

Fused Mechanomyography and

Inertial Measurement for

Human-Robot Interface
by

Samuel Charles Wilson

Doctor Ravi Vaidyanathan and Professor Alison McGregor

A dissertation submitted to Imperial College London in accordance with the

requirements for award of the degree Doctor of Philosophy.

Department of Mechanical Engineering

Supervised by

February 2020

1

2

Abstract
Human-Machine Interfaces (HMI) are the technology through which we interact with the ever-increasing
quantity of smart devices surrounding us. The fundamental goal of an HMI is to facilitate robot control
through uniting a human operator as the supervisor with a machine as the task executor. Sensors,
actuators, and onboard intelligence have not reached the point where robotic manipulators may function
with complete autonomy and therefore some form of HMI is still necessary in unstructured environments.
These may include environments where direct human action is undesirable or infeasible, and situations
where a robot must assist and/or interface with people. Contemporary literature has introduced concepts
such as body-worn mechanical devices, instrumented gloves, inertial or electromagnetic motion tracking
sensors on the arms, head, or legs, electroencephalographic (EEG) brain activity sensors,
electromyographic (EMG) muscular activity sensors and camera-based (vision) interfaces to recognize
hand gestures and/or track arm motions for assessment of operator intent and generation of robotic
control signals. While these developments offer a wealth of future potential their utility has been largely
restricted to laboratory demonstrations in controlled environments due to issues such as lack of
portability and robustness and an inability to extract operator intent for both arm and hand motion.

Wearable physiological sensors hold particular promise for capture of human intent/command. EMG-
based gesture recognition systems in particular have received significant attention in recent literature. As
wearable pervasive devices, they offer benefits over camera or physical input systems in that they neither
inhibit the user physically nor constrain the user to a location where the sensors are deployed. Despite
these benefits, EMG alone has yet to demonstrate the capacity to recognize both gross movement (e.g.
arm motion) and finer grasping (e.g. hand movement). As such, many researchers have proposed fusing
muscle activity (EMG) and motion tracking e.g. (inertial measurement) to combine arm motion and grasp
intent as HMI input for manipulator control. However, such work has arguably reached a plateau since
EMG suffers from interference from environmental factors which cause signal degradation over time,
demands an electrical connection with the skin, and has not demonstrated the capacity to function out of
controlled environments for long periods of time.

This thesis proposes a new form of gesture-based interface utilising a novel combination of inertial
measurement units (IMUs) and mechanomyography sensors (MMGs). The modular system permits
numerous configurations of IMU to derive body kinematics in real-time and uses this to convert arm
movements into control signals. Additionally, bands containing six mechanomyography sensors were used
to observe muscular contractions in the forearm which are generated using specific hand motions. This
combination of continuous and discrete control signals allows a large variety of smart devices to be
controlled.

Several methods of pattern recognition were implemented to provide accurate decoding of the
mechanomyographic information, including Linear Discriminant Analysis and Support Vector Machines.
Based on these techniques, accuracies of 94.5% and 94.6% respectively were achieved for 12 gesture
classification. In real-time tests, accuracies of 95.6% were achieved in 5 gesture classification.

It has previously been noted that MMG sensors are susceptible to motion induced interference. The thesis
also established that arm pose also changes the measured signal. This thesis introduces a new method of
fusing of IMU and MMG to provide a classification that is robust to both of these sources of interference.

3

Additionally, an improvement in orientation estimation, and a new orientation estimation algorithm are
proposed. These improvements to the robustness of the system provide the first solution that is able to
reliably track both motion and muscle activity for extended periods of time for HMI outside a clinical
environment.

Application in robot teleoperation in both real-world and virtual environments were explored. With
multiple degrees of freedom, robot teleoperation provides an ideal test platform for HMI devices, since it
requires a combination of continuous and discrete control signals. The field of prosthetics also represents
a unique challenge for HMI applications. In an ideal situation, the sensor suite should be capable of
detecting the muscular activity in the residual limb which is naturally indicative of intent to perform a
specific hand pose and trigger this post in the prosthetic device. Dynamic environmental conditions within
a socket such as skin impedance have delayed the translation of gesture control systems into prosthetic
devices, however mechanomyography sensors are unaffected by such issues.

There is huge potential for a system like this to be utilised as a controller as ubiquitous computing systems
become more prevalent, and as the desire for a simple, universal interface increases. Such systems have
the potential to impact significantly on the quality of life of prosthetic users and others.

4

Acknowledgements
I would like to express my thanks to Dr. Ravi Vaidyanathan and Professor Alison McGregor for giving me

the opportunity to pursue this work and the advice and guidance to complete it.

I would also like to extend my thanks to Alex Lewis for providing the direction and encouragement to

take this work further than I ever envisioned.

Also to the members of the Biomechatronics Lab and its alumni: Chris, Enrico, James, Lewis, Matt,

Marcel, Marcus and Paolo, as well as all those who joined us for their assistance and for creating an

environment in which it was a pleasure to work.

I extend my gratitude to the volunteers who participated in my studies, and whose feedback was always

valuable in choosing a path forward.

Finally, I would like to express my deepest gratitude to my family, to Marcus, Catherine and to Diana.

5

6

Declaration of Originality

I, Samuel Charles Wilson, certify that all material in this dissertation which is not my own work has been

duly acknowledged.

Copyright Declaration

©The copyright of this thesis rests with the author and is made available under a Creative Commons
Attribution Non-Commercial No Derivatives license. Researchers are free to copy, distribute or transmit

the thesis on the condition that they attribute it, that they do not use it for commercial purposes and
that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must

make clear to others the license terms of this work.

7

8

Dedication

I couldn’t have got this far without you.

Thank you for your hard work and support.

You know who you are.

9

“The most profound technologies are those that disappear. They weave themselves into the fabric of

everyday life until they are indistinguishable from it.”

Mark Weiser

10

Contents

Abstract .. 2

Acknowledgements .. 4

Declaration of Originality .. 6

Copyright Declaration ... 6

Dedication .. 8

List of Tables ...16

List of Figures ..16

Nomenclature ..18

Abbreviations ...18

Symbols ...19

Chapter 1 ..22

1.1 Project Background ...23

1.2 Motivation ..23

1.3 Aim ..24

1.3.1 Smart Systems ..24

1.3.2 Controlling Upper-Limb Prosthetic Devices ...25

1.3.3 Robot Teleoperation ..26

1.4 Contributions ...26

1.5 Publications ...27

1.5.1 Journal Papers ..27

1.5.2 Conference Papers ...27

1.6 Layout of Report ..28

Chapter 2 ..30

2.1 Structure of the Literature Review..31

2.2 Overview of Intelligent Human-Machine Interfaces and Sensing Technology32

2.2.1 Introduction to Terms ..32

2.2.2 Traditional HMI ..32

2.3 Amputees and their prosthetics ...33

2.3.1 Causes of Amputation ...33

2.3.2 Prosthetic Devices ..34

11

2.3.3 Assistive HMIs ..36

2.4 Sensing Modalities ..37

2.4.1 Physical Input Systems ...37

2.4.2 Vision-based systems ...40

2.4.3 Inertial Measurement Units ...41

2.4.4 Electromyography ...42

2.4.5 Mechanomyography ..45

2.4.6 Myokinemetric signals ...46

2.4.7 Sonomyography ..47

2.4.8 Other forms of interface ...47

2.4.8.1 Gaze-based interface ...47

2.4.8.2 Tongue-based interface ...48

2.4.8.3 Brain Machine Interface ...48

2.4.8.4 Voice ..48

2.5 Guidelines for HMI Design ...49

2.5.1 Functionality/Robustness ..49

2.5.2 Usability/Comfort ...51

2.5.3 Form/Pervasiveness ...52

2.5.4 Accessibility/Cost ..53

2.6 Overview of Orientation Estimation ..56

2.6.1 Introduction to Quaternions ...57

2.6.2 Gradient Descent Algorithm – In-depth Review ...59

2.7 Chapter Summary ...61

Chapter 3 ..64

3.1 Introduction to Hardware Development ..65

3.1.1 Key User Requirements ..65

3.2 NUIMU Development ...66

3.2.1 Hardware Design ..66

3.2.1.1 Microcontroller..67

3.2.1.2 Wireless Module ...67

3.2.1.3 UART-USB Converter ..67

12

3.2.1.4 Inertial Measurement Unit ..67

3.2.1.5 Power Management ...67

3.2.1.6 Auxiliary Ports ..68

3.2.1.7 Manufacturing ..68

3.2.1.8 Finalizing Hardware..68

3.2.2 Hardware Improvements ...69

3.2.2.1 Improved Inertial Measurement Unit ...69

3.3 Firmware ...69

3.4 NUIMU Attributes ...71

3.4.1 Other Applications ...71

3.4.1.1 Secondary Inertial Measurement Unit ..71

3.4.1.2 Prosthetic Hand Driver ...73

3.4.1.3 Infrared Remote ...73

3.5 Mechanomyography Sensor Design ..74

3.6 Sensor Suite Evaluation ..75

3.7 NUIMU Host Software ...75

3.7.1 C# code for Windows (The NU Interface) ..75

3.7.1.1 NUClass ...76

3.7.1.2 UIClass ..78

3.7.2 Android code for Mobiles (The NU App) ..79

3.7.2.1 First Iteration (Android Studio) ..80

3.7.2.2 Second Iteration (Unity) ..80

3.8 Chapter Summary ...80

Chapter 4 ..82

4.1 Initial Implementation of Orientation Estimation Algorithm ...83

4.1.1 Sensor Bias Removal ..83

4.1.2 Gyroscopic Calibration ..83

4.1.3 Magnetometer Calibration ...83

4.1.4 Comparison Against Known Orientation ..85

4.2 Improving the Efficiency of the Algorithm ...87

4.3 Gradient Descent Modifications ...90

13

4.3.1 Motivation..90

4.3.2 Solution ...90

4.3.3 Algorithm Convergence ...91

4.3.4 Algorithm Assessment...92

4.3.5 Robustness to Gyroscopic Bias ...96

4.4 New Algorithm Formulation..97

4.4.1 Motivation..97

4.4.2 Solution ...97

4.4.3 Convergence Rate .. 101

4.4.4 Efficiency – Base Algorithm ... 102

4.5 Chapter Summary ... 102

Chapter 5 .. 104

5.1 Activity Classification ... 105

5.2 Database Generation... 106

5.2.1 Participants ... 106

5.2.2 Protocol ... 106

5.3 Gesture Segmentation ... 107

5.4 Gesture Classification .. 110

5.4.1 Template-based Classification .. 110

5.4.1.1 Offline Accuracy ... 111

5.4.1.2 Real-time Implementation .. 113

5.4.1.3 Real-time Accuracy .. 113

5.4.2 Machine Learning-based Classification ... 115

5.4.2.1 Algorithms .. 115

5.4.2.2 Experimental Comparison .. 116

5.4.2.3 Dimensionality Reduction ... 117

5.4.2.4 Comparison of Algorithms for Real-time Implementation 120

5.4.2.5 Real-time Implementation .. 122

5.4.2.6 Real-time Accuracy .. 122

5.5 Guidelines for Practical Use of MMGs ... 123

5.5.1 Ideal Number of MMGs ... 123

14

5.6 Chapter Summary ... 125

Chapter 6 .. 126

6.1 Introduction .. 127

6.2 Real-world implementation for Robot Teleoperation .. 127

6.2.1 Experimental Protocol ... 127

6.2.2 Results .. 131

6.2.3 Discussion... 131

6.3 Virtual Reality Environments .. 132

6.4 Hands Free Control within Virtual Environments. ... 135

6.4.1 Participants ... 135

6.4.2 Experimental Protocol ... 135

6.4.3 Results .. 137

6.4.4 Discussion... 138

6.5 Prosthetic Control – Classification in Uncontrolled Environments 138

6.5.1 Participants ... 138

6.5.2 Experimental Protocol ... 139

6.5.3 Classification – One vs One .. 139

6.5.4 Classification – Voting ... 141

6.5.5 Classification – Many vs. One ... 141

6.5.6 Fused Mechanomyography and Inertial Measurement .. 143

6.5.7 Conclusion .. 144

6.6 Robot Teleoperation in Virtual Environments ... 144

6.6.1 Kuka Kinematic Derivation .. 145

6.6.2 Experimental Protocol ... 145

6.6.2.1 Participants .. 145

6.6.2.2 Training Protocol .. 145

6.6.2.3 Testing Protocol ... 146

6.6.3 Results .. 148

6.6.4 Discussion... 150

6.7 Chapter Summary ... 151

Chapter 7 .. 154

15

7.1 Thesis Summary .. 155

7.2 Summary of Contributions ... 157

7.3 Suggested Future Directions ... 158

7.4 Final Comments .. 159

References .. 160

Appendix I ... 178

Appendix II .. 182

Appendix III ... 186

16

List of Tables

TABLE 1 - RECENT EMG CLASSIFICATION STUDIES .. 45
TABLE 2 - RECENT MMG CLASSIFICATION STUDIES ... 46
TABLE 3 – DESCRIPTION OF NUIMU HARDWARE ATTRIBUTES.. 71
TABLE 4 – IMU ERRORS .. 87
TABLE 5 - CONFUSION MATRIX SHOWING CLASSIFICATION ACCURACIES OF TEMPLATE-BASED CLASSIFICATION FOR

ALL NON-AMPUTEE SUBJECTS .. 112
TABLE 6 - CONFUSION MATRIX SHOWING CLASSIFICATION ACCURACIES OF TEMPLATE-BASED CLASSIFICATION FOR

AMPUTEE SUBJECT ... 112
TABLE 7 - REAL-TIME SEGMENTATION ACCURACIES ... 114
TABLE 8 - REAL TIME CLASSIFICATION ACCURACIES USING TEMPLATE-BASED CLASSIFICATION 115
TABLE 9 - CONFUSION MATRIX OF CLASSIFICATION ACCURACIES USING SVM .. 116
TABLE 10 - CONFUSION MATRIX OF CLASSIFICATION ACCURACY FOR AMPUTEE SUBJECT USING SVM 116
TABLE 11 - COMPARISON OF DIFFERENT MACHINE LEARNING TECHNIQUES ON GESTURE GROUPS FOR NON-

AMPUTEES (AMPUTEE) ... 117
TABLE 12 - EFFECT OF PCA ON CLASSIFICATION .. 118
TABLE 13 – ACCURACIES OF CLASSIFICATION USING EXTRACTED FEATURES ... 119
TABLE 14 - SUMMARY OF BEST PERFORMING MACHINE LEARNING METHODS FOR CLASSIFICATION 119
TABLE 15 - RELEVANT METRICS FOR CLASSIFIER COMPARISON ... 121
TABLE 16 – SUMMARY OF TOP PERFORMING CLASSIFIER METRICS ... 122
TABLE 17 - SEGMENTATION ACCURACY FOR REAL TIME MACHINE LEARNING IMPLEMENTATION 123
TABLE 18 - CLASSIFICATION ACCURACY USING LDA IN REAL TIME APPLICATION ... 123
TABLE 19 – AVERAGE ACCURACIES OF BAXTER ROBOT CONTROL .. 131
TABLE 20 – INDEX OF DIFFICULTIES FOR BAXTER TASKS ... 131
TABLE 21 – LDA ACCURACY WHEN TRAINED AND TESTED ON DIFFERENT POSITIONS ... 140
TABLE 22 – LINEAR SVM ACCURACY WHEN TRAINED AND TESTED ON DIFFERENT POSITIONS 140
TABLE 23 – CUBIC SVM ACCURACY WHEN TRAINED AND TESTED ON DIFFERENT POSITIONS 140
TABLE 24 – EXAMPLE OF PERFORMANCE OF VOTING CLASSIFIER .. 141
TABLE 25 – ACCURACIES OF CLASSIFIERS TRAINED ON ADJACENT POSITIONS ... 142
TABLE 26 – CLASSIFIER ACCURACY WHEN TRAINED ON REPRESENTATIVE DATASET SUBGROUPS 142
TABLE 27 - TIME TAKEN TO COMPLETE VR ROBOT TELEOPERATION EXPERIMENT .. 148
TABLE 28 – ACCURACY OF COMMANDS IN VR ROBOT TELEOPERATION EXPERIMENT .. 149
TABLE 29 – PRECISION OF COMMANDS IN VR ROBOT TELEOPERATION EXPERIMENT... 149
TABLE 30 – MISCLASSIFICATIONS AND FALSE POSITIVES SEPARATED BY TASK .. 150
TABLE 31 – SUMMARY OF DENAVIT HARTENBERG PARAMETERS OF VIRTUAL KUKA ROBOT 187

List of Figures

FIGURE 1 - LAYOUT OF LITERATURE REVIEW... 31
FIGURE 2 – COMPARISON OF FEATURES OF DIFFERENT SENSING MODALITIES ... 55
FIGURE 3 – BREAKDOWN OF IC ELEMENTS ON NUIMU BOARDS .. 66
FIGURE 4 – FINAL PACKAGE OF NUIMU HARDWARE .. 68
FIGURE 5 – UPDATED IMU ELEMENT ON NUIMU BOARD ... 69

file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827466
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827467
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827468
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827469
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827470
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827470
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827471
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827471
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827472
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827473
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827474
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827475
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827476
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827476
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827477
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827478
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827479
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827480
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827481
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827482
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827483
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827484
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827485
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827486
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827487
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827488
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827489
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827490
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827491
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827492
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827493
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827494
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827495
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827496
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827497
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827498
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827499
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827500
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827501

17

FIGURE 6 – FLOWCHART DEMONSTRATING PROGRAM FLOW IN NUIMU .. 70
FIGURE 7 - NUIMU WITH PERIPHERAL IMU ... 72
FIGURE 8 - NUIMU USED AS A PROSTHETIC HAND DRIVER ... 72
FIGURE 9 – NUIMU AS AN INFRARED REPEATER ... 73
FIGURE 10 - MMG DESIGNS ... 74
FIGURE 11 - REAL-TIME DATA VISUALISATION .. 77
FIGURE 12 - MAIN INTERFACE WINDOW... 78
FIGURE 13 -MAGNETOMETER OUTPUT (LEFT: RAW MAGNETOMETER OUTPUT. MID: CROPPED AND FILTERED.

RIGHT: CALIBRATED OUTPUT) .. 84
FIGURE 14 - OPTOTRAK SYSTEM USED TO EVALUATE ORIENTATION ESTIMATION ALGORITHM 86
FIGURE 15 - EXPERIMENTAL SET UP FOR ORIENTATION ESTIMATION EVALUATION (A – IMU IN POSITION. B- IMU

WITH BEACON AFFIXED) ... 86
FIGURE 16 – IMU ORIENTATION OUTPUT AGAINST MEASURED ORIENTATION ... 86
FIGURE 17 – MAGNITUDE OF ERROR FUNCTION WITH RESPECT TO ROTATION .. 91
FIGURE 18 – EVALUATION OF CONVERGENCE OF DIFFERENT GDAS .. 93
FIGURE 19 – EVALUATION OF CONVERGENCE OF DIFFERENT GDAS (NO INCLINATION) .. 93
FIGURE 20 – THE EFFECT OF MAGNETIC INCLINATION ON TIME TO CONVERGE .. 94
FIGURE 21 - RESULT OF ROTATING MEASURED MAGNETOMETER NINETY DEGREES AROUND Z-AXIS 95
FIGURE 22 - EFFECT OF GYROSCOPIC BIAS ON CONVERGENCE .. 96
FIGURE 23 - THREE ‘OPEN’ GESTURES IDENTIFIED AND SEGMENTED FROM NON-AMPUTEE SUBJECT 109
FIGURE 24 - ONE HUNDRED INSTANCES OF THE ‘OPEN’ GESTURE FROM ONE NON-AMPUTEE SUBJECT 110
FIGURE 25 - HOW NUMBER OF TRAINING SAMPLES AFFECTS ACCURACY.. 121
FIGURE 26 – FLOWCHART SHOWING STEPS FROM DATA ACQUISITION TO GESTURE IDENTIFICATION 124
FIGURE 27 - EFFECT OF NUMBER OF MMGS ON CLASSIFICATION ACCURACY .. 124
FIGURE 28 - EXPERIMENTAL HARDWARE .. 130
FIGURE 29 - EXPERIMENTAL SETUP ... 130
FIGURE 30 -USING RIFT CONTROLLER TO MONITOR HAND POSITION.. 136
FIGURE 31 - USING IMUS TO DERIVE HAND POSITION .. 136
FIGURE 32 - AVERAGE DEVIATION FROM A DIRECT PATH .. 137
FIGURE 33 – POSITIONS OF GESTURES CREATED IN TWO ARM CONFIGURATIONS .. 144
FIGURE 34 – POSITION OF ARMBAND FOR GESTURE-BASED EXPERIMENTS .. 146
FIGURE 35 - THE SIX TASKS FOR VR ROBOT CONTROL .. 147
FIGURE 36 – AXIS OF ROTATIONS OF VIRTUAL KUKA ROBOT.. 187
FIGURE 37 – VIRTUAL KINEMATIC MODEL FOR SOLVING ELBOW UP INVERSE KINEMATICS.................................... 187

file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827502
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827503
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827504
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827505
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827506
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827507
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827508
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827509
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827509
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827510
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827511
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827511
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827512
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827513
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827514
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827515
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827516
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827517
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827518
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827519
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827520
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827521
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827522
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827523
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827524
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827525
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827526
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827527
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827528
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827529
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827530
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827531
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827532
file:///C:/Users/sw7814/Google%20Drive/Imperial%20College%20Thesis/Thesis%20Corrections%20v4%20-%20not%20tracked.docx%23_Toc31827533

18

Nomenclature

Abbreviations
ACC Average Amplitude Change
ADC Analog-to-Digital Converter
ADL Activities of Daily Living
ANN Artificial Neural Networks
AR Autoregressive models
BC Bayesian Classifier
BCI Brain Computer Interface
BLE Bluetooth Low Energy
BMI Brain Machine Interface
CAVE Cave Automatic Virtual Environment
CNN Convolutional Neural Networks
CSVM Cubic Support Vector Machines
DAMV Difference Absolute Mean Value
DASDV Difference Absolute Standard Deviation Value
DoF Degree of Freedom
DT Decision Trees
ECoG Electrocorticography
EEG Electroencephalography
EKF Extended Kalman Filter
EMG Electromyography
emgHIST Electromyographic Histogram
EPP Extended Physiological Proprioception
FL Fuzzy Logic
FSM Finite State Machine
GUI Graphic User Interface
HCI Human-Computer Interaction
HMI Human-Machine Interface
HMM Hidden Markov Models
HPE Human Pose Estimation
I/O Input/Output
I2C Inter-Integrated Circuit
IAV Integral of Absolute Value
IC Integrated Circuit
IMU Inertial Measurement Unit
IR Infrared
KNN k-Nearest Neighbour
LDA Linear Discriminant Analysis
LED Light Emitting Diode
LOG Log-detector
MARG Magnetic, Angular Rate and Gravity

19

MAV Mean Absolute Value
MEMS Micro-electro-mechanical systems
MIPS Million Instructions per Second
MK Myokinemetric
MLP Multilayer Perceptron
MMG Mechanomyography
MMI Man-Machine Interfaces
NUI Natural User Interface
PCB Printed Circuit Board
PR Pattern Recognition
PTSD Post-Traumatic Stress Disorder
PWM Pulse Width Modulation
QDA Quadratic Discriminant Analysis
RFS Random Forests
sEMG Surface Electromyography
SMG Sonomyography
SPI Serial Peripheral Interface
SSI Simple Squared Integral
SSP Serial Port Profile
SVM Support Vector Machine
TCP/IP Transmission Control Protocol Internet Protocol
TMEP Tongue Movement Ear Pressure
TSS Toxic Shock Syndrome
UART Universal Asynchronous Receiver-Transmitter
V v-Order detector
VAR Variance
VR Virtual Reality
VUI Voice User Interface
WAMP Willison Amplitude
WIMP Windows, Icons, Menus and Pointers
ZC Zero-Crossing

Symbols
𝒒 Quaternion
𝒒𝒕 Quaternion at time 𝒕
𝒗 Quaternion which represents a vector
𝒖 Vector
𝑅 Rotation Matrix
𝒗𝑟(𝑎) Reference acceleration vector

𝒗𝑟(𝑚) Reference magnetometer vector

𝒗𝑚(𝑎) Measured acceleration vector

𝒗𝑚(𝑚) Measured magnetometer vector

20

𝑆𝐹 Scaling factor
𝑒𝑟𝑟 Error
𝑒𝑠𝑖𝑔 Energy of MMG signal

𝑇𝑀𝑀𝐺 Threshold of MMG signal
𝑇𝑔𝑥𝑦𝑧

 Threshold of gyroscopic signal

‖𝐺‖ Energy of gyroscopic signal
𝑁 Number of MMGs
𝑚 Continuous vector containing signal from MMG
𝑚∗ Filtered continuous MMG data
𝑠𝑁 Vector containing segmented signal from MMG
𝜌 Pearson Product-Moment Correlation Coefficient
𝜎 Standard deviation
𝑝 Pointer
𝜔 Output of gyroscope

21

22

Chapter 1
Introduction to the problem

23

1.1 Project Background
This thesis details an investigation into the use of biomechanical information to derive user intent for

Human-Machine Interfaces (HMIs). Almost all HMIs currently available require the user to perform

dexterous manipulations on an application specific interface. This requires fine motor control that makes

such interfaces unusable for some. Simultaneously, we are surrounded by an ever-increasing quantity of

smart devices, all presenting obtrusive interfaces as they compete for our attention. As these devices

become more pervasive, studies on the field of Human Machine Interfaces (HMIs) have identified a push

towards more generalized controllers that make use of natural forms of interaction such as gestures. It

has been suggested that this will make users more comfortable with these devices. This thesis describes

the design and implementation of a sensor suite to enable pervasive monitoring of body kinematics and

muscular activity, and the development of algorithms to allow for the volitional control of smart/robotic

devices, providing such an interface.

The sensor suite tracks activity through the use of an Inertial Measurement Unit (IMU), and Passive

Sensors for monitoring the mechanical properties of muscle during the contraction cycle. The passive

muscle sensors monitor the mechanical waves that are produced during contraction, a technique known

as Mechanomyography (MMG). All of the sensors used in this investigation are non-invasive and designed

to be unobtrusive during prolonged use.

1.2 Motivation
Human-Machine Interfaces are intended to bridge the gap between a person and their technology. The

intent is to make the technology as easy to use and accessible as possible, but in some cases, this is

achieved by selecting an interaction method that is not accessible to everybody, thereby excluding

sections of the population from the intended user base. Unfortunately, these excluded sections tend to

be those who could benefit the most from technological assistance. An example of an excluded population

section is upper limb amputees; for this group losing a hand often means losing the primary method of

interacting with the environment, and therefore the primary method of interacting with technology. A

range of assistive technologies have been created, however, in many cases, these are designed to provide

an amputee with a method of controlling a second interface, further isolating them from the device they

are trying to use. Examples of this include advanced prosthetics which are designed to make it possible to

use a computer mouse. In this application, when an actuation in desired, the wearer must focus on

controlling the prosthetic hand rather than on the task they are trying to complete with the computer

mouse, leading to an increased level of cognitive switching. This can lead to faster fatigue and

dissatisfaction with the device. These prosthetic interfaces are often difficult to use and have high rates

of dissatisfaction and rejection. Long-term use is also associated with repetitive-strain injuries, soft tissue

damage and several other complications including bone fractures, and bone bridging.

The solution is to make one or more of these interfaces easy to use, to the point where it appears

transparent to the user. This means they must be so intuitive that the user is not focused on generating

the control signals, but instead on the task they are trying to complete. In the case of prosthetic control,

24

using pervasive monitoring to determine the intent of the prosthetic user will allow them to use the hand

as if there is a neurological connection. While truly dexterous control may be beyond our current

capabilities, pre-programmed motions, initiated by the corresponding gestures, would provide

significantly improved functionality over current prosthetic devices, and may improve the satisfaction

with the prosthetic.

Controlling other interfaces could still be challenging, however a generalizable interface that provides

gesture control over smart devices may also provide a solution. While it is unlikely the gesture control will

provide a complete solution for natural human-machine interaction, when paired with voice control it

would provide the most natural form of interface available. Voice controlled smart devices are increasing

in popularity, however gesture controllers have been hampered by technological constraints which are

inherent in sensing modalities such as electromyography (EMG). These constraints include precise

calibration, which leads to reduced functionality over time, a factor that is far less relevant with MMG-

based systems.

MMG is an underexplored sensing modality that has the potential to provide robust and highly function

method of gesture recognition. Whilst other more mature sensing modalities have been unable to provide

this robust control, MMG can provide this type of improved functionality to those who are excluded from

traditional human machine interfaces.

1.3 Aim
The primary objective of this study is to assess the utility of fusing muscle activity and inertial

measurement for HMI applications. This will be accomplished in two ways: firstly, the precision and

accuracy of each of the sensors will be established, to ascertain whether it is possible to accurately

determine intent from the muscle information; and secondly, the suitability of the sensors will be

examined by assessing the performance of the system whilst performing specific tasks. There are many

forms of interaction being researched for HMI, and a complete system will need to be multi-modal. This

study therefore identifies tasks best suited to interfaces of this nature.

To demonstrate the diversity in the application of the system described here, three forms of output were

chosen that best demonstrate the strengths of sensor suite. It should act as a User Interface for smart

devices, facilitate the control of Upper-Limb Prosthetic Devices and allow Robot Teleoperation. Each of

these system outputs has different motivations and introduces application specific system requirements.

1.3.1 Smart Systems
In a modern smart home, a user may interact with numerous interconnected application specific

computing devices. Reducing the intended functionality of each device enables the user interaction to be

simplified, ideally to the point where the user is no longer overtly aware that it is a computer that they

are interacting with.

A system of this nature must have three features:

25

- Pervasive Monitoring - The system should be able to track the user in some way and record

possible interactions.

- Context-Aware Computing - The system should be aware of the environment in which the user is

performing these interactions.

- Artificial Intelligence - The system should be able to use environmental factors and user

interactions to derive user intent.

The sensor suite is utilized in this thesis as a Pervasive Monitoring system and is demonstrated by applying

constraints in a known context as a facsimile to a complete system.

The context specific objective is as follows:

• Develop a method of interacting with smart devices using natural gesture commands.

Other systems have been produced with similar objectives to this, however they rely on alternative

sensors that have both a greater monetary expense and greater power consumption.

1.3.2 Controlling Upper-Limb Prosthetic Devices
The control of a prosthetic hand is a useful demonstration of the utility of the MMG sensor. For amputees

who have undergone a lower limb amputation, active prosthetics are most commonly controlled using

inertial measurement units, however this is not practical for upper limb amputees since it relies on cyclical

movement patterns to predict future motions. Dexterous hand movement consists of an intended gesture

in a specific location, and since this constrains the motion of the arm, monitoring muscle activity is one of

the common alternatives for prosthetic hand control.

Active prosthetic hands are most commonly controlled using electromyography (EMG). EMG is the name

given to the process of monitoring the electrical impulses that can be recorded propagating through

muscles as they contract. Surface EMG (sEMG) involves sensors placed on the surface of the skin and can

be used within the socket to detect impulses in the residual limb. This provides the wearer with a binary

form of control over their prosthetic. Despite research into methods of increasing the bandwidth of the

EMG signal to allow for a more effective control, translation to market has not yet occurred. One reason

for this is that calibrated EMG is reliant on skin conditions that are not consistent, particularly inside the

airtight socket. While experiments in a controlled environment can generate good results, they do not

solve the problems of practical application outside that environment.

MMG has the potential to provide a far more consistent method of control by monitoring the physical

movements of the muscles in the residual limb. By monitoring the way that the signals from different

muscles interact with one another, it is shown in this thesis that complex gestures involving multiple

muscle contractions can be distinguished. The base amplitude of the MMG signal is also much higher, and

as a result, the movement required is much smaller, delaying the onset of muscle fatigue so that MMG

signals remain a useful method of interaction for longer.

26

The objectives in this section are as follows:

• Generate a more manageable method of prosthetic hand control than is currently available.

• Design a method of interaction by which prosthetic users can use the control system to interact

directly with smart devices without using their prosthetic.

These objectives describe a new method of interaction that may lay the groundwork for new research

which can be translated to market, benefiting those currently poorly served by the existing commercial

solutions.

1.3.3 Robot Teleoperation
Robot teleoperation demonstrates the full utility of this system for capturing dexterous movement. Data

taken from inertial sensors can be used to calculate the movement of the user’s limb within a real-world

reference frame, and the muscular information is used to determine the intended action of the end

effector. In the case of the experiment performed in this thesis, the actuator is a 14DoF robotic platform

produced by Rethink Robotics. In addition to the robot teleoperation, the arm has numerous autonomous

functions that can be initiated by the user therefore the system can provide the user with a number of

seemingly natural outcomes through an intuitive method of directing the semi-autonomous controller.

The application specific objectives of the robot teleoperation are:

• Develop the real-time semi-autonomous controller for the robot, comparing both the system

described in this thesis and a solution with is more aligned with industry standard methods.

• Perform this task in simulated real-world conditions.

1.4 Contributions
There are several contributions that have been made to the field of Mechanomyography for gesture

recognition, as well as a number of application and algorithm specific contributions. These are

summarized in the following points.

• The creation of a new form of multimodal interface that makes use of both the mechanical signals

generated through muscle contraction, and inertial information to provide a method of gesture

recognition.

• Improvements to the robustness of a pre-existing, commonly used, gradient descent inertial

measurement orientation estimation algorithm.

• Introduction of a new IMU orientation estimation algorithm with predictable convergence.

• MMG classification through basic and machine learning classifiers, both offline and in real time.

• Introduction of a new method of fusing MMG signals with inertial data to provide classification

accuracy which is not dependent on consistent arm pose.

• Application of this system for prosthetic control and for robot teleoperation, both in virtual

environments and in real world applications.

27

1.5 Publications

1.5.1 Journal Papers
• S Wilson, H Eberle, Y Hayashi, S O.H. Madgwick, A McGregor, X Jing, R Vaidyanathan, Formulation

of a new gradient descent MARG orientation algorithm: Case study on robot teleoperation,

Mechanical Systems and Signal Processing, Volume 130, 2019, Pages 183-200, ISSN 0888-3270.

(Impact factor: 5.0)

• W Huo, P Angeles, Y F Tai, N Pavese, S Wilson, R Vaidyanathan, “A Sensor System Framework to

Quantify Parkinson’s Disease Symptoms”, IEEE Transactions on Neural and Rehabilitation

Engineering. (Impact factor: 3.4)

1.5.2 Conference Papers
• S Wilson, R Vaidyanathan (2017) Gesture Recognition Through Classification of Acoustic Muscle

Sensing for Prosthetic Control. In: Mangan M., Cutkosky M., Mura A., Verschure P., Prescott T.,

Lepora N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in

Computer Science, vol 10384. Springer, Cham

• S. Wilson and R. Vaidyanathan, "Upper-limb prosthetic control using wearable multichannel

mechanomyography," 2017 International Conference on Rehabilitation Robotics (ICORR),

London, 2017, pp. 1293-1298.

• P. Angeles, Y. Tai, N. Pavese, S. Wilson and R. Vaidyanathan, "Automated assessment of symptom

severity changes during deep brain stimulation (DBS) therapy for Parkinson's disease," 2017

International Conference on Rehabilitation Robotics (ICORR), London, 2017, pp. 1512-1517.

• Y. Ma, Y. Liu, R. Jin, X. Yuan, R. Sekha, S. Wilson and R. Vaidyanathan, "Hand gesture recognition

with convolutional neural networks for the multimodal UAV control," 2017 Workshop on

Research, Education and Development of Unmanned Aerial Systems (RED-UAS), Linköping,

Sweden, 2017, pp. 198-203.

• M. Admiraal, S. Wilson and R. Vaidyanathan, "Improved formulation of the IMU and MARG

orientation gradient descent algorithm for motion tracking in human-machine interfaces," 2017

IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI),

Daegu, Korea (South), 2017, pp. 403-410.

• A. P. H. Needham, F. P. Paszkiewicz, M. F. Md Alias, S. Wilson, A. A. Dehghani-Sanij, B. C. Khoo, R.

Vaidyanathan, "Subject-Independent Data Pooling in Classification of Gait Intent Using

Mechanomyography on a Transtibial Amputee," 2018 IEEE International Conference on Robotics

and Automation (ICRA), Brisbane, Australia, 2018, pp. 1806-1811.

• C. Caulcrick, F. Russell, S. Wilson, C. Sawade and R. Vaidyanathan, "Unilateral Inertial and Muscle

Activity Sensor Fusion for Gait Cycle Progress Estimation*," 2018 7th IEEE International

Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, 2018, pp. 1151-

1156.

• L. Formstone, M. Pucek, S. Wilson, P. Bentley, A. McGregor and R. Vaidyanathan, "Myographic

Information Enables Hand Function Classification in Automated Fugl-Meyer Assessment," 2019

28

9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA,

2019, pp. 239-242.

1.6 Layout of Report
The layout of the remaining six chapters of this thesis is described below.

Chapter 2 - Literature Survey. This chapter explores the work that has been done prior to this study. It

includes work in the fields of HMIs, pervasive monitoring, prosthetic control, mechanomyography, sensor

fusion and signal segmentation, and processing. It examines both the requirements for improved

interfaces and the sensing modalities that new interfaces could exploit. It also evaluates each of these

modalities against criteria determined through discussion with end users.

Chapter 3 - Hardware Development. This chapter describes the process of creating the new hardware

required to perform this study. The design process is documented, including the production of both the

hardware and the complementary software.

Chapter 4 - Sensor Validation. This chapter describes the process of evaluating the accuracy of the

orientation estimation algorithm used. It details factors that are known to affect this accuracy and then

provides several modifications to the original algorithm to improve the accuracy and robustness. Finally,

a new algorithm is outlined.

Chapter 5 - Gesture Recognition. This chapter focuses on intent prediction using myographic information.

Segmentation and extraction are performed to detect when a gesture may have occurred and then the

classification process ascertains which gesture was made. This chapter details both custom template-

based methods and more advanced machine learning classification methods. Several algorithms have

been tested and evaluated both in offline and online applications.

Chapter 6 - Application: Prosthetic Control and Teleoperation. This chapter outlines the application of

this control system to the field of robotic control, both for assistive technology and for advanced robotic

control. It evaluates the system using virtual environments that allowed the interface to be evaluated

against known positions. It includes modifications required for practical use and then evaluates the

usability of the system through several real-world tasks.

Chapter 7 – Conclusion. This chapter provides an overview of this document and describes how the

objectives and contributions outlined in this chapter were met.

29

30

Chapter 2
A Review of the Existing Literature

31

2.1 Structure of the Literature Review
This chapter is broken down into two main sections. The first section discusses Human Machine Interface

technologies, prosthetics, assistive devices and sensing technologies. This section will contain the

literature relevant to the decisions made in Chapter 3. In the second section, orientation monitoring

algorithms are discussed, and a brief overview of quaternion operations is given. This section of the

literature review leads into the algorithm descriptions in Chapter 4.2. The layout of this chapter is

described in the Figure 1.

Figure 1 - Layout of literature review

32

2.2 Overview of Intelligent Human-Machine Interfaces and Sensing Technology

2.2.1 Introduction to Terms
Human-Machine Interfaces (HMIs, also referred to as Man-Machine Interfaces or MMIs) are a technology

designed to pass information between humans and machines. HMIs range from those that require

volitional control and active engagement to achieve an objective (referred to as active HMIs), to those

that function as pervasive monitors where the command instruction may be achieved sub-consciously by

those using the interface (referred to as passive HMIs). In the most extreme case of an active HMI, the

user is focused on manipulating the interface, whereas at the other extreme the user is functionally

unaware of the interface. Active and passive HMIs have very different use cases, and both have been

explored extensively

Intelligent HMIs are those that attempt to reduce the cognitive load for the user by presenting them with

a representation that matches the model of the task that they have in their head [11]. Nearly all modern

HMIs can be thought of as intelligent HMIs, and this can be observed by the language that is used when

referencing functions: data is stored in ‘files’, which are organized into ‘folders’; we 'empty the recycle

bin' instead of removing headers to delete these files. As these representations become more closely

aligned with the users’ mental model, they move closer to becoming a Natural User Interface (NUI). An

NUI is described as an interface where the method of interaction is natural to the user and is made evident

by the design of that interaction; meaning explicit instruction or training is not required. Whether there

is currently such a device can be debated, but the technology that has been developed to behave like an

NUI does so by attempting to remove the cognitive barrier between the user and the data they are

manipulating. As with an active interface, the user is still actively engaging with it and providing volitional

commands, but it is functionally invisible to them.

This chapter draws together the existing literature on HMIs across two developmental work strands, that

which focuses specifically on prosthetic control and that which examines more general HMIs. It attempts

to compile the existing guidelines on creating a successful interface so that an appropriate list of

specifications can created in future chapters.

2.2.2 Traditional HMI
There are a wide variety of conventional technologies that are currently used to provide HMI, such as the

monitor, the computer mouse and the keyboard. The keyboard was designed to allow people who were

unfamiliar with computers to use prior knowledge from the use of typewriters, thereby reducing the

training time and cognitive load. Early keyboards were used to punch holes in paper tapes that carried the

code to be loaded to the system. Output from the system was via similar tapes that were replayed through

teletype machines to translate the punched holes back into a readable format. In an attempt to make

computer manipulation more intuitive and accessible for non-programmers, the computer mouse were

developed along with the ability to manipulate graphical objects on the screen in the late 1960s, leading

to the Graphical User Interface (GUI) [12]. GUIs most often use a combination of selectable workspaces

on the screen, known as Windows, along with Icons, Menus and Pointers (known WIMP-based GUIs) to

33

simplify the HMI for the user. Other HMI devices, such as joysticks, dials and buttons all predate digital

computing, yet are still commonly found as HMIs today.

These traditional HMIs have two distinct disadvantages. The first is that the desire to build on prior

knowledge and the technical limitations at the time of development have led to technically inefficient

interfaces. The clearest example of this is in the layout of the computer keyboard in the QWERTY

format. It has been suggested that this keyboard layout was originally intended to slow down typists on

mechanical typewriters to ensure the keys and type hammers had sufficient time to respond and return

to rest without getting mechanically jammed together. While more efficient layouts have been proposed,

they have not been universally adopted, partly due to extremely widespread use of QWERTY format

keyboards leading to almost universal familiarity with the layout among English speaking keyboard users,

and party due to the time taken to learn a new key placement [13]. The other disadvantage of

conventional interfaces is that they require dexterous manipulation of physical objects to achieve a task,

which render the interface poorly suited for some, and impossible to use for others.

These two points form the basis of the motivation for the research that underpins this document.

