipulator control.  However, such work has arguably reached a plateau since 
EMG suffers from interference from environmental factors which cause signal degradation over time, 
demands an electrical connection with the skin, and has not demonstrated the capacity to function out of 
controlled environments for long periods of time.   

This thesis proposes a new form of gesture-based interface utilising a novel combination of inertial 
measurement units (IMUs) and mechanomyography sensors (MMGs). The modular system permits 
numerous configurations of IMU to derive body kinematics in real-time and uses this to convert arm 
movements into control signals. Additionally, bands containing six mechanomyography sensors were used 
to observe muscular contractions in the forearm which are generated using specific hand motions. This 
combination of continuous and discrete control signals allows a large variety of smart devices to be 
controlled. 

Several methods of pattern recognition were implemented to provide accurate decoding of the 
mechanomyographic information, including Linear Discriminant Analysis and Support Vector Machines. 
Based on these techniques, accuracies of 94.5% and 94.6% respectively were achieved for 12 gesture 
classification. In real-time tests, accuracies of 95.6% were achieved in 5 gesture classification. 

It has previously been noted that MMG sensors are susceptible to motion induced interference. The thesis 
also established that arm pose also changes the measured signal. This thesis introduces a new method of 
fusing of IMU and MMG to provide a classification that is robust to both of these sources of interference. 
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Additionally, an improvement in orientation estimation, and a new orientation estimation algorithm are 
proposed. These improvements to the robustness of the system provide the first solution that is able to 
reliably track both motion and muscle activity for extended periods of time for HMI outside a clinical 
environment. 

Application in robot teleoperation in both real-world and virtual environments were explored. With 
multiple degrees of freedom, robot teleoperation provides an ideal test platform for HMI devices, since it 
requires a combination of continuous and discrete control signals. The field of prosthetics also represents 
a unique challenge for HMI applications. In an ideal situation, the sensor suite should be capable of 
detecting the muscular activity in the residual limb which is naturally indicative of intent to perform a 
specific hand pose and trigger this post in the prosthetic device. Dynamic environmental conditions within 
a socket such as skin impedance have delayed the translation of gesture control systems into prosthetic 
devices, however mechanomyography sensors are unaffected by such issues. 

There is huge potential for a system like this to be utilised as a controller as ubiquitous computing systems 
become more prevalent, and as the desire for a simple, universal interface increases. Such systems have 
the potential to impact significantly on the quality of life of prosthetic users and others. 
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Nomenclature 

Abbreviations 
ACC  Average Amplitude Change 
ADC  Analog-to-Digital Converter 
ADL  Activities of Daily Living 
ANN  Artificial Neural Networks 
AR  Autoregressive models 
BC  Bayesian Classifier 
BCI  Brain Computer Interface 
BLE  Bluetooth Low Energy 
BMI  Brain Machine Interface 
CAVE  Cave Automatic Virtual Environment 
CNN  Convolutional Neural Networks 
CSVM  Cubic Support Vector Machines 
DAMV  Difference Absolute Mean Value 
DASDV  Difference Absolute Standard Deviation Value  
DoF  Degree of Freedom 
DT  Decision Trees 
ECoG  Electrocorticography 
EEG  Electroencephalography 
EKF  Extended Kalman Filter 
EMG  Electromyography 
emgHIST Electromyographic Histogram 
EPP  Extended Physiological Proprioception 
FL  Fuzzy Logic 
FSM  Finite State Machine 
GUI  Graphic User Interface 
HCI  Human-Computer Interaction 
HMI  Human-Machine Interface 
HMM  Hidden Markov Models 
HPE  Human Pose Estimation 
I/O  Input/Output 
I2C   Inter-Integrated Circuit 
IAV  Integral of Absolute Value 
IC  Integrated Circuit 
IMU  Inertial Measurement Unit 
IR  Infrared 
KNN  k-Nearest Neighbour 
LDA  Linear Discriminant Analysis 
LED  Light Emitting Diode 
LOG  Log-detector 
MARG  Magnetic, Angular Rate and Gravity 
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MAV  Mean Absolute Value 
MEMS  Micro-electro-mechanical systems 
MIPS  Million Instructions per Second 
MK  Myokinemetric 
MLP  Multilayer Perceptron 
MMG  Mechanomyography 
MMI  Man-Machine Interfaces 
NUI  Natural User Interface 
PCB  Printed Circuit Board 
PR  Pattern Recognition 
PTSD  Post-Traumatic Stress Disorder 
PWM  Pulse Width Modulation 
QDA  Quadratic Discriminant Analysis 
RFS  Random Forests 
sEMG  Surface Electromyography 
SMG  Sonomyography 
SPI  Serial Peripheral Interface 
SSI  Simple Squared Integral 
SSP  Serial Port Profile 
SVM  Support Vector Machine 
TCP/IP   Transmission Control Protocol Internet Protocol 
TMEP  Tongue Movement Ear Pressure 
TSS  Toxic Shock Syndrome 
UART  Universal Asynchronous Receiver-Transmitter 
V  v-Order detector 
VAR  Variance 
VR  Virtual Reality 
VUI  Voice User Interface 
WAMP  Willison Amplitude 
WIMP  Windows, Icons, Menus and Pointers 
ZC  Zero-Crossing 
  

Symbols 
𝒒  Quaternion 
𝒒𝒕  Quaternion at time 𝒕 
𝒗  Quaternion which represents a vector 
𝒖  Vector 
𝑅  Rotation Matrix 
𝒗𝑟(𝑎)  Reference acceleration vector 

𝒗𝑟(𝑚)  Reference magnetometer vector 

𝒗𝑚(𝑎)  Measured acceleration vector 

𝒗𝑚(𝑚)  Measured magnetometer vector 
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𝑆𝐹  Scaling factor 
𝑒𝑟𝑟  Error 
𝑒𝑠𝑖𝑔  Energy of MMG signal 

𝑇𝑀𝑀𝐺  Threshold of MMG signal 
𝑇𝑔𝑥𝑦𝑧

  Threshold of gyroscopic signal 

‖𝐺‖  Energy of gyroscopic signal 
𝑁  Number of MMGs 
𝑚  Continuous vector containing signal from MMG 
𝑚∗  Filtered continuous MMG data 
𝑠𝑁  Vector containing segmented signal from MMG 
𝜌  Pearson Product-Moment Correlation Coefficient 
𝜎  Standard deviation 
𝑝  Pointer 
𝜔  Output of gyroscope 
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Chapter 1 
Introduction to the problem 
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1.1 Project Background 
This thesis details an investigation into the use of biomechanical information to derive user intent for 

Human-Machine Interfaces (HMIs). Almost all HMIs currently available require the user to perform 

dexterous manipulations on an application specific interface. This requires fine motor control that makes 

such interfaces unusable for some. Simultaneously, we are surrounded by an ever-increasing quantity of 

smart devices, all presenting obtrusive interfaces as they compete for our attention. As these devices 

become more pervasive, studies on the field of Human Machine Interfaces (HMIs) have identified a push 

towards more generalized controllers that make use of natural forms of interaction such as gestures. It 

has been suggested that this will make users more comfortable with these devices. This thesis describes 

the design and implementation of a sensor suite to enable pervasive monitoring of body kinematics and 

muscular activity, and the development of algorithms to allow for the volitional control of smart/robotic 

devices, providing such an interface.  

The sensor suite tracks activity through the use of an Inertial Measurement Unit (IMU), and Passive 

Sensors for monitoring the mechanical properties of muscle during the contraction cycle. The passive 

muscle sensors monitor the mechanical waves that are produced during contraction, a technique known 

as Mechanomyography (MMG). All of the sensors used in this investigation are non-invasive and designed 

to be unobtrusive during prolonged use. 

1.2 Motivation 
Human-Machine Interfaces are intended to bridge the gap between a person and their technology. The 

intent is to make the technology as easy to use and accessible as possible, but in some cases, this is 

achieved by selecting an interaction method that is not accessible to everybody, thereby excluding 

sections of the population from the intended user base. Unfortunately, these excluded sections tend to 

be those who could benefit the most from technological assistance. An example of an excluded population 

section is upper limb amputees; for this group losing a hand often means losing the primary method of 

interacting with the environment, and therefore the primary method of interacting with technology. A 

range of assistive technologies have been created, however, in many cases, these are designed to provide 

an amputee with a method of controlling a second interface, further isolating them from the device they 

are trying to use. Examples of this include advanced prosthetics which are designed to make it possible to 

use a computer mouse. In this application, when an actuation in desired, the wearer must focus on 

controlling the prosthetic hand rather than on the task they are trying to complete with the computer 

mouse, leading to an increased level of cognitive switching. This can lead to faster fatigue and 

dissatisfaction with the device. These prosthetic interfaces are often difficult to use and have high rates 

of dissatisfaction and rejection. Long-term use is also associated with repetitive-strain injuries, soft tissue 

damage and several other complications including bone fractures, and bone bridging. 

The solution is to make one or more of these interfaces easy to use, to the point where it appears 

transparent to the user. This means they must be so intuitive that the user is not focused on generating 

the control signals, but instead on the task they are trying to complete. In the case of prosthetic control, 
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using pervasive monitoring to determine the intent of the prosthetic user will allow them to use the hand 

as if there is a neurological connection. While truly dexterous control may be beyond our current 

capabilities, pre-programmed motions, initiated by the corresponding gestures, would provide 

significantly improved functionality over current prosthetic devices, and may improve the satisfaction 

with the prosthetic. 

Controlling other interfaces could still be challenging, however a generalizable interface that provides 

gesture control over smart devices may also provide a solution. While it is unlikely the gesture control will 

provide a complete solution for natural human-machine interaction, when paired with voice control it 

would provide the most natural form of interface available. Voice controlled smart devices are increasing 

in popularity, however gesture controllers have been hampered by technological constraints which are 

inherent in sensing modalities such as electromyography (EMG). These constraints include precise 

calibration, which leads to reduced functionality over time, a factor that is far less relevant with MMG-

based systems. 

MMG is an underexplored sensing modality that has the potential to provide robust and highly function 

method of gesture recognition. Whilst other more mature sensing modalities have been unable to provide 

this robust control, MMG can provide this type of improved functionality to those who are excluded from 

traditional human machine interfaces. 

1.3 Aim 
The primary objective of this study is to assess the utility of fusing muscle activity and inertial 

measurement for HMI applications. This will be accomplished in two ways: firstly, the precision and 

accuracy of each of the sensors will be established, to ascertain whether it is possible to accurately 

determine intent from the muscle information; and secondly, the suitability of the sensors will be 

examined by assessing the performance of the system whilst performing specific tasks. There are many 

forms of interaction being researched for HMI, and a complete system will need to be multi-modal. This 

study therefore identifies tasks best suited to interfaces of this nature. 

To demonstrate the diversity in the application of the system described here, three forms of output were 

chosen that best demonstrate the strengths of sensor suite. It should act as a User Interface for smart 

devices, facilitate the control of Upper-Limb Prosthetic Devices and allow Robot Teleoperation. Each of 

these system outputs has different motivations and introduces application specific system requirements.  

1.3.1 Smart Systems 
In a modern smart home, a user may interact with numerous interconnected application specific 

computing devices. Reducing the intended functionality of each device enables the user interaction to be 

simplified, ideally to the point where the user is no longer overtly aware that it is a computer that they 

are interacting with. 

A system of this nature must have three features: 
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- Pervasive Monitoring - The system should be able to track the user in some way and record 

possible interactions. 

- Context-Aware Computing - The system should be aware of the environment in which the user is 

performing these interactions. 

- Artificial Intelligence - The system should be able to use environmental factors and user 

interactions to derive user intent. 

The sensor suite is utilized in this thesis as a Pervasive Monitoring system and is demonstrated by applying 

constraints in a known context as a facsimile to a complete system. 

The context specific objective is as follows: 

• Develop a method of interacting with smart devices using natural gesture commands. 

Other systems have been produced with similar objectives to this, however they rely on alternative 

sensors that have both a greater monetary expense and greater power consumption. 

1.3.2 Controlling Upper-Limb Prosthetic Devices 
The control of a prosthetic hand is a useful demonstration of the utility of the MMG sensor. For amputees 

who have undergone a lower limb amputation, active prosthetics are most commonly controlled using 

inertial measurement units, however this is not practical for upper limb amputees since it relies on cyclical 

movement patterns to predict future motions. Dexterous hand movement consists of an intended gesture 

in a specific location, and since this constrains the motion of the arm, monitoring muscle activity is one of 

the common alternatives for prosthetic hand control. 

Active prosthetic hands are most commonly controlled using electromyography (EMG). EMG is the name 

given to the process of monitoring the electrical impulses that can be recorded propagating through 

muscles as they contract. Surface EMG (sEMG) involves sensors placed on the surface of the skin and can 

be used within the socket to detect impulses in the residual limb. This provides the wearer with a binary 

form of control over their prosthetic. Despite research into methods of increasing the bandwidth of the 

EMG signal to allow for a more effective control, translation to market has not yet occurred. One reason 

for this is that calibrated EMG is reliant on skin conditions that are not consistent, particularly inside the 

airtight socket. While experiments in a controlled environment can generate good results, they do not 

solve the problems of practical application outside that environment. 

MMG has the potential to provide a far more consistent method of control by monitoring the physical 

movements of the muscles in the residual limb. By monitoring the way that the signals from different 

muscles interact with one another, it is shown in this thesis that complex gestures involving multiple 

muscle contractions can be distinguished. The base amplitude of the MMG signal is also much higher, and 

as a result, the movement required is much smaller, delaying the onset of muscle fatigue so that MMG 

signals remain a useful method of interaction for longer. 
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The objectives in this section are as follows: 

• Generate a more manageable method of prosthetic hand control than is currently available. 

• Design a method of interaction by which prosthetic users can use the control system to interact 

directly with smart devices without using their prosthetic. 

These objectives describe a new method of interaction that may lay the groundwork for new research 

which can be translated to market, benefiting those currently poorly served by the existing commercial 

solutions. 

1.3.3 Robot Teleoperation 
Robot teleoperation demonstrates the full utility of this system for capturing dexterous movement. Data 

taken from inertial sensors can be used to calculate the movement of the user’s limb within a real-world 

reference frame, and the muscular information is used to determine the intended action of the end 

effector. In the case of the experiment performed in this thesis, the actuator is a 14DoF robotic platform 

produced by Rethink Robotics. In addition to the robot teleoperation, the arm has numerous autonomous 

functions that can be initiated by the user therefore the system can provide the user with a number of 

seemingly natural outcomes through an intuitive method of directing the semi-autonomous controller. 

The application specific objectives of the robot teleoperation are: 

• Develop the real-time semi-autonomous controller for the robot, comparing both the system 

described in this thesis and a solution with is more aligned with industry standard methods.  

• Perform this task in simulated real-world conditions. 

1.4 Contributions 
There are several contributions that have been made to the field of Mechanomyography for gesture 

recognition, as well as a number of application and algorithm specific contributions. These are 

summarized in the following points. 

• The creation of a new form of multimodal interface that makes use of both the mechanical signals 

generated through muscle contraction, and inertial information to provide a method of gesture 

recognition. 

• Improvements to the robustness of a pre-existing, commonly used, gradient descent inertial 

measurement orientation estimation algorithm. 

• Introduction of a new IMU orientation estimation algorithm with predictable convergence.  

• MMG classification through basic and machine learning classifiers, both offline and in real time. 

• Introduction of a new method of fusing MMG signals with inertial data to provide classification 

accuracy which is not dependent on consistent arm pose. 

• Application of this system for prosthetic control and for robot teleoperation, both in virtual 

environments and in real world applications. 
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1.5 Publications 

1.5.1 Journal Papers 
• S Wilson, H Eberle, Y Hayashi, S O.H. Madgwick, A McGregor, X Jing, R Vaidyanathan, Formulation 

of a new gradient descent MARG orientation algorithm: Case study on robot teleoperation, 

Mechanical Systems and Signal Processing, Volume 130, 2019, Pages 183-200, ISSN 0888-3270. 

(Impact factor: 5.0) 

• W Huo, P Angeles, Y F Tai, N Pavese, S Wilson, R Vaidyanathan, “A Sensor System Framework to 

Quantify Parkinson’s Disease Symptoms”, IEEE Transactions on Neural and Rehabilitation 

Engineering. (Impact factor: 3.4) 

1.5.2 Conference Papers 
• S Wilson, R Vaidyanathan (2017) Gesture Recognition Through Classification of Acoustic Muscle 

Sensing for Prosthetic Control. In: Mangan M., Cutkosky M., Mura A., Verschure P., Prescott T., 

Lepora N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in 

Computer Science, vol 10384. Springer, Cham 

• S. Wilson and R. Vaidyanathan, "Upper-limb prosthetic control using wearable multichannel 

mechanomyography," 2017 International Conference on Rehabilitation Robotics (ICORR), 

London, 2017, pp. 1293-1298. 

• P. Angeles, Y. Tai, N. Pavese, S. Wilson and R. Vaidyanathan, "Automated assessment of symptom 

severity changes during deep brain stimulation (DBS) therapy for Parkinson's disease," 2017 

International Conference on Rehabilitation Robotics (ICORR), London, 2017, pp. 1512-1517. 

• Y. Ma, Y. Liu, R. Jin, X. Yuan, R. Sekha, S. Wilson and R. Vaidyanathan, "Hand gesture recognition 

with convolutional neural networks for the multimodal UAV control," 2017 Workshop on 

Research, Education and Development of Unmanned Aerial Systems (RED-UAS), Linköping, 

Sweden, 2017, pp. 198-203. 

• M. Admiraal, S. Wilson and R. Vaidyanathan, "Improved formulation of the IMU and MARG 

orientation gradient descent algorithm for motion tracking in human-machine interfaces," 2017 

IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), 

Daegu, Korea (South), 2017, pp. 403-410. 

• A. P. H. Needham, F. P. Paszkiewicz, M. F. Md Alias, S. Wilson, A. A. Dehghani-Sanij, B. C. Khoo, R. 

Vaidyanathan, "Subject-Independent Data Pooling in Classification of Gait Intent Using 

Mechanomyography on a Transtibial Amputee," 2018 IEEE International Conference on Robotics 

and Automation (ICRA), Brisbane, Australia, 2018, pp. 1806-1811. 

• C. Caulcrick, F. Russell, S. Wilson, C. Sawade and R. Vaidyanathan, "Unilateral Inertial and Muscle 

Activity Sensor Fusion for Gait Cycle Progress Estimation*," 2018 7th IEEE International 

Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, 2018, pp. 1151-

1156. 

• L. Formstone, M. Pucek, S. Wilson, P. Bentley, A. McGregor and R. Vaidyanathan, "Myographic 

Information Enables Hand Function Classification in Automated Fugl-Meyer Assessment," 2019 



 

 
 

28 
 
 

9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 

2019, pp. 239-242. 

1.6 Layout of Report 
The layout of the remaining six chapters of this thesis is described below. 

Chapter 2 - Literature Survey. This chapter explores the work that has been done prior to this study. It 

includes work in the fields of HMIs, pervasive monitoring, prosthetic control, mechanomyography, sensor 

fusion and signal segmentation, and processing. It examines both the requirements for improved 

interfaces and the sensing modalities that new interfaces could exploit. It also evaluates each of these 

modalities against criteria determined through discussion with end users. 

Chapter 3 - Hardware Development. This chapter describes the process of creating the new hardware 

required to perform this study. The design process is documented, including the production of both the 

hardware and the complementary software. 

Chapter 4 - Sensor Validation. This chapter describes the process of evaluating the accuracy of the 

orientation estimation algorithm used. It details factors that are known to affect this accuracy and then 

provides several modifications to the original algorithm to improve the accuracy and robustness. Finally, 

a new algorithm is outlined. 

Chapter 5 - Gesture Recognition. This chapter focuses on intent prediction using myographic information. 

Segmentation and extraction are performed to detect when a gesture may have occurred and then the 

classification process ascertains which gesture was made. This chapter details both custom template-

based methods and more advanced machine learning classification methods. Several algorithms have 

been tested and evaluated both in offline and online applications. 

Chapter 6 - Application: Prosthetic Control and Teleoperation. This chapter outlines the application of 

this control system to the field of robotic control, both for assistive technology and for advanced robotic 

control. It evaluates the system using virtual environments that allowed the interface to be evaluated 

against known positions. It includes modifications required for practical use and then evaluates the 

usability of the system through several real-world tasks. 

Chapter 7 – Conclusion. This chapter provides an overview of this document and describes how the 

objectives and contributions outlined in this chapter were met. 
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Chapter 2 
A Review of the Existing Literature 
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2.1 Structure of the Literature Review 
This chapter is broken down into two main sections. The first section discusses Human Machine Interface 

technologies, prosthetics, assistive devices and sensing technologies. This section will contain the 

literature relevant to the decisions made in Chapter 3. In the second section, orientation monitoring 

algorithms are discussed, and a brief overview of quaternion operations is given. This section of the 

literature review leads into the algorithm descriptions in Chapter 4.2. The layout of this chapter is 

described in the Figure 1. 

 

Figure 1 - Layout of literature review 
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2.2 Overview of Intelligent Human-Machine Interfaces and Sensing Technology 

2.2.1 Introduction to Terms 
Human-Machine Interfaces (HMIs, also referred to as Man-Machine Interfaces or MMIs) are a technology 

designed to pass information between humans and machines. HMIs range from those that require 

volitional control and active engagement to achieve an objective (referred to as active HMIs), to those 

that function as pervasive monitors where the command instruction may be achieved sub-consciously by 

those using the interface (referred to as passive HMIs). In the most extreme case of an active HMI, the 

user is focused on manipulating the interface, whereas at the other extreme the user is functionally 

unaware of the interface. Active and passive HMIs have very different use cases, and both have been 

explored extensively 

Intelligent HMIs are those that attempt to reduce the cognitive load for the user by presenting them with 

a representation that matches the model of the task that they have in their head [11]. Nearly all modern 

HMIs can be thought of as intelligent HMIs, and this can be observed by the language that is used when 

referencing functions: data is stored in ‘files’, which are organized into ‘folders’; we 'empty the recycle 

bin' instead of removing headers to delete these files. As these representations become more closely 

aligned with the users’ mental model, they move closer to becoming a Natural User Interface (NUI). An 

NUI is described as an interface where the method of interaction is natural to the user and is made evident 

by the design of that interaction; meaning explicit instruction or training is not required. Whether there 

is currently such a device can be debated, but the technology that has been developed to behave like an 

NUI does so by attempting to remove the cognitive barrier between the user and the data they are 

manipulating. As with an active interface, the user is still actively engaging with it and providing volitional 

commands, but it is functionally invisible to them. 

This chapter draws together the existing literature on HMIs across two developmental work strands, that 

which focuses specifically on prosthetic control and that which examines more general HMIs. It attempts 

to compile the existing guidelines on creating a successful interface so that an appropriate list of 

specifications can created in future chapters. 

2.2.2 Traditional HMI 
There are a wide variety of conventional technologies that are currently used to provide HMI, such as the 

monitor, the computer mouse and the keyboard. The keyboard was designed to allow people who were 

unfamiliar with computers to use prior knowledge from the use of typewriters, thereby reducing the 

training time and cognitive load. Early keyboards were used to punch holes in paper tapes that carried the 

code to be loaded to the system.  Output from the system was via similar tapes that were replayed through 

teletype machines to translate the punched holes back into a readable format.  In an attempt to make 

computer manipulation more intuitive and accessible for non-programmers, the computer mouse were 

developed along with the ability to manipulate graphical objects on the screen in the late 1960s, leading 

to the Graphical User Interface (GUI) [12]. GUIs most often use a combination of selectable workspaces 

on the screen, known as Windows, along with Icons, Menus and Pointers (known WIMP-based GUIs) to 
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simplify the HMI for the user. Other HMI devices, such as joysticks, dials and buttons all predate digital 

computing, yet are still commonly found as HMIs today. 

These traditional HMIs have two distinct disadvantages. The first is that the desire to build on prior 

knowledge and the technical limitations at the time of development have led to technically inefficient 

interfaces. The clearest example of this is in the layout of the computer keyboard in the QWERTY 

format.  It has been suggested that this keyboard layout was originally intended to slow down typists on 

mechanical typewriters to ensure the keys and type hammers had sufficient time to respond and return 

to rest without getting mechanically jammed together. While more efficient layouts have been proposed, 

they have not been universally adopted, partly due to extremely widespread use of QWERTY format 

keyboards leading to almost universal familiarity with the layout among English speaking keyboard users, 

and party due to the time taken to learn a new key placement [13]. The other disadvantage of 

conventional interfaces is that they require dexterous manipulation of physical objects to achieve a task, 

which render the interface poorly suited for some, and impossible to use for others. 

These two points form the basis of the motivation for the research that underpins this document. 

Increasing the efficiency of existing interfaces will not lead to the widespread adoption of a novel 

interface, however building an interface for those who cannot use the traditional technology will provide 

a method of validating it. If the interface can be used by the wider population then this validation may 

lead to a higher chance of adoption of the technology. 

Despite the pervasive nature of WIMP HMI there remain many groups for whom the required dexterous 

manipulation is challenging. The exact nature of the difficulty an individual might experience can vary, but 

there are many diseases for which a loss of dexterous control may be a symptom. An example of this is 

Parkinson’s disease, a degenerative brain disorder where loss of nerve cells in the brain leads to tremors 

and stiffness of the muscles. Parkinson’s is said to affect 1 in 500 people to some degree. Another cause 

of loss of fine motor control is Stroke, with up to 90% of Stroke survivors suffering from some degree of 

paralysis. There are many other diseases that may cause a reduction in dexterity; there are also many 

reasons why an individual may lose one or both hands completely. 

2.3 Amputees and their prosthetics 

2.3.1 Causes of Amputation 
It is estimated that there are over 2,000,000 people who are living in the US alone with a limb loss, 

normally as a result of either trauma or disease [14]. Approximately 1 in 4 of these involve the amputation 

of some part of one or both upper limbs. The leading cause of upper limb amputation is trauma, which 

leads to 77% of these amputations. This includes both injuries where the limb is determined to be 

unsalvageable and traumatic amputation, where the limb is severed in the incident. In many cases, 

individuals who have survived traumatic amputation require a further amputation proximally to create a 

residual limb that can be used to control a prosthetic in future. The leading cause of traumatic amputation 

is vehicular accidents, however, they are also a common injury sustained during conflicts. 
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Congenital amputation/Congenital upper limb deficiency makes up approximately 9% of upper limb 

amputees. Congenital amputation is caused when the tissue in the limb of the foetus dies, resulting in the 

loss of part or the whole of the limb. There are various causes of this tissue death, with a common one 

being amniotic band constriction. 

A common form of cancer that can lead to amputation is bone cancer, an example of which is 

Osteosarcoma. Often, a surgeon will attempt to remove only the tumour, however, in many cases this is 

not possible. The second option for the surgeon is to perform limb-sparing surgery, where the portion of 

bone in which the cancer is growing is removed and replaced with a metal prosthesis. If the portion of 

bone is near the joint, then this may necessitate the removal and replacement of the joint as well. If these 

options are impossible or fail, or if the body rejects the implants, then the limb must be removed. 

Amputations due to cancer make up approximately 8% of upper limb amputations. 

Another common cause of amputation is disease. Physiological diseases such as diabetes are the leading 

cause of lower limb loss and can also lead to upper limb amputation. Infectious diseases can also require 

amputation, either due to the damage done to the limb, or to prevent the disease spreading. Amputation 

in this case is normally only performed when the disease is progressing too fast to be controlled and where 

less aggressive solutions have not worked or are more likely to lead to the death of the patient. An 

example of this is sepsis, where tissue death in a limb can require amputation to stop the spread of 

infection. Diseases are the cause of approximately 6% of upper limb amputations. 

Whatever the cause, it is difficult for amputees to adapt to the loss of one or both hands. Often amputees 

suffer from depression in the time after their amputation and for those who have lost limbs in a traumatic 

or distressing event, Post-Traumatic Stress Disorder (PTSD) is also common. Activities of Daily Living (ADLs) 

become much harder, indeed some may become impossible because so many of the interactions in our 

lives are designed with the dexterity of the hand in mind. One way to try and restore some of this lost 

functionality is with prosthetic devices. A prosthetic device that works well is incredibly important for 

amputees, both in terms of their quality of life, independence and in terms of their mental health. 

2.3.2 Prosthetic Devices  
A prosthesis is a device that is designed to replace a body part which has been lost. Current prosthetic 

devices can restore some of the lost functionality, however, they are unable to mimic the high number of 

degrees of freedom of the hand and wrist (21 Degrees of Freedom in the hand and 6 in the wrist). There 

are many prosthetics available for those who have lost a hand and the range can be separated into two 

categories: passive and active devices. There are two types of prosthetic that fit into the passive category, 

cosmetic and functional. Active prosthetic devices are those that have driven moving parts and can be 

either body-powered or externally powered. 

Traditionally, cosmetic prosthetics are designed to disguise the wearer’s amputation. They are often 

tailored specifically to their wearer’s shape and skin colour and can even be customised to include tattoos 

that may have been on the original limb. More recently, a different kind of cosmetic prosthetic has gained 

more popularity, in which the device is designed as an art piece to be worn. These are crafted not to hide 
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the amputation, but to emphasis it with the intent to promote discussions about disability and body 

diversity, while at the same time giving the amputee something unique that they can be proud of, instead 

of a less-functional replacement. 

Functional passive prosthetics are simply tools with which the wearer can interact with their environment 

to achieve specific tasks. These have traditionally been shaped metal and more recently tools that allow 

you to use touch screen devices have also become popular. 

Active prosthetics are designed to allow the user to perform a greater number of ADLs by giving them 

control over a one-or-more degree of freedom manipulator. As previously stated, active prosthetics can 

be categorized either as body-powered, where the energy required to perform the movement is 

generated by the user, or externally powered, where the energy is provided by some other source. Body-

powered prosthetics are usually restricted to either one or two degrees of freedom. A typical example of 

a body-powered prosthetic is a split hook prosthetic, where a harness worn around the shoulders can be 

used to open the gripper, and elastic or springs are used to close it again. These prosthetics can often also 

be rotated at the wrist to allow for extra functionality. Externally powered prosthetics normally require a 

power source mounted on the device. They also usually attempt to make a prediction of intent by 

observing muscle activity and using that to trigger movement in the end effector. Prosthetics that do this 

are known as myoelectric prosthetics. 

The movements that can be triggered in the end effector of a myoelectric prosthetic depend on the 

physical nature of the device: a split hook will normally open/close based on one control signal and may 

rotate based on another. Prosthetics that have been designed to mimic biological hands offer a greater 

range of motion, with the most advanced offering around 7 Degrees of Freedom. Due to the difficulty 

inherent in controlling all of these individually, the prosthetic will often work as a semi-autonomous 

system, where the user can select the action they would like the hand to do, and then trigger the hand to 

perform that action. That hand will then control each of the motors to perform the desired gesture, 

factoring in each digits resistance to movement. This is known as grip selection and provides the wearer 

with the tools to complete a wide range of ADLs.  

Of all the available options, externally-powered grip-switching prosthetic devices are the most functional 

option which still maintain the appearance of a hand. Despite this, only 34% of frequent prosthetic users 

who could use a myoelectric prosthesis regularly wear one [15]. In addition, the rejection rate of upper 

limb prosthetics is between 20-50% [16, 17]. The studies relating to rejection often use relatively small 

sample groups, and the participants are often recruited through prosthetic clinics, which mean that the 

results cannot be reliably scaled to the overall amputee population. This is because amputees who have 

elected not to use a prosthetic, or who cannot afford one, will not attend a clinic and therefore will not 

be represented in the studies, leading to a positive skew in the reported results. Internet surveys also may 

receive an increased return rate from those who have found a prosthetic solution that works for them, as 

those who haven’t may be less likely or unable to complete the survey. 
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While the use and satisfaction rate should not be extrapolated to the population, the individual responses 

can be examined to determine some of the factors that may lead to rejection, as well as the prevalence 

of those factors within the surveys participants. Some of the most common factors with prosthetic 

rejecters were either physical, such as it being too hot, heavy or uncomfortable, or that it was too difficult 

to use [18]. A common factor with those who have suffered an amputation distal to the shoulder was that 

it was easier to do the task without the prosthetic. 

Prosthetics can not only be used to assist with ADLs, they can also help prevent the onset of further 

medical problems such as phantom pain, or depression and other psychological conditions [19]. Whether 

the amputee has chosen to use a prosthetic or not, they will need to develop methods of compensate for 

the limb-loss. The amputee’s compensation strategies can lead to further problems, such as back pain or 

overuse injuries in the intact limb [20, 21]. The resistance in body-powered prosthetics is often identified 

as a causal or contributory factor to these injuries. Provided user intent can be derived, high DoF 

Myoelectric prosthetics have the potential to offer the most naturalistic movement, and as a result, the 

user would be able to operate it to the same extent as an intact hand. 

The physical factors that may lead to the rejection of a myoelectric hand are limited by the design and 

material science of the device itself, however the ease of use is dependent on the HMI. With increased 

functionality and a reduction in cost, the majority of prosthetic rejecters would be willing to consider using 

a new device, and therefore improving the HMI will be key [22]. 

2.3.3 Assistive HMIs 
Assistive HMIs are a communication technology designed to bypass a disabled individuals impairment and 

allow them to perform tasks that would otherwise be difficult [23]. Prosthetic controllers can fall into this 

category, and most studies that aim to develop assistive technology for amputees focus on them, however 

there are other avenues that have the potential to be equally useful. In this document, ‘assistive 

technologies’ will be defined as distinct from prosthetic devices for simplicity. Amputees wear their 

prosthetics for between 4-8 hours a day on average, mainly due to the weight and discomfort associated 

with wearing the socket. It would also be highly desirable to identify a technology that also allows an 

amputee to interact with their environment without having to use a prosthetic, in part due to the amount 

of time that the prosthetic is not being worn, but also because some tasks are fundamentally just difficult 

to perform with a prosthetic. A good example activity is changing the channels on a television using a 

remote control, which requires fine motor control of individual fingers not currently available with 

modern prosthetics. 

Assistive technologies have been extensively examined for individuals with other conditions but are 

seldom designed with amputees in mind. This may well be due to a perception that a prosthetic device 

presents a ‘solution’ to limb loss, as opposed to a solution for specific problems that arise as a result of 

losing a limb. The ‘solution’ mind-set does not leave room for development outside of the prosthetic work 

stream. Despite this, the control signals that could be generated by an amputee are as applicable to a 

robot, computer or TV as they are to a prosthetic device, and in recent years, some work has begun to 

emerge that removes the prosthetic device for the HMI, and allows the amputee to interact directly with 
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the computer [24]. This work is still significantly less common than that which includes prosthetics as the 

medium for interaction. 

Assistive technologies that allow for robot teleoperation are also an under examined research area. While 

physically controlling a multi-DoF robot is not practically useful at this time for amputees, it is a complex 

task requiring accurate control in 3D space. As such, robot teleoperation is analogous to both complex 

direct computer control, and smart home control. A sensor suite that demonstrates this high bandwidth 

interaction could allow more complex HMIs to be developed to assist amputees with their ADLs, as well 

as other more adventurous activities they may wish to participate in. 

Finding a sensor suite capable of both prosthetic control and control of other assistive technologies is 

important for giving amputees the ability to interact with their environment, whether this interaction is 

physical or through a computer. Various sensors have been tested for prosthetic control, and there have 

been several studies that describe the development of HMIs for healthy individuals, and this will be 

explored in the following section. 

2.4 Sensing Modalities 
This section will discuss the existing literature in the fields of prosthetic control and HMI, grouping 

research by sensing modality and then by application. This will allow us to examine the solution space and 

create a system capable of fulfilling the design criteria. Since this study focuses on pervasive gesture 

recognition devices, the section will focus principally on interfaces that do not require dexterous 

manipulation as their primary input modality. Each sensing modality will be described, and work 

performed in the field of activity/gesture recognition/monitoring in prosthetics and Human Machine 

Interface will be outlined. Where appropriate, results of gesture recognition studies will also be included. 

2.4.1 Physical Input Systems 
Physical input systems are those that require some physical manipulation as a method of interaction. They 

tend to be the most common form of interface, since they can be unobtrusive enough for a ubiquitous 

system, and yet still give both an input and an effect that the user can observe, making it relatively easy 

to learn how to use them. 

In the field of upper limb prosthetics, systems that require some form of physical input as their primary 

control signal are referred to as body-powered prosthetics. As previously indicated, body-powered 

prosthetics are the most common method for control and have several advantages that are unique to this 

form of control. 

The most common examples of body-powered upper limb prosthetics are cable driven split hooks. Split 

hooks are normally a single-DoF device that the wearer can open by pulling a cable attached to a harness 

worn around the shoulders. This is normally achieved by a combination of pushing the shoulders forward 

and straightening the arm. In addition, some split hooks give the wearer the ability to change the force 

applied by the elastic, allowing the wearer to select different grip strengths, usually through a linear 

ratchet moved with a toggle. Finally, the wrist assembly also can be rotated. While strength and rotation 
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are both physical inputs, they are more akin to settings of the split hook, rather than the physical control 

signals generated through the cable 

The combination of cable and elastic facilitates proportional control of the DoF, which is lacking in many 

other forms of interface. The amount that the hook opens is directly controlled by the amount of force 

that the wearer exerts through the cable, and they can learn what is required to open the grippers by any 

fraction very quickly because it is consistent. The physical system does not introduce any delays, and the 

user’s perception of the force they are applying allows them to feel feedback. Due to this, a user who has 

been using one of these prosthetics for an extended period of time is able to accurately use the gripper 

without visual feedback. This ability for a healthy individual to perceive their joint angles and therefore 

position is called proprioception. When a user becomes so capable with a tool that they understand where 

the end of it is in relation to them, this is known as Extended Physiological Proprioception (EPP). An 

example of this principle that will be familiar to most is a white cane, used by people who are blind or 

have low vision to feel objects and obstacles in their environment.  

In the field of prosthetic control, the term Extended Physiological Proprioception has garnered a more 

specific meaning in recent years. Employing the principles of EPP into prosthetic devices is desirable, since 

the ability to sense the position and state of a gripper allows the prosthetic to be considered to be a closed 

loop system [25]. This allows the wearer to develop control strategies that are both intuitive and feel 

natural. More recently, papers referring to the development of EPP controllers have become more 

prevalent. These papers use the term to refer to controller that attempt to close the feedback loop 

without the gripper being a part of that loop. This proprioception lets the user know that they have made 

the correct control signal, regardless of whether the prosthetic has moved or not. A common example of 

this is to use shoulder position relative to a relaxed zero point to control an upper limb prosthetic [26]. 

Incorporating the concept of EPP into a prosthetic controller is an important desired requirement for 

upper limb prosthetics, as the intuitive control strategies are vital for reducing rejection, and by their 

nature, body-powered prosthetics achieve this. 

Body-powered prosthetics are not a complete solution to the problem of controlling upper limb 

prosthetics for two reasons. First, wearing a body-powered prosthetic means repurposing functions of the 

body. This may be as simple as remapping one-DoF in the shoulder to control a hand or elbow, or as in 

the case of commercial harness driven systems, it may require a more complex movement to actuate a 

single-DoF gripper. In either case, the number of joints that can be controlled is limited to 1-2. The second 

and potentially more serious problem with body-powered prosthetics is the range of long-term health 

problems associated with them. Many users report persistent back and shoulder pain, and this is a greater 

cause of rejection than the lack of functionality. This is due to the stresses associated with performing the 

required movements, which are not necessarily natural to the body. As mentioned previously, RSIs are 

very common with users of body-powered prosthetics, and this can be attributed to both the use of the 

device, and the user’s compensation strategies. Prosthetics with an elastic element require repeated 

resisted movements and are often heavy. The weight of the device is considered a problem for two 

reasons: the effort required to move it, and the poor weight distribution, with the majority of mass often 
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being the gripper/hand at the end of the arm. The nature of the prosthetic socket mean that the force 

applied to the residual limb by the weight of the prosthetic is applied mostly on a small area at the end of 

the residual limb and the force that the wearer is applying to actuate the arm is also transmitted primarily 

by the end of the arm. This can cause damage to the soft tissue on the residual limb, which must be 

maintained in a healthy state to preserve the remainder of the limb. It can also lead to other complications 

such as bone bridging or fractures. 

Physical input systems are almost exclusively used as a control strategy for single-DoF body-powered 

prosthetics. Due to the increased complexity of multi-DoF systems, these are almost always externally 

powered and require either multiple proportional control signals or some form of grip selection. For both 

these cases, one of the more advance control inputs described in the following sections will be required. 

Irrespective of the type of system being controlled, most commercial HMIs use some form of physical 

system as an input. This is most often in the form of buttons and touch screens, but joysticks and dials are 

also very prevalent, particularly in the field of robot teleoperation [27]. In most cases, the input from 

physical systems is very simple, and the functionality associated with it is extrapolated from dexterous 

manipulation of the input. One reason NUIs are less dependent on physical interface systems is that in 

cases where this dexterous manipulation is required, the burden of learning the system is on the user, 

and their use of the interface becomes a learned behaviour, potentially reducing accessibility. It may be 

that despite potentially more intuitive and accessible interfaces being available, the perceived effort 

required to move away from a known system is higher than the general population is willing to undertake, 

as has been the case with many technologies in the past [13]. 

While most physical input systems focus on the hands to perform the required action (such as in robot 

assisted surgery [28]), there are several alternatives that are more aligned with the intent behind of this 

thesis. HMIs for use in virtual environments are often geographically constrained, and in the case of CAVE 

(Cave Automatic Virtual Environments), physical input devices may be present either to map body 

kinematics, to observe interactions within the environment, provide haptic feedback to the individual, or 

for some combination of all these tasks. These devices are often mounted in a known position, allowing 

the interaction to be observed precisely from a known reference point. Devices like this have been used 

in CAVE-based experiments as inputs to simulate completing specific tasks [29]. 

Wearable exoskeletons are similar in that they provide a direct measure of input, but these systems are 

referenced to the wearer, not the environment. This technically removes the geographic constraint, 

although such systems are often too large to be considered pervasive, and therefore are often 

geographically constrained for practicality. Nevertheless, many systems have been developed for 

teleoperation of robotic platforms [30], and for use in stationary conditions for applications such as 

monitoring symptoms such as tremor or rigidity [31], or for rehabilitation in cases where kinematic 

monitoring provides useful information, such as for stroke patients [32]. Systems have also been 

developed commercially for motion capture; an example of which is the Gypsy 7 Motion Capture System. 
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Attempts to increase the applications for exoskeletons and wearable robotic systems usually do so by 

reducing the number of joints being examined. Wearable goniometers and optical encoders can be used 

to directly measure individual joint angles, usually for activity classification [33] or limb tracking [34]. 

Smart materials can also be used to achieve this [35]. 

2.4.2 Vision-based systems 
Camera-based tracking systems are very common in detecting control movements. They are also useful 

for detecting the context of the control signal, which may also allow the system to perform different 

actions to achieve different tasks based on the same control signal. The intelligence in these systems can 

make them easier to use, provided that the context is apparent to the user as well as the device. 

Camera-based control systems for prosthetic control are often used in grip selection strategies to perform 

object recognition. This can allow the system to pick the most suitable grip for the target object. DeGol et 

al. [36] used a camera located on the palm of the hand to detect objects, and select from 5 grips with an 

accuracy of 93.2%. Gardner et al. [37] mounted their camera under the forearm of a commercial 

prosthetic, and were able to classify 6 object for actuation of 2 grip patterns with an accuracy of 69.2% - 

90.8%. Dosen et al. [38] introduced different grasp sizes to the grip selection protocol, classifying 9 

combinations with an accuracy of 84%. These applications use the cameras to provide context to the 

user’s intent to move. Intent is often picked up using another sensor such as EMG or IMUs. One of the 

difficulties associated with using grip patterns based on object recognition is the variety of objects that an 

amputee may be required to hold. This means that a large database of objects and their associated grip 

patterns is required. Markovic et al. [39] overcomes this limitation by approximating the shape of the 

target device to a common geometric model, allowing the system to cope with arbitrary and unseen 

objects. In this case, the camera provided information on size and shape, allowing the controller accurate 

proportional control of the hand.  

An alternative to using cameras that operate in the visual spectrum is to use depth cameras as a method 

of approximating object shape, and therefore required grip. Ghazaei et al. [40] used this technique to 

obtain a grip selection accuracy of 88%. 

There are a wide variety of camera-based HMIs, but they can broadly be broken down into those that use 

wearable cameras and those that use stationary cameras. Stationary cameras are most commonly used 

in HMI applications to either observe full body kinematics (also referred to as Human Pose Estimation or 

HPE), or a subclass of HPE such as hand kinematics. 

There is a large body of research dedicated to HPE for gait analysis and motion capture. The image 

processing techniques used can be categorized as either marker based or non-marker based [41]. Markers 

are physical devices that are visually unique to the image processing system. Combinations of these 

markers can be placed on the body to derive the orientation of the joint. The observed constellation can 

then be applied to a skeleton to create a kinematic model. Markers are often used in clinical environments 

to detect subtle differences between normal and pathological locomotion, due to the high accuracy of the 

advanced systems [42-44]. 
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Marker based systems can be prohibitively expensive, so many applications no longer use them. An 

alternative is to segment the subject within the image, and then apply pose estimation based on a known 

humanoid model [45-47]. This approach works well, but makes assumptions based on the model it uses, 

which can cause problems if those assumptions prove to be false. It has been demonstrated that a model 

can be generated by observing the movement of the subject [48]. This removes the limitations imposed 

by a generic model. 

The Kinect Xbox 360 from Microsoft is often used to detect body kinematics due to its camera paired with 

dual infrared depth sensors. Body kinematics detected using a Kinect Xbox have been used to generate 

control signals for humanoid robots [49-51], however this requires favourable lighting conditions, and also 

requires the user to stay within the field of view of the camera, limiting the available workspace. 

Cameras can also be used to detect hand movements to generate control signals. This is more common, 

and has resulted in the creation of the Leap Motion controller [52], a commercial product consisting of a 

desk mounted camera used for gesture recognition for computer interaction. More generally, hand 

gesture recognition using either the Kinect [53] or a custom camera arrangement have been used for both 

sign language recognition [54] and computer/robot control. While most systems use skin detection [55] 

as a starting point for either fitting or generating a model, [56] and [57] both use coloured gloves to 

identify individual parts of the hand. This approach allows different parts of the hand to be identified more 

easily, improving the capacity for gesture recognition. 

The use of body, or prosthetic -mounted cameras for HMI are typically found in augmented reality 

applications, such as the HoloLens. They tend to have accurate hand tracking in uncluttered environments 

[58].  

2.4.3 Inertial Measurement Units 
Inertial Measurement Units (IMUs) are one of the easiest ways to determine body kinematics. The sensor 

is placed at a known orientation on the target joint, allowing movement and orientation of that joint to 

be observed. It is often not necessary to derive the entire kinematic pose, partial subsections of the 

kinematic tree are all that is required in many applications. 

In the field of prosthetics, IMUs are almost exclusively used to provide context to the semi-autonomous 

control system within the prosthetic. This is normally achieved in one of three ways. The first is through 

activity recognition, most commonly used in lower limb prosthetics for gait detection. Lower limb 

powered prosthetics can apply power or resist movement but rely on gait models to do this effectively. 

The model selection is based on detecting current movement, and IMUs have proved to be an effective 

way of doing this, both in the research community [59] and in industry [60]. 

The second method of providing context is through state observation. There are a number of ways this 

could be implemented, but most commonly it is used in conjunction with control signals taken through 

other sensing means. Woodward et al. [61] uses a combination of IMU and MMG, where wearers can 

express an intent through muscle contraction, but that intent can be used to either change grips or actuate 
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the hand based on the orientation in which the wearer is holding their arm. Gardner et al. and Kyranou et 

al. [62, 63]  use the information provided from the IMUs to supplement their primary control system using 

the nature/angle of approach to the target to select different grips.  

The third method of providing context is to identify sources of interference in the primary control signal 

and reject commands that may have been generated through that interference. MMG and EMG are both 

subject to motion induced noise, so using an IMU to detect that motion has been used to detect when a 

signal is likely to be a false positive [61, 64]. 

There are several handheld HMI devices that use IMUs as either their primary or secondary input. 

Kinematic monitoring systems based on IMUs have also been developed for a variety of applications, 

including robot teleoperation [65], gait recording [66], activity recognition [67, 68], virtual presence and 

rehabilitation [69-72]. 

IMUs can be found in most smart phones and smart watches, providing the capability for general activity 

tracking. Additionally, several companies that use custom, stand-alone IMUs for activity monitoring, such 

as Fitbit and Athletec have achieved commercial success. Devices that specifically generate control signals 

based on movement are less common, although Thalmic Labs have created a wearable interface device 

that used a combination of EMG and IMU data. 

2.4.4 Electromyography  
Electromyography sensors (EMGs) are the most common sensors for detecting muscle activity. They work 

by detecting the electrical signal produced during muscle contraction, referred to as Myoelectric Signals 

(MES). EMGs have a wide variety of uses within the medical industry, and there are several commercial 

products that also rely on them. The EMG signal can be measured from the surface of the skin (known as 

surface EMG or sEMG) or using implantable sensors.  

There has been a large amount of research into extracting more control signals from EMG sensors. 

Excluding the On/Off control, there are six other commonly explored methods of myoelectric control: 

Proportional, Regression, Direct, Finite State Machine, Posture and Pattern Recognition [73]. 

Proportional control – It has been demonstrated that the amplitude of the EMG signal can be 

representative of the amplitude of the intended movement [74]. A proportional control structure is one 

in which the amplitude of the EMG signal is used to set one of more of the mechanical output properties 

[75] of the prosthetic in a practically continuous scale. The mechanical properties may be velocity, force 

or position depending on the intended use.  

Regression control – It has been shown that using regression-based methods, simultaneous proportional 

control can be achieved, where multiple independently-controllable analogue control signals can be 

extracted [76-78]. This allows multiple joints to be controlled in a proportional manner at the same time.  

Direct control – Direct control is the term given to a system that attempts to restore functionality by 

observing individual muscle contractions in the residual limb and then moves the prosthetic as if those 
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muscles were still connected. Due to electrical crosstalk, this is often achieved using implantable 

electrodes, although source separation can be used to overcome the crosstalk and attribute a signal to its 

source muscle group [79, 80]. 

Finite State Machine – Finite State Machine (FSM) control is relatively common in commercial externally-

powered prosthetics. Instead of the On/Off control where the control signal always invokes the same 

action, in FSM-based controllers the actions are determined from both the control signal and the current 

state of the device. Additionally, control signals can be used to change the state of the device with no 

actuation. Commercial devices use a range of inputs to change the current state, ranging from co-

contraction, to buttons, to physically changing the device state. FSM-based controllers are also explored 

in the literature to increase the functionality of the device when the number of observable control signals 

is limited [81-83]. 

Posture control – Posture control is similar to regression control, but instead of each channel controlling 

a separate DoF, they instead weight different hand postures, meaning that the wearer can specify any 

point representing a combination of the postures [84]. This means that a comparatively small number of 

templates can be used for a diverse range of applications 

Pattern Recognition – As prosthetics have become more functional, the required complexity of the 

control signals has also increased. The technical limitations of EMG mean that other forms of control that 

impose a direct control usually have a low dimensionality. Pattern Recognition (PR) allows the prostheses 

user to trigger autonomous behaviours that are analogous to the control signal. Pre-programmed grip 

patterns mean that the user must make one control signal (usually an imagined gesture) to begin each 

gesture. These grip patterns are designed to cover as much functionality with as few different control 

signals a possible. The user provides high-level commands, and the individual joints are actuated 

according to the selected grip pattern.  

Pattern recognition controllers can have a number of different steps, but they usually consist of 

segmentation, feature extraction and classification. They can also have additional steps such as pre/post 

processing and feature selection or a proportional control as a secondary controller. Segmentation is often 

performed using a combination of signal detection and windowing, and once the signal has been 

segmented, appropriate features can be extracted. 

There is no definitive guide as to which features are most indicative of the gesture being performed, but 

attempts have been made to rank features. Zardoshti-Kermani et al. [85] performed a classification based 

on a number of feature sets: the Integral of Absolute Value (IAV), mean Absolute Value(MAV), EMG 

Histogram (emgHIST), Variance (VAR), v-Order detector (V), Zero-Crossing (ZC), Willison Amplitude 

(WAMP), Log-detector (LOG) and 4th Order Autoregressive models (AR), and found that the EMG 

Histogram and v-order detector gave the best overall performance. Other commonly used time domain 

features include the number of Slope Sign Change [86], Average Amplitude Change (ACC) and the Simple 

Squared Integral (SSI) [87]. 
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Due to the simplicity and low computational cost, many papers exclusively examine time domain features, 

however, there has been some investigation into the use of frequency domain and time-frequency 

domain methods. These methods involve transforming the segmented signal to the frequency domain, 

either using Fourier analysis [88] or by using a wavelet transform [89, 90]. Nazmi et al. [91] presents a 

more complete list of time domain, frequency domain and time-frequency domain features. In most 

cases, the feature vector produced from these transforms has a high dimensionality, and therefore these 

methods often require dimensionality reduction, either through feature selection or feature projections 

[73]. 

Once the features have been extracted, they can be used to classify which gesture the wearer is 

performing. Again, there are a variety of methods that are employed for the classification of hand gestures 

using EMG signals including: Artificial Neural Network (ANN) [92, 93] such as Convolutional Neural 

Network (CNN) [94, 95] and Multilayer Perceptron (MLP) [96, 97], Bayesian Classifier (BC) [98], Decision 

Trees (DT) [99], Fuzzy Logic (FL) [97, 100], Hidden Markov Models (HMM) [101], k-Nearest Neighbour 

(KNN) [102], Linear Discriminant Analysis (LDA) [102-105], Quadratic Discriminant Analysis (QDA) [102], 

Random Forests (RFS) [106] and Support Vector Machines (SVM) [101, 107-109]. It has been shown that 

the choice of features has a far bigger impact than the choice of classifier, and provided an adequate 

feature set is being used, most classifiers will have a similar performance [110]. 

EMG sensors are heavily used in the prosthetics industry and are the primary method of control for 

externally powered prosthetics. Commercial prosthetic devices usually use either one or two EMG sensors 

placed on the residual limb. The internal circuitry in these sensors detects gestures through thresholding 

the myoelectric signal, and then converting this to a control signal that it sends to the prosthetic. Two 

sensors placed on the arm can control the prosthetic to open or close. Controllers that rely on thresholding 

in this manner are typically referred to as exhibiting On/Off control. 

The signal processing is independent of the end effector, so the techniques described for gesture 

recognition are also application in the fields of HMI/HCI. 

EMG has been used in Human Machine Interface devices both commercially and in academia. Thalmic 

Labs created a wearable EMG array known as the Myo, which has been used to control a number of smart 

peripherals, including computers, robotic platforms and quadcopters through gestures. The Myo has also 

been used in research for controlling wheelchairs [111], translating sign language [112] and for robot 

teleoperation [113]. 

The Thalmic Myo used dry electrodes on unprepared skin to record the EMG signals from the arm. Since 

this has been shown to suffer from a higher and more unstable impedance than either wet electrodes or 

a prepared surface of the skin [114], many studies opt for more sophisticated sensing equipment. EMG is 

frequently used to provide qualitative control signals in the field of robot teleoperation, where the 
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continuous control signals are generated through some other means [115-117]. It has also been used to 

provide a computer interface for users unable to use traditional forms of interface [118]. 

Table 1 summarises example papers representing typical accuracies achieved in EMG activity classification 

for pattern recognition applications in recent years. 

2.4.5 Mechanomyography  
Mechanomyography is the term used for the monitoring of mechanical signals that are generated during 

a muscle contraction. These mechanical signals are produced through a combination of the gross lateral 

movement of the muscle during the initial contraction, the lateral vibration generated at the muscles 

resonant frequency, and the dimensional changes of the motor unit’s fibres themselves [119, 120]. It is 

generally accepted that MMG signals and EMG signals are generated through the same process, as they 

appear to propagate through the muscle at the same rate [122], however, it has been found that EMG 

and MMG are affected differently by muscle fatigue [121, 123]. In addition, the signals from MMG have a 

much higher base signal to noise ratio than EMG, and can therefore be recorded reliably outside the 

clinical environment [124]. 

MMG signals are usually recorded by placing a sensor on the surface of the skin, normally either an 

accelerometer [125, 126], microphone [124, 127] or a piezoelectric contact sensor [128]. It is also possible 

to monitor the MMG signal externally by using a Laser Distance Sensor [128-130]. It has been shown that 

the placement of the sensors needs to remain consistent to ensure a consistent signal [131]. Work has 

also been conducted in the design of the MMG sensors, with the microphone-based systems potentially 

requiring the most external components. The current design of existing microphone-based MMG was 

proposed by Silva et al [132] and optimised by Posatskiy et al [133]. These designs are referred to in 

Chapter 3. 

Table 1 - Recent EMG classification studies 

Author Number/Type Classification 
algorithm 

Number of gestures/ 
Accuracy/ Online? (y/n) 

Ref. 

Park et al., 2016 10 / dry electrodes CNN 6/~92%/n [2]  

Atzori et al., 
2016 

10 / dry electrodes CNN 52/~66.59%/n [4] 

Geng et al., 2016 128 / electrodes CNN 52/96.7%/n [6] 

Purushothaman 
& Vikas, 2018 

8 / dry electrodes SVM (BC) 15/>95% (>91%)/n [8] 

Teh et al., 2018 6 / dry electrodes LDA 8/96.53%/y [9] 

Zhang et al., 2019 8 / dry electrodes ANN 5/98.7%/n* [10] 

* implemented online, but accuracy not reported 
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There has been significant work performed on using MMG to study the behaviour of motor units during 

contraction [134, 135] and in detecting fatigue [136, 137]. Work has also been conducted to detecting 

neuromuscular disorders [138] and in creating tools for rehabilitation [139]. Much of this work is 

performed by performing actions that activate individual known muscle groups. The sensors are placed 

over the body of the target muscles so that the signals are attributable to their source.  

MMG is not dependent on transient environmental conditions such as skin impedance. This means that it 

is potentially well suited to the conditions within an airtight socket, which are likely to change over the 

course of a day. Despite this, there are currently no commercial MMG systems offered by prosthetic 

manufacturers, who favour EMG. 

There has been some research into the use of MMG for prosthetic control, but it is less mature than its 

EMG counterpart. As a result, mechanomyographic control systems only fall into four categories: On/Off 

control [37], Direct control [140], FSM control [61, 62] and Pattern Recognition [3]. The descriptions and 

methods in these control strategies are the same as their EMG counterparts. 

Beyond prosthetics, very few practical applications of MMG have been explored. MMG has been used for 

gear switching on a bike [141], but a large proportion of the work conducted to this point has been to 

validate the sensors as opposed to implementation in practical applications. As such, the work of sensor 

fusion has been limited. Since EMG is considered the standard for muscle activity sensing, work has been 

performed using both EMG and MMG for validation [142]. Woodward et al [143] used a multimodal 

approach, combining IMU and a single MMG sensor for intent derivation, however in this application, 

each sensor provided a single channel of binary data for on/off control. Some examples of papers that 

have implemented multichannel MMG for pattern recognition are given in Table 2. 

2.4.6 Myokinemetric signals 
Myokinemetric (MK) signals are recorded by observing the dimensional changes of the muscle, and 

therefore are a direct measurement of one of the components of the MMG signal. It can be observed by 

recording the changes in the diameter of the limb, meaning that the signal is a summed measurement of 

the cross-sectional area of the muscles in the region being measured.  

Table 2 - Recent MMG classification studies 

Author Number/Type Classification 
algorithm 

Number of gestures/ 
Accuracy/ Online?(y/n) 

Ref. 

Alves & Chau, 
2009 

6/Microphone & 
Accelerometer 

LDA 8/ 93.3%/n [1] 

Alves & Chau, 
2010 

6/Microphone LDA 8/ 85%/n [3] 

Cao et al., 2011 2/Accelerometer Generalised 
Discriminant Analysis 

4/95.12%/n [5] 

Ma et al., 2017 6/Microphone CNN 5/94%/n [7] 
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MK signals have been used for prosthetic control, although primarily for the proportional control of a 

single degree of freedom device [144-146]. One possible reason so little study has been performed on this 

type of interface for prosthetic control is that amputees often lose muscle mass in the amputated limb, 

resulting in a smaller myokinemetric signal. Another reason is that sonomyography provides a more 

detailed view of the same information. 

2.4.7 Sonomyography 
Sonomyography (SMG) is a more advanced method of detecting the myokinemetric signal. SMG describes 

the use of ultrasound imaging to provide information about muscular activity, most often by observing 

the dimensional changes of the muscle [147]. Other features that can be observed include muscle fibre 

pennation angle and muscle fascicle length. Unlike MK, SMG can be used to examine individual muscle 

contractions, meaning that more complex control structures can be achieved. SMG has also been used for 

other applications such as determining fatigue [148] and muscle function assessment [149-151]. 

SMG has been used to find a correlation between the deformation of the muscle and the joint angle with 

the intent to provide proportional control of single DoF prosthetic devices [152, 153]. More recently, 

individual finger flexions/extensions have been distinguished either using ultrasonic imaging [154, 155] or 

using an array of single element ultrasonic transducers [156, 157]. Outside prosthetics, SMG has not been 

applied as an HMI for any other applications. A number of papers examine the repeatability of the SMG 

signals to assess their applicability to HMI problems, but at this point no implementations have been 

created. 

2.4.8 Other forms of interface 
There are several other forms of interface that have been used for both prosthetic control and general 

HMI applications. These following interfaces do not record dexterous gestures but can be used either as 

a direct method of control, or as a transparent method of providing context to a controller. They are not 

directly in line with the research aims of this document but could be used to extend the work in the future. 

2.4.8.1 Gaze-based interface 
Gaze-based interfaces estimate where the user is looking to provide a control signal, most often using a 

camera focused on the user’s eye. They were proposed as an interface for individuals who are unable to 

use other forms of interface due to injury, stroke or disease [158]. More commonly, gaze-based interfaces 

are used to determine Areas of Interest (AoI), which allows researchers to explore how people observe 

their environment, useful for a number of tasks including UI design and advertising [159]. 

Gaze tracking is normally used in prosthetic control in one of two ways. It has been used to move 

prosthetic arms [160, 161], but more often it is used for target selection. This use is similar to the head 

mounted cameras discussed in the vison section but include a second camera for eye tracking to 

determine where in the field of view the user is looking. This allows for a more robust solution than 

through vision alone [162]. There is a large body of research on gaze tracking for computer control [163-

165]. 
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2.4.8.2 Tongue-based interface 
Tongue movements can also be used as a form of interaction. Tongue-based interfaces are also useful for 

those who are unable to use other forms of interface, and they do not require any external equipment 

such as a camera. Tongue-based interfaces fall into two categories, intra-oral and intra-aural. Intra-oral 

interfaces usually consist of pressure sensitive sensors placed on the roof of the mouth or on the cheeks 

[166, 167]. Intra-aural sensors consist of pressure sensors worn within the ear. It was noted that tongue 

gestures could be differentiated by looking at the changes of in-ear pressure caused by tongue 

movements, known as Tongue Movement Ear Pressure (TMEP) signals [168, 169]. Tongue-based 

interfaces have been used to control wheelchairs [167] and for robot teleoperation [170]. 

2.4.8.3 Brain Machine Interface 
Brain Machine Interfaces (BMIs)/Brain Computer Interfaces (BCIs) provide a method through which a user 

can provide control signals through cerebral activity. They are usually used as a primary communication 

interface for individuals who are completely paralyzed, either through injury or degenerative disease. 

Brain activity detected through BCIs can be the only indication of awareness in some individuals [171], 

and therefore it is a vital area of study for those creating assistive devices. There are several methods of 

detecting brain activity for BCI, both non-invasive, such as electroencephalography (EEG) and functional 

Magnetic Resonance Imaging (fMRI), and invasive, such as Electrocorticography (ECoG) and brain 

implants. 

Cortical activity has been used for the operation of robotic platforms previously [172, 173], however it 

cannot detect dexterous movements in real time at this point. 

2.4.8.4 Voice 
Voice User Interfaces (VUIs) are distinct from the other interfaces described here, in that it is the only 

interface not to monitor some form of (real or imagined) gesture control. VUIs have become increasing 

popular in recent years. They are included here because they adhere to the principles of NUIs, and 

commercial solutions are both efficient and have a high user satisfaction. They do not constitute direct 

competition as they record a distinct form for natural movements. A system that aims for completely 

generalizable HMI will need to monitor both voice commands and gesture commands.  

VUIs for prosthetic control has been implemented as an alternative to the EMG-based solutions [174, 

175], and comparative studies have been performed that show that voice control is a more efficient 

strategy than EMG-based systems [176]. Voice systems combined with EMG have also been tested and 

shown to be more efficient that EMG alone [177]. 

Outside the lab, voice-controlled prosthetics have not had any commercial success. Possible contributors 

to this include the desire not to draw attention to the prosthetic by talking to it, unresponsiveness in noisy 

environments, the desire to control the device in a way natural to the traditional control strategies, and 

the concern that others nearby will have just as much control as the wearer will. 



 

 
 

49 
 
 

VUIs for general HMI applications are becoming more prevalent, with several smart home controllers such 

as the Google Home and Amazon’s Echo devices on the market. Voice assistants like Alexa, Cortana and 

OK Google are also becoming more popular. Currently, these devices are very suited for tasks that do not 

require context, such as general inquiries, or specific tasks where there is only one corresponding action. 

Where VUIs are less useful are for tasks that are difficult to put into words, such as moving a display 

between several screens. 

While VUIs remain a permanent method of smart device control, they do not provide a complete solution 

in their current form. 

2.5 Guidelines for HMI Design 
Choosing the most appropriate sensors to include in the HMI requires the designer to consider factors 

that lead to both high and low adoption rates for HMI devices. These factors have been examined in the 

fields of prosthetics, assistive devices and in the development of NUI-based devices, so a list can be 

compiled of those factors that must be considered when building a device that bridges all three fields. 

Many studies examining rejection rates for prosthetic devices categorize and rank the factors leading to 

rejection and those that regular users prioritize. This ranking can be used to derive new design 

considerations for potential devices, allowing different technologies to be evaluated for their suitability. 

Similar work has also been undertaken in the other HMI fields, allowing those sensors to be evaluated for 

suitability as well. From these studies, the following factors have been identified as features that can be 

used to compare input devices: 

- Functionality/Robustness 

- Usability/Comfort 

- Form/Pervasiveness 

- Accessibility/Cost 

The information presented in this chapter is summarized according to these features in the following 

sections. 

2.5.1 Functionality/Robustness 
Ideally, the sensor should have a high bandwidth, capable of capturing a large range of movements. It 

should not be susceptible to environmental factors and should be independent of transient calibration 

values. 

• Physical input systems – Physical input systems are very robust. The functionality of a physical 

input system is dependent on the number of individual physical input components (e.g.  Buttons, 

dials, joysticks, etc). While most interfaces have many of these components, in both assistive 

technologies and prosthetic devices, the number of components tends to be much lower. A split 

hook device may be operated through a cable-based system, allowing a single analogue channel 
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of data to be collected. Physical input systems can therefore be classified as medium functionality 

with a high level of robustness. 

• Vision-based system – Vision-based systems have been explored as interfaces for both highly 

dexterous movements and for capturing full body pose information. They are also capable of 

gathering not only control signals, but the context of those commands, a vital component in the 

implementation of NUIs. They are reasonably robust under ideal conditions, but performance is 

affected by environmental factors such as light level. Additional functionality can be achieved by 

increasing the complexity of the hardware (e.g. inclusion of infrared information). Assistive 

technology makes use of vision-based systems in situations where physical input systems are not 

practical, but in prosthetics their use has been limited to research so far. 

• Inertial Measurement Units – IMUs provide the ability to capture motion gestures. They broadly 

fall into two categories, those where the IMU is an interface device (something that the user 

moves to create control signals) and those where it is a monitoring device (something that derives 

control signals or contextual information by observing the natural movement of the user). As 

such, their functionality can be high, however they can be susceptible to a number of interfering 

factors, including vibration and magnetic fields. Though they are often used in assistive 

technologies and prosthetics, it is rarely as a primary interface. Instead, they are often used to 

monitor the environment for signals that may interfere with other sensing technologies.  

• Electromyography – EMG allows muscle contractions to be observed, which can allow both real 

and imagined movements to be inferred. Again, this can be used either to detect specific control 

signals or to observe the wearers muscle activity. The functionality can be high, with the ability to 

detect both dexterous movements and muscle condition, however it is reliant on favourable 

environmental conditions. Skin impedance and temperature, pressure on the sensors and 

movement of the limbs all affect the EMG signal. In controlled environments, EMG is both robust 

and functional, and is used for diagnostic purposes, although the functionality decreases 

dramatically when used in the uncontrolled environment of a prosthetic socket. 

• Mechanomyography – MMG also allows muscle contractions to be observed. It has been shown 

as a comparable signal to EMG, although it is a far less advanced area of research, so it is too early 

to say whether it can achieve the functionality that EMG has demonstrated. It is unaffected by 

environmental conditions such as impedance, humidity and skin temperature, although it is still 

affected by pressure and movement. MMG has not been used either clinically or commercially at 

this point since EMG-based interfaces became standard practice for medical diagnostics. 

• Myokinemetric signals – MK signals provide muscle information at a much lower resolution than 

any of the other muscle sensing technologies described here. At this point they have been used 

to provide a single control signal for a single degree of freedom device, and so the functionality is 

low. The robustness is reasonable, but pressure on the sensors or passive movement of the sensor 

will both lead to false signals. 

• Sonomyography – SMG provides high resolution information on the muscle activity within the 

arm. It can detect individual muscle movements, and therefore can give a clear picture of the task 

the user is trying to achieve. The effect of environmental conditions is limited to those that may 
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take the sensors out of contact with the skin, and when contact is maintained the signal is very 

robust. 

2.5.2 Usability/Comfort 
The ideal system needs to be easy to use and should aim to use control signals that the user is already 

familiar with, whether this is through the use of other devices or through natural movement. Long-term 

use may require recalibration of some of the sensors, and this is factored into the rating for ease of use. 

It should also be comfortable to use for long periods of time. The comfort level refers to both the physical 

comfort of the device and the comfort of long-term use. 

• Physical input systems – Physical input systems rate highly in terms of usability. The individual 

components are easy to learn how to operate and have the addition benefit that physically 

manipulating something results in haptic feedback, which allows the user to know that they have 

completed the movement. The long-term comfort associated with physical input systems is poor 

however. Simple interfaces such as the computer keyboard and mouse are associated with RSIs 

in the hands and wrist, and the more force required to operate the interface the greater the risk 

of injury. To operate a prosthetic, the user must apply the force they wish the prosthetic to exert 

through their residual limb, which has been shown to have long-term health problems associated 

with it. The comfort therefore receives a low rating. 

• Vision-based system – Vision-based systems are very easy to use since they capture natural 

movements, and often do not require the user to do anything that might be detrimental their 

comfort. They often rely on visual feedback, which means that they can be slightly harder to use 

then physical input systems due to the extended period between action and feedback. Vision-

based systems rarely need recalibration within a known environment. 

• Inertial Measurement Units – IMUs can be manipulated very easily, since they record the physical 

movement of the device. As an interface, they are very easy to use and the output from them can 

be predicted accurately by the user, allowing them to provide a form of interface that is easy to 

operate. If the system is being worn, modern IMUs are small and lightweight, and can record 

activity without inhibiting the wearer in any way. This makes them comfortable to use for 

extended periods of time. IMUs do occasionally require recalibration, which may be difficult for a 

user who is unfamiliar with the technology. 

• Electromyography – EMG sensors have the potential to create very easy to use interfaces. The 

ability to detect hand gestures and other natural movements means that the user does not have 

to learn specific action, but instead can perform actions that they are already familiar with. 

However, due to the robustness of the sensors, EMG-based interfaces for prosthetic control 

normally rely on deliberate contractions of muscle groups. This leads to a less natural interface 

since the wearer must learn to associate these deliberate contractions with the intended output. 

Additionally, the sensors must remain in consistent contact with the skin, which is normally 

achieved by increasing the pressure on the sensors. Since the calibration of these sensors is 

dependent on environmental conditions that change constantly, the signal detection threshold 
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for systems such as these is normally high. This means that the user must focus on generating a 

large muscle contraction to create their control signal, and this can quickly lead to fatigue and 

discomfort. 

• Mechanomyography – MMG is similar in terms of initial ease of use to EMG. Interfaces using 

MMG that are currently being researched do not rely on generating specific signals but monitor 

natural movements that can then be used to generate control signals. Long-term usability has not 

yet been tested, but in short term tests it has been reported that the muscle contractions needed 

to generate control signals are lower than those necessary for EMG, and therefore more 

commands can be generated before the wearers fatigue level become uncomfortable.  