Increasing the efficiency of existing interfaces will not lead to the widespread adoption of a novel

interface, however building an interface for those who cannot use the traditional technology will provide

a method of validating it. If the interface can be used by the wider population then this validation may

lead to a higher chance of adoption of the technology.

Despite the pervasive nature of WIMP HMI there remain many groups for whom the required dexterous

manipulation is challenging. The exact nature of the difficulty an individual might experience can vary, but

there are many diseases for which a loss of dexterous control may be a symptom. An example of this is

Parkinson’s disease, a degenerative brain disorder where loss of nerve cells in the brain leads to tremors

and stiffness of the muscles. Parkinson’s is said to affect 1 in 500 people to some degree. Another cause

of loss of fine motor control is Stroke, with up to 90% of Stroke survivors suffering from some degree of

paralysis. There are many other diseases that may cause a reduction in dexterity; there are also many

reasons why an individual may lose one or both hands completely.

2.3 Amputees and their prosthetics

2.3.1 Causes of Amputation
It is estimated that there are over 2,000,000 people who are living in the US alone with a limb loss,

normally as a result of either trauma or disease [14]. Approximately 1 in 4 of these involve the amputation

of some part of one or both upper limbs. The leading cause of upper limb amputation is trauma, which

leads to 77% of these amputations. This includes both injuries where the limb is determined to be

unsalvageable and traumatic amputation, where the limb is severed in the incident. In many cases,

individuals who have survived traumatic amputation require a further amputation proximally to create a

residual limb that can be used to control a prosthetic in future. The leading cause of traumatic amputation

is vehicular accidents, however, they are also a common injury sustained during conflicts.

34

Congenital amputation/Congenital upper limb deficiency makes up approximately 9% of upper limb

amputees. Congenital amputation is caused when the tissue in the limb of the foetus dies, resulting in the

loss of part or the whole of the limb. There are various causes of this tissue death, with a common one

being amniotic band constriction.

A common form of cancer that can lead to amputation is bone cancer, an example of which is

Osteosarcoma. Often, a surgeon will attempt to remove only the tumour, however, in many cases this is

not possible. The second option for the surgeon is to perform limb-sparing surgery, where the portion of

bone in which the cancer is growing is removed and replaced with a metal prosthesis. If the portion of

bone is near the joint, then this may necessitate the removal and replacement of the joint as well. If these

options are impossible or fail, or if the body rejects the implants, then the limb must be removed.

Amputations due to cancer make up approximately 8% of upper limb amputations.

Another common cause of amputation is disease. Physiological diseases such as diabetes are the leading

cause of lower limb loss and can also lead to upper limb amputation. Infectious diseases can also require

amputation, either due to the damage done to the limb, or to prevent the disease spreading. Amputation

in this case is normally only performed when the disease is progressing too fast to be controlled and where

less aggressive solutions have not worked or are more likely to lead to the death of the patient. An

example of this is sepsis, where tissue death in a limb can require amputation to stop the spread of

infection. Diseases are the cause of approximately 6% of upper limb amputations.

Whatever the cause, it is difficult for amputees to adapt to the loss of one or both hands. Often amputees

suffer from depression in the time after their amputation and for those who have lost limbs in a traumatic

or distressing event, Post-Traumatic Stress Disorder (PTSD) is also common. Activities of Daily Living (ADLs)

become much harder, indeed some may become impossible because so many of the interactions in our

lives are designed with the dexterity of the hand in mind. One way to try and restore some of this lost

functionality is with prosthetic devices. A prosthetic device that works well is incredibly important for

amputees, both in terms of their quality of life, independence and in terms of their mental health.

2.3.2 Prosthetic Devices
A prosthesis is a device that is designed to replace a body part which has been lost. Current prosthetic

devices can restore some of the lost functionality, however, they are unable to mimic the high number of

degrees of freedom of the hand and wrist (21 Degrees of Freedom in the hand and 6 in the wrist). There

are many prosthetics available for those who have lost a hand and the range can be separated into two

categories: passive and active devices. There are two types of prosthetic that fit into the passive category,

cosmetic and functional. Active prosthetic devices are those that have driven moving parts and can be

either body-powered or externally powered.

Traditionally, cosmetic prosthetics are designed to disguise the wearer’s amputation. They are often

tailored specifically to their wearer’s shape and skin colour and can even be customised to include tattoos

that may have been on the original limb. More recently, a different kind of cosmetic prosthetic has gained

more popularity, in which the device is designed as an art piece to be worn. These are crafted not to hide

35

the amputation, but to emphasis it with the intent to promote discussions about disability and body

diversity, while at the same time giving the amputee something unique that they can be proud of, instead

of a less-functional replacement.

Functional passive prosthetics are simply tools with which the wearer can interact with their environment

to achieve specific tasks. These have traditionally been shaped metal and more recently tools that allow

you to use touch screen devices have also become popular.

Active prosthetics are designed to allow the user to perform a greater number of ADLs by giving them

control over a one-or-more degree of freedom manipulator. As previously stated, active prosthetics can

be categorized either as body-powered, where the energy required to perform the movement is

generated by the user, or externally powered, where the energy is provided by some other source. Body-

powered prosthetics are usually restricted to either one or two degrees of freedom. A typical example of

a body-powered prosthetic is a split hook prosthetic, where a harness worn around the shoulders can be

used to open the gripper, and elastic or springs are used to close it again. These prosthetics can often also

be rotated at the wrist to allow for extra functionality. Externally powered prosthetics normally require a

power source mounted on the device. They also usually attempt to make a prediction of intent by

observing muscle activity and using that to trigger movement in the end effector. Prosthetics that do this

are known as myoelectric prosthetics.

The movements that can be triggered in the end effector of a myoelectric prosthetic depend on the

physical nature of the device: a split hook will normally open/close based on one control signal and may

rotate based on another. Prosthetics that have been designed to mimic biological hands offer a greater

range of motion, with the most advanced offering around 7 Degrees of Freedom. Due to the difficulty

inherent in controlling all of these individually, the prosthetic will often work as a semi-autonomous

system, where the user can select the action they would like the hand to do, and then trigger the hand to

perform that action. That hand will then control each of the motors to perform the desired gesture,

factoring in each digits resistance to movement. This is known as grip selection and provides the wearer

with the tools to complete a wide range of ADLs.

Of all the available options, externally-powered grip-switching prosthetic devices are the most functional

option which still maintain the appearance of a hand. Despite this, only 34% of frequent prosthetic users

who could use a myoelectric prosthesis regularly wear one [15]. In addition, the rejection rate of upper

limb prosthetics is between 20-50% [16, 17]. The studies relating to rejection often use relatively small

sample groups, and the participants are often recruited through prosthetic clinics, which mean that the

results cannot be reliably scaled to the overall amputee population. This is because amputees who have

elected not to use a prosthetic, or who cannot afford one, will not attend a clinic and therefore will not

be represented in the studies, leading to a positive skew in the reported results. Internet surveys also may

receive an increased return rate from those who have found a prosthetic solution that works for them, as

those who haven’t may be less likely or unable to complete the survey.

36

While the use and satisfaction rate should not be extrapolated to the population, the individual responses

can be examined to determine some of the factors that may lead to rejection, as well as the prevalence

of those factors within the surveys participants. Some of the most common factors with prosthetic

rejecters were either physical, such as it being too hot, heavy or uncomfortable, or that it was too difficult

to use [18]. A common factor with those who have suffered an amputation distal to the shoulder was that

it was easier to do the task without the prosthetic.

Prosthetics can not only be used to assist with ADLs, they can also help prevent the onset of further

medical problems such as phantom pain, or depression and other psychological conditions [19]. Whether

the amputee has chosen to use a prosthetic or not, they will need to develop methods of compensate for

the limb-loss. The amputee’s compensation strategies can lead to further problems, such as back pain or

overuse injuries in the intact limb [20, 21]. The resistance in body-powered prosthetics is often identified

as a causal or contributory factor to these injuries. Provided user intent can be derived, high DoF

Myoelectric prosthetics have the potential to offer the most naturalistic movement, and as a result, the

user would be able to operate it to the same extent as an intact hand.

The physical factors that may lead to the rejection of a myoelectric hand are limited by the design and

material science of the device itself, however the ease of use is dependent on the HMI. With increased

functionality and a reduction in cost, the majority of prosthetic rejecters would be willing to consider using

a new device, and therefore improving the HMI will be key [22].

2.3.3 Assistive HMIs
Assistive HMIs are a communication technology designed to bypass a disabled individuals impairment and

allow them to perform tasks that would otherwise be difficult [23]. Prosthetic controllers can fall into this

category, and most studies that aim to develop assistive technology for amputees focus on them, however

there are other avenues that have the potential to be equally useful. In this document, ‘assistive

technologies’ will be defined as distinct from prosthetic devices for simplicity. Amputees wear their

prosthetics for between 4-8 hours a day on average, mainly due to the weight and discomfort associated

with wearing the socket. It would also be highly desirable to identify a technology that also allows an

amputee to interact with their environment without having to use a prosthetic, in part due to the amount

of time that the prosthetic is not being worn, but also because some tasks are fundamentally just difficult

to perform with a prosthetic. A good example activity is changing the channels on a television using a

remote control, which requires fine motor control of individual fingers not currently available with

modern prosthetics.

Assistive technologies have been extensively examined for individuals with other conditions but are

seldom designed with amputees in mind. This may well be due to a perception that a prosthetic device

presents a ‘solution’ to limb loss, as opposed to a solution for specific problems that arise as a result of

losing a limb. The ‘solution’ mind-set does not leave room for development outside of the prosthetic work

stream. Despite this, the control signals that could be generated by an amputee are as applicable to a

robot, computer or TV as they are to a prosthetic device, and in recent years, some work has begun to

emerge that removes the prosthetic device for the HMI, and allows the amputee to interact directly with

37

the computer [24]. This work is still significantly less common than that which includes prosthetics as the

medium for interaction.

Assistive technologies that allow for robot teleoperation are also an under examined research area. While

physically controlling a multi-DoF robot is not practically useful at this time for amputees, it is a complex

task requiring accurate control in 3D space. As such, robot teleoperation is analogous to both complex

direct computer control, and smart home control. A sensor suite that demonstrates this high bandwidth

interaction could allow more complex HMIs to be developed to assist amputees with their ADLs, as well

as other more adventurous activities they may wish to participate in.

Finding a sensor suite capable of both prosthetic control and control of other assistive technologies is

important for giving amputees the ability to interact with their environment, whether this interaction is

physical or through a computer. Various sensors have been tested for prosthetic control, and there have

been several studies that describe the development of HMIs for healthy individuals, and this will be

explored in the following section.

2.4 Sensing Modalities
This section will discuss the existing literature in the fields of prosthetic control and HMI, grouping

research by sensing modality and then by application. This will allow us to examine the solution space and

create a system capable of fulfilling the design criteria. Since this study focuses on pervasive gesture

recognition devices, the section will focus principally on interfaces that do not require dexterous

manipulation as their primary input modality. Each sensing modality will be described, and work

performed in the field of activity/gesture recognition/monitoring in prosthetics and Human Machine

Interface will be outlined. Where appropriate, results of gesture recognition studies will also be included.

2.4.1 Physical Input Systems
Physical input systems are those that require some physical manipulation as a method of interaction. They

tend to be the most common form of interface, since they can be unobtrusive enough for a ubiquitous

system, and yet still give both an input and an effect that the user can observe, making it relatively easy

to learn how to use them.

In the field of upper limb prosthetics, systems that require some form of physical input as their primary

control signal are referred to as body-powered prosthetics. As previously indicated, body-powered

prosthetics are the most common method for control and have several advantages that are unique to this

form of control.

The most common examples of body-powered upper limb prosthetics are cable driven split hooks. Split

hooks are normally a single-DoF device that the wearer can open by pulling a cable attached to a harness

worn around the shoulders. This is normally achieved by a combination of pushing the shoulders forward

and straightening the arm. In addition, some split hooks give the wearer the ability to change the force

applied by the elastic, allowing the wearer to select different grip strengths, usually through a linear

ratchet moved with a toggle. Finally, the wrist assembly also can be rotated. While strength and rotation

38

are both physical inputs, they are more akin to settings of the split hook, rather than the physical control

signals generated through the cable

The combination of cable and elastic facilitates proportional control of the DoF, which is lacking in many

other forms of interface. The amount that the hook opens is directly controlled by the amount of force

that the wearer exerts through the cable, and they can learn what is required to open the grippers by any

fraction very quickly because it is consistent. The physical system does not introduce any delays, and the

user’s perception of the force they are applying allows them to feel feedback. Due to this, a user who has

been using one of these prosthetics for an extended period of time is able to accurately use the gripper

without visual feedback. This ability for a healthy individual to perceive their joint angles and therefore

position is called proprioception. When a user becomes so capable with a tool that they understand where

the end of it is in relation to them, this is known as Extended Physiological Proprioception (EPP). An

example of this principle that will be familiar to most is a white cane, used by people who are blind or

have low vision to feel objects and obstacles in their environment.

In the field of prosthetic control, the term Extended Physiological Proprioception has garnered a more

specific meaning in recent years. Employing the principles of EPP into prosthetic devices is desirable, since

the ability to sense the position and state of a gripper allows the prosthetic to be considered to be a closed

loop system [25]. This allows the wearer to develop control strategies that are both intuitive and feel

natural. More recently, papers referring to the development of EPP controllers have become more

prevalent. These papers use the term to refer to controller that attempt to close the feedback loop

without the gripper being a part of that loop. This proprioception lets the user know that they have made

the correct control signal, regardless of whether the prosthetic has moved or not. A common example of

this is to use shoulder position relative to a relaxed zero point to control an upper limb prosthetic [26].

Incorporating the concept of EPP into a prosthetic controller is an important desired requirement for

upper limb prosthetics, as the intuitive control strategies are vital for reducing rejection, and by their

nature, body-powered prosthetics achieve this.

Body-powered prosthetics are not a complete solution to the problem of controlling upper limb

prosthetics for two reasons. First, wearing a body-powered prosthetic means repurposing functions of the

body. This may be as simple as remapping one-DoF in the shoulder to control a hand or elbow, or as in

the case of commercial harness driven systems, it may require a more complex movement to actuate a

single-DoF gripper. In either case, the number of joints that can be controlled is limited to 1-2. The second

and potentially more serious problem with body-powered prosthetics is the range of long-term health

problems associated with them. Many users report persistent back and shoulder pain, and this is a greater

cause of rejection than the lack of functionality. This is due to the stresses associated with performing the

required movements, which are not necessarily natural to the body. As mentioned previously, RSIs are

very common with users of body-powered prosthetics, and this can be attributed to both the use of the

device, and the user’s compensation strategies. Prosthetics with an elastic element require repeated

resisted movements and are often heavy. The weight of the device is considered a problem for two

reasons: the effort required to move it, and the poor weight distribution, with the majority of mass often

39

being the gripper/hand at the end of the arm. The nature of the prosthetic socket mean that the force

applied to the residual limb by the weight of the prosthetic is applied mostly on a small area at the end of

the residual limb and the force that the wearer is applying to actuate the arm is also transmitted primarily

by the end of the arm. This can cause damage to the soft tissue on the residual limb, which must be

maintained in a healthy state to preserve the remainder of the limb. It can also lead to other complications

such as bone bridging or fractures.

Physical input systems are almost exclusively used as a control strategy for single-DoF body-powered

prosthetics. Due to the increased complexity of multi-DoF systems, these are almost always externally

powered and require either multiple proportional control signals or some form of grip selection. For both

these cases, one of the more advance control inputs described in the following sections will be required.

Irrespective of the type of system being controlled, most commercial HMIs use some form of physical

system as an input. This is most often in the form of buttons and touch screens, but joysticks and dials are

also very prevalent, particularly in the field of robot teleoperation [27]. In most cases, the input from

physical systems is very simple, and the functionality associated with it is extrapolated from dexterous

manipulation of the input. One reason NUIs are less dependent on physical interface systems is that in

cases where this dexterous manipulation is required, the burden of learning the system is on the user,

and their use of the interface becomes a learned behaviour, potentially reducing accessibility. It may be

that despite potentially more intuitive and accessible interfaces being available, the perceived effort

required to move away from a known system is higher than the general population is willing to undertake,

as has been the case with many technologies in the past [13].

While most physical input systems focus on the hands to perform the required action (such as in robot

assisted surgery [28]), there are several alternatives that are more aligned with the intent behind of this

thesis. HMIs for use in virtual environments are often geographically constrained, and in the case of CAVE

(Cave Automatic Virtual Environments), physical input devices may be present either to map body

kinematics, to observe interactions within the environment, provide haptic feedback to the individual, or

for some combination of all these tasks. These devices are often mounted in a known position, allowing

the interaction to be observed precisely from a known reference point. Devices like this have been used

in CAVE-based experiments as inputs to simulate completing specific tasks [29].

Wearable exoskeletons are similar in that they provide a direct measure of input, but these systems are

referenced to the wearer, not the environment. This technically removes the geographic constraint,

although such systems are often too large to be considered pervasive, and therefore are often

geographically constrained for practicality. Nevertheless, many systems have been developed for

teleoperation of robotic platforms [30], and for use in stationary conditions for applications such as

monitoring symptoms such as tremor or rigidity [31], or for rehabilitation in cases where kinematic

monitoring provides useful information, such as for stroke patients [32]. Systems have also been

developed commercially for motion capture; an example of which is the Gypsy 7 Motion Capture System.

40

Attempts to increase the applications for exoskeletons and wearable robotic systems usually do so by

reducing the number of joints being examined. Wearable goniometers and optical encoders can be used

to directly measure individual joint angles, usually for activity classification [33] or limb tracking [34].

Smart materials can also be used to achieve this [35].

2.4.2 Vision-based systems
Camera-based tracking systems are very common in detecting control movements. They are also useful

for detecting the context of the control signal, which may also allow the system to perform different

actions to achieve different tasks based on the same control signal. The intelligence in these systems can

make them easier to use, provided that the context is apparent to the user as well as the device.

Camera-based control systems for prosthetic control are often used in grip selection strategies to perform

object recognition. This can allow the system to pick the most suitable grip for the target object. DeGol et

al. [36] used a camera located on the palm of the hand to detect objects, and select from 5 grips with an

accuracy of 93.2%. Gardner et al. [37] mounted their camera under the forearm of a commercial

prosthetic, and were able to classify 6 object for actuation of 2 grip patterns with an accuracy of 69.2% -

90.8%. Dosen et al. [38] introduced different grasp sizes to the grip selection protocol, classifying 9

combinations with an accuracy of 84%. These applications use the cameras to provide context to the

user’s intent to move. Intent is often picked up using another sensor such as EMG or IMUs. One of the

difficulties associated with using grip patterns based on object recognition is the variety of objects that an

amputee may be required to hold. This means that a large database of objects and their associated grip

patterns is required. Markovic et al. [39] overcomes this limitation by approximating the shape of the

target device to a common geometric model, allowing the system to cope with arbitrary and unseen

objects. In this case, the camera provided information on size and shape, allowing the controller accurate

proportional control of the hand.

An alternative to using cameras that operate in the visual spectrum is to use depth cameras as a method

of approximating object shape, and therefore required grip. Ghazaei et al. [40] used this technique to

obtain a grip selection accuracy of 88%.

There are a wide variety of camera-based HMIs, but they can broadly be broken down into those that use

wearable cameras and those that use stationary cameras. Stationary cameras are most commonly used

in HMI applications to either observe full body kinematics (also referred to as Human Pose Estimation or

HPE), or a subclass of HPE such as hand kinematics.

There is a large body of research dedicated to HPE for gait analysis and motion capture. The image

processing techniques used can be categorized as either marker based or non-marker based [41]. Markers

are physical devices that are visually unique to the image processing system. Combinations of these

markers can be placed on the body to derive the orientation of the joint. The observed constellation can

then be applied to a skeleton to create a kinematic model. Markers are often used in clinical environments

to detect subtle differences between normal and pathological locomotion, due to the high accuracy of the

advanced systems [42-44].

41

Marker based systems can be prohibitively expensive, so many applications no longer use them. An

alternative is to segment the subject within the image, and then apply pose estimation based on a known

humanoid model [45-47]. This approach works well, but makes assumptions based on the model it uses,

which can cause problems if those assumptions prove to be false. It has been demonstrated that a model

can be generated by observing the movement of the subject [48]. This removes the limitations imposed

by a generic model.

The Kinect Xbox 360 from Microsoft is often used to detect body kinematics due to its camera paired with

dual infrared depth sensors. Body kinematics detected using a Kinect Xbox have been used to generate

control signals for humanoid robots [49-51], however this requires favourable lighting conditions, and also

requires the user to stay within the field of view of the camera, limiting the available workspace.

Cameras can also be used to detect hand movements to generate control signals. This is more common,

and has resulted in the creation of the Leap Motion controller [52], a commercial product consisting of a

desk mounted camera used for gesture recognition for computer interaction. More generally, hand

gesture recognition using either the Kinect [53] or a custom camera arrangement have been used for both

sign language recognition [54] and computer/robot control. While most systems use skin detection [55]

as a starting point for either fitting or generating a model, [56] and [57] both use coloured gloves to

identify individual parts of the hand. This approach allows different parts of the hand to be identified more

easily, improving the capacity for gesture recognition.

The use of body, or prosthetic -mounted cameras for HMI are typically found in augmented reality

applications, such as the HoloLens. They tend to have accurate hand tracking in uncluttered environments

[58].

2.4.3 Inertial Measurement Units
Inertial Measurement Units (IMUs) are one of the easiest ways to determine body kinematics. The sensor

is placed at a known orientation on the target joint, allowing movement and orientation of that joint to

be observed. It is often not necessary to derive the entire kinematic pose, partial subsections of the

kinematic tree are all that is required in many applications.

In the field of prosthetics, IMUs are almost exclusively used to provide context to the semi-autonomous

control system within the prosthetic. This is normally achieved in one of three ways. The first is through

activity recognition, most commonly used in lower limb prosthetics for gait detection. Lower limb

powered prosthetics can apply power or resist movement but rely on gait models to do this effectively.

The model selection is based on detecting current movement, and IMUs have proved to be an effective

way of doing this, both in the research community [59] and in industry [60].

The second method of providing context is through state observation. There are a number of ways this

could be implemented, but most commonly it is used in conjunction with control signals taken through

other sensing means. Woodward et al. [61] uses a combination of IMU and MMG, where wearers can

express an intent through muscle contraction, but that intent can be used to either change grips or actuate

42

the hand based on the orientation in which the wearer is holding their arm. Gardner et al. and Kyranou et

al. [62, 63] use the information provided from the IMUs to supplement their primary control system using

the nature/angle of approach to the target to select different grips.

The third method of providing context is to identify sources of interference in the primary control signal

and reject commands that may have been generated through that interference. MMG and EMG are both

subject to motion induced noise, so using an IMU to detect that motion has been used to detect when a

signal is likely to be a false positive [61, 64].

There are several handheld HMI devices that use IMUs as either their primary or secondary input.

Kinematic monitoring systems based on IMUs have also been developed for a variety of applications,

including robot teleoperation [65], gait recording [66], activity recognition [67, 68], virtual presence and

rehabilitation [69-72].

IMUs can be found in most smart phones and smart watches, providing the capability for general activity

tracking. Additionally, several companies that use custom, stand-alone IMUs for activity monitoring, such

as Fitbit and Athletec have achieved commercial success. Devices that specifically generate control signals

based on movement are less common, although Thalmic Labs have created a wearable interface device

that used a combination of EMG and IMU data.

2.4.4 Electromyography
Electromyography sensors (EMGs) are the most common sensors for detecting muscle activity. They work

by detecting the electrical signal produced during muscle contraction, referred to as Myoelectric Signals

(MES). EMGs have a wide variety of uses within the medical industry, and there are several commercial

products that also rely on them. The EMG signal can be measured from the surface of the skin (known as

surface EMG or sEMG) or using implantable sensors.

There has been a large amount of research into extracting more control signals from EMG sensors.

Excluding the On/Off control, there are six other commonly explored methods of myoelectric control:

Proportional, Regression, Direct, Finite State Machine, Posture and Pattern Recognition [73].

Proportional control – It has been demonstrated that the amplitude of the EMG signal can be

representative of the amplitude of the intended movement [74]. A proportional control structure is one

in which the amplitude of the EMG signal is used to set one of more of the mechanical output properties

[75] of the prosthetic in a practically continuous scale. The mechanical properties may be velocity, force

or position depending on the intended use.

Regression control – It has been shown that using regression-based methods, simultaneous proportional

control can be achieved, where multiple independently-controllable analogue control signals can be

extracted [76-78]. This allows multiple joints to be controlled in a proportional manner at the same time.

Direct control – Direct control is the term given to a system that attempts to restore functionality by

observing individual muscle contractions in the residual limb and then moves the prosthetic as if those

43

muscles were still connected. Due to electrical crosstalk, this is often achieved using implantable

electrodes, although source separation can be used to overcome the crosstalk and attribute a signal to its

source muscle group [79, 80].

Finite State Machine – Finite State Machine (FSM) control is relatively common in commercial externally-

powered prosthetics. Instead of the On/Off control where the control signal always invokes the same

action, in FSM-based controllers the actions are determined from both the control signal and the current

state of the device. Additionally, control signals can be used to change the state of the device with no

actuation. Commercial devices use a range of inputs to change the current state, ranging from co-

contraction, to buttons, to physically changing the device state. FSM-based controllers are also explored

in the literature to increase the functionality of the device when the number of observable control signals

is limited [81-83].

Posture control – Posture control is similar to regression control, but instead of each channel controlling

a separate DoF, they instead weight different hand postures, meaning that the wearer can specify any

point representing a combination of the postures [84]. This means that a comparatively small number of

templates can be used for a diverse range of applications

Pattern Recognition – As prosthetics have become more functional, the required complexity of the

control signals has also increased. The technical limitations of EMG mean that other forms of control that

impose a direct control usually have a low dimensionality. Pattern Recognition (PR) allows the prostheses

user to trigger autonomous behaviours that are analogous to the control signal. Pre-programmed grip

patterns mean that the user must make one control signal (usually an imagined gesture) to begin each

gesture. These grip patterns are designed to cover as much functionality with as few different control

signals a possible. The user provides high-level commands, and the individual joints are actuated

according to the selected grip pattern.

Pattern recognition controllers can have a number of different steps, but they usually consist of

segmentation, feature extraction and classification. They can also have additional steps such as pre/post

processing and feature selection or a proportional control as a secondary controller. Segmentation is often

performed using a combination of signal detection and windowing, and once the signal has been

segmented, appropriate features can be extracted.

There is no definitive guide as to which features are most indicative of the gesture being performed, but

attempts have been made to rank features. Zardoshti-Kermani et al. [85] performed a classification based

on a number of feature sets: the Integral of Absolute Value (IAV), mean Absolute Value(MAV), EMG

Histogram (emgHIST), Variance (VAR), v-Order detector (V), Zero-Crossing (ZC), Willison Amplitude

(WAMP), Log-detector (LOG) and 4th Order Autoregressive models (AR), and found that the EMG

Histogram and v-order detector gave the best overall performance. Other commonly used time domain

features include the number of Slope Sign Change [86], Average Amplitude Change (ACC) and the Simple

Squared Integral (SSI) [87].

44

Due to the simplicity and low computational cost, many papers exclusively examine time domain features,

however, there has been some investigation into the use of frequency domain and time-frequency

domain methods. These methods involve transforming the segmented signal to the frequency domain,

either using Fourier analysis [88] or by using a wavelet transform [89, 90]. Nazmi et al. [91] presents a

more complete list of time domain, frequency domain and time-frequency domain features. In most

cases, the feature vector produced from these transforms has a high dimensionality, and therefore these

methods often require dimensionality reduction, either through feature selection or feature projections

[73].

Once the features have been extracted, they can be used to classify which gesture the wearer is

performing. Again, there are a variety of methods that are employed for the classification of hand gestures

using EMG signals including: Artificial Neural Network (ANN) [92, 93] such as Convolutional Neural

Network (CNN) [94, 95] and Multilayer Perceptron (MLP) [96, 97], Bayesian Classifier (BC) [98], Decision

Trees (DT) [99], Fuzzy Logic (FL) [97, 100], Hidden Markov Models (HMM) [101], k-Nearest Neighbour

(KNN) [102], Linear Discriminant Analysis (LDA) [102-105], Quadratic Discriminant Analysis (QDA) [102],

Random Forests (RFS) [106] and Support Vector Machines (SVM) [101, 107-109]. It has been shown that

the choice of features has a far bigger impact than the choice of classifier, and provided an adequate

feature set is being used, most classifiers will have a similar performance [110].

EMG sensors are heavily used in the prosthetics industry and are the primary method of control for

externally powered prosthetics. Commercial prosthetic devices usually use either one or two EMG sensors

placed on the residual limb. The internal circuitry in these sensors detects gestures through thresholding

the myoelectric signal, and then converting this to a control signal that it sends to the prosthetic. Two

sensors placed on the arm can control the prosthetic to open or close. Controllers that rely on thresholding

in this manner are typically referred to as exhibiting On/Off control.

The signal processing is independent of the end effector, so the techniques described for gesture

recognition are also application in the fields of HMI/HCI.

EMG has been used in Human Machine Interface devices both commercially and in academia. Thalmic

Labs created a wearable EMG array known as the Myo, which has been used to control a number of smart

peripherals, including computers, robotic platforms and quadcopters through gestures. The Myo has also

been used in research for controlling wheelchairs [111], translating sign language [112] and for robot

teleoperation [113].

The Thalmic Myo used dry electrodes on unprepared skin to record the EMG signals from the arm. Since

this has been shown to suffer from a higher and more unstable impedance than either wet electrodes or

a prepared surface of the skin [114], many studies opt for more sophisticated sensing equipment. EMG is

frequently used to provide qualitative control signals in the field of robot teleoperation, where the

45

continuous control signals are generated through some other means [115-117]. It has also been used to

provide a computer interface for users unable to use traditional forms of interface [118].

Table 1 summarises example papers representing typical accuracies achieved in EMG activity classification

for pattern recognition applications in recent years.

2.4.5 Mechanomyography
Mechanomyography is the term used for the monitoring of mechanical signals that are generated during

a muscle contraction. These mechanical signals are produced through a combination of the gross lateral

movement of the muscle during the initial contraction, the lateral vibration generated at the muscles

resonant frequency, and the dimensional changes of the motor unit’s fibres themselves [119, 120]. It is

generally accepted that MMG signals and EMG signals are generated through the same process, as they

appear to propagate through the muscle at the same rate [122], however, it has been found that EMG

and MMG are affected differently by muscle fatigue [121, 123]. In addition, the signals from MMG have a

much higher base signal to noise ratio than EMG, and can therefore be recorded reliably outside the

clinical environment [124].

MMG signals are usually recorded by placing a sensor on the surface of the skin, normally either an

accelerometer [125, 126], microphone [124, 127] or a piezoelectric contact sensor [128]. It is also possible

to monitor the MMG signal externally by using a Laser Distance Sensor [128-130]. It has been shown that

the placement of the sensors needs to remain consistent to ensure a consistent signal [131]. Work has

also been conducted in the design of the MMG sensors, with the microphone-based systems potentially

requiring the most external components. The current design of existing microphone-based MMG was

proposed by Silva et al [132] and optimised by Posatskiy et al [133]. These designs are referred to in

Chapter 3.

Table 1 - Recent EMG classification studies

Author Number/Type Classification
algorithm

Number of gestures/
Accuracy/ Online? (y/n)

Ref.

Park et al., 2016 10 / dry electrodes CNN 6/~92%/n [2]

Atzori et al.,
2016

10 / dry electrodes CNN 52/~66.59%/n [4]

Geng et al., 2016 128 / electrodes CNN 52/96.7%/n [6]

Purushothaman
& Vikas, 2018

8 / dry electrodes SVM (BC) 15/>95% (>91%)/n [8]

Teh et al., 2018 6 / dry electrodes LDA 8/96.53%/y [9]

Zhang et al., 2019 8 / dry electrodes ANN 5/98.7%/n* [10]

* implemented online, but accuracy not reported

46

There has been significant work performed on using MMG to study the behaviour of motor units during

contraction [134, 135] and in detecting fatigue [136, 137]. Work has also been conducted to detecting

neuromuscular disorders [138] and in creating tools for rehabilitation [139]. Much of this work is

performed by performing actions that activate individual known muscle groups. The sensors are placed

over the body of the target muscles so that the signals are attributable to their source.

MMG is not dependent on transient environmental conditions such as skin impedance. This means that it

is potentially well suited to the conditions within an airtight socket, which are likely to change over the

course of a day. Despite this, there are currently no commercial MMG systems offered by prosthetic

manufacturers, who favour EMG.

There has been some research into the use of MMG for prosthetic control, but it is less mature than its

EMG counterpart. As a result, mechanomyographic control systems only fall into four categories: On/Off

control [37], Direct control [140], FSM control [61, 62] and Pattern Recognition [3]. The descriptions and

methods in these control strategies are the same as their EMG counterparts.

Beyond prosthetics, very few practical applications of MMG have been explored. MMG has been used for

gear switching on a bike [141], but a large proportion of the work conducted to this point has been to

validate the sensors as opposed to implementation in practical applications. As such, the work of sensor

fusion has been limited. Since EMG is considered the standard for muscle activity sensing, work has been

performed using both EMG and MMG for validation [142]. Woodward et al [143] used a multimodal

approach, combining IMU and a single MMG sensor for intent derivation, however in this application,

each sensor provided a single channel of binary data for on/off control. Some examples of papers that

have implemented multichannel MMG for pattern recognition are given in Table 2.

2.4.6 Myokinemetric signals
Myokinemetric (MK) signals are recorded by observing the dimensional changes of the muscle, and

therefore are a direct measurement of one of the components of the MMG signal. It can be observed by

recording the changes in the diameter of the limb, meaning that the signal is a summed measurement of

the cross-sectional area of the muscles in the region being measured.

Table 2 - Recent MMG classification studies

Author Number/Type Classification
algorithm

Number of gestures/
Accuracy/ Online?(y/n)

Ref.

Alves & Chau,
2009

6/Microphone &
Accelerometer

LDA 8/ 93.3%/n [1]

Alves & Chau,
2010

6/Microphone LDA 8/ 85%/n [3]

Cao et al., 2011 2/Accelerometer Generalised
Discriminant Analysis

4/95.12%/n [5]

Ma et al., 2017 6/Microphone CNN 5/94%/n [7]

47

MK signals have been used for prosthetic control, although primarily for the proportional control of a

single degree of freedom device [144-146]. One possible reason so little study has been performed on this

type of interface for prosthetic control is that amputees often lose muscle mass in the amputated limb,

resulting in a smaller myokinemetric signal. Another reason is that sonomyography provides a more

detailed view of the same information.

2.4.7 Sonomyography
Sonomyography (SMG) is a more advanced method of detecting the myokinemetric signal. SMG describes

the use of ultrasound imaging to provide information about muscular activity, most often by observing

the dimensional changes of the muscle [147]. Other features that can be observed include muscle fibre

pennation angle and muscle fascicle length. Unlike MK, SMG can be used to examine individual muscle

contractions, meaning that more complex control structures can be achieved. SMG has also been used for

other applications such as determining fatigue [148] and muscle function assessment [149-151].

SMG has been used to find a correlation between the deformation of the muscle and the joint angle with

the intent to provide proportional control of single DoF prosthetic devices [152, 153]. More recently,

individual finger flexions/extensions have been distinguished either using ultrasonic imaging [154, 155] or

using an array of single element ultrasonic transducers [156, 157]. Outside prosthetics, SMG has not been

applied as an HMI for any other applications. A number of papers examine the repeatability of the SMG

signals to assess their applicability to HMI problems, but at this point no implementations have been

created.

2.4.8 Other forms of interface
There are several other forms of interface that have been used for both prosthetic control and general

HMI applications. These following interfaces do not record dexterous gestures but can be used either as

a direct method of control, or as a transparent method of providing context to a controller. They are not

directly in line with the research aims of this document but could be used to extend the work in the future.

2.4.8.1 Gaze-based interface
Gaze-based interfaces estimate where the user is looking to provide a control signal, most often using a

camera focused on the user’s eye. They were proposed as an interface for individuals who are unable to

use other forms of interface due to injury, stroke or disease [158]. More commonly, gaze-based interfaces

are used to determine Areas of Interest (AoI), which allows researchers to explore how people observe

their environment, useful for a number of tasks including UI design and advertising [159].

Gaze tracking is normally used in prosthetic control in one of two ways. It has been used to move

prosthetic arms [160, 161], but more often it is used for target selection. This use is similar to the head

mounted cameras discussed in the vison section but include a second camera for eye tracking to

determine where in the field of view the user is looking. This allows for a more robust solution than

through vision alone [162]. There is a large body of research on gaze tracking for computer control [163-

165].

48

2.4.8.2 Tongue-based interface
Tongue movements can also be used as a form of interaction. Tongue-based interfaces are also useful for

those who are unable to use other forms of interface, and they do not require any external equipment

such as a camera. Tongue-based interfaces fall into two categories, intra-oral and intra-aural. Intra-oral

interfaces usually consist of pressure sensitive sensors placed on the roof of the mouth or on the cheeks

[166, 167]. Intra-aural sensors consist of pressure sensors worn within the ear. It was noted that tongue

gestures could be differentiated by looking at the changes of in-ear pressure caused by tongue

movements, known as Tongue Movement Ear Pressure (TMEP) signals [168, 169]. Tongue-based

interfaces have been used to control wheelchairs [167] and for robot teleoperation [170].

2.4.8.3 Brain Machine Interface
Brain Machine Interfaces (BMIs)/Brain Computer Interfaces (BCIs) provide a method through which a user

can provide control signals through cerebral activity. They are usually used as a primary communication

interface for individuals who are completely paralyzed, either through injury or degenerative disease.

Brain activity detected through BCIs can be the only indication of awareness in some individuals [171],

and therefore it is a vital area of study for those creating assistive devices. There are several methods of

detecting brain activity for BCI, both non-invasive, such as electroencephalography (EEG) and functional

Magnetic Resonance Imaging (fMRI), and invasive, such as Electrocorticography (ECoG) and brain

implants.

Cortical activity has been used for the operation of robotic platforms previously [172, 173], however it

cannot detect dexterous movements in real time at this point.

2.4.8.4 Voice
Voice User Interfaces (VUIs) are distinct from the other interfaces described here, in that it is the only

interface not to monitor some form of (real or imagined) gesture control. VUIs have become increasing

popular in recent years. They are included here because they adhere to the principles of NUIs, and

commercial solutions are both efficient and have a high user satisfaction. They do not constitute direct

competition as they record a distinct form for natural movements. A system that aims for completely

generalizable HMI will need to monitor both voice commands and gesture commands.

VUIs for prosthetic control has been implemented as an alternative to the EMG-based solutions [174,

175], and comparative studies have been performed that show that voice control is a more efficient

strategy than EMG-based systems [176]. Voice systems combined with EMG have also been tested and

shown to be more efficient that EMG alone [177].

Outside the lab, voice-controlled prosthetics have not had any commercial success. Possible contributors

to this include the desire not to draw attention to the prosthetic by talking to it, unresponsiveness in noisy

environments, the desire to control the device in a way natural to the traditional control strategies, and

the concern that others nearby will have just as much control as the wearer will.

49

VUIs for general HMI applications are becoming more prevalent, with several smart home controllers such

as the Google Home and Amazon’s Echo devices on the market. Voice assistants like Alexa, Cortana and

OK Google are also becoming more popular. Currently, these devices are very suited for tasks that do not

require context, such as general inquiries, or specific tasks where there is only one corresponding action.

Where VUIs are less useful are for tasks that are difficult to put into words, such as moving a display

between several screens.

While VUIs remain a permanent method of smart device control, they do not provide a complete solution

in their current form.

2.5 Guidelines for HMI Design
Choosing the most appropriate sensors to include in the HMI requires the designer to consider factors

that lead to both high and low adoption rates for HMI devices. These factors have been examined in the

fields of prosthetics, assistive devices and in the development of NUI-based devices, so a list can be

compiled of those factors that must be considered when building a device that bridges all three fields.

Many studies examining rejection rates for prosthetic devices categorize and rank the factors leading to

rejection and those that regular users prioritize. This ranking can be used to derive new design

considerations for potential devices, allowing different technologies to be evaluated for their suitability.

Similar work has also been undertaken in the other HMI fields, allowing those sensors to be evaluated for

suitability as well. From these studies, the following factors have been identified as features that can be

used to compare input devices:

- Functionality/Robustness

- Usability/Comfort

- Form/Pervasiveness

- Accessibility/Cost

The information presented in this chapter is summarized according to these features in the following

sections.

2.5.1 Functionality/Robustness
Ideally, the sensor should have a high bandwidth, capable of capturing a large range of movements. It

should not be susceptible to environmental factors and should be independent of transient calibration

values.

• Physical input systems – Physical input systems are very robust. The functionality of a physical

input system is dependent on the number of individual physical input components (e.g. Buttons,

dials, joysticks, etc). While most interfaces have many of these components, in both assistive

technologies and prosthetic devices, the number of components tends to be much lower. A split

hook device may be operated through a cable-based system, allowing a single analogue channel

50

of data to be collected. Physical input systems can therefore be classified as medium functionality

with a high level of robustness.

• Vision-based system – Vision-based systems have been explored as interfaces for both highly

dexterous movements and for capturing full body pose information. They are also capable of

gathering not only control signals, but the context of those commands, a vital component in the

implementation of NUIs. They are reasonably robust under ideal conditions, but performance is

affected by environmental factors such as light level. Additional functionality can be achieved by

increasing the complexity of the hardware (e.g. inclusion of infrared information). Assistive

technology makes use of vision-based systems in situations where physical input systems are not

practical, but in prosthetics their use has been limited to research so far.

• Inertial Measurement Units – IMUs provide the ability to capture motion gestures. They broadly

fall into two categories, those where the IMU is an interface device (something that the user

moves to create control signals) and those where it is a monitoring device (something that derives

control signals or contextual information by observing the natural movement of the user). As

such, their functionality can be high, however they can be susceptible to a number of interfering

factors, including vibration and magnetic fields. Though they are often used in assistive

technologies and prosthetics, it is rarely as a primary interface. Instead, they are often used to

monitor the environment for signals that may interfere with other sensing technologies.

• Electromyography – EMG allows muscle contractions to be observed, which can allow both real

and imagined movements to be inferred. Again, this can be used either to detect specific control

signals or to observe the wearers muscle activity. The functionality can be high, with the ability to

detect both dexterous movements and muscle condition, however it is reliant on favourable

environmental conditions. Skin impedance and temperature, pressure on the sensors and

movement of the limbs all affect the EMG signal. In controlled environments, EMG is both robust

and functional, and is used for diagnostic purposes, although the functionality decreases

dramatically when used in the uncontrolled environment of a prosthetic socket.