• Myokinemetric signals – MK signals rely on voluntarily changing the dimensions of the limb, and 

therefore large muscle contractions are required to reliably generate discernible MK signals. 

While this does make the system relatively easy to use it can quickly lead to fatigue. In addition, 

it normally requires a tight band to be work around the limb, which could become uncomfortable 

over time. The resistance of the band does provide a form of feedback to the wearer, so they can 

quickly learn how to use the system. 

• Sonomyography – SMG can easily determine intent from the user, and so can be used as a fast 

form of interface. It relies on natural movements and does not require the user to increase the 

strength of a movement to detect it. It does require some pressure over a larger area of the limb 

than many sensors and is the largest and heaviest of the sensors listed here. 

2.5.3 Form/Pervasiveness 
• Physical input systems – Physical input systems come in a huge variety of forms and can be either 

wearable or a separate object that the user interacts with. Most interfaces are comprised of 

several components that can be operated individually and rely on some form of dexterous 

manipulation to generate the control signals. Simpler interfaces designed either as assistive 

devices or as prosthetic controllers are usually much larger and may span a number of joints. 

Physical input systems are pervasive, but normally either inhibit the user in some way (such as 

resisting movement) or require deliberate and cognitive engagement (such as pressing a button). 

• Vision-based system – Vision-based systems can be placed in a defined environment to provide 

information about both the environment and the user within it. While the cameras themselves 

can be small, the user must remain in the Field of View (FoV) of the camera to allow it to be used. 

This can significantly restrict the user’s freedom to move, and they must be aware of both the 

limits of observation and the occlusion within the FoV, and as a result the user must be aware of 

the location of the camera, adding to their cognitive load. Cameras can also be worn to provide 

control signals. Applications using wearable camera often require them to be mounted out from 

a limb so they can observe the end of that limb, on the head to observe where the user is looking 

or facing towards the users face to observe eye movements. In most applications, these require 

relatively large housings to hold the cameras, inhibiting free movement and adding weight. 

• Inertial Measurement Units – IMUs are low volume sensors that can be entirely self-contained. 

They measure the forces applied to them internally and have no external moving parts or sensing 
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surfaces. As a result, objects containing IMUs can be designed in almost any form that the user 

desires. In addition, their low power consumption can result in small stand-alone modules that 

can be used to monitor movement of a wearer with negligible additional weight. 

• Electromyography – EMG signals can be measured using either wet or dry electrodes. Wet 

electrodes use a gel to maintain the local conditions of the skin, which allows a reliable signal to 

be obtained for as long as the gel is stable. Dry electrodes normally have three contacts that must 

be kept in place on the skin. They do not maintain their local environment but degrade at a much 

slower rate than wet electrodes. EMG sensors are pervasive, they can be used to infer intent and 

movements by measuring the signals produced during the generation of the movement, rather 

than measuring the movement directly. They do not inhibit movement but can be larger than 

some alternatives. 

• Mechanomyography – The two most common types of MMG sensors are accelerometer-based 

and microphone-based. Both have a comparatively small footprint and depth. MMG sensors can 

also be used to infer activity and generate control commands from muscle activity instead of 

direct observation of kinematic movement, and so are also pervasive. They also tend to be 

lightweight and low power. Microphone-based MMGs normally contain an acoustic chamber, 

which limits their minimum dimensions.  

• Myokinemetric signals – MK signals are observed through a band placed around the limb. The 

band does not inhibit movement, and while the footprint is normally larger than most 

alternatives, the depth can be small. It is highly pervasive. 

• Sonomyography – SMG signals are currently most commonly observed using an ultrasonic 

imager. An ultrasonic probe is worn using custom housings that hold it perpendicular to the 

surface of the limb. The probe normally protrudes a long way from the housing, since a large 

amount of damping material is required in order to stop echoes from the back of the sensor. In 

addition, a large amount of processing power is required to turn the signal data into an image that 

can be used to identify muscle activity, and so in most cases the sensor needs to be plugged 

directly into a computer. While SMG does measure muscle activity to infer control commands in 

the same way EMG, MMG and MK devices do, the size, weight and form of the sensor does count 

against it in terms of pervasiveness.  

2.5.4 Accessibility/Cost 
• Physical input systems – Physical input systems are among the most diverse group of input 

devices. They tend to be low material cost, and in many cases contain a single electromechanical 

device, and no active components. They can be made into forms to suit their function, whether 

they are intended to be used for fine control, as an assistive devise or as a prosthetic control 

system. There are very specific cases where physical input systems are completely inaccessible, 

but for the majority of users, some form of system could be utilized. 

• Vision-based system – Vision-based systems are also accessible. In most cases, a vision-based 

system could be used as an alternative to physical input systems, since they can observe the 

physical movement with a high level of accuracy. One of the reasons these systems are less 



 

 
 

54 
 
 

common is due to the cost associated with them, both monetary and in terms of processing 

power. In some situations where a user may be unable to make the movements required to 

operate a physical interface, a camera-based interface can be used instead. 

• Inertial Measurement Units – IMUs vary hugely in price, but for HMI applications, low end IMUs 

are normally sufficient. These IMUs have a medium level component cost in the context of the 

sensors described here. Much like physical input systems, they can be used by most of the 

potential user population as either a primary interface sensor or to provide some context to the 

system as a whole. Assistive technologies also often make use of IMUs for activity monitoring, 

rehabilitation and symptom monitoring. 

• Electromyography – EMG requires volitional muscle contraction, either as a control signal or 

through movement. It also requires good electrical contact to the skin, which can be impeded if 

the individual has a large amount of scar tissue over the muscles that are to be observed. This is 

a significant problem in prosthetics, and leads to the amputees having to generate larger, more 

fatiguing contractions as control signals. EMG sensors require electrodes and active circuitry to 

help remove noise from the signal. As such, they are a comparable price to the IMUs described 

above. 

• Mechanomyography – MMG sensors also require volitional contractions to generate the control 

signals, however MMG signals are much less affected by factors such as scar tissue. They also have 

the capability to pick up smaller contractions that may be indistinguishable from noise using other 

sensors. MMG sensors are very cheap to produce, and most systems use a single component for 

signal capture. MMG data also require little pre-processing before classification can occur, 

reducing the need for other components. 

• Myokinemetric signals – MK signals require large muscle contractions, which may be problematic 

for amputees who are suffering from muscle atrophy, as well as individuals suffering from 

neuromuscular disorders. Healthy subjects should have less difficulty in generating the required 

signals. The cost of these sensors is also low, and the sensors can be constructed from inexpensive 

passive components if required. 

• Sonomyography – SMG signals give the best indication of the activity of the body of the sensors 

listed here. They can observe muscle contractions that are not detectable at the surface of the 

skin, and therefore can be used by the greatest proportion of the population. SMG sensors 

requires ultrasonic imaging, the equipment for which is a minimum of an order of magnitude 

more expensive that the IMU/camera-based systems.  

The rankings given to each of these sensors in the different categories are shown in Figure 2. 
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Figure 2 – Comparison of features of different sensing modalities  
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2.6 Overview of Orientation Estimation 
Orientation estimation allows a system to approximate its orientation within a known reference frame. In 

uncontrolled environments, this is usually achieved through the use of an IMU or MARG (Magnetic, 

Angular Rate and Gravity) sensor, which observes internal forces generated through a combination of 

movement, geomagnetic forces and gravity. The applications for this nature of information are varied, but 

include medical diagnostics/rehabilitation [178-180], health/sport tracking [181], localization [182-185], 

aerospace applications [186, 187] and autonomous robotics [188-191], as well as the HMI, assistive device 

and prosthetics applications described in the previous section. These devices should ideally be small, low 

cost packages capable of determining orientation without environmental knowledge. 

MARG sensors typically consist of a tri-axis accelerometer, a tri-axis gyroscope and a tri-axis 

magnetometer. Orientation estimation is performed by fusing the information gathered by these three 

sensors. Gyroscopic data can be used to record changes in orientation through integration [192], however 

this requires a known start point. Additionally, gyroscopic integration is susceptible to cumulative errors 

introduced through noise and high frequency rotations, leading to a decrease in accuracy over time. The 

accelerometer and magnetometer can be used to correct these errors. Accelerometers are sensitive to 

gravitational acceleration, which represents a consistent direction in the global reference frame. Similarly, 

the magnetometers are sensitive to the earth’s geomagnetic field, which is also assumed to be consistent 

in the global reference frame. Both the accelerometer and the magnetometer are sensitive to other 

sources of acceleration and magnetic field respectively and can both also be distorted be sensor bias and 

so all three sensor modalities are used in the most accurate orientation estimation algorithms. 

The most prominent techniques for MARG sensor fusion are the complementary filter, the Kalman filter 

and the optimization filters such as the Madgwick and Mahony algorithms [193]. 

Complementary filter – The complementary filter is arguably the simplest of the filters listed here and 

works by applying weights to the gyroscopic integration and accelerometer output to provide an 

estimation for orientation. The errors in gyroscopic integration result from a combination of low 

frequency bias and drift, whereas the errors in the gravitational estimation are the result of high frequency 

noise and motions. Applying a large weight to the gyroscopic data and a small weight to the acceleration 

data will effectively allow the sensors to correct each other. More specifically, the weights are derived 

from the frequency boundary between the signal and the noise. In more advance complementary filters, 

these weights can be adapted in real time depending on the task to be achieved [194]. 

• Advantages – the filter is very easy to design, and computationally efficient, meaning it can be 

run on very basic hardware. It does not require previous sensor inputs to perform its estimation. 

• Disadvantages – the filter is slow to converge, and since it has no active method of compensating 

for sensor noise, it can be less accurate than the alternatives. 

Kalman filter – the Kalman filter was designed to counteract the effects of noise on linear estimation 

problems [195]. As such, it is not exclusively an orientation estimation algorithm, and can be applied to a 

wide range of problems. It functions as a recursive algorithm, applying the current input data, the previous 
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input data and the previous output state prediction to a recursive function to predict the current output 

state. Since movement is a non-linear problem, Extended Kalman Filters (EKF) must be used [196, 197]. 

Kalman filters are often used in commercial orientation monitors, including products designed by 

Intersense [198], VectorNav [199], xsens [200], micro-strain [201] and PNI [202]. 

• Advantages – EKFs tend to provide the most accurate estimations for orientation. They are also 

strong in dealing with a significant level of noise, making them suitable for applications such as 

quadcopter control. 

•  Disadvantages – The two biggest arguments against the use of EKFs are the difficulty in 

implementation and the high computational cost. 

Optimization filters – Optimization filters are a computationally lean alternative to Kalman Filters. They 

work by estimating their orientation based on the gyroscopic integration and comparing expected sensor 

output to actual sensor output. The difference can be expressed in the form of an error, which can then 

be corrected. There are two commonly used algorithms that use this approach for orientation estimation, 

the Madgwick algorithm and the Mahony algorithm. Madgwick used two sequential gradient descent 

algorithms to correct the orientation estimated based on both the accelerometer and the magnetometer 

[203]. Mahony used a PI controller to achieve similar results [204]. Due to their high accuracy and ease of 

implementation, The Madgwick and Mahony algorithms are often used together when benchmarking 

other orientation estimation algorithms [190, 205-207]. Admiraal has presented an improved formulation 

of the original gradient descent algorithm [208]. 

• Advantages – The Gradient Descent Algorithm (GDA) approach has been shown to achieve similar 

levels of accuracy to EKF’s, with a greatly reduced computational cost [209]. The algorithm is also 

open source and is easy to adapt for specific activities. 

• Disadvantages – The algorithm does not decouple pitch and roll from magnetic interference, 

which results in changes in yaw having unwelcome effects in the other axes [210]. Additionally, 

while easier to implement than Kalman Filters, the algorithm does have a higher computational 

cost than is desirable on embedded systems. Finally, the presence of two non-perpendicular, 

sequential gradient descent steps impacts the convergence speed of the algorithm. 

 

2.6.1 Introduction to Quaternions 
There are a number of ways of representing rotations, but quaternions have been shown to be the most 

stable [211]. Quaternions are a four dimensional number system first described by Hamilton [212] 

between 1844-1850. Quaternions provide a consistent rotation and avoid gimbal problems, and so are 

often used in computer graphics and IMU/MARG sensors. 

Quaternions are represented in the form 𝒒 = 𝑤 + 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌, where 𝑤, 𝑥, 𝑦 and 𝑧 constitute real 

numbers, and 𝒊, 𝒋 and 𝒌 denote imaginary units. Quaternions extend the definitions for imaginary 
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numbers so that 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1, 𝒊𝒋 = 𝒌, 𝒋𝒌 = 𝒊, 𝒌𝒊 = 𝒋, 𝒋𝒊 = −𝒌, 𝒌𝒋 = −𝒊 and 𝒊𝒌 = −𝒋. It is 

therefore useful to define 𝑞 as: 

 𝑞 = [𝑞𝑤, 𝑞𝑥 , 𝑞𝑦, 𝑞𝑧] (1)  

 

This extension can be used to derive the non-commutative product of two quaternions, which simplifies 

to: 

 𝒒1 ∗ 𝒒2 = 𝑤1𝑤2 − 𝑥1𝑥2 − 𝑦1𝑦2 − 𝑧1𝑧2 

+(𝑤1𝑥2 + 𝑥1𝑤2 + 𝑦1𝑧2 − 𝑧1𝑦2)𝒊 

+(𝑤1𝑦2 − 𝑥1𝑧2 + 𝑦1𝑤2 + 𝑧1𝑥2)𝒋 

+(𝑤1𝑧2 + 𝑥1𝑦2 − 𝑦1𝑥2 + 𝑧1𝑤2)𝒌 

(2)  

 

The conjugate of a quaternion is defined as: 

 𝒒∗ = 𝑤 − 𝑥𝒊 − 𝑦𝒋 − 𝑧𝒌 (3)  

 

which allows the norm to be calculated using: 

 ‖𝒒‖ = √𝒒𝒒∗ (4)  

 

The reciprocal, which represents the reverse of the given rotation, is defined as: 

 
𝒒−1 =

𝒒∗

‖𝒒‖
 (5)  

Through the use of the reciprocal, it becomes possible to rotate a vector by a quaternion. This is 

performed by converting the vector (𝒖) into a quaternion (𝒗) with the 𝑤 component set 0, as per: 

 𝒗 =  0 + 𝑢𝑥𝒊 + 𝑢𝑦𝒋 + 𝑢𝑧𝒌 (6)  

and then calculating the points describing the new position, contained in 𝒗′, as per [213], which states 

that: 

 𝒗′ =  𝒒 ∗ 𝒗 ∗ 𝒒−1 (7)  

An equivalent process could be to use a rotation matrix that represents the same rotation as the 

quaternion, which can be defined as 𝑅𝑞. As a result, it can be stated that: 
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 𝒒 ∗ 𝒗 ∗ 𝒒−1 = 𝑅𝒒 ∗ 𝒗 (8)  

The relation between rotation matrix 𝑅𝑞 and the quaternion 𝑞 can be given by: 

 𝑅𝑞(𝑞)

=  [

𝑞𝑤
2 + 𝑞𝑥

2 − 𝑞𝑦
2 − 𝑞𝑧

2 2𝑞𝑥𝑞𝑦 + 2𝑞𝑤𝑞𝑧 2𝑞𝑥𝑞𝑧 − 2𝑞𝑤𝑞𝑦

2𝑞𝑥𝑞𝑦 − 2𝑞𝑤𝑞𝑧 𝑞𝑤
2 − 𝑞𝑥

2 + 𝑞𝑦
2 − 𝑞𝑧

2 2𝑞𝑦𝑞𝑧 + 2𝑞𝑤𝑞𝑥

2𝑞𝑥𝑞𝑧 + 2𝑞𝑤𝑞𝑦 2𝑞𝑦𝑞𝑧 − 2𝑞𝑤𝑞𝑥 𝑞𝑤
2 − 𝑞𝑥

2 − 𝑞𝑦
2 + 𝑞𝑧

2

] 
(9)  

 

N.B. 

For normalized quaternions: 

 𝑞𝑤
2 − 𝑞𝑥

2 − 𝑞𝑦
2 + 𝑞𝑧

2 =  2(𝑞𝑤
2 + 𝑞𝑧

2) − 1 = 1 − 2(𝑞𝑥
2 + 𝑞𝑦

2) (10)  

This can be proved using: 

 
1 =  √𝑞𝑤

2 + 𝑞𝑥
2 + 𝑞𝑦

2 + 𝑞𝑧
2 (11)  

Squaring gives: 

 1 =  𝑞𝑤
2 + 𝑞𝑥

2 + 𝑞𝑦
2 + 𝑞𝑧

2 (12)  

 Therefore (12) can therefore be used to convert between the forms given in (10). 

Finally, since orientation estimation algorithms can require the conversion between axis-angle 

representations and quaternions, the definition is given in [214], and is included here. For a rotation of 𝜃 

around and arbitrary axis defined by the unit vector 𝑢 = 𝑢𝑥 + 𝑢𝑦 + 𝑢𝑧 is given by: 

 
𝒒 = 𝑒

𝜃
2(𝑢𝑥𝑖+𝑢𝑦𝑗+𝑢𝑧𝑘) = cos

𝜃

2
+ (𝑢𝑥𝑖 + 𝑢𝑦𝑗 + 𝑢𝑧𝑘) sin

𝜃

2
 (13)  

 

2.6.2 Gradient Descent Algorithm – In-depth Review 
The basic gradient descent algorithm proposed by Madgwick in [203] contains two distinct steps. 

Orientation is maintained in the form of a quaternion and is updated by each step through each iteration. 

The first step uses the gyroscopic integration to approximate the rotation that has occurred in the last 

time step. Provided the sampling rate of the gyroscope is high enough with respect to the frequency of 

the movement, this gives a good approximation for the rotation between time steps. This can therefore 

be stated as: 
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 𝑞𝑡 = 𝑞𝑡−∆𝑡 + 𝜔∆𝑡 (14)  

where 𝜔 is the output from the gyroscope and 𝑡 represents time. The algorithm then uses a second step 

to correct for any cumulative errors that may be generated through this process. It does this by providing 

a partial correction to the quaternion, which is representative of a step towards a calculated ‘correct’ 

orientation, derived using the accelerometer and the magnetometer. It assumes the following: 

- Acceleration due to gravity in the global reference (𝒗𝑟(𝑎)) frame is given by:  

 𝒗𝑟(𝑎) = [0,0, −1] (15)  

- The accelerometers only detect gravity, and not acceleration due to motion (this is only assumed 

in this step and not in the complete algorithm since the high frequency noise induced by 

movement in the accelerometer is effectively filtered by the small size of the corrective step). 

- The geomagnetic force 𝒗𝑟(𝑚) is given by: 

 𝒗𝑟(𝑚) = [cos 𝜃 , 0, − sin 𝜃] (16)  

where 𝜃 is the local level of magnetic inclination. This value varies globally and is therefore often 

assumed to be 0. 

- The magnetometers only detect the geomagnetic force and are not affected by external 

interference. 

To estimate the rotation between steps, these reference vectors 𝒗𝑟 can be converted from the global to 

the local reference frame. The error in the rotation is then proportional to the difference between the 

rotated reference vector and the measurement of that vector (𝒗𝑚). This allows the orientation estimation 

to be expresses as a minimization problem in the form: 

 min
𝒒

𝑓(𝒒, 𝒗𝑟, 𝒗𝑚) (17)  

Where: 𝑓(𝒒, 𝒗𝑟, 𝒗𝑚) = 𝒒−1 ∗ 𝒗𝑟 ∗ 𝒒 − 𝒗𝑚 (18)  

The error vector generated by this function can then be minimized using gradient descent: 

 𝒒𝑡 = 𝒒𝑡−1 − 𝛼∇𝒒𝐹(𝒒)  (19)  

Where ∇𝒒𝐹(𝒒) = 𝐽𝒒(𝒒−1 ∗ 𝒗𝑟 ∗ 𝒒 − 𝒗𝑚)𝑇 ∗ (𝒒−1 ∗ 𝒗𝑟 ∗ 𝒒 − 𝒗𝑚)  (20)  

And 𝛼 is the step size. 

This process is performed twice, once using the accelerometer data (𝒗𝑟(𝑎) and 𝒗𝑚(𝑎)), and once using the 

magnetometer data (𝒗𝑟(𝑚) and 𝒗𝑚(𝑚)) to achieve consecutive steps down the two gradients, which forms 

the second corrective step. 
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2.7 Chapter Summary 
This chapter aimed to provide an overview of the current literature pertaining to both Human-Machine 

Interfaces in general, and specifically those associated with prosthetic control and assistive technology. It 

first provides a description of the most common commercial technologies and gives some of the reasons 

why they are not sufficient for a number of the intended end users. In the field of HMI this includes both 

the required dexterous manipulation that some may struggle with, and the intrusive and application 

specific nature of current interfaces that are not necessarily conducive to natural use. It has been 

identified that only around 34% of people who could potentially use a powered prosthetic do so, and this 

is partly due to the difficulty of use and partly due to the lack of functionality, both features of a limited 

interface. Alternative interfaces often contribute to medical problems, most commonly RSIs but also 

potentially soft tissue damage or other complications. 

This chapter then provides an overview of specific human machine interface modalities, including physical 

input systems, inertial systems and vision-based systems, muscle-based input systems, as well as several 

possible complementary interface technologies. EMG is also explored in depth, since the signals are 

potentially comparable, and there is a significantly larger body of literature that could potentially inform 

MMG signal analysis. In particular, the type of control that EMG can provide are described, with a focus 

on pattern recognition. Several methods of feature extraction and pattern recognition that have 

previously been used for EMG pattern recognition are detailed. 

Previous MMG work is explored, giving an indication of the current development of the technology. 

Literature describing both previous validation studies of microphone-based MMGs and MMG design 

optimisation are identified. When examining the literature, a lack of MMG-based sensor fusion was 

identified. Studies which use a multimodal approach processed each channel individually to provide 

binary information, which was then used for intent derivation. A system which implemented more in-

depth fusion between multiple MMG sensors and IMUs could not be found. 

In order to provide some method of comparing the various interface technologies, four criteria that the 

end users commonly assess these technologies were identified. Each of the seven major interface 

technologies were then subjectively assessed against these four criteria, and a brief summary of how each 

of them performed was given. Finally, each interface technology was given a ranking. No single technology 

definitively outperformed the others, and therefore this ranking provided an indication of areas where 

each technology could be improved. 

The final two sections of this chapter are intended to give a mathematical background to the orientation 

estimation algorithms that are used in the pervasive monitoring system described in this thesis. Most 

orientation estimation algorithms use some sort of sensor fusion to correct the errors that can be 

introduced when relying on a single sensor. There are several methods of performing this sensor fusion, 

and the methods that provide the greatest accuracy for the least computational expense are optimization 

methods that typically work by minimizing error functions. Madgwick’s gradient descent algorithm for 
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orientation estimation is a commonly used example, and an in-depth description is provided along with 

the quaternion mathematics on which it relies.
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Chapter 3 
Hardware and Software Development 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

65 
 
 

 

3.1 Introduction to Hardware Development 
A sensor suite capable of evaluating user intent was required as the input for this control system. As 

discussed in the previous chapter, gesture-based control was chosen as the interface modality. When 

determining intent for a control system, it is insufficient in most cases to only classify a gesture into 

discrete commands. It is difficult to derive meaning from a gesture without also knowing the context in 

which it was made. A sensor suite capable of capturing both gesture and context is therefore required to 

create an appropriate interface. As a prosthetic controller, the system also needed to be capable of 

capturing imagined gestures. 

3.1.1 Key User Requirements 
Through discussion with the end users for the prosthetic controller, it was determined that a wearable 

solution would provide the most convenient level of usability. The requirements for a wearable sensor 

capable of performing both gesture recognition and being context aware were defined as follows: 

• Non-Restrictive – the sensors should not inhibit the users in their range of movement. 

• Unobtrusive – the sensors should be small and lightweight so that they are not uncomfortable. 

• Easy to use – the sensors suite should not require preparation or calibration before it can be used. 

• Consistent – the sensors should provide a predictable response. 

• Low-Power – the sensors should be low power and include their own power source. 

• Wireless – the suite should not require a wired connection to a computer to function. 

• Internal Storage – the device should have the ability to record data or save settings when it is not 

connected to a computer. 

• Configurable peripherals – the suite should be capable of capturing the signals from peripheral 

sensors, such as the MMGs, and providing real-time fusion. 

Due to the potential of the sensors identified in the previous chapter, combined with the current limited 

attempts to exploit them, a combination of Magnetic, Angular Rate and Gravity (MARG) sensors, and 

Mechanomyography was chosen as the principal sensing technique. MARG sensors provide the context 

of the gesture by monitoring changes in orientation using a 3-axis gyroscope. They can also use 

accelerometers and magnetometers to observe gravity and the earth's magnetic field when the device is 

stationary. The MARG sensors can therefore be used to estimate orientation in a global reference frame. 

Mechanomyography was chosen as the method of monitoring muscle activity (from either an intact or 

residual limb), as it offers the most reliable signal over extended periods of time without the need for skin 

preparation or sensor replacement. Mechanomyography is also more suited to the environment inside a 

socket than other muscle sensing methods, such as EMG. Cameras, exoskeletons and controllers were 

excluded because they limit the geographical location or the range of movements that the user is able to 

perform and were not conducive to the creation of a generalised pervasive monitoring system. 
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As the mechanomyography signal falls within the range of 2-125Hz, the sample rate for the MMG needed 

to be at least 250Hz to avoid aliasing. The low-power and wireless communication requirements suggest 

that a simple, off-the-shelf communication protocol such as Bluetooth could be suitable. Due to the device 

limit in a Bluetooth piconet, it was desirable that the MMGs and the MARG data were connected to the 

computer through a single Bluetooth connection, therefore externally powered ADC (Analogue to Digital 

Converter) ports were identified as a derived requirement. 

There are a wide variety of MARG sensors available on the market, ranging from low cost breakout boards 

through mid-range self-contained devices to high cost commercial solutions. The requirements for the 

device were compiled and the available devices were assessed for their suitability. A commercial solution 

that met all the requirements could not be found at an acceptable price point; therefore, the decision was 

made to design and build a device capable of sampling the sensors at an acceptable rate. While there are 

several methods of obtaining MMG data, there are no commercially available solutions to do so. As a 

result, the MMG sensors used in this project were also custom built. 

3.2 NUIMU Development 

3.2.1 Hardware Design 
The hardware was designed specifically for this investigation and will be referred to in this document as 

NUIMU. The board has six Integrated Circuit (IC) elements, which can be seen in Figure 3:  

• Microcontroller (PIC24FJ64GA104) 

• Wireless Module (BT900) 

• UART-USB converter (FT232R) 

• IMU (LSM9DS0) 

• Power Management (LP2985 and MCP73831) 

 

Figure 3 – Breakdown of IC elements on NUIMU boards 
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3.2.1.1 Microcontroller 
The PIC24FJ64GA104 is the primary controller on the board. It is a 16-bit microcontroller from Microchip 

with a processor speed of 16 Million Instructions per Second (MIPS), and is programmed in the C language. 

It was chosen because it contained all the peripheral modules that were required for this application. 

When the circuit is powered, PIC24 sets its internal registers to their required initial state. This includes 

setting up the pins for communication and mapping the correct interrupts to specific functions within the 

code. The microcontroller then waits for one of several commands to arrive through one of the two UART 

communication modules. 

3.2.1.2 Wireless Module 
A wireless connection to the host device was defined as one of the key user requirements. Bluetooth was 

chosen over the alternatives due to its relatively low power consumption, and its ease of implementation. 

The Bluetooth module chosen for this project was a BT900, produced by Laird. It is a Bluetooth v4.0 dual 

mode module, providing the highest level of flexibility for the design at the time. This module was chosen 

for its ability to run dedicated code, allowing the module to exercise complete control over the Bluetooth 

connection, resulting in a faster boot for the device. The module is programmed in smartBASIC to operate 

a Serial Port Profile (SPP). This profile is the most suited to transferring bursts of data, such as a packet of 

inertial data. It communicates with the microcontroller through UART with a high baud rate. 

3.2.1.3 UART-USB Converter 
A form of wired communication was also implemented as a secondary method of interacting with the 

host device. It allows the Bluetooth module to be reprogrammed through the USB, and for debugging the 

microcontroller without having to set up a wireless connection. The IC chosen for this was an FT232R from 

FTDI, as it handles the entire USB protocol and is powered through the USB, therefore it does not draw 

from the battery resulting in a longer operating period between charges. It is also programmed so that 

the 'friendly name' of the device identifies the board ("NU USB XXX" where XXX is the NUIMU UID). 

3.2.1.4 Inertial Measurement Unit 
The IMU chosen was an LSM9DS0 from STMicroelectronics, which contains 3-axis Accelerometer, a 3-axis 

Gyroscope and a 3 axis Magnetometer, providing many references for the movement of the device. The 

sample rates these individual sensors are configurable. The range of each sensor can also be set from a 

list of options. The module is configured and sampled by the microcontroller over a Serial Peripheral 

Interface bus (SPI). It was chosen primarily due to the large number of reference outputs, small footprint 

and low cost. 

3.2.1.5 Power Management 
There are two power management ICs on the board. The first is a 3.3V voltage regulator (LP2985), which 

operates to ensure that the voltage provided to the ICs on the board is constant. This provides a known 

voltage for the Analogue to Digital converters on the board, allowing the voltage to be converted into 

useable data. By using this known voltage combined with a potential divider circuit on the battery line, 
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the voltage from the battery itself can be calculated. In the LiPo batteries used in this project, this can be 

used to estimate the remaining battery life. 

The second power management IC is a battery charge management controller (MCP73831). This IC is 

connected to the power line of the USB port, and is used to safely charge the battery connected to the 

board. It powers an LED that is lit when it is charging and goes off when the battery has reached the 

defined maximum charge. 

3.2.1.6 Auxiliary Ports 
The board has 8 powered (3 pin) analogue ports to connect to external sensors. Each port has one data 

pin, which is connected to a unique channel of the 10-bit High-Speed Analogue/Digital Converter module 

in the microcontroller. 

Application specific firmware can be written to give these ports other functions. All eight of them can be 

used as digital inputs or outputs. In addition, six of them can be connected to the remappable peripherals 

on the microcontroller. This extends their functionality to include: Communication (UART/I2C/SPI), 

Advanced I/O (Capture/Compare), and External Interrupts. 

3.2.1.7 Manufacturing 
Each part of the circuit was assembled and tested by hand. Once this process was finished and the board 

design was finalized, it was sent to a manufacturer for fabrication and assembly. The final board was a 

four-layer PCB (thickness 0.6mm) with dimensions of 23mm x 33mm and 52 surface mount components. 

3.2.1.8 Finalizing Hardware 
The NUIMU is powered by a 265mAh battery. The 24-pin external connector can be fitted either vertically, 

or at a 90-degree angle. A case was designed for each version and printed using a Projet 3500 HDMax 3D 

printer.  

 

Figure 4 – Final Package of NUIMU hardware 
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3.2.2 Hardware Improvements 

3.2.2.1 Improved Inertial Measurement Unit 
It became necessary over the course of the development to upgrade the IMU, as STMicroelectronics 

stopped producing the LSM9DS0. The LSM9DS1 was selected as a replacement since it was functionally 

similar. The new IMU also has a smaller footprint that its predecessor, which required a modification to 

the board. The internal layout of the new sensor is different, but by updating the firmware of the 

microcontroller, the IMU could be configured to perform the same way. 

3.3 Firmware  
The microcontroller firmware responds to commands given by the host device. They also have a page of 

the Program Space in the Flash Memory set aside for a custom device registry. Saving to this non-volatile 

memory means that the device can be configured for a particular use case without having to reprogram 

the board. The data commands are sent in 6-byte packets that have one of two formats, either:  

0𝑥07 𝑏1 𝑏2 𝑏3 𝑏4 0𝑥0𝐵 

 

where 𝑏1234  is a four-character command, or 

0𝑥07 ′𝐶′ 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑣1 𝑣2 0𝑥0𝐵 

 

where 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 denotes a registry location, and 𝑣12 is the value to be written to that location. 

 

Figure 5 – Updated IMU element on NUIMU board 
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The registry of the NUIMUs contains the following information, which can be set through the second data 

format: 

• Sample rate for the analogue channels (referred to as base sample rate) 

• Sample rate for the IMUs (as a divisor of the base rate) 

• Which ADC channels to sample 

• Internal sample rate for the LSM9DS0/1 (One byte for each sensor) 

• Range for each sensor LSM9DS0/1 (One byte for each sensor) 

• Offset values for the Magnetometer (Two bytes per axis) 

• IMU Firmware ID (read only)   

 

Four-character commands to the NUIMU can either return a value (such as battery level) or initiate new 

behaviour (such as starting a data stream). Figure 6 shows the basic functionality of the firmware. 

The NUIMU sends packets in the following format: 

𝟎𝒙𝑫𝑫 𝟎𝒙𝑨𝑨 𝟎𝒙𝟓𝟓 𝑳𝒆𝒏𝒈𝒕𝒉 𝑻𝒚𝒑𝒆 𝒅𝟏 … 𝒅𝑵 𝑪𝒍𝒐𝒄𝒌 𝑳𝒆𝒏𝒈𝒕𝒉 

 

where 𝐿𝑒𝑛𝑔𝑡ℎ denotes the number of packets in the data and 𝑇𝑦𝑝𝑒 tells the host what kind of data it is 

receiving. The 𝐿𝑒𝑛𝑔𝑡ℎ is sent at both the beginning and the end of the packet to allow the host to detect 

if any bytes have been lost during transmission. 

 

Figure 6 – Flowchart demonstrating program flow in NUIMU 
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3.4 NUIMU Attributes 
A description of the characteristics of the NUIMU can be found in Table 3. 

3.4.1 Other Applications 
Re-configuring the NUIMU Auxiliary port allows for a large range of additional applications. This has 

proved useful at a number of different points, both during this project and in other workstreams. The 

different uses are documented here. 

3.4.1.1 Secondary Inertial Measurement Unit 
Some human monitoring applications of this hardware required up to four IMUs to be connected and 

streaming simultaneously. The Bluetooth modules were presenting themselves as SPP devices, and when 

connected, both transmit and receive channels register as separate devices. The Bluetooth protocol limits 

the number of devices that can be actively connected in a network (known as a piconet) to eight. The host 

device acts as the piconet master, resulting in a maximum of seven slave devices. As each NUIMU takes 

up two slots, this resulted in the fourth IMU not connecting to the network in many cases (More advanced 

Bluetooth hosts were able to run more than one piconet). 

The solution to this was to increase the number of IMUs for each Bluetooth module. A number of breakout 

boards of the LSM9DS1 were purchased and connected to the NUIMU via a cable. The NUIMU could then 

sample both the on board IMU and the external IMU and send both in the same packet. The external IMUs 

used I2C as a communications protocol, so two channels of the auxiliary port were re-purposed to 

facilitate this. The two IMUs can be seen in Figure 7.  

 

 

Table 3 – Description of NUIMU hardware attributes 

Inertial Sensors 3-Axis Accelerometer, 3-Axis Gyroscope, 3-Axis Magnetometer 

Inertial Sampling Rate Up to 1kHz 

No. of Auxiliary Ports 8 

Auxiliary Port Sampling Rate Up to 1kHz (analogue mode) 

Auxiliary Port: Functions Analogue I/O, Digital I/O, SPI, I2C, UART, PWM, Interrupts 

PIC clock speed 30MHz (Primary), 32.678kHz (Secondary) 

Communication Speed 5MHz (SPI), 400kHz (I2C), 115200bd (UART USB), 4Mbd(UART BT) 

Battery 265mAh Lithium Polymer 

Battery Life 2.5 hours 

Charging Time 1.5 hours 
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Figure 7 - NUIMU with peripheral IMU 

 

Figure 8 - NUIMU used as a prosthetic hand driver 
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3.4.1.2 Prosthetic Hand Driver 
As part of this investigation, a prosthetic hand was used as a test platform. The prosthetic hand is powered 

by an 11.1V battery inside a prosthetic wrist, this is regulated down to 8.3V by an external voltage 

regulator. The hand is controlled by two signal channels, which operate at 3.3V, which is the same as the 

NUIMU. It was desirable to make the prosthetic hand wireless, as along with the battery this would make 

it portable, and so a NUIMU was used to add this functionality to the prosthetic. 

In order to do this, two of the auxiliary ports were configured to be driven by the microprocessor on the 

NUIMU and connected to the inputs of the prosthetic hand. This allowed the system to trigger the hand 

to either open, close, or to switch to a different gesture. The complete wrist unit is presented in Figure 8.  

3.4.1.3 Infrared Remote 
Another potential application of this system is to allow for the direct control of smart devices. It is common 

for smart devices in the home to be controlled using an Infrared (IR) remote, therefore mimicking those 

signals was thought to be an appropriate way of controlling the devices without having to pre-code 

specific IR commands. An NUIMU was adapted with custom firmware to do this. 

The IR NUIMU has an IR receiver and an IR LED plugged into the auxiliary port, and ten memory locations 

for data storage. There are ten characters that represent a command to record to the ten locations, and 

ten that represent a command to transmit the stored IR patterns. Once a command to record an IR pattern 

is detected, the NUIMU monitors the IR receiver data line to observe when an IR signal is first received. 

At this point, it starts a fast timer and records the time between the signal switching, resetting each time. 

 

Figure 9 – NUIMU as an infrared repeater  
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Once the timer overflows, it is determined that the signal has ended, and an array containing the length 

of each signal segment is recorded. To transmit the signal, the LED is set on and off for the lengths of time 

that were recorded in the timer. This has been shown to work for a variety of household devices, ranging 

from SkyTV boxes to remote control candles.  

3.5 Mechanomyography Sensor Design 
The design of the MMG sensors used in this research is based on the work of R. Woodward, and of 

Posatskiy et al. The sensor houses a Knowles SPU1410LR5H MEMs microphones, seated at the apex of a 

rigid conical chamber (height x ⌀ - 5mm x 7mm). This shape and dimensions were found by Posatskiy to 

provide the highest gain of the MMG signal while maintaining the flattest frequency response. The 

microphone is sealed, and the mouth of the chamber is covered by a 4-micrometre thick Mylar membrane. 

The signal recorded from the microphone represents the distortion of the membrane. When the 

membrane is placed on the skin above a contracting muscle, the vibrations caused during that contraction 

propagate through the skin and through the Mylar, inducing a change in pressure within the chamber. 

Each MMG sensor consists of either two or three 3D printed parts. The MMG housing holds the 

microphone PCB and provides the conical chamber. The PCB is placed above the chamber, and silicon is 

used to seal the top. This is intended to ensure that air cannot escape from the chamber, ensuring that 

when no signal is present the sensor output is predictable. The ring is used to hold the membrane in place, 

sealing the other end of the chamber. Finally, the clip is used to hold the sensor in place. All three parts 

were manufactured using a ProJet 3500 HD Max 3D Printer (layer resolution - 0.016mm, typical accuracy 

- 0.025-0.05mm). The material was Visijet M3 Crystal, which has USP Class VI certification, and therefore 

is safe for use when manufacturing devices that will be in contact with the skin for extended periods. The 

MMG housing was redesigned to make assemble and maintenance easier. In this new version, the ring 

was moved to allow membrane replacement without requiring disassembly. 

 

Figure 10 - MMG designs 
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Both MMG housings, as well as the PCB can be seen in Figure 10. The MMG PCB was redesigned with pads 

instead of through-hole connectors for the wires. This ensured that the bottom of the PCB could be kept 

entirely flat, giving a better seal to the board.  

The three wires from the MMG PCB plug into the power and analogue channels of the NUIMU, and a 

maximum of eight of these MMGs can be combined with inertial data to form one module of the sensor 

suite. 

3.6 Sensor Suite Evaluation 
The sensor suite is evaluated by comparing against the key user requirements: 

• Non-Restrictive – the sensors are body mounted, self-contained, and do not inhibit the user. The 

only requirement is that they must be in physical contact with the skin, either directly or through 

thin clothing. 

• Unobtrusive – the sensors are smaller than many other solutions (h x w x l) and lightweight. They 

are attached through a comfortable neoprene band. 

• Easy to use – the sensors can be placed on anybody and require no user specific calibration to 

produce data. 

• Consistent – the response from the sensors is consistent, it is not affected by transient 

environmental factors such as skin conductivity. 

• Low-Power – the sensors are low power, with a 265mAh battery lasting approximately 2.5hours. 

• Wireless – the device can both communicate and stream data in real time over Bluetooth. 

• Internal Storage – the microcontroller can write to its own memory to store registry values. It can 

also write to an SD card for data logging. 

• Configurable peripherals – the microcontroller can communicate with peripheral sensors as it is 

capable of both analogue to digital conversion and digital communication through its auxiliary 

ports. 

Based on these criteria, the NUIMU is suitable for these experiments. 

3.7 NUIMU Host Software 
To perform real time analysis, the NUIMUs require a host device. Two have been used over the course of 

these experiments, a Windows Personal Computer and an Android Phone. These host devices are able to 

connect to multiple NUIMUs, allowing a greater range of information to be considered. 

3.7.1 C# code for Windows (The NU Interface) 
The NU Interface is a GUI that operates primarily through a text box. It is designed to run the IMUs for 

every application for which they can be used. The program is split into two major classes: the User 

Interface Class (UIClass), and the NUClass. There are several other minor classes that have specific 

functionality within these two.  The functionality of each of these major classes is described here, starting 

with the child class. 
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3.7.1.1 NUClass 
The NUClass is a manager class for each individual NUIMU and is created as a child of the UIClass whenever 

the user attempts to connect to an IMU. The NUClass is generalised and has been used in a number of 

other projects to control the NUIMUs. 

Connection Manager 

When the NUClass is created, it attempts to connect to the specified NUIMU, first through Bluetooth, and 

then through USB if this is not successful. When a connection is successfully made, a thread is started 

which attempts to extract complete packets from the data stream and fires an interrupt whenever one is 

received. The class also sends commands to the device. 

If a Bluetooth connection is successfully made, this class records the Bluetooth address. In future attempts 

to connect to the NUIMU, the code will first attempt to connect directly to this address without having to 

go through the Bluetooth manager, and only returns to the manager if this is unsuccessful. This reduces 

the time required to establish a connection from ~30s to ~5s. It also has the added benefit that the device 

does not need to be paired prior to the connection attempt if the address has previously been saved, as 

this will be prompted. 

Quaternion Generation 

The raw inertial data from the NUIMU is used to generate world reference quaternions as a measure of 

orientation. The code includes variations of Madgwick's algorithm, which are described in detail in 

Chapter 4. The sample period is calculated based on the registry values of the NUIMU and updated to 

account for lost packets using a clock byte in the packet. The NUClass also has the capability to run more 

than one quaternion generation algorithm simultaneously for the same data, allowing a comparison 

between them to be performed.  

MMG Signal Processing 

The specific methods of MMG signal processing are described in Chapter 5. They use a thread pool based 

in this class to ensure that they can operate at the maximum frequency of the device. The variations of 

this class either detect whether any signal that could represent a gesture has occurred, or which specific 

gesture has been performed. All the processing for the classification is performed in a child class to 

NUClass. 

Data Visualization 

The data visualization was performed using a number of sub classes. Visualization of the orientation was 

performed by rendering a cuboid on the screen, initially using the DirectX API to generate the appropriate 

3d rendering, and later using SlimDX so that the code was not reliant on that API. Vectors in the form of 

3D arrows were also added to help visualize the algorithms estimation for gross acceleration and for the 

gross magnetic field. An example of the data visualisation interface can be seen in Figure 11. 

Updating the Registry/Calibration 

The NUClass contains a small dedicated GUI for changing the registry values of the NUIMU. The GUI has 

three pages of settings. 
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The first page allows you to configure the function of the IMU. It allows you to pick a desired base 

frequency of the IMUs and converts this into the two settings needed to configure the timer on the PIC24. 

It then offers you factors of this frequency to allow you to slow the rate of inertial data while maintaining 

a high rate of MMG data. It is the inverse of this process that is used to calculate the sample period for 

the quaternion generation. This page also allows you to turn off ADC channels, which shorten the packet 

and allow for a sample rate above the theoretic maximum. 

The second page of the GUI is used to change the set-up values for the on-board IMU, allowing you to 

change both the update rate and data range of each of the three sensors. Using the firmware version 

number, this page will give different options based on whether the on-board IMU is an LSM9DS0 or an 

LSM9DS1. 

The final page of this GUI allows you to store the calibration values of the magnetometer. For later 

firmware versions, this is stored in the NUIMU flash memory, and a backup of this information is made 

each time the IMU is first connected. Earlier versions store this information in the backup file. 

Faux NUClass 

The NUClass has the capability to create and manage child versions of itself for specific applications. The 

most common reason to do this is to allow more than one IMU to be connected through the same 

Bluetooth channel. A Faux NUClass will not have any active connections, instead the appropriate data 

received in the parent NUClass will be passed to it to generate orientation. 

Other than the connection manager, the rest of the functionality described in this section remains the 

same. The only deviation from this is that a data file is used in place of the registry. This allows to IMU 

calibration values to be saved onto the computer, instead of on the IMU. 

 

Figure 11 - Real-time data visualisation 
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3.7.1.2 UIClass 
The User Interface class (UIClass) is the entry point to the code, and the ultimate parent class of every 

other class used in the application. It is designed both to perform the experiments described in this thesis, 

and as a demonstration for how to use the NUClass in other projects. 

User Interface  

The primary form of interface for this code is through text commands in this interface, although some of 

the more advanced functions create smaller GUI interfaces for specific tasks. A text-based interface was 

chosen as the use of a scrolling text window ensures that a record of each interaction is available to the 

user, including any messages that have been sent from NUIMU. Every line written to this textbox is 

timestamped and written to a LOG file. The basic UI interface is shown in Figure 12. 

NUClass Manager 

The UIClass creates new instances of NUClass for each NUIMU connected. When the user enters a 

command, UIClass is responsible for triggering the correct processes in the correct NUIMU. Each instance 

of NUClass is stored in a List within the class, with a record maintained of which IMU the user last 

interacted with. This record can be updated by the user if they wish to send a command to a new IMU. 

Recording Data  

It is frequently useful to store data recorded from the NUIMUs during different applications. This is 

possible in the UIClass through an interrupt that can be generated by NUClass whenever new data 

presents itself. The data is stored in a time stamped file that can be named dynamically. The reason this 

 

Figure 12 - Main interface window 
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functionality was added to the UIClass was to allow more than one IMU to be recorded simultaneously in 

the same file. This ensures that the data is temporally aligned. A small executable file is included to split 

this file into many, one file per NUIMU if that is preferable. 

Angle Generation 

There are several applications for which only knowing orientation is not enough. This class can make 

comparisons between two quaternions generated by two IMUs to determine the angle between them. 

This is useful when examining body kinematics. 

Piping Data  

For many of the more complex visualizations, other programs were used. Using the pipes class enabled 

data to be sent to programs such as Unity, which could provide more advanced simulations. In these cases, 

quaternions were generated for each NUIMU, and then repackaged and sent to the target program using 

a pipe. The new packets used a similar packet structure, consisting of a three-byte header, a packet 

identifier and an end byte. 

TCP/IP 

Several of the experiments required data to be sent from one computer to another, most often from a 

Windows environment to a Linux environment. This required the use of a TCP/IP class that is managed by 

the UIClass as a server. It also required a C++ client to be written to receive the data on the target machine 

and convert from the transmitted bytes back to the original data format. 

Simulation 

In order to visualize recorded data, a simulation environment was created. This environment loaded data 

that had been previously saved, loaded a file of calibration values, and created a Faux NUClass. It then 

used this faux class to generate quaternions and displayed them to the screen. It gives the user the option 

to have as many sub-windows open as they choose, meaning that they can process and simulate many 

raw files simultaneously, or the same file with different calibration files. It also saves a copy of the 

generated quaternions for future use. 

Other Applications 

This UIClass is the basis of any function which require data from more than one NUIMU, or which give real 

time feedback to the user. It operates all outputs that are displayed in Chapter 6. It also can create 

wrappers for android phones running a compatible app, or third party IMUs, allowing them to be 

controlled through NUClass. 

3.7.2 Android code for Mobiles (The NU App) 
The NU App is an android app designed to interact with the NUIMUs. It is far more basic than the NU 

Interface and has several application specific forms. It currently can only communicate with a single IMU 

and is intended more primarily as an experimental platform to enable data collection in difficult 

environments. The app has two major iterations: 
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3.7.2.1 First Iteration (Android Studio) 
The first iteration of the app was written purely in Android Studio, an Integrated Development 

Environment (IDE) that uses a variation of Java. The app was able to establish a Bluetooth connection to 

the IMU and send it the command to start streaming data. It required a lower data rate than the NU 

Interface, as it was unable to process the data as fast. The Madgwick algorithm was implemented and 

allowed for the real time generation of quaternions. Along with the raw data, these quaternions were 

then saved to a file to be used at a later date. This was beneficial because it removed the requirement to 

stay within Bluetooth range of the host computer, allowing many more activities to be monitored. 

This app has two additional functions. The first is as a Bluetooth Low Energy (BLE) to Bluetooth converter. 

This allows other BLE IMUs to be evaluated alongside the NUIMUs by connecting them to the NU Interface 

via the phone. The second was as an input for the NU Interface directly. Smart phones have an IMU built 

into them that could be used as an input. 

3.7.2.2 Second Iteration (Unity) 
The second iteration of this app was created in Unity. Unity provided the capability to easily create 3D 

environments in an android environment. This implementation required three component parts. The 3D 

models were imported into Unity's IDE, and positioned with cameras, lighting and materials that made 

them visible. A C# script was written to update the position of the models based on the calculated 

quaternions. The quaternions were calculated in an android library written in Java in Android Studio. The 

Android Studio library was able to access the hardware functions of the phone, allowing it to make and 

monitor Bluetooth connections. It therefore also acted as a wrapper for the hardware reliant functions. 

The combination of these three allowed the Unity app to connect to the NUIMU and provide a real-time 

representation of the current orientation on the phone. 

3.8 Chapter Summary 
This chapter reports on the development of an experimental hardware/software platform for the 

pervasive monitoring of motion and muscle activity. Motion is observed using an inertial measurement 

unit with a MARG sensor housed in the main case. Additionally, up to eight muscle sensors can by plugged 

into this primary board, which can wirelessly transmit data from both the muscle sensors and the inertial 

sensors at rates up to 1kHz. The NUIMU can be wirelessly configured and has in-built long-term storage 

capabilities. The IMU was created through an iterative process, and the final version was assessed against 

the Key User Requirements and found to be fully compliant. 

The NUIMU can act as the primary controller in a reconfigurable sensor array. Other sensing elements can 

be included in the array through the auxiliary port, which can be used to connect up to eight powered 

MMGs, other analogue sensors, or digital sensors through inter-IC protocols such as SPI of I2C. This allows 

the real-time fusion of multiple sensors to be easily implemented, either on-board or using the temporally 

aligned data. 
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A number of custom programs were created to communicate with this hardware from other host devices. 

Among these was a Windows form-based environment that included both hardware and application 

specific code. This code was broadly split into two component parts, a class that managed each individual 

IMU and a form through which the user could manage many IMUs simultaneously. This allowed the code 

and the IMUs to be used for a wide variety of applications. 

In addition to this, two lightweight phone applications were created. These were used for data gathering 

when a computer was not appropriate. The hardware was designed to be reconfigurable depending on 

the required application. Many other applications were also explored, including networked IMUs and 

interfacing with third party hardware, such as a prosthetic hand or smart TV.  
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Chapter 4 
Detailing Improvements to Orientation Estimation 
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4.1 Initial Implementation of Orientation Estimation Algorithm 
Of the algorithms described in Section 2.4, the gradient descent optimization algorithm (Madgwick 

algorithm) was chosen for implementation because it provided a good accuracy for the computational 

resources it required. The inertial measurement units were validated by comparing their output at known 

orientations. For this comparison, the algorithm was implemented in the host software and once validated 

the algorithm was moved from the host software to the embedded firmware. This resulted in an increased 

power efficiency by reducing the quantity of data that needed to be transferred over the Bluetooth 

connection. During this process it was noted that there were several changes that could be implemented 

in order to improve the rate of convergence, the computational efficiency and the accuracy of the 

algorithm. This resulted in several iterations of the orientation estimation algorithm, which are described 

in this section. In order to ensure that all algorithms received the same input data, a virtual IMU was 

created that provided consistent and repeatable sensor inputs from known orientations. This allows the 

variations of the algorithms to be directly compared, both to each other and to a system truth. 

4.1.1 Sensor Bias Removal 
Before the algorithms can be used, sensor bias needs to be removed. It is desirable to do this when using 

the gyroscopes, as sensor bias can lead to an unpredictable speed of convergence, or ‘dragging’ away 

from the corrected value, but it is a requirement for magnetometer use, since the orientation will aim to 

ensure that the measured vector for the geomagnetic field is aligned to the systems magnetic north. 

4.1.2 Gyroscopic Calibration 
The gyroscopic calibration is performed each time the orientation tracking algorithm is initialized. To 

function correctly, the IMU must be stationary during this initialization period, which lasts for 200 

milliseconds. The IMU gathers 200 samples of gyroscopic data and computes the average value. This value 

is then written to the IMUs internal registry and removed from subsequent gyroscopic data before it is 

used to estimate rotation. 

 
𝐺𝑦𝑟𝑜𝐵𝑖𝑎𝑠(𝑥,𝑦,𝑧) =

∑ 𝐺𝑦𝑟𝑜𝑉𝑎𝑙𝑢𝑒(𝑥,𝑦,𝑧)
200
𝑖=1

200
 (21)  

4.1.3 Magnetometer Calibration 
Magnetometer calibration was vital, since a poorly calibrated magnetometer could lead to an error in 

rotation equivalent to up to 180˚ in the yaw direction. Since pitch and roll are not decoupled from yaw, a 

fast rotation around the Z-axis that will be ‘observed’ by the gyroscopes will be ‘corrected’ through the 

gradient descent, which may lead large deviations around all three axes. It must be noted that magnetic 

north when measured in three dimensions has an element that is parallel to the earth’s surface, and an 

element that is perpendicular to it. The angle between the measured magnetic field and the earth’s 

surface is known as magnetic inclination.  

There are four types of magnetometer interference that could lead to unpredictable results: 
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- Hard iron offsets – Hard iron offsets are the result of a source of magnetic field on the sensor/PCB. 

They are often present as a result of the ferromagnetic components on the board and can change 

both over time and as the result of exposure to other magnetic fields. Since they are generated 

by components fixed to the PCB, they are rotated as the sensor is rotated, and therefore have a 

constant additive effect on sensor output. 

- Soft iron distortion – Soft iron distortion is caused by materials that are not themselves magnetic, 

but which can interfere with the geomagnetic field. The effect of this distortion is that magnetic 

field can appear to change amplitude and direction in according to sensor orientation. This is 

normally compensated for by assuming that the scaling effect is linear and modelling the 

correction. 

- Tilt – Tilt is when the axes of the sensor do not align with the global axis when no rotation has 

occurred. It is usually due to the sensor mounting on the PCB but can be modelled and corrected 

if necessary. 

- Environmental interference – Environmental interference is another form of additive 

interference. It differs from Hard Iron Offsets because its effects are consistent in the global 

reference frame instead of the IMUs local reference frame. An operator must be aware of it if a) 

it is inconsistent over time and b) they require a global reference frame that is aligned with true 

magnetic north. 

Magnetometer calibration was performed to remove the Hard Iron Offsets in two ways; both of which 

required the operator to perform known movements. 

During the first method of magnetometer calibration, the IMU was placed on the side designated the top, 

and a button was pressed. The IMU recorded fifty samples of data from all three axis of the 

 

Figure 13 -Magnetometer output (Left: Raw magnetometer output. Mid: Cropped and Filtered. Right: Calibrated output) 
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magnetometer. The operator was then required to rotate the IMU ten degrees around the vertical axis 

and resample. This was repeated until all 36 positions had been sampled, then the IMU was placed on the 

side designated as the bottom, and the process was repeated. The magnetometer bias for each axis could 

then be found simple by taking the average of all samples taken along that axis. The intent behind this 

method was a) that many samples would negate the effect of any high frequency noise and b) that by 

sampling every ten degrees would ensure that the maximum range was found for each axis. The additional 

benefit of this method was that it allows the sensors to be tested for the effects of soft iron distortion and 

tilt, both of which were found to be negligible for this board layout and sensor. This method provided 

accurate measurement of sensor bias but was time consuming. 

The second method of sensor calibration was to replace the spin and stop technique with a constant 

rotation of 360˚, turning the device over and completing a second rotation to finish the data collection. 

Instead of averaging, this method finds the maximum and minimum of the data and takes the midpoint 

as the bias. This calibration algorithm detects the increased gyroscopic activity that indicates that the user 

is turning the device over, and removes the magnetic information for this period, ensuring that it is not 

included in the bias calculation, which is as follows: 

𝑀𝑎𝑔𝑛𝑒𝑡𝑜𝑚𝑒𝑡𝑒𝑟𝐵𝑖𝑎𝑠(𝑥,𝑦,𝑧) =
max(𝑀𝑎𝑔𝐷𝑎𝑡𝑎(𝑥,𝑦,𝑧)) − min(𝑀𝑎𝑔𝐷𝑎𝑡𝑎(𝑥,𝑦,𝑧))

2
+ min(𝑀𝑎𝑔𝐷𝑎𝑡𝑎(𝑥,𝑦,𝑧)) 

The implementation of this algorithm can be seen in Figure 13. 

This has the benefit of being significantly less time consuming, but it is also more likely that the operator 

will tilt the device as they rotate it. Since magnetometer calibration can be changed when the IMU is 

passed through strong magnetic fields, the calibration process had to be performed regularly, and so this 

was the preferred method. 

4.1.4 Comparison Against Known Orientation 
Initially, the orientation estimation algorithm was implemented in the C# host application, and raw sensor 

data was transmitted from the IMU directly to this application over Bluetooth. 

To compare this implementation against a known orientation, a second form of orientation monitoring 

had to be implemented. A 3D motion tracking system (Optotrak, NDI Ontario, Canada) was used to provide 

this tracking, due it its high accuracy. The tracking system uses a beacon comprised of 3 markers, which 

allow the position and orientation of the beacon to be observed. An image of the beacon can be seen in 

Figure 14. 
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Figure 14 - Optotrak system used to evaluate orientation estimation algorithm 

 

Figure 15 - Experimental set up for orientation estimation evaluation (a – IMU in position. b- IMU with beacon affixed) 

 

Figure 16 – IMU orientation output against measured orientation 
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The tracking system is able to locate the beacon to a 3D accuracy of 0.1mm, and so its accuracy was 

adequate for evaluating the accuracy of the gradient descent algorithm. The beacon was rigidly fixed to 

the IMU, and the IMU was recalibrated to compensate for any new hard iron offsets introduced by the 

additional hardware. The IMU was then attached to a vertically mounted rotating platform, which was 

manually rotated through a full rotation, as shown in Figure 15. 

Each rotation lasted approximately 30 seconds. The quaternions generated by both the IMU and the 

tracking system were recorded during the rotation. After rotation the quaternions were converted into 

Euler angles in the IMUs local reference frame for ease of comparison, an example rotation can be seen 

in the Figure 16. 

The errors are described in Table 4: 

 

A mean error of 5.7 degrees was observed during these rotations. This is comparable to the accuracy 

offered by other commercial low cost IMUs and it was concluded that this accuracy was sufficient to move 

forward tracking human motion. 

4.2 Improving the Efficiency of the Algorithm 
The algorithm was implemented in the firmware of the IMUs. This step reduced the volume of data 

transmitted over Bluetooth, therefore reducing the power consumption of the device and leading to 

longer functional battery life. The high sample rate defined as a requirement in Section 3.2.3 increases 

the accuracy of the finite sums approximation for angular rotation that forms the gyroscopic element of 

the orientation estimation algorithm. It was noted that when the algorithm was embedded into the 

firmware, the maximum sample rate dropped to approximately 300Hz. 

The maximum sample rate is determined by the processor speed, and within the context of the IMU, it is 

fixed based on the number of clock cycles required. In order to increase the sample rate of the algorithm 

to that defined in the specification, the number of clock cycles required has to be decreased by 

approximately two thirds. This required the number of operations in the algorithm to be decreased. 

The algorithm requires normalized vectors and quaternions, and as a result uses data types capable of 

represented decimal values, specifically floating-point numbers. In the PIC24F family, floating point 

numbers are represented using 32-bits, and their operations are significantly slower than their integer 

equivalents. To remove the floating-point numbers, they were instead replaced with 16-bit integers. As a 

result, values <1 were disregarded. 

 

Table 4 – IMU errors 

Mean error 
(degree) 

Maximum error 
(degree) 

RMSE 
(degree) 

5.69 10.30 6.12 
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To ensure that enough of the relevant information remained, one integer unit (1𝑖𝑛𝑡𝑈𝑛𝑖𝑡) was defined by: 

1𝑖𝑛𝑡𝑈𝑛𝑖𝑡 =  
1

𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟
 𝑤ℎ𝑒𝑟𝑒 𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟 (𝑆𝐹) = 214 

 The scaling factor was chosen as the highest number that could perform normal operations to normalized 

values without overflowing. 

This required modifications to several mathematical operators, for example: 

𝑎 ∗ 𝑏 = 𝑐 

was replaced by: 

𝑎 ∗ 𝑏

𝑆𝐹
= 𝑐 

since:  

𝑎

𝑆𝐹
∗

𝑏

𝑆𝐹
=

𝑐

𝑆𝐹
 

This resulted in the potential generation of 32-bit values during the process of multiplication, so 

monitoring data typing was required to ensure no overflows occurred. 

In addition to this multiplication, simple multiplications and divisions were replaced directly with binary 

operations, for example: 

𝑎 ∗ 2 = 𝑎 ≪ 2 

Normalization of vectors and quaternions normally requires a division by the norm of each axis.  

The norm is computed by taking the root of the squares of the axis: 

𝑛𝑜𝑟𝑚 (𝑣((𝑤),𝑥,𝑦,𝑧) ) = √(𝑣𝑤
2 +)𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2 

The square root is a computationally heavy function, and as a result it was replaced with an approximate, 

which calculates the root by guessing each bit (most significant to least significant) and comparing the 

squared guess to the number that is to be rooted. This allows the square root to be found in a number of 

steps equivalent to the number of bits in the rooted number data type. Additional speed is possible in 

exchange for ignoring a number of the least significant bits. This introduces an error at each step, but 

these errors are corrected by the gradient descent during future steps. Once the norm value has been 

calculated, each element in the vector can be divided by it to create a normalized vector. 

Division operations are computationally expensive in the PIC24F family, requiring approximately 8 times 

longer than multiplication, and as a result it was desirable to reduce the number of times a division 

occurred. 
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A normalized axis (𝑚′𝑥) can be calculated using the original value (𝑚𝑥) and the vector norm (𝑛𝑜𝑟𝑚) 

through: 

𝑚𝑥

𝑛𝑜𝑟𝑚
= 𝑚𝑥

′  

Since the values are scaled, the scale factor must be included in this calculation: 

𝑚𝑥/𝑆𝐹

𝑛𝑜𝑟𝑚/𝑆𝐹
= 𝑚𝑥

′ /𝑆𝐹 

A 32-bit value was chosen to abstract the division from each vector. The value 229 was chosen, as this 

made the order of the calculation easier to avoid overflow errors. Multiplying the fraction by 1 expresses 

as 229/229  gives.  

𝑚𝑥
𝑆𝐹

/229

𝑛𝑜𝑟𝑚
𝑆𝐹

/229
=

𝑚𝑥
′

𝑆𝐹
 

Which simplifies to: 

1

229
∗ 𝑚𝑥 ∗

229

𝑛𝑜𝑟𝑚
=

𝑚𝑥
′

𝑆𝐹
 

Therefore: 

1

229
∗ 𝑆𝐹 ∗ 𝑚𝑥 ∗

229

𝑛𝑜𝑟𝑚
= (𝑆𝐹 ∗ 𝑚𝑥 ∗

229

𝑛𝑜𝑟𝑚
) ≫ 29 = 𝑚𝑥

′  

If: 

229

𝑛𝑜𝑟𝑚
= 𝑟 

Then  

(𝑆𝐹 ∗ 𝑚(𝑤),𝑥,𝑦,𝑧 ∗ 𝑟) ≫ 29 = 𝑚(𝑤),𝑥,𝑦,𝑧
′  

As a result, the three divisions of a vector normalization are replaced by a single division to generate the 

value for r. This makes normalization approximately three times faster for vectors and four times faster 

for quaternions. 

Making these modifications led to the required improvement in performance, the time taken to execute 

one step when from ~3ms to ~1ms, allowing the specified 1kHz sample rate to be maintained. 
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4.3 Gradient Descent Modifications 

4.3.1 Motivation 
The gradient descent orientation estimation algorithm consists of two parts, which are weighted and 

combined. The first is the gyroscopic integration, and the second is the correction step. In order for the 

algorithm to be robust in the many applications in which it can be used, both of these steps should be 

predictable for a given level of noise. 

It has been noted in Chapter 2 that in original formulation of the gradient descent algorithm, yaw is not 

decoupled from pitch and roll. This is undesirable in many applications but can be particularly problematic 

in applications such as quadcopter control, where unexpected changes in pitch or roll could lead to 

unpredictable lateral movement. Additionally, it was noted that two subsequent steps down gradients 

that are not perpendicular could lead to an inconsistent step size in the first gradient, and a smaller than 

expected step in the second direction. This can lead to a slower than optimum convergence. Finally, the 

algorithm relies on an accurate value to inclination when calculating the magnetometer reference vector. 

If this is not available then the amount of time the algorithm takes to converge will increase significantly, 

as the two gradients will quickly begin to work in opposite directions. In situations where an accurate 

measure for inclination cannot be provided, the algorithm will rotate the measured vector into the correct 

plane, however this is inefficient since information is lost. 

4.3.2 Solution 
The solution to this is to remove the effect of magnetic inclination so the vertical component (parallel to 

the gravity vector) is removed. This is achieved through the generation of new vectors for the geomagnetic 

field that are perpendicular to the corresponding gravity vectors. These vectors can be calculated by taking 

the cross product of the acceleration vectors and magnetometer vectors: 

The reference vectors (2.9) and (2.10) are used to create a new reference vector, referred to as the 

reference vector for magnetic east: 

 𝒗𝑟(𝑒) = |[0,0, −1] × [𝑣𝑟𝑥 , 0, 𝑣𝑟𝑧]|  (22)  

 𝒗𝑟(𝑒) = [0, −1,0]  (23)  

 The measured vector for magnetic east is calculated using the measured vector for acceleration (𝑉𝑚(𝑎)) 

and magnetic field (𝑉𝑚(𝑚)) in the same way: 

 𝒗𝑚(𝑒) = |𝒗𝑚(𝑎) × 𝒗𝑚(𝑚)|  (24)  

Equation (3) and (4) can be substituted into (2.14) to generate the second of the two gradients to give: 

 ∇𝒒𝐹(𝒒) = 𝐽𝒒(𝒒−1 ∗ 𝒗𝑟(𝑒) ∗ 𝒒 − 𝒗𝑚(𝑒))
𝑇

∗ (𝒒−1 ∗ 𝒗𝑟(𝑒) ∗ 𝒒 − 𝒗𝑚(𝑒)) (25)  
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4.3.3 Algorithm Convergence 
Since the yaw is now decoupled from the pitch and roll, a new problem is presented when the predicted 

orientation is exactly π from the true orientation. During the gravitational correction step, the error vector 

is at its theoretical maximum, therefore the gradient at this point is 0 and no correction occurs. The 

magnetometer correction will rotate around the gravitational vector, but since this will no longer affect 

pitch and roll, the gravitational vector will remain at its theoretical maximum. This scenario is easy to test 

for within the algorithm, however in most cases it is unnecessary since gyroscopic information, IMU 

rotation and sensor noise will all displace the sensor from this maximum error state, at which point the 

gradient will move away from zero and the algorithm will converge. This can be demonstrated by 

demonstrating that the gradient can be calculated at every point in the relevant vector space. This is 

achieved by examining the error function, defined as: 

 𝒗𝑒 = 𝒒−1 ∗ 𝒗𝑟 ∗ 𝒒 − 𝒗𝑚 (26)  

This can be simplified by considering this function in a new reference frame (𝑙), which in constructed so 

that 𝒗𝑚 is parallel to  𝑙𝑋𝑎𝑥𝑖𝑠 and the cross product of 𝒗𝑟 and 𝒗𝑚 is parallel to  𝑙𝑍𝑎𝑥𝑖𝑠. In this reference 

frame, the rotation denoted by 𝒒 can be expressed as a rotation of 𝜃 around  𝑙𝑍𝑎𝑥𝑖𝑠. In this case, the two 

vectors 𝒗𝑟 and 𝒗𝑚 can be described as: 

  𝑙𝒗𝑚 = [1,0,0] (27)  

 

 

 

Figure 17 – Magnitude of error function with respect to rotation 
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And: 

  𝑙𝒗𝑟 = [cos 𝜃  , sin 𝜃 , 0] (28)  

The vector describing the error in this frame can therefore be expressed as: 

  𝑙𝒗𝑒 = [cos 𝜃 − 1, sin 𝜃 , 0] (29)  

And therefore, the magnitude of the error (𝑀𝑒) is given by: 

 𝑀𝑒 = √(cos 𝜃 − 1)2 + (sin 𝜃)2 (30)  

The value for 𝜃 has a range 0 to 𝜋, and as a result, the 𝑀𝑒 can be calculated for every value of 𝜃. Figure 

17 shows that this function has a single minimum and will converge at all points excluding the single point 

where 𝜃 = 𝜋 as the gradient is zero here. 

4.3.4 Algorithm Assessment  
In order to assess the performance of this algorithm, and to evaluate its performance against both the 

original algorithm and the improved formulation proposed by Admiraal, the virtual IMU was used. The 

virtual IMU placed at a random target orientation, and the theoretical sensor outputs for that orientation 

were passed to the algorithm. The time taken to converge to the target orientation from the initial 

position was recorded. The values for α (gain) were kept consistent between algorithms to ensure that 

convergence speed was representative of the number of iterations required to achieve the convergence. 

Convergence time provides a useful metric for evaluating modifications to the algorithm since it is 

proportional to the efficacy of the gradient descent. Since the step size is kept consistent, faster 

convergence means that the interference between the two gradient descent steps has been reduced. The 

magnetic inclination was set to the local field, which is ~60 degrees. They gyroscopic values were set to 0 

degrees per second. All three algorithms were implemented on the same virtual IMU at a given orientation 

and monitored until all three predicted orientations had converged to within 1˚ of the given orientation. 

At this point, the virtual IMU was instantaneously rotated randomly, and this process was repeated until 

1,000 convergences had been completed. 

The number of steps taken for each algorithm to converge was recorded. The average for the 1,000 

convergences was converted into a ratio, where: 

Original_GDA(Madgwick):Improved_formulation(Admiraal):Extension(Described_here) 

was found to be approximately: 

6:7:1 

An example of the convergence of the three algorithms can be seen in Figure 18. 
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In order to provide a comparison in ideal circumstances for the original algorithms, the inclination of the 

simulated magnetic field was changed to be equal to 0˚ (a rare scenario globally, but one where the 

changes proposed here should have little effect). 

 

Figure 18 – Evaluation of convergence of different GDAs 

 

Figure 19 – Evaluation of convergence of different GDAs (no inclination) 
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In this situation, the ratio of the number of samples to complete 1,000 convergences in the form: 

Original GDA (Madgwick):Improved formulation (Admiraal):Extension (Described here) 

was found to be approximately: 

1.9:1.2:1 

An example of the convergence under these circumstances can be seen in Figure 19. This indicates that 

despite the inclination compensation found in both the Original algorithm and the improved formulation, 

the amount of magnetic inclination still has a significant effect on convergence time. 

To allow the effect of magnetic inclination to be observed in more detail, a final set of convergence tests 

were run. For these, the virtual IMU was placed at a given orientation, the level of magnetic inclination 

was set to 0˚, and all algorithms were allowed to converge. The IMU was fixed in the same orientation, 

but the inclination value was incrementally increased. The results from this test can be seen in Figure 20. 

From this, it can be seen that the effects of magnetic inclination are negated through the extension to the 

algorithm proposed here. This is particularly important for locations where the level of magnetic 

inclination is naturally high, but it also gives a higher level of robustness in environments where magnetic 

interference may artificially increase the perceived inclination. 

The final point to address from the motivation section is the decoupling of yaw rotation from pitch and 

roll. To determine whether the axes are now decoupled, the virtual IMU was placed at a random 

orientation. The three algorithms were allowed to converge, and once they had completed their 

 

Figure 20 – The effect of magnetic inclination on time to converge 
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convergence, the MARG was rotated π/2 radians around the z-axis. The algorithm was then allowed to 

converge to this new orientation, and this convergence was recorded. The quaternions were then 

converted to be expressed in terms of roll, pitch and yaw. This π/2 radians rotation constitutes a change 

of π/2 radians in yaw, and therefore when monitoring the second convergence, only the yaw should be 

affected, pitch and roll should remain the same.  