• Mechanomyography – MMG also allows muscle contractions to be observed. It has been shown

as a comparable signal to EMG, although it is a far less advanced area of research, so it is too early

to say whether it can achieve the functionality that EMG has demonstrated. It is unaffected by

environmental conditions such as impedance, humidity and skin temperature, although it is still

affected by pressure and movement. MMG has not been used either clinically or commercially at

this point since EMG-based interfaces became standard practice for medical diagnostics.

• Myokinemetric signals – MK signals provide muscle information at a much lower resolution than

any of the other muscle sensing technologies described here. At this point they have been used

to provide a single control signal for a single degree of freedom device, and so the functionality is

low. The robustness is reasonable, but pressure on the sensors or passive movement of the sensor

will both lead to false signals.

• Sonomyography – SMG provides high resolution information on the muscle activity within the

arm. It can detect individual muscle movements, and therefore can give a clear picture of the task

the user is trying to achieve. The effect of environmental conditions is limited to those that may

51

take the sensors out of contact with the skin, and when contact is maintained the signal is very

robust.

2.5.2 Usability/Comfort
The ideal system needs to be easy to use and should aim to use control signals that the user is already

familiar with, whether this is through the use of other devices or through natural movement. Long-term

use may require recalibration of some of the sensors, and this is factored into the rating for ease of use.

It should also be comfortable to use for long periods of time. The comfort level refers to both the physical

comfort of the device and the comfort of long-term use.

• Physical input systems – Physical input systems rate highly in terms of usability. The individual

components are easy to learn how to operate and have the addition benefit that physically

manipulating something results in haptic feedback, which allows the user to know that they have

completed the movement. The long-term comfort associated with physical input systems is poor

however. Simple interfaces such as the computer keyboard and mouse are associated with RSIs

in the hands and wrist, and the more force required to operate the interface the greater the risk

of injury. To operate a prosthetic, the user must apply the force they wish the prosthetic to exert

through their residual limb, which has been shown to have long-term health problems associated

with it. The comfort therefore receives a low rating.

• Vision-based system – Vision-based systems are very easy to use since they capture natural

movements, and often do not require the user to do anything that might be detrimental their

comfort. They often rely on visual feedback, which means that they can be slightly harder to use

then physical input systems due to the extended period between action and feedback. Vision-

based systems rarely need recalibration within a known environment.

• Inertial Measurement Units – IMUs can be manipulated very easily, since they record the physical

movement of the device. As an interface, they are very easy to use and the output from them can

be predicted accurately by the user, allowing them to provide a form of interface that is easy to

operate. If the system is being worn, modern IMUs are small and lightweight, and can record

activity without inhibiting the wearer in any way. This makes them comfortable to use for

extended periods of time. IMUs do occasionally require recalibration, which may be difficult for a

user who is unfamiliar with the technology.

• Electromyography – EMG sensors have the potential to create very easy to use interfaces. The

ability to detect hand gestures and other natural movements means that the user does not have

to learn specific action, but instead can perform actions that they are already familiar with.

However, due to the robustness of the sensors, EMG-based interfaces for prosthetic control

normally rely on deliberate contractions of muscle groups. This leads to a less natural interface

since the wearer must learn to associate these deliberate contractions with the intended output.

Additionally, the sensors must remain in consistent contact with the skin, which is normally

achieved by increasing the pressure on the sensors. Since the calibration of these sensors is

dependent on environmental conditions that change constantly, the signal detection threshold

52

for systems such as these is normally high. This means that the user must focus on generating a

large muscle contraction to create their control signal, and this can quickly lead to fatigue and

discomfort.

• Mechanomyography – MMG is similar in terms of initial ease of use to EMG. Interfaces using

MMG that are currently being researched do not rely on generating specific signals but monitor

natural movements that can then be used to generate control signals. Long-term usability has not

yet been tested, but in short term tests it has been reported that the muscle contractions needed

to generate control signals are lower than those necessary for EMG, and therefore more

commands can be generated before the wearers fatigue level become uncomfortable.

• Myokinemetric signals – MK signals rely on voluntarily changing the dimensions of the limb, and

therefore large muscle contractions are required to reliably generate discernible MK signals.

While this does make the system relatively easy to use it can quickly lead to fatigue. In addition,

it normally requires a tight band to be work around the limb, which could become uncomfortable

over time. The resistance of the band does provide a form of feedback to the wearer, so they can

quickly learn how to use the system.

• Sonomyography – SMG can easily determine intent from the user, and so can be used as a fast

form of interface. It relies on natural movements and does not require the user to increase the

strength of a movement to detect it. It does require some pressure over a larger area of the limb

than many sensors and is the largest and heaviest of the sensors listed here.

2.5.3 Form/Pervasiveness
• Physical input systems – Physical input systems come in a huge variety of forms and can be either

wearable or a separate object that the user interacts with. Most interfaces are comprised of

several components that can be operated individually and rely on some form of dexterous

manipulation to generate the control signals. Simpler interfaces designed either as assistive

devices or as prosthetic controllers are usually much larger and may span a number of joints.

Physical input systems are pervasive, but normally either inhibit the user in some way (such as

resisting movement) or require deliberate and cognitive engagement (such as pressing a button).

• Vision-based system – Vision-based systems can be placed in a defined environment to provide

information about both the environment and the user within it. While the cameras themselves

can be small, the user must remain in the Field of View (FoV) of the camera to allow it to be used.

This can significantly restrict the user’s freedom to move, and they must be aware of both the

limits of observation and the occlusion within the FoV, and as a result the user must be aware of

the location of the camera, adding to their cognitive load. Cameras can also be worn to provide

control signals. Applications using wearable camera often require them to be mounted out from

a limb so they can observe the end of that limb, on the head to observe where the user is looking

or facing towards the users face to observe eye movements. In most applications, these require

relatively large housings to hold the cameras, inhibiting free movement and adding weight.

• Inertial Measurement Units – IMUs are low volume sensors that can be entirely self-contained.

They measure the forces applied to them internally and have no external moving parts or sensing

53

surfaces. As a result, objects containing IMUs can be designed in almost any form that the user

desires. In addition, their low power consumption can result in small stand-alone modules that

can be used to monitor movement of a wearer with negligible additional weight.

• Electromyography – EMG signals can be measured using either wet or dry electrodes. Wet

electrodes use a gel to maintain the local conditions of the skin, which allows a reliable signal to

be obtained for as long as the gel is stable. Dry electrodes normally have three contacts that must

be kept in place on the skin. They do not maintain their local environment but degrade at a much

slower rate than wet electrodes. EMG sensors are pervasive, they can be used to infer intent and

movements by measuring the signals produced during the generation of the movement, rather

than measuring the movement directly. They do not inhibit movement but can be larger than

some alternatives.

• Mechanomyography – The two most common types of MMG sensors are accelerometer-based

and microphone-based. Both have a comparatively small footprint and depth. MMG sensors can

also be used to infer activity and generate control commands from muscle activity instead of

direct observation of kinematic movement, and so are also pervasive. They also tend to be

lightweight and low power. Microphone-based MMGs normally contain an acoustic chamber,

which limits their minimum dimensions.

• Myokinemetric signals – MK signals are observed through a band placed around the limb. The

band does not inhibit movement, and while the footprint is normally larger than most

alternatives, the depth can be small. It is highly pervasive.

• Sonomyography – SMG signals are currently most commonly observed using an ultrasonic

imager. An ultrasonic probe is worn using custom housings that hold it perpendicular to the

surface of the limb. The probe normally protrudes a long way from the housing, since a large

amount of damping material is required in order to stop echoes from the back of the sensor. In

addition, a large amount of processing power is required to turn the signal data into an image that

can be used to identify muscle activity, and so in most cases the sensor needs to be plugged

directly into a computer. While SMG does measure muscle activity to infer control commands in

the same way EMG, MMG and MK devices do, the size, weight and form of the sensor does count

against it in terms of pervasiveness.

2.5.4 Accessibility/Cost
• Physical input systems – Physical input systems are among the most diverse group of input

devices. They tend to be low material cost, and in many cases contain a single electromechanical

device, and no active components. They can be made into forms to suit their function, whether

they are intended to be used for fine control, as an assistive devise or as a prosthetic control

system. There are very specific cases where physical input systems are completely inaccessible,

but for the majority of users, some form of system could be utilized.

• Vision-based system – Vision-based systems are also accessible. In most cases, a vision-based

system could be used as an alternative to physical input systems, since they can observe the

physical movement with a high level of accuracy. One of the reasons these systems are less

54

common is due to the cost associated with them, both monetary and in terms of processing

power. In some situations where a user may be unable to make the movements required to

operate a physical interface, a camera-based interface can be used instead.

• Inertial Measurement Units – IMUs vary hugely in price, but for HMI applications, low end IMUs

are normally sufficient. These IMUs have a medium level component cost in the context of the

sensors described here. Much like physical input systems, they can be used by most of the

potential user population as either a primary interface sensor or to provide some context to the

system as a whole. Assistive technologies also often make use of IMUs for activity monitoring,

rehabilitation and symptom monitoring.

• Electromyography – EMG requires volitional muscle contraction, either as a control signal or

through movement. It also requires good electrical contact to the skin, which can be impeded if

the individual has a large amount of scar tissue over the muscles that are to be observed. This is

a significant problem in prosthetics, and leads to the amputees having to generate larger, more

fatiguing contractions as control signals. EMG sensors require electrodes and active circuitry to

help remove noise from the signal. As such, they are a comparable price to the IMUs described

above.

• Mechanomyography – MMG sensors also require volitional contractions to generate the control

signals, however MMG signals are much less affected by factors such as scar tissue. They also have

the capability to pick up smaller contractions that may be indistinguishable from noise using other

sensors. MMG sensors are very cheap to produce, and most systems use a single component for

signal capture. MMG data also require little pre-processing before classification can occur,

reducing the need for other components.

• Myokinemetric signals – MK signals require large muscle contractions, which may be problematic

for amputees who are suffering from muscle atrophy, as well as individuals suffering from

neuromuscular disorders. Healthy subjects should have less difficulty in generating the required

signals. The cost of these sensors is also low, and the sensors can be constructed from inexpensive

passive components if required.

• Sonomyography – SMG signals give the best indication of the activity of the body of the sensors

listed here. They can observe muscle contractions that are not detectable at the surface of the

skin, and therefore can be used by the greatest proportion of the population. SMG sensors

requires ultrasonic imaging, the equipment for which is a minimum of an order of magnitude

more expensive that the IMU/camera-based systems.

The rankings given to each of these sensors in the different categories are shown in Figure 2.

55

Figure 2 – Comparison of features of different sensing modalities

56

2.6 Overview of Orientation Estimation
Orientation estimation allows a system to approximate its orientation within a known reference frame. In

uncontrolled environments, this is usually achieved through the use of an IMU or MARG (Magnetic,

Angular Rate and Gravity) sensor, which observes internal forces generated through a combination of

movement, geomagnetic forces and gravity. The applications for this nature of information are varied, but

include medical diagnostics/rehabilitation [178-180], health/sport tracking [181], localization [182-185],

aerospace applications [186, 187] and autonomous robotics [188-191], as well as the HMI, assistive device

and prosthetics applications described in the previous section. These devices should ideally be small, low

cost packages capable of determining orientation without environmental knowledge.

MARG sensors typically consist of a tri-axis accelerometer, a tri-axis gyroscope and a tri-axis

magnetometer. Orientation estimation is performed by fusing the information gathered by these three

sensors. Gyroscopic data can be used to record changes in orientation through integration [192], however

this requires a known start point. Additionally, gyroscopic integration is susceptible to cumulative errors

introduced through noise and high frequency rotations, leading to a decrease in accuracy over time. The

accelerometer and magnetometer can be used to correct these errors. Accelerometers are sensitive to

gravitational acceleration, which represents a consistent direction in the global reference frame. Similarly,

the magnetometers are sensitive to the earth’s geomagnetic field, which is also assumed to be consistent

in the global reference frame. Both the accelerometer and the magnetometer are sensitive to other

sources of acceleration and magnetic field respectively and can both also be distorted be sensor bias and

so all three sensor modalities are used in the most accurate orientation estimation algorithms.

The most prominent techniques for MARG sensor fusion are the complementary filter, the Kalman filter

and the optimization filters such as the Madgwick and Mahony algorithms [193].

Complementary filter – The complementary filter is arguably the simplest of the filters listed here and

works by applying weights to the gyroscopic integration and accelerometer output to provide an

estimation for orientation. The errors in gyroscopic integration result from a combination of low

frequency bias and drift, whereas the errors in the gravitational estimation are the result of high frequency

noise and motions. Applying a large weight to the gyroscopic data and a small weight to the acceleration

data will effectively allow the sensors to correct each other. More specifically, the weights are derived

from the frequency boundary between the signal and the noise. In more advance complementary filters,

these weights can be adapted in real time depending on the task to be achieved [194].

• Advantages – the filter is very easy to design, and computationally efficient, meaning it can be

run on very basic hardware. It does not require previous sensor inputs to perform its estimation.

• Disadvantages – the filter is slow to converge, and since it has no active method of compensating

for sensor noise, it can be less accurate than the alternatives.

Kalman filter – the Kalman filter was designed to counteract the effects of noise on linear estimation

problems [195]. As such, it is not exclusively an orientation estimation algorithm, and can be applied to a

wide range of problems. It functions as a recursive algorithm, applying the current input data, the previous

57

input data and the previous output state prediction to a recursive function to predict the current output

state. Since movement is a non-linear problem, Extended Kalman Filters (EKF) must be used [196, 197].

Kalman filters are often used in commercial orientation monitors, including products designed by

Intersense [198], VectorNav [199], xsens [200], micro-strain [201] and PNI [202].

• Advantages – EKFs tend to provide the most accurate estimations for orientation. They are also

strong in dealing with a significant level of noise, making them suitable for applications such as

quadcopter control.

• Disadvantages – The two biggest arguments against the use of EKFs are the difficulty in

implementation and the high computational cost.

Optimization filters – Optimization filters are a computationally lean alternative to Kalman Filters. They

work by estimating their orientation based on the gyroscopic integration and comparing expected sensor

output to actual sensor output. The difference can be expressed in the form of an error, which can then

be corrected. There are two commonly used algorithms that use this approach for orientation estimation,

the Madgwick algorithm and the Mahony algorithm. Madgwick used two sequential gradient descent

algorithms to correct the orientation estimated based on both the accelerometer and the magnetometer

[203]. Mahony used a PI controller to achieve similar results [204]. Due to their high accuracy and ease of

implementation, The Madgwick and Mahony algorithms are often used together when benchmarking

other orientation estimation algorithms [190, 205-207]. Admiraal has presented an improved formulation

of the original gradient descent algorithm [208].

• Advantages – The Gradient Descent Algorithm (GDA) approach has been shown to achieve similar

levels of accuracy to EKF’s, with a greatly reduced computational cost [209]. The algorithm is also

open source and is easy to adapt for specific activities.

• Disadvantages – The algorithm does not decouple pitch and roll from magnetic interference,

which results in changes in yaw having unwelcome effects in the other axes [210]. Additionally,

while easier to implement than Kalman Filters, the algorithm does have a higher computational

cost than is desirable on embedded systems. Finally, the presence of two non-perpendicular,

sequential gradient descent steps impacts the convergence speed of the algorithm.

2.6.1 Introduction to Quaternions
There are a number of ways of representing rotations, but quaternions have been shown to be the most

stable [211]. Quaternions are a four dimensional number system first described by Hamilton [212]

between 1844-1850. Quaternions provide a consistent rotation and avoid gimbal problems, and so are

often used in computer graphics and IMU/MARG sensors.

Quaternions are represented in the form 𝒒 = 𝑤 + 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌, where 𝑤, 𝑥, 𝑦 and 𝑧 constitute real

numbers, and 𝒊, 𝒋 and 𝒌 denote imaginary units. Quaternions extend the definitions for imaginary

58

numbers so that 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1, 𝒊𝒋 = 𝒌, 𝒋𝒌 = 𝒊, 𝒌𝒊 = 𝒋, 𝒋𝒊 = −𝒌, 𝒌𝒋 = −𝒊 and 𝒊𝒌 = −𝒋. It is

therefore useful to define 𝑞 as:

 𝑞 = [𝑞𝑤, 𝑞𝑥 , 𝑞𝑦, 𝑞𝑧] (1)

This extension can be used to derive the non-commutative product of two quaternions, which simplifies

to:

 𝒒1 ∗ 𝒒2 = 𝑤1𝑤2 − 𝑥1𝑥2 − 𝑦1𝑦2 − 𝑧1𝑧2

+(𝑤1𝑥2 + 𝑥1𝑤2 + 𝑦1𝑧2 − 𝑧1𝑦2)𝒊

+(𝑤1𝑦2 − 𝑥1𝑧2 + 𝑦1𝑤2 + 𝑧1𝑥2)𝒋

+(𝑤1𝑧2 + 𝑥1𝑦2 − 𝑦1𝑥2 + 𝑧1𝑤2)𝒌

(2)

The conjugate of a quaternion is defined as:

 𝒒∗ = 𝑤 − 𝑥𝒊 − 𝑦𝒋 − 𝑧𝒌 (3)

which allows the norm to be calculated using:

 ‖𝒒‖ = √𝒒𝒒∗ (4)

The reciprocal, which represents the reverse of the given rotation, is defined as:

𝒒−1 =

𝒒∗

‖𝒒‖
 (5)

Through the use of the reciprocal, it becomes possible to rotate a vector by a quaternion. This is

performed by converting the vector (𝒖) into a quaternion (𝒗) with the 𝑤 component set 0, as per:

 𝒗 = 0 + 𝑢𝑥𝒊 + 𝑢𝑦𝒋 + 𝑢𝑧𝒌 (6)

and then calculating the points describing the new position, contained in 𝒗′, as per [213], which states

that:

 𝒗′ = 𝒒 ∗ 𝒗 ∗ 𝒒−1 (7)

An equivalent process could be to use a rotation matrix that represents the same rotation as the

quaternion, which can be defined as 𝑅𝑞. As a result, it can be stated that:

59

 𝒒 ∗ 𝒗 ∗ 𝒒−1 = 𝑅𝒒 ∗ 𝒗 (8)

The relation between rotation matrix 𝑅𝑞 and the quaternion 𝑞 can be given by:

 𝑅𝑞(𝑞)

= [

𝑞𝑤
2 + 𝑞𝑥

2 − 𝑞𝑦
2 − 𝑞𝑧

2 2𝑞𝑥𝑞𝑦 + 2𝑞𝑤𝑞𝑧 2𝑞𝑥𝑞𝑧 − 2𝑞𝑤𝑞𝑦

2𝑞𝑥𝑞𝑦 − 2𝑞𝑤𝑞𝑧 𝑞𝑤
2 − 𝑞𝑥

2 + 𝑞𝑦
2 − 𝑞𝑧

2 2𝑞𝑦𝑞𝑧 + 2𝑞𝑤𝑞𝑥

2𝑞𝑥𝑞𝑧 + 2𝑞𝑤𝑞𝑦 2𝑞𝑦𝑞𝑧 − 2𝑞𝑤𝑞𝑥 𝑞𝑤
2 − 𝑞𝑥

2 − 𝑞𝑦
2 + 𝑞𝑧

2

]
(9)

N.B.

For normalized quaternions:

 𝑞𝑤
2 − 𝑞𝑥

2 − 𝑞𝑦
2 + 𝑞𝑧

2 = 2(𝑞𝑤
2 + 𝑞𝑧

2) − 1 = 1 − 2(𝑞𝑥
2 + 𝑞𝑦

2) (10)

This can be proved using:

1 = √𝑞𝑤

2 + 𝑞𝑥
2 + 𝑞𝑦

2 + 𝑞𝑧
2 (11)

Squaring gives:

 1 = 𝑞𝑤
2 + 𝑞𝑥

2 + 𝑞𝑦
2 + 𝑞𝑧

2 (12)

 Therefore (12) can therefore be used to convert between the forms given in (10).

Finally, since orientation estimation algorithms can require the conversion between axis-angle

representations and quaternions, the definition is given in [214], and is included here. For a rotation of 𝜃

around and arbitrary axis defined by the unit vector 𝑢 = 𝑢𝑥 + 𝑢𝑦 + 𝑢𝑧 is given by:

𝒒 = 𝑒

𝜃
2(𝑢𝑥𝑖+𝑢𝑦𝑗+𝑢𝑧𝑘) = cos

𝜃

2
+ (𝑢𝑥𝑖 + 𝑢𝑦𝑗 + 𝑢𝑧𝑘) sin

𝜃

2
 (13)

2.6.2 Gradient Descent Algorithm – In-depth Review
The basic gradient descent algorithm proposed by Madgwick in [203] contains two distinct steps.

Orientation is maintained in the form of a quaternion and is updated by each step through each iteration.

The first step uses the gyroscopic integration to approximate the rotation that has occurred in the last

time step. Provided the sampling rate of the gyroscope is high enough with respect to the frequency of

the movement, this gives a good approximation for the rotation between time steps. This can therefore

be stated as:

60

 𝑞𝑡 = 𝑞𝑡−∆𝑡 + 𝜔∆𝑡 (14)

where 𝜔 is the output from the gyroscope and 𝑡 represents time. The algorithm then uses a second step

to correct for any cumulative errors that may be generated through this process. It does this by providing

a partial correction to the quaternion, which is representative of a step towards a calculated ‘correct’

orientation, derived using the accelerometer and the magnetometer. It assumes the following:

- Acceleration due to gravity in the global reference (𝒗𝑟(𝑎)) frame is given by:

 𝒗𝑟(𝑎) = [0,0, −1] (15)

- The accelerometers only detect gravity, and not acceleration due to motion (this is only assumed

in this step and not in the complete algorithm since the high frequency noise induced by

movement in the accelerometer is effectively filtered by the small size of the corrective step).

- The geomagnetic force 𝒗𝑟(𝑚) is given by:

 𝒗𝑟(𝑚) = [cos 𝜃 , 0, − sin 𝜃] (16)

where 𝜃 is the local level of magnetic inclination. This value varies globally and is therefore often

assumed to be 0.

- The magnetometers only detect the geomagnetic force and are not affected by external

interference.

To estimate the rotation between steps, these reference vectors 𝒗𝑟 can be converted from the global to

the local reference frame. The error in the rotation is then proportional to the difference between the

rotated reference vector and the measurement of that vector (𝒗𝑚). This allows the orientation estimation

to be expresses as a minimization problem in the form:

 min
𝒒

𝑓(𝒒, 𝒗𝑟, 𝒗𝑚) (17)

Where: 𝑓(𝒒, 𝒗𝑟, 𝒗𝑚) = 𝒒−1 ∗ 𝒗𝑟 ∗ 𝒒 − 𝒗𝑚 (18)

The error vector generated by this function can then be minimized using gradient descent:

 𝒒𝑡 = 𝒒𝑡−1 − 𝛼∇𝒒𝐹(𝒒) (19)

Where ∇𝒒𝐹(𝒒) = 𝐽𝒒(𝒒−1 ∗ 𝒗𝑟 ∗ 𝒒 − 𝒗𝑚)𝑇 ∗ (𝒒−1 ∗ 𝒗𝑟 ∗ 𝒒 − 𝒗𝑚) (20)

And 𝛼 is the step size.

This process is performed twice, once using the accelerometer data (𝒗𝑟(𝑎) and 𝒗𝑚(𝑎)), and once using the

magnetometer data (𝒗𝑟(𝑚) and 𝒗𝑚(𝑚)) to achieve consecutive steps down the two gradients, which forms

the second corrective step.

61

2.7 Chapter Summary
This chapter aimed to provide an overview of the current literature pertaining to both Human-Machine

Interfaces in general, and specifically those associated with prosthetic control and assistive technology. It

first provides a description of the most common commercial technologies and gives some of the reasons

why they are not sufficient for a number of the intended end users. In the field of HMI this includes both

the required dexterous manipulation that some may struggle with, and the intrusive and application

specific nature of current interfaces that are not necessarily conducive to natural use. It has been

identified that only around 34% of people who could potentially use a powered prosthetic do so, and this

is partly due to the difficulty of use and partly due to the lack of functionality, both features of a limited

interface. Alternative interfaces often contribute to medical problems, most commonly RSIs but also

potentially soft tissue damage or other complications.

This chapter then provides an overview of specific human machine interface modalities, including physical

input systems, inertial systems and vision-based systems, muscle-based input systems, as well as several

possible complementary interface technologies. EMG is also explored in depth, since the signals are

potentially comparable, and there is a significantly larger body of literature that could potentially inform

MMG signal analysis. In particular, the type of control that EMG can provide are described, with a focus

on pattern recognition. Several methods of feature extraction and pattern recognition that have

previously been used for EMG pattern recognition are detailed.

Previous MMG work is explored, giving an indication of the current development of the technology.

Literature describing both previous validation studies of microphone-based MMGs and MMG design

optimisation are identified. When examining the literature, a lack of MMG-based sensor fusion was

identified. Studies which use a multimodal approach processed each channel individually to provide

binary information, which was then used for intent derivation. A system which implemented more in-

depth fusion between multiple MMG sensors and IMUs could not be found.

In order to provide some method of comparing the various interface technologies, four criteria that the

end users commonly assess these technologies were identified. Each of the seven major interface

technologies were then subjectively assessed against these four criteria, and a brief summary of how each

of them performed was given. Finally, each interface technology was given a ranking. No single technology

definitively outperformed the others, and therefore this ranking provided an indication of areas where

each technology could be improved.

The final two sections of this chapter are intended to give a mathematical background to the orientation

estimation algorithms that are used in the pervasive monitoring system described in this thesis. Most

orientation estimation algorithms use some sort of sensor fusion to correct the errors that can be

introduced when relying on a single sensor. There are several methods of performing this sensor fusion,

and the methods that provide the greatest accuracy for the least computational expense are optimization

methods that typically work by minimizing error functions. Madgwick’s gradient descent algorithm for

62

orientation estimation is a commonly used example, and an in-depth description is provided along with

the quaternion mathematics on which it relies.

63

64

Chapter 3
Hardware and Software Development

65

3.1 Introduction to Hardware Development
A sensor suite capable of evaluating user intent was required as the input for this control system. As

discussed in the previous chapter, gesture-based control was chosen as the interface modality. When

determining intent for a control system, it is insufficient in most cases to only classify a gesture into

discrete commands. It is difficult to derive meaning from a gesture without also knowing the context in

which it was made. A sensor suite capable of capturing both gesture and context is therefore required to

create an appropriate interface. As a prosthetic controller, the system also needed to be capable of

capturing imagined gestures.

3.1.1 Key User Requirements
Through discussion with the end users for the prosthetic controller, it was determined that a wearable

solution would provide the most convenient level of usability. The requirements for a wearable sensor

capable of performing both gesture recognition and being context aware were defined as follows:

• Non-Restrictive – the sensors should not inhibit the users in their range of movement.

• Unobtrusive – the sensors should be small and lightweight so that they are not uncomfortable.

• Easy to use – the sensors suite should not require preparation or calibration before it can be used.

• Consistent – the sensors should provide a predictable response.

• Low-Power – the sensors should be low power and include their own power source.

• Wireless – the suite should not require a wired connection to a computer to function.

• Internal Storage – the device should have the ability to record data or save settings when it is not

connected to a computer.

• Configurable peripherals – the suite should be capable of capturing the signals from peripheral

sensors, such as the MMGs, and providing real-time fusion.

Due to the potential of the sensors identified in the previous chapter, combined with the current limited

attempts to exploit them, a combination of Magnetic, Angular Rate and Gravity (MARG) sensors, and

Mechanomyography was chosen as the principal sensing technique. MARG sensors provide the context

of the gesture by monitoring changes in orientation using a 3-axis gyroscope. They can also use

accelerometers and magnetometers to observe gravity and the earth's magnetic field when the device is

stationary. The MARG sensors can therefore be used to estimate orientation in a global reference frame.

Mechanomyography was chosen as the method of monitoring muscle activity (from either an intact or

residual limb), as it offers the most reliable signal over extended periods of time without the need for skin

preparation or sensor replacement. Mechanomyography is also more suited to the environment inside a

socket than other muscle sensing methods, such as EMG. Cameras, exoskeletons and controllers were

excluded because they limit the geographical location or the range of movements that the user is able to

perform and were not conducive to the creation of a generalised pervasive monitoring system.

66

As the mechanomyography signal falls within the range of 2-125Hz, the sample rate for the MMG needed

to be at least 250Hz to avoid aliasing. The low-power and wireless communication requirements suggest

that a simple, off-the-shelf communication protocol such as Bluetooth could be suitable. Due to the device

limit in a Bluetooth piconet, it was desirable that the MMGs and the MARG data were connected to the

computer through a single Bluetooth connection, therefore externally powered ADC (Analogue to Digital

Converter) ports were identified as a derived requirement.

There are a wide variety of MARG sensors available on the market, ranging from low cost breakout boards

through mid-range self-contained devices to high cost commercial solutions. The requirements for the

device were compiled and the available devices were assessed for their suitability. A commercial solution

that met all the requirements could not be found at an acceptable price point; therefore, the decision was

made to design and build a device capable of sampling the sensors at an acceptable rate. While there are

several methods of obtaining MMG data, there are no commercially available solutions to do so. As a

result, the MMG sensors used in this project were also custom built.

3.2 NUIMU Development

3.2.1 Hardware Design
The hardware was designed specifically for this investigation and will be referred to in this document as

NUIMU. The board has six Integrated Circuit (IC) elements, which can be seen in Figure 3:

• Microcontroller (PIC24FJ64GA104)

• Wireless Module (BT900)

• UART-USB converter (FT232R)

• IMU (LSM9DS0)

• Power Management (LP2985 and MCP73831)

Figure 3 – Breakdown of IC elements on NUIMU boards

67

3.2.1.1 Microcontroller
The PIC24FJ64GA104 is the primary controller on the board. It is a 16-bit microcontroller from Microchip

with a processor speed of 16 Million Instructions per Second (MIPS), and is programmed in the C language.

It was chosen because it contained all the peripheral modules that were required for this application.

When the circuit is powered, PIC24 sets its internal registers to their required initial state. This includes

setting up the pins for communication and mapping the correct interrupts to specific functions within the

code. The microcontroller then waits for one of several commands to arrive through one of the two UART

communication modules.

3.2.1.2 Wireless Module
A wireless connection to the host device was defined as one of the key user requirements. Bluetooth was

chosen over the alternatives due to its relatively low power consumption, and its ease of implementation.

The Bluetooth module chosen for this project was a BT900, produced by Laird. It is a Bluetooth v4.0 dual

mode module, providing the highest level of flexibility for the design at the time. This module was chosen

for its ability to run dedicated code, allowing the module to exercise complete control over the Bluetooth

connection, resulting in a faster boot for the device. The module is programmed in smartBASIC to operate

a Serial Port Profile (SPP). This profile is the most suited to transferring bursts of data, such as a packet of

inertial data. It communicates with the microcontroller through UART with a high baud rate.

3.2.1.3 UART-USB Converter
A form of wired communication was also implemented as a secondary method of interacting with the

host device. It allows the Bluetooth module to be reprogrammed through the USB, and for debugging the

microcontroller without having to set up a wireless connection. The IC chosen for this was an FT232R from

FTDI, as it handles the entire USB protocol and is powered through the USB, therefore it does not draw

from the battery resulting in a longer operating period between charges. It is also programmed so that

the 'friendly name' of the device identifies the board ("NU USB XXX" where XXX is the NUIMU UID).

3.2.1.4 Inertial Measurement Unit
The IMU chosen was an LSM9DS0 from STMicroelectronics, which contains 3-axis Accelerometer, a 3-axis

Gyroscope and a 3 axis Magnetometer, providing many references for the movement of the device. The

sample rates these individual sensors are configurable. The range of each sensor can also be set from a

list of options. The module is configured and sampled by the microcontroller over a Serial Peripheral

Interface bus (SPI). It was chosen primarily due to the large number of reference outputs, small footprint

and low cost.

3.2.1.5 Power Management
There are two power management ICs on the board. The first is a 3.3V voltage regulator (LP2985), which

operates to ensure that the voltage provided to the ICs on the board is constant. This provides a known

voltage for the Analogue to Digital converters on the board, allowing the voltage to be converted into

useable data. By using this known voltage combined with a potential divider circuit on the battery line,

68

the voltage from the battery itself can be calculated. In the LiPo batteries used in this project, this can be

used to estimate the remaining battery life.

The second power management IC is a battery charge management controller (MCP73831). This IC is

connected to the power line of the USB port, and is used to safely charge the battery connected to the

board. It powers an LED that is lit when it is charging and goes off when the battery has reached the

defined maximum charge.

3.2.1.6 Auxiliary Ports
The board has 8 powered (3 pin) analogue ports to connect to external sensors. Each port has one data

pin, which is connected to a unique channel of the 10-bit High-Speed Analogue/Digital Converter module

in the microcontroller.

Application specific firmware can be written to give these ports other functions. All eight of them can be

used as digital inputs or outputs. In addition, six of them can be connected to the remappable peripherals

on the microcontroller. This extends their functionality to include: Communication (UART/I2C/SPI),

Advanced I/O (Capture/Compare), and External Interrupts.

3.2.1.7 Manufacturing
Each part of the circuit was assembled and tested by hand. Once this process was finished and the board

design was finalized, it was sent to a manufacturer for fabrication and assembly. The final board was a

four-layer PCB (thickness 0.6mm) with dimensions of 23mm x 33mm and 52 surface mount components.

3.2.1.8 Finalizing Hardware
The NUIMU is powered by a 265mAh battery. The 24-pin external connector can be fitted either vertically,

or at a 90-degree angle. A case was designed for each version and printed using a Projet 3500 HDMax 3D

printer.

Figure 4 – Final Package of NUIMU hardware

69

3.2.2 Hardware Improvements

3.2.2.1 Improved Inertial Measurement Unit
It became necessary over the course of the development to upgrade the IMU, as STMicroelectronics

stopped producing the LSM9DS0. The LSM9DS1 was selected as a replacement since it was functionally

similar. The new IMU also has a smaller footprint that its predecessor, which required a modification to

the board. The internal layout of the new sensor is different, but by updating the firmware of the

microcontroller, the IMU could be configured to perform the same way.

3.3 Firmware
The microcontroller firmware responds to commands given by the host device. They also have a page of

the Program Space in the Flash Memory set aside for a custom device registry. Saving to this non-volatile

memory means that the device can be configured for a particular use case without having to reprogram

the board. The data commands are sent in 6-byte packets that have one of two formats, either:

0𝑥07 𝑏1 𝑏2 𝑏3 𝑏4 0𝑥0𝐵

where 𝑏1234 is a four-character command, or

0𝑥07 ′𝐶′ 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑣1 𝑣2 0𝑥0𝐵

where 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 denotes a registry location, and 𝑣12 is the value to be written to that location.

Figure 5 – Updated IMU element on NUIMU board

70

The registry of the NUIMUs contains the following information, which can be set through the second data

format:

• Sample rate for the analogue channels (referred to as base sample rate)

• Sample rate for the IMUs (as a divisor of the base rate)

• Which ADC channels to sample

• Internal sample rate for the LSM9DS0/1 (One byte for each sensor)

• Range for each sensor LSM9DS0/1 (One byte for each sensor)

• Offset values for the Magnetometer (Two bytes per axis)

• IMU Firmware ID (read only)

Four-character commands to the NUIMU can either return a value (such as battery level) or initiate new

behaviour (such as starting a data stream). Figure 6 shows the basic functionality of the firmware.

The NUIMU sends packets in the following format:

𝟎𝒙𝑫𝑫 𝟎𝒙𝑨𝑨 𝟎𝒙𝟓𝟓 𝑳𝒆𝒏𝒈𝒕𝒉 𝑻𝒚𝒑𝒆 𝒅𝟏 … 𝒅𝑵 𝑪𝒍𝒐𝒄𝒌 𝑳𝒆𝒏𝒈𝒕𝒉

where 𝐿𝑒𝑛𝑔𝑡ℎ denotes the number of packets in the data and 𝑇𝑦𝑝𝑒 tells the host what kind of data it is

receiving. The 𝐿𝑒𝑛𝑔𝑡ℎ is sent at both the beginning and the end of the packet to allow the host to detect

if any bytes have been lost during transmission.

Figure 6 – Flowchart demonstrating program flow in NUIMU

71

3.4 NUIMU Attributes
A description of the characteristics of the NUIMU can be found in Table 3.

3.4.1 Other Applications
Re-configuring the NUIMU Auxiliary port allows for a large range of additional applications. This has

proved useful at a number of different points, both during this project and in other workstreams. The

different uses are documented here.

3.4.1.1 Secondary Inertial Measurement Unit
Some human monitoring applications of this hardware required up to four IMUs to be connected and

streaming simultaneously. The Bluetooth modules were presenting themselves as SPP devices, and when

connected, both transmit and receive channels register as separate devices. The Bluetooth protocol limits

the number of devices that can be actively connected in a network (known as a piconet) to eight. The host

device acts as the piconet master, resulting in a maximum of seven slave devices. As each NUIMU takes

up two slots, this resulted in the fourth IMU not connecting to the network in many cases (More advanced

Bluetooth hosts were able to run more than one piconet).

The solution to this was to increase the number of IMUs for each Bluetooth module. A number of breakout

boards of the LSM9DS1 were purchased and connected to the NUIMU via a cable. The NUIMU could then

sample both the on board IMU and the external IMU and send both in the same packet. The external IMUs

used I2C as a communications protocol, so two channels of the auxiliary port were re-purposed to

facilitate this. The two IMUs can be seen in Figure 7.

Table 3 – Description of NUIMU hardware attributes

Inertial Sensors 3-Axis Accelerometer, 3-Axis Gyroscope, 3-Axis Magnetometer

Inertial Sampling Rate Up to 1kHz

No. of Auxiliary Ports 8

Auxiliary Port Sampling Rate Up to 1kHz (analogue mode)

Auxiliary Port: Functions Analogue I/O, Digital I/O, SPI, I2C, UART, PWM, Interrupts

PIC clock speed 30MHz (Primary), 32.678kHz (Secondary)

Communication Speed 5MHz (SPI), 400kHz (I2C), 115200bd (UART USB), 4Mbd(UART BT)

Battery 265mAh Lithium Polymer

Battery Life 2.5 hours

Charging Time 1.5 hours

72

Figure 7 - NUIMU with peripheral IMU

Figure 8 - NUIMU used as a prosthetic hand driver

73

3.4.1.2 Prosthetic Hand Driver
As part of this investigation, a prosthetic hand was used as a test platform. The prosthetic hand is powered

by an 11.1V battery inside a prosthetic wrist, this is regulated down to 8.3V by an external voltage

regulator. The hand is controlled by two signal channels, which operate at 3.3V, which is the same as the

NUIMU. It was desirable to make the prosthetic hand wireless, as along with the battery this would make

it portable, and so a NUIMU was used to add this functionality to the prosthetic.

In order to do this, two of the auxiliary ports were configured to be driven by the microprocessor on the

NUIMU and connected to the inputs of the prosthetic hand. This allowed the system to trigger the hand

to either open, close, or to switch to a different gesture. The complete wrist unit is presented in Figure 8.

3.4.1.3 Infrared Remote
Another potential application of this system is to allow for the direct control of smart devices. It is common

for smart devices in the home to be controlled using an Infrared (IR) remote, therefore mimicking those

signals was thought to be an appropriate way of controlling the devices without having to pre-code

specific IR commands. An NUIMU was adapted with custom firmware to do this.

The IR NUIMU has an IR receiver and an IR LED plugged into the auxiliary port, and ten memory locations

for data storage. There are ten characters that represent a command to record to the ten locations, and

ten that represent a command to transmit the stored IR patterns. Once a command to record an IR pattern

is detected, the NUIMU monitors the IR receiver data line to observe when an IR signal is first received.

At this point, it starts a fast timer and records the time between the signal switching, resetting each time.

Figure 9 – NUIMU as an infrared repeater

74

Once the timer overflows, it is determined that the signal has ended, and an array containing the length

of each signal segment is recorded. To transmit the signal, the LED is set on and off for the lengths of time

that were recorded in the timer. This has been shown to work for a variety of household devices, ranging

from SkyTV boxes to remote control candles.

3.5 Mechanomyography Sensor Design
The design of the MMG sensors used in this research is based on the work of R. Woodward, and of

Posatskiy et al. The sensor houses a Knowles SPU1410LR5H MEMs microphones, seated at the apex of a

rigid conical chamber (height x ⌀ - 5mm x 7mm). This shape and dimensions were found by Posatskiy to

provide the highest gain of the MMG signal while maintaining the flattest frequency response. The

microphone is sealed, and the mouth of the chamber is covered by a 4-micrometre thick Mylar membrane.

The signal recorded from the microphone represents the distortion of the membrane. When the

membrane is placed on the skin above a contracting muscle, the vibrations caused during that contraction

propagate through the skin and through the Mylar, inducing a change in pressure within the chamber.

Each MMG sensor consists of either two or three 3D printed parts. The MMG housing holds the

microphone PCB and provides the conical chamber. The PCB is placed above the chamber, and silicon is

used to seal the top. This is intended to ensure that air cannot escape from the chamber, ensuring that

when no signal is present the sensor output is predictable. The ring is used to hold the membrane in place,

sealing the other end of the chamber. Finally, the clip is used to hold the sensor in place. All three parts

were manufactured using a ProJet 3500 HD Max 3D Printer (layer resolution - 0.016mm, typical accuracy

- 0.025-0.05mm). The material was Visijet M3 Crystal, which has USP Class VI certification, and therefore

is safe for use when manufacturing devices that will be in contact with the skin for extended periods. The

MMG housing was redesigned to make assemble and maintenance easier. In this new version, the ring

was moved to allow membrane replacement without requiring disassembly.

Figure 10 - MMG designs

75

Both MMG housings, as well as the PCB can be seen in Figure 10. The MMG PCB was redesigned with pads

instead of through-hole connectors for the wires. This ensured that the bottom of the PCB could be kept

entirely flat, giving a better seal to the board.

The three wires from the MMG PCB plug into the power and analogue channels of the NUIMU, and a

maximum of eight of these MMGs can be combined with inertial data to form one module of the sensor

suite.

3.6 Sensor Suite Evaluation
The sensor suite is evaluated by comparing against the key user requirements:

• Non-Restrictive – the sensors are body mounted, self-contained, and do not inhibit the user. The

only requirement is that they must be in physical contact with the skin, either directly or through

thin clothing.