When using the algorithm extension presented here, it was found that the rotation did occur exclusively 

in the yaw direction, whereas in the original algorithm and the improved formulation, pitch and roll were 

 

Figure 21 - Result of rotating measured magnetometer ninety degrees around z-axis 
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both affected. This demonstrates that the yaw is now decoupled from the pitch and roll, addressing the 

problems discussed in Section 2.4. An example of this second convergence can be seen in Figure 21, the 

instantaneous rotation of the IMU sensor in the yaw direction takes place at time 4.5s.  

The extension presented here addresses a number of the problems with the original gradient algorithm, 

and therefore can be implemented to achieve a more stable and more predictable corrective step to the 

gradient descent algorithm.  

4.3.5 Robustness to Gyroscopic Bias 
Despite the removal of bias in the sensor calibration phase, it is possible that bias may return as the device 

is used for long periods of time. Introducing a bias to either the magnetometer or the accelerometer will 

create offsets in the predicted orientation, however this will not have an effect on the output stability. 

This is not true for biases introduced to the gyroscopic data, where a large enough bias can create an 

unstable output. The corrective element of the algorithm created by the fusion of magnetic and 

accelerometer data is intended to compensate for errors introduced by the gyroscopic integration, 

however if the error is introduced by a large bias, then it may no longer be possible to correct.  

In order to examine the effect of gyroscopic bias, the virtual IMU was used. The IMU was placed in a 

known orientation, and the corresponding sensor inputs were generated. A bias was then introduced in 

one axis of the gyroscopic sensor data, and the algorithms were observed compensating for this 

 

Figure 22 - Effect of gyroscopic bias on convergence 
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disturbance for 250,000 steps. The final 100 steps were analysed to determine whether the output of the 

algorithm was stable, and if it was found to be stable, the final orientation was recorded. The bias was 

then increased, and the process repeated until the algorithm produced an unstable result. 

Through this experiment, it was found that the method proposed here was able to compensate for a larger 

range of gyroscopic biases. The difference between the output and the true orientation was smaller for 

low biases, and the algorithm remained stable for larger biases, which caused the other tested algorithms 

to become unstable. The results of this can be seen in Figure 22. 

4.4 New Algorithm Formulation 

4.4.1 Motivation 
While the improvements to the gradient descent improve the accuracy of the corrective step, there are 

still undesirable features. The primary problem is that the rate of correction cannot be accurately defined, 

and therefore determining the best gain for given frequencies of signal and sensor noise is difficult. In 

addition, the rate at which the algorithm converges is dependent on the amplitude of the error, and 

therefore the speed of convergence is inconsistent. Finally, since the error is modelled on spherical 

coordinates, as the error approaches π, the gradient begins to become less steep, leading to a slower 

initial convergence speed. 

4.4.2 Solution 
The solution proposed here addressed these problems through the calculation of an instantaneous 

convergence. As a stand-alone algorithm, it therefore assumes that the measured vectors for gravity and 

the geomagnetic field are accurate. As a result, the full implementation requires a dynamic weighting 

system, which determines when the measured vectors can be fully trusted, and when the gyroscopic data 

will be more reliable. Gradient descent-based approaches do not use this nature of dynamic weighting, 

since small regular corrective steps will act as a low pass filter on these vectors. This is an inefficient 

method of providing this filtering, since it requires the algorithm to be executed at the introduction of any 

new data. Performing this filtering through a combination of lightweight signal processing and simple 

sensor fusion to provide weighting, combined with one-step convergence removes the requirement to 

execute the algorithm at every step. It can instead occur at a lower frequency, dependent on the rate of 

change of the sensor outputs. Assuming initially that the sensors are providing reliable geomagnetic and 

gravitational data, the orientation can be determined using the following process. 

As Madgwick observed, orientation can be defined through two non-parallel vectors, which can be found 

in the forms of the gravity vector and the magnetometer vector. The rotation that is required to align both 

the measured and reference accelerometer vector and the measured and reference magnetometer vector 

can be broken down into two consecutive rotations, one that corrects based on the accelerometer reading 

and one that corrects based on the magnetometer reading. The process here states that the orientation 

estimation is correct if the measured vectors are aligned with the reference vectors after the reference 

vectors have been transformed to the local reference frame using the predicted orientation. 
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As in previous notation, the reference vector for gravity (𝑣𝑟(𝑎)) is defined as: 

 𝑣𝑟(𝑎) = [0,0, −1] (31)  

While the calculation can be conducted in either reference frame without affecting the efficiency, in the 

implementation outlined here, this reference vector is rotated into the local reference frame as described 

in by multiplying by the current estimation for orientation (𝑞), to give ( 𝐿𝑣𝑟(𝑎)). 

Using (6) in (2.8) gives: 

  𝐿𝑣𝑟(𝑎) = 𝒒 ∗ 𝒗𝑟(𝑎) ∗ 𝒒−1 = 𝑅𝒒 ∗ 𝒗𝑟(𝑎) (32)  

Which can be easily solved using the rotation matrix given in (2.9) to give: 

  𝐿𝑣𝑟(𝑎) = [2(𝑞𝑥𝑞𝑧 − 𝑞𝑤𝑞𝑦), 2(𝑞𝑤𝑞𝑥 + 𝑞𝑦𝑞𝑧), 2(𝑞𝑤
2 + 𝑞𝑧

2) − 1] (33)  

 

The rotation required to correct the measured gravity vector (𝑣𝑚(𝑎)) to equal the current predicted sensor 

output ( 𝐿𝑣𝑟(𝑎)) can be broken down into two parts, the angle between the measured vector and the 

rotated reference vector must be found, and the axis around which a rotation of this angle should occur 

must also be found. 

The axis of the rotation (𝑎𝑥𝑖𝑠𝑎) required to bring two vectors into alignment is one that is perpendicular 

to both, and therefore can be found using the cross product of the two vectors: 

 𝑎𝑥𝑖𝑠𝑎 =  𝐿𝑣𝑟(𝑎) × 𝑣𝑚(𝑎) (34)  

Next the angle (𝜃𝑎) between the two vectors is generated according to: 

 𝜃𝑎 = cos−1(  𝐿𝑣𝑟(𝑎)
̂ ∙ 𝑣𝑚(𝑎)̂)  (35)  

This correction can then be expressed as a quaternion (𝑞𝑎) through: 

 
𝑞𝑎𝑊 = cos (

𝜃𝑎

2
) 

𝑞𝑎𝑋 = 𝑎𝑥𝑖𝑠𝑎𝑋 ∙ sin (
𝜃𝑎

2
) 

𝑞𝑎𝑌 = 𝑎𝑥𝑖𝑠𝑎𝑌 ∙ sin (
𝜃𝑎

2
) 

𝑞𝑎𝑍 = 𝑎𝑥𝑖𝑠𝑎𝑍 ∙ sin (
𝜃𝑎

2
)  

(36)  
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The second step requires correction based upon the magnetometer vectors. As in the previous section, 

the effects of magnetic inclination should be removed. This is performed using the same method: 

 𝑣𝑟(𝑚) = [𝑣𝑟𝑥 , 0, 𝑣𝑟𝑧] (37)  

 𝑉𝑟(𝑒) = |[0,0, −1] × [𝑉𝑟𝑥 , 0, 𝑣𝑟𝑧]| (38)  

 𝑉𝑟(𝑒) = |0, −1,0] (39)  

The reference vector is again transformed to the local reference frame: 

  𝐿𝑣𝑟(𝑒) = 𝑞. 𝑣𝑟(𝑚). 𝑞−1 (40)  

Which is simplified using (2.8) and (2.9) to give: 

  𝐿𝑣𝑟(𝑒) = [2(𝑞𝑥𝑞𝑦 + 𝑞𝑤𝑞𝑧), 2(𝑞𝑥
2 + 𝑞𝑦

2) − 1, 2(𝑞𝑦𝑞𝑧 − 𝑞𝑤𝑞𝑥)] (41)  

And the measured magnetic vector 𝑣𝑚(𝑚) must also be converted to magnetic east to remove inclination. 

The rotation defined through the accelerometer correction must then be applied to the measured vector 

to ensure that the effect of this rotation is only applied once. This can be summarized as: 

𝑣𝑚(𝑒) = 𝑞𝑎 ∙ (𝑣𝑚(𝑎) × 𝑣𝑚(𝑚)) ∙ 𝑞𝑎
−1  (42)  

The axis of rotation (parallel to the measured acceleration) is given by: 

𝑎𝑥𝑖𝑠𝑒 =  𝐿𝑣𝑟(𝑒) × 𝑣𝑚(𝑒) (43)  

 

Again, the angle can be calculated: 

 𝜃𝑒 = cos−1(  𝐿𝑣𝑟(𝑒)
̂ ∙ 𝑣𝑚(𝑒)̂)  (44)  

And the second correction rotation 𝑞𝑒 can be calculated: 

 
𝑞𝑒𝑊 = cos (

𝜃𝑒

2
) 

𝑞𝑒𝑋 = 𝑎𝑥𝑖𝑠𝑒𝑋 ∙ sin (
𝜃𝑒

2
) 

𝑞𝑒𝑌 = 𝑎𝑥𝑖𝑠𝑒𝑌 ∙ sin (
𝜃𝑒

2
) 

𝑞𝑒𝑍 = 𝑎𝑥𝑖𝑠𝑒𝑍 ∙ sin (
𝜃𝑒

2
)  

(45)  

The overall correction 𝑞𝐶  to be applied is the product of these two correction quaternions: 
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 𝑞𝑐 = 𝑞𝑎 ∗ 𝑞𝑒 (46)  

 

This allows the correction to be applied in a single step. This immediate convergence is useful for 

stationary and noiseless data, however for practical use, it is more useful to implement this algorithm 

within a complementary filter. This may require the correction rotation to be broken down into steps. The 

simplest way of doing this in a system with enough computational resources is to use spherical linear 

interpolation, which is commonly used in computer graphics, and therefore found in many graphical 

toolboxes. It may be desirable to avoid this method of interpolation if computational resources are low. 

Since this algorithm used Axis-Angle rotations to calculate its corrective rotations, this can be 

approximated without the added computational power of spherical linear interpolation by applying a 

weight to the calculated angles. 

For a given weight (𝑘), where: 

 0 ≤ 𝑘 ≤ 1 (47)  

The rotations representing the partial gravity correction 𝑞𝑎𝑝 and partial magnetometer correction 𝑞𝑒𝑝 can 

be calculated as: 

 
𝑞𝑎𝑝𝑊 = cos (𝑘 ∙

𝜃𝑎

2
) 

𝑞𝑎𝑝𝑋 = 𝑎𝑥𝑖𝑠𝑎𝑋 ∙ sin (𝑘 ∙
𝜃𝑎

2
) 

𝑞𝑎𝑝𝑌 = 𝑎𝑥𝑖𝑠𝑎𝑌 ∙ sin (𝑘 ∙
𝜃𝑎

2
) 

𝑞𝑎𝑝𝑍 = 𝑎𝑥𝑖𝑠𝑎𝑍 ∙ sin (𝑘 ∙
𝜃𝑎

2
)  

(48)  

and 

 
𝑞𝑒𝑝𝑊 = cos (𝑘 ∙

𝜃𝑒

2
) 

𝑞𝑒𝑝𝑋 = 𝑎𝑥𝑖𝑠𝑒𝑋 ∙ sin (𝑘 ∙
𝜃𝑒

2
) 

𝑞𝑒𝑝𝑌 = 𝑎𝑥𝑖𝑠𝑒𝑌 ∙ sin (𝑘 ∙
𝜃𝑒

2
) 

𝑞𝑒𝑝𝑍 = 𝑎𝑥𝑖𝑠𝑒𝑍 ∙ sin (𝑘 ∙
𝜃𝑒

2
)  

(49)  
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respectively. 

There are a number of reasons that this approach is desirable. The first is that the rate of convergence is 

predictable. For (𝑁) steps and (𝑘) gain, if the initial error is defined as (𝑒𝑟0), the error at each step is given 

by: 

 
𝑒𝑟 = 𝑒𝑟0 − ∑ 𝑒𝑟0 ∗ 𝑘𝑛

𝑁

𝑛=0

 (50)  

If 𝑘 = 1 then convergence will occur in one step, otherwise it will tend to convergence as described above. 

Since this algorithm does not rely on an iterative process to achieve convergence while stationary, there 

are a number of modifications that can be made, for example, if the convergence rate should be limited 

to a maximum speed in yaw, then 
𝜃𝑒

2
 can be limited to this maximum (maximum will be achieved if 

𝑎𝑥𝑖𝑠𝑒  ⃦𝑣𝑚(𝑎)). 

Another potential benefit of this immediate convergence is that the calculation of the required corrective 

step does not need to be made at every time interval, since the corrective step is designed to compensate 

for the effects of low frequency gyroscopic drift.  

4.4.3 Convergence Rate 
The convergence rate of the algorithms outlined here is dependent on their respective value for gain. The 

effect of gain is no longer consistent between these algorithms, and therefore they become difficult to 

directly compare to one another. The method used here was to find the value for gain that gives the 

fastest convergence for a given rotation to occur for each algorithm. For the algorithm introduced in this 

section, the most efficient gain value is 1, since this will give a 1-step convergence. For the Gradient 

Descent-based algorithms, the gain is proportional to the step size. A smaller gain will lead to slow 

convergence, whereas a gain that is larger than optimum will lead to an oscillation that slows (or 

completely inhibits) convergence. The ideal gain was dependent on the required rotation, and the number 

of steps taken to converge is also dependent on the initial offset. 

To evaluate the gain value that gave the fastest convergence for the GDA, the gain was varied, and the 

time taken to converge was observed. Initially a small gain was provided, and the number of steps taken 

for the algorithm to converge was counted. The gain was then increased, and the increased step size led 

to a decrease in the number of steps required. This was continued until the number of steps began to 

increase, since this was an indication that the step size was causing oscillations to occur in the 

convergence. At each minimum in the number of steps, the gain and steps required were recorded. In 

order to cover a wide variety of rotations, both simple and complex, this process was repeated 1,000,000 

times. When using the optimum gain for a given orientation, the average steps taken to achieve 

convergence with an accuracy of 1˚ with a sample period of 0.001 seconds was approximately 65. As a 

result, it can be concluded that at this frequency, the new formulation converges 65 time faster than the 

gradient descent. 
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4.4.4 Efficiency – Base Algorithm 
To evaluate efficiency, the time taken for the algorithm to run was observed. To perform this evaluation, 

both algorithms were set to an initial random orientation. A second random orientation was set as the 

target, and the algorithms calculated their corrective steps. These corrective steps were ignored, so 

convergence was never achieved. As a result, the time taken to complete a fixed number of steps could 

be measured. This was repeated for 1,000 initial position/target position pairs. It was found that on 

average, the time taken for the GDA to perform 1,000,000 steps was approximately 0.26 seconds. 

Conversely, it took 0.92 seconds for the implementation outlined here to perform the same number of 

convergences. As a result, it can be concluded that for this method to lead to an increase in efficiency, the 

implementation must call it for less than 28% of samples. 

4.5 Chapter Summary 
This chapter describes the process by which the orientation output of the IMUs was calculated. After an 

evaluation of the existing orientation estimation techniques, Madgwick’s Gradient Descent Algorithm was 

chosen and implemented. Calibration techniques for both the gyroscopic sensors and the magnetometer 

sensors were implemented, resulting in a fast method of calibration that increases the likelihood of 

accurate orientation. The accuracy of the base algorithm was assessed by comparing against a known 

orientation provided by a camera-based system (Optotrak), which resulted in an average accuracy of 5.7 

degrees. 

The algorithm was implemented in the firmware of the IMUs to allow compatibility with low power host 

devices. In order to maintain the desired sample rate, several modifications were required including a 

type conversion from floating point numbers to integers, and custom normalization functions for three 

and four element vectors. This decreased the time required to execute the algorithm from ~3ms to ~1ms. 

Several previous works have highlighted limits of the Madgwick algorithm that cause unexpected 

behaviour in experimental conditions. Euler angles are coupled, which leads to indirect convergence, and 

the magnetometer reference vector is dependent on local magnetic inclination, leading to inefficiencies 

in the algorithm which can lead to slow convergence. An additional step has been demonstrated that 

addresses both problems simultaneously, leading to fast, predictable convergence that is independent of 

factors such as inclination. The solution was tested in a simulated environment, which allows its 

performance to be compared to both the original formulation, and the improvements proposed by 

Admiraal. 

Finally, a formulation of a new algorithm that calculates the precise orientation based on a single set of 

sensor data was presented. This new algorithm allows single step convergence, which removes the 

unpredictable convergence rate achieved through the gradient descent, allowing more directed filtering 

efforts to be implemented. The efficiency and convergence rate of this algorithm are discussed. 
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Chapter 5 
Using MMG for Activity Monitoring 
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5.1 Activity Classification 
The sensors system outlined in Chapter 3 was designed to allow hand gestures to be used as the basis for 

an HMI. The sensing modality does not directly require movement or dexterous manipulation, and 

therefore it is suitable for both healthy users and for amputees. The form of the interface is an armband 

that can be worn on the forearm and operates an ‘always on’ sensing protocol. 

In order to function as an interface for Human-Machine interaction, a device must have the ability to 

detect volitional signals generated by the user for control. For a pervasive system such as the one 

described here, this involves both identifying when the user is attempting to interact with the device, and 

what the intent behind the interaction is. Both can be achieved using an activity classifier, where the 

default state is that the user is not attempting to interact with the interface, and additional states 

represent detected user intent. When this system is worn on the forearm, it can provide a number of 

categories of information to an activity classifier, including limb orientation, inertial gestures and muscle 

activity. The stream containing the most information will be the muscle activity, since the muscles in the 

forearm control the large number of degrees of freedom in the hand. Describing the required control 

signal in the form of hand gestures also provides a user-friendly interface, since users are required to 

perform actions that they are likely to be familiar with, reducing the amount of learning required to 

operate the system. For prosthetic control, capturing the muscle activity associated with performing hand 

gestures as a method of determining which grip to select has the potential of eliminating the cognitive 

burden associated with prosthetic control, and therefore the cognitive barrier between the wearer and 

their prosthetic. This requires a pattern recognition-based control system. 

Regardless of the application, the methodology is consistent, and has the following steps: 

1. The device must register that a volitional interaction is being made. 

2. The signals representing that volitional interaction must be extracted from the data stream. 

3. The extracted signals must be classified to determine the action that caused them to be 

generated. 

4. The action and any available gesture context must be used to determine the intent behind the 

interaction. 

5. The intent must be implemented by the end effector. 

MMG has been not been studied as extensively as some of its HMI sensing counterparts, and as a result, 

there is not yet a consensus on the most effective methods of deriving control information from it. As 

discussed in Chapter 2, there have been several attempts to use MMG signals for prosthetic control, 

however factors such as the rejection of motion induced artefacts have imposed limits on the practical 

implementation of the system. As such, this chapter describes the creation of a gesture database, and the 

subsequent processes of gesture extraction and classification that were designed. It also describes the 

implementation of these methods in several real-time tests. This chapter can be summarized as the design 

and implementation of an activity classifier. 
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5.2 Database Generation 
While previous studies have examined the topic, little is known about the individuality of MMG signals for 

subjects performing the same movement. In order to ensure that the methodology used by the activity 

classifier was not dependent on features specific to an individual, a database containing a number of 

examples of gestures from different individuals was created. This database would then function as an 

initial offline testing domain for various algorithms. 

5.2.1 Participants 
The volunteers selected to participate in the creation of this database gave their informed consent before 

the data collection began. The inclusion criteria were that volunteers must be above 18 and should have 

no physical impairment other than amputation. All experiments outlined in the following chapters were 

approved by the Imperial College Research Ethics Committee (ICREC reference: 15IC3068). 

Six healthy subjects (3 male, 3 female, average age: 36.8yrs SD: 15.8yrs) and one transradial amputee 

(male, age: 36yrs) were involved in this work. The healthy subjects had no visible abnormalities to the 

skin. The amputee subject had a transradial amputation on their right arm, as well as amputations on the 

upper section of the other three limbs. The transradial amputee subject underwent his amputations after 

an infection that lead to Toxic Shock Syndrome (TSS), septicaemia and necrotising fasciitis. After both 

lower limbs and the left upper limb was amputated, the necrotizing flesh was removed from the right 

upper limb, which then had to be reconstructed. While this was initially successful at preserving the right 

limb, the infection persisted in the bone marrow, while eventually resulted in a transradial amputation in 

this limb. As a result of the extensive surgeries, reconstruction and subsequent amputation, the subject 

has a unique physiology in the radial section of their arm, and extensive scarring around that area.  

5.2.2 Protocol 
At the beginning of each recording session, subjects were invited to wear an armband that comprised of 

a single IMU and six MMG sensors on their right forearm. The armband was placed around the largest 

radius of the forearm, with the IMU uppermost on the arm when the arm was held horizontally in front 

of the user with the palm facing down. Subjects were seated in front of a table, so that their elbow could 

be rested comfortably, and they were not required to hold the weight of their arm. Additionally, the height 

was adjusted so that the forearm and hand could be held in a vertical position without additional effort. 

This was to limit the amount of background muscle activity required to maintain the position of the hand. 

At intervals given by the data collection system, subjects were required to make instances of seven 

gestures. Data from each subject were stored and labelled according to which gesture the subject had 

been instructed to make. The gestures were selected based on six of the pre-programmed grip patterns 

that can be found on the Bebionic V2 (RSL Steeper), as well as an ‘open’ gesture. A number of these 

gestures were modified slightly to reduce ambiguity between similar gestures. An example of similar 

gestures is the Pinch (first finger to thumb) and Tripod (first and second finger to thumb) gestures, where 

the tripod gesture was modified to only include the second finger. In total, the gestures used for this 

period of data gathering were: Open the hand, Make a fist, Pinch with first finger, Pinch with second finger, 
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Raise Thumb, Point with first finger and Roll fingers. Each of the healthy subjects recorded one hundred 

instances of each gesture. 

Due to their unique physiology, the amputee subject followed a slightly different protocol to the rest of 

the subjects. They reported that they could not feel any contraction associated with performing three of 

the gestures. As a result, the subject proposed three replacement gestures that were performed instead. 

Pointing with the first finger was replaced with tapping with the first finger and raising the thumb and 

pinching with the second finger were replaced by rotating the wrist clockwise and anticlockwise. The 

subject also reported a faster onset of fatigue than the other subjects, and as a result their session was 

reduced and fifty instances of each of the seven gestures were recorded. 

In addition to this, healthy subjects were asked to perform five additional gestures to examine whether 

the sensor system was capable of distinguishing different contractions from the same muscle group. 

Subjects were asked to sit in a chair with their right arm relaxed and hanging to their side. They were then 

asked to twitch each of their digits in turn, starting with their thumb and moving to their fourth finger. 

This was to capture different contractions from the flexor digitorum muscle group (responsible for flexing 

the fingers), as well as the nearby flexor pollicis longus. Each of the healthy subjects also recorded one 

hundred instances of these gestures. 

Finally, a list consisting of thirty-eight gestures was compiled describing the dexterous movements 

required for several ADLs. One subject completed a dataset comprising one hundred instances of each of 

these thirty-eight gestures. These gestures included large movements, such as opening or closing the hand 

and rotating the wrist, small movements, such as individual finger flexion and extensions, as well as more 

dexterous movements, such as moving a mouse with the fingers or pressing the different mouse buttons. 

As a result, the final database consisted of 10150 examples of unsegmented gestures. These gestures 

were split into files, each of which contained an uninterrupted stream in which ten gestures occurred. The 

data consisted of MARG data and the mechanomyographic data recorded from six sites on the participants 

forearm. Each file was run through an activity monitor, and the presence of activity within the signal was 

highlighted. Each highlighted section of the signal was then manually examined and marked if it contained 

a gesture. This process of manually marking gestures was to allow an evaluation of automatic 

segmentation algorithms to take place. Additionally, each segmented gesture file contained the gesture 

the subject had been instructed to make, how far through the dataset the subject was at that point, and 

which subject had generated the signals. This database therefore contained enough information to 

provide a test environment for both gesture segmentation and gesture classification algorithms to be 

evaluated. 

5.3 Gesture Segmentation 
To perform event detection on a continuous data stream, the properties of that stream need to change. 

When monitoring the MMG signal from the forearm, one indicator that the muscle activity required to 

actuate the hand may be occurring is an increase in the energy of that signal. The signal from each MMG 
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sensor can be defined by the vector 𝑚. The signal was band-pass filtered between 1Hz and 50Hz to 

produce 𝑚∗. The energy 𝑒𝑠𝑖𝑔 in the signal at any given point can be defined as: 

 
𝑒𝑠𝑖𝑔 = ∑ 𝑚𝑗

∗2

𝑁

𝑗=1

 (51)  

Where 𝑁 represents the total number of sensors and 𝑗 is a specific sensor. 

Analysis of the database allowed the energies which were most representative of the different gestures 

to be determined, as well as providing an indication of the background energy level. The value for the 

energy threshold (𝑇𝑀𝑀𝐺) which identified gestures with the highest f-measure was determined. F-

measure provides a statistical measure of a classifiers accuracy by combining both precision and recall as 

follows: 

 
𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (52)  

In order to determine the most appropriate value for 𝑇𝑀𝑀𝐺, the following protocol was used. 𝑇𝑀𝑀𝐺 was 

evaluated as the maximum value of 𝑒𝑠𝑖𝑔 present in the database, and the f-measure was calculated. 𝑇𝑀𝑀𝐺 

was then incrementally reduced, and the f-measure was observed to increase as the number of true 

positives were identified, and then decrease as the number of false positives also increased. The value of 

𝑇𝑀𝑀𝐺 which provided the highest accuracy according to the f-measure was taken as the value for 𝑇𝑀𝑀𝐺 

in the experiments going forward. 

It has been noted previously that the energy of the MMG signal also increases in the presence of motion 

induced artefacts. Since the sensor suite contains an IMU, the motion of the limb could be examined. A 

motion threshold (𝑇𝑔𝑥𝑦𝑧
) was determined by observing the energy of the gyroscopic data (‖𝐺‖) present 

during the segmented gestures in the database and selecting a value for 𝑇𝑔𝑥𝑦𝑧
 where 𝑇𝑔𝑥𝑦𝑧

= max (‖𝐺‖). 

Using these two thresholds, the gesture detection algorithm can therefore be summarized as: 

 
𝐺𝑒𝑠𝑡𝑢𝑟𝑒 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 =  {

𝑡𝑟𝑢𝑒 𝑖𝑓 ‖𝐺‖ < 𝑇𝑔𝑥𝑦𝑧
 𝐴𝑁𝐷 𝑒𝑠𝑖𝑔 > 𝑇𝑀𝑀𝐺

𝑓𝑎𝑙𝑠𝑒   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                
 (53)  

Many of the gestures recorded had different durations, however the gesture duration was not sufficient 

for classification since it was not consistent. When choosing the length for the sample window, 

consistency throughout the gesture and application were both considered. As gestures were performed, 

differences in strength and speed of movement were observed to lead to inconsistencies in signal as the 

gesture progressed. Additionally, it was desirable for some form of feedback to be provided to the user 
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within 0.3 seconds, since this has previously been described as the maximum acceptable latency of HMI 

applications. As a result, a sample period of 0.2 seconds was selected for classification. At 1kHz, this 

corresponded to 200 samples. On average, the energy of the signal took 0.05 seconds to rise from the 

relaxed level to the 𝑇𝑀𝑀𝐺 threshold, and so the algorithm extracted 0.05 seconds prior to the signal being 

detected, and 0.15 seconds after detection. If the point where the gesture is detected is defined as time 

𝑖, then the extracted signal 𝑠𝑁 from 𝑁 MMGs therefore is given as: 

 𝑠𝑁 = [𝑚𝑁𝑖−𝑏
, … , 𝑚𝑁𝑖+(𝑎−𝑏)

] (54)  

where 𝑎 is the length of the recording (200 samples), and 𝑏 is the number of samples taken to reach the 

activation energy. The 𝑎 by 𝑁 matrix (𝑠) can then be classified. 

Before the classification took place, the signals were examined and compared to previous literature. Orizio 

[120] provided a description of MMG signal origins, and attributes the signals to a combination of factors, 

including a gross dimensional changes at the onset and offset of the effort, and the rate of muscle fibre 

recruitment during sustained contractions. The dominant frequency of these factors is dependent on the 

rate of movement and effort required, however, the largest frequencies present in the recorded signals 

tended to fall between 2Hz and 15Hz, indicating that the primary contributor to the generated signals is 

likely to have been the gross dimensional changes of the muscle during initial contraction. 

 

Figure 23 - Three ‘Open’ gestures identified and segmented from non-amputee subject 
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5.4 Gesture Classification 

5.4.1 Template-based Classification 
The MMG signals were found to be consistent between different instances of the same gesture. As a 

result, a template-based pattern recognition system provided a computationally inexpensive method of 

classifying the extracted data segments. The database instances of the gesture were randomly assigned 

to either a training set or a test set. The initial ratio of training data to test data was 70%:30%, however it 

was found that the after approximately thirty gestures, accuracy no longer improved significantly. 

Templates for each of the gestures were constructed by finding the average of the gestures in the training 

set. The method of segmentation of the data containing the gesture removed the need for alignment. For 

a training set of size 𝑔, an 𝑁 dimensional template �̃� (from 𝑁 MMGs) is expressed as: 

 
�̃�𝑁 =

1

𝑔
∑ 𝑠𝑁𝑘

𝑔

𝑘=1

 (55)  

After the templates had been created, they could be used to classify new data. This was achieved by 

correlating each channel of the new data to the corresponding channel in every template. The correlation 

 

Figure 24 - One hundred instances of the ‘Open’ gesture from one non-amputee subject 
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was conducted using an implementation of the Pearson Product-Moment Correlation Coefficient 

(denoted by 𝜌). The correlation between 𝑠𝑁 and �̃�𝑁 is given as: 

 

𝜌𝑠𝑁�̃�𝑁
=

∑ [𝑠𝑁𝑗
− 𝑠𝑁̅̅ ̅] [�̃�𝑁𝑗

− �̃�𝑁
̅̅ ̅]𝑏

𝑗=1

𝜎𝑠𝑁
𝜎�̃�𝑁

 
 (56)  

Where 𝑠𝑁̅̅ ̅ and �̃�𝑁
̅̅ ̅ are the average and 𝜎 is the standard deviation of each vector. The Pearson Product-

Moment Correlation Coefficient will give a value for correlation ranging from -1 to 1. As a result, the 

coefficient can be normalized for 𝑁 MMGs using: 

 
𝜌𝑠�̃� =

1

𝑁
∑ 𝜌𝑠𝑁�̃�𝑁

𝑁

𝑛=1

 (57)  

A vector containing the correlation values (𝜌𝑠�̃�) for all templates can be constructed. The value that has 

the highest value in the vector is given as the systems prediction for the gesture. 

5.4.1.1 Offline Accuracy 
To evaluate the accuracy of this method of classification, gestures were randomly split 30:70 into a 

training set and a test set. The training set was used to create templates for each of the gestures. Each 

gesture in the test set was then correlated to each of their templates, and the gesture with the highest 

correlation value was given as the systems prediction (Gesture Classified). This process of randomly 

assigning the data to training/test sets and calculating the accuracy was repeated 100 times, and the 

accuracies averaged, to reduce the likelihood that the accuracies found were not representative of the 

data. Data from each subject were tested independently from data from the rest of the subjects. On 

average this led to an average accuracy of 82.9% (SD: 8.4%) across all non-amputee subjects. An example 

confusion matrix generated by compiling classification accuracies from each subject can be seen in Table 

5.  

In each case, the hand was relaxed before the gesture, so that no volitional muscle activity was present 

before the gesture occurred. Subjects were also instructed to perform the gestures as a swift, single 

movement. The gesture ID numbers were assigned as follows: 

(With elbow on table)  

1. Hand fully opened 

2. Hand fully closed 

3. Pinch first finger and thumb 
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4. Pinch second finger and thumb 

5. Raise thumb 

6. Extend first finger 

7. Extend all fingers sequentially (forth finger to first finger) 

 

Table 5 - Confusion matrix showing classification accuracies of template-based classification for all non-amputee subjects 

  Gesture Classified 
 ID 1 2 3 4 5 6 7 8 9 10 11 12 

A
ct

u
al

 G
es

tu
re

 

1 84.5% 2.9% 0.6% 0.6% 0.0% 0.6% 2.3% 0.6% 4.0% 1.1% 2.9% 0.0% 

2 0.6% 94.3% 0.0% 0.0% 0.6% 1.1% 0.6% 1.7% 0.0% 0.0% 1.1% 0.0% 

3 1.1% 1.7% 84.7% 5.1% 2.3% 0.6% 0.6% 1.1% 1.7% 0.6% 0.6% 0.0% 

4 4.5% 0.6% 6.8% 80.2% 0.6% 1.7% 1.1% 0.6% 0.6% 1.7% 1.1% 0.6% 

5 1.1% 0.0% 2.3% 1.7% 84.5% 2.3% 0.0% 0.6% 0.6% 0.6% 1.7% 4.6% 

6 0.0% 3.5% 0.6% 2.3% 4.6% 86.1% 0.0% 0.6% 0.6% 1.2% 0.6% 0.0% 

7 4.5% 3.2% 0.6% 3.9% 1.9% 1.9% 68.8% 1.9% 1.9% 3.2% 3.2% 4.5% 

8 0.0% 1.3% 0.0% 0.0% 1.9% 3.1% 5.0% 75.5% 3.1% 6.3% 3.8% 0.0% 

9 1.8% 0.6% 3.5% 0.0% 1.2% 0.6% 0.6% 0.0% 85.4% 3.5% 1.2% 1.8% 

10 1.8% 1.2% 0.0% 0.6% 0.0% 0.6% 1.8% 0.0% 3.0% 86.4% 4.7% 0.0% 

11 0.0% 0.6% 0.0% 0.0% 1.1% 0.0% 0.6% 3.4% 0.6% 2.3% 87.4% 4.0% 

12 2.3% 0.0% 0.0% 0.6% 5.8% 2.3% 0.6% 0.6% 3.5% 0.6% 6.4% 77.3% 

          Average Accuracy 82.9% 

 

Table 6 - Confusion matrix showing classification accuracies of template-based classification for amputee subject 

  Gesture Classified 

  ID 1 2 3 4 5 6 7 

A
ct

u
al

 G
es

tu
re

 

1 74.0% 6.0% 0.0% 14.0% 0.0% 4.0% 2.0% 

2 11.8% 64.7% 5.9% 0.0% 7.8% 7.8% 2.0% 

3 3.8% 7.7% 86.5% 0.0% 0.0% 1.9% 0.0% 

4 29.6% 1.9% 0.0% 64.8% 0.0% 3.7% 0.0% 

5 1.9% 18.5% 3.7% 0.0% 40.7% 31.5% 3.7% 

6 2.0% 13.7% 3.9% 0.0% 15.7% 64.7% 0.0% 

7 1.9% 26.4% 0.0% 0.0% 11.3% 5.7% 54.7% 

     
Average Accuracy 64.11% 
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(With arm hanging by side) 

8. Twitch thumb towards palm 

9. Twitch first finger towards palm 

10. Twitch second finger towards palm 

11. Twitch third finger towards palm 

12. Twitch forth finger towards palm 

5.4.1.2 Real-time Implementation 
Several modifications were required to allow the system to work efficiently in real-time. 

The most fundamental change was that the band-pass filter previously applied to the entire dataset was 

replaced with two consecutive first order transfer functions. As a result, data could be filtered in real time, 

without requiring a large amount of historical data. 

Saving all data from the each MMG channel during processing was deemed to put an unnecessary load 

on the available memory resource. To combat this, two buffers were created to store the data, one of 

length 200 (length 𝑎) referred to as 𝐴 and one of length 50 (more generally, length 𝑏) referred to as 𝐵, 

and both with a width of 6 (𝑁 MMG channels). The 𝐵𝑏 was implemented as a circular (or ring) buffer. 