• Unobtrusive – the sensors are smaller than many other solutions (h x w x l) and lightweight. They

are attached through a comfortable neoprene band.

• Easy to use – the sensors can be placed on anybody and require no user specific calibration to

produce data.

• Consistent – the response from the sensors is consistent, it is not affected by transient

environmental factors such as skin conductivity.

• Low-Power – the sensors are low power, with a 265mAh battery lasting approximately 2.5hours.

• Wireless – the device can both communicate and stream data in real time over Bluetooth.

• Internal Storage – the microcontroller can write to its own memory to store registry values. It can

also write to an SD card for data logging.

• Configurable peripherals – the microcontroller can communicate with peripheral sensors as it is

capable of both analogue to digital conversion and digital communication through its auxiliary

ports.

Based on these criteria, the NUIMU is suitable for these experiments.

3.7 NUIMU Host Software
To perform real time analysis, the NUIMUs require a host device. Two have been used over the course of

these experiments, a Windows Personal Computer and an Android Phone. These host devices are able to

connect to multiple NUIMUs, allowing a greater range of information to be considered.

3.7.1 C# code for Windows (The NU Interface)
The NU Interface is a GUI that operates primarily through a text box. It is designed to run the IMUs for

every application for which they can be used. The program is split into two major classes: the User

Interface Class (UIClass), and the NUClass. There are several other minor classes that have specific

functionality within these two. The functionality of each of these major classes is described here, starting

with the child class.

76

3.7.1.1 NUClass
The NUClass is a manager class for each individual NUIMU and is created as a child of the UIClass whenever

the user attempts to connect to an IMU. The NUClass is generalised and has been used in a number of

other projects to control the NUIMUs.

Connection Manager

When the NUClass is created, it attempts to connect to the specified NUIMU, first through Bluetooth, and

then through USB if this is not successful. When a connection is successfully made, a thread is started

which attempts to extract complete packets from the data stream and fires an interrupt whenever one is

received. The class also sends commands to the device.

If a Bluetooth connection is successfully made, this class records the Bluetooth address. In future attempts

to connect to the NUIMU, the code will first attempt to connect directly to this address without having to

go through the Bluetooth manager, and only returns to the manager if this is unsuccessful. This reduces

the time required to establish a connection from ~30s to ~5s. It also has the added benefit that the device

does not need to be paired prior to the connection attempt if the address has previously been saved, as

this will be prompted.

Quaternion Generation

The raw inertial data from the NUIMU is used to generate world reference quaternions as a measure of

orientation. The code includes variations of Madgwick's algorithm, which are described in detail in

Chapter 4. The sample period is calculated based on the registry values of the NUIMU and updated to

account for lost packets using a clock byte in the packet. The NUClass also has the capability to run more

than one quaternion generation algorithm simultaneously for the same data, allowing a comparison

between them to be performed.

MMG Signal Processing

The specific methods of MMG signal processing are described in Chapter 5. They use a thread pool based

in this class to ensure that they can operate at the maximum frequency of the device. The variations of

this class either detect whether any signal that could represent a gesture has occurred, or which specific

gesture has been performed. All the processing for the classification is performed in a child class to

NUClass.

Data Visualization

The data visualization was performed using a number of sub classes. Visualization of the orientation was

performed by rendering a cuboid on the screen, initially using the DirectX API to generate the appropriate

3d rendering, and later using SlimDX so that the code was not reliant on that API. Vectors in the form of

3D arrows were also added to help visualize the algorithms estimation for gross acceleration and for the

gross magnetic field. An example of the data visualisation interface can be seen in Figure 11.

Updating the Registry/Calibration

The NUClass contains a small dedicated GUI for changing the registry values of the NUIMU. The GUI has

three pages of settings.

77

The first page allows you to configure the function of the IMU. It allows you to pick a desired base

frequency of the IMUs and converts this into the two settings needed to configure the timer on the PIC24.

It then offers you factors of this frequency to allow you to slow the rate of inertial data while maintaining

a high rate of MMG data. It is the inverse of this process that is used to calculate the sample period for

the quaternion generation. This page also allows you to turn off ADC channels, which shorten the packet

and allow for a sample rate above the theoretic maximum.

The second page of the GUI is used to change the set-up values for the on-board IMU, allowing you to

change both the update rate and data range of each of the three sensors. Using the firmware version

number, this page will give different options based on whether the on-board IMU is an LSM9DS0 or an

LSM9DS1.

The final page of this GUI allows you to store the calibration values of the magnetometer. For later

firmware versions, this is stored in the NUIMU flash memory, and a backup of this information is made

each time the IMU is first connected. Earlier versions store this information in the backup file.

Faux NUClass

The NUClass has the capability to create and manage child versions of itself for specific applications. The

most common reason to do this is to allow more than one IMU to be connected through the same

Bluetooth channel. A Faux NUClass will not have any active connections, instead the appropriate data

received in the parent NUClass will be passed to it to generate orientation.

Other than the connection manager, the rest of the functionality described in this section remains the

same. The only deviation from this is that a data file is used in place of the registry. This allows to IMU

calibration values to be saved onto the computer, instead of on the IMU.

Figure 11 - Real-time data visualisation

78

3.7.1.2 UIClass
The User Interface class (UIClass) is the entry point to the code, and the ultimate parent class of every

other class used in the application. It is designed both to perform the experiments described in this thesis,

and as a demonstration for how to use the NUClass in other projects.

User Interface

The primary form of interface for this code is through text commands in this interface, although some of

the more advanced functions create smaller GUI interfaces for specific tasks. A text-based interface was

chosen as the use of a scrolling text window ensures that a record of each interaction is available to the

user, including any messages that have been sent from NUIMU. Every line written to this textbox is

timestamped and written to a LOG file. The basic UI interface is shown in Figure 12.

NUClass Manager

The UIClass creates new instances of NUClass for each NUIMU connected. When the user enters a

command, UIClass is responsible for triggering the correct processes in the correct NUIMU. Each instance

of NUClass is stored in a List within the class, with a record maintained of which IMU the user last

interacted with. This record can be updated by the user if they wish to send a command to a new IMU.

Recording Data

It is frequently useful to store data recorded from the NUIMUs during different applications. This is

possible in the UIClass through an interrupt that can be generated by NUClass whenever new data

presents itself. The data is stored in a time stamped file that can be named dynamically. The reason this

Figure 12 - Main interface window

79

functionality was added to the UIClass was to allow more than one IMU to be recorded simultaneously in

the same file. This ensures that the data is temporally aligned. A small executable file is included to split

this file into many, one file per NUIMU if that is preferable.

Angle Generation

There are several applications for which only knowing orientation is not enough. This class can make

comparisons between two quaternions generated by two IMUs to determine the angle between them.

This is useful when examining body kinematics.

Piping Data

For many of the more complex visualizations, other programs were used. Using the pipes class enabled

data to be sent to programs such as Unity, which could provide more advanced simulations. In these cases,

quaternions were generated for each NUIMU, and then repackaged and sent to the target program using

a pipe. The new packets used a similar packet structure, consisting of a three-byte header, a packet

identifier and an end byte.

TCP/IP

Several of the experiments required data to be sent from one computer to another, most often from a

Windows environment to a Linux environment. This required the use of a TCP/IP class that is managed by

the UIClass as a server. It also required a C++ client to be written to receive the data on the target machine

and convert from the transmitted bytes back to the original data format.

Simulation

In order to visualize recorded data, a simulation environment was created. This environment loaded data

that had been previously saved, loaded a file of calibration values, and created a Faux NUClass. It then

used this faux class to generate quaternions and displayed them to the screen. It gives the user the option

to have as many sub-windows open as they choose, meaning that they can process and simulate many

raw files simultaneously, or the same file with different calibration files. It also saves a copy of the

generated quaternions for future use.

Other Applications

This UIClass is the basis of any function which require data from more than one NUIMU, or which give real

time feedback to the user. It operates all outputs that are displayed in Chapter 6. It also can create

wrappers for android phones running a compatible app, or third party IMUs, allowing them to be

controlled through NUClass.

3.7.2 Android code for Mobiles (The NU App)
The NU App is an android app designed to interact with the NUIMUs. It is far more basic than the NU

Interface and has several application specific forms. It currently can only communicate with a single IMU

and is intended more primarily as an experimental platform to enable data collection in difficult

environments. The app has two major iterations:

80

3.7.2.1 First Iteration (Android Studio)
The first iteration of the app was written purely in Android Studio, an Integrated Development

Environment (IDE) that uses a variation of Java. The app was able to establish a Bluetooth connection to

the IMU and send it the command to start streaming data. It required a lower data rate than the NU

Interface, as it was unable to process the data as fast. The Madgwick algorithm was implemented and

allowed for the real time generation of quaternions. Along with the raw data, these quaternions were

then saved to a file to be used at a later date. This was beneficial because it removed the requirement to

stay within Bluetooth range of the host computer, allowing many more activities to be monitored.

This app has two additional functions. The first is as a Bluetooth Low Energy (BLE) to Bluetooth converter.

This allows other BLE IMUs to be evaluated alongside the NUIMUs by connecting them to the NU Interface

via the phone. The second was as an input for the NU Interface directly. Smart phones have an IMU built

into them that could be used as an input.

3.7.2.2 Second Iteration (Unity)
The second iteration of this app was created in Unity. Unity provided the capability to easily create 3D

environments in an android environment. This implementation required three component parts. The 3D

models were imported into Unity's IDE, and positioned with cameras, lighting and materials that made

them visible. A C# script was written to update the position of the models based on the calculated

quaternions. The quaternions were calculated in an android library written in Java in Android Studio. The

Android Studio library was able to access the hardware functions of the phone, allowing it to make and

monitor Bluetooth connections. It therefore also acted as a wrapper for the hardware reliant functions.

The combination of these three allowed the Unity app to connect to the NUIMU and provide a real-time

representation of the current orientation on the phone.

3.8 Chapter Summary
This chapter reports on the development of an experimental hardware/software platform for the

pervasive monitoring of motion and muscle activity. Motion is observed using an inertial measurement

unit with a MARG sensor housed in the main case. Additionally, up to eight muscle sensors can by plugged

into this primary board, which can wirelessly transmit data from both the muscle sensors and the inertial

sensors at rates up to 1kHz. The NUIMU can be wirelessly configured and has in-built long-term storage

capabilities. The IMU was created through an iterative process, and the final version was assessed against

the Key User Requirements and found to be fully compliant.

The NUIMU can act as the primary controller in a reconfigurable sensor array. Other sensing elements can

be included in the array through the auxiliary port, which can be used to connect up to eight powered

MMGs, other analogue sensors, or digital sensors through inter-IC protocols such as SPI of I2C. This allows

the real-time fusion of multiple sensors to be easily implemented, either on-board or using the temporally

aligned data.

81

A number of custom programs were created to communicate with this hardware from other host devices.

Among these was a Windows form-based environment that included both hardware and application

specific code. This code was broadly split into two component parts, a class that managed each individual

IMU and a form through which the user could manage many IMUs simultaneously. This allowed the code

and the IMUs to be used for a wide variety of applications.

In addition to this, two lightweight phone applications were created. These were used for data gathering

when a computer was not appropriate. The hardware was designed to be reconfigurable depending on

the required application. Many other applications were also explored, including networked IMUs and

interfacing with third party hardware, such as a prosthetic hand or smart TV.

82

Chapter 4
Detailing Improvements to Orientation Estimation

83

4.1 Initial Implementation of Orientation Estimation Algorithm
Of the algorithms described in Section 2.4, the gradient descent optimization algorithm (Madgwick

algorithm) was chosen for implementation because it provided a good accuracy for the computational

resources it required. The inertial measurement units were validated by comparing their output at known

orientations. For this comparison, the algorithm was implemented in the host software and once validated

the algorithm was moved from the host software to the embedded firmware. This resulted in an increased

power efficiency by reducing the quantity of data that needed to be transferred over the Bluetooth

connection. During this process it was noted that there were several changes that could be implemented

in order to improve the rate of convergence, the computational efficiency and the accuracy of the

algorithm. This resulted in several iterations of the orientation estimation algorithm, which are described

in this section. In order to ensure that all algorithms received the same input data, a virtual IMU was

created that provided consistent and repeatable sensor inputs from known orientations. This allows the

variations of the algorithms to be directly compared, both to each other and to a system truth.

4.1.1 Sensor Bias Removal
Before the algorithms can be used, sensor bias needs to be removed. It is desirable to do this when using

the gyroscopes, as sensor bias can lead to an unpredictable speed of convergence, or ‘dragging’ away

from the corrected value, but it is a requirement for magnetometer use, since the orientation will aim to

ensure that the measured vector for the geomagnetic field is aligned to the systems magnetic north.

4.1.2 Gyroscopic Calibration
The gyroscopic calibration is performed each time the orientation tracking algorithm is initialized. To

function correctly, the IMU must be stationary during this initialization period, which lasts for 200

milliseconds. The IMU gathers 200 samples of gyroscopic data and computes the average value. This value

is then written to the IMUs internal registry and removed from subsequent gyroscopic data before it is

used to estimate rotation.

𝐺𝑦𝑟𝑜𝐵𝑖𝑎𝑠(𝑥,𝑦,𝑧) =

∑ 𝐺𝑦𝑟𝑜𝑉𝑎𝑙𝑢𝑒(𝑥,𝑦,𝑧)
200
𝑖=1

200
 (21)

4.1.3 Magnetometer Calibration
Magnetometer calibration was vital, since a poorly calibrated magnetometer could lead to an error in

rotation equivalent to up to 180˚ in the yaw direction. Since pitch and roll are not decoupled from yaw, a

fast rotation around the Z-axis that will be ‘observed’ by the gyroscopes will be ‘corrected’ through the

gradient descent, which may lead large deviations around all three axes. It must be noted that magnetic

north when measured in three dimensions has an element that is parallel to the earth’s surface, and an

element that is perpendicular to it. The angle between the measured magnetic field and the earth’s

surface is known as magnetic inclination.

There are four types of magnetometer interference that could lead to unpredictable results:

84

- Hard iron offsets – Hard iron offsets are the result of a source of magnetic field on the sensor/PCB.

They are often present as a result of the ferromagnetic components on the board and can change

both over time and as the result of exposure to other magnetic fields. Since they are generated

by components fixed to the PCB, they are rotated as the sensor is rotated, and therefore have a

constant additive effect on sensor output.

- Soft iron distortion – Soft iron distortion is caused by materials that are not themselves magnetic,

but which can interfere with the geomagnetic field. The effect of this distortion is that magnetic

field can appear to change amplitude and direction in according to sensor orientation. This is

normally compensated for by assuming that the scaling effect is linear and modelling the

correction.

- Tilt – Tilt is when the axes of the sensor do not align with the global axis when no rotation has

occurred. It is usually due to the sensor mounting on the PCB but can be modelled and corrected

if necessary.

- Environmental interference – Environmental interference is another form of additive

interference. It differs from Hard Iron Offsets because its effects are consistent in the global

reference frame instead of the IMUs local reference frame. An operator must be aware of it if a)

it is inconsistent over time and b) they require a global reference frame that is aligned with true

magnetic north.

Magnetometer calibration was performed to remove the Hard Iron Offsets in two ways; both of which

required the operator to perform known movements.

During the first method of magnetometer calibration, the IMU was placed on the side designated the top,

and a button was pressed. The IMU recorded fifty samples of data from all three axis of the

Figure 13 -Magnetometer output (Left: Raw magnetometer output. Mid: Cropped and Filtered. Right: Calibrated output)

85

magnetometer. The operator was then required to rotate the IMU ten degrees around the vertical axis

and resample. This was repeated until all 36 positions had been sampled, then the IMU was placed on the

side designated as the bottom, and the process was repeated. The magnetometer bias for each axis could

then be found simple by taking the average of all samples taken along that axis. The intent behind this

method was a) that many samples would negate the effect of any high frequency noise and b) that by

sampling every ten degrees would ensure that the maximum range was found for each axis. The additional

benefit of this method was that it allows the sensors to be tested for the effects of soft iron distortion and

tilt, both of which were found to be negligible for this board layout and sensor. This method provided

accurate measurement of sensor bias but was time consuming.

The second method of sensor calibration was to replace the spin and stop technique with a constant

rotation of 360˚, turning the device over and completing a second rotation to finish the data collection.

Instead of averaging, this method finds the maximum and minimum of the data and takes the midpoint

as the bias. This calibration algorithm detects the increased gyroscopic activity that indicates that the user

is turning the device over, and removes the magnetic information for this period, ensuring that it is not

included in the bias calculation, which is as follows:

𝑀𝑎𝑔𝑛𝑒𝑡𝑜𝑚𝑒𝑡𝑒𝑟𝐵𝑖𝑎𝑠(𝑥,𝑦,𝑧) =
max(𝑀𝑎𝑔𝐷𝑎𝑡𝑎(𝑥,𝑦,𝑧)) − min(𝑀𝑎𝑔𝐷𝑎𝑡𝑎(𝑥,𝑦,𝑧))

2
+ min(𝑀𝑎𝑔𝐷𝑎𝑡𝑎(𝑥,𝑦,𝑧))

The implementation of this algorithm can be seen in Figure 13.

This has the benefit of being significantly less time consuming, but it is also more likely that the operator

will tilt the device as they rotate it. Since magnetometer calibration can be changed when the IMU is

passed through strong magnetic fields, the calibration process had to be performed regularly, and so this

was the preferred method.

4.1.4 Comparison Against Known Orientation
Initially, the orientation estimation algorithm was implemented in the C# host application, and raw sensor

data was transmitted from the IMU directly to this application over Bluetooth.

To compare this implementation against a known orientation, a second form of orientation monitoring

had to be implemented. A 3D motion tracking system (Optotrak, NDI Ontario, Canada) was used to provide

this tracking, due it its high accuracy. The tracking system uses a beacon comprised of 3 markers, which

allow the position and orientation of the beacon to be observed. An image of the beacon can be seen in

Figure 14.

86

Figure 14 - Optotrak system used to evaluate orientation estimation algorithm

Figure 15 - Experimental set up for orientation estimation evaluation (a – IMU in position. b- IMU with beacon affixed)

Figure 16 – IMU orientation output against measured orientation

87

The tracking system is able to locate the beacon to a 3D accuracy of 0.1mm, and so its accuracy was

adequate for evaluating the accuracy of the gradient descent algorithm. The beacon was rigidly fixed to

the IMU, and the IMU was recalibrated to compensate for any new hard iron offsets introduced by the

additional hardware. The IMU was then attached to a vertically mounted rotating platform, which was

manually rotated through a full rotation, as shown in Figure 15.

Each rotation lasted approximately 30 seconds. The quaternions generated by both the IMU and the

tracking system were recorded during the rotation. After rotation the quaternions were converted into

Euler angles in the IMUs local reference frame for ease of comparison, an example rotation can be seen

in the Figure 16.

The errors are described in Table 4:

A mean error of 5.7 degrees was observed during these rotations. This is comparable to the accuracy

offered by other commercial low cost IMUs and it was concluded that this accuracy was sufficient to move

forward tracking human motion.

4.2 Improving the Efficiency of the Algorithm
The algorithm was implemented in the firmware of the IMUs. This step reduced the volume of data

transmitted over Bluetooth, therefore reducing the power consumption of the device and leading to

longer functional battery life. The high sample rate defined as a requirement in Section 3.2.3 increases

the accuracy of the finite sums approximation for angular rotation that forms the gyroscopic element of

the orientation estimation algorithm. It was noted that when the algorithm was embedded into the

firmware, the maximum sample rate dropped to approximately 300Hz.

The maximum sample rate is determined by the processor speed, and within the context of the IMU, it is

fixed based on the number of clock cycles required. In order to increase the sample rate of the algorithm

to that defined in the specification, the number of clock cycles required has to be decreased by

approximately two thirds. This required the number of operations in the algorithm to be decreased.

The algorithm requires normalized vectors and quaternions, and as a result uses data types capable of

represented decimal values, specifically floating-point numbers. In the PIC24F family, floating point

numbers are represented using 32-bits, and their operations are significantly slower than their integer

equivalents. To remove the floating-point numbers, they were instead replaced with 16-bit integers. As a

result, values <1 were disregarded.

Table 4 – IMU errors

Mean error
(degree)

Maximum error
(degree)

RMSE
(degree)

5.69 10.30 6.12

88

To ensure that enough of the relevant information remained, one integer unit (1𝑖𝑛𝑡𝑈𝑛𝑖𝑡) was defined by:

1𝑖𝑛𝑡𝑈𝑛𝑖𝑡 =
1

𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟
 𝑤ℎ𝑒𝑟𝑒 𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟 (𝑆𝐹) = 214

 The scaling factor was chosen as the highest number that could perform normal operations to normalized

values without overflowing.

This required modifications to several mathematical operators, for example:

𝑎 ∗ 𝑏 = 𝑐

was replaced by:

𝑎 ∗ 𝑏

𝑆𝐹
= 𝑐

since:

𝑎

𝑆𝐹
∗

𝑏

𝑆𝐹
=

𝑐

𝑆𝐹

This resulted in the potential generation of 32-bit values during the process of multiplication, so

monitoring data typing was required to ensure no overflows occurred.

In addition to this multiplication, simple multiplications and divisions were replaced directly with binary

operations, for example:

𝑎 ∗ 2 = 𝑎 ≪ 2

Normalization of vectors and quaternions normally requires a division by the norm of each axis.

The norm is computed by taking the root of the squares of the axis:

𝑛𝑜𝑟𝑚 (𝑣((𝑤),𝑥,𝑦,𝑧)) = √(𝑣𝑤
2 +)𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2

The square root is a computationally heavy function, and as a result it was replaced with an approximate,

which calculates the root by guessing each bit (most significant to least significant) and comparing the

squared guess to the number that is to be rooted. This allows the square root to be found in a number of

steps equivalent to the number of bits in the rooted number data type. Additional speed is possible in

exchange for ignoring a number of the least significant bits. This introduces an error at each step, but

these errors are corrected by the gradient descent during future steps. Once the norm value has been

calculated, each element in the vector can be divided by it to create a normalized vector.

Division operations are computationally expensive in the PIC24F family, requiring approximately 8 times

longer than multiplication, and as a result it was desirable to reduce the number of times a division

occurred.

89

A normalized axis (𝑚′𝑥) can be calculated using the original value (𝑚𝑥) and the vector norm (𝑛𝑜𝑟𝑚)

through:

𝑚𝑥

𝑛𝑜𝑟𝑚
= 𝑚𝑥

′

Since the values are scaled, the scale factor must be included in this calculation:

𝑚𝑥/𝑆𝐹

𝑛𝑜𝑟𝑚/𝑆𝐹
= 𝑚𝑥

′ /𝑆𝐹

A 32-bit value was chosen to abstract the division from each vector. The value 229 was chosen, as this

made the order of the calculation easier to avoid overflow errors. Multiplying the fraction by 1 expresses

as 229/229 gives.

𝑚𝑥
𝑆𝐹

/229

𝑛𝑜𝑟𝑚
𝑆𝐹

/229
=

𝑚𝑥
′

𝑆𝐹

Which simplifies to:

1

229
∗ 𝑚𝑥 ∗

229

𝑛𝑜𝑟𝑚
=

𝑚𝑥
′

𝑆𝐹

Therefore:

1

229
∗ 𝑆𝐹 ∗ 𝑚𝑥 ∗

229

𝑛𝑜𝑟𝑚
= (𝑆𝐹 ∗ 𝑚𝑥 ∗

229

𝑛𝑜𝑟𝑚
) ≫ 29 = 𝑚𝑥

′

If:

229

𝑛𝑜𝑟𝑚
= 𝑟

Then

(𝑆𝐹 ∗ 𝑚(𝑤),𝑥,𝑦,𝑧 ∗ 𝑟) ≫ 29 = 𝑚(𝑤),𝑥,𝑦,𝑧
′

As a result, the three divisions of a vector normalization are replaced by a single division to generate the

value for r. This makes normalization approximately three times faster for vectors and four times faster

for quaternions.

Making these modifications led to the required improvement in performance, the time taken to execute

one step when from ~3ms to ~1ms, allowing the specified 1kHz sample rate to be maintained.

90

4.3 Gradient Descent Modifications

4.3.1 Motivation
The gradient descent orientation estimation algorithm consists of two parts, which are weighted and

combined. The first is the gyroscopic integration, and the second is the correction step. In order for the

algorithm to be robust in the many applications in which it can be used, both of these steps should be

predictable for a given level of noise.

It has been noted in Chapter 2 that in original formulation of the gradient descent algorithm, yaw is not

decoupled from pitch and roll. This is undesirable in many applications but can be particularly problematic

in applications such as quadcopter control, where unexpected changes in pitch or roll could lead to

unpredictable lateral movement. Additionally, it was noted that two subsequent steps down gradients

that are not perpendicular could lead to an inconsistent step size in the first gradient, and a smaller than

expected step in the second direction. This can lead to a slower than optimum convergence. Finally, the

algorithm relies on an accurate value to inclination when calculating the magnetometer reference vector.

If this is not available then the amount of time the algorithm takes to converge will increase significantly,

as the two gradients will quickly begin to work in opposite directions. In situations where an accurate

measure for inclination cannot be provided, the algorithm will rotate the measured vector into the correct

plane, however this is inefficient since information is lost.

4.3.2 Solution
The solution to this is to remove the effect of magnetic inclination so the vertical component (parallel to

the gravity vector) is removed. This is achieved through the generation of new vectors for the geomagnetic

field that are perpendicular to the corresponding gravity vectors. These vectors can be calculated by taking

the cross product of the acceleration vectors and magnetometer vectors:

The reference vectors (2.9) and (2.10) are used to create a new reference vector, referred to as the

reference vector for magnetic east:

 𝒗𝑟(𝑒) = |[0,0, −1] × [𝑣𝑟𝑥 , 0, 𝑣𝑟𝑧]| (22)

 𝒗𝑟(𝑒) = [0, −1,0] (23)

 The measured vector for magnetic east is calculated using the measured vector for acceleration (𝑉𝑚(𝑎))

and magnetic field (𝑉𝑚(𝑚)) in the same way:

 𝒗𝑚(𝑒) = |𝒗𝑚(𝑎) × 𝒗𝑚(𝑚)| (24)

Equation (3) and (4) can be substituted into (2.14) to generate the second of the two gradients to give:

 ∇𝒒𝐹(𝒒) = 𝐽𝒒(𝒒−1 ∗ 𝒗𝑟(𝑒) ∗ 𝒒 − 𝒗𝑚(𝑒))
𝑇

∗ (𝒒−1 ∗ 𝒗𝑟(𝑒) ∗ 𝒒 − 𝒗𝑚(𝑒)) (25)

91

4.3.3 Algorithm Convergence
Since the yaw is now decoupled from the pitch and roll, a new problem is presented when the predicted

orientation is exactly π from the true orientation. During the gravitational correction step, the error vector

is at its theoretical maximum, therefore the gradient at this point is 0 and no correction occurs. The

magnetometer correction will rotate around the gravitational vector, but since this will no longer affect

pitch and roll, the gravitational vector will remain at its theoretical maximum. This scenario is easy to test

for within the algorithm, however in most cases it is unnecessary since gyroscopic information, IMU

rotation and sensor noise will all displace the sensor from this maximum error state, at which point the

gradient will move away from zero and the algorithm will converge. This can be demonstrated by

demonstrating that the gradient can be calculated at every point in the relevant vector space. This is

achieved by examining the error function, defined as:

 𝒗𝑒 = 𝒒−1 ∗ 𝒗𝑟 ∗ 𝒒 − 𝒗𝑚 (26)

This can be simplified by considering this function in a new reference frame (𝑙), which in constructed so

that 𝒗𝑚 is parallel to 𝑙𝑋𝑎𝑥𝑖𝑠 and the cross product of 𝒗𝑟 and 𝒗𝑚 is parallel to 𝑙𝑍𝑎𝑥𝑖𝑠. In this reference

frame, the rotation denoted by 𝒒 can be expressed as a rotation of 𝜃 around 𝑙𝑍𝑎𝑥𝑖𝑠. In this case, the two

vectors 𝒗𝑟 and 𝒗𝑚 can be described as:

 𝑙𝒗𝑚 = [1,0,0] (27)

Figure 17 – Magnitude of error function with respect to rotation

92

And:

 𝑙𝒗𝑟 = [cos 𝜃 , sin 𝜃 , 0] (28)

The vector describing the error in this frame can therefore be expressed as:

 𝑙𝒗𝑒 = [cos 𝜃 − 1, sin 𝜃 , 0] (29)

And therefore, the magnitude of the error (𝑀𝑒) is given by:

 𝑀𝑒 = √(cos 𝜃 − 1)2 + (sin 𝜃)2 (30)

The value for 𝜃 has a range 0 to 𝜋, and as a result, the 𝑀𝑒 can be calculated for every value of 𝜃. Figure

17 shows that this function has a single minimum and will converge at all points excluding the single point

where 𝜃 = 𝜋 as the gradient is zero here.

4.3.4 Algorithm Assessment
In order to assess the performance of this algorithm, and to evaluate its performance against both the

original algorithm and the improved formulation proposed by Admiraal, the virtual IMU was used. The

virtual IMU placed at a random target orientation, and the theoretical sensor outputs for that orientation

were passed to the algorithm. The time taken to converge to the target orientation from the initial

position was recorded. The values for α (gain) were kept consistent between algorithms to ensure that

convergence speed was representative of the number of iterations required to achieve the convergence.

Convergence time provides a useful metric for evaluating modifications to the algorithm since it is

proportional to the efficacy of the gradient descent. Since the step size is kept consistent, faster

convergence means that the interference between the two gradient descent steps has been reduced. The

magnetic inclination was set to the local field, which is ~60 degrees. They gyroscopic values were set to 0

degrees per second. All three algorithms were implemented on the same virtual IMU at a given orientation

and monitored until all three predicted orientations had converged to within 1˚ of the given orientation.

At this point, the virtual IMU was instantaneously rotated randomly, and this process was repeated until

1,000 convergences had been completed.

The number of steps taken for each algorithm to converge was recorded. The average for the 1,000

convergences was converted into a ratio, where:

Original_GDA(Madgwick):Improved_formulation(Admiraal):Extension(Described_here)

was found to be approximately:

6:7:1

An example of the convergence of the three algorithms can be seen in Figure 18.

93

In order to provide a comparison in ideal circumstances for the original algorithms, the inclination of the

simulated magnetic field was changed to be equal to 0˚ (a rare scenario globally, but one where the

changes proposed here should have little effect).

Figure 18 – Evaluation of convergence of different GDAs

Figure 19 – Evaluation of convergence of different GDAs (no inclination)

94

In this situation, the ratio of the number of samples to complete 1,000 convergences in the form:

Original GDA (Madgwick):Improved formulation (Admiraal):Extension (Described here)

was found to be approximately:

1.9:1.2:1

An example of the convergence under these circumstances can be seen in Figure 19. This indicates that

despite the inclination compensation found in both the Original algorithm and the improved formulation,

the amount of magnetic inclination still has a significant effect on convergence time.

To allow the effect of magnetic inclination to be observed in more detail, a final set of convergence tests

were run. For these, the virtual IMU was placed at a given orientation, the level of magnetic inclination

was set to 0˚, and all algorithms were allowed to converge. The IMU was fixed in the same orientation,

but the inclination value was incrementally increased. The results from this test can be seen in Figure 20.

From this, it can be seen that the effects of magnetic inclination are negated through the extension to the

algorithm proposed here. This is particularly important for locations where the level of magnetic

inclination is naturally high, but it also gives a higher level of robustness in environments where magnetic

interference may artificially increase the perceived inclination.

The final point to address from the motivation section is the decoupling of yaw rotation from pitch and

roll. To determine whether the axes are now decoupled, the virtual IMU was placed at a random

orientation. The three algorithms were allowed to converge, and once they had completed their

Figure 20 – The effect of magnetic inclination on time to converge

95

convergence, the MARG was rotated π/2 radians around the z-axis. The algorithm was then allowed to

converge to this new orientation, and this convergence was recorded. The quaternions were then

converted to be expressed in terms of roll, pitch and yaw. This π/2 radians rotation constitutes a change

of π/2 radians in yaw, and therefore when monitoring the second convergence, only the yaw should be

affected, pitch and roll should remain the same.

When using the algorithm extension presented here, it was found that the rotation did occur exclusively

in the yaw direction, whereas in the original algorithm and the improved formulation, pitch and roll were

Figure 21 - Result of rotating measured magnetometer ninety degrees around z-axis

96

both affected. This demonstrates that the yaw is now decoupled from the pitch and roll, addressing the

problems discussed in Section 2.4. An example of this second convergence can be seen in Figure 21, the

instantaneous rotation of the IMU sensor in the yaw direction takes place at time 4.5s.

The extension presented here addresses a number of the problems with the original gradient algorithm,

and therefore can be implemented to achieve a more stable and more predictable corrective step to the

gradient descent algorithm.

4.3.5 Robustness to Gyroscopic Bias
Despite the removal of bias in the sensor calibration phase, it is possible that bias may return as the device

is used for long periods of time. Introducing a bias to either the magnetometer or the accelerometer will

create offsets in the predicted orientation, however this will not have an effect on the output stability.

This is not true for biases introduced to the gyroscopic data, where a large enough bias can create an

unstable output. The corrective element of the algorithm created by the fusion of magnetic and

accelerometer data is intended to compensate for errors introduced by the gyroscopic integration,

however if the error is introduced by a large bias, then it may no longer be possible to correct.

In order to examine the effect of gyroscopic bias, the virtual IMU was used. The IMU was placed in a

known orientation, and the corresponding sensor inputs were generated. A bias was then introduced in

one axis of the gyroscopic sensor data, and the algorithms were observed compensating for this

Figure 22 - Effect of gyroscopic bias on convergence

97

disturbance for 250,000 steps. The final 100 steps were analysed to determine whether the output of the

algorithm was stable, and if it was found to be stable, the final orientation was recorded. The bias was

then increased, and the process repeated until the algorithm produced an unstable result.

Through this experiment, it was found that the method proposed here was able to compensate for a larger

range of gyroscopic biases. The difference between the output and the true orientation was smaller for

low biases, and the algorithm remained stable for larger biases, which caused the other tested algorithms

to become unstable. The results of this can be seen in Figure 22.

4.4 New Algorithm Formulation

4.4.1 Motivation
While the improvements to the gradient descent improve the accuracy of the corrective step, there are

still undesirable features. The primary problem is that the rate of correction cannot be accurately defined,

and therefore determining the best gain for given frequencies of signal and sensor noise is difficult. In

addition, the rate at which the algorithm converges is dependent on the amplitude of the error, and

therefore the speed of convergence is inconsistent. Finally, since the error is modelled on spherical

coordinates, as the error approaches π, the gradient begins to become less steep, leading to a slower

initial convergence speed.

4.4.2 Solution
The solution proposed here addressed these problems through the calculation of an instantaneous

convergence. As a stand-alone algorithm, it therefore assumes that the measured vectors for gravity and

the geomagnetic field are accurate. As a result, the full implementation requires a dynamic weighting

system, which determines when the measured vectors can be fully trusted, and when the gyroscopic data

will be more reliable. Gradient descent-based approaches do not use this nature of dynamic weighting,

since small regular corrective steps will act as a low pass filter on these vectors. This is an inefficient

method of providing this filtering, since it requires the algorithm to be executed at the introduction of any

new data. Performing this filtering through a combination of lightweight signal processing and simple

sensor fusion to provide weighting, combined with one-step convergence removes the requirement to

execute the algorithm at every step. It can instead occur at a lower frequency, dependent on the rate of

change of the sensor outputs. Assuming initially that the sensors are providing reliable geomagnetic and

gravitational data, the orientation can be determined using the following process.

As Madgwick observed, orientation can be defined through two non-parallel vectors, which can be found

in the forms of the gravity vector and the magnetometer vector. The rotation that is required to align both

the measured and reference accelerometer vector and the measured and reference magnetometer vector

can be broken down into two consecutive rotations, one that corrects based on the accelerometer reading

and one that corrects based on the magnetometer reading. The process here states that the orientation

estimation is correct if the measured vectors are aligned with the reference vectors after the reference

vectors have been transformed to the local reference frame using the predicted orientation.

98

As in previous notation, the reference vector for gravity (𝑣𝑟(𝑎)) is defined as:

 𝑣𝑟(𝑎) = [0,0, −1] (31)

While the calculation can be conducted in either reference frame without affecting the efficiency, in the

implementation outlined here, this reference vector is rotated into the local reference frame as described

in by multiplying by the current estimation for orientation (𝑞), to give (𝐿𝑣𝑟(𝑎)).

Using (6) in (2.8) gives:

 𝐿𝑣𝑟(𝑎) = 𝒒 ∗ 𝒗𝑟(𝑎) ∗ 𝒒−1 = 𝑅𝒒 ∗ 𝒗𝑟(𝑎) (32)

Which can be easily solved using the rotation matrix given in (2.9) to give:

 𝐿𝑣𝑟(𝑎) = [2(𝑞𝑥𝑞𝑧 − 𝑞𝑤𝑞𝑦), 2(𝑞𝑤𝑞𝑥 + 𝑞𝑦𝑞𝑧), 2(𝑞𝑤
2 + 𝑞𝑧

2) − 1] (33)

The rotation required to correct the measured gravity vector (𝑣𝑚(𝑎)) to equal the current predicted sensor

output (𝐿𝑣𝑟(𝑎)) can be broken down into two parts, the angle between the measured vector and the

rotated reference vector must be found, and the axis around which a rotation of this angle should occur

must also be found.

The axis of the rotation (𝑎𝑥𝑖𝑠𝑎) required to bring two vectors into alignment is one that is perpendicular

to both, and therefore can be found using the cross product of the two vectors:

 𝑎𝑥𝑖𝑠𝑎 = 𝐿𝑣𝑟(𝑎) × 𝑣𝑚(𝑎) (34)

Next the angle (𝜃𝑎) between the two vectors is generated according to:

 𝜃𝑎 = cos−1(𝐿𝑣𝑟(𝑎)
̂ ∙ 𝑣𝑚(𝑎)̂) (35)

This correction can then be expressed as a quaternion (𝑞𝑎) through:

𝑞𝑎𝑊 = cos (

𝜃𝑎

2
)

𝑞𝑎𝑋 = 𝑎𝑥𝑖𝑠𝑎𝑋 ∙ sin (
𝜃𝑎

2
)

𝑞𝑎𝑌 = 𝑎𝑥𝑖𝑠𝑎𝑌 ∙ sin (
𝜃𝑎

2
)

𝑞𝑎𝑍 = 𝑎𝑥𝑖𝑠𝑎𝑍 ∙ sin (
𝜃𝑎

2
)

(36)

99

The second step requires correction based upon the magnetometer vectors. As in the previous section,

the effects of magnetic inclination should be removed. This is performed using the same method:

 𝑣𝑟(𝑚) = [𝑣𝑟𝑥 , 0, 𝑣𝑟𝑧] (37)

 𝑉𝑟(𝑒) = |[0,0, −1] × [𝑉𝑟𝑥 , 0, 𝑣𝑟𝑧]| (38)

 𝑉𝑟(𝑒) = |0, −1,0] (39)

The reference vector is again transformed to the local reference frame:

 𝐿𝑣𝑟(𝑒) = 𝑞. 𝑣𝑟(𝑚). 𝑞−1 (40)

Which is simplified using (2.8) and (2.9) to give:

 𝐿𝑣𝑟(𝑒) = [2(𝑞𝑥𝑞𝑦 + 𝑞𝑤𝑞𝑧), 2(𝑞𝑥
2 + 𝑞𝑦

2) − 1, 2(𝑞𝑦𝑞𝑧 − 𝑞𝑤𝑞𝑥)] (41)

And the measured magnetic vector 𝑣𝑚(𝑚) must also be converted to magnetic east to remove inclination.

The rotation defined through the accelerometer correction must then be applied to the measured vector

to ensure that the effect of this rotation is only applied once. This can be summarized as:

𝑣𝑚(𝑒) = 𝑞𝑎 ∙ (𝑣𝑚(𝑎) × 𝑣𝑚(𝑚)) ∙ 𝑞𝑎
−1 (42)

The axis of rotation (parallel to the measured acceleration) is given by:

𝑎𝑥𝑖𝑠𝑒 = 𝐿𝑣𝑟(𝑒) × 𝑣𝑚(𝑒) (43)

Again, the angle can be calculated:

 𝜃𝑒 = cos−1(𝐿𝑣𝑟(𝑒)
̂ ∙ 𝑣𝑚(𝑒)̂) (44)

And the second correction rotation 𝑞𝑒 can be calculated:

𝑞𝑒𝑊 = cos (

𝜃𝑒

2
)

𝑞𝑒𝑋 = 𝑎𝑥𝑖𝑠𝑒𝑋 ∙ sin (
𝜃𝑒

2
)

𝑞𝑒𝑌 = 𝑎𝑥𝑖𝑠𝑒𝑌 ∙ sin (
𝜃𝑒

2
)

𝑞𝑒𝑍 = 𝑎𝑥𝑖𝑠𝑒𝑍 ∙ sin (
𝜃𝑒

2
)

(45)

The overall correction 𝑞𝐶 to be applied is the product of these two correction quaternions:

100

 𝑞𝑐 = 𝑞𝑎 ∗ 𝑞𝑒 (46)

This allows the correction to be applied in a single step. This immediate convergence is useful for

stationary and noiseless data, however for practical use, it is more useful to implement this algorithm

within a complementary filter. This may require the correction rotation to be broken down into steps. The

simplest way of doing this in a system with enough computational resources is to use spherical linear

interpolation, which is commonly used in computer graphics, and therefore found in many graphical

toolboxes. It may be desirable to avoid this method of interpolation if computational resources are low.

Since this algorithm used Axis-Angle rotations to calculate its corrective rotations, this can be

approximated without the added computational power of spherical linear interpolation by applying a

weight to the calculated angles.

For a given weight (𝑘), where:

 0 ≤ 𝑘 ≤ 1 (47)

The rotations representing the partial gravity correction 𝑞𝑎𝑝 and partial magnetometer correction 𝑞𝑒𝑝 can

be calculated as:

𝑞𝑎𝑝𝑊 = cos (𝑘 ∙

𝜃𝑎

2
)

𝑞𝑎𝑝𝑋 = 𝑎𝑥𝑖𝑠𝑎𝑋 ∙ sin (𝑘 ∙
𝜃𝑎

2
)

𝑞𝑎𝑝𝑌 = 𝑎𝑥𝑖𝑠𝑎𝑌 ∙ sin (𝑘 ∙
𝜃𝑎

2
)

𝑞𝑎𝑝𝑍 = 𝑎𝑥𝑖𝑠𝑎𝑍 ∙ sin (𝑘 ∙
𝜃𝑎

2
)

(48)

and

𝑞𝑒𝑝𝑊 = cos (𝑘 ∙

𝜃𝑒

2
)

𝑞𝑒𝑝𝑋 = 𝑎𝑥𝑖𝑠𝑒𝑋 ∙ sin (𝑘 ∙
𝜃𝑒

2
)

𝑞𝑒𝑝𝑌 = 𝑎𝑥𝑖𝑠𝑒𝑌 ∙ sin (𝑘 ∙
𝜃𝑒

2
)

𝑞𝑒𝑝𝑍 = 𝑎𝑥𝑖𝑠𝑒𝑍 ∙ sin (𝑘 ∙
𝜃𝑒

2
)

(49)

101

respectively.

There are a number of reasons that this approach is desirable. The first is that the rate of convergence is

predictable. For (𝑁) steps and (𝑘) gain, if the initial error is defined as (𝑒𝑟0), the error at each step is given

by:

𝑒𝑟 = 𝑒𝑟0 − ∑ 𝑒𝑟0 ∗ 𝑘𝑛

𝑁

𝑛=0

 (50)

If 𝑘 = 1 then convergence will occur in one step, otherwise it will tend to convergence as described above.

Since this algorithm does not rely on an iterative process to achieve convergence while stationary, there

are a number of modifications that can be made, for example, if the convergence rate should be limited

to a maximum speed in yaw, then
𝜃𝑒

2
 can be limited to this maximum (maximum will be achieved if

𝑎𝑥𝑖𝑠𝑒 ⃦𝑣𝑚(𝑎)).

Another potential benefit of this immediate convergence is that the calculation of the required corrective

step does not need to be made at every time interval, since the corrective step is designed to compensate

for the effects of low frequency gyroscopic drift.

4.4.3 Convergence Rate
The convergence rate of the algorithms outlined here is dependent on their respective value for gain. The

effect of gain is no longer consistent between these algorithms, and therefore they become difficult to

directly compare to one another. The method used here was to find the value for gain that gives the

fastest convergence for a given rotation to occur for each algorithm. For the algorithm introduced in this

section, the most efficient gain value is 1, since this will give a 1-step convergence. For the Gradient

Descent-based algorithms, the gain is proportional to the step size. A smaller gain will lead to slow

convergence, whereas a gain that is larger than optimum will lead to an oscillation that slows (or

completely inhibits) convergence. The ideal gain was dependent on the required rotation, and the number

of steps taken to converge is also dependent on the initial offset.

To evaluate the gain value that gave the fastest convergence for the GDA, the gain was varied, and the

time taken to converge was observed. Initially a small gain was provided, and the number of steps taken

for the algorithm to converge was counted. The gain was then increased, and the increased step size led

to a decrease in the number of steps required. This was continued until the number of steps began to

increase, since this was an indication that the step size was causing oscillations to occur in the

convergence. At each minimum in the number of steps, the gain and steps required were recorded. In

order to cover a wide variety of rotations, both simple and complex, this process was repeated 1,000,000

times. When using the optimum gain for a given orientation, the average steps taken to achieve

convergence with an accuracy of 1˚ with a sample period of 0.001 seconds was approximately 65. As a

result, it can be concluded that at this frequency, the new formulation converges 65 time faster than the

gradient descent.

102

4.4.4 Efficiency – Base Algorithm
To evaluate efficiency, the time taken for the algorithm to run was observed. To perform this evaluation,

both algorithms were set to an initial random orientation. A second random orientation was set as the

target, and the algorithms calculated their corrective steps. These corrective steps were ignored, so

convergence was never achieved. As a result, the time taken to complete a fixed number of steps could

be measured. This was repeated for 1,000 initial position/target position pairs. It was found that on

average, the time taken for the GDA to perform 1,000,000 steps was approximately 0.26 seconds.

Conversely, it took 0.92 seconds for the implementation outlined here to perform the same number of

convergences. As a result, it can be concluded that for this method to lead to an increase in efficiency, the

implementation must call it for less than 28% of samples.

4.5 Chapter Summary
This chapter describes the process by which the orientation output of the IMUs was calculated. After an

evaluation of the existing orientation estimation techniques, Madgwick’s Gradient Descent Algorithm was

chosen and implemented. Calibration techniques for both the gyroscopic sensors and the magnetometer

sensors were implemented, resulting in a fast method of calibration that increases the likelihood of

accurate orientation. The accuracy of the base algorithm was assessed by comparing against a known

orientation provided by a camera-based system (Optotrak), which resulted in an average accuracy of 5.7

degrees.

The algorithm was implemented in the firmware of the IMUs to allow compatibility with low power host

devices. In order to maintain the desired sample rate, several modifications were required including a

type conversion from floating point numbers to integers, and custom normalization functions for three

and four element vectors. This decreased the time required to execute the algorithm from ~3ms to ~1ms.

Several previous works have highlighted limits of the Madgwick algorithm that cause unexpected

behaviour in experimental conditions. Euler angles are coupled, which leads to indirect convergence, and

the magnetometer reference vector is dependent on local magnetic inclination, leading to inefficiencies

in the algorithm which can lead to slow convergence. An additional step has been demonstrated that

addresses both problems simultaneously, leading to fast, predictable convergence that is independent of

factors such as inclination. The solution was tested in a simulated environment, which allows its

performance to be compared to both the original formulation, and the improvements proposed by

Admiraal.

Finally, a formulation of a new algorithm that calculates the precise orientation based on a single set of

sensor data was presented. This new algorithm allows single step convergence, which removes the

unpredictable convergence rate achieved through the gradient descent, allowing more directed filtering

efforts to be implemented. The efficiency and convergence rate of this algorithm are discussed.

103

104

Chapter 5
Using MMG for Activity Monitoring

105

5.1 Activity Classification
The sensors system outlined in Chapter 3 was designed to allow hand gestures to be used as the basis for

an HMI. The sensing modality does not directly require movement or dexterous manipulation, and

therefore it is suitable for both healthy users and for amputees. The form of the interface is an armband

that can be worn on the forearm and operates an ‘always on’ sensing protocol.

In order to function as an interface for Human-Machine interaction, a device must have the ability to

detect volitional signals generated by the user for control. For a pervasive system such as the one

described here, this involves both identifying when the user is attempting to interact with the device, and

what the intent behind the interaction is. Both can be achieved using an activity classifier, where the

default state is that the user is not attempting to interact with the interface, and additional states

represent detected user intent. When this system is worn on the forearm, it can provide a number of

categories of information to an activity classifier, including limb orientation, inertial gestures and muscle

activity. The stream containing the most information will be the muscle activity, since the muscles in the

forearm control the large number of degrees of freedom in the hand. Describing the required control

signal in the form of hand gestures also provides a user-friendly interface, since users are required to

perform actions that they are likely to be familiar with, reducing the amount of learning required to

operate the system. For prosthetic control, capturing the muscle activity associated with performing hand

gestures as a method of determining which grip to select has the potential of eliminating the cognitive

burden associated with prosthetic control, and therefore the cognitive barrier between the wearer and

their prosthetic. This requires a pattern recognition-based control system.

Regardless of the application, the methodology is consistent, and has the following steps:

1. The device must register that a volitional interaction is being made.

2. The signals representing that volitional interaction must be extracted from the data stream.

3. The extracted signals must be classified to determine the action that caused them to be

generated.

4. The action and any available gesture context must be used to determine the intent behind the

interaction.

5. The intent must be implemented by the end effector.

MMG has been not been studied as extensively as some of its HMI sensing counterparts, and as a result,

there is not yet a consensus on the most effective methods of deriving control information from it. As

discussed in Chapter 2, there have been several attempts to use MMG signals for prosthetic control,

however factors such as the rejection of motion induced artefacts have imposed limits on the practical

implementation of the system. As such, this chapter describes the creation of a gesture database, and the

subsequent processes of gesture extraction and classification that were designed. It also describes the

implementation of these methods in several real-time tests. This chapter can be summarized as the design

and implementation of an activity classifier.

106

5.2 Database Generation
While previous studies have examined the topic, little is known about the individuality of MMG signals for

subjects performing the same movement. In order to ensure that the methodology used by the activity

classifier was not dependent on features specific to an individual, a database containing a number of

examples of gestures from different individuals was created. This database would then function as an

initial offline testing domain for various algorithms.

5.2.1 Participants
The volunteers selected to participate in the creation of this database gave their informed consent before

the data collection began. The inclusion criteria were that volunteers must be above 18 and should have

no physical impairment other than amputation. All experiments outlined in the following chapters were

approved by the Imperial College Research Ethics Committee (ICREC reference: 15IC3068).

Six healthy subjects (3 male, 3 female, average age: 36.8yrs SD: 15.8yrs) and one transradial amputee

(male, age: 36yrs) were involved in this work. The healthy subjects had no visible abnormalities to the

skin. The amputee subject had a transradial amputation on their right arm, as well as amputations on the

upper section of the other three limbs. The transradial amputee subject underwent his amputations after

an infection that lead to Toxic Shock Syndrome (TSS), septicaemia and necrotising fasciitis. After both

lower limbs and the left upper limb was amputated, the necrotizing flesh was removed from the right

upper limb, which then had to be reconstructed. While this was initially successful at preserving the right

limb, the infection persisted in the bone marrow, while eventually resulted in a transradial amputation in

this limb. As a result of the extensive surgeries, reconstruction and subsequent amputation, the subject

has a unique physiology in the radial section of their arm, and extensive scarring around that area.

5.2.2 Protocol
At the beginning of each recording session, subjects were invited to wear an armband that comprised of

a single IMU and six MMG sensors on their right forearm. The armband was placed around the largest

radius of the forearm, with the IMU uppermost on the arm when the arm was held horizontally in front

of the user with the palm facing down. Subjects were seated in front of a table, so that their elbow could

be rested comfortably, and they were not required to hold the weight of their arm. Additionally, the height

was adjusted so that the forearm and hand could be held in a vertical position without additional effort.

This was to limit the amount of background muscle activity required to maintain the position of the hand.

At intervals given by the data collection system, subjects were required to make instances of seven

gestures. Data from each subject were stored and labelled according to which gesture the subject had

been instructed to make. The gestures were selected based on six of the pre-programmed grip patterns

that can be found on the Bebionic V2 (RSL Steeper), as well as an ‘open’ gesture. A number of these

gestures were modified slightly to reduce ambiguity between similar gestures. An example of similar

gestures is the Pinch (first finger to thumb) and Tripod (first and second finger to thumb) gestures, where

the tripod gesture was modified to only include the second finger. In total, the gestures used for this

period of data gathering were: Open the hand, Make a fist, Pinch with first finger, Pinch with second finger,

107

Raise Thumb, Point with first finger and Roll fingers. Each of the healthy subjects recorded one hundred

instances of each gesture.

Due to their unique physiology, the amputee subject followed a slightly different protocol to the rest of

the subjects. They reported that they could not feel any contraction associated with performing three of

the gestures. As a result, the subject proposed three replacement gestures that were performed instead.

Pointing with the first finger was replaced with tapping with the first finger and raising the thumb and

pinching with the second finger were replaced by rotating the wrist clockwise and anticlockwise. The

subject also reported a faster onset of fatigue than the other subjects, and as a result their session was

reduced and fifty instances of each of the seven gestures were recorded.

In addition to this, healthy subjects were asked to perform five additional gestures to examine whether

the sensor system was capable of distinguishing different contractions from the same muscle group.

Subjects were asked to sit in a chair with their right arm relaxed and hanging to their side. They were then

asked to twitch each of their digits in turn, starting with their thumb and moving to their fourth finger.

This was to capture different contractions from the flexor digitorum muscle group (responsible for flexing

the fingers), as well as the nearby flexor pollicis longus. Each of the healthy subjects also recorded one

hundred instances of these gestures.

Finally, a list consisting of thirty-eight gestures was compiled describing the dexterous movements

required for several ADLs. One subject completed a dataset comprising one hundred instances of each of

these thirty-eight gestures. These gestures included large movements, such as opening or closing the hand

and rotating the wrist, small movements, such as individual finger flexion and extensions, as well as more

dexterous movements, such as moving a mouse with the fingers or pressing the different mouse buttons.

As a result, the final database consisted of 10150 examples of unsegmented gestures. These gestures

were split into files, each of which contained an uninterrupted stream in which ten gestures occurred. The

data consisted of MARG data and the mechanomyographic data recorded from six sites on the participants

forearm. Each file was run through an activity monitor, and the presence of activity within the signal was

highlighted. Each highlighted section of the signal was then manually examined and marked if it contained

a gesture. This process of manually marking gestures was to allow an evaluation of automatic

segmentation algorithms to take place. Additionally, each segmented gesture file contained the gesture

the subject had been instructed to make, how far through the dataset the subject was at that point, and

which subject had generated the signals. This database therefore contained enough information to

provide a test environment for both gesture segmentation and gesture classification algorithms to be

evaluated.

5.3 Gesture Segmentation
To perform event detection on a continuous data stream, the properties of that stream need to change.

When monitoring the MMG signal from the forearm, one indicator that the muscle activity required to

actuate the hand may be occurring is an increase in the energy of that signal. The signal from each MMG

108

sensor can be defined by the vector 𝑚. The signal was band-pass filtered between 1Hz and 50Hz to

produce 𝑚∗. The energy 𝑒𝑠𝑖𝑔 in the signal at any given point can be defined as:

𝑒𝑠𝑖𝑔 = ∑ 𝑚𝑗

∗2

𝑁

𝑗=1

 (51)

Where 𝑁 represents the total number of sensors and 𝑗 is a specific sensor.

Analysis of the database allowed the energies which were most representative of the different gestures

to be determined, as well as providing an indication of the background energy level. The value for the

energy threshold (𝑇𝑀𝑀𝐺) which identified gestures with the highest f-measure was determined. F-

measure provides a statistical measure of a classifiers accuracy by combining both precision and recall as

follows:

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (52)

In order to determine the most appropriate value for 𝑇𝑀𝑀𝐺, the following protocol was used. 𝑇𝑀𝑀𝐺 was

evaluated as the maximum value of 𝑒𝑠𝑖𝑔 present in the database, and the f-measure was calculated. 𝑇𝑀𝑀𝐺

was then incrementally reduced, and the f-measure was observed to increase as the number of true

positives were identified, and then decrease as the number of false positives also increased. The value of

𝑇𝑀𝑀𝐺 which provided the highest accuracy according to the f-measure was taken as the value for 𝑇𝑀𝑀𝐺

in the experiments going forward.

It has been noted previously that the energy of the MMG signal also increases in the presence of motion

induced artefacts. Since the sensor suite contains an IMU, the motion of the limb could be examined. A

motion threshold (𝑇𝑔𝑥𝑦𝑧
) was determined by observing the energy of the gyroscopic data (‖𝐺‖) present

during the segmented gestures in the database and selecting a value for 𝑇𝑔𝑥𝑦𝑧
 where 𝑇𝑔𝑥𝑦𝑧

= max (‖𝐺‖).

Using these two thresholds, the gesture detection algorithm can therefore be summarized as:

𝐺𝑒𝑠𝑡𝑢𝑟𝑒 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 = {

𝑡𝑟𝑢𝑒 𝑖𝑓 ‖𝐺‖ < 𝑇𝑔𝑥𝑦𝑧
 𝐴𝑁𝐷 𝑒𝑠𝑖𝑔 > 𝑇𝑀𝑀𝐺

𝑓𝑎𝑙𝑠𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (53)

Many of the gestures recorded had different durations, however the gesture duration was not sufficient

for classification since it was not consistent. When choosing the length for the sample window,

consistency throughout the gesture and application were both considered. As gestures were performed,

differences in strength and speed of movement were observed to lead to inconsistencies in signal as the

gesture progressed. Additionally, it was desirable for some form of feedback to be provided to the user

109

within 0.3 seconds, since this has previously been described as the maximum acceptable latency of HMI

applications. As a result, a sample period of 0.2 seconds was selected for classification. At 1kHz, this

corresponded to 200 samples. On average, the energy of the signal took 0.05 seconds to rise from the

relaxed level to the 𝑇𝑀𝑀𝐺 threshold, and so the algorithm extracted 0.05 seconds prior to the signal being

detected, and 0.15 seconds after detection. If the point where the gesture is detected is defined as time

𝑖, then the extracted signal 𝑠𝑁 from 𝑁 MMGs therefore is given as:

 𝑠𝑁 = [𝑚𝑁𝑖−𝑏
, … , 𝑚𝑁𝑖+(𝑎−𝑏)

] (54)

where 𝑎 is the length of the recording (200 samples), and 𝑏 is the number of samples taken to reach the

activation energy. The 𝑎 by 𝑁 matrix (𝑠) can then be classified.

Before the classification took place, the signals were examined and compared to previous literature. Orizio

[120] provided a description of MMG signal origins, and attributes the signals to a combination of factors,

including a gross dimensional changes at the onset and offset of the effort, and the rate of muscle fibre

recruitment during sustained contractions. The dominant frequency of these factors is dependent on the

rate of movement and effort required, however, the largest frequencies present in the recorded signals

tended to fall between 2Hz and 15Hz, indicating that the primary contributor to the generated signals is

likely to have been the gross dimensional changes of the muscle during initial contraction.

Figure 23 - Three ‘Open’ gestures identified and segmented from non-amputee subject

110

5.4 Gesture Classification

5.4.1 Template-based Classification
The MMG signals were found to be consistent between different instances of the same gesture. As a

result, a template-based pattern recognition system provided a computationally inexpensive method of

classifying the extracted data segments. The database instances of the gesture were randomly assigned

to either a training set or a test set. The initial ratio of training data to test data was 70%:30%, however it

was found that the after approximately thirty gestures, accuracy no longer improved significantly.

Templates for each of the gestures were constructed by finding the average of the gestures in the training

set. The method of segmentation of the data containing the gesture removed the need for alignment. For

a training set of size 𝑔, an 𝑁 dimensional template 𝑆̃ (from 𝑁 MMGs) is expressed as:

𝑆̃𝑁 =

1

𝑔
∑ 𝑠𝑁𝑘

𝑔

𝑘=1

 (55)

After the templates had been created, they could be used to classify new data. This was achieved by

correlating each channel of the new data to the corresponding channel in every template. The correlation

Figure 24 - One hundred instances of the ‘Open’ gesture from one non-amputee subject

111

was conducted using an implementation of the Pearson Product-Moment Correlation Coefficient

(denoted by 𝜌). The correlation between 𝑠𝑁 and 𝑆̃𝑁 is given as:

𝜌𝑠𝑁𝑆̃𝑁
=

∑ [𝑠𝑁𝑗
− 𝑠𝑁̅̅ ̅] [𝑆̃𝑁𝑗

− 𝑆̃𝑁
̅̅ ̅]𝑏

𝑗=1

𝜎𝑠𝑁
𝜎𝑆̃𝑁

 (56)

Where 𝑠𝑁̅̅ ̅ and 𝑆̃𝑁
̅̅ ̅ are the average and 𝜎 is the standard deviation of each vector. The Pearson Product-

Moment Correlation Coefficient will give a value for correlation ranging from -1 to 1. As a result, the

coefficient can be normalized for 𝑁 MMGs using:

𝜌𝑠𝑆̃ =

1

𝑁
∑ 𝜌𝑠𝑁𝑆̃𝑁

𝑁

𝑛=1

 (57)

A vector containing the correlation values (𝜌𝑠𝑆̃) for all templates can be constructed. The value that has

the highest value in the vector is given as the systems prediction for the gesture.

5.4.1.1 Offline Accuracy
To evaluate the accuracy of this method of classification, gestures were randomly split 30:70 into a

training set and a test set. The training set was used to create templates for each of the gestures. Each

gesture in the test set was then correlated to each of their templates, and the gesture with the highest

correlation value was given as the systems prediction (Gesture Classified). This process of randomly

assigning the data to training/test sets and calculating the accuracy was repeated 100 times, and the

accuracies averaged, to reduce the likelihood that the accuracies found were not representative of the

data. Data from each subject were tested independently from data from the rest of the subjects. On

average this led to an average accuracy of 82.9% (SD: 8.4%) across all non-amputee subjects. An example

confusion matrix generated by compiling classification accuracies from each subject can be seen in Table

5.

In each case, the hand was relaxed before the gesture, so that no volitional muscle activity was present

before the gesture occurred. Subjects were also instructed to perform the gestures as a swift, single

movement. The gesture ID numbers were assigned as follows:

(With elbow on table)

1. Hand fully opened

2. Hand fully closed

3. Pinch first finger and thumb

112

4. Pinch second finger and thumb

5. Raise thumb

6. Extend first finger

7. Extend all fingers sequentially (forth finger to first finger)

Table 5 - Confusion matrix showing classification accuracies of template-based classification for all non-amputee subjects

 Gesture Classified
 ID 1 2 3 4 5 6 7 8 9 10 11 12

A
ct

u
al

 G
es

tu
re

1 84.5% 2.9% 0.6% 0.6% 0.0% 0.6% 2.3% 0.6% 4.0% 1.1% 2.9% 0.0%

2 0.6% 94.3% 0.0% 0.0% 0.6% 1.1% 0.6% 1.7% 0.0% 0.0% 1.1% 0.0%

3 1.1% 1.7% 84.7% 5.1% 2.3% 0.6% 0.6% 1.1% 1.7% 0.6% 0.6% 0.0%

4 4.5% 0.6% 6.8% 80.2% 0.6% 1.7% 1.1% 0.6% 0.6% 1.7% 1.1% 0.6%

5 1.1% 0.0% 2.3% 1.7% 84.5% 2.3% 0.0% 0.6% 0.6% 0.6% 1.7% 4.6%

6 0.0% 3.5% 0.6% 2.3% 4.6% 86.1% 0.0% 0.6% 0.6% 1.2% 0.6% 0.0%

7 4.5% 3.2% 0.6% 3.9% 1.9% 1.9% 68.8% 1.9% 1.9% 3.2% 3.2% 4.5%

8 0.0% 1.3% 0.0% 0.0% 1.9% 3.1% 5.0% 75.5% 3.1% 6.3% 3.8% 0.0%

9 1.8% 0.6% 3.5% 0.0% 1.2% 0.6% 0.6% 0.0% 85.4% 3.5% 1.2% 1.8%

10 1.8% 1.2% 0.0% 0.6% 0.0% 0.6% 1.8% 0.0% 3.0% 86.4% 4.7% 0.0%

11 0.0% 0.6% 0.0% 0.0% 1.1% 0.0% 0.6% 3.4% 0.6% 2.3% 87.4% 4.0%

12 2.3% 0.0% 0.0% 0.6% 5.8% 2.3% 0.6% 0.6% 3.5% 0.6% 6.4% 77.3%

 Average Accuracy 82.9%

Table 6 - Confusion matrix showing classification accuracies of template-based classification for amputee subject

 Gesture Classified

 ID 1 2 3 4 5 6 7

A
ct

u
al

 G
es

tu
re

1 74.0% 6.0% 0.0% 14.0% 0.0% 4.0% 2.0%

2 11.8% 64.7% 5.9% 0.0% 7.8% 7.8% 2.0%

3 3.8% 7.7% 86.5% 0.0% 0.0% 1.9% 0.0%

4 29.6% 1.9% 0.0% 64.8% 0.0% 3.7% 0.0%

5 1.9% 18.5% 3.7% 0.0% 40.7% 31.5% 3.7%

6 2.0% 13.7% 3.9% 0.0% 15.7% 64.7% 0.0%

7 1.9% 26.4% 0.0% 0.0% 11.3% 5.7% 54.7%

Average Accuracy 64.11%

113

(With arm hanging by side)

8. Twitch thumb towards palm

9. Twitch first finger towards palm

10. Twitch second finger towards palm

11. Twitch third finger towards palm

12. Twitch forth finger towards palm

5.4.1.2 Real-time Implementation
Several modifications were required to allow the system to work efficiently in real-time.

The most fundamental change was that the band-pass filter previously applied to the entire dataset was

replaced with two consecutive first order transfer functions. As a result, data could be filtered in real time,

without requiring a large amount of historical data.

Saving all data from the each MMG channel during processing was deemed to put an unnecessary load

on the available memory resource. To combat this, two buffers were created to store the data, one of

length 200 (length 𝑎) referred to as 𝐴 and one of length 50 (more generally, length 𝑏) referred to as 𝐵,

and both with a width of 6 (𝑁 MMG channels). The 𝐵𝑏 was implemented as a circular (or ring) buffer.

Circular buffers are an implementation of a First In First Out (FIFO) data structure designed to allow a

short amount of historical data to de retained without adding the computational expense. A pointer was

used to determine where in the buffer to write the current data. When the pointer reaches the end of the

buffer and is subsequently incremented, it will return to the beginning of the buffer and overwrite the

information there. The pointer 𝑝 is incremented using a modulo operator (the notation for which is %), as

follows:

 𝑝𝑐 = (𝑝𝑐−1 + 1)%𝐿𝑏 (58)

Where 𝑐 denoted the current time step, and 𝐿 is the buffer length (𝑏 in this case).

Once an energy threshold was reached, data from 𝐵 was copied over to 𝐴, such that:

 𝐴0:𝑏 = [𝐵(𝑝+1):𝑏 , 𝐵0:𝑝] (59)

The remaining 150 elements of data were then written to 𝐴 in real time.

5.4.1.3 Real-time Accuracy
The protocol for real-time validation of this segmentation/classification strategy was similar to the

protocol for the data collection. Subjects wore a sensor system consisting of one IMU and three MMG

modules over the flexor and extensor muscle groups on their right forearm.

Four healthy subjects and one amputee subject were recruited for this study. The accuracies of the

segmentation and classification protocols were examined over the course of three short tests. For each

of these tests, a subset of the gestures types used in the database generation was selected.

114

The subsets selected for each of the tests were as follows:

Experiment 1 – Gestures 1 and 2 (appropriate for simple prosthetic control)

Experiment 2 – Gestures 1, 2, 3, 4 and 6 (appropriate for more advanced prosthetic control)

Experiment 3 – Gestures 8, 9, 10, 11 and 12 (appropriate for a pervasive HMI application)

At the beginning of the session, subjects were asked to make thirty instances of each of the gestures used

in the test. These were then used to create the templates for classification. Subjects were then asked to

observe a screen, and to perform a gesture when its name appeared on the screen.

The accuracy of the segmentation protocol was established by the ability to detect a gesture within three

seconds of the name being displayed. If the user was unable to make a gesture that conformed to the

segmentation requirements, then this was counted as incorrect segmentation. A gesture that conformed

to the requirements was said to be correctly segmented. The segmentation accuracies are shown in Table

7.

The weighted average segmentation accuracy during the real-time experiments was 99.0%. The weighted

segmentation accuracy within the recorded dataset was 94.8%. It is possible that discrepancy is caused

by mental fatigue due to the extended nature of the data collection.

Classification accuracy was established according to whether the subject’s gesture matched the required

gesture. Incorrectly segmented gestures, or gestures after the first within the time period were not

included in the classification accuracy. The classification accuracies are shown in Table 8.

The weighted average classification accuracy across these tests was 66.9%. Within the datasets, the

weighted accuracy for these experiments was 89.7%. It is not uncommon for performance to decrease

when testing is occurring within a real-time setting. The additional pressure of performing the gestures

when instructed reportedly caused subjects to contract their muscles before performing the gesture in

several cases. This contraction was taken as the gesture, and any subsequent gestures the subject

performed were ignored. An additional source of error may be the misalignment of the gestures. The

exact position of the features within the dataset is dependent on the point at which the amplitude of the

Table 7 - Real-time segmentation accuracies

Segmentation

Subject Ex. 1 Ex. 2 Ex. 3

1 98.3% 97.3% 98.7%

2 100.0% 99.3% 98.6%

3 98.3% 100.0% 100.0%

4 100.0% 100.0% 100.0%

5 100.0% 97.3% -

115

signal exceeded the threshold. While this is normally consistent between similar gesture instances, a

uniquely low or high amplitude gesture may significantly displace the gesture within the dataset. Finally,

in the offline analysis, the training and test data are selected randomly. This means that both sets contain

gestures from all periods of the collection phase. Conversely, with real-time testing, all training data was

taken in the first part of the experiment, and all test data was taken later in the experiment. As a result,

factors that may have an affect over time, such as muscle fatigue, may be present in the test set, but not

in the training.

The classification methodology offered here provides an indication that the complex interaction of the

mechanical signals within the muscles of the forearm leads to repeatable patterns of mechanical vibration

on the surface of the skin.

5.4.2 Machine Learning-based Classification
The template-based classifier described in the previous section works by generating a model that is

representative of the training data, and then predicting the class of the test data based on this model. The

classifier cannot make predictions without examples of the data, and the model becomes more

representative of the gestures as data is added. Since it exhibits these two behaviours, the classifier

described above can be thought of as a rudimentary machine learning algorithm. There are several other

algorithms that have been shown to be successful in pattern recognition for differentiating gestures

observed through alternative methodologies, so in this section a number of these are implemented to

improve the classification accuracy.

The algorithms described in this section are implemented using the Classification Learner App in the

Statistics and Machine Learning Toolbox for MATLAB. These algorithms were used to classify the same

data as the template-based classifier, allowing the methods to be compared.

5.4.2.1 Algorithms
Based on existing methodologies in both EMG and MMG activity classification, four types of machine

learning algorithms were implemented and tested during this work. For the initial classification, every

data point within the signals was taken to be a feature for classification. As a result, the data from the six

channels was sequentially combined to produce a single 1206 element vector of features from the 6x201

array describing the signal from the six sensor elements. The four algorithms chosen for this work were

Table 8 - Real time Classification accuracies using template-based classification

Classification

Subject Ex. 1 Ex. 2 Ex. 3

1 93.2% 74.0% 74.3%

2 85.0% 61.0% 52.7%

3 91.5% 58.0% 64.7%

4 98.3% 79.3% 78.6%

5 95.0% 28.0% -

116

K-Nearest Neighbours (KNN), Decision Trees (DT), Linear Discriminant Analysis (LDA) and Support Vector

Machines (SVM). These algorithms are described in detail in Appendix I.

5.4.2.2 Experimental Comparison
Each of the four algorithms listed above were used to classify the gestures from the gesture database. The

classification used k-fold validation to reduce the likelihood of overfitting, as well as minimize the effects

of mislabelled data. K-fold validation works by splitting the data into k subsets, and using k-1 to train the

Table 9 - Confusion matrix of classification accuracies using SVM

 Gesture Classified

 ID 1 2 3 4 5 6 7 8 9 10 11 12

A
ct

u
al

 G
es

tu
re

1 95.29% 0.70% 0.18% 0.16% 0.17% 0.24% 0.40% 0.33% 1.16% 0.88% 0.42% 0.06%

2 0.34% 94.91% 0.63% 0.12% 0.39% 1.04% 0.43% 0.52% 0.11% 0.35% 0.66% 0.51%

3 0.01% 0.03% 95.11% 1.42% 1.02% 0.06% 0.32% 0.87% 0.13% 0.18% 0.07% 0.78%

4 0.21% 0.02% 1.85% 94.33% 0.77% 0.53% 0.74% 0.36% 0.00% 0.78% 0.20% 0.22%

5 0.17% 0.15% 1.04% 0.89% 93.80% 0.64% 0.42% 0.19% 0.00% 0.00% 0.21% 2.47%

6 0.13% 0.08% 0.03% 0.40% 1.86% 95.69% 0.88% 0.56% 0.00% 0.01% 0.17% 0.18%

7 0.05% 0.59% 0.65% 0.72% 0.77% 1.07% 92.49% 1.00% 0.07% 0.24% 1.03% 1.32%

8 0.00% 0.26% 0.16% 0.34% 0.53% 0.17% 1.11% 95.52% 0.41% 0.62% 0.29% 0.60%

9 0.00% 0.09% 0.98% 0.00% 0.89% 0.07% 0.35% 0.62% 94.56% 0.85% 0.40% 1.19%

10 0.02% 0.54% 0.45% 0.18% 0.20% 0.00% 0.62% 0.96% 0.59% 95.92% 0.29% 0.23%

11 0.00% 0.19% 0.31% 0.00% 0.90% 0.00% 0.04% 0.58% 0.09% 0.73% 95.28% 1.89%

12 0.00% 0.16% 1.10% 0.02% 1.45% 0.07% 0.76% 0.77% 0.56% 0.01% 1.72% 93.38%

Average Accuracy 94.69%

Table 10 - Confusion matrix of classification accuracy for amputee subject using SVM

 Gesture Classified

 ID 1 2 3 4 5 6 7

A
ct

u
al

 G
es

tu
re

1 68.2% 11.4% 2.3% 13.6% 0.0% 4.5% 0.0%

2 2.1% 79.2% 0.0% 0.0% 12.5% 2.1% 4.2%

3 2.0% 0.0% 96.0% 0.0% 0.0% 2.0% 0.0%

4 19.1% 0.0% 0.0% 68.1% 2.1% 6.4% 4.3%

5 0.0% 6.7% 0.0% 0.0% 80.0% 4.4% 8.9%

6 0.0% 22.4% 0.0% 0.0% 6.1% 53.1% 18.4%

7 0.0% 12.5% 0.0% 0.0% 29.2% 14.6% 43.8%

Average Accuracy 69.79%

117

classifier, with the final set providing the test data. This is repeated so that the classifier is tested on all

folds of data. A k value of 5 was used for these experiments.

As with the previous experiment, classifiers were trained and tested independently for each individual.

This was also repeated 100 times to ensure that the accuracies were representative of the performance

of the algorithm, and not a feature of any specific initial conditions.

Overall, the SVM performed best across all gestures with an accuracy of 94.69%, while the LDA performed

the worst with an accuracy of 57.48%. The KNN achieved an accuracy of 93.65% and the Decision Tree

achieved an accuracy of 71.83%. A confusion matrix generated by combining the SVM classification

accuracies for each non-amputee subject is presented in Table 9. The confusion matrix generated from

the SVM classification data of the amputee is presented in Table 10.

Additionally, the three sub-groups used for real time testing of the template recognition were tested with

the four classifiers to show how problem complexity affected classification accuracy. A summary of these

results is presented in Table 11.

The accuracy of the KNN and SVM were comparable, and the difference between the two is negligible

for a dataset of this size, although the KNN performed significantly better for the data from the

amputee. This is likely because the amputee subject was not able to generate the same amount of data

as the other subjects. In each case, the LDA performed least well. On reflection, this may be due to the

high dimensionality of the data, which is known to negatively affect the performance of LDAs. As a

result, methods of dimensionality reduction were employed to attempt to improve the performance.

5.4.2.3 Dimensionality Reduction
Two methods to reduce the dimensionality of the data were implemented here.

Principal Component Analysis

Principal Component Analysis (PCA) is a method of reducing the number of features describing a problem

to a smaller set that still contains most of the information of the larger set. It has the potential to be useful

in this problem, because the raw data being classified is sequential time domain data. Since the sample

frequency of the sensors are significantly higher than the primary frequency of the MMG signal, this will

lead to a large amount of dependence between different features. Additionally, since an MMG signal can

Table 11 - Comparison of different machine learning techniques on gesture groups for non-amputees (amputee)

 DT KNN LDA SVM

G1&G2
97.17%
(81.5%)

98.45%
(96.7%)

96.75%
(81.5%)

99.08%
(88.0%)

G1,G2,G3,G4&G6
90.31%
(71.0%)

96.98%
(90.8%)

79.03%
(56.7%)

97.44%
(80.3%)

G8,G9,G10,G11&G12 86.38% 95.14% 77.82% 96.43%

All Gestures 71.83% 93.65% 57.48% 94.69%

118

be detected at different points around the arm, there is also a potential for two adjacent sensors to detect

some of the same information, leading to further dependency. PCA uses these dependent features to

create a new set of independent features that contains most of the same information. Exactly how much

information to retain is specified by the user and is a method of tuning the PCA algorithm.

PCA is similar to the first step of an LDA, with the difference being that while the dimensionality reduction

within an LDA is a supervised process, PCA is unsupervised, meaning that it occurs with no reference to

the labels on the data. Rather than attempting to maximize separation between groups, PCA aims to

maximize the variance of the entire data set. It then creates a new feature which the points in the dataset

can be mapped to, which expresses the largest possible variance, known as the principal component.

Perpendicular variables can then be constructed that describe the remaining variance, ordered by the

amount of variance they describe. As these components are generated, the variance in the remaining

dimensions decreases. All dimensions are required to explain 100% of the variance, however 99% of the

variance can often be explained by significantly less, particularly in datasets such as this.

The effect of performing the PCA was quantified by training each of the four classifiers on the components

generated through the PCA. The configuration of each of the classifiers was the same, and as before, the

accuracies were generated by training each classifier one hundred times for each person, averaging across

all values to generate an overall accuracy.

Two configurations of PCA were used. The first attempted to create enough features to explain 95% of

the variance of the data. The specific output of the PCA was dependent on the input data, but for one

subject, 23 components were enough to explain 95% of the variance. The variance explained per

component in this example started at 38.7% for the principal component and reduced to 2.1% by the

tenth component. The first ten components explained ~84% of the variance, while the remaining thirteen

were required to explain the remaining 11%. The second configuration attempted to explain 99% of the

variance. For the example subject discussed above, explaining the extra 4% of variance required an

additional 19 components. The resulting accuracies of both these configurations on all classifiers are

presented in Table 12, along with the original accuracies when PCA was not performed.

It can be observed that since some information is lost, the accuracy of the algorithms that make no

assumptions about the data decreases, whereas the accuracy of the LDA is markedly improved.

Table 12 - Effect of PCA on classification

 DT KNN LDA SVM

PCA (95%) 71.64% 91.83% 93.06% 93.48%

PCA (99%) 71.50% 87.11% 93.61% 93.88%

No PCA 71.83% 93.65% 57.48% 94.69%

119

Feature Extraction

The second method of reducing the dimensionality of the problem is to generate features based on the

specific form of the data. This is technique is widely documented in classifying EMG signals, so potentially

could be of use in this problem. Feature extraction can offer significant benefits over simply using raw

data. The primary benefit is that large datasets can be compressed into small feature spaces by

individually extracting the important features. This will be beneficial to classifiers that rely on maximum

likelihood rules such as LDAs. While PCA achieves this as well, it is a blind process, meaning the

compressed data does not necessarily retain the separability of the input data. By selecting features that

have previously been shown to allow different classes of similar data to be distinguished, this information

may be retained. It also means that the features that are chosen are less likely to be coincidental due to

the small sample size. The set of features used were taken from similar papers classifying EMG gestures,

and were as follows:

- Root Mean Square (RMS)

- Integral of Absolute Value (IAV)

- Mean Absolute Value (MAV)

- Modified Mean Absolute Value 1 (MAV1)

- Modified Mean Absolute Value 2 (MAV2)

- Simple Square Integral (SSI)

- Variance (VAR)

- Absolute Value of the 3rd, 4th and 5th Temporal Moment (TM3, TM4, TM5)

Table 13 – Accuracies of classification using extracted features

 DT KNN LDA SVM

Features 71.34% 89.90% 94.51% 93.33%

Table 14 - Summary of best performing machine learning methods for classification

Algorithm

PCA (Y/N)
(Variance
Explained %)

Features (F) or
Raw Data (RD) Accuracy

LDA Y (95%) RD 93.06%

SVM N F 93.33%

SVM Y (95%) RD 93.48%

LDA Y (99%) RD 93.61%

KNN N RD 93.65%

SVM Y (99%) RD 93.88%

LDA N F 94.51%

SVM N RD 94.69%

120

- Difference Absolute Mean Value (DAMV)

- Difference Absolute Standard Deviation Value (DASDV)

Each set of features was extracted for each channel for the dataset. For the twelve features listed above,

this resulted in a total of 72 features to use for classification. The resulting accuracies using these features

for all classifiers is shown in Table 13.

5.4.2.4 Comparison of Algorithms for Real-time Implementation
For a dataset of this size, it is not possible to claim that one algorithm will consistently outperform the

others when new data is introduced. This examination can provide an estimation for the expected

accuracy of these algorithms on this type of problem, but it cannot provide a definitive description as to

will achieve the highest accuracy across all gestures for all users. Eight algorithms achieved accuracies that

were within 1.6% of the top accuracy achieved, these eight can be considered for further examination.

Table 14 summarizes these eight algorithms.

The top two of these were considered from real-time implementation. These were the SVM classifying

the full gesture data, and the LDA classifying the features.

For real-time implementation, two assumptions can be made based on the expected use case. These

assumptions are as follows:

- The target device may have limited processing power.

- The classifier may need to be retrained regularly.

Based on these assumptions, there are three addition relevant metrics to compare the two algorithms:

- Time taken to classify an observation.

- Time taken to train the classifier with X samples.

- The number of samples needed to achieve accurate classification (defined as a classification rate

of within 2% of the final accuracy)

The first two of these are processor dependent, however a comparative examination can be performed,

and the results are in Table 15.

The number of samples (N) required to classify data to within a threshold percentage of the final accuracy

was derived experimentally, ranging from 5 to 80 in increments of 5.

For each individual, two sets were extracted. The first set, referred to as the training set (TR), contained

N samples of each gesture. The second set was the test set (TE) and contained 20 samples of each gesture.

TR and TE were created so as to have no common data and using a method that ensured that the instances

for each set were chosen from the pool in a non-repeatable approach. TR was used to train the classifier

and provided an estimation for the accuracy of the classifier using 5-fold validation. TE was then used to

121

test the classifier, providing the final accuracy on unseen data. This was repeated for each individual, and

the accuracies were combined. For each value of N, this process was repeated a total of 10 times,

providing a range of different training and test sets for each individual. The overall accuracy for each value

of N was computed by averaging the accuracies for all individuals during all repetitions. Using this method,

the graph in Figure 25 was constructed.

Based on this data, the number of samples of each gesture required to achieve within 2% of the final

accuracy is ~40. It can be noted from Figure 25 that after approximately 15 instances of each gesture, the

two algorithms achieve similar accuracies. As a result, the comparison between the two algorithms is

summarised in Table 16.

Both algorithms would make good choices for real time implementation based on the comparison

presented here. The only place where they diverge meaningfully is in the training time, where the SVM

takes significantly longer to create a trained model. Since the two algorithms are being compared based

on these metrics, it can be concluded that the LDA performed on features extracted from the data is the

better choice, and so this was chosen as a benchmark for real-time applications.

Table 15 - Relevant metrics for classifier comparison

Number of observations
classified per second

Time taken
to train
classifier(s)

SVM ~420 39.659

LDA ~154a 1.1881
a It should be noted that the classifier itself can perform ~14,000 classifications per second, however

the time taken to extract the features from all six channels was also factored into this calculation,

significantly increasing the time for each classification.