Circular buffers are an implementation of a First In First Out (FIFO) data structure designed to allow a 

short amount of historical data to de retained without adding the computational expense. A pointer was 

used to determine where in the buffer to write the current data. When the pointer reaches the end of the 

buffer and is subsequently incremented, it will return to the beginning of the buffer and overwrite the 

information there. The pointer 𝑝 is incremented using a modulo operator (the notation for which is %), as 

follows: 

 𝑝𝑐 = (𝑝𝑐−1 + 1)%𝐿𝑏 (58)  

Where 𝑐 denoted the current time step, and 𝐿 is the buffer length (𝑏 in this case). 

Once an energy threshold was reached, data from 𝐵 was copied over to 𝐴, such that: 

 𝐴0:𝑏 = [𝐵(𝑝+1):𝑏 , 𝐵0:𝑝] (59)  

The remaining 150 elements of data were then written to 𝐴 in real time. 

5.4.1.3 Real-time Accuracy 
The protocol for real-time validation of this segmentation/classification strategy was similar to the 

protocol for the data collection. Subjects wore a sensor system consisting of one IMU and three MMG 

modules over the flexor and extensor muscle groups on their right forearm.  

Four healthy subjects and one amputee subject were recruited for this study. The accuracies of the 

segmentation and classification protocols were examined over the course of three short tests. For each 

of these tests, a subset of the gestures types used in the database generation was selected. 
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The subsets selected for each of the tests were as follows: 

Experiment 1 – Gestures 1 and 2  (appropriate for simple prosthetic control) 

Experiment 2 – Gestures 1, 2, 3, 4 and 6  (appropriate for more advanced prosthetic control) 

Experiment 3 – Gestures 8, 9, 10, 11 and 12 (appropriate for a pervasive HMI application) 

At the beginning of the session, subjects were asked to make thirty instances of each of the gestures used 

in the test. These were then used to create the templates for classification. Subjects were then asked to 

observe a screen, and to perform a gesture when its name appeared on the screen. 

The accuracy of the segmentation protocol was established by the ability to detect a gesture within three 

seconds of the name being displayed. If the user was unable to make a gesture that conformed to the 

segmentation requirements, then this was counted as incorrect segmentation. A gesture that conformed 

to the requirements was said to be correctly segmented. The segmentation accuracies are shown in Table 

7.  

 

The weighted average segmentation accuracy during the real-time experiments was 99.0%. The weighted 

segmentation accuracy within the recorded dataset was 94.8%. It is possible that discrepancy is caused 

by mental fatigue due to the extended nature of the data collection.  

Classification accuracy was established according to whether the subject’s gesture matched the required 

gesture. Incorrectly segmented gestures, or gestures after the first within the time period were not 

included in the classification accuracy. The classification accuracies are shown in Table 8. 

The weighted average classification accuracy across these tests was 66.9%. Within the datasets, the 

weighted accuracy for these experiments was 89.7%. It is not uncommon for performance to decrease 

when testing is occurring within a real-time setting. The additional pressure of performing the gestures 

when instructed reportedly caused subjects to contract their muscles before performing the gesture in 

several cases. This contraction was taken as the gesture, and any subsequent gestures the subject 

performed were ignored. An additional source of error may be the misalignment of the gestures. The 

exact position of the features within the dataset is dependent on the point at which the amplitude of the 

Table 7 - Real-time segmentation accuracies 

Segmentation 

Subject Ex. 1 Ex. 2 Ex. 3 

1 98.3% 97.3% 98.7% 

2 100.0% 99.3% 98.6% 

3 98.3% 100.0% 100.0% 

4 100.0% 100.0% 100.0% 

5 100.0% 97.3% - 
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signal exceeded the threshold. While this is normally consistent between similar gesture instances, a 

uniquely low or high amplitude gesture may significantly displace the gesture within the dataset. Finally, 

in the offline analysis, the training and test data are selected randomly. This means that both sets contain 

gestures from all periods of the collection phase. Conversely, with real-time testing, all training data was 

taken in the first part of the experiment, and all test data was taken later in the experiment. As a result, 

factors that may have an affect over time, such as muscle fatigue, may be present in the test set, but not 

in the training. 

The classification methodology offered here provides an indication that the complex interaction of the 

mechanical signals within the muscles of the forearm leads to repeatable patterns of mechanical vibration 

on the surface of the skin. 

5.4.2 Machine Learning-based Classification 
The template-based classifier described in the previous section works by generating a model that is 

representative of the training data, and then predicting the class of the test data based on this model. The 

classifier cannot make predictions without examples of the data, and the model becomes more 

representative of the gestures as data is added. Since it exhibits these two behaviours, the classifier 

described above can be thought of as a rudimentary machine learning algorithm. There are several other 

algorithms that have been shown to be successful in pattern recognition for differentiating gestures 

observed through alternative methodologies, so in this section a number of these are implemented to 

improve the classification accuracy. 

The algorithms described in this section are implemented using the Classification Learner App in the 

Statistics and Machine Learning Toolbox for MATLAB. These algorithms were used to classify the same 

data as the template-based classifier, allowing the methods to be compared. 

5.4.2.1 Algorithms 
Based on existing methodologies in both EMG and MMG activity classification, four types of machine 

learning algorithms were implemented and tested during this work. For the initial classification, every 

data point within the signals was taken to be a feature for classification. As a result, the data from the six 

channels was sequentially combined to produce a single 1206 element vector of features from the 6x201 

array describing the signal from the six sensor elements. The four algorithms chosen for this work were 

Table 8 - Real time Classification accuracies using template-based classification 

Classification 

Subject Ex. 1 Ex. 2 Ex. 3 

1 93.2% 74.0% 74.3% 

2 85.0% 61.0% 52.7% 

3 91.5% 58.0% 64.7% 

4 98.3% 79.3% 78.6% 

5 95.0% 28.0% - 
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K-Nearest Neighbours (KNN), Decision Trees (DT), Linear Discriminant Analysis (LDA) and Support Vector 

Machines (SVM). These algorithms are described in detail in Appendix I.  

5.4.2.2 Experimental Comparison 
Each of the four algorithms listed above were used to classify the gestures from the gesture database. The 

classification used k-fold validation to reduce the likelihood of overfitting, as well as minimize the effects 

of mislabelled data. K-fold validation works by splitting the data into k subsets, and using k-1 to train the 

Table 9 - Confusion matrix of classification accuracies using SVM 

  Gesture Classified 

  ID 1 2 3 4 5 6 7 8 9 10 11 12 

A
ct

u
al

 G
es

tu
re

 

1 95.29% 0.70% 0.18% 0.16% 0.17% 0.24% 0.40% 0.33% 1.16% 0.88% 0.42% 0.06% 

2 0.34% 94.91% 0.63% 0.12% 0.39% 1.04% 0.43% 0.52% 0.11% 0.35% 0.66% 0.51% 

3 0.01% 0.03% 95.11% 1.42% 1.02% 0.06% 0.32% 0.87% 0.13% 0.18% 0.07% 0.78% 

4 0.21% 0.02% 1.85% 94.33% 0.77% 0.53% 0.74% 0.36% 0.00% 0.78% 0.20% 0.22% 

5 0.17% 0.15% 1.04% 0.89% 93.80% 0.64% 0.42% 0.19% 0.00% 0.00% 0.21% 2.47% 

6 0.13% 0.08% 0.03% 0.40% 1.86% 95.69% 0.88% 0.56% 0.00% 0.01% 0.17% 0.18% 

7 0.05% 0.59% 0.65% 0.72% 0.77% 1.07% 92.49% 1.00% 0.07% 0.24% 1.03% 1.32% 

8 0.00% 0.26% 0.16% 0.34% 0.53% 0.17% 1.11% 95.52% 0.41% 0.62% 0.29% 0.60% 

9 0.00% 0.09% 0.98% 0.00% 0.89% 0.07% 0.35% 0.62% 94.56% 0.85% 0.40% 1.19% 

10 0.02% 0.54% 0.45% 0.18% 0.20% 0.00% 0.62% 0.96% 0.59% 95.92% 0.29% 0.23% 

11 0.00% 0.19% 0.31% 0.00% 0.90% 0.00% 0.04% 0.58% 0.09% 0.73% 95.28% 1.89% 

12 0.00% 0.16% 1.10% 0.02% 1.45% 0.07% 0.76% 0.77% 0.56% 0.01% 1.72% 93.38% 

          
Average Accuracy 94.69% 

 

Table 10 - Confusion matrix of classification accuracy for amputee subject using SVM 

  Gesture Classified 

  ID 1 2 3 4 5 6 7 

A
ct

u
al

 G
es

tu
re

 

1 68.2% 11.4% 2.3% 13.6% 0.0% 4.5% 0.0% 

2 2.1% 79.2% 0.0% 0.0% 12.5% 2.1% 4.2% 

3 2.0% 0.0% 96.0% 0.0% 0.0% 2.0% 0.0% 

4 19.1% 0.0% 0.0% 68.1% 2.1% 6.4% 4.3% 

5 0.0% 6.7% 0.0% 0.0% 80.0% 4.4% 8.9% 

6 0.0% 22.4% 0.0% 0.0% 6.1% 53.1% 18.4% 

7 0.0% 12.5% 0.0% 0.0% 29.2% 14.6% 43.8% 

     
Average Accuracy 69.79% 
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classifier, with the final set providing the test data. This is repeated so that the classifier is tested on all 

folds of data. A k value of 5 was used for these experiments. 

As with the previous experiment, classifiers were trained and tested independently for each individual. 

This was also repeated 100 times to ensure that the accuracies were representative of the performance 

of the algorithm, and not a feature of any specific initial conditions. 

Overall, the SVM performed best across all gestures with an accuracy of 94.69%, while the LDA performed 

the worst with an accuracy of 57.48%. The KNN achieved an accuracy of 93.65% and the Decision Tree 

achieved an accuracy of 71.83%. A confusion matrix generated by combining the SVM classification 

accuracies for each non-amputee subject is presented in Table 9. The confusion matrix generated from 

the SVM classification data of the amputee is presented in Table 10. 

Additionally, the three sub-groups used for real time testing of the template recognition were tested with 

the four classifiers to show how problem complexity affected classification accuracy. A summary of these 

results is presented in Table 11.  

The accuracy of the KNN and SVM were comparable, and the difference between the two is negligible 

for a dataset of this size, although the KNN performed significantly better for the data from the 

amputee. This is likely because the amputee subject was not able to generate the same amount of data 

as the other subjects. In each case, the LDA performed least well. On reflection, this may be due to the 

high dimensionality of the data, which is known to negatively affect the performance of LDAs. As a 

result, methods of dimensionality reduction were employed to attempt to improve the performance. 

5.4.2.3 Dimensionality Reduction 
Two methods to reduce the dimensionality of the data were implemented here. 

Principal Component Analysis 

Principal Component Analysis (PCA) is a method of reducing the number of features describing a problem 

to a smaller set that still contains most of the information of the larger set. It has the potential to be useful 

in this problem, because the raw data being classified is sequential time domain data. Since the sample 

frequency of the sensors are significantly higher than the primary frequency of the MMG signal, this will 

lead to a large amount of dependence between different features. Additionally, since an MMG signal can 

Table 11 - Comparison of different machine learning techniques on gesture groups for non-amputees (amputee) 

  DT KNN LDA SVM 

G1&G2 
97.17% 
(81.5%) 

98.45% 
(96.7%) 

96.75% 
(81.5%) 

99.08% 
(88.0%) 

G1,G2,G3,G4&G6 
90.31% 
(71.0%) 

96.98% 
(90.8%) 

79.03% 
(56.7%) 

97.44% 
(80.3%) 

G8,G9,G10,G11&G12 86.38% 95.14% 77.82% 96.43% 

All Gestures 71.83%   93.65% 57.48% 94.69% 
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be detected at different points around the arm, there is also a potential for two adjacent sensors to detect 

some of the same information, leading to further dependency. PCA uses these dependent features to 

create a new set of independent features that contains most of the same information. Exactly how much 

information to retain is specified by the user and is a method of tuning the PCA algorithm. 

PCA is similar to the first step of an LDA, with the difference being that while the dimensionality reduction 

within an LDA is a supervised process, PCA is unsupervised, meaning that it occurs with no reference to 

the labels on the data. Rather than attempting to maximize separation between groups, PCA aims to 

maximize the variance of the entire data set. It then creates a new feature which the points in the dataset 

can be mapped to, which expresses the largest possible variance, known as the principal component. 

Perpendicular variables can then be constructed that describe the remaining variance, ordered by the 

amount of variance they describe. As these components are generated, the variance in the remaining 

dimensions decreases. All dimensions are required to explain 100% of the variance, however 99% of the 

variance can often be explained by significantly less, particularly in datasets such as this. 

The effect of performing the PCA was quantified by training each of the four classifiers on the components 

generated through the PCA. The configuration of each of the classifiers was the same, and as before, the 

accuracies were generated by training each classifier one hundred times for each person, averaging across 

all values to generate an overall accuracy. 

Two configurations of PCA were used. The first attempted to create enough features to explain 95% of 

the variance of the data. The specific output of the PCA was dependent on the input data, but for one 

subject, 23 components were enough to explain 95% of the variance. The variance explained per 

component in this example started at 38.7% for the principal component and reduced to 2.1% by the 

tenth component. The first ten components explained ~84% of the variance, while the remaining thirteen 

were required to explain the remaining 11%. The second configuration attempted to explain 99% of the 

variance. For the example subject discussed above, explaining the extra 4% of variance required an 

additional 19 components. The resulting accuracies of both these configurations on all classifiers are 

presented in Table 12, along with the original accuracies when PCA was not performed. 

It can be observed that since some information is lost, the accuracy of the algorithms that make no 

assumptions about the data decreases, whereas the accuracy of the LDA is markedly improved. 

 

Table 12 - Effect of PCA on classification 

  DT KNN LDA SVM 

PCA (95%) 71.64% 91.83% 93.06% 93.48% 

PCA (99%) 71.50% 87.11% 93.61% 93.88% 

No PCA 71.83% 93.65% 57.48% 94.69% 
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Feature Extraction 

The second method of reducing the dimensionality of the problem is to generate features based on the 

specific form of the data. This is technique is widely documented in classifying EMG signals, so potentially 

could be of use in this problem. Feature extraction can offer significant benefits over simply using raw 

data. The primary benefit is that large datasets can be compressed into small feature spaces by 

individually extracting the important features. This will be beneficial to classifiers that rely on maximum 

likelihood rules such as LDAs. While PCA achieves this as well, it is a blind process, meaning the 

compressed data does not necessarily retain the separability of the input data. By selecting features that 

have previously been shown to allow different classes of similar data to be distinguished, this information 

may be retained. It also means that the features that are chosen are less likely to be coincidental due to 

the small sample size. The set of features used were taken from similar papers classifying EMG gestures, 

and were as follows: 

- Root Mean Square (RMS) 

- Integral of Absolute Value (IAV) 

- Mean Absolute Value (MAV) 

- Modified Mean Absolute Value 1 (MAV1) 

- Modified Mean Absolute Value 2 (MAV2) 

- Simple Square Integral (SSI) 

- Variance (VAR) 

- Absolute Value of the 3rd, 4th and 5th Temporal Moment (TM3, TM4, TM5) 

Table 13 – Accuracies of classification using extracted features 

  DT KNN LDA SVM 

Features 71.34% 89.90% 94.51% 93.33% 
 

Table 14 - Summary of best performing machine learning methods for classification 

Algorithm 

PCA (Y/N) 
(Variance 
Explained %) 

Features (F) or 
Raw Data (RD) Accuracy 

LDA Y (95%) RD 93.06% 

SVM N F 93.33% 

SVM Y (95%) RD 93.48% 

LDA Y (99%) RD 93.61% 

KNN N RD 93.65% 

SVM Y (99%) RD 93.88% 

LDA N F 94.51% 

SVM N RD 94.69% 
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- Difference Absolute Mean Value (DAMV) 

- Difference Absolute Standard Deviation Value (DASDV) 

Each set of features was extracted for each channel for the dataset. For the twelve features listed above, 

this resulted in a total of 72 features to use for classification. The resulting accuracies using these features 

for all classifiers is shown in Table 13. 

5.4.2.4 Comparison of Algorithms for Real-time Implementation 
For a dataset of this size, it is not possible to claim that one algorithm will consistently outperform the 

others when new data is introduced. This examination can provide an estimation for the expected 

accuracy of these algorithms on this type of problem, but it cannot provide a definitive description as to 

will achieve the highest accuracy across all gestures for all users. Eight algorithms achieved accuracies that 

were within 1.6% of the top accuracy achieved, these eight can be considered for further examination. 

Table 14 summarizes these eight algorithms. 

The top two of these were considered from real-time implementation. These were the SVM classifying 

the full gesture data, and the LDA classifying the features. 

For real-time implementation, two assumptions can be made based on the expected use case. These 

assumptions are as follows: 

- The target device may have limited processing power. 

- The classifier may need to be retrained regularly. 

Based on these assumptions, there are three addition relevant metrics to compare the two algorithms: 

- Time taken to classify an observation. 

- Time taken to train the classifier with X samples. 

- The number of samples needed to achieve accurate classification (defined as a classification rate 

of within 2% of the final accuracy) 

The first two of these are processor dependent, however a comparative examination can be performed, 

and the results are in Table 15. 

 

The number of samples (N) required to classify data to within a threshold percentage of the final accuracy 

was derived experimentally, ranging from 5 to 80 in increments of 5.  

For each individual, two sets were extracted. The first set, referred to as the training set (TR), contained 

N samples of each gesture. The second set was the test set (TE) and contained 20 samples of each gesture. 

TR and TE were created so as to have no common data and using a method that ensured that the instances 

for each set were chosen from the pool in a non-repeatable approach. TR was used to train the classifier 

and provided an estimation for the accuracy of the classifier using 5-fold validation. TE was then used to 
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test the classifier, providing the final accuracy on unseen data. This was repeated for each individual, and 

the accuracies were combined. For each value of N, this process was repeated a total of 10 times, 

providing a range of different training and test sets for each individual. The overall accuracy for each value 

of N was computed by averaging the accuracies for all individuals during all repetitions. Using this method, 

the graph in Figure 25 was constructed. 

Based on this data, the number of samples of each gesture required to achieve within 2% of the final 

accuracy is ~40. It can be noted from Figure 25 that after approximately 15 instances of each gesture, the 

two algorithms achieve similar accuracies. As a result, the comparison between the two algorithms is 

summarised in Table 16. 

Both algorithms would make good choices for real time implementation based on the comparison 

presented here. The only place where they diverge meaningfully is in the training time, where the SVM 

takes significantly longer to create a trained model. Since the two algorithms are being compared based 

on these metrics, it can be concluded that the LDA performed on features extracted from the data is the 

better choice, and so this was chosen as a benchmark for real-time applications.  

 

Table 15 - Relevant metrics for classifier comparison 

  
Number of observations 
classified per second 

Time taken 
to train 
classifier(s) 

SVM ~420 39.659 

LDA ~154a 1.1881 
a It should be noted that the classifier itself can perform ~14,000 classifications per second, however 

the time taken to extract the features from all six channels was also factored into this calculation, 

significantly increasing the time for each classification.  

 

 

Figure 25 - How number of training samples affects accuracy 
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5.4.2.5 Real-time Implementation 
In order to implement this classifier in real-time, the C# environment described in Chapter 3 was adapted 

to make use of the Classification toolbox from MATLAB. This had the advantage of maintaining consistence 

between the offline and real-time implementation of the LDA without introducing a noticeable delay. In 

order to achieve this, the code required to construct the classifier was exported from the 

ClassificationLearnerApp. This code was then adapted to allow the number of classes and features to be 

configured by the C# environment based on its current requirements. 

As with the previous real-time implementation, data was segmented and extracted into a storage buffer 

prior to classification. Once the buffer was full, the thirteen features described in the previous section 

were extracted from each of the six channels and compiled into a feature vector. During the training 

phase, the data label was appended to this feature vector, which was added to a training set array. At this 

point, the training set was passed to the classifier, and a validation accuracy was returned. When the 

program was closed, the trained classifier was saved to allow future classifications to be performed 

without the need to retrain the system. 

5.4.2.6 Real-time Accuracy 
The protocol for the assessment of the real-time LDA classification was consistent with the other 

experiments described in this chapter. Three healthy individuals (2 male, 1 female, average age: 47.3yrs 

SD: 14.5yrs) who gave their written informed consent participated in this assessment, and the sensor 

placement was kept consistent to previous data collection periods. The assessment was broken down into 

three experiments, and the gestures used were the same as in the real-time template-based classification 

experiment. 

Each subject was seated to that they were able to comfortably keep their arm in both the upright and 

hanging position. The experiment was then discussed, and subjects were given the opportunity to 

familiarize themselves with both the protocol and the equipment. Subjects were then instructed to make 

forty instances of each of the gestures used in the experiment. These were used to train the classifier. 

Once the training was complete, the classifier was then tested. This was performed by asking subjects to 

repeat gestures based on a visual prompt.  

Table 16 – Summary of top performing classifier metrics 

 
Accuracy (5-

Fold, Full 
dataset) 

Number of 
observations 
classified per 

second 

Time taken 
to train 

classifier (s) 

Number of 
samples 

required for 
training 

SVM 94.64% ~420 39.659 40 

LDA 94.51% ~154 1.1881 40 
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The segmentation was assessed in the same way as with the previous experiment and had comparable 

results. 

 

The classification provided by the LDA was evaluated against the prompt, and the classification accuracy 

was determined. As before, any gestures made after the first within the cool down period were ignored. 

 

From these results, it was concluded that the Linear Discriminant Analysis classifier is suitable for real-

time classification of gestures based on MMG signals. The steps for data acquisition to classification can 

be expressed as shown in Figure 26. 

5.5 Guidelines for Practical Use of MMGs 
The gesture database and the techniques described in the previous section allow important guidelines for 

the use of a system such as the one described here to be derived.  

5.5.1 Ideal Number of MMGs 
Using the classification algorithm described in the previous section, it is possible to evaluate the effects 

of the number of MMGs on classification accuracy. To achieve this, data from each subset of the MMGs 

was considered when training the classifier. For 6 MMGs, there are 73 possible combinations that make 

use of at least one MMG. The classifier was trained 100 times on the data from each combination, and 

the resulting accuracies were averaged to find the accuracy for each combination and for each person. 

These accuracies were then grouped by the number of MMGs they describe, and the average and 

standard deviation was calculated to describe the effect of introducing the additional MMGs. The graph 

describing these results is shown in Figure 27.  

Table 17 - Segmentation accuracy for real time machine learning implementation 

Segmentation 

Subject Ex. 1 Ex. 2 Ex. 3 

1 100.0% 100.0% 100.0% 

2 100.0% 100.0% 100.0% 

3 100.0% 100.0% 100.0% 

 

Table 18 - Classification accuracy using LDA in real time application 

Classification 

Subject Ex. 1 Ex. 2 Ex. 3 

1 100.0% 96.0% 100.0% 

2 88.0% 88.0% 80.0% 

3 96.0% 84.0% 96.7% 
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This demonstrates that the accuracy that the system can achieve is dependent on the number of sensors 

in the system. The improvement that can be achieved by including additional sensors decreases for each 

one that is added. A single sensor achieved a mean accuracy of 61.20%, and the addition of a second 

 

Figure 26 – Flowchart showing steps from data acquisition to gesture identification 

 

 

Figure 27 - Effect of number of MMGs on classification accuracy 
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sensor provided an 18.02% improvement. The difference between the fifth sensor (93.11%) and sixth 

sensor (94.48%) was only 1.37%. 

 

5.6 Chapter Summary 
This chapter presented a detailed analysis of the MMG signals recorded from a six-element sensor placed 

on the forearm when performing a range of gestures. A database was created containing many recordings 

taken from seven subjects while performing twelve gestures. These recordings were labelled with their 

class within the dataset, so that segmentation could be simulated. A method of gesture segmentation 

based on thresholding was tested and found to provide successful gesture segmentation. This 

segmentation was then used to extract the individual gestures from their data files to allow several 

classifiers to be tested. 

Classification methods included a template matching method. This method had several benefits; it was 

simple to implement and provided a visual representation of the trained classifier for each class. This 

method examined the consistency of the signals and concluded that similar gestures produced visually 

similar signal patterns, however the accuracy of this classifier was suboptimal for real-time applications 

at 66.7%. This indicates that while the signals are repeatable, there is some variation within individual 

subjects’ datasets, and therefore this method of classification is not robust to the variance of human 

subjects. 

Machine learning methods have the potential to provide a classifier that is more robust to intra-class 

variance. To explore this, several machine learning methods that have previously been utilised for EMG-

based gesture recognition were examined, including K-nearest neighbour, decision trees, support vector 

machines and linear discriminant analysis. It was found that for raw datasets, support vector machines 

outperformed the other classifiers, potentially due to the high dimensionality of the data. The 

computational expense of training the classifier necessitated the exploration of other methods. Several 

dimensionality reduction techniques were explored along with these classifiers, including feature 

extraction and principal component analysis. The two best classifiers were linear discriminant analysis 

performed on extracted features, and support vector machines using the raw data from the database, 

both of which achieved an accuracy of ~95% in the offline analysis of 12 grip patterns. 

Real-time considerations, such as training time, set the LDA on extracted features apart from the other 

classifiers, and so it was implemented for real-time testing. All real-time assessments in this chapter 

consisted of three experiments, each of which consisted of a training phase and a test phase on a subset 

of the previously examined gestures. The accuracies of these experiments were weighted by the number 

of gestures they described and combined to provide and overall accuracy. The overall, real-time 

accuracy for the template-based classification method was 66.9% for experiments consisting of 2, 5 and 

5 gestures. The overall, real-time accuracy for the LDA across the same three gesture groups was 

91.43%. The accuracy of this method was far more promising, and therefore machine learning-based 

methods were used for further experimentation in the following chapter.  
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Chapter 6 
Applications: Prosthetic Control and Robot Teleoperation 
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6.1 Introduction 
To fully validate the sensing system described in this document against its initial design brief, it must be 

implemented for the applications outlined in Chapter 1. This requires implementation for machine 

control, including prosthetic device control and robot teleoperation. The interface can be used for control 

of a ubiquitous computing system, but these also require levels of context awareness and artificial 

intelligence that is not found in current systems. As a result, it was necessary to design tasks that could 

plausibly represent the way these devices may be utilised in the future. This allows the utility of the system 

to be demonstrated in the context of the current system architectures. In some cases, this has required 

the tests to take place in a virtual environment, where the context can be provided to the system without 

requiring additional sensing. 

6.2 Real-world implementation for Robot Teleoperation 
The first implementation of the sensing system described here aimed to both test and demonstrate the 

full utility of the system. As the field of robotics evolves, it is likely that the role of human machine 

interfaces will be to provide more high-level control signals than direct manipulation. The experiment was 

designed around a situation where human expertise was required, but some functions of the robot were 

automated. This resulted in the creation of a semi-autonomous control system, which took control signals 

both from the NUIMU orientation estimation and the gesture recognition. A Baxter Robot was used as the 

target platform, with the Baxter’s arms controlled by the orientation of the subject’s arms. The subject 

could then make gestures to trigger several pre-programmed motions, ranging from manipulations of the 

end effector to complex full arm motions that required a greater level of accuracy than the user was able 

to provide. Since the Baxter Robot has a larger number of degrees of freedom than the previous 

manipulators, a larger number of individual NU modules were incorporated into the sensor suite. 

6.2.1 Experimental Protocol 
Subjects wore a NUIMU on their upper and lower arm segments, with six MMGs on their right forearm. 

The MMGs were arranged as per the previous experiments, with three located approximately over the 

extensor digitorum muscle group and three located approximately over the flexor digitorum muscle 

group. Prior to each experiment, each user recorded twenty instances of each of the required gestures. 

Data was sent from the sensor suite to a computer via Bluetooth. The limits of Bluetooth networks 

required a secondary sensor implementation to be utilized, as described in Chapter 3. MMG gesture 

recognition and orientation estimation were performed on the computer and sent to a custom node in 

the Baxter robot’s controller via a server located outside the local network. In this implementation, the 

simplest form of classification based on templates was used in order to test its efficacy in real world 

experimentation. As a result, there was no technical requirement that the user needed to be within the 

vicinity of the robot, provided the visual feedback was sufficient to successfully complete the required 

protocols. 
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The protocol itself was presented to the subjects as a story-based scenario, in which they had to complete 

a task requiring several steps. The scenario presented the subject with a large-scale circuit board, and a 

Baxter acting as a bomb disposal robot. They were given a list of instructions that required the 

manipulation of interactive components on the board to ‘defuse a bomb’. The scenario was presented 

this way for two reasons: First, the inclusion of a storyline was intended to ensure that the subjects 

remained engaged with the tasks for the duration of the experiment. Second, this specific scenario was 

intended to emphasis to the subject that their task was time critical, and therefore encourage them to 

complete it as quickly as possible.  

The movement of the robot was limited to a virtual ‘box’ within which it could operate. This protected the 

robot from damage, since it was being used within a crowded environment. A corresponding virtual box 

was also created in front of the user. When being directly controlled, the end position of the subject’s 

hand inside the box was mapped directly to the robot, which aimed to move to the corresponding position 

within its constraints. One benefit of this method was that the subjects were able to stop control of the 

robot if they felt it necessary by removing their hands from the virtual box, without creating large 

unwanted movements. 

A number of the tasks required the subjects to utilize ‘tools’ from a ‘tool rack’ located in front of the 

Baxter. Different tools were required for different tasks, however the tool rack was located outside of 

virtual area, to make best use of the space. When a tool was required, subjects selected it by performing 

the corresponding gesture. When the gesture was detected, a pre-programmed pattern of movement 

was executed, moving the arm out of the virtual constraints, selecting the relevant tool, and returning the 

arm with the tool to the position dictated by the subject’s arm. The orientation of the end effectors was 

pre-defined and maintained within the robot controller. 

The tasks used on the board fall into four categories: 

- Unplug tasks – these tasks required the user to remove items from the board. The items used 

magnets to attach to the board and took the form of cubes with five-centimetre edges. The task 

required the subject to move the end effector of the robot so that the fingers of the gripper were 

on either side of the cube, and then trigger the robot to close the gripper. They were then required 

to pull the cube away from the board, position the end effector over a target box located on the 

tool rack, and trigger the gripper to open, dropping the cube into the box. If the subject caused 

the cube to drop elsewhere (either by knocking it from the magnetic contact points with the 

gripper, or triggering the open gesture too early), the cube was replaced on the magnetic point, 

and the subject was required to re-do the task. 

o This task required: 

▪ Two point to point motions 

▪ Two gestures (Close (close the gripper), Open (open the gripper)) 

- Switch tasks – these tasks required the subject to move a switch from one pole to the other. Each 

position of the switch was magnetized to ensure that a complete motion was required to move 

it. The task therefore required the subject to move the end effector to one side of the switch (one 
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motion), and then execute a lateral movement to physically actuate the switch (second motion). 

This is classified as two motions, since the first is a large point to point movement, whereas the 

second requires the subject to maintain motion along a specific path.  

o This task required: 

▪ Two point to point motions (One to approach the switch, and one to actuate it) 

- Test Pad tasks – these tasks required the subject to simulate checking the voltage on the circuit 

board. To achieve this task, the subject had to retrieve the Voltmeter Tool from the tool rack, and 

either touch a defined pad, or two defined pads simultaneously depending on the protocol. When 

making contact with two pads simultaneously, the subjects were asked to ensure that as little 

time as possible was spent in contact with the pad, encouraging them to attempt to position both 

arms simultaneously as opposed to sequentially. Once contact had been achieved, the user was 

required to return the tool to the tool rack. 

o This task required: 

▪ One (or two simultaneous) point to point motions 

▪ Two gestures (Point (retrieve voltmeter tool), Open (replace the current tool)) 

- Key tasks – these tasks required the subject to retrieve a key tool from the tool rack, place it into 

a keyhole on the board, and rotate the wrist in the direction defined in the instructions. They were 

required to maintain the position of the key during rotation, and to return it to the tool rack once 

the required rotation had been completed. 

o This task required: 

▪ One point to point motion 

▪ Three gestures (Key grip (retrieve the key tool), Rotating the wrist (both clockwise 

and anticlockwise motions were required), Open (replace the current tool)) 

The experiment was split into two protocols and performed twice. The first recorded motion from the 

subject’s left arm, while their right was solely responsible for creating the control gestures. This was to 

ensure that the gestures were as free from motion-induced artefacts as possible. As a result, six gestures 

were used, two to select tools, and four to manipulate the end effectors. The second protocol provided 

the user with simultaneous control of both arms and used three gestures for tool selection and end 

effector manipulation. Both protocols were conducted once with the NU Interface, and once with an Xbox 

controller. 

An interface for this application was designed around an Xbox controller, to provide an indication of the 

task difficulty against which to assess the NU Interface. This control interface used the buttons of the 

interface to provide categorical data similar to the gestures and used a reference position in 3D space to 

provide the positional data. The joysticks on the controller were used to supply the Up/Down and 

Left/Right motions (referenced to the Baxter), and the triggers were used to provide the Forward/Back 

motions. 
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Figure 28 - Experimental Hardware 

 

 

Figure 29 - Experimental setup 
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6.2.2 Results 
The first protocol used one arm to generate positional data and six distinct gestures. The protocol 

consisted of; four unplug tasks, two key tasks, one (single arm) test pad task and two switch tasks. The 

second protocol consisted of; four unplug tasks, three (dual arm) test pad tasks and four switch tasks. 

Participants completed these tasks first using the controller, and then using the NU sensor suite. The time 

taken to complete both protocols using the NU sensor suite was longer than the corresponding time taken 

with the controller but did not require specific dexterous manipulation of the fingers. The average time 

taken is presented in Table 19. 

 

6.2.3 Discussion 
When comparing the times taken to complete the experiment using the controllers against using the NU 

sensor suite, there is a noticeable difference between the two protocols. A possible explanation for this 

can be seen in the ratio of point to point movements and gestures. Protocol one required the subject to 

perform sixteen gestures (of six categories), and fifteen point to point motions, whereas Protocol two 

required twelve gestures (of three categories), and nineteen point to point motions. These averages can 

be used to generate difficulty ratings for these two tasks, by assuming that the speed of completion is 

proportional to the difficulty of each task according to: 

 𝑇 = 𝑝 ∗ 𝐼𝐷1 + 𝑔 ∗ 𝐼𝐷2 + 𝑛 (60)  

Where 𝑇 is the total time, 𝑝 and 𝑔 are the number of pointing tasks and gestures required respectively, 

and 𝐼𝐷1 and 𝐼𝐷2 are the index of difficulty for each task. 𝑛 describes additional time spent by the user not 

actively trying to achieve a task, and therefore may not be consistent between tasks.  

Assuming 𝑛 = 0, it can be said that: 

 

 

Table 19 – Average accuracies of Baxter robot control 

Time(minutes : seconds) 

Protocol 1 Protocol 2 

Controllers NU Sensor Suite Controllers NU Sensor Suite 

3:55 7:02 5:02 6:40 

 

Table 20 – Index of difficulties for Baxter tasks 

 𝑰𝑫𝟏 (𝒑𝒐𝒊𝒏𝒕𝒊𝒏𝒈 𝒕𝒂𝒔𝒌𝒔) 𝑰𝑫𝟐 (𝒈𝒆𝒔𝒕𝒖𝒓𝒆 𝒕𝒂𝒔𝒌𝒔) 

Controllers 16.2 -0.5 

NU Sensor Suite 10.8 16.3 
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While it is likely that 𝐼𝐷2 will be ≈ 0 while using the controllers, it cannot be negative and therefore 𝑛 ≠

0, however the results appear to correlate to observations made during the experiment. 

It can be seen that the time taken to make a correctly classified gesture was significantly longer than the 

time taken to press a button on the controller. This may be due to both the extended time needed to 

make a large gesture when compared with the small movement required to press a button, and the 

inaccuracies introduced in the classification of the gestures by recording at different arm orientations. It 

is possible that some of these errors in classification could have been avoided by increasing the quantity 

of training data. By contrast, when using the NU Sensor Suite, the point to point-based movements were 

completed in approximately 60% of the time when compared to the time taken when using the 

controllers. 

In addition, the errors introduced through the use of a generic model of the arm when calculating the 

forward kinematics were not reported as noticeable by subjects when asked. This may be because the 

subjects were making movement based on visual feedback, provided by the robot motion, and not based 

on their proprioceptive sense. 

In order to further examine factors that may have led to a lower than optimum classification accuracy, it 

was decided to continue this experimentation in virtual environments where hardware specific issues 

could be removed. Several experiments were conducted to identify potential factors and design 

compensation schemes. These are outlined in the remainder of the chapter. 

6.3 Virtual Reality Environments 
The desired virtual reality (VR) environment was created using the Unity game engine, since this offered 

inbuilt VR functionality and could run custom scripts. Each environment created within a unity project is 

known as a scene, and every scene included a C# script, which acted as a scene controller. The controller 

had two functions by default, one named Start which is called first and can be used to set up the 

environment, and one named Update, which is called every time the scene refreshes. Each scene was 

designed according to the specifications of each experiment, so as to provide subjects with the most 

appropriate feedback. 

The VR environment was created as an executable software and required data from the NUIMUs in order 

to animate the movements of the user and the objects they were interacting with. While it would have 

been possible to implement the VR environment and NUIMU manager in the same application, it was 

decided that maintaining the VR executable as a separate application would provide forward compatibility 

for any changes in the NUIMU protocol. The chosen method of facilitating this inter-program 

communication was to use Pipes, an inbuilt function within Windows which can be accessed from both 

programs, and which can store data written from one program until it is read by the other. The Pipe was 

initialized in the C# host software, referred to as the pipe server, and the VR environment completed the 

connection, and is referred to as the pipe client. The pipe client created a dedicated thread to monitor 

this section of stored memory, and to change the corresponding Unity variable each time new data was 
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available. This variable was checked at the beginning of every Update function, and the objects within the 

scene were moved according to this new data. 

The data are written to the pipe as bytes, regardless of their original type. As a result, packets were created 

to ensure both that the data was used in the correct way, and that it did not become desynchronized. The 

data format was: 

0𝑥𝐷𝐷 0𝑥𝐴2 𝑀𝑜𝑑𝑒 𝑑1 … 𝑑𝑁 

The format and length of the data were dependent on the 𝑀𝑜𝑑𝑒 value and were usually application 

specific. A packet containing a single quaternion for example would have a length 𝑁 = 16, since each of 

the four elements were saved as a 32-bit floating point number. 

Three types of data were transmitted using this system for the following applications: 

- Orientation – transmitted in the form of quaternions, the orientations could be applied to several 

elements in the scene. Each quaternion originally consisted of four floating-point numbers, each 

of which required four bytes to transmit. 

- Gesture – transmitted as an integer, the presence of a gesture could trigger pre-programmed 

activities in the scene to occur. Since the total number of gestures in any one scene was less than 

255, this could be encoded with a single byte. 

- Position – transmitted as a three-dimensional vector, the position of objects within the scene 

could be used to place objects at known positions. Position was originally saved in a three-element 

vector of floating-point numbers, therefore this was encoded as twelve bytes. 

In applications where the subject was wearing multiple NU sensors, the data most commonly required for 

the Unity-based visual feedback was the location of the subject’s hand. This was calculated in the NU host 

software, and so simply was calculated using matrix manipulation. Assuming: 

 

𝑊𝑜𝑟𝑙𝑑𝑂𝑟𝑖𝑔𝑖𝑛 → 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 (𝑊2𝑆) = (

1 0
0 1

0 𝑥
0 𝑦

0 0
0 0

1 𝑧
0 1

) (61)  

the default position of the arm is to be parallel to the X-axis so that: 

 

𝑈𝑝𝑝𝑒𝑟𝑎𝑟𝑚𝐿𝑒𝑛𝑔𝑡ℎ(𝑈𝐿) = (

1 0
0 1

0 𝑈𝐴𝐿
0 0

0 0
0 0

1 0
0 1

) 

𝑎𝑛𝑑 

(62)  
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𝐹𝑜𝑟𝑒𝑎𝑟𝑚𝐿𝑒𝑛𝑔𝑡ℎ(𝐹𝐿) = (

1 0
0 1

0 𝐹𝐴𝐿
0 0

0 0
0 0

1 0
0 1

) 

And that the rotation of the arm segments is converted from quaternions to rotation matrices so that: 

 

𝑈𝑝𝑝𝑒𝑟𝑎𝑟𝑚𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝑀) = (

𝑚11 𝑚12
𝑚21 𝑚22

𝑚13 0
𝑚23 0

𝑚31 𝑚32
0 0

𝑚33 0
0 1

) 

& 

𝐹𝑜𝑟𝑒𝑎𝑟𝑚𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝑁) = (

𝑛11 𝑛12
𝑛21 𝑛22

𝑛13 0
𝑛23 0

𝑛31 𝑛32
0 0

𝑛33 0
0 1

) 

(63)  

Then the position of the hand can be expressed by: 

 𝑊𝑜𝑟𝑙𝑑𝑂𝑟𝑖𝑔𝑖𝑛 → 𝐻𝑎𝑛𝑑 = 𝑊2𝑆 ∗ 𝑀 ∗ 𝑈𝐿 ∗ 𝑀−1 ∗ 𝑁 ∗ 𝐹𝐿 (64)  

𝑀−1 is required since both 𝑀 and 𝑁 are world reference rotations. 

This can be simplified to give the matrix that describes the end effector: 

𝐸𝑛𝑑𝐸𝑓𝑓𝑒𝑐𝑡𝑜𝑟(𝐸𝐸) = (

𝑛11 𝑛12
𝑛21 𝑛22

𝑛13 𝑥 + 𝑈𝐴𝐿 ∗ 𝑚11 + 𝐹𝐴𝐿 ∗ 𝑛11
𝑛23 𝑦 + 𝑈𝐴𝐿 ∗ 𝑚21 + 𝐹𝐴𝐿 ∗ 𝑛21

𝑛31 𝑛32
0 0

𝑛33 𝑧 + 𝑈𝐴𝐿 ∗ 𝑚31 + 𝐹𝐴𝐿 ∗ 𝑛31
0 1

) 

The position can be taken from the fourth column of this matrix (𝐸𝐸41, 𝐸𝐸42, 𝐸𝐸43), and was used for a 

number of the applications listed below. 

The host software was receiving data from the NUIMUs at between 200Hz and 1,000Hz, depending on 

the nature of the data. The rate at which the Update function is called in unity varies between devices, 

but in this implementation is approximately 60Hz. To ensure both that the data transfer was as efficient 

as possible, and that rate of information was independent from the data rate of the NUIMUs, the code 

was refactored. The Pipe server was moved into its own class, referred to as PipeController. Timer objects 

were then implemented in this new class. When a new object of the PipeController class was created, it 

would initialize the pipe server and wait for a client device to connect to it. Once a connection occurred, 

this class would then begin a timer and wait for a timer event to occur. At this point, it would get the 

current state of every NUIMU connected, perform the necessary calculations, and then write the relevant 

data to the pipe. The frequency of these timers was approximately 30Hz, as this gave the appearance of 

smooth movement in the virtual environment but ensured that data was not written to the pipe more 

than once between Update functions. 
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6.4 Hands Free Control within Virtual Environments.  
While the output from an individual IMU has been validated both against other sensing technologies and 

against commonly used estimation algorithms, their use as an interface technology has not. In order to 

provide this validation, a simple test was designed that placed users in a virtual environment. They were 

then tasked to move their hand from one designated position to another. Users were able to experience 

this environment in 3D through the use of a VR headset (an Oculus Rift). This allowed the subjects to 

observe the three-dimensional position of objects in the virtual environment, and therefore they were 

able to make the required movements without missing the target due to mistakes of depth perception, 

which could cause significant problems when performing the tasks using a two-dimensional form of visual 

feedback. 

6.4.1 Participants 
Five volunteers (4 male 1 female, average age: 28yrs SD: 2.3yrs) gave their written informed consent and 

participated in this study, all with no known cognitive or physical impairment. The participants had little 

experience operating in VR environments and were instructed to remove the headset if any negative side 

effects of VR were felt (such as motion sickness). 

6.4.2 Experimental Protocol 
Subjects were instructed to put on a wearable interface consisting of two NUIMUs, one worn on the 

forearm, and one worn on the upper arm. Both IMUs were calibrated before use and placed in a known 

orientation around the arm. Subjects were then instructed to put on the VR headset and make themselves 

comfortable. The position of the VR headset was then recorded, and the environment was assembled 

around the subject, so that a virtual humanoid model occupied the same position in virtual space as the 

subject. The position of the subject’s shoulder was estimated using a transformation from the VR headset 

and used in future forward kinematic calculations. 

Before the test began, the position of the subject’s hand was calculated in virtual space, and a virtual ball 

(“Trial Ball”) was placed there, giving the subject visual feedback as to where the system understood their 

hand to be. This position was updated in real-time. A second ball (“Target Ball”) would appear within the 

subject’s field of view, and they were instructed to bring the Trial Ball mapped to their hand into contact 

with the Target Ball, marking the beginning of the test. Each time the subject brought their hand into 

contact with the Target ball, it would instantly move to a new position. The initial position and target 

position pairs defined the beginning and end of the path that the user should follow and the shortest 

route between the two points represented the optimum movement. This was repeated fifty times, 

incorporating movements in a large variety of directions and distances from the shoulder. Subjects were 

instructed to perform the test as fast as they were able to. 
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Each subject was asked to do the test twice, with different sensing modalities providing the position for 

the Trial Ball in each case. For the first set, subjects held an Oculus Touch Controller in their hand, which 

was tracked by multiple Oculus Sensors, as seen in Figure 30. These IR cameras have been shown to give 

 

Figure 30 -Using Rift Controller to monitor hand position 

 

Figure 31 - Using IMUS to derive hand position 
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positions in their working environment accurate to within 0.01m. As such, the positions presented to the 

subject in 3D matched their proprioceptive sense of their hand position. For the second set, the Oculus 

controller was discarded, and the data from the NUIMUs was used to calculate position of the Trial Ball, 

according to the measured orientation of the limb segment, as shown in Figure 31. 

The position of the Trial and Target ball, the calculated position of the hand and the current time was 

recorded every time the screen was updated. This allowed the time taken to move from the initial position 

to the target position to be calculated. It also allowed deviation from a straight path to be calculated, 

providing a second metric for assessment. For this experiment, the movement time was defined as the 

time taken between the Trial Ball leaving the radius of the initial position defined by the size of the Target 

Ball, and entering the radius of the new position, also defined by the Target Ball radius. It was defined this 

way remove any time taken for initial path planning, and the time taken for the new position of the ball 

to be observed by the subjects. 

6.4.3 Results 
With reaction and planning time removed, the average time taken to perform the required movements 

when using the Oculus controllers was 0.25 seconds. Due to the accuracy of the positions given by the 

Oculus system, this can be given as the base time taken to complete these movements when the subject’s 

proprioceptive sense and visual feedback are providing complementary information. When the position 

of the hand was calculated using the NUIMUs, the average time taken to complete the movements was 

0.54 seconds. It is hypothesized that this is due to a misalignment between the subject’s proprioception, 

and the visual feedback they are receiving, which requires cognitive engagement to correct. 

To examine the deviation from a direct path, the path lengths for each movement were standardized, and 

the average deviation at each point was calculated. The average deviation when using the Oculus Rift 

controllers was 0.045m, whereas the average deviation when using the NUIMUs was 0.069 meters. The 

average path taken using both systems can be seen in Figure 32. 

 

Figure 32 - Average deviation from a direct path 
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6.4.4 Discussion 
The IMUs appeared to introduce 0.29 seconds of delay into the system when performing fast movements. 

An indication of the cause of this can be found when analysing the path and speed as the subjects 

progressed through the experiment. When using the Oculus Controllers, the deviation was described by 

a smooth path with no sharp changes in direction. The peak of the deviation occurs slightly after the 

halfway point, indicating that some correction is occurring, but it is impossible to say what the basis for 

this correction is. Conversely, the deviation from the path observed when using the NUIMUs is initially 

not smooth. These movements are categorized by two sharper changes of direction, one that occurs ~0.2-

0.35s seconds into the movement, and one that occurs towards the end of the movement. It can be 

hypothesized that the initial correction occurs when the subject first detects the misalignment between 

the motion and the planned path, and the second occurs when the user slows to make fine corrections 

purely based on visual feedback towards the end of the path. Subjects did report that using the IMUs 

seemed to require more work than the controllers, although they could not explain why. They reported 

that they were unable to perceive any of the changes in direction indicating corrections with either 

system. 

One factor that may have contributed to the misalignment between the user’s VR position and 

proprioceptive sense was the approximations made in the forward kinematics. The position of the user’s 

shoulder, and the length of both arm segments were kept consistent with the model, and not specified 

for each user. Despite this, subjects were able to complete the task, and since more information about 

the subject’s kinematics were known, more realistic representations of the subject were available in the 

VR environment, for example, the VR ‘floating hands’ were replaced with arms that mirror the subject’s 

movements.  

As a result of this experiment, the use of NUIMUs in VR environments was deemed a suitable test platform 

for further studies, particularly in situations where environmental factors preclude the use of alternative 

sensing equipment, such as the Oculus Sensors. 

6.5 Prosthetic Control – Classification in Uncontrolled Environments 
To facilitate a form of prosthetic control that allows for natural motion to be observed, the MMG 

classification system must be robust to changes in arm position. Changes to the orientation of the arm 

will change the muscle activity required for supporting the weight of the hand. It was hypothesised that 

this along with changes to elbow angle would influence the recorded MMG signal during gesture induced 

contractions, reducing the classification accuracy. In order to observe the effect of these factors, and well 

as develop suitable compensation strategies, a new dataset was required. 

6.5.1 Participants 
The inclusion criteria for this secondary database generation were the same as for the first, and again 

participants gave their written informed consent. Five healthy subjects (4 male, 1 female, average age: 

39.2yrs SD: 15.3yrs) were involved in this work. 
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6.5.2 Experimental Protocol 
For this experiment, the subject wore two armbands, one placed on the upper segment of the right arm 

and one placed on the lower segment of the same arm. The armband on the upper segment consisted of 

a single IMU, and the armband on the lower arm segment consisted of one IMU and six MMGs. The 

armband was placed around the largest radius of the forearm, and oriented so that three MMG were over 

the flexor digitorum muscle group and three over the extensor digitorum muscle group. The IMUs on both 

bands were placed at a known orientation of the arm, allowing the kinematics of the arm to be observed. 

Subjects were seated at a table and asked to move their arm into a specific orientation. They were then 

asked to make five instances of each of the five gestures used in this test. The gestures chosen were those 

used in Ex.2 in the previous real-time gesture experiments. Data collection was performed using the real-

time segmentation technique implemented in chapter five, and therefore only gesture data were 

collected. Subjects then spent thirty seconds in a relaxed position, before moving back to the defined 

position, and making another five instances of the gesture. This process was repeated until forty instances 

of each gesture had been recorded. At this point, subjects were given time to rest, before being asked to 

repeat the experiment with their arm in a different position. 

Data were recorded from a total of seven positions. Positions were identified to vary both the background 

contraction needed to maintain the orientation of the hand, and the shape of the forearm as it was 

changed by bending the elbow. The positions were as follows: 

1. Arm straight, held vertically in an upwards direction 

2. Arm straight, 45˚ above horizontal 

3. Arm straight, held horizontally in front 

4. Arm held parallel to the floor, elbow bent approximately 90 degrees 

5. Arm held parallel to the floor, elbow bent to maximum 

6. Arm straight, 45˚ below horizontal 

7. Arm straight, held vertically in a downwards direction 

These positions were chosen at suitable intervals to provide a maximum range of motion without 

prolonged data collection which may cause fatigue. 

Data were labelled with both the gesture that each contraction represented, and the position in which it 

was recorded. Based on this, several different combinations of gesture and position could be compared. 

Three classifiers were used for the experiments in this section, an SVM using raw data from all MMG 

channels, and an LDA trained using features identified in the previous chapter, as well as a cubic SVM 

(CSVM), which was included due to the increased complexity of the classification due to the additional 

variables. 

6.5.3 Classification – One vs One 
To establish an indication of the effect of arm position on classification accuracy, each classifier was 

trained based on data from a single position. The classifier was then tested on unseen data from each of 
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the seven positions. This process was repeated one hundred times for each classifier, and the accuracies 

attained on the unseen data were averaged. This was repeated so that a classifier was trained using data 

taken from each position in turn and tested on all. Each classifier was subject specific, and so all accuracies 

were also averaged across each subject. A summary of the accuracies achieved by the LDA are presented 

Table 21 – LDA accuracy when trained and tested on different positions 

 Tested 

1 2 3 4 5 6 7 

Tr
ai

n
ed

 
1 66.7% 58.4% 54.5% 41.3% 32.9% 39.8% 42.0% 

2 59.0% 65.2% 60.4% 50.3% 36.1% 44.1% 40.3% 

3 55.3% 63.3% 69.9% 58.1% 46.8% 57.9% 56.4% 

4 52.4% 48.2% 53.5% 72.7% 45.1% 57.8% 61.0% 

5 43.8% 45.3% 47.1% 54.1% 61.8% 48.1% 45.3% 

6 45.2% 49.1% 55.6% 55.6% 40.7% 71.6% 63.7% 

7 46.1% 43.8% 49.7% 54.0% 37.0% 62.9% 70.3% 

 
Table 22 – Linear SVM accuracy when trained and tested on different positions 

 Tested 

1 2 3 4 5 6 7 

Tr
ai

n
ed

 

1 70.2% 63.7% 54.8% 46.3% 28.0% 38.7% 39.4% 

2 66.6% 70.1% 67.0% 44.6% 29.3% 38.8% 38.0% 

3 65.3% 67.0% 72.6% 56.7% 43.2% 53.4% 54.5% 

4 50.8% 50.8% 66.4% 72.6% 52.9% 58.8% 60.4% 

5 34.9% 36.7% 49.7% 53.0% 69.3% 57.1% 52.6% 

6 35.4% 40.9% 57.5% 55.4% 46.3% 76.6% 70.7% 

7 31.7% 33.5% 51.2% 63.8% 46.6% 70.9% 74.2% 

 
Table 23 – Cubic SVM accuracy when trained and tested on different positions 

 Tested 

1 2 3 4 5 6 7 

Tr
ai

n
ed

 

1 86.7% 71.9% 67.1% 55.3% 45.2% 57.9% 55.3% 

2 72.9% 85.9% 79.4% 58.1% 42.2% 61.0% 52.2% 

3 67.1% 79.4% 90.4% 60.6% 44.8% 74.3% 62.4% 

4 52.6% 55.3% 61.3% 90.0% 55.1% 68.6% 72.8% 

5 45.0% 46.0% 52.5% 59.2% 88.3% 57.4% 57.1% 

6 53.9% 52.7% 69.0% 71.1% 51.3% 93.4% 75.5% 

7 54.9% 46.1% 53.8% 65.8% 48.4% 74.3% 92.2% 
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in Table 21, a summary of the accuracies achieved by the linear SVM are presented in Table 22 and a 

summary of the accuracies achieved by the cubic SVM are presented in Table 23.  

The highest accuracies are achieved when the training set and test set are recorded in the same position, 

across all three classifiers. The best accuracy achieved by a One vs One classifier when trained on the 

appropriate positional data was 89.6%, achieved by the Cubic SVM. This would suggest that it is desirable 

to train a classifier for each position in which it may need to function, however this would be both fatiguing 

for the subject and time consuming. It is also unlikely to be feasible to train for every position a user may 

require over the course of normal use. When the correct position is unknown, training on a single position 

may be necessary. In this case, the average accuracy achieved by the Cubic SVM was 64%. This is lower 

than desired for real-time use, and therefore the following sections propose several alternative methods. 

6.5.4 Classification – Voting 
Every classifier tested in the previous experiment achieved a higher accuracy than 40%, and therefore it 

was predicted that accuracy could be improved by using multiple classifiers. In this implementation, all 

seven classifiers were used simultaneously, and the most common prediction was taken as the overall 

system prediction. 

The Cubic SVM classifier performed best overall, and so it was used for this test. An example of the 

classification method is presented in Table 24. The average accuracy achieved by this voting classifier was 

77.8%, up from 64% when using a single classifier. 

6.5.5 Classification – Many vs. One 
In order to establish whether a subset of the positions contains the data required for successful 

classification, the positions were broken down into sequential groups of three. The middle set was used 

as the test set, and the classifier was trained on gestures from the positions on either side. The following 

groups of three were used: When the arm was straight 1-2-3, 2-3-6 and 3-6-7, and as the arm bent 3-4-5. 

The quantity of data used to train the classifiers was also varied. 40% of the available data represents the 

Table 24 – Example of performance of voting classifier 

Data 
Class 

Classifier Output Predicted 
Class 1 2 3 4 5 6 7 

0 0 0 4 0 0 0 0 0 

0 0 0 1 0 2 2 0 0 

1 1 1 1 1 1 1 1 1 

3 4 4 4 4 4 2 3 4 

3 3 3 3 3 0 3 3 3 

4 4 4 2 1 1 2 0 1 

0 0 0 1 0 2 2 0 0 

1 1 1 1 1 1 1 1 1 

2 2 2 2 0 1 3 0 2 
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same number of instances of gestures as were used to train the classifiers in the previous section, and this 

was increased to 80%. The LDA, SVM and Cubic SVM were all used in the experiment to determine which 

of the three was most able to compensate using available data when the correct positional training data 

were unavailable. The results from this test are presented in Table 25. 

These classifiers achieved a higher accuracy when trained on data from multiple positions than when 

classification was performed using data from a single adjacent position. This indicated that there is 

consistency between the signals being obtained from each position. 

To test this further, a CSVM classifier was trained one data from several groups of gestures and tested 

against all seven positions. As with all other experiments in this document, no data points appeared in 

both the training set and the test set. It was decided to use fifty gestures from each position included in 

the training set, as this was deemed practical should this method be implemented in future real-time 

tests. The groups and resulting accuracies are presented in Table 26. 

Table 25 – Accuracies of classifiers trained on adjacent positions 

Group Classifier 

Percentage of available 
training data used 

Average 
of 
Adjacent 

Average 
of 
Correct 40.0% 60.0% 80.0% 

1-2-3 

LDA 62.0% 67.1% 68.8% 60.8% 65.2% 

SVM 66.3% 67.1% 67.7% 65.3% 70.1% 

CSVM 80.3% 82.2% 83.4% 75.7% 85.9% 

2-3-6 

LDA 62.5% 67.8% 69.5% 58.0% 69.9% 

SVM 70.7% 71.7% 72.3% 62.2% 72.6% 

CSVM 80.4% 82.1% 83.1% 74.2% 90.4% 

3-6-7 

LDA 62.6% 67.9% 69.8% 60.4% 71.6% 

SVM 71.9% 72.2% 72.2% 62.2% 76.6% 

CSVM 81.8% 83.8% 84.6% 74.3% 93.4% 

3-4-5 

LDA 57.5% 62.6% 64.6% 56.1% 72.7% 

SVM 64.4% 64.6% 64.5% 54.9% 72.6% 

CSVM 67.4% 69.0% 69.6% 59.9% 90.0% 

 

Table 26 – Classifier accuracy when trained on representative dataset subgroups 

Training 
Group 

Average 
Accuracy 

1-2-3-4-5-6-7 84.3% 

1-3-5-7 79.5% 

2-4-6 74.9% 

2-3-4-6 77.0% 

 



 

 
 

143 
 
 

Training a single classifier with every position appeared to produce the highest accuracy, although the 

accuracy falls 5% short of the 89.6% achieved by the appropriate classifier. 

6.5.6 Fused Mechanomyography and Inertial Measurement 
The previous experiment has shown that the MMG signal observed during a gesture is partially dependent 

on the orientation of the arm and the elbow angle. From the results shown in Table 23 and Table 25, it 

appears that the factors affect the signal in a proportional manner, since adjacent positions provide better 

classifications than more distant positions. It also appears that distant positions may provide slightly 

contradictory information for the same gesture, since Table 26 shows that a dataset comprising of 

gestures taken from every position is less accurate than a classifier trained solely on data taken from the 

test position. 

In order to achieve the highest possible level of accuracy, a new method of data fusion is introduced. The 

MMG signal is monitored for increased activity and low gyroscopic movement that has been shown to be 

associated with a volitional gesture. When this is detected, data segmentation occurs in the same manner 

as described in Chapter 5, and the forward kinematics of the limb are calculated. These kinematics do not 

require accurate limb lengths since they are only used to provide labels, therefore arbitrary values were 

used. When the classifier is being trained, MMG data are stored, along with the end position of the limb 

and the label for the gesture. 

During testing, the detection of a gesture triggers several addition steps before classification. First, the 

current position of the end effector is calculated, and considered to be a point in 3D space. A variation of 

the K-Nearest-Neighbour algorithm is used to identify gestures in the training data that were observed in 

close proximity to the current test gesture. The subset of training data constructed using this method are 

then used to train a Cubic SVM specifically for the test instance, which is then classified. Although this is 

a computationally intensive method of classification, applications such as prosthetic control do not 

currently require multiple gestures in quick succession, and therefore training a classifier on a small, 

representative dataset is a viable option. 

This method of data fusion allows for a higher accuracy to be achieved by ensuring that the factors such 

as arm orientation and elbow angle are consistent between both the training set and the test gesture. 

This was implemented in real time and tested for a simple two position classification. The training set was 

constructed first, and then several test gestures were made. The full training set, including end effector 

position was recorded, as well as a list of the gestures identified by the modified KNN for each test gesture. 

Figure 33 shows the end effector positions observed for both gestures made with the arm held over the 

head, and gestures made with the arm relaxed by the subject’s side. In this implementation, the subject 

made forty instances of each gesture in each position, and the k value for the KNN was set to thirty-two. 

This provided an ideal scenario for offline testing, since the gestures selected by the algorithm were only 

taken from positionally relevant points, and therefore an accuracy of 89.56% was achieved. It is not 

expected that this accuracy will translate into the real-time experiments proposed in the following 

sections, however it demonstrates a protocol which can be used to achieve the highest possible accuracy. 
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6.5.7 Conclusion 
Control of prosthetic devices must be robust to changes in orientation, since wearers are often required 

to move their arms into unnatural poses to compensate for a reduced number of degrees of freedom in 

their prosthetic. In the past, this has been shown to introduce errors in classification using both MMG 

and alternative technologies. The experiment in this section has confirmed that these errors can be 

easily observed in MMG-based classification systems, and a solution for prosthetic control has been 

proposed and implemented. The NUIMU is able to use orientation information to label each gesture in 

the training set with a 3D position representative of arm orientation in real time. For more complex 

implementations where end effector positions may not be representative of arm orientation, elbow 

angle and forearm orientation could be calculated and used instead. For each gesture to be classified, 

these positional labels can be used to ensure that appropriate training data can be selected, and a 

unique classifier can be trained and used. It has been shown that classifiers trained on appropriate data 

consistently outperform the alternatives. This system is implemented in the following section. 

6.6 Robot Teleoperation in Virtual Environments 
Robot teleoperation allows the information captured by the system to be demonstrated in an effective 

way, since the number of degrees of freedom being controlled can be determined through the selection 

of the robot. In order to test the practical applications of the system, a 7DoF LBR iiwa from Kuka was 

 

Figure 33 – Positions of gestures created in two arm configurations 
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controlled to perform several tasks in a virtual environment. The tasks involved a combination of both 

arm movement and muscle contraction. The virtual robot was designed to track the end position of the 

subject’s hand, although virtual constraints were also included.  The kinematics for the Kuka robot used 

in this experiment are available, however a lightweight implantation was derived for the virtual 

environment. 

6.6.1 Kuka Kinematic Derivation  
In order to provide control to the Kuka, a direct mapping from the hand of the subject to the end effector 

of the robot was used. The position of the subject’s hand was calculated in the same way and the previous 

experiments and defined as the target position of the end effector of the robot. To provide this 

visualisation, the joint angles to move the end effector of the Kuka to the desired position were required. 

The constraints of the visualisation did not require a full kinematic solution to be implemented, so a 

lightweight controller was designed and implemented instead. The design of this controller is described 

in Appendix III. 

This method of estimation allows the instantaneous joint angles for a given desired end effector position 

to be calculated, but this is not enough to realistically control the virtual robot. To ensure that the user 

would have to actively participate in controlling the robot, each joint was given a maximum angle of 

rotation per time period (i.e. a maximum speed). Including this required the subjects to factor the current 

position of the robot into their control strategies, increasing the realism of the simulation. Using this 

method, a lightweight implementation for end position driven Kuka control can be implemented. 

6.6.2 Experimental Protocol 

6.6.2.1 Participants 
Subjects who met the inclusion criteria were selected and gave their written informed consent to 

participate in the experiment. Five healthy subjects (4 male, 1 female, average age: 38.4yrs SD: 15.8yrs) 

were involved in this work. Participants had a range of experience both in working in VR environments 

and with gesture-based interfaces. 

6.6.2.2 Training Protocol 
The training protocol was designed to provide data analogous to that generated during the robot 

teleoperation test phase, however several modifications were required to generate an appropriate 

quantity of data for the experiment without inducing fatigue in the subjects. In order to train the system, 

subjects wore two IMUs, one placed on the upper right arm, and one on the lower right arm. Subjects 

wore six MMG sensors, worn in a band around the right forearm, with three placed approximately over 

the flexor digitorum muscle group and three over the extensor digitorum muscle group (Placement can 

be seen in Figure 34). Subjects were seated in an upright position and had access to an armrest. 
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Based on the work performed in the previous section, five arm configurations were identified which 

provided a good representation of the workspace used in this experiment. These configurations varied in 

both elbow angle and forearm orientation, but in each position the subject’s elbow was supported by the 

armrest, whose height was varied to ensure support in each arm configuration. Configurations were kept 

consistent between subjects. 

Four control gestures were identified for the tasks in this experiment; Open hand, Close hand, Point index 

finger, and Pinch with index finger and thumb. Subjects were asked to make five instances of each gesture, 

and this was repeated three times for each of the five positions. Subjects were given thirty seconds 

between each recording to avoid fatigue. This resulted in a total of three hundred gestures recorded for 

each subject. 

6.6.2.3 Testing Protocol 
To test the inertial measurement and mechanomyography fusion for robot teleoperation in virtual 

environments, a series of tasks were created with the aim to allow the user to interact with the robot 

without their focus being on the interface. The tasks fell into three categories: 

• Ball-to-Box (B2B) tasks – where subjects were required to register an Open gesture to select a 

gripper tool with the robot, move the gripper to a virtual ball, register a Close gesture to pick up 

the ball, move the ball above a virtual box, and register an open gesture to drop the ball into the 

box. 

• Balloon-Popping (BP) tasks – where subjects were required to register a Point gesture to select a 

sharp tool on the robot’s end effector, and then move that tool into contact with several virtual 

balloons to pop them.  

 

Figure 34 – Position of armband for gesture-based experiments 
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• Lock-and-Key (L&K) tasks, where the user was required to register a Pinch gesture to select the 

key tool mounted below the robot’s end effector, then place the key precisely into a virtual lock. 

The three tasks were intended to utilise both the gesture-based control obtained through both inertial 

and mechanomyographic monitoring, as well as force the subjects to generate gestures in a diverse 

array of positions. 

Once subjects had completed the training phase, they were invited to begin the test phase immediately. 

The tasks were explained, and the gesture required to complete them were described. Subjects were then 

asked to put on the virtual headset and were instructed to remove it if they felt any ill effects as a result 

 

Figure 35 - The six tasks for VR Robot Control 
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of wearing it. There were invited to explore the test space and familiarise themselves with both the 

response of the robot, and the visual feedback triggered by performing the various control gestures. The 

limits to joint speed on the robot caused a delay between the user moving to the correct position, and 

the robot reaching that same position. Instantaneous user position feedback within the virtual 

environment was given by a ‘ghost’ figure that occupied the same position as the user and replicated their 

movement. After one minute, the subject was invited to begin the experiment.  

The experimental tasks were as follows: one B2B task, four sequential BP tasks where completing one 

causes a new object to appear in a different location, two sequential L&K tasks, four sequential BP tasks, 

two sequential L&K tasks and five sequential B2B tasks which can be undertaken in any order. The time 

taken to complete each task was recorded, as well as the gestures subjects made during each one. An 

over-the-shoulder view of the tasks can be seen in Figure 35. 

Once the final task had been completed, subjects were asked to remove the VR headset, and were given 

a pair of handheld controllers to be used with it. The controller’s buttons that were programmed to incite 

the same behaviour as the gestures and the subjects were asked to familiarise themselves with the 

button’s placement and function. Once they had done this, they were asked to wear the VR headset again, 

and complete the same series of tasks using the controllers. All aspects of the experiment were kept the 

same, with the exception of the instantaneous feedback, which was replaced by a ball that occupied the 

same space as the user’s hand. 

6.6.3 Results 
There are two metrics that can be used to assess the effectiveness of the system displayed in this 

experiment. The first is the time taken to complete the overall experiment, summarised in Table 27. 

 

The second metric is the accuracy of the classification. In order to complete the experiment, subjects were 

required to make eighteen gestures. In addition to these eighteen volitional control commands that all 

subjects completed, several other gestures were recorded. These other gestures were categorised into 

three groups:  

• Misclassifications – where the user had intended to perform a volitional command, but it was the 

incorrect command for their current point in the experiment (gestures that were incorrect due to 

human error were counted as misclassifications). 

• False Positives – gestures that were the result of motion induced artefacts or muscular twitches 

when no gesture was intended. 

Table 27 - Time taken to complete VR Robot Teleoperation experiment 

Time(minutes : seconds) 

NUIMU Oculus handheld controllers 

Mean SD Mean SD 

2:53 0:54 1:29 0:19 
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• Corrective gestures – gestures that were correctly classified, but not an intended part of the 

experiment, corrective gestures were caused as users overcame any false positives that changed 

the current state of the robot from its intended state. 

In this application, accuracy (𝐴𝐶𝐶) is defined as: 

 
𝐴𝐶𝐶 =

𝐺𝑐

𝐺𝑐 + 𝐺𝑖
 (65)  

where 𝐺𝑐 is the number of correctly classifier gestures, and 𝐺𝑖  is the number of misclassifications. The 

accuracies were worked out for each individual and the average was taken. Average accuracies can be 

seen in Table 28. 

 

Another useful metric when evaluating the usability of this system in practical applications is precision. 

Precision (𝑃𝑅) describes the false positives detected by the system, and is defined as: 

 
𝑃𝑅 =

𝑃𝑡

𝑃𝑡 + 𝑃𝑓
 (66)  

where 𝑃𝑡 and 𝑃𝑓 describe the number of true positives and false positives respectively. It should be noted 

here that the true positives are not required to be correctly classified, since accuracy is a separate metric. 

As a result, if corrective gestures are defined as 𝐺𝐶, then: 

 𝑃𝑡 = 𝐺𝑐 + 𝐺𝑖 + 𝐺𝐶 (67)  

A description of the precision is summarized in Table 29. 

 

In order to examine these results in further detail, it was useful to examine the tasks that caused the 

greatest number of misclassifications and false positives. A summary of these breakdowns can be seen in 

Table 30. 

Table 28 – Accuracy of commands in VR Robot Teleoperation experiment 

Accuracy of gesture/command classification 

NUIMU Oculus handheld controllers 

Mean SD Mean SD 

71.38% 18.44% 93.89% 3.72% 
 

Table 29 – Precision of commands in VR Robot Teleoperation experiment 

Precision of gesture/command classification 

NUIMU Oculus handheld controllers 

Mean SD Mean SD 

90.9% 5.8% 99.1% 1.9% 
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6.6.4 Discussion 
The completion of this experiment demonstrates that the sensor system is capable of interpreting user 

intent in dynamic conditions. Users were able to complete all tasks during a single run through and did 

not report fatigue from using the system. 

Several contributory factors to the lower that optimal accuracy can be derived by examining the data. The 

most obvious is that while the training data was intended to be analogous to the required tasks, they were 

recorded using a different protocol. It was found in early testing that training in the VR environment by 

performing the tasks repeatedly led to much faster rates of fatigue, making the experiment 

uncomfortable, and in some cases impossible to complete. The training protocol observed here addressed 

that, however as a result subjects did not associate the gestures they were performing with the intended 

action until the test phase. It was observed that during the training phase, subjects were making large, 

deliberate gestures, however in the VR environment subjects appeared to initially make smaller, more 

precise gestures. Another possible contributory factor in the experimental protocol was the inclusion of 

the armrest. While the armrest was required to train the classifier in multiple arm configurations to avoid 

fatigue, it was not available to subjects during testing as it would have inhibited the subject’s freedom of 

movement. The additional stress induced in the arm when held unsupported in position appeared to 

increase the background mechanomyographic noise, which may have led to misclassifications. 