Figure 25 - How number of training samples affects accuracy

122

5.4.2.5 Real-time Implementation
In order to implement this classifier in real-time, the C# environment described in Chapter 3 was adapted

to make use of the Classification toolbox from MATLAB. This had the advantage of maintaining consistence

between the offline and real-time implementation of the LDA without introducing a noticeable delay. In

order to achieve this, the code required to construct the classifier was exported from the

ClassificationLearnerApp. This code was then adapted to allow the number of classes and features to be

configured by the C# environment based on its current requirements.

As with the previous real-time implementation, data was segmented and extracted into a storage buffer

prior to classification. Once the buffer was full, the thirteen features described in the previous section

were extracted from each of the six channels and compiled into a feature vector. During the training

phase, the data label was appended to this feature vector, which was added to a training set array. At this

point, the training set was passed to the classifier, and a validation accuracy was returned. When the

program was closed, the trained classifier was saved to allow future classifications to be performed

without the need to retrain the system.

5.4.2.6 Real-time Accuracy
The protocol for the assessment of the real-time LDA classification was consistent with the other

experiments described in this chapter. Three healthy individuals (2 male, 1 female, average age: 47.3yrs

SD: 14.5yrs) who gave their written informed consent participated in this assessment, and the sensor

placement was kept consistent to previous data collection periods. The assessment was broken down into

three experiments, and the gestures used were the same as in the real-time template-based classification

experiment.

Each subject was seated to that they were able to comfortably keep their arm in both the upright and

hanging position. The experiment was then discussed, and subjects were given the opportunity to

familiarize themselves with both the protocol and the equipment. Subjects were then instructed to make

forty instances of each of the gestures used in the experiment. These were used to train the classifier.

Once the training was complete, the classifier was then tested. This was performed by asking subjects to

repeat gestures based on a visual prompt.

Table 16 – Summary of top performing classifier metrics

Accuracy (5-

Fold, Full
dataset)

Number of
observations
classified per

second

Time taken
to train

classifier (s)

Number of
samples

required for
training

SVM 94.64% ~420 39.659 40

LDA 94.51% ~154 1.1881 40

123

The segmentation was assessed in the same way as with the previous experiment and had comparable

results.

The classification provided by the LDA was evaluated against the prompt, and the classification accuracy

was determined. As before, any gestures made after the first within the cool down period were ignored.

From these results, it was concluded that the Linear Discriminant Analysis classifier is suitable for real-

time classification of gestures based on MMG signals. The steps for data acquisition to classification can

be expressed as shown in Figure 26.

5.5 Guidelines for Practical Use of MMGs
The gesture database and the techniques described in the previous section allow important guidelines for

the use of a system such as the one described here to be derived.

5.5.1 Ideal Number of MMGs
Using the classification algorithm described in the previous section, it is possible to evaluate the effects

of the number of MMGs on classification accuracy. To achieve this, data from each subset of the MMGs

was considered when training the classifier. For 6 MMGs, there are 73 possible combinations that make

use of at least one MMG. The classifier was trained 100 times on the data from each combination, and

the resulting accuracies were averaged to find the accuracy for each combination and for each person.

These accuracies were then grouped by the number of MMGs they describe, and the average and

standard deviation was calculated to describe the effect of introducing the additional MMGs. The graph

describing these results is shown in Figure 27.

Table 17 - Segmentation accuracy for real time machine learning implementation

Segmentation

Subject Ex. 1 Ex. 2 Ex. 3

1 100.0% 100.0% 100.0%

2 100.0% 100.0% 100.0%

3 100.0% 100.0% 100.0%

Table 18 - Classification accuracy using LDA in real time application

Classification

Subject Ex. 1 Ex. 2 Ex. 3

1 100.0% 96.0% 100.0%

2 88.0% 88.0% 80.0%

3 96.0% 84.0% 96.7%

124

This demonstrates that the accuracy that the system can achieve is dependent on the number of sensors

in the system. The improvement that can be achieved by including additional sensors decreases for each

one that is added. A single sensor achieved a mean accuracy of 61.20%, and the addition of a second

Figure 26 – Flowchart showing steps from data acquisition to gesture identification

Figure 27 - Effect of number of MMGs on classification accuracy

125

sensor provided an 18.02% improvement. The difference between the fifth sensor (93.11%) and sixth

sensor (94.48%) was only 1.37%.

5.6 Chapter Summary
This chapter presented a detailed analysis of the MMG signals recorded from a six-element sensor placed

on the forearm when performing a range of gestures. A database was created containing many recordings

taken from seven subjects while performing twelve gestures. These recordings were labelled with their

class within the dataset, so that segmentation could be simulated. A method of gesture segmentation

based on thresholding was tested and found to provide successful gesture segmentation. This

segmentation was then used to extract the individual gestures from their data files to allow several

classifiers to be tested.

Classification methods included a template matching method. This method had several benefits; it was

simple to implement and provided a visual representation of the trained classifier for each class. This

method examined the consistency of the signals and concluded that similar gestures produced visually

similar signal patterns, however the accuracy of this classifier was suboptimal for real-time applications

at 66.7%. This indicates that while the signals are repeatable, there is some variation within individual

subjects’ datasets, and therefore this method of classification is not robust to the variance of human

subjects.

Machine learning methods have the potential to provide a classifier that is more robust to intra-class

variance. To explore this, several machine learning methods that have previously been utilised for EMG-

based gesture recognition were examined, including K-nearest neighbour, decision trees, support vector

machines and linear discriminant analysis. It was found that for raw datasets, support vector machines

outperformed the other classifiers, potentially due to the high dimensionality of the data. The

computational expense of training the classifier necessitated the exploration of other methods. Several

dimensionality reduction techniques were explored along with these classifiers, including feature

extraction and principal component analysis. The two best classifiers were linear discriminant analysis

performed on extracted features, and support vector machines using the raw data from the database,

both of which achieved an accuracy of ~95% in the offline analysis of 12 grip patterns.

Real-time considerations, such as training time, set the LDA on extracted features apart from the other

classifiers, and so it was implemented for real-time testing. All real-time assessments in this chapter

consisted of three experiments, each of which consisted of a training phase and a test phase on a subset

of the previously examined gestures. The accuracies of these experiments were weighted by the number

of gestures they described and combined to provide and overall accuracy. The overall, real-time

accuracy for the template-based classification method was 66.9% for experiments consisting of 2, 5 and

5 gestures. The overall, real-time accuracy for the LDA across the same three gesture groups was

91.43%. The accuracy of this method was far more promising, and therefore machine learning-based

methods were used for further experimentation in the following chapter.

126

Chapter 6
Applications: Prosthetic Control and Robot Teleoperation

127

6.1 Introduction
To fully validate the sensing system described in this document against its initial design brief, it must be

implemented for the applications outlined in Chapter 1. This requires implementation for machine

control, including prosthetic device control and robot teleoperation. The interface can be used for control

of a ubiquitous computing system, but these also require levels of context awareness and artificial

intelligence that is not found in current systems. As a result, it was necessary to design tasks that could

plausibly represent the way these devices may be utilised in the future. This allows the utility of the system

to be demonstrated in the context of the current system architectures. In some cases, this has required

the tests to take place in a virtual environment, where the context can be provided to the system without

requiring additional sensing.

6.2 Real-world implementation for Robot Teleoperation
The first implementation of the sensing system described here aimed to both test and demonstrate the

full utility of the system. As the field of robotics evolves, it is likely that the role of human machine

interfaces will be to provide more high-level control signals than direct manipulation. The experiment was

designed around a situation where human expertise was required, but some functions of the robot were

automated. This resulted in the creation of a semi-autonomous control system, which took control signals

both from the NUIMU orientation estimation and the gesture recognition. A Baxter Robot was used as the

target platform, with the Baxter’s arms controlled by the orientation of the subject’s arms. The subject

could then make gestures to trigger several pre-programmed motions, ranging from manipulations of the

end effector to complex full arm motions that required a greater level of accuracy than the user was able

to provide. Since the Baxter Robot has a larger number of degrees of freedom than the previous

manipulators, a larger number of individual NU modules were incorporated into the sensor suite.

6.2.1 Experimental Protocol
Subjects wore a NUIMU on their upper and lower arm segments, with six MMGs on their right forearm.

The MMGs were arranged as per the previous experiments, with three located approximately over the

extensor digitorum muscle group and three located approximately over the flexor digitorum muscle

group. Prior to each experiment, each user recorded twenty instances of each of the required gestures.

Data was sent from the sensor suite to a computer via Bluetooth. The limits of Bluetooth networks

required a secondary sensor implementation to be utilized, as described in Chapter 3. MMG gesture

recognition and orientation estimation were performed on the computer and sent to a custom node in

the Baxter robot’s controller via a server located outside the local network. In this implementation, the

simplest form of classification based on templates was used in order to test its efficacy in real world

experimentation. As a result, there was no technical requirement that the user needed to be within the

vicinity of the robot, provided the visual feedback was sufficient to successfully complete the required

protocols.

128

The protocol itself was presented to the subjects as a story-based scenario, in which they had to complete

a task requiring several steps. The scenario presented the subject with a large-scale circuit board, and a

Baxter acting as a bomb disposal robot. They were given a list of instructions that required the

manipulation of interactive components on the board to ‘defuse a bomb’. The scenario was presented

this way for two reasons: First, the inclusion of a storyline was intended to ensure that the subjects

remained engaged with the tasks for the duration of the experiment. Second, this specific scenario was

intended to emphasis to the subject that their task was time critical, and therefore encourage them to

complete it as quickly as possible.

The movement of the robot was limited to a virtual ‘box’ within which it could operate. This protected the

robot from damage, since it was being used within a crowded environment. A corresponding virtual box

was also created in front of the user. When being directly controlled, the end position of the subject’s

hand inside the box was mapped directly to the robot, which aimed to move to the corresponding position

within its constraints. One benefit of this method was that the subjects were able to stop control of the

robot if they felt it necessary by removing their hands from the virtual box, without creating large

unwanted movements.

A number of the tasks required the subjects to utilize ‘tools’ from a ‘tool rack’ located in front of the

Baxter. Different tools were required for different tasks, however the tool rack was located outside of

virtual area, to make best use of the space. When a tool was required, subjects selected it by performing

the corresponding gesture. When the gesture was detected, a pre-programmed pattern of movement

was executed, moving the arm out of the virtual constraints, selecting the relevant tool, and returning the

arm with the tool to the position dictated by the subject’s arm. The orientation of the end effectors was

pre-defined and maintained within the robot controller.

The tasks used on the board fall into four categories:

- Unplug tasks – these tasks required the user to remove items from the board. The items used

magnets to attach to the board and took the form of cubes with five-centimetre edges. The task

required the subject to move the end effector of the robot so that the fingers of the gripper were

on either side of the cube, and then trigger the robot to close the gripper. They were then required

to pull the cube away from the board, position the end effector over a target box located on the

tool rack, and trigger the gripper to open, dropping the cube into the box. If the subject caused

the cube to drop elsewhere (either by knocking it from the magnetic contact points with the

gripper, or triggering the open gesture too early), the cube was replaced on the magnetic point,

and the subject was required to re-do the task.

o This task required:

▪ Two point to point motions

▪ Two gestures (Close (close the gripper), Open (open the gripper))

- Switch tasks – these tasks required the subject to move a switch from one pole to the other. Each

position of the switch was magnetized to ensure that a complete motion was required to move

it. The task therefore required the subject to move the end effector to one side of the switch (one

129

motion), and then execute a lateral movement to physically actuate the switch (second motion).

This is classified as two motions, since the first is a large point to point movement, whereas the

second requires the subject to maintain motion along a specific path.

o This task required:

▪ Two point to point motions (One to approach the switch, and one to actuate it)

- Test Pad tasks – these tasks required the subject to simulate checking the voltage on the circuit

board. To achieve this task, the subject had to retrieve the Voltmeter Tool from the tool rack, and

either touch a defined pad, or two defined pads simultaneously depending on the protocol. When

making contact with two pads simultaneously, the subjects were asked to ensure that as little

time as possible was spent in contact with the pad, encouraging them to attempt to position both

arms simultaneously as opposed to sequentially. Once contact had been achieved, the user was

required to return the tool to the tool rack.

o This task required:

▪ One (or two simultaneous) point to point motions

▪ Two gestures (Point (retrieve voltmeter tool), Open (replace the current tool))

- Key tasks – these tasks required the subject to retrieve a key tool from the tool rack, place it into

a keyhole on the board, and rotate the wrist in the direction defined in the instructions. They were

required to maintain the position of the key during rotation, and to return it to the tool rack once

the required rotation had been completed.

o This task required:

▪ One point to point motion

▪ Three gestures (Key grip (retrieve the key tool), Rotating the wrist (both clockwise

and anticlockwise motions were required), Open (replace the current tool))

The experiment was split into two protocols and performed twice. The first recorded motion from the

subject’s left arm, while their right was solely responsible for creating the control gestures. This was to

ensure that the gestures were as free from motion-induced artefacts as possible. As a result, six gestures

were used, two to select tools, and four to manipulate the end effectors. The second protocol provided

the user with simultaneous control of both arms and used three gestures for tool selection and end

effector manipulation. Both protocols were conducted once with the NU Interface, and once with an Xbox

controller.

An interface for this application was designed around an Xbox controller, to provide an indication of the

task difficulty against which to assess the NU Interface. This control interface used the buttons of the

interface to provide categorical data similar to the gestures and used a reference position in 3D space to

provide the positional data. The joysticks on the controller were used to supply the Up/Down and

Left/Right motions (referenced to the Baxter), and the triggers were used to provide the Forward/Back

motions.

130

Figure 28 - Experimental Hardware

Figure 29 - Experimental setup

131

6.2.2 Results
The first protocol used one arm to generate positional data and six distinct gestures. The protocol

consisted of; four unplug tasks, two key tasks, one (single arm) test pad task and two switch tasks. The

second protocol consisted of; four unplug tasks, three (dual arm) test pad tasks and four switch tasks.

Participants completed these tasks first using the controller, and then using the NU sensor suite. The time

taken to complete both protocols using the NU sensor suite was longer than the corresponding time taken

with the controller but did not require specific dexterous manipulation of the fingers. The average time

taken is presented in Table 19.

6.2.3 Discussion
When comparing the times taken to complete the experiment using the controllers against using the NU

sensor suite, there is a noticeable difference between the two protocols. A possible explanation for this

can be seen in the ratio of point to point movements and gestures. Protocol one required the subject to

perform sixteen gestures (of six categories), and fifteen point to point motions, whereas Protocol two

required twelve gestures (of three categories), and nineteen point to point motions. These averages can

be used to generate difficulty ratings for these two tasks, by assuming that the speed of completion is

proportional to the difficulty of each task according to:

 𝑇 = 𝑝 ∗ 𝐼𝐷1 + 𝑔 ∗ 𝐼𝐷2 + 𝑛 (60)

Where 𝑇 is the total time, 𝑝 and 𝑔 are the number of pointing tasks and gestures required respectively,

and 𝐼𝐷1 and 𝐼𝐷2 are the index of difficulty for each task. 𝑛 describes additional time spent by the user not

actively trying to achieve a task, and therefore may not be consistent between tasks.

Assuming 𝑛 = 0, it can be said that:

Table 19 – Average accuracies of Baxter robot control

Time(minutes : seconds)

Protocol 1 Protocol 2

Controllers NU Sensor Suite Controllers NU Sensor Suite

3:55 7:02 5:02 6:40

Table 20 – Index of difficulties for Baxter tasks

 𝑰𝑫𝟏 (𝒑𝒐𝒊𝒏𝒕𝒊𝒏𝒈 𝒕𝒂𝒔𝒌𝒔) 𝑰𝑫𝟐 (𝒈𝒆𝒔𝒕𝒖𝒓𝒆 𝒕𝒂𝒔𝒌𝒔)

Controllers 16.2 -0.5

NU Sensor Suite 10.8 16.3

132

While it is likely that 𝐼𝐷2 will be ≈ 0 while using the controllers, it cannot be negative and therefore 𝑛 ≠

0, however the results appear to correlate to observations made during the experiment.

It can be seen that the time taken to make a correctly classified gesture was significantly longer than the

time taken to press a button on the controller. This may be due to both the extended time needed to

make a large gesture when compared with the small movement required to press a button, and the

inaccuracies introduced in the classification of the gestures by recording at different arm orientations. It

is possible that some of these errors in classification could have been avoided by increasing the quantity

of training data. By contrast, when using the NU Sensor Suite, the point to point-based movements were

completed in approximately 60% of the time when compared to the time taken when using the

controllers.

In addition, the errors introduced through the use of a generic model of the arm when calculating the

forward kinematics were not reported as noticeable by subjects when asked. This may be because the

subjects were making movement based on visual feedback, provided by the robot motion, and not based

on their proprioceptive sense.

In order to further examine factors that may have led to a lower than optimum classification accuracy, it

was decided to continue this experimentation in virtual environments where hardware specific issues

could be removed. Several experiments were conducted to identify potential factors and design

compensation schemes. These are outlined in the remainder of the chapter.

6.3 Virtual Reality Environments
The desired virtual reality (VR) environment was created using the Unity game engine, since this offered

inbuilt VR functionality and could run custom scripts. Each environment created within a unity project is

known as a scene, and every scene included a C# script, which acted as a scene controller. The controller

had two functions by default, one named Start which is called first and can be used to set up the

environment, and one named Update, which is called every time the scene refreshes. Each scene was

designed according to the specifications of each experiment, so as to provide subjects with the most

appropriate feedback.

The VR environment was created as an executable software and required data from the NUIMUs in order

to animate the movements of the user and the objects they were interacting with. While it would have

been possible to implement the VR environment and NUIMU manager in the same application, it was

decided that maintaining the VR executable as a separate application would provide forward compatibility

for any changes in the NUIMU protocol. The chosen method of facilitating this inter-program

communication was to use Pipes, an inbuilt function within Windows which can be accessed from both

programs, and which can store data written from one program until it is read by the other. The Pipe was

initialized in the C# host software, referred to as the pipe server, and the VR environment completed the

connection, and is referred to as the pipe client. The pipe client created a dedicated thread to monitor

this section of stored memory, and to change the corresponding Unity variable each time new data was

133

available. This variable was checked at the beginning of every Update function, and the objects within the

scene were moved according to this new data.

The data are written to the pipe as bytes, regardless of their original type. As a result, packets were created

to ensure both that the data was used in the correct way, and that it did not become desynchronized. The

data format was:

0𝑥𝐷𝐷 0𝑥𝐴2 𝑀𝑜𝑑𝑒 𝑑1 … 𝑑𝑁

The format and length of the data were dependent on the 𝑀𝑜𝑑𝑒 value and were usually application

specific. A packet containing a single quaternion for example would have a length 𝑁 = 16, since each of

the four elements were saved as a 32-bit floating point number.

Three types of data were transmitted using this system for the following applications:

- Orientation – transmitted in the form of quaternions, the orientations could be applied to several

elements in the scene. Each quaternion originally consisted of four floating-point numbers, each

of which required four bytes to transmit.

- Gesture – transmitted as an integer, the presence of a gesture could trigger pre-programmed

activities in the scene to occur. Since the total number of gestures in any one scene was less than

255, this could be encoded with a single byte.

- Position – transmitted as a three-dimensional vector, the position of objects within the scene

could be used to place objects at known positions. Position was originally saved in a three-element

vector of floating-point numbers, therefore this was encoded as twelve bytes.

In applications where the subject was wearing multiple NU sensors, the data most commonly required for

the Unity-based visual feedback was the location of the subject’s hand. This was calculated in the NU host

software, and so simply was calculated using matrix manipulation. Assuming:

𝑊𝑜𝑟𝑙𝑑𝑂𝑟𝑖𝑔𝑖𝑛 → 𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 (𝑊2𝑆) = (

1 0
0 1

0 𝑥
0 𝑦

0 0
0 0

1 𝑧
0 1

) (61)

the default position of the arm is to be parallel to the X-axis so that:

𝑈𝑝𝑝𝑒𝑟𝑎𝑟𝑚𝐿𝑒𝑛𝑔𝑡ℎ(𝑈𝐿) = (

1 0
0 1

0 𝑈𝐴𝐿
0 0

0 0
0 0

1 0
0 1

)

𝑎𝑛𝑑

(62)

134

𝐹𝑜𝑟𝑒𝑎𝑟𝑚𝐿𝑒𝑛𝑔𝑡ℎ(𝐹𝐿) = (

1 0
0 1

0 𝐹𝐴𝐿
0 0

0 0
0 0

1 0
0 1

)

And that the rotation of the arm segments is converted from quaternions to rotation matrices so that:

𝑈𝑝𝑝𝑒𝑟𝑎𝑟𝑚𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝑀) = (

𝑚11 𝑚12
𝑚21 𝑚22

𝑚13 0
𝑚23 0

𝑚31 𝑚32
0 0

𝑚33 0
0 1

)

&

𝐹𝑜𝑟𝑒𝑎𝑟𝑚𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝑁) = (

𝑛11 𝑛12
𝑛21 𝑛22

𝑛13 0
𝑛23 0

𝑛31 𝑛32
0 0

𝑛33 0
0 1

)

(63)

Then the position of the hand can be expressed by:

 𝑊𝑜𝑟𝑙𝑑𝑂𝑟𝑖𝑔𝑖𝑛 → 𝐻𝑎𝑛𝑑 = 𝑊2𝑆 ∗ 𝑀 ∗ 𝑈𝐿 ∗ 𝑀−1 ∗ 𝑁 ∗ 𝐹𝐿 (64)

𝑀−1 is required since both 𝑀 and 𝑁 are world reference rotations.

This can be simplified to give the matrix that describes the end effector:

𝐸𝑛𝑑𝐸𝑓𝑓𝑒𝑐𝑡𝑜𝑟(𝐸𝐸) = (

𝑛11 𝑛12
𝑛21 𝑛22

𝑛13 𝑥 + 𝑈𝐴𝐿 ∗ 𝑚11 + 𝐹𝐴𝐿 ∗ 𝑛11
𝑛23 𝑦 + 𝑈𝐴𝐿 ∗ 𝑚21 + 𝐹𝐴𝐿 ∗ 𝑛21

𝑛31 𝑛32
0 0

𝑛33 𝑧 + 𝑈𝐴𝐿 ∗ 𝑚31 + 𝐹𝐴𝐿 ∗ 𝑛31
0 1

)

The position can be taken from the fourth column of this matrix (𝐸𝐸41, 𝐸𝐸42, 𝐸𝐸43), and was used for a

number of the applications listed below.

The host software was receiving data from the NUIMUs at between 200Hz and 1,000Hz, depending on

the nature of the data. The rate at which the Update function is called in unity varies between devices,

but in this implementation is approximately 60Hz. To ensure both that the data transfer was as efficient

as possible, and that rate of information was independent from the data rate of the NUIMUs, the code

was refactored. The Pipe server was moved into its own class, referred to as PipeController. Timer objects

were then implemented in this new class. When a new object of the PipeController class was created, it

would initialize the pipe server and wait for a client device to connect to it. Once a connection occurred,

this class would then begin a timer and wait for a timer event to occur. At this point, it would get the

current state of every NUIMU connected, perform the necessary calculations, and then write the relevant

data to the pipe. The frequency of these timers was approximately 30Hz, as this gave the appearance of

smooth movement in the virtual environment but ensured that data was not written to the pipe more

than once between Update functions.

135

6.4 Hands Free Control within Virtual Environments.
While the output from an individual IMU has been validated both against other sensing technologies and

against commonly used estimation algorithms, their use as an interface technology has not. In order to

provide this validation, a simple test was designed that placed users in a virtual environment. They were

then tasked to move their hand from one designated position to another. Users were able to experience

this environment in 3D through the use of a VR headset (an Oculus Rift). This allowed the subjects to

observe the three-dimensional position of objects in the virtual environment, and therefore they were

able to make the required movements without missing the target due to mistakes of depth perception,

which could cause significant problems when performing the tasks using a two-dimensional form of visual

feedback.

6.4.1 Participants
Five volunteers (4 male 1 female, average age: 28yrs SD: 2.3yrs) gave their written informed consent and

participated in this study, all with no known cognitive or physical impairment. The participants had little

experience operating in VR environments and were instructed to remove the headset if any negative side

effects of VR were felt (such as motion sickness).

6.4.2 Experimental Protocol
Subjects were instructed to put on a wearable interface consisting of two NUIMUs, one worn on the

forearm, and one worn on the upper arm. Both IMUs were calibrated before use and placed in a known

orientation around the arm. Subjects were then instructed to put on the VR headset and make themselves

comfortable. The position of the VR headset was then recorded, and the environment was assembled

around the subject, so that a virtual humanoid model occupied the same position in virtual space as the

subject. The position of the subject’s shoulder was estimated using a transformation from the VR headset

and used in future forward kinematic calculations.

Before the test began, the position of the subject’s hand was calculated in virtual space, and a virtual ball

(“Trial Ball”) was placed there, giving the subject visual feedback as to where the system understood their

hand to be. This position was updated in real-time. A second ball (“Target Ball”) would appear within the

subject’s field of view, and they were instructed to bring the Trial Ball mapped to their hand into contact

with the Target Ball, marking the beginning of the test. Each time the subject brought their hand into

contact with the Target ball, it would instantly move to a new position. The initial position and target

position pairs defined the beginning and end of the path that the user should follow and the shortest

route between the two points represented the optimum movement. This was repeated fifty times,

incorporating movements in a large variety of directions and distances from the shoulder. Subjects were

instructed to perform the test as fast as they were able to.

136

Each subject was asked to do the test twice, with different sensing modalities providing the position for

the Trial Ball in each case. For the first set, subjects held an Oculus Touch Controller in their hand, which

was tracked by multiple Oculus Sensors, as seen in Figure 30. These IR cameras have been shown to give

Figure 30 -Using Rift Controller to monitor hand position

Figure 31 - Using IMUS to derive hand position

137

positions in their working environment accurate to within 0.01m. As such, the positions presented to the

subject in 3D matched their proprioceptive sense of their hand position. For the second set, the Oculus

controller was discarded, and the data from the NUIMUs was used to calculate position of the Trial Ball,

according to the measured orientation of the limb segment, as shown in Figure 31.

The position of the Trial and Target ball, the calculated position of the hand and the current time was

recorded every time the screen was updated. This allowed the time taken to move from the initial position

to the target position to be calculated. It also allowed deviation from a straight path to be calculated,

providing a second metric for assessment. For this experiment, the movement time was defined as the

time taken between the Trial Ball leaving the radius of the initial position defined by the size of the Target

Ball, and entering the radius of the new position, also defined by the Target Ball radius. It was defined this

way remove any time taken for initial path planning, and the time taken for the new position of the ball

to be observed by the subjects.

6.4.3 Results
With reaction and planning time removed, the average time taken to perform the required movements

when using the Oculus controllers was 0.25 seconds. Due to the accuracy of the positions given by the

Oculus system, this can be given as the base time taken to complete these movements when the subject’s

proprioceptive sense and visual feedback are providing complementary information. When the position

of the hand was calculated using the NUIMUs, the average time taken to complete the movements was

0.54 seconds. It is hypothesized that this is due to a misalignment between the subject’s proprioception,

and the visual feedback they are receiving, which requires cognitive engagement to correct.

To examine the deviation from a direct path, the path lengths for each movement were standardized, and

the average deviation at each point was calculated. The average deviation when using the Oculus Rift

controllers was 0.045m, whereas the average deviation when using the NUIMUs was 0.069 meters. The

average path taken using both systems can be seen in Figure 32.

Figure 32 - Average deviation from a direct path

138

6.4.4 Discussion
The IMUs appeared to introduce 0.29 seconds of delay into the system when performing fast movements.

An indication of the cause of this can be found when analysing the path and speed as the subjects

progressed through the experiment. When using the Oculus Controllers, the deviation was described by

a smooth path with no sharp changes in direction. The peak of the deviation occurs slightly after the

halfway point, indicating that some correction is occurring, but it is impossible to say what the basis for

this correction is. Conversely, the deviation from the path observed when using the NUIMUs is initially

not smooth. These movements are categorized by two sharper changes of direction, one that occurs ~0.2-

0.35s seconds into the movement, and one that occurs towards the end of the movement. It can be

hypothesized that the initial correction occurs when the subject first detects the misalignment between

the motion and the planned path, and the second occurs when the user slows to make fine corrections

purely based on visual feedback towards the end of the path. Subjects did report that using the IMUs

seemed to require more work than the controllers, although they could not explain why. They reported

that they were unable to perceive any of the changes in direction indicating corrections with either

system.

One factor that may have contributed to the misalignment between the user’s VR position and

proprioceptive sense was the approximations made in the forward kinematics. The position of the user’s

shoulder, and the length of both arm segments were kept consistent with the model, and not specified

for each user. Despite this, subjects were able to complete the task, and since more information about

the subject’s kinematics were known, more realistic representations of the subject were available in the

VR environment, for example, the VR ‘floating hands’ were replaced with arms that mirror the subject’s

movements.

As a result of this experiment, the use of NUIMUs in VR environments was deemed a suitable test platform

for further studies, particularly in situations where environmental factors preclude the use of alternative

sensing equipment, such as the Oculus Sensors.

6.5 Prosthetic Control – Classification in Uncontrolled Environments
To facilitate a form of prosthetic control that allows for natural motion to be observed, the MMG

classification system must be robust to changes in arm position. Changes to the orientation of the arm

will change the muscle activity required for supporting the weight of the hand. It was hypothesised that

this along with changes to elbow angle would influence the recorded MMG signal during gesture induced

contractions, reducing the classification accuracy. In order to observe the effect of these factors, and well

as develop suitable compensation strategies, a new dataset was required.

6.5.1 Participants
The inclusion criteria for this secondary database generation were the same as for the first, and again

participants gave their written informed consent. Five healthy subjects (4 male, 1 female, average age:

39.2yrs SD: 15.3yrs) were involved in this work.

139

6.5.2 Experimental Protocol
For this experiment, the subject wore two armbands, one placed on the upper segment of the right arm

and one placed on the lower segment of the same arm. The armband on the upper segment consisted of

a single IMU, and the armband on the lower arm segment consisted of one IMU and six MMGs. The

armband was placed around the largest radius of the forearm, and oriented so that three MMG were over

the flexor digitorum muscle group and three over the extensor digitorum muscle group. The IMUs on both

bands were placed at a known orientation of the arm, allowing the kinematics of the arm to be observed.

Subjects were seated at a table and asked to move their arm into a specific orientation. They were then

asked to make five instances of each of the five gestures used in this test. The gestures chosen were those

used in Ex.2 in the previous real-time gesture experiments. Data collection was performed using the real-

time segmentation technique implemented in chapter five, and therefore only gesture data were

collected. Subjects then spent thirty seconds in a relaxed position, before moving back to the defined

position, and making another five instances of the gesture. This process was repeated until forty instances

of each gesture had been recorded. At this point, subjects were given time to rest, before being asked to

repeat the experiment with their arm in a different position.

Data were recorded from a total of seven positions. Positions were identified to vary both the background

contraction needed to maintain the orientation of the hand, and the shape of the forearm as it was

changed by bending the elbow. The positions were as follows:

1. Arm straight, held vertically in an upwards direction

2. Arm straight, 45˚ above horizontal

3. Arm straight, held horizontally in front

4. Arm held parallel to the floor, elbow bent approximately 90 degrees

5. Arm held parallel to the floor, elbow bent to maximum

6. Arm straight, 45˚ below horizontal

7. Arm straight, held vertically in a downwards direction

These positions were chosen at suitable intervals to provide a maximum range of motion without

prolonged data collection which may cause fatigue.

Data were labelled with both the gesture that each contraction represented, and the position in which it

was recorded. Based on this, several different combinations of gesture and position could be compared.

Three classifiers were used for the experiments in this section, an SVM using raw data from all MMG

channels, and an LDA trained using features identified in the previous chapter, as well as a cubic SVM

(CSVM), which was included due to the increased complexity of the classification due to the additional

variables.

6.5.3 Classification – One vs One
To establish an indication of the effect of arm position on classification accuracy, each classifier was

trained based on data from a single position. The classifier was then tested on unseen data from each of

140

the seven positions. This process was repeated one hundred times for each classifier, and the accuracies

attained on the unseen data were averaged. This was repeated so that a classifier was trained using data

taken from each position in turn and tested on all. Each classifier was subject specific, and so all accuracies

were also averaged across each subject. A summary of the accuracies achieved by the LDA are presented

Table 21 – LDA accuracy when trained and tested on different positions

 Tested

1 2 3 4 5 6 7

Tr
ai

n
ed

1 66.7% 58.4% 54.5% 41.3% 32.9% 39.8% 42.0%

2 59.0% 65.2% 60.4% 50.3% 36.1% 44.1% 40.3%

3 55.3% 63.3% 69.9% 58.1% 46.8% 57.9% 56.4%

4 52.4% 48.2% 53.5% 72.7% 45.1% 57.8% 61.0%

5 43.8% 45.3% 47.1% 54.1% 61.8% 48.1% 45.3%

6 45.2% 49.1% 55.6% 55.6% 40.7% 71.6% 63.7%

7 46.1% 43.8% 49.7% 54.0% 37.0% 62.9% 70.3%

Table 22 – Linear SVM accuracy when trained and tested on different positions

 Tested

1 2 3 4 5 6 7

Tr
ai

n
ed

1 70.2% 63.7% 54.8% 46.3% 28.0% 38.7% 39.4%

2 66.6% 70.1% 67.0% 44.6% 29.3% 38.8% 38.0%

3 65.3% 67.0% 72.6% 56.7% 43.2% 53.4% 54.5%

4 50.8% 50.8% 66.4% 72.6% 52.9% 58.8% 60.4%

5 34.9% 36.7% 49.7% 53.0% 69.3% 57.1% 52.6%

6 35.4% 40.9% 57.5% 55.4% 46.3% 76.6% 70.7%

7 31.7% 33.5% 51.2% 63.8% 46.6% 70.9% 74.2%

Table 23 – Cubic SVM accuracy when trained and tested on different positions

 Tested

1 2 3 4 5 6 7

Tr
ai

n
ed

1 86.7% 71.9% 67.1% 55.3% 45.2% 57.9% 55.3%

2 72.9% 85.9% 79.4% 58.1% 42.2% 61.0% 52.2%

3 67.1% 79.4% 90.4% 60.6% 44.8% 74.3% 62.4%

4 52.6% 55.3% 61.3% 90.0% 55.1% 68.6% 72.8%

5 45.0% 46.0% 52.5% 59.2% 88.3% 57.4% 57.1%

6 53.9% 52.7% 69.0% 71.1% 51.3% 93.4% 75.5%

7 54.9% 46.1% 53.8% 65.8% 48.4% 74.3% 92.2%

141

in Table 21, a summary of the accuracies achieved by the linear SVM are presented in Table 22 and a

summary of the accuracies achieved by the cubic SVM are presented in Table 23.

The highest accuracies are achieved when the training set and test set are recorded in the same position,

across all three classifiers. The best accuracy achieved by a One vs One classifier when trained on the

appropriate positional data was 89.6%, achieved by the Cubic SVM. This would suggest that it is desirable

to train a classifier for each position in which it may need to function, however this would be both fatiguing

for the subject and time consuming. It is also unlikely to be feasible to train for every position a user may

require over the course of normal use. When the correct position is unknown, training on a single position

may be necessary. In this case, the average accuracy achieved by the Cubic SVM was 64%. This is lower

than desired for real-time use, and therefore the following sections propose several alternative methods.

6.5.4 Classification – Voting
Every classifier tested in the previous experiment achieved a higher accuracy than 40%, and therefore it

was predicted that accuracy could be improved by using multiple classifiers. In this implementation, all

seven classifiers were used simultaneously, and the most common prediction was taken as the overall

system prediction.

The Cubic SVM classifier performed best overall, and so it was used for this test. An example of the

classification method is presented in Table 24. The average accuracy achieved by this voting classifier was

77.8%, up from 64% when using a single classifier.

6.5.5 Classification – Many vs. One
In order to establish whether a subset of the positions contains the data required for successful

classification, the positions were broken down into sequential groups of three. The middle set was used

as the test set, and the classifier was trained on gestures from the positions on either side. The following

groups of three were used: When the arm was straight 1-2-3, 2-3-6 and 3-6-7, and as the arm bent 3-4-5.

The quantity of data used to train the classifiers was also varied. 40% of the available data represents the

Table 24 – Example of performance of voting classifier

Data
Class

Classifier Output Predicted
Class 1 2 3 4 5 6 7

0 0 0 4 0 0 0 0 0

0 0 0 1 0 2 2 0 0

1 1 1 1 1 1 1 1 1

3 4 4 4 4 4 2 3 4

3 3 3 3 3 0 3 3 3

4 4 4 2 1 1 2 0 1

0 0 0 1 0 2 2 0 0

1 1 1 1 1 1 1 1 1

2 2 2 2 0 1 3 0 2

142

same number of instances of gestures as were used to train the classifiers in the previous section, and this

was increased to 80%. The LDA, SVM and Cubic SVM were all used in the experiment to determine which

of the three was most able to compensate using available data when the correct positional training data

were unavailable. The results from this test are presented in Table 25.

These classifiers achieved a higher accuracy when trained on data from multiple positions than when

classification was performed using data from a single adjacent position. This indicated that there is

consistency between the signals being obtained from each position.

To test this further, a CSVM classifier was trained one data from several groups of gestures and tested

against all seven positions. As with all other experiments in this document, no data points appeared in

both the training set and the test set. It was decided to use fifty gestures from each position included in

the training set, as this was deemed practical should this method be implemented in future real-time

tests. The groups and resulting accuracies are presented in Table 26.

Table 25 – Accuracies of classifiers trained on adjacent positions

Group Classifier

Percentage of available
training data used

Average
of
Adjacent

Average
of
Correct 40.0% 60.0% 80.0%

1-2-3

LDA 62.0% 67.1% 68.8% 60.8% 65.2%

SVM 66.3% 67.1% 67.7% 65.3% 70.1%

CSVM 80.3% 82.2% 83.4% 75.7% 85.9%

2-3-6

LDA 62.5% 67.8% 69.5% 58.0% 69.9%

SVM 70.7% 71.7% 72.3% 62.2% 72.6%

CSVM 80.4% 82.1% 83.1% 74.2% 90.4%

3-6-7

LDA 62.6% 67.9% 69.8% 60.4% 71.6%

SVM 71.9% 72.2% 72.2% 62.2% 76.6%

CSVM 81.8% 83.8% 84.6% 74.3% 93.4%

3-4-5

LDA 57.5% 62.6% 64.6% 56.1% 72.7%

SVM 64.4% 64.6% 64.5% 54.9% 72.6%

CSVM 67.4% 69.0% 69.6% 59.9% 90.0%

Table 26 – Classifier accuracy when trained on representative dataset subgroups

Training
Group

Average
Accuracy

1-2-3-4-5-6-7 84.3%

1-3-5-7 79.5%

2-4-6 74.9%

2-3-4-6 77.0%

143

Training a single classifier with every position appeared to produce the highest accuracy, although the

accuracy falls 5% short of the 89.6% achieved by the appropriate classifier.

6.5.6 Fused Mechanomyography and Inertial Measurement
The previous experiment has shown that the MMG signal observed during a gesture is partially dependent

on the orientation of the arm and the elbow angle. From the results shown in Table 23 and Table 25, it

appears that the factors affect the signal in a proportional manner, since adjacent positions provide better

classifications than more distant positions. It also appears that distant positions may provide slightly

contradictory information for the same gesture, since Table 26 shows that a dataset comprising of

gestures taken from every position is less accurate than a classifier trained solely on data taken from the

test position.

In order to achieve the highest possible level of accuracy, a new method of data fusion is introduced. The

MMG signal is monitored for increased activity and low gyroscopic movement that has been shown to be

associated with a volitional gesture. When this is detected, data segmentation occurs in the same manner

as described in Chapter 5, and the forward kinematics of the limb are calculated. These kinematics do not

require accurate limb lengths since they are only used to provide labels, therefore arbitrary values were

used. When the classifier is being trained, MMG data are stored, along with the end position of the limb

and the label for the gesture.

During testing, the detection of a gesture triggers several addition steps before classification. First, the

current position of the end effector is calculated, and considered to be a point in 3D space. A variation of

the K-Nearest-Neighbour algorithm is used to identify gestures in the training data that were observed in

close proximity to the current test gesture. The subset of training data constructed using this method are

then used to train a Cubic SVM specifically for the test instance, which is then classified. Although this is

a computationally intensive method of classification, applications such as prosthetic control do not

currently require multiple gestures in quick succession, and therefore training a classifier on a small,

representative dataset is a viable option.

This method of data fusion allows for a higher accuracy to be achieved by ensuring that the factors such

as arm orientation and elbow angle are consistent between both the training set and the test gesture.

This was implemented in real time and tested for a simple two position classification. The training set was

constructed first, and then several test gestures were made. The full training set, including end effector

position was recorded, as well as a list of the gestures identified by the modified KNN for each test gesture.

Figure 33 shows the end effector positions observed for both gestures made with the arm held over the

head, and gestures made with the arm relaxed by the subject’s side. In this implementation, the subject

made forty instances of each gesture in each position, and the k value for the KNN was set to thirty-two.

This provided an ideal scenario for offline testing, since the gestures selected by the algorithm were only

taken from positionally relevant points, and therefore an accuracy of 89.56% was achieved. It is not

expected that this accuracy will translate into the real-time experiments proposed in the following

sections, however it demonstrates a protocol which can be used to achieve the highest possible accuracy.

144

6.5.7 Conclusion
Control of prosthetic devices must be robust to changes in orientation, since wearers are often required

to move their arms into unnatural poses to compensate for a reduced number of degrees of freedom in

their prosthetic. In the past, this has been shown to introduce errors in classification using both MMG

and alternative technologies. The experiment in this section has confirmed that these errors can be

easily observed in MMG-based classification systems, and a solution for prosthetic control has been

proposed and implemented. The NUIMU is able to use orientation information to label each gesture in

the training set with a 3D position representative of arm orientation in real time. For more complex

implementations where end effector positions may not be representative of arm orientation, elbow

angle and forearm orientation could be calculated and used instead. For each gesture to be classified,

these positional labels can be used to ensure that appropriate training data can be selected, and a

unique classifier can be trained and used. It has been shown that classifiers trained on appropriate data

consistently outperform the alternatives. This system is implemented in the following section.

6.6 Robot Teleoperation in Virtual Environments
Robot teleoperation allows the information captured by the system to be demonstrated in an effective

way, since the number of degrees of freedom being controlled can be determined through the selection

of the robot. In order to test the practical applications of the system, a 7DoF LBR iiwa from Kuka was

Figure 33 – Positions of gestures created in two arm configurations

145

controlled to perform several tasks in a virtual environment. The tasks involved a combination of both

arm movement and muscle contraction. The virtual robot was designed to track the end position of the

subject’s hand, although virtual constraints were also included. The kinematics for the Kuka robot used

in this experiment are available, however a lightweight implantation was derived for the virtual

environment.

6.6.1 Kuka Kinematic Derivation
In order to provide control to the Kuka, a direct mapping from the hand of the subject to the end effector

of the robot was used. The position of the subject’s hand was calculated in the same way and the previous

experiments and defined as the target position of the end effector of the robot. To provide this

visualisation, the joint angles to move the end effector of the Kuka to the desired position were required.

The constraints of the visualisation did not require a full kinematic solution to be implemented, so a

lightweight controller was designed and implemented instead. The design of this controller is described

in Appendix III.

This method of estimation allows the instantaneous joint angles for a given desired end effector position

to be calculated, but this is not enough to realistically control the virtual robot. To ensure that the user

would have to actively participate in controlling the robot, each joint was given a maximum angle of

rotation per time period (i.e. a maximum speed). Including this required the subjects to factor the current

position of the robot into their control strategies, increasing the realism of the simulation. Using this

method, a lightweight implementation for end position driven Kuka control can be implemented.

6.6.2 Experimental Protocol

6.6.2.1 Participants
Subjects who met the inclusion criteria were selected and gave their written informed consent to

participate in the experiment. Five healthy subjects (4 male, 1 female, average age: 38.4yrs SD: 15.8yrs)

were involved in this work. Participants had a range of experience both in working in VR environments

and with gesture-based interfaces.

6.6.2.2 Training Protocol
The training protocol was designed to provide data analogous to that generated during the robot

teleoperation test phase, however several modifications were required to generate an appropriate

quantity of data for the experiment without inducing fatigue in the subjects. In order to train the system,

subjects wore two IMUs, one placed on the upper right arm, and one on the lower right arm. Subjects

wore six MMG sensors, worn in a band around the right forearm, with three placed approximately over

the flexor digitorum muscle group and three over the extensor digitorum muscle group (Placement can

be seen in Figure 34). Subjects were seated in an upright position and had access to an armrest.

146

Based on the work performed in the previous section, five arm configurations were identified which

provided a good representation of the workspace used in this experiment. These configurations varied in

both elbow angle and forearm orientation, but in each position the subject’s elbow was supported by the

armrest, whose height was varied to ensure support in each arm configuration. Configurations were kept

consistent between subjects.

Four control gestures were identified for the tasks in this experiment; Open hand, Close hand, Point index

finger, and Pinch with index finger and thumb. Subjects were asked to make five instances of each gesture,

and this was repeated three times for each of the five positions. Subjects were given thirty seconds

between each recording to avoid fatigue. This resulted in a total of three hundred gestures recorded for

each subject.

6.6.2.3 Testing Protocol
To test the inertial measurement and mechanomyography fusion for robot teleoperation in virtual

environments, a series of tasks were created with the aim to allow the user to interact with the robot

without their focus being on the interface. The tasks fell into three categories:

• Ball-to-Box (B2B) tasks – where subjects were required to register an Open gesture to select a

gripper tool with the robot, move the gripper to a virtual ball, register a Close gesture to pick up

the ball, move the ball above a virtual box, and register an open gesture to drop the ball into the

box.

• Balloon-Popping (BP) tasks – where subjects were required to register a Point gesture to select a

sharp tool on the robot’s end effector, and then move that tool into contact with several virtual

balloons to pop them.

Figure 34 – Position of armband for gesture-based experiments

147

• Lock-and-Key (L&K) tasks, where the user was required to register a Pinch gesture to select the

key tool mounted below the robot’s end effector, then place the key precisely into a virtual lock.

The three tasks were intended to utilise both the gesture-based control obtained through both inertial

and mechanomyographic monitoring, as well as force the subjects to generate gestures in a diverse

array of positions.

Once subjects had completed the training phase, they were invited to begin the test phase immediately.

The tasks were explained, and the gesture required to complete them were described. Subjects were then

asked to put on the virtual headset and were instructed to remove it if they felt any ill effects as a result

Figure 35 - The six tasks for VR Robot Control

148

of wearing it. There were invited to explore the test space and familiarise themselves with both the

response of the robot, and the visual feedback triggered by performing the various control gestures. The

limits to joint speed on the robot caused a delay between the user moving to the correct position, and

the robot reaching that same position. Instantaneous user position feedback within the virtual

environment was given by a ‘ghost’ figure that occupied the same position as the user and replicated their

movement. After one minute, the subject was invited to begin the experiment.

The experimental tasks were as follows: one B2B task, four sequential BP tasks where completing one

causes a new object to appear in a different location, two sequential L&K tasks, four sequential BP tasks,

two sequential L&K tasks and five sequential B2B tasks which can be undertaken in any order. The time

taken to complete each task was recorded, as well as the gestures subjects made during each one. An

over-the-shoulder view of the tasks can be seen in Figure 35.

Once the final task had been completed, subjects were asked to remove the VR headset, and were given

a pair of handheld controllers to be used with it. The controller’s buttons that were programmed to incite

the same behaviour as the gestures and the subjects were asked to familiarise themselves with the

button’s placement and function. Once they had done this, they were asked to wear the VR headset again,

and complete the same series of tasks using the controllers. All aspects of the experiment were kept the

same, with the exception of the instantaneous feedback, which was replaced by a ball that occupied the

same space as the user’s hand.

6.6.3 Results
There are two metrics that can be used to assess the effectiveness of the system displayed in this

experiment. The first is the time taken to complete the overall experiment, summarised in Table 27.

The second metric is the accuracy of the classification. In order to complete the experiment, subjects were

required to make eighteen gestures. In addition to these eighteen volitional control commands that all

subjects completed, several other gestures were recorded. These other gestures were categorised into

three groups:

• Misclassifications – where the user had intended to perform a volitional command, but it was the

incorrect command for their current point in the experiment (gestures that were incorrect due to

human error were counted as misclassifications).

• False Positives – gestures that were the result of motion induced artefacts or muscular twitches

when no gesture was intended.

Table 27 - Time taken to complete VR Robot Teleoperation experiment

Time(minutes : seconds)

NUIMU Oculus handheld controllers

Mean SD Mean SD

2:53 0:54 1:29 0:19

149

• Corrective gestures – gestures that were correctly classified, but not an intended part of the

experiment, corrective gestures were caused as users overcame any false positives that changed

the current state of the robot from its intended state.

In this application, accuracy (𝐴𝐶𝐶) is defined as:

𝐴𝐶𝐶 =

𝐺𝑐

𝐺𝑐 + 𝐺𝑖
 (65)

where 𝐺𝑐 is the number of correctly classifier gestures, and 𝐺𝑖 is the number of misclassifications. The

accuracies were worked out for each individual and the average was taken. Average accuracies can be

seen in Table 28.

Another useful metric when evaluating the usability of this system in practical applications is precision.

Precision (𝑃𝑅) describes the false positives detected by the system, and is defined as:

𝑃𝑅 =

𝑃𝑡

𝑃𝑡 + 𝑃𝑓
 (66)

where 𝑃𝑡 and 𝑃𝑓 describe the number of true positives and false positives respectively. It should be noted

here that the true positives are not required to be correctly classified, since accuracy is a separate metric.

As a result, if corrective gestures are defined as 𝐺𝐶, then:

 𝑃𝑡 = 𝐺𝑐 + 𝐺𝑖 + 𝐺𝐶 (67)

A description of the precision is summarized in Table 29.

In order to examine these results in further detail, it was useful to examine the tasks that caused the

greatest number of misclassifications and false positives. A summary of these breakdowns can be seen in

Table 30.

Table 28 – Accuracy of commands in VR Robot Teleoperation experiment

Accuracy of gesture/command classification

NUIMU Oculus handheld controllers

Mean SD Mean SD

71.38% 18.44% 93.89% 3.72%

Table 29 – Precision of commands in VR Robot Teleoperation experiment

Precision of gesture/command classification

NUIMU Oculus handheld controllers

Mean SD Mean SD

90.9% 5.8% 99.1% 1.9%

150

6.6.4 Discussion
The completion of this experiment demonstrates that the sensor system is capable of interpreting user

intent in dynamic conditions. Users were able to complete all tasks during a single run through and did

not report fatigue from using the system.

Several contributory factors to the lower that optimal accuracy can be derived by examining the data. The

most obvious is that while the training data was intended to be analogous to the required tasks, they were

recorded using a different protocol. It was found in early testing that training in the VR environment by

performing the tasks repeatedly led to much faster rates of fatigue, making the experiment

uncomfortable, and in some cases impossible to complete. The training protocol observed here addressed

that, however as a result subjects did not associate the gestures they were performing with the intended

action until the test phase. It was observed that during the training phase, subjects were making large,

deliberate gestures, however in the VR environment subjects appeared to initially make smaller, more

precise gestures. Another possible contributory factor in the experimental protocol was the inclusion of

the armrest. While the armrest was required to train the classifier in multiple arm configurations to avoid

fatigue, it was not available to subjects during testing as it would have inhibited the subject’s freedom of

movement. The additional stress induced in the arm when held unsupported in position appeared to

increase the background mechanomyographic noise, which may have led to misclassifications.

The tasks that recorded the greatest number of false positives were the L&K and the BP tasks. These are

both tasks that required the user to perform large arm motions, and therefore it is likely that some motion

induced artefacts may have led to false positives being detected. Both tasks required the user to make an

initial ‘tool selecting’ gesture, and the number of misclassifications shows that on average, users found

the point gesture to be more difficult to register. It was observed that the point gesture was the least

Table 30 – Misclassifications and false positives separated by task

Number of gestures
required to complete
task

Average number
of
Misclassifications

Average
number of false
positives

Task 1 3 0.2 0.2

Task 2 1 1.4 0.6

Task 3 1 0 0.8

Task 4 1 0.6 0.8

Task 5 1 0.2 0.4

Task 6a 3 1.4 0

Task 6b 2 0.4 0

Task 6c 2 0.6 0.2

Task 6d 2 3.4 0.4

Task 6e 2 1.4 0.2

151

consistent during the test, with users switching between several different forms of the same gesture

within a single test.

A data point that appears to be an outlier in Table 30 is the number of misclassifications that occurred

during Task 6d. Task 6d was a B2B task, but it induced significantly higher errors than the other B2B tasks

that were performed in Task 6. It was observed during the experiment that since the ball was close to the

body, reaching it with the Kuka required the subjects to adopt a unique arm pose. This pose required an

elbow angle that was more extreme than any of the training positions, causing errors comparable to

Position 5 in Table 21.

6.7 Chapter Summary
This chapter describes the application of a system based on fused mechanomyography and inertial

measurement for human-robot interface. The chapter examined the use of hand position as an intuitive

method of providing part of this robot control. NUIMUs were worn on the arm segments, and a simplified

form of forward kinematics was used to translate these three-dimensional data points into command

signals. The accuracy and the effect of a reduced accuracy were tested using a virtual environment.

Information indicative of subject’s path planning was observed, and it was concluded that while users

could complete movements quickly, providing feedback that was not aligned with the user’s

proprioceptive sense led to patterns of motion that could be fatiguing.

A Baxter robot was used as a real-world demonstration of the first implementation of the system. End

position and gestures were used as control signals. In this case, subjects were manipulating physical

objects using a combination of four NUIMUs and six MMGs to provide dual arm control of the 14DoF

robotic platform.

Since end-point position was used as a channel for control signals, a requirement that gestures could be

performed at any location in the effective workspace was observed. To ensure that the system described

here was capable of that, gestures were recorded at a range of different positions defined so as to vary

both elbow angle and the weight supported by the muscles when in the relaxed state. It was found that

both variables had a noticeable effect on the signal, as both the LDA and linear SVM had large errors when

classifying between positions. In order to combat this increase in complexity, a cubic SVM was introduced

and implemented.

While the cubic SVM performed well when trained and tested on data taken from the same position,

accuracy decreased when data from other positions was included in the training set. To ensure that data

in the training set was representative of the test data, the forward kinematics of the arm were used to

label each instance in the training data. In order to classify test data, the end position was calculated, and

a modified K-Nearest Neighbour algorithm was used to select training data from other close positions.

This training data contained data more representative of the test instance, and therefore when used to

train the cubic SVM, a higher accuracy was possible.

152

Since gesture-based HMI applications require the user to make individual gestures, the overall

information throughput is not high. As a result, training a classifier for every instance of data in the test

set, as described by the KNN-cSVM fusion is a feasible option, even though it would not be appropriate

for many machine learning applications. This method provides a true fusion of mechanomyography and

inertial measurement data, allowing a higher accuracy to be achieved than through a single sensor alone.

This updated method of gesture classification and end point mapping was tested in a virtual environment

using a 7-DoF Kuka robot. A lightweight inverse kinematic solution for calculating joint angled from end

position was derived and implemented. A maximum joint rotation speed was implemented, both to add

a level of realism to the simulation, but also to introduce a disconnect between the user and the robot

end effector. This ensured that the user was more focused on the visual feedback provided and lessened

the effect of errors introduced by the user’s proprioceptive sense. Users were able to complete the series

of tasks designed to test their control of the virtual robot.

In both experiments, the sensor suite was tested against industry standard interfaces. While the

interface demonstrated here did not allow subjects to perform the experiments as fast as the

commercial interfaces, its pervasive form means no requirement for cameras in the environment and

favourable lighting conditions, or dexterous manipulation of a physical controller. As such it

demonstrates an alternative interface platform that can be built upon in the future.

153

154

Chapter 7
Conclusions and Future Work

155

7.1 Thesis Summary
This thesis details the design and development of a new form of Human-Machine Interface which utilises a novel fusion

of mechanomyography and inertial measurement to derive volitional control commands. The fusion of these two

sensing modalities provide significant advantages over existing methods of interface which rely on alternative

technologies. MMG sensors have previously been used to detect physiological features such as fatigue but have also

been reported to detect motion induced artefacts. The inclusion of the inertial sensors in the system allows these

artefacts to be identified and compensation strategies to be implemented. Additionally, the effect of arm orientation

on pattern recognition accuracy has been observed, and new strategies of training have been developed to create a

system which is robust to those changes. As a result, the first MMG-based gesture recognition system which is robust

to both environmental interference and arm position has been developed. This new interface has been proved

effective in a variety of different applications, including robot control and interaction in VR environments,

demonstrating robust classification in practical applications. Several shortcomings were identified that have led to poor

adoption of gesture control in the HMI market, and high levels of dissatisfaction and rejection in the prosthetics market.

The work presented here demonstrates the utility of an alternative interface technology which, although less mature,

has the potential to overcome a number of the issues raised by existing techniques.

MMG belongs to a small group of technologies that allow for biomechanical information (such as hand gestures) to be

recorded through inference, as opposed to direct monitoring. This allows for the creation of interfaces that do not

inhibit the generation of the control signals as they are recorded. Other technologies, such as vision or physical

interfaces, often either constrain the users physically or by requiring them to stay within the cameras field of view.

Pervasive interfaces build on MMG or EMG do not, and therefore are preferable for situations where the user may not

be in clinical conditions. Additionally, MMG has a number of benefits over EMG when it comes to signal capture, it is

not reliant on the electrical condition of the skin, which means that it can be more robust over extended periods of

time. This is particularly true in the conditions inside a prosthetic socket, where non-breathable materials quickly lead

to perspiration, which affects the skin impedance, a problem when examining the electrical signal but not the

mechanical signal.

After an examination of existing HMI technologies both from a technological perspective and an end-user perspective,

hardware to allow the collection of MMG and IMU data was designed and built. This process started with an

identification of desired hardware and functional specifications, which allowed a small, high data rate package to be

constructed. Particular care was taken to ensure that the hardware formed a platform that could be expanded to

incorporate external hardware and further software modifications. Additionally, several software packages were

constructed to allow the IMUs to be controlled from a number of host devices, including android mobiles and Windows

PCs. The software system was capable of acting as both a local input for 3rd party software, such as Unity, or network

applications through TCP/IP, enabling it to act as a ROS node.

The host software for Windows computers was structured in two projects, one to control the IMUs and one to control

the Graphical User Interface. This provided a demonstration of the capabilities of the systems without being

constrained to a specific interface. Additionally, the firmware on the IMUs was reconfigurable through this

demonstration project, allowing the data rate to be tuned as per the requirements of the specific experimental

156

protocols. As a result, there are many projects for which this hardware package could be considered suitable. The

design process and software functionality are detailed in Chapter 3.

Data from the MARG sensors can be used to approximate a world reference orientation, which is important for

understanding motion, as well as providing contextual information for gesture recognition. There are three commonly

used methods of determining orientation based on MARG data, complementary filters, Kalman filters and optimization

methods. Of these, optimization methods such as Madgwick’s Gradient Descent Algorithm are typically the easiest to

implement, while still providing high levels of accuracy, however the GDA in particular has a number of shortcomings

that become apparent during practical implementation. This includes both a slow convergence rate at high levels of

magnetic inclination, as well as coupling between perpendicular Euler rotations. This work demonstrated modifications

to this algorithm that addressed these shortcomings, leading to a faster convergence. Additionally, a second algorithm

was proposed to act as an alternative to gradient descent-based algorithms. This new algorithm calculated the exact

rotation of the IMU based on instantaneous sensor data. This allows for an implementation that is more similar to the

complementary filter, but which also uses magnetometer data. The primary benefit of this implementation is that it

separates sensor filtering and sensor fusion, allowing sensor trust to play a greater role. Details of this implementation,

as well as the proposed improvements to the gradient descent orientation estimation algorithm are found in chapter

4.

Once the MMG data has been recorded, it needs to be interpreted. This interpretation was broken down into three

steps, segmentation, classification and interpretation. The interpretation of the classified gestures is application

specific, and therefore is dependent on the implementation. The segmentation was performed by energy thresholding

on both the MMG data and the inertial data. This allowed motion induced artefacts to be detected and dismissed,

ensuring that only volitional control signals were detected. A large dataset was taken, and a human assisted

segmentation was performed. This allowed gestures to be identified and marked within the set, which facilitated

testing and tuning of real-time detection techniques. Classification was performed using a number of techniques. First,

a template-based method was designed. This was intended to operate purely as a method of determining the

repeatability and distinguishability of the signals recorded, however this purely statistical technique proved successful

in as a lightweight, real-time classification technique. Further methods from the field of machine learning were also

tested, including decision trees, KNNs, LDAs and SVMs. Additionally, PCA and feature extraction were explored as

dimensionality reduction techniques. A suitable real-time classification technique was identified and implemented for

further testing. This series of experimental work is described in Chapter 5.

Finally, several experiments were designed to demonstrate the practical use of the systems as a Human Machine

Interface. A first-generation implementation of the NUIMU/MMG system was used in the real-world experiments

involving the teleoperation of robotic platforms. The level of abstraction in this application made for an intuitive form

of interface, however error in classification introduced difficulties. In order to determine the source of the errors,

experiments were performed in a virtual environment to provide ideal experimental conditions in a controlled

environment. This allowed the performance of the system to be assessed against alternative commercial interfaces.

The experiments showed that the IMUs could be used to bring more degrees of freedom into a virtual world, however

when joints were directly mapped this introduced a conflict between the subject’s proprioceptive sense and the visual

feedback that was being provided. Arm orientation and elbow angle were identified as potential factors that may have

157

led to the misclassification observed in the teleoperation experiment, and evidence that supported this was found. A

compensation strategy which used a more in-depth form of sensor fusion was found and tested in VR robot

teleoperation tasks. Details of these experiments can be found in Chapter 6.

7.2 Summary of Contributions
The core contribution of this thesis is to demonstrate an improvement to the understanding of the behaviour of

Mechanomyographic signals while performing different gestures, and the place of this understanding in the context of

gesture-based Human Machine Interfaces. The sensor has previously been researched primarily as a diagnostic tool,

and its potential as a practical alternative to EMG-based interfaces has been largely ignored. This thesis has

demonstrated that the sensor can operate in this field and is worthy of further research and development.

The specific contributions of this thesis are as follows:

• Creation of sensor-suite

o The creation of a small form, high frequency, multisensor interface comprising of a combination of

IMU and MMG sensors is presented, allowing for a sensor fusion that addresses some of the

shortcomings of each sensor individually.

• Improvements to commonly used orientation estimation algorithm

o A simulated demonstration of the commonly used ‘Madgwick’ algorithm (Gradient Descent

Algorithm) showed that convergence is dependent on geomagnetic inclination, and that this can

lead to slow convergence in areas of high inclination. A method to overcome this is proposed, and it

is demonstrated to provide consistent convergence regardless of geomagnetic inclination. At 60

degrees, this implementation converges six times faster than the original gradient descent algorithm.

This solution is also shown to decouple pitch/roll and yaw during correction, leading to more efficient

convergence.

• Introduction of a new orientation estimation algorithm

o The derivation of a new algorithm for estimating the orientation of a MARG system with respect to

the global reference frame is proposed. This solution provides a configurable step convergence,

which allows it to be easily tuned both for convergence speed and for sensor reliability. This provides

more control over the nature of the convergence and the filtering of the signals than other

commonly used algorithms. In its base form, the algorithm provides one steps convergence.

• MMG gesture classification

o Offline analysis has shown that the MMG signal is sufficiently repeatable to permit classification of

movement using several classification techniques, which range from purely statistical methods to

more advanced machine learning techniques. A labelled dataset of MMG data that can be used to

test other classification (and segmentation) techniques in the future has also been generated. The

methods implemented here achieve an offline accuracy of ~95% across 12 distinct gestures. Online

implementations were trialled, and accuracies on 94.7% and 90.8% were achieved for 2 and 5

gesture classifications respectively.

158

o A new form of IMU/MMG fusion to provide a classification accuracy that is robust to changes in the

signal caused by arm pose was implemented. It was demonstrated that changing arm pose between

training and testing caused classification accuracy to drop ~30%. The algorithm proposed here

ensured that training data from the most relevant positions were used, leading to an offline accuracy

of 89.6% classifying four gestures from seven diverse arm poses.

• Demonstration of Applications

o The real-time multi-model sensor system was implemented in several applications, demonstrating

the first MMG/IMU-based robot teleoperation system that allows for hands free robot control in

unstructured environments.

7.3 Suggested Future Directions
While the MMG/IMU combination has been demonstrated to provide enough data for reliable gesture classification,

there are many extensions to the system demonstrated here, which could be implemented. The extensions outlined

here could lead to increased robustness in real-world applications by removing some of the system constraints.

The approach shown here relies on the classification of segmented gestures. This was intended to demonstrate the

repeatable nature of the signal generation for similar gestures, but also introduces a source of error based on incorrect

segmentation. The energy of the MMG signal is proportional to the speed of motion of the inciting gesture, and

therefore gesture speed must be kept consistent to ensure that the segmentation is selecting the desired portion of

the signal. This could be solved through the introduction of a continuous classification algorithm that actively classifies

periods where a gesture is not present. This would also allow inertial data to be used as additional inputs for

classification, removing the need for manually set threshold values. Algorithms such as Convolutional Neural Networks

may provide such a solution.

Further testing on the sensor longevity and consistency of signal between sensors must also be examined. While short

term classification is independent of these factors, the commercialization of any such system must address these

issues. The system must also be tested during a wider range of activities of daily living, both in its current form and

inside a prosthetic socket. Like other muscle sensors, MMGs are known to be affected by the pressure applied to them,

and therefore their response while inside a socket that is also supporting the weight of a prosthetic must be assessed.

Increasing the number of MMG sensors in the system would be desirable. Sensors placed lengthways along the

muscles in the forearm could allow for muscle contractions to be further examined by tracking the progression of the

contraction down the length of the muscle. This could provide another method of noise rejection for the signal.

Similarly, simultaneous comparison of sensors that are placed over the muscle body compared with sensors placed

over areas such as the wrist of the end of the residual limb could also provide a method of isolating the muscle activity.

Further sensor fusion should be examined. MMG sensors are unaffected by several the issues that cause calibration

problems with other sensor types (such as EMG), but significantly more work has been performed using EMG sensors.

Fusion of the two sensors could allow for both improved noise correction and classification, as well as on-the-fly

recalibration of the EMG sensing elements. This could allow such a system to take advantage of the benefits of both

sensors.

159

The work outlined here explores the use of hand gestures as a means of generating commands, however there are a

wide variety of other applications for such an intent detection system. As a prosthetic interface, the system could

provide a method of detecting intended gait, resulting in responsive lower limb prosthetics. As an assistive device, the

system has applications ranging from detecting the progression and technique behind rehabilitation exercises to acting

as an interface for ALS patients. The system provides information about the biomechanical processes of the human

body in detail, without requiring a controlled and structured environment. As such there is a large body of work yet to

be completed with respect to these sensing modalities, and the experiments outlined in this document are only the

beginning.

7.4 Final Comments
This work has investigated the monitoring of mechanomyographic signals as a means of detecting volitional commands

generated through hand gestures. It has demonstrated that the process of performing a gesture produces repeatable

signals that provide the enough information to be categorized. It has tested several methods of classifying the signals

and found that high accuracy can be achieved. New methods of orientation estimation have been implemented, and

the fusion of MMG and IMU data has been extended. The system is capable of recording data that is usually only

available in a controlled environment and utilizing it for the purpose of providing natural and intuitive gesture-based

control. As the number of smart devices with which we interact daily continues to increase, and as technology becomes

more ubiquitous, we will find more and more that we interact with it through virtual interfaces that rely on natural

movements, including hand gestures, and it is possible that MMG may be the technology that facilitates this vision.

160

References
1. Alves, N. and T. Chau. Classification of the mechanomyogram: Its potential as a

multifunction access pathway. in 2009 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. 2009.

2. Park, K.-H. and S.-W. Lee. Movement intention decoding based on deep learning
for multiuser myoelectric interfaces. in 2016 4th International Winter Conference
on Brain-Computer Interface (BCI). 2016. IEEE.

3. Alves, N. and T. Chau, Uncovering patterns of forearm muscle activity using multi-
channel mechanomyography. J Electromyogr Kinesiol, 2010. 20(5): p. 777-86.

4. Atzori, M., M. Cognolato, and H. Muller, Deep Learning with Convolutional Neural
Networks Applied to Electromyography Data: A Resource for the Classification of
Movements for Prosthetic Hands. Front Neurorobot, 2016. 10(9): p. 9.

5. Cao, W., et al. Identifying hand-motion patterns via kernel discriminant analysis
based dimension reduction and quadratic classifier. in 2011 International
Conference on Wavelet Analysis and Pattern Recognition. 2011.

6. Geng, W., et al., Gesture recognition by instantaneous surface EMG images. Sci
Rep, 2016. 6: p. 36571.

7. Ma, Y., et al. Hand gesture recognition with convolutional neural networks for the
multimodal UAV control. in 2017 Workshop on Research, Education and
Development of Unmanned Aerial Systems (RED-UAS). 2017.

8. Purushothaman, G. and R. Vikas, Identification of a feature selection based pattern
recognition scheme for finger movement recognition from multichannel EMG
signals. Australas Phys Eng Sci Med, 2018. 41(2): p. 549-559.

9. Teh, Y., R.B. Woodward, and L.J. Hargrove. Comparing the Effects of Signal Noise
on Pattern Recognition and Linear Regression-Based Myoelectric Controllers. in
2018 40th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC). 2018.

10. Zhang, Z., et al., Real-Time Surface EMG Pattern Recognition for Hand Gestures
Based on an Artificial Neural Network. Sensors (Basel), 2019. 19(14): p. 3170.

11. Hancock, P.A.a.C., M. H., Intelligent Interfaces: Theory, Research, and Design.
1989, New York, NY, USA: Elsevier Science Inc.

12. Myers, B.A., A brief history of human-computer interaction technology.
interactions, 1998. 5(2): p. 44-54.

13. Rogers, E.M., Diffusions of Innovation. 6 ed. 1962, London: Collier Macmillan
Publishers.

161

14. Ziegler-Graham, K., et al., Estimating the Prevalence of Limb Loss in the United
States: 2005 to 2050. Archives of Physical Medicine and Rehabilitation, 2008.
89(3): p. 422-429.

15. Ostlie, K., et al., Prosthesis use in adult acquired major upper-limb amputees:
patterns of wear, prosthetic skills and the actual use of prostheses in activities of
daily life. Disabil Rehabil Assist Technol, 2012. 7(6): p. 479-93.

16. Biddiss, E.A. and T.T. Chau, Upper limb prosthesis use and abandonment: a survey
of the last 25 years. Prosthet Orthot Int, 2007. 31(3): p. 236-57.

17. Wright, T.W., A.D. Hagen, and M.B. Wood, Prosthetic usage in major upper
extremity amputations. J Hand Surg Am, 1995. 20(4): p. 619-22.

18. Biddiss, E. and T. Chau, Upper-limb prosthetics: critical factors in device
abandonment. Am J Phys Med Rehabil, 2007. 86(12): p. 977-87.

19. Durmus, D., et al., The relationship between prosthesis use, phantom pain and
psychiatric symptoms in male traumatic limb amputees. Compr Psychiatry, 2015.
59: p. 45-53.

20. Hanley, M.A., et al., Chronic pain associated with upper-limb loss. Am J Phys Med
Rehabil, 2009. 88(9): p. 742-51; quiz 752, 779.

21. Gambrell, C.R., Overuse Syndrome and the Unilateral Upper Limb Amputee:
Consequences and Prevention. JPO Journal of Prosthetics and Orthotics, 2008.
20(3): p. 126-132.

22. Biddiss, E., D. Beaton, and T. Chau, Consumer design priorities for upper limb
prosthetics. Disabil Rehabil Assist Technol, 2007. 2(6): p. 346-57.

23. Cook, A.M. and J.M. Polgar, Principles of Assistive Technology, in Assistive
Technologies, A.M. Cook and J.M. Polgar, Editors. 2015, Mosby: St. Louis (MO). p.
1-15.

24. Matos, A., et al., A Myographic-based HCI Solution Proposal for Upper Limb
Amputees. Procedia Computer Science, 2016. 100: p. 2-13.

25. Plettenberg, D.H. PROSTHETIC CONTROL: A CASE FOR EXTENDED PHYSIOLOGICAL
PROPRIOCEPTION. . in Myoelectric Symposium. 2002.

26. Doubler, J.A. and D.S. Childress, An analysis of extended physiological
proprioception as a prosthesis-control technique. J Rehabil Res Dev, 1984. 21(1): p.
5-18.

27. Cui, J., et al. A review of teleoperation system control. in Proceedings of the Florida
Conference on Recent Advances in Robotics (FCRAR). 2003.

28. Vitiello, V., et al., Emerging Robotic Platforms for Minimally Invasive Surgery. IEEE
Reviews in Biomedical Engineering, 2013. 6: p. 111-126.

162

29. Smith, T.A., et al. A Novel Haptic Interface for Navigation in Large Volume
Environments. in Second Joint EuroHaptics Conference and Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems (WHC'07). 2007.

30. Sokho, C., et al. KIST teleoperation system for humanoid robot. in Proceedings
1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human
and Environment Friendly Robots with High Intelligence and Emotional Quotients
(Cat. No.99CH36289). 1999.

31. Rocon, E., et al., Design and Validation of a Rehabilitation Robotic Exoskeleton for
Tremor Assessment and Suppression. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 2007. 15(3): p. 367-378.

32. Kim, H., et al., Kinematic Data Analysis for Post-Stroke Patients Following Bilateral
Versus Unilateral Rehabilitation With an Upper Limb Wearable Robotic System.
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013. 21(2):
p. 153-164.

33. Tognetti, A., et al., Wearable Goniometer and Accelerometer Sensory Fusion for
Knee Joint Angle Measurement in Daily Life. Sensors (Basel, Switzerland), 2015.
15(11): p. 28435-28455.

34. Sharma, N., et al., Closed-Loop Neural Network-Based NMES Control for Human
Limb Tracking. IEEE Transactions on Control Systems Technology, 2012. 20(3): p.
712-725.

35. Gibbs, P.T. and H. Asada, Wearable Conductive Fiber Sensors for Multi-Axis Human
Joint Angle Measurements. Journal of NeuroEngineering and Rehabilitation, 2005.
2(1): p. 7.

36. DeGol, J., et al. Automatic grasp selection using a camera in a hand prosthesis. in
2016 38th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC). 2016.

37. Gardner, M., et al. An unobtrusive vision system to reduce the cognitive burden of
hand prosthesis control. in 2014 13th International Conference on Control
Automation Robotics & Vision (ICARCV). 2014.

38. Dosen, S., et al., Cognitive vision system for control of dexterous prosthetic hands:
experimental evaluation. Journal of neuroengineering and rehabilitation, 2010. 7:
p. 42-42.

39. Markovic, M., et al., Sensor fusion and computer vision for context-aware control
of a multi degree-of-freedom prosthesis. J Neural Eng, 2015. 12(6): p. 066022.

40. Ghazaei, G., et al., Grasp Type Estimation for Myoelectric Prostheses using Point
Cloud Feature Learning.

163

41. Muro-de-la-Herran, A., B. Garcia-Zapirain, and A. Mendez-Zorrilla, Gait analysis
methods: an overview of wearable and non-wearable systems, highlighting clinical
applications. Sensors (Basel, Switzerland), 2014. 14(2): p. 3362-3394.

42. Collins, T.D., et al., A six degrees-of-freedom marker set for gait analysis:
Repeatability and comparison with a modified Helen Hayes set. Gait & Posture,
2009. 30(2): p. 173-180.

43. Kadaba, M.P., H.K. Ramakrishnan, and M.E. Wootten, Measurement of lower
extremity kinematics during level walking. J Orthop Res, 1990. 8(3): p. 383-92.

44. Cloete, T. and C. Scheffer. Benchmarking of a full-body inertial motion capture
system for clinical gait analysis. in 2008 30th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society. 2008.

45. Wren, C., et al. Pfinder: real-time tracking of the human body. in Proceedings of
the Second International Conference on Automatic Face and Gesture Recognition.
1996.

46. Mikic, I., et al. Articulated body posture estimation from multi-camera voxel data.
in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. CVPR 2001. 2001.

47. Luck, J., D. Small, and C.Q. Little. Real-Time Tracking of Articulated Human Models
Using a 3D Shape-from-Silhouette Method. in Robot Vision. 2001. Berlin,
Heidelberg: Springer Berlin Heidelberg.

48. Chi-Wei, C., O.C. Jenkins, and M.J. Mataric. Markerless kinematic model and
motion capture from volume sequences. in 2003 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2003. Proceedings. 2003.

49. Song, W., et al. Teleoperation Humanoid Robot Control System Based on Kinect
Sensor. in 2012 4th International Conference on Intelligent Human-Machine
Systems and Cybernetics. 2012.

50. Almetwally, I. and M. Mallem. Real-time tele-operation and tele-walking of
humanoid Robot Nao using Kinect Depth Camera. in 2013 10th IEEE
INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL
(ICNSC). 2013.

51. Du, G. and P. Zhang, Markerless human–robot interface for dual robot
manipulators using Kinect sensor. Robotics and Computer-Integrated
Manufacturing, 2014. 30(2): p. 150-159.

52. Weichert, F., et al., Analysis of the Accuracy and Robustness of the Leap Motion
Controller. Sensors, 2013. 13(5): p. 6380.

164

53. Biswas, K.K. and S.K. Basu. Gesture recognition using Microsoft Kinect®. in The 5th
International Conference on Automation, Robotics and Applications. 2011.

54. Zafrulla, Z., et al., American sign language recognition with the kinect, in
Proceedings of the 13th international conference on multimodal interfaces. 2011,
ACM: Alicante, Spain. p. 279-286.

55. Kolkur, S., et al. Human Skin Detection Using RGB, HSV and YCbCr Color Models.
2016. Atlantis Press.

56. Du, G., et al. Robot teleoperation using a vision-based manipulation method. in
2010 International Conference on Audio, Language and Image Processing. 2010.

57. Wang, R.Y., J. Popovi, and #263, Real-time hand-tracking with a color glove. ACM
Trans. Graph., 2009. 28(3): p. 1-8.

58. Chang, Y.S., et al. Evaluating gesture-based augmented reality annotation. in 2017
IEEE Symposium on 3D User Interfaces (3DUI). 2017.

59. Li, Y.D. and E.T. Hsiao-Wecksler. Gait mode recognition and control for a portable-
powered ankle-foot orthosis. in 2013 IEEE 13th International Conference on
Rehabilitation Robotics (ICORR). 2013.

60. Langlois, D., M. Rittenhouse, and Y. Roy, Prosthetic and orthotic devices and
methods and systems for controlling the same. 2018, Google Patents.

61. Woodward, R., S. Shefelbine, and R. Vaidyanathan. Integrated grip switching and
grasp control for prosthetic hands using fused inertial and mechanomyography
measurement. in 2015 Swarm/Human Blended Intelligence Workshop (SHBI).
2015.

62. Gardner, M., et al. Motion-based grasp selection: Improving traditional control
strategies of myoelectric hand prosthesis. in 2015 IEEE International Conference on
Rehabilitation Robotics (ICORR). 2015.

63. Kyranou, I., et al. Real-time classification of multi-modal sensory data for
prosthetic hand control. in 2016 6th IEEE International Conference on Biomedical
Robotics and Biomechatronics (BioRob). 2016.

64. Wilson, S. and R. Vaidyanathan. Upper-limb prosthetic control using wearable
multichannel mechanomyography. in 2017 International Conference on
Rehabilitation Robotics (ICORR). 2017.

65. Miller, N., et al. Motion capture from inertial sensing for untethered humanoid
teleoperation. in 4th IEEE/RAS International Conference on Humanoid Robots,
2004. 2004.

165

66. Kim, S., S. Hong, and D. Kim. A walking motion imitation framework of a humanoid
robot by human walking recognition from IMU motion data. in 2009 9th IEEE-RAS
International Conference on Humanoid Robots. 2009.

67. Reiss, A. and D. Stricker. Introducing a New Benchmarked Dataset for Activity
Monitoring. in 2012 16th International Symposium on Wearable Computers. 2012.

68. Attal, F., et al., Physical Human Activity Recognition Using Wearable Sensors.
Sensors, 2015. 15(12): p. 29858.

69. Wittmann, F., et al., Self-directed arm therapy at home after stroke with a sensor-
based virtual reality training system. Journal of NeuroEngineering and
Rehabilitation, 2016. 13(1): p. 75.

70. Cifuentes, C., et al. Development of a wearable ZigBee sensor system for upper
limb rehabilitation robotics. in 2012 4th IEEE RAS & EMBS International Conference
on Biomedical Robotics and Biomechatronics (BioRob). 2012.

71. Fenu, G. and G. Steri. IMU based post-traumatic rehabilitation assessment. in 2010
3rd International Symposium on Applied Sciences in Biomedical and
Communication Technologies (ISABEL 2010). 2010.

72. Spicer, R., et al. REINVENT: A low-cost, virtual reality brain-computer interface for
severe stroke upper limb motor recovery. in 2017 IEEE Virtual Reality (VR). 2017.

73. Geethanjali, P., Myoelectric control of prosthetic hands: state-of-the-art review.
Med Devices (Auckl), 2016. 9: p. 247-55.

74. Battye, C.K., A. Nightingale, and J. Whillis, The use of myo-electric currents in the
operation of prostheses. J Bone Joint Surg Br, 1955. 37-B(3): p. 506-10.

75. Fougner, A., et al., Control of upper limb prostheses: terminology and proportional
myoelectric control-a review. IEEE Trans Neural Syst Rehabil Eng, 2012. 20(5): p.
663-77.

76. Ziai, A. and C. Menon, Comparison of regression models for estimation of isometric
wrist joint torques using surface electromyography. J Neuroeng Rehabil, 2011.
8(1): p. 56.

77. Nielsen, J.L.G., et al. Enhanced EMG signal processing for simultaneous and
proportional myoelectric control. in 2009 Annual International Conference of the
IEEE Engineering in Medicine and Biology Society. 2009.

78. Rehbaum, H., et al. Real time simultaneous and proportional control of multiple
degrees of freedom from surface EMG: Preliminary results on subjects with limb
deficiency. in 2012 Annual International Conference of the IEEE Engineering in
Medicine and Biology Society. 2012.

166

79. Dhillon, G.S. and K.W. Horch, Direct neural sensory feedback and control of a
prosthetic arm. IEEE Trans Neural Syst Rehabil Eng, 2005. 13(4): p. 468-72.

80. Naik, G.R., et al. Subtle Hand Gesture Identification for HCI Using Temporal
Decorrelation Source Separation BSS of Surface EMG. in 9th Biennial Conference of
the Australian Pattern Recognition Society on Digital Image Computing Techniques
and Applications (DICTA 2007). 2007.

81. Kyberd, P.J., et al., MARCUS: a two degree of freedom hand prosthesis with
hierarchical grip control. IEEE Transactions on Rehabilitation Engineering, 1995.
3(1): p. 70-76.

82. Kyberd, P.J. and P.H. Chappell, The Southampton Hand: an intelligent myoelectric
prosthesis. J Rehabil Res Dev, 1994. 31(4): p. 326-34.

83. Dalley, S.A., H.A. Varol, and M. Goldfarb, A method for the control of multigrasp
myoelectric prosthetic hands. IEEE Trans Neural Syst Rehabil Eng, 2012. 20(1): p.
58-67.

84. Segil, J.L. and R.F. Weir, Design and validation of a morphing myoelectric hand
posture controller based on principal component analysis of human grasping. IEEE
Trans Neural Syst Rehabil Eng, 2014. 22(2): p. 249-57.

85. Zardoshti-Kermani, M., et al., EMG feature evaluation for movement control of
upper extremity prostheses. IEEE Transactions on Rehabilitation Engineering, 1995.
3(4): p. 324-333.

86. Tkach, D., H. Huang, and T.A. Kuiken, Study of stability of time-domain features for
electromyographic pattern recognition. Journal of neuroengineering and
rehabilitation, 2010. 7: p. 21-21.

87. Negi, S., Y. Kumar, and V.M. Mishra. Feature extraction and classification for EMG
signals using linear discriminant analysis. in 2016 2nd International Conference on
Advances in Computing, Communication, & Automation (ICACCA) (Fall). 2016.

88. Hannaford, B. and S. Lehman, Short Time Fourier Analysis of the Electromyogram:
Fast Movements and Constant Contraction. IEEE Transactions on Biomedical
Engineering, 1986. BME-33(12): p. 1173-1181.

89. Englehart, K., B. Hudgins, and P.A. Parker. Time-frequency based classification of
the myoelectric signal: static vs. dynamic contractions. in Proceedings of the 22nd
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (Cat. No.00CH37143). 2000.

90. Maitrot, A., et al., Signal-dependent wavelets for electromyogram classification.
Med Biol Eng Comput, 2005. 43(4): p. 487-92.