The tasks that recorded the greatest number of false positives were the L&K and the BP tasks. These are 

both tasks that required the user to perform large arm motions, and therefore it is likely that some motion 

induced artefacts may have led to false positives being detected. Both tasks required the user to make an 

initial ‘tool selecting’ gesture, and the number of misclassifications shows that on average, users found 

the point gesture to be more difficult to register. It was observed that the point gesture was the least 

Table 30 – Misclassifications and false positives separated by task 

 
Number of gestures 
required to complete 
task 

Average number 
of 
Misclassifications 

Average 
number of false 
positives 

Task 1 3 0.2 0.2 

Task 2 1 1.4 0.6 

Task 3 1 0 0.8 

Task 4 1 0.6 0.8 

Task 5 1 0.2 0.4 

Task 6a 3 1.4 0 

Task 6b 2 0.4 0 

Task 6c 2 0.6 0.2 

Task 6d 2 3.4 0.4 

Task 6e 2 1.4 0.2 
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consistent during the test, with users switching between several different forms of the same gesture 

within a single test. 

A data point that appears to be an outlier in Table 30 is the number of misclassifications that occurred 

during Task 6d. Task 6d was a B2B task, but it induced significantly higher errors than the other B2B tasks 

that were performed in Task 6. It was observed during the experiment that since the ball was close to the 

body, reaching it with the Kuka required the subjects to adopt a unique arm pose. This pose required an 

elbow angle that was more extreme than any of the training positions, causing errors comparable to 

Position 5 in Table 21. 

6.7 Chapter Summary  
This chapter describes the application of a system based on fused mechanomyography and inertial 

measurement for human-robot interface. The chapter examined the use of hand position as an intuitive 

method of providing part of this robot control. NUIMUs were worn on the arm segments, and a simplified 

form of forward kinematics was used to translate these three-dimensional data points into command 

signals. The accuracy and the effect of a reduced accuracy were tested using a virtual environment. 

Information indicative of subject’s path planning was observed, and it was concluded that while users 

could complete movements quickly, providing feedback that was not aligned with the user’s 

proprioceptive sense led to patterns of motion that could be fatiguing. 

A Baxter robot was used as a real-world demonstration of the first implementation of the system. End 

position and gestures were used as control signals. In this case, subjects were manipulating physical 

objects using a combination of four NUIMUs and six MMGs to provide dual arm control of the 14DoF 

robotic platform. 

Since end-point position was used as a channel for control signals, a requirement that gestures could be 

performed at any location in the effective workspace was observed. To ensure that the system described 

here was capable of that, gestures were recorded at a range of different positions defined so as to vary 

both elbow angle and the weight supported by the muscles when in the relaxed state. It was found that 

both variables had a noticeable effect on the signal, as both the LDA and linear SVM had large errors when 

classifying between positions. In order to combat this increase in complexity, a cubic SVM was introduced 

and implemented. 

While the cubic SVM performed well when trained and tested on data taken from the same position, 

accuracy decreased when data from other positions was included in the training set. To ensure that data 

in the training set was representative of the test data, the forward kinematics of the arm were used to 

label each instance in the training data. In order to classify test data, the end position was calculated, and 

a modified K-Nearest Neighbour algorithm was used to select training data from other close positions. 

This training data contained data more representative of the test instance, and therefore when used to 

train the cubic SVM, a higher accuracy was possible. 
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Since gesture-based HMI applications require the user to make individual gestures, the overall 

information throughput is not high. As a result, training a classifier for every instance of data in the test 

set, as described by the KNN-cSVM fusion is a feasible option, even though it would not be appropriate 

for many machine learning applications. This method provides a true fusion of mechanomyography and 

inertial measurement data, allowing a higher accuracy to be achieved than through a single sensor alone. 

This updated method of gesture classification and end point mapping was tested in a virtual environment 

using a 7-DoF Kuka robot. A lightweight inverse kinematic solution for calculating joint angled from end 

position was derived and implemented. A maximum joint rotation speed was implemented, both to add 

a level of realism to the simulation, but also to introduce a disconnect between the user and the robot 

end effector. This ensured that the user was more focused on the visual feedback provided and lessened 

the effect of errors introduced by the user’s proprioceptive sense. Users were able to complete the series 

of tasks designed to test their control of the virtual robot. 

In both experiments, the sensor suite was tested against industry standard interfaces. While the 

interface demonstrated here did not allow subjects to perform the experiments as fast as the 

commercial interfaces, its pervasive form means no requirement for cameras in the environment and 

favourable lighting conditions, or dexterous manipulation of a physical controller. As such it 

demonstrates an alternative interface platform that can be built upon in the future.



 

 
 

153 
 
 

  



 

 
 

154 
 
 

 

 

 

 

 

 

 

 

 

Chapter 7 
Conclusions and Future Work 
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7.1 Thesis Summary 
This thesis details the design and development of a new form of Human-Machine Interface which utilises a novel fusion 

of mechanomyography and inertial measurement to derive volitional control commands. The fusion of these two 

sensing modalities provide significant advantages over existing methods of interface which rely on alternative 

technologies. MMG sensors have previously been used to detect physiological features such as fatigue but have also 

been reported to detect motion induced artefacts. The inclusion of the inertial sensors in the system allows these 

artefacts to be identified and compensation strategies to be implemented. Additionally, the effect of arm orientation 

on pattern recognition accuracy has been observed, and new strategies of training have been developed to create a 

system which is robust to those changes. As a result, the first MMG-based gesture recognition system which is robust 

to both environmental interference and arm position has been developed. This new interface has been proved 

effective in a variety of different applications, including robot control and interaction in VR environments, 

demonstrating robust classification in practical applications. Several shortcomings were identified that have led to poor 

adoption of gesture control in the HMI market, and high levels of dissatisfaction and rejection in the prosthetics market. 

The work presented here demonstrates the utility of an alternative interface technology which, although less mature, 

has the potential to overcome a number of the issues raised by existing techniques. 

MMG belongs to a small group of technologies that allow for biomechanical information (such as hand gestures) to be 

recorded through inference, as opposed to direct monitoring. This allows for the creation of interfaces that do not 

inhibit the generation of the control signals as they are recorded. Other technologies, such as vision or physical 

interfaces, often either constrain the users physically or by requiring them to stay within the cameras field of view. 

Pervasive interfaces build on MMG or EMG do not, and therefore are preferable for situations where the user may not 

be in clinical conditions. Additionally, MMG has a number of benefits over EMG when it comes to signal capture, it is 

not reliant on the electrical condition of the skin, which means that it can be more robust over extended periods of 

time. This is particularly true in the conditions inside a prosthetic socket, where non-breathable materials quickly lead 

to perspiration, which affects the skin impedance, a problem when examining the electrical signal but not the 

mechanical signal. 

After an examination of existing HMI technologies both from a technological perspective and an end-user perspective, 

hardware to allow the collection of MMG and IMU data was designed and built. This process started with an 

identification of desired hardware and functional specifications, which allowed a small, high data rate package to be 

constructed. Particular care was taken to ensure that the hardware formed a platform that could be expanded to 

incorporate external hardware and further software modifications. Additionally, several software packages were 

constructed to allow the IMUs to be controlled from a number of host devices, including android mobiles and Windows 

PCs. The software system was capable of acting as both a local input for 3rd party software, such as Unity, or network 

applications through TCP/IP, enabling it to act as a ROS node. 

The host software for Windows computers was structured in two projects, one to control the IMUs and one to control 

the Graphical User Interface. This provided a demonstration of the capabilities of the systems without being 

constrained to a specific interface. Additionally, the firmware on the IMUs was reconfigurable through this 

demonstration project, allowing the data rate to be tuned as per the requirements of the specific experimental 
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protocols. As a result, there are many projects for which this hardware package could be considered suitable. The 

design process and software functionality are detailed in Chapter 3. 

Data from the MARG sensors can be used to approximate a world reference orientation, which is important for 

understanding motion, as well as providing contextual information for gesture recognition. There are three commonly 

used methods of determining orientation based on MARG data, complementary filters, Kalman filters and optimization 

methods. Of these, optimization methods such as Madgwick’s Gradient Descent Algorithm are typically the easiest to 

implement, while still providing high levels of accuracy, however the GDA in particular has a number of shortcomings 

that become apparent during practical implementation. This includes both a slow convergence rate at high levels of 

magnetic inclination, as well as coupling between perpendicular Euler rotations. This work demonstrated modifications 

to this algorithm that addressed these shortcomings, leading to a faster convergence. Additionally, a second algorithm 

was proposed to act as an alternative to gradient descent-based algorithms. This new algorithm calculated the exact 

rotation of the IMU based on instantaneous sensor data. This allows for an implementation that is more similar to the 

complementary filter, but which also uses magnetometer data. The primary benefit of this implementation is that it 

separates sensor filtering and sensor fusion, allowing sensor trust to play a greater role. Details of this implementation, 

as well as the proposed improvements to the gradient descent orientation estimation algorithm are found in chapter 

4. 

Once the MMG data has been recorded, it needs to be interpreted. This interpretation was broken down into three 

steps, segmentation, classification and interpretation. The interpretation of the classified gestures is application 

specific, and therefore is dependent on the implementation. The segmentation was performed by energy thresholding 

on both the MMG data and the inertial data. This allowed motion induced artefacts to be detected and dismissed, 

ensuring that only volitional control signals were detected. A large dataset was taken, and a human assisted 

segmentation was performed. This allowed gestures to be identified and marked within the set, which facilitated 

testing and tuning of real-time detection techniques. Classification was performed using a number of techniques. First, 

a template-based method was designed. This was intended to operate purely as a method of determining the 

repeatability and distinguishability of the signals recorded, however this purely statistical technique proved successful 

in as a lightweight, real-time classification technique. Further methods from the field of machine learning were also 

tested, including decision trees, KNNs, LDAs and SVMs. Additionally, PCA and feature extraction were explored as 

dimensionality reduction techniques. A suitable real-time classification technique was identified and implemented for 

further testing. This series of experimental work is described in Chapter 5. 

Finally, several experiments were designed to demonstrate the practical use of the systems as a Human Machine 

Interface. A first-generation implementation of the NUIMU/MMG system was used in the real-world experiments 

involving the teleoperation of robotic platforms. The level of abstraction in this application made for an intuitive form 

of interface, however error in classification introduced difficulties. In order to determine the source of the errors, 

experiments were performed in a virtual environment to provide ideal experimental conditions in a controlled 

environment. This allowed the performance of the system to be assessed against alternative commercial interfaces. 

The experiments showed that the IMUs could be used to bring more degrees of freedom into a virtual world, however 

when joints were directly mapped this introduced a conflict between the subject’s proprioceptive sense and the visual 

feedback that was being provided. Arm orientation and elbow angle were identified as potential factors that may have 
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led to the misclassification observed in the teleoperation experiment, and evidence that supported this was found. A 

compensation strategy which used a more in-depth form of sensor fusion was found and tested in VR robot 

teleoperation tasks. Details of these experiments can be found in Chapter 6. 

7.2 Summary of Contributions 
The core contribution of this thesis is to demonstrate an improvement to the understanding of the behaviour of 

Mechanomyographic signals while performing different gestures, and the place of this understanding in the context of 

gesture-based Human Machine Interfaces. The sensor has previously been researched primarily as a diagnostic tool, 

and its potential as a practical alternative to EMG-based interfaces has been largely ignored. This thesis has 

demonstrated that the sensor can operate in this field and is worthy of further research and development. 

The specific contributions of this thesis are as follows: 

• Creation of sensor-suite 

o The creation of a small form, high frequency, multisensor interface comprising of a combination of 

IMU and MMG sensors is presented, allowing for a sensor fusion that addresses some of the 

shortcomings of each sensor individually. 

• Improvements to commonly used orientation estimation algorithm 

o A simulated demonstration of the commonly used ‘Madgwick’ algorithm (Gradient Descent 

Algorithm) showed that convergence is dependent on geomagnetic inclination, and that this can 

lead to slow convergence in areas of high inclination. A method to overcome this is proposed, and it 

is demonstrated to provide consistent convergence regardless of geomagnetic inclination. At 60 

degrees, this implementation converges six times faster than the original gradient descent algorithm. 

This solution is also shown to decouple pitch/roll and yaw during correction, leading to more efficient 

convergence. 

• Introduction of a new orientation estimation algorithm 

o The derivation of a new algorithm for estimating the orientation of a MARG system with respect to 

the global reference frame is proposed. This solution provides a configurable step convergence, 

which allows it to be easily tuned both for convergence speed and for sensor reliability. This provides 

more control over the nature of the convergence and the filtering of the signals than other 

commonly used algorithms. In its base form, the algorithm provides one steps convergence. 

• MMG gesture classification 

o Offline analysis has shown that the MMG signal is sufficiently repeatable to permit classification of 

movement using several classification techniques, which range from purely statistical methods to 

more advanced machine learning techniques.  A labelled dataset of MMG data that can be used to 

test other classification (and segmentation) techniques in the future has also been generated. The 

methods implemented here achieve an offline accuracy of ~95% across 12 distinct gestures. Online 

implementations were trialled, and accuracies on 94.7% and 90.8% were achieved for 2 and 5 

gesture classifications respectively. 
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o A new form of IMU/MMG fusion to provide a classification accuracy that is robust to changes in the 

signal caused by arm pose was implemented. It was demonstrated that changing arm pose between 

training and testing caused classification accuracy to drop ~30%. The algorithm proposed here 

ensured that training data from the most relevant positions were used, leading to an offline accuracy 

of 89.6% classifying four gestures from seven diverse arm poses. 

• Demonstration of Applications 

o The real-time multi-model sensor system was implemented in several applications, demonstrating 

the first MMG/IMU-based robot teleoperation system that allows for hands free robot control in 

unstructured environments. 

7.3 Suggested Future Directions 
While the MMG/IMU combination has been demonstrated to provide enough data for reliable gesture classification, 

there are many extensions to the system demonstrated here, which could be implemented. The extensions outlined 

here could lead to increased robustness in real-world applications by removing some of the system constraints. 

The approach shown here relies on the classification of segmented gestures. This was intended to demonstrate the 

repeatable nature of the signal generation for similar gestures, but also introduces a source of error based on incorrect 

segmentation. The energy of the MMG signal is proportional to the speed of motion of the inciting gesture, and 

therefore gesture speed must be kept consistent to ensure that the segmentation is selecting the desired portion of 

the signal. This could be solved through the introduction of a continuous classification algorithm that actively classifies 

periods where a gesture is not present. This would also allow inertial data to be used as additional inputs for 

classification, removing the need for manually set threshold values. Algorithms such as Convolutional Neural Networks 

may provide such a solution. 

Further testing on the sensor longevity and consistency of signal between sensors must also be examined. While short 

term classification is independent of these factors, the commercialization of any such system must address these 

issues. The system must also be tested during a wider range of activities of daily living, both in its current form and 

inside a prosthetic socket. Like other muscle sensors, MMGs are known to be affected by the pressure applied to them, 

and therefore their response while inside a socket that is also supporting the weight of a prosthetic must be assessed. 

Increasing the number of MMG sensors in the system would be desirable. Sensors placed lengthways along the 

muscles in the forearm could allow for muscle contractions to be further examined by tracking the progression of the 

contraction down the length of the muscle. This could provide another method of noise rejection for the signal. 

Similarly, simultaneous comparison of sensors that are placed over the muscle body compared with sensors placed 

over areas such as the wrist of the end of the residual limb could also provide a method of isolating the muscle activity. 

Further sensor fusion should be examined. MMG sensors are unaffected by several the issues that cause calibration 

problems with other sensor types (such as EMG), but significantly more work has been performed using EMG sensors. 

Fusion of the two sensors could allow for both improved noise correction and classification, as well as on-the-fly 

recalibration of the EMG sensing elements. This could allow such a system to take advantage of the benefits of both 

sensors. 
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The work outlined here explores the use of hand gestures as a means of generating commands, however there are a 

wide variety of other applications for such an intent detection system. As a prosthetic interface, the system could 

provide a method of detecting intended gait, resulting in responsive lower limb prosthetics. As an assistive device, the 

system has applications ranging from detecting the progression and technique behind rehabilitation exercises to acting 

as an interface for ALS patients. The system provides information about the biomechanical processes of the human 

body in detail, without requiring a controlled and structured environment. As such there is a large body of work yet to 

be completed with respect to these sensing modalities, and the experiments outlined in this document are only the 

beginning. 

7.4 Final Comments 
This work has investigated the monitoring of mechanomyographic signals as a means of detecting volitional commands 

generated through hand gestures. It has demonstrated that the process of performing a gesture produces repeatable 

signals that provide the enough information to be categorized. It has tested several methods of classifying the signals 

and found that high accuracy can be achieved. New methods of orientation estimation have been implemented, and 

the fusion of MMG and IMU data has been extended. The system is capable of recording data that is usually only 

available in a controlled environment and utilizing it for the purpose of providing natural and intuitive gesture-based 

control. As the number of smart devices with which we interact daily continues to increase, and as technology becomes 

more ubiquitous, we will find more and more that we interact with it through virtual interfaces that rely on natural 

movements, including hand gestures, and it is possible that MMG may be the technology that facilitates this vision. 
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Appendix I 
Description of Machine Learning Algorithms used 
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K-Nearest Neighbours (KNN) 

KNNs are the simplest of the algorithms described here. In practical terms, they are also functionally the 

most similar to the template-based algorithm described in the previous section. KNNs work by assuming 

that each array of features that describe a signal can be represented by a single point in N-dimensional 

Euclidean space, where N is defined by the number of features being considered. The classifier can be 

trained by defining each member of the training set 𝑡 as a point in N-D space, leading to 𝑀 points for a 

training set of length 𝑀. Each point within that set can be addressed as 𝑡𝑚 where 𝑚 = 1,2, … , 𝑀. To 

classify a new data point (𝑠), straight lines can be constructed between 𝑠 and each instance of 𝑡𝑚, where 

the magnitude of the line is the Euclidean Distance (𝑑) between the two points, given by: 

 

𝑑𝑚(�̅�, 𝑡̅) = √∑(𝑠𝑖 − 𝑡𝑚𝑖)
2

𝑁

𝑖=1

 (68)  

 

The prediction of a KNN identifies the 𝐾 values of 𝑑𝑚 with the lowest magnitude, and the classification is 

performed by finding the modal class of the corresponding 𝑡𝑚 values. 

Since each member of the training class is preserved, this is less memory efficient than using the template-

based method described above, however it has the potential to be more accurate since data is not lost 

through generalizing the templates. 

The KNN used in this evaluation used the value 𝑘 = 10, and each of the neighbours were weighted 

equally. 

Decision Trees 

Decision trees perform classification by performing queries on the data, where each subsequent query is 

dependent on the answer to the previous one. Each query can be thought of as a node, the algorithm 

contains a single-entry point, known as a root node. The result from a query will cause the algorithm to 

move down one of several possible branches to the next node, finally reaching a leaf node, which contains 

the classifier prediction. Each node in the tree (other than the leaf nodes) separate data by checking to 

see if a condition is met. As a result, each node leads to two branches. 

The size of a decision tree is important when implementing for real time use. Larger trees will be more 

suited to classifying large, complex data sets, but they will also be more computationally expensive. The 

size can be controlled by limiting the growth of the tree, either by limiting the number of layers (nodes 

equidistant to the root node), or the number of branches within a layer. In this implementation, the 

number of branches within a layer was limited to 20. 

The layout of the decision tree used in this implementation was constructed according to the Gini diversity 

index, where every possible split for the data is assessed to find the one that gives the best split for the 

data. This is performed at every branch node to construct the tree. 



 

 
 

180 
 
 

Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is a two-stage method for classifying categorical data. The first stage is 

a process of dimensionality reduction, which is implemented to maintain class separation while reducing 

the number of dimensions in which the classes are expressed. This is achieved by projecting the data into 

a lower dimensional feature space that maximizes the distance between the mean values of the classes, 

while simultaneously minimizing the variance of the data within each class. As a result, this method of 

dimensionality reduction makes three assumptions regarding the input data: 

1. The input data represents a Gaussian distribution. 

2. The variance is the same for each attribute. 

3. Each class has a unique mean value 

In practice, this means that data should be prepared to ensure that it conforms to these assumptions. This 

includes removing outliers that could potentially affect these statistical characteristics. 

The second stage of the LDA implementation is the classification. This is often performed by estimating 

the probability that the new data belongs in each class, with the most probably outcome being the 

systems prediction. The implementation used here is based on Bayes’ Theorem. For a classification 

problem of 𝐾 classes, the prior probability of an observation 𝑋 belongs to 𝑘 class is given as 𝑃(𝑘). Bayes’ 

Theorem uses this, along with the density function describing the distribution of data within each 𝑘 class 

(denoted as 𝑓𝑘(𝑥)), to estimate the posterior probability 𝑃𝑘(𝑋) that the observation is a member of class 

𝑘, according to: 

 
𝑃𝑘(𝑋) =

𝑃(𝑘)𝑓𝑘(𝑥)

∑ 𝑃(𝑗)𝑓𝑗(𝑥)𝐾
𝑗=1

 (69)  

 

LDA creates linear discriminant boundaries between the classes, hence the second assumption. To cope 

with data sets where this is not the case, LDA was extended by allowing quadratic decision boundaries. 

This extension is known as Quadratic Discriminant Analysis QDA, and it allows for the quadratic 

boundaries that are created when the variance is not consistent between classes. Due to the increased 

amount of data required for QDA, only LDA was tested. 

Support Vector Machines 

Support Vector Machines (SVM) work by creating hyperplanes to separate different classes of data. A 

hyperplane is defined as being a geometric object with a dimensionality that is one less than the 

dimensionality of the data space. By this definition, a hyperplane can be used to separate an N-

dimensional space into two N-dimensional subspaces. SVMs are a generalization of an optimally 

separating hyperplane that can be used to separate two groups within the dataset. In practice, the SVM 

allows for some limited misclassification on the training data to construct a plane that can be described 

linearly (quadratic and cubic hyperplanes can also be used for complex problems). SVM are typically used 

to solve two class problems, and the hyperplane is constructed to leave the greatest margin between the 
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two classes. The data points closest to the hyperplane are referred to as support vectors, and the margin 

is calculated by evaluating the sum of the distance between these support vectors and the hyperplane. 

Since SVMs are binary classifiers, a single SVM is not suited to a multiclass problem, such as that presented 

here. There are two commonly used methods for using multiple SVMs to perform classification, one vs all 

and one vs one. In the one vs all approach, one SVM is trained for each class in the problem (K classes will 

require K classifiers). This SVM will identify whether the data belongs in its class, giving a confidence score. 

The class with the highest confidence score is taken as the system’s prediction for the class. The one vs 

one approach creates a classifier for each possible pair of classes, which is trained to distinguish between 

two of the possible classes. For K classes this requires 
𝐾(𝐾 − 1)

2
⁄  classifiers. The prediction for the 

system is the class that got the highest number of positive classifications. In this implementation, a one 

vs one approach was used. 

SVMs have several benefits when compared to LDA, but the most significant is that it does not make any 

assumptions regarding the incoming data. SVMs are not susceptible to outliers, since they only make use 

of the points defined as support vectors. As a result, they do not require signal conditioning, which could 

be challenging in real time implementations. 
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Appendix II 
Description of Features used when processing MMG data  
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Root Mean Square 

For a dataset 𝑑 of length (𝑁), the Root Mean Square (𝑅𝑀𝑆) is given by: 

 

𝑅𝑀𝑆 =  √
1

𝑁
∑ 𝑑𝑛 2

𝑁

𝑛=1

 (70)  

Integral of Absolute Value 

The Integral of Absolute Value (𝐼𝐴𝑉) is given by: 

 
𝐼𝐴𝑉 =  

1

𝑁
∑ 𝑑𝑛

𝑁

𝑛=1

 (71)  

Mean Absolute Value 

The Mean Absolute Value (𝑀𝐴𝑉) is given by: 

 
𝑀𝐴𝑉 =  

1

𝑁
∑|𝑑𝑛|

𝑁

𝑛=1

 (72)  

 

Modified Mean Absolute Value 1 

The Modified Mean Absolute Value 1 (𝑀𝐴𝑉1) is a weighted version of the 𝑀𝐴𝑉. 𝑀𝐴𝑉1 attempts to 

increase the robustness of the signal by reducing the weighting at the beginning and the end of the signal.  

 

 

𝑀𝐴𝑉1 is implemented as follows: 

 
𝑀𝐴𝑉1 =  

1

𝑁
∑ 𝑤𝑛|𝑑𝑛|

𝑁

𝑛=1

 

 

𝑤𝑛 = {
1,

0.5,
𝑖𝑓 0.25𝑁 ≤ 𝑛 ≤ 0.75𝑁

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(73)  

Modified Mean Absolute Value 2 

The Modified Mean Absolute Value 2 (𝑀𝐴𝑉2) is an extension that smooths the weighting function. It is 

implemented as follows: 
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𝑀𝐴𝑉2 =  

1

𝑁
∑ 𝑤𝑛|𝑑𝑛|

𝑁

𝑛=1

 

 

𝑤𝑛 = {

1,
4𝑛/𝑁 

4(𝑁 − 𝑛)/𝑁

𝑖𝑓 0.25𝑁 ≤ 𝑛 ≤ 0.75𝑁
𝑖𝑓 0.25𝑁 > 𝑛
𝑖𝑓 0.75𝑁 < 𝑛

 

(74)  

 

Simple Square Integral 

The Simple Square Integral (𝑆𝑆𝐼) is given by: 

 
𝑆𝑆𝐼 =  ∑|𝑑𝑛|2

𝑁

𝑛=1

 (75)  

 

Variance 

The Variance (𝑉𝐴𝑅) of the signal is the mean of the square of the difference from the MAV. In most EMG 

systems, mean of the signals are approximately zero, and so the definition is normally abbreviated. The 

MMG signal are low pass filtered, however the classification is being performed on a section of a low 

frequency gesture. As a result, the average cannot be assumed to be zero, so the term is defined as: 

 
𝑉𝐴𝑅 =

1

𝑁 − 1
∑(|𝑑𝑛| − 𝐼𝐴𝑉)2

𝑁

𝑛=1

 (76)  

 

Absolute Value of the 3rd, 4th and 5th Temporal Moment  

The Absolute Value of the 3rd, 4th and 5th Temporal Moment (𝑇𝑀3, 𝑇𝑀4 and 𝑇𝑀5) have been used in the 

statistical analysis of EMG signals. The terms are defined as: 

 
𝑇𝑀3 = |

1

𝑁
∑ 𝑑𝑛 3

𝑁

𝑛=1

| 

𝑇𝑀4 = |
1

𝑁
∑ 𝑑𝑛 4

𝑁

𝑛=1

| 

(77)  
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𝑇𝑀5 = |
1

𝑁
∑ 𝑑𝑛 5

𝑁

𝑛=1

| 

 

Difference Absolute Mean Value 

The Difference Absolute Mean Value (𝐷𝐴𝑀𝑉) is given by: 

 
𝐷𝐴𝑀𝑉 =

1

𝑁 − 1
∑|𝑑𝑛+1 − 𝑑𝑛|

𝑁−1

𝑛=1

 (78)  

Difference Absolute Standard Deviation Value 

The Difference Absolute Standard Deviation Value (𝐷𝐴𝑆𝐷𝑉) is given by: 

 

𝐷𝐴𝑆𝐷𝑉 = √
1

𝑁 − 1
∑|𝑑𝑛+1 − 𝑑𝑛|2

𝑁−1

𝑛=1

 (79)  
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Appendix III 
Description of Kuka kinematics used in VR visualisation 
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The axes of rotation of the simulated robot are shown in Table 31.  

Using this, the kinematics have been defined using the Denavit Hartenberg method, allowing the 

relationships between joints to be summarized, as in Table 31. 

 

The definition for these parameters is: 

𝑎𝑖 = 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 �̂�𝑖 𝑡𝑜 �̂�𝑖+1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑙𝑜𝑛𝑔 �̂�𝑖 

𝛼𝑖 = 𝑡ℎ𝑒 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 �̂�𝑖  𝑡𝑜 �̂�𝑖+1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑏𝑜𝑢𝑡 �̂�𝑖 

𝑑𝑖 = 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 �̂�𝑖−1 𝑡𝑜 �̂�𝑖 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑙𝑜𝑛𝑔 �̂�𝑖 

𝜃𝑖 = 𝑡ℎ𝑒 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 �̂�𝑖−1 𝑡𝑜 �̂�𝑖 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑏𝑜𝑢𝑡 �̂�𝑖 

The rotation matrix around each joint is given by: 

 

𝑇𝑖
𝑖−1 = (

cos 𝜃𝑖 − sin 𝜃𝑖

sin 𝜃𝑖 cos 𝛼𝑖−1 cos 𝜃𝑖 cos 𝛼𝑖−1

0 𝑎𝑖−1

−sin 𝛼𝑖−1 − sin 𝛼𝑖−1 𝑑𝑖

sin 𝜃𝑖 sin 𝛼𝑖−1 cos 𝜃𝑖 sin 𝛼𝑖−1

0 0
cos 𝛼𝑖−1 cos 𝛼𝑖−1 𝑑𝑖

0 1

) 

 

(80)  

The orientation and position of the end effector in the base frame is given by: 

 𝑇7
0 = 𝑇1

0𝑇2
1𝑇3

2𝑇4
3𝑇5

4𝑇6
5𝑇7

6 (81)  

 

The angles required to move the end effector to a given position and orientation can be calculated through 

the inverse kinematics of the Kuka simulation, however that was not required for the experiments defined 

here. Instead, a number of specifications were defined based on the intended use during the experiment. 

Table 31 – Summary of Denavit Hartenberg parameters of virtual Kuka robot 

𝒊 𝒂𝒊−𝟏 𝜶𝒊−𝟏 𝒅𝒊 𝜽𝒊 

𝟏 0 0˚ 𝑑1 𝜃1 
𝟐 0 −90˚ 𝑑2 𝜃2 
𝟑 0 90˚ 𝑑3 𝜃3 
𝟒 0 −90˚ 𝑑4 𝜃4 
𝟓 0 90˚ 𝑑5 𝜃5 
𝟔 0 −90˚ 𝑑6 𝜃6 
𝟕 0 90˚ 𝑑7 𝜃7 
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Figure 36 – Axis of rotations of virtual Kuka robot 
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Those specifications were as follows:  

Specification_1 - The end effector was only required to be in one orientation, which is parallel to the Z 

axis. 

Specification_2 - There are no obstacles in the way of the arm, thus an elbow up solution is appropriate 

in all situations. 

Specification_3 - 𝑙2 = 𝑙4 𝑎𝑛𝑑 𝑙3 = 𝑙5 

Specification_4 - 𝜃3 = 𝜋  

To simplify descriptions, the end point of each joint (𝑖) will be defined according as 𝑃𝑖𝑥𝑦𝑧
. The target 

position can be defined at 𝑡𝑎𝑟𝑥𝑦𝑧. 

These specifications allowed the derivations of joint angles to be expressed as a minimization problem by 

defining the error (𝑒𝑟𝑟) as the deference between 𝑡𝑎𝑟𝑥𝑦𝑧 and 𝑃7𝑥𝑦𝑧
, therefore the minimum value of 𝑒𝑟𝑟 

is given by: 

 𝑚𝑖𝑛 (𝑡𝑎𝑟𝑥𝑦𝑧 − 𝑃7𝑥𝑦𝑧
) (82)  

𝑃7𝑥𝑦𝑧
 can be calculated by taking the position vector from 𝑇7

0, which is dependent on 𝜃123456. 

Based on Specification_1, the point between 𝑃6𝑥𝑦𝑧
 can be expressed by: 

 𝑃6𝑥𝑦𝑧
=  [𝑃7𝑥

, 𝑃7𝑦
, 𝑃7𝑧

− 𝑙7] (83)  

The global orientation of joint 6 (𝜃𝐽6) is dependent on the previous five joints, and is not current known, 

As a result, the position 𝑃5𝑥𝑦𝑧
 cannot be determined at this point, however since 𝛼6 =

𝜋

2
, the position of 

𝑃5𝑥𝑦𝑧
 can be expressed in terms of 𝜃𝐽6, as follows: 

 𝑃5𝑥𝑦𝑧
=  [𝑃7𝑥

− 𝑙6 ∗ sin(𝜃𝐽6) , 𝑃7𝑦
− 𝑙6 ∗ cos(𝜃𝐽6) , 𝑃7𝑧

− 𝑙7] (84)  

If the position 𝑃5𝑥𝑦𝑧
were known, then 𝜃1, 𝜃2 and 𝜃4 can be calculated. Based on Specification_4, 𝑙2 and 

𝑙4 are parallel and in opposite directions, and therefore cancel each other out. 

 𝜃1 = 𝑎𝑡𝑎𝑛2(𝑃5𝑧
, 𝑃5𝑧

) (85)  

𝑃0𝑥𝑦𝑧
 is located at the origin. Based on the configuration of the robot, 𝑃1𝑥𝑦𝑧

 is always located at [0, 𝑙1, 0]. 

A line (𝑙𝑐) between 𝑃1𝑥𝑦𝑧
 and 𝑃5𝑥𝑦𝑧

 is defined as: 

 𝑙𝑐 = |𝑃1𝑥𝑦𝑧
− 𝑃5𝑥𝑦𝑧

| (86)  

A second line (𝑙𝑑) between 𝑃0𝑥𝑦𝑧
 and 𝑃5𝑥𝑦𝑧

 is defined as: 
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 𝑙𝑑 = |𝑃0𝑥𝑦𝑧
− 𝑃5𝑥𝑦𝑧

| (87)  

These lines can be seen in Figure 37. 

Based on this model, 𝜃2 and 𝜃4 can be calculated according to: 

 𝜃2 = 𝜋 − 𝜃𝐵 − 𝜃𝐸 (88)  

 𝜃4 = 𝜋 − 𝜃𝐴 (89)  

Where, using the cosine rule: 

 
𝜃𝐴 = cos−1 (

𝑙5
2 + 𝑙3

2 − 𝑙𝐶
2

2 ∗ 𝑙5 ∗ 𝑙3
) (90)  

 
𝜃𝐵 = cos−1 (

𝑙3
2 + 𝑙𝐶

2 − 𝑙5
2

2 ∗ 𝑙3 ∗ 𝑙𝐶
) (91)  

 
𝜃𝐸 = cos−1 (

𝑙1
2 + 𝑙𝐶

2 − 𝑙𝐷
2

2 ∗ 𝑙1 ∗ 𝑙𝐶
) (92)  

The rotation of 𝜃5 must be set so that joint 6 lies on a plane parallel to the XY plane. As a result, if  𝑙1 =

𝑙2 = 𝑙3 = 𝑙4 = 𝑙5 = 0, then this plane will be defined by Z = 0. 

Solving the forward kinematics for 𝑇5
0 with 𝜃5 as an unknown, and equating the Z component to 0 yields: 

 𝑎 sin 𝜃5 + 𝑏 cos 𝜃5 = 0 (93)  

Where 𝑎 = − cos(𝜃1) cos(𝜃4) sin(𝜃3) + sin(𝜃1) sin(𝜃2) sin(𝜃4)

− cos(𝜃2) cos(𝜃3) cos(𝜃4) sin(𝜃1) 
(94)  

And 𝑏 = cos(𝜃1) cos(𝜃3) − cos(𝜃2) 𝑠𝑖𝑛(𝜃1) sin(𝜃3) (95)  

 

Rearranging for 𝜃5 gives: 

 
𝜃5 = 2 tan−1 (

𝑎 − √𝑎2 + 𝑏2

𝑏
+ 𝜋𝑛) (96)  

The final variable 𝜃6 can be calculated by evaluating 𝑇6
0. In this case, the Y axis can be set to 0, and the 𝑙6 

can be set to 0. Solving as before: 

 𝑎 sin 𝜃6 + 𝑏 cos 𝜃6 = 0 (97)  
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Where 𝑎 and 𝑏 are functions of 𝜃12345.  

The error can then be calculated by solving 𝑇7
0 to find 𝑃7𝑥𝑦𝑧

, however this method requires an 

estimation for 𝑃5𝑥𝑦𝑧
. The implementation of this minimization requires an iterative process, if 𝑃5𝑥𝑦𝑧

 is 

set to 𝑡𝑎𝑟𝑥𝑦𝑧, 𝑒𝑟𝑟1 can be found. The second estimation for 𝑃5𝑥𝑦𝑧
 of 𝑡𝑎𝑟𝑥𝑦𝑧 + 𝑒𝑟𝑟1 allows a new error 

value (𝑒𝑟𝑟2) to be generated, and a third estimation of 𝑡𝑎𝑟𝑥𝑦𝑧 + 𝑒𝑟𝑟1 + 𝑒𝑟𝑟2 can be made. The error 

values will tend to 0, and therefore the system will tend towards the correct position. A threshold for 

accuracy can be used to decrease the required iterations. 

 

Figure 37 – Virtual kinematic model for solving elbow up inverse kinematics 