167

91. Nazmi, N., et al., A Review of Classification Techniques of EMG Signals during
Isotonic and Isometric Contractions. Sensors (Basel), 2016. 16(8): p. 1304.

92. Manimegalai, E., Hand gesture recognition based on EMG signals using ANN. Int J
Comput Appl, 2013. 3(2): p. 31-9.

93. Tenore, F., et al. Towards the Control of Individual Fingers of a Prosthetic Hand
Using Surface EMG Signals. in 2007 29th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society. 2007.

94. Zhai, X., et al., Self-Recalibrating Surface EMG Pattern Recognition for
Neuroprosthesis Control Based on Convolutional Neural Network. Front Neurosci,
2017. 11(379): p. 379.

95. Wei, W., et al., A multi-stream convolutional neural network for sEMG-based
gesture recognition in muscle-computer interface. Pattern Recognition Letters,
2019. 119: p. 131-138.

96. Elamvazuthi, I., et al., Electromyography (EMG) based Classification of
Neuromuscular Disorders using Multi-Layer Perceptron. Procedia Computer
Science, 2015. 76: p. 223-228.

97. Subasi, A., Classification of EMG signals using combined features and soft
computing techniques. Applied soft computing, 2012. 12(8): p. 2188-2198.

98. Young, A.J., et al., Classification of simultaneous movements using surface EMG
pattern recognition. IEEE Trans Biomed Eng, 2013. 60(5): p. 1250-8.

99. Gokgoz, E. and A. Subasi, Comparison of decision tree algorithms for EMG signal
classification using DWT. Biomedical Signal Processing and Control, 2015. 18: p.
138-144.

100. Khezri, M. and M. Jahed, A Neuro–Fuzzy Inference System for sEMG-Based
Identification of Hand Motion Commands. IEEE Transactions on Industrial
Electronics, 2011. 58(5): p. 1952-1960.

101. Rossi, M., et al. Hybrid EMG classifier based on HMM and SVM for hand gesture
recognition in prosthetics. in 2015 IEEE International Conference on Industrial
Technology (ICIT). 2015.

102. Kim, K.S., et al., Comparison of k-nearest neighbor, quadratic discriminant and
linear discriminant analysis in classification of electromyogram signals based on
the wrist-motion directions. Current applied physics, 2011. 11(3): p. 740-745.

103. Chu, J.-U., et al., A supervised feature-projection-based real-time EMG pattern
recognition for multifunction myoelectric hand control. IEEE/ASME Transactions on
Mechatronics, 2007. 12(3): p. 282-290.

168

104. Linderman, M., M.A. Lebedev, and J.S. Erlichman, Recognition of handwriting from
electromyography. PLoS One, 2009. 4(8): p. e6791.

105. Phinyomark, A., et al., EMG feature evaluation for improving myoelectric pattern
recognition robustness. Expert Systems with applications, 2013. 40(12): p. 4832-
4840.

106. Li, Z., et al., Boosting-based EMG patterns classification scheme for robustness
enhancement. IEEE J Biomed Health Inform, 2013. 17(3): p. 545-52.

107. Yang, D., et al. EMG pattern recognition and grasping force estimation:
Improvement to the myocontrol of multi-DOF prosthetic hands. in 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems. 2009.

108. Kumar, D.K., S. Poosapadi Arjunan, and V.P. Singh, Towards identification of finger
flexions using single channel surface electromyography--able bodied and amputee
subjects. J Neuroeng Rehabil, 2013. 10(1): p. 50.

109. Ameri, A., et al., Support vector regression for improved real-time, simultaneous
myoelectric control. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 2014. 22(6): p. 1198-1209.

110. Hargrove, L.J., K. Englehart, and B. Hudgins, A Comparison of Surface and
Intramuscular Myoelectric Signal Classification. IEEE Transactions on Biomedical
Engineering, 2007. 54(5): p. 847-853.

111. Boyali, A., N. Hashimoto, and O. Matsumoto. Hand posture and gesture
recognition using MYO armband and spectral collaborative representation based
classification. in 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE).
2015.

112. Abreu, J.G., et al. Evaluating Sign Language Recognition Using the Myo Armband.
in 2016 XVIII Symposium on Virtual and Augmented Reality (SVR). 2016.

113. Xu, Y., et al. Development of a hybrid motion capture method using MYO armband
with application to teleoperation. in 2016 IEEE International Conference on
Mechatronics and Automation. 2016.

114. Cattarello, P. and R. Merletti. Characterization of dry and wet Electrode-Skin
interfaces on different skin treatments for HDsEMG. in 2016 IEEE International
Symposium on Medical Measurements and Applications (MeMeA). 2016.

115. Fukuda, O., et al., A human-assisting manipulator teleoperated by EMG signals and
arm motions. IEEE Transactions on Robotics and Automation, 2003. 19(2): p. 210-
222.

169

116. Artemiadis, P.K. and K.J. Kyriakopoulos. Teleoperation of a robot manipulator using
EMG signals and a position tracker. in 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 2005.

117. Artemiadis, P.K. and K.J. Kyriakopoulos. EMG-based teleoperation of a robot arm
using low-dimensional representation. in 2007 IEEE/RSJ International Conference
on Intelligent Robots and Systems. 2007.

118. Barreto, A.B., S.D. Scargle, and M. Adjouadi, A practical EMG-based human-
computer interface for users with motor disabilities. J Rehabil Res Dev, 2000. 37(1):
p. 53-63.

119. Smith, D.B., et al., Mechanomyographic responses to maximal eccentric isokinetic
muscle actions. Journal of Applied Physiology, 1997. 82(3): p. 1003-1007.

120. Orizio, C., Muscle sound: bases for the introduction of a mechanomyographic
signal in muscle studies. Crit Rev Biomed Eng, 1993. 21(3): p. 201-43.

121. Smith, D.B., et al., Mechanomyographic responses to maximal eccentric isokinetic
muscle actions. J Appl Physiol (1985), 1997. 82(3): p. 1003-7.

122. Harba, M.I.A. and C. Goh Eng. Muscle mechanomyographic and electromyographic
signals compared with reference to action potential average propagation velocity.
in Proceedings of the 19th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society. 'Magnificent Milestones and Emerging
Opportunities in Medical Engineering' (Cat. No.97CH36136). 1997.

123. Esposito, F., C. Orizio, and A. Veicsteinas, Electromyogram and mechanomyogram
changes in fresh and fatigued muscle during sustained contraction in men. Eur J
Appl Physiol Occup Physiol, 1998. 78(6): p. 494-501.

124. Woodward, R., S. Shefelbine, and R. Vaidyanathan. Pervasive Motion Tracking and
Muscle Activity Monitor. in Computer-Based Medical Systems (CBMS), 2014 IEEE
27th International Symposium on. 2014.

125. Farina, D., X. Li, and P. Madeleine, Motor unit acceleration maps and interference
mechanomyographic distribution. J Biomech, 2008. 41(13): p. 2843-9.

126. Youn, W. and J. Kim, Estimation of elbow flexion force during isometric muscle
contraction from mechanomyography and electromyography. Med Biol Eng
Comput, 2010. 48(11): p. 1149-57.

127. Alves, N., T.H. Falk, and T. Chau, A novel integrated mechanomyogram-vocalization
access solution. Medical engineering & physics, 2010. 32(8): p. 940-944.

128. Tanaka, M., T. Okuyama, and K. Saito. Study on evaluation of muscle conditions
using a mechanomyogram sensor. in 2011 IEEE International Conference on
Systems, Man, and Cybernetics. 2011.

170

129. Orizio, C., et al., Muscle-joint unit transfer function derived from torque and
surface mechanomyogram in humans using different stimulation protocols. Journal
of Neuroscience Methods, 2008. 173(1): p. 59-66.

130. Beck, T.W., et al., Cross-correlation analysis of mechanomyographic signals
detected in two axes. Physiological measurement, 2009. 30(12): p. 1465.

131. Alves, N., et al., The effect of accelerometer location on the classification of single-
site forearm mechanomyograms. BioMedical Engineering OnLine, 2010. 9(1): p.
23.

132. Silva, J., et al. Optimization of the signal-to-noise ratio of silicon-embedded
microphones for mechanomyography. in CCECE 2003 - Canadian Conference on
Electrical and Computer Engineering. Toward a Caring and Humane Technology
(Cat. No.03CH37436). 2003.

133. Posatskiy, A.O. and T. Chau, Design and evaluation of a novel microphone-based
mechanomyography sensor with cylindrical and conical acoustic chambers. Med
Eng Phys, 2012. 34(8): p. 1184-90.

134. Cescon, C., et al., Non-invasive characterization of single motor unit
electromyographic and mechanomyographic activities in the biceps brachii muscle.
Journal of Electromyography and Kinesiology, 2006. 16(1): p. 17-24.

135. Akataki, K., K. Mita, and M. Watakabe, Electromyographic and
mechanomyographic estimation of motor unit activation strategy in voluntary
force production. Electromyography and clinical neurophysiology, 2004. 44(8): p.
489-496.

136. Carr, J.C., et al., Mechanomyographic responses for the biceps brachii are
associated with failure times during isometric force tasks. Physiological Reports,
2018. 6(4): p. e13590.

137. Shinohara, M. and K. Søgaard, Mechanomyography for Studying Force Fluctuations
and Muscle Fatigue. Exercise and Sport Sciences Reviews, 2006. 34(2): p. 59-64.

138. Tian, S.-L., et al., Mechanomyography is more sensitive than EMG in detecting age-
related sarcopenia. Journal of Biomechanics, 2010. 43(3): p. 551-556.

139. Angeles, P., et al. Automated assessment of symptom severity changes during deep
brain stimulation (DBS) therapy for Parkinson's disease. in 2017 International
Conference on Rehabilitation Robotics (ICORR). 2017.

140. Silva, J., W. Heim, and T. Chau. MMG-based classification of muscle activity for
prosthesis control. in The 26th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. 2004.

171

141. Hallett, E., et al. Rapid bicycle gear switching based on physiological cues. in
Automation Science and Engineering (CASE), 2015 IEEE International Conference
on. 2015. IEEE.

142. Woodward, R.B., et al., Segmenting Mechanomyography Measures of Muscle
Activity Phases Using Inertial Data. Scientific reports, 2019. 9(1): p. 5569.

143. Woodward, R.B., S.J. Shefelbine, and R. Vaidyanathan, Pervasive monitoring of
motion and muscle activation: inertial and mechanomyography fusion. IEEE/ASME
Transactions on Mechatronics, 2017. 22(5): p. 2022-2033.

144. Kenney, L.P.J., et al., Dimensional change in muscle as a control signal for powered
upper limb prostheses: a pilot study. Medical Engineering and Physics, 1999. 21(8):
p. 589-597.

145. Heath, G.H., Control of proportional grasping using a myokinemetric signal.
Technology and Disability, 2003. 15(2): p. 73-83.

146. Heath, G. and P. Bowker. Myokinemetric control of a prosthetic prehensor from
residual forearm musculature. in Proceedings of International Conference on
Informatics and Control, St. Petersburg, Russia. 1997.

147. Zheng, Y.P., et al., Sonomyography: Monitoring morphological changes of forearm
muscles in actions with the feasibility for the control of powered prosthesis.
Medical Engineering and Physics, 2006. 28(5): p. 405-415.

148. Shi, J., et al., Assessment of muscle fatigue using sonomyography: Muscle thickness
change detected from ultrasound images. Medical Engineering & Physics, 2007.
29(4): p. 472-479.

149. Shi, J., et al., Continuous Monitoring of Sonomyography, Electromyography and
Torque Generated by Normal Upper Arm Muscles During Isometric Contraction:
Sonomyography Assessment for Arm Muscles. IEEE Transactions on Biomedical
Engineering, 2008. 55(3): p. 1191-1198.

150. Guo, J.-Y., et al., Continuous monitoring of electromyography (EMG),
mechanomyography (MMG), sonomyography (SMG) and torque output during
ramp and step isometric contractions. Medical Engineering & Physics, 2010. 32(9):
p. 1032-1042.

151. Chen, X., et al. A novel approach for detection of muscle boundary in ultrasound
images. in 2011 4th International Conference on Biomedical Engineering and
Informatics (BMEI). 2011.

152. Chen, X., et al., Sonomyography (SMG) Control for Powered Prosthetic Hand: A
Study with Normal Subjects. Ultrasound in Medicine & Biology, 2010. 36(7): p.
1076-1088.

172

153. Qian, C., et al. A research of SMG controlled prosthetic hand with SSE2
acceleration. in 2008 9th International Conference on Signal Processing. 2008.

154. Youjia, H. and H. Liu. Performances of surface EMG and Ultrasound signals in
recognizing finger motion. in 2016 9th International Conference on Human System
Interactions (HSI). 2016.

155. Castellini, C. and D.S. Gonzalez. Ultrasound imaging as a human-machine interface
in a realistic scenario. in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems. 2013.

156. Hettiarachchi, N., Z. Ju, and H. Liu. A New Wearable Ultrasound Muscle Activity
Sensing System for Dexterous Prosthetic Control. in 2015 IEEE International
Conference on Systems, Man, and Cybernetics. 2015.

157. Li, Y., et al. Human-machine interface based on multi-channel single-element
ultrasound transducers: A preliminary study. in 2016 IEEE 18th International
Conference on e-Health Networking, Applications and Services (Healthcom). 2016.

158. Hutchinson, T.E., et al., Human-computer interaction using eye-gaze input. IEEE
Transactions on Systems, Man, and Cybernetics, 1989. 19(6): p. 1527-1534.

159. Duchowski, A.T., A breadth-first survey of eye-tracking applications. Behavior
Research Methods, Instruments, & Computers, 2002. 34(4): p. 455-470.

160. Kocejko, T. Gaze controlled prosthetic arm with EMG and EEG input interface. in
2017 21st European Microelectronics and Packaging Conference (EMPC) &
Exhibition. 2017.

161. Buckley, M., R. Vaidyanathan, and W. Mayol-Cuevas. Sensor suites for assistive
arm prosthetics. in 2011 24th International Symposium on Computer-Based
Medical Systems (CBMS). 2011.

162. Giordaniello, F., et al. Megane Pro: Myo-electricity, visual and gaze tracking data
acquisitions to improve hand prosthetics. in 2017 International Conference on
Rehabilitation Robotics (ICORR). 2017.

163. Cristanti, R.Y., et al. Eye gaze tracking to operate android-based communication
helper application. in 2017 International Electronics Symposium on Knowledge
Creation and Intelligent Computing (IES-KCIC). 2017.

164. Awais, M., N. Badruddin, and M. Drieberg. Automated eye blink detection and
tracking using template matching. in 2013 IEEE Student Conference on Research
and Developement. 2013.

165. Tunhua, W., et al. Real-time non-intrusive eye tracking for human-computer
interaction. in 2010 5th International Conference on Computer Science &
Education. 2010.

173

166. Cheng, J., et al., On the tip of my tongue: a non-invasive pressure-based tongue
interface, in Proceedings of the 5th Augmented Human International Conference.
2014, ACM: Kobe, Japan. p. 1-4.

167. Lund, M.E., et al. Inductive tongue control of powered wheelchairs. in 2010 Annual
International Conference of the IEEE Engineering in Medicine and Biology. 2010.

168. Mace, M., et al., Tongue in cheek: a novel concept in assistive human machine
interface. Journal of Assistive Technologies, 2009. 3(3): p. 14-26.

169. Mamun, K.A., et al. Multi-layer neural network classification of tongue movement
ear pressure signal for human machine interface. in 2010 13th International
Conference on Computer and Information Technology (ICCIT). 2010.

170. Vaidyanathan, R., et al. Human-machine interface for tele-robotic operation:
mapping of tongue movements based on aural flow monitoring. in 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566). 2004.

171. Owen, A.M., et al., Detecting Awareness in the Vegetative State. Science, 2006.
313(5792): p. 1402.

172. Hochberg, L.R., et al., Neuronal ensemble control of prosthetic devices by a human
with tetraplegia. Nature, 2006. 442(7099): p. 164.

173. Hochberg, L.R., et al., Reach and grasp by people with tetraplegia using a neurally
controlled robotic arm. Nature, 2012. 485(7398): p. 372.

174. Ángel-López, J.P. and N. Arzola de la Peña. Voice Controlled Prosthetic Hand with
Predefined Grasps and Movements. in VII Latin American Congress on Biomedical
Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th -28th,
2016. 2017. Singapore: Springer Singapore.

175. Oppus, C.M., et al. Brain-computer interface and voice-controlled 3D printed
prosthetic hand. in 2016 IEEE Region 10 Conference (TENCON). 2016.

176. Asyali, M., et al., Design and implementation of a voice-controlled prosthetic hand.
Vol. 19. 2011.

177. Huang, H., et al. The Development on a New Biomechatronic Prosthetic Hand
Based on Under-actuated Mechanism. in 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems. 2006.

178. Angeles, P., et al., Automated assessment of symptom severity changes during
deep brain stimulation (DBS) therapy for Parkinson's disease. IEEE Int Conf Rehabil
Robot, 2017. 2017: p. 1512-1517.

179. Zhou, H. and H. Hu, Human motion tracking for rehabilitation—A survey.
Biomedical Signal Processing and Control, 2008. 3(1): p. 1-18.

174

180. Abbasi-Kesbi, R., A. Nikfarjam, and H. Memarzadeh-Tehran, A Patient-Centric
Sensory System for In-Home Rehabilitation. IEEE Sensors Journal, 2017. 17(2): p.
524-533.

181. Heinz, E.A., et al. Using Wearable Sensors for Real-Time Recognition Tasks in
Games of Martial Arts - An Initial Experiment. in 2006 IEEE Symposium on
Computational Intelligence and Games. 2006.

182. LaValle, S.M., et al. Head tracking for the Oculus Rift. in 2014 IEEE International
Conference on Robotics and Automation (ICRA). 2014.

183. Wang, S., et al. Keyframe based large-scale indoor localisation using geomagnetic
field and motion pattern. in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2016.

184. Kallapur, A., I. Petersen, and S. Anavatti. A robust gyroless attitude estimation
scheme for a small fixed-wing unmanned aerial vehicle. in 2009 7th Asian Control
Conference. 2009.

185. Liu, T. and C. Fan. Visible-light wearable eye gaze tracking by gradients-based eye
center location and head movement compensation with IMU. in 2018 IEEE
International Conference on Consumer Electronics (ICCE). 2018.

186. Meyer-Hilberg, J. and T. Jacob, High accuracy navigation and landing system using
GPS/IMU system integration. IEEE Aerospace and Electronic Systems Magazine,
1994. 9(7): p. 11-17.

187. Wendel, J., et al., An integrated GPS/MEMS-IMU navigation system for an
autonomous helicopter. Aerospace Science and Technology, 2006. 10(6): p. 527-
533.

188. Liu, Y., et al., An innovative information fusion method with adaptive Kalman filter
for integrated INS/GPS navigation of autonomous vehicles. Mechanical Systems
and Signal Processing, 2018. 100: p. 605-616.

189. Fauser, T., S. Bruder, and A. El-Osery. A comparison of inertial-based navigation
algorithms for a low-cost indoor mobile robot. in 2017 12th International
Conference on Computer Science and Education (ICCSE). 2017.

190. Odry, Á., et al., Kalman filter for mobile-robot attitude estimation: Novel optimized
and adaptive solutions. Mechanical Systems and Signal Processing, 2018. 110: p.
569-589.

191. Barshan, B. and H.F. Durrant-Whyte, Inertial navigation systems for mobile robots.
IEEE Transactions on Robotics and Automation, 1995. 11(3): p. 328-342.

192. Bortz, J., A New Mathematical Formulation for Strapdown Inertial Navigation. IEEE
Transactions on Aerospace and Electronic Systems, 1971. AES-7(1): p. 61-66.

175

193. Yean, S., et al., Smartphone Orientation Estimation Algorithm Combining Kalman
Filter With Gradient Descent. IEEE J Biomed Health Inform, 2018. 22(5): p. 1421-
1433.

194. Yoo, T.S., et al., Gain-scheduled complementary filter design for a MEMS based
attitude and heading reference system. Sensors (Basel), 2011. 11(4): p. 3816-30.

195. Kalman, R.E., A New Approach to Linear Filtering and Prediction Problems. Journal
of Basic Engineering, 1960. 82(1): p. 35-45.

196. Sabatini, A.M., Quaternion-based extended Kalman filter for determining
orientation by inertial and magnetic sensing. IEEE Trans Biomed Eng, 2006. 53(7):
p. 1346-56.

197. Marins, J.L., et al. An extended Kalman filter for quaternion-based orientation
estimation using MARG sensors. in Proceedings 2001 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Expanding the Societal Role of
Robotics in the the Next Millennium (Cat. No.01CH37180). 2001.

198. Product Manual for use with InertiaCube4 Serial and USB Interfaces. 2012,
InterSense: Billerica, MA.

199. VN-100 User Manual. 2017, VectorNav Technologies: Dallas, TX, USA.
200. MTi User Manual. 2018, Xsens Technologies B.V. : Pantheon 6a, The Netherlands.
201. 3DM®-GX5-35 Attitude and Heading Reference System (AHRS) with GNSS. 2017,

MicroStrain® Sensing Systems: Williston, VT 05495, United States of America.
202. User Manual TRAX. 2014, PNI Sensor Corporation: Santa Rosa, CA, USA.
203. Madgwick, S.O.H., A.J.L. Harrison, and R. Vaidyanathan. Estimation of IMU and

MARG orientation using a gradient descent algorithm. in Rehabilitation Robotics
(ICORR), 2011 IEEE International Conference on. 2011.

204. Mahony, R., T. Hamel, and J. Pflimlin. Complementary filter design on the special
orthogonal group SO(3). in Proceedings of the 44th IEEE Conference on Decision
and Control. 2005.

205. Valenti, R.G., I. Dryanovski, and J. Xiao, Keeping a Good Attitude: A Quaternion-
Based Orientation Filter for IMUs and MARGs. Sensors (Basel), 2015. 15(8): p.
19302-30.

206. Cavallo, A., et al., Experimental Comparison of Sensor Fusion Algorithms for
Attitude Estimation. IFAC Proceedings Volumes, 2014. 47(3): p. 7585-7591.

207. Mourcou, Q., et al., Performance Evaluation of Smartphone Inertial Sensors
Measurement for Range of Motion. Sensors (Basel), 2015. 15(9): p. 23168-87.

208. Admiraal, M., S. Wilson, and R. Vaidyanathan. Improved formulation of the IMU
and MARG orientation gradient descent algorithm for motion tracking in human-

176

machine interfaces. in Multisensor Fusion and Integration for Intelligent Systems
(MFI), 2017 IEEE International Conference on. 2017. IEEE.

209. Yi, C., et al., Estimating Three-Dimensional Body Orientation Based on an Improved
Complementary Filter for Human Motion Tracking. Sensors (Basel), 2018. 18(11):
p. 3765.

210. Fan, B., Q. Li, and T. Liu, How magnetic disturbance influences the attitude and
heading in magnetic and inertial sensor-based orientation estimation. Sensors,
2018. 18(1): p. 76.

211. Lorusso, A., D.W. Eggert, and R.B. Fisher, A comparison of four algorithms for
estimating 3-D rigid transformations. 1995: University of Edinburgh, Department
of Artificial Intelligence.

212. Hamilton, W.R., Ii. on quaternions; or on a new system of imaginaries in algebra.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
1844. 25(163): p. 10-13.

213. Diebel, J., Representing attitude: Euler angles, unit quaternions, and rotation
vectors. Matrix, 2006. 58(15-16): p. 1-35.

214. Shepperd, S.W., Quaternion from rotation matrix.[four-parameter representation
of coordinate transformation matrix]. 1978.

177

178

Appendix I
Description of Machine Learning Algorithms used

179

K-Nearest Neighbours (KNN)

KNNs are the simplest of the algorithms described here. In practical terms, they are also functionally the

most similar to the template-based algorithm described in the previous section. KNNs work by assuming

that each array of features that describe a signal can be represented by a single point in N-dimensional

Euclidean space, where N is defined by the number of features being considered. The classifier can be

trained by defining each member of the training set 𝑡 as a point in N-D space, leading to 𝑀 points for a

training set of length 𝑀. Each point within that set can be addressed as 𝑡𝑚 where 𝑚 = 1,2, … , 𝑀. To

classify a new data point (𝑠), straight lines can be constructed between 𝑠 and each instance of 𝑡𝑚, where

the magnitude of the line is the Euclidean Distance (𝑑) between the two points, given by:

𝑑𝑚(𝑠̅, 𝑡̅) = √∑(𝑠𝑖 − 𝑡𝑚𝑖)
2

𝑁

𝑖=1

 (68)

The prediction of a KNN identifies the 𝐾 values of 𝑑𝑚 with the lowest magnitude, and the classification is

performed by finding the modal class of the corresponding 𝑡𝑚 values.

Since each member of the training class is preserved, this is less memory efficient than using the template-

based method described above, however it has the potential to be more accurate since data is not lost

through generalizing the templates.

The KNN used in this evaluation used the value 𝑘 = 10, and each of the neighbours were weighted

equally.

Decision Trees

Decision trees perform classification by performing queries on the data, where each subsequent query is

dependent on the answer to the previous one. Each query can be thought of as a node, the algorithm

contains a single-entry point, known as a root node. The result from a query will cause the algorithm to

move down one of several possible branches to the next node, finally reaching a leaf node, which contains

the classifier prediction. Each node in the tree (other than the leaf nodes) separate data by checking to

see if a condition is met. As a result, each node leads to two branches.

The size of a decision tree is important when implementing for real time use. Larger trees will be more

suited to classifying large, complex data sets, but they will also be more computationally expensive. The

size can be controlled by limiting the growth of the tree, either by limiting the number of layers (nodes

equidistant to the root node), or the number of branches within a layer. In this implementation, the

number of branches within a layer was limited to 20.

The layout of the decision tree used in this implementation was constructed according to the Gini diversity

index, where every possible split for the data is assessed to find the one that gives the best split for the

data. This is performed at every branch node to construct the tree.

180

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a two-stage method for classifying categorical data. The first stage is

a process of dimensionality reduction, which is implemented to maintain class separation while reducing

the number of dimensions in which the classes are expressed. This is achieved by projecting the data into

a lower dimensional feature space that maximizes the distance between the mean values of the classes,

while simultaneously minimizing the variance of the data within each class. As a result, this method of

dimensionality reduction makes three assumptions regarding the input data:

1. The input data represents a Gaussian distribution.

2. The variance is the same for each attribute.

3. Each class has a unique mean value

In practice, this means that data should be prepared to ensure that it conforms to these assumptions. This

includes removing outliers that could potentially affect these statistical characteristics.

The second stage of the LDA implementation is the classification. This is often performed by estimating

the probability that the new data belongs in each class, with the most probably outcome being the

systems prediction. The implementation used here is based on Bayes’ Theorem. For a classification

problem of 𝐾 classes, the prior probability of an observation 𝑋 belongs to 𝑘 class is given as 𝑃(𝑘). Bayes’

Theorem uses this, along with the density function describing the distribution of data within each 𝑘 class

(denoted as 𝑓𝑘(𝑥)), to estimate the posterior probability 𝑃𝑘(𝑋) that the observation is a member of class

𝑘, according to:

𝑃𝑘(𝑋) =

𝑃(𝑘)𝑓𝑘(𝑥)

∑ 𝑃(𝑗)𝑓𝑗(𝑥)𝐾
𝑗=1

 (69)

LDA creates linear discriminant boundaries between the classes, hence the second assumption. To cope

with data sets where this is not the case, LDA was extended by allowing quadratic decision boundaries.

This extension is known as Quadratic Discriminant Analysis QDA, and it allows for the quadratic

boundaries that are created when the variance is not consistent between classes. Due to the increased

amount of data required for QDA, only LDA was tested.

Support Vector Machines

Support Vector Machines (SVM) work by creating hyperplanes to separate different classes of data. A

hyperplane is defined as being a geometric object with a dimensionality that is one less than the

dimensionality of the data space. By this definition, a hyperplane can be used to separate an N-

dimensional space into two N-dimensional subspaces. SVMs are a generalization of an optimally

separating hyperplane that can be used to separate two groups within the dataset. In practice, the SVM

allows for some limited misclassification on the training data to construct a plane that can be described

linearly (quadratic and cubic hyperplanes can also be used for complex problems). SVM are typically used

to solve two class problems, and the hyperplane is constructed to leave the greatest margin between the

181

two classes. The data points closest to the hyperplane are referred to as support vectors, and the margin

is calculated by evaluating the sum of the distance between these support vectors and the hyperplane.

Since SVMs are binary classifiers, a single SVM is not suited to a multiclass problem, such as that presented

here. There are two commonly used methods for using multiple SVMs to perform classification, one vs all

and one vs one. In the one vs all approach, one SVM is trained for each class in the problem (K classes will

require K classifiers). This SVM will identify whether the data belongs in its class, giving a confidence score.

The class with the highest confidence score is taken as the system’s prediction for the class. The one vs

one approach creates a classifier for each possible pair of classes, which is trained to distinguish between

two of the possible classes. For K classes this requires
𝐾(𝐾 − 1)

2
⁄ classifiers. The prediction for the

system is the class that got the highest number of positive classifications. In this implementation, a one

vs one approach was used.

SVMs have several benefits when compared to LDA, but the most significant is that it does not make any

assumptions regarding the incoming data. SVMs are not susceptible to outliers, since they only make use

of the points defined as support vectors. As a result, they do not require signal conditioning, which could

be challenging in real time implementations.

182

Appendix II
Description of Features used when processing MMG data

183

Root Mean Square

For a dataset 𝑑 of length (𝑁), the Root Mean Square (𝑅𝑀𝑆) is given by:

𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑑𝑛 2

𝑁

𝑛=1

 (70)

Integral of Absolute Value

The Integral of Absolute Value (𝐼𝐴𝑉) is given by:

𝐼𝐴𝑉 =

1

𝑁
∑ 𝑑𝑛

𝑁

𝑛=1

 (71)

Mean Absolute Value

The Mean Absolute Value (𝑀𝐴𝑉) is given by:

𝑀𝐴𝑉 =

1

𝑁
∑|𝑑𝑛|

𝑁

𝑛=1

 (72)

Modified Mean Absolute Value 1

The Modified Mean Absolute Value 1 (𝑀𝐴𝑉1) is a weighted version of the 𝑀𝐴𝑉. 𝑀𝐴𝑉1 attempts to

increase the robustness of the signal by reducing the weighting at the beginning and the end of the signal.

𝑀𝐴𝑉1 is implemented as follows:

𝑀𝐴𝑉1 =

1

𝑁
∑ 𝑤𝑛|𝑑𝑛|

𝑁

𝑛=1

𝑤𝑛 = {
1,

0.5,
𝑖𝑓 0.25𝑁 ≤ 𝑛 ≤ 0.75𝑁

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(73)

Modified Mean Absolute Value 2

The Modified Mean Absolute Value 2 (𝑀𝐴𝑉2) is an extension that smooths the weighting function. It is

implemented as follows:

184

𝑀𝐴𝑉2 =

1

𝑁
∑ 𝑤𝑛|𝑑𝑛|

𝑁

𝑛=1

𝑤𝑛 = {

1,
4𝑛/𝑁

4(𝑁 − 𝑛)/𝑁

𝑖𝑓 0.25𝑁 ≤ 𝑛 ≤ 0.75𝑁
𝑖𝑓 0.25𝑁 > 𝑛
𝑖𝑓 0.75𝑁 < 𝑛

(74)

Simple Square Integral

The Simple Square Integral (𝑆𝑆𝐼) is given by:

𝑆𝑆𝐼 = ∑|𝑑𝑛|2

𝑁

𝑛=1

 (75)

Variance

The Variance (𝑉𝐴𝑅) of the signal is the mean of the square of the difference from the MAV. In most EMG

systems, mean of the signals are approximately zero, and so the definition is normally abbreviated. The

MMG signal are low pass filtered, however the classification is being performed on a section of a low

frequency gesture. As a result, the average cannot be assumed to be zero, so the term is defined as:

𝑉𝐴𝑅 =

1

𝑁 − 1
∑(|𝑑𝑛| − 𝐼𝐴𝑉)2

𝑁

𝑛=1

 (76)

Absolute Value of the 3rd, 4th and 5th Temporal Moment

The Absolute Value of the 3rd, 4th and 5th Temporal Moment (𝑇𝑀3, 𝑇𝑀4 and 𝑇𝑀5) have been used in the

statistical analysis of EMG signals. The terms are defined as:

𝑇𝑀3 = |

1

𝑁
∑ 𝑑𝑛 3

𝑁

𝑛=1

|

𝑇𝑀4 = |
1

𝑁
∑ 𝑑𝑛 4

𝑁

𝑛=1

|

(77)

185

𝑇𝑀5 = |
1

𝑁
∑ 𝑑𝑛 5

𝑁

𝑛=1

|

Difference Absolute Mean Value

The Difference Absolute Mean Value (𝐷𝐴𝑀𝑉) is given by:

𝐷𝐴𝑀𝑉 =

1

𝑁 − 1
∑|𝑑𝑛+1 − 𝑑𝑛|

𝑁−1

𝑛=1

 (78)

Difference Absolute Standard Deviation Value

The Difference Absolute Standard Deviation Value (𝐷𝐴𝑆𝐷𝑉) is given by:

𝐷𝐴𝑆𝐷𝑉 = √
1

𝑁 − 1
∑|𝑑𝑛+1 − 𝑑𝑛|2

𝑁−1

𝑛=1

 (79)

186

Appendix III
Description of Kuka kinematics used in VR visualisation

187

The axes of rotation of the simulated robot are shown in Table 31.

Using this, the kinematics have been defined using the Denavit Hartenberg method, allowing the

relationships between joints to be summarized, as in Table 31.

The definition for these parameters is:

𝑎𝑖 = 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑍̂𝑖 𝑡𝑜 𝑍̂𝑖+1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑙𝑜𝑛𝑔 𝑋̂𝑖

𝛼𝑖 = 𝑡ℎ𝑒 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑍̂𝑖 𝑡𝑜 𝑍̂𝑖+1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑏𝑜𝑢𝑡 𝑋̂𝑖

𝑑𝑖 = 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑋̂𝑖−1 𝑡𝑜 𝑋̂𝑖 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑙𝑜𝑛𝑔 𝑍̂𝑖

𝜃𝑖 = 𝑡ℎ𝑒 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑋̂𝑖−1 𝑡𝑜 𝑋̂𝑖 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑏𝑜𝑢𝑡 𝑍̂𝑖

The rotation matrix around each joint is given by:

𝑇𝑖
𝑖−1 = (

cos 𝜃𝑖 − sin 𝜃𝑖

sin 𝜃𝑖 cos 𝛼𝑖−1 cos 𝜃𝑖 cos 𝛼𝑖−1

0 𝑎𝑖−1

−sin 𝛼𝑖−1 − sin 𝛼𝑖−1 𝑑𝑖

sin 𝜃𝑖 sin 𝛼𝑖−1 cos 𝜃𝑖 sin 𝛼𝑖−1

0 0
cos 𝛼𝑖−1 cos 𝛼𝑖−1 𝑑𝑖

0 1

)

(80)

The orientation and position of the end effector in the base frame is given by:

 𝑇7
0 = 𝑇1

0𝑇2
1𝑇3

2𝑇4
3𝑇5

4𝑇6
5𝑇7

6 (81)

The angles required to move the end effector to a given position and orientation can be calculated through

the inverse kinematics of the Kuka simulation, however that was not required for the experiments defined

here. Instead, a number of specifications were defined based on the intended use during the experiment.

Table 31 – Summary of Denavit Hartenberg parameters of virtual Kuka robot

𝒊 𝒂𝒊−𝟏 𝜶𝒊−𝟏 𝒅𝒊 𝜽𝒊

𝟏 0 0˚ 𝑑1 𝜃1
𝟐 0 −90˚ 𝑑2 𝜃2
𝟑 0 90˚ 𝑑3 𝜃3
𝟒 0 −90˚ 𝑑4 𝜃4
𝟓 0 90˚ 𝑑5 𝜃5
𝟔 0 −90˚ 𝑑6 𝜃6
𝟕 0 90˚ 𝑑7 𝜃7

188

Figure 36 – Axis of rotations of virtual Kuka robot

189

Those specifications were as follows:

Specification_1 - The end effector was only required to be in one orientation, which is parallel to the Z

axis.

Specification_2 - There are no obstacles in the way of the arm, thus an elbow up solution is appropriate

in all situations.

Specification_3 - 𝑙2 = 𝑙4 𝑎𝑛𝑑 𝑙3 = 𝑙5

Specification_4 - 𝜃3 = 𝜋

To simplify descriptions, the end point of each joint (𝑖) will be defined according as 𝑃𝑖𝑥𝑦𝑧
. The target

position can be defined at 𝑡𝑎𝑟𝑥𝑦𝑧.

These specifications allowed the derivations of joint angles to be expressed as a minimization problem by

defining the error (𝑒𝑟𝑟) as the deference between 𝑡𝑎𝑟𝑥𝑦𝑧 and 𝑃7𝑥𝑦𝑧
, therefore the minimum value of 𝑒𝑟𝑟

is given by:

 𝑚𝑖𝑛 (𝑡𝑎𝑟𝑥𝑦𝑧 − 𝑃7𝑥𝑦𝑧
) (82)

𝑃7𝑥𝑦𝑧
 can be calculated by taking the position vector from 𝑇7

0, which is dependent on 𝜃123456.

Based on Specification_1, the point between 𝑃6𝑥𝑦𝑧
 can be expressed by:

 𝑃6𝑥𝑦𝑧
= [𝑃7𝑥

, 𝑃7𝑦
, 𝑃7𝑧

− 𝑙7] (83)

The global orientation of joint 6 (𝜃𝐽6) is dependent on the previous five joints, and is not current known,

As a result, the position 𝑃5𝑥𝑦𝑧
 cannot be determined at this point, however since 𝛼6 =

𝜋

2
, the position of

𝑃5𝑥𝑦𝑧
 can be expressed in terms of 𝜃𝐽6, as follows:

 𝑃5𝑥𝑦𝑧
= [𝑃7𝑥

− 𝑙6 ∗ sin(𝜃𝐽6) , 𝑃7𝑦
− 𝑙6 ∗ cos(𝜃𝐽6) , 𝑃7𝑧

− 𝑙7] (84)

If the position 𝑃5𝑥𝑦𝑧
were known, then 𝜃1, 𝜃2 and 𝜃4 can be calculated. Based on Specification_4, 𝑙2 and

𝑙4 are parallel and in opposite directions, and therefore cancel each other out.

 𝜃1 = 𝑎𝑡𝑎𝑛2(𝑃5𝑧
, 𝑃5𝑧

) (85)

𝑃0𝑥𝑦𝑧
 is located at the origin. Based on the configuration of the robot, 𝑃1𝑥𝑦𝑧

 is always located at [0, 𝑙1, 0].

A line (𝑙𝑐) between 𝑃1𝑥𝑦𝑧
 and 𝑃5𝑥𝑦𝑧

 is defined as:

 𝑙𝑐 = |𝑃1𝑥𝑦𝑧
− 𝑃5𝑥𝑦𝑧

| (86)

A second line (𝑙𝑑) between 𝑃0𝑥𝑦𝑧
 and 𝑃5𝑥𝑦𝑧

 is defined as:

190

 𝑙𝑑 = |𝑃0𝑥𝑦𝑧
− 𝑃5𝑥𝑦𝑧

| (87)

These lines can be seen in Figure 37.

Based on this model, 𝜃2 and 𝜃4 can be calculated according to:

 𝜃2 = 𝜋 − 𝜃𝐵 − 𝜃𝐸 (88)

 𝜃4 = 𝜋 − 𝜃𝐴 (89)

Where, using the cosine rule:

𝜃𝐴 = cos−1 (

𝑙5
2 + 𝑙3

2 − 𝑙𝐶
2

2 ∗ 𝑙5 ∗ 𝑙3
) (90)

𝜃𝐵 = cos−1 (

𝑙3
2 + 𝑙𝐶

2 − 𝑙5
2

2 ∗ 𝑙3 ∗ 𝑙𝐶
) (91)

𝜃𝐸 = cos−1 (

𝑙1
2 + 𝑙𝐶

2 − 𝑙𝐷
2

2 ∗ 𝑙1 ∗ 𝑙𝐶
) (92)

The rotation of 𝜃5 must be set so that joint 6 lies on a plane parallel to the XY plane. As a result, if 𝑙1 =

𝑙2 = 𝑙3 = 𝑙4 = 𝑙5 = 0, then this plane will be defined by Z = 0.

Solving the forward kinematics for 𝑇5
0 with 𝜃5 as an unknown, and equating the Z component to 0 yields:

 𝑎 sin 𝜃5 + 𝑏 cos 𝜃5 = 0 (93)

Where 𝑎 = − cos(𝜃1) cos(𝜃4) sin(𝜃3) + sin(𝜃1) sin(𝜃2) sin(𝜃4)

− cos(𝜃2) cos(𝜃3) cos(𝜃4) sin(𝜃1)
(94)

And 𝑏 = cos(𝜃1) cos(𝜃3) − cos(𝜃2) 𝑠𝑖𝑛(𝜃1) sin(𝜃3) (95)

Rearranging for 𝜃5 gives:

𝜃5 = 2 tan−1 (

𝑎 − √𝑎2 + 𝑏2

𝑏
+ 𝜋𝑛) (96)

The final variable 𝜃6 can be calculated by evaluating 𝑇6
0. In this case, the Y axis can be set to 0, and the 𝑙6

can be set to 0. Solving as before:

 𝑎 sin 𝜃6 + 𝑏 cos 𝜃6 = 0 (97)

191

Where 𝑎 and 𝑏 are functions of 𝜃12345.

The error can then be calculated by solving 𝑇7
0 to find 𝑃7𝑥𝑦𝑧

, however this method requires an

estimation for 𝑃5𝑥𝑦𝑧
. The implementation of this minimization requires an iterative process, if 𝑃5𝑥𝑦𝑧

 is

set to 𝑡𝑎𝑟𝑥𝑦𝑧, 𝑒𝑟𝑟1 can be found. The second estimation for 𝑃5𝑥𝑦𝑧
 of 𝑡𝑎𝑟𝑥𝑦𝑧 + 𝑒𝑟𝑟1 allows a new error

value (𝑒𝑟𝑟2) to be generated, and a third estimation of 𝑡𝑎𝑟𝑥𝑦𝑧 + 𝑒𝑟𝑟1 + 𝑒𝑟𝑟2 can be made. The error

values will tend to 0, and therefore the system will tend towards the correct position. A threshold for

accuracy can be used to decrease the required iterations.

Figure 37 – Virtual kinematic model for solving elbow up inverse kinematics

