1,729 research outputs found

    Anthropomorphically Inspired Design of a Tendon-Driven Robotic Prosthesis for Hand Impairments

    Get PDF
    This thesis presents the design of a robotic prosthesis, which mimics the morphology of a human hand. The primary goal of this work is to develop a systematic methodology that allows a custom-build of the prosthesis to match the specific requirements of a person with hand impairments. Two principal research questions are addressed toward this goal: 1) How do we cater to the large variation in the distribution of overall hand-sizes in the human population? 2) How closely do we mimic the complex morphological aspects of a biological hand in order to maximize the anthropomorphism (human-like appearance) of the robotic hand, while still maintaining a customizable and manageable design? This design approach attempts to replicate the crucial morphological aspects in the artificial hand (the kinematic structure of the hand skeleton, the shape and aspect ratios of various bone-segments, and ranges of motion). The hand design is partitioned into two parts: 1) A stiff skeleton structure, comprising parametrically synthesized segments that are simplified counterparts of nineteen bone-segments—five metacarpals, five proximal phalanges, four middle phalanges, and five distal phalanges—of the natural hand-skeleton and simplified mechanical substitutes of the remaining eight carpal bones. 2) A soft skin-like structure that encompasses the artificial skeleton to match the cosmetics and compliant features of the natural hand. A parameterized CAD model representation of each synthesized segment is developed by using the feature of design-tables in SolidWorks, which allows easy customization with respect to each person. Average hand measurements available in the literature are used to guide the dimensioning of parameters of each synthesized segment. Tendon-driven actuation of the fingers allows the servo actuators to be mounted remotely, thereby enabling a sleek finger design. A prototype of the robotic hand is constructed by 3D-printing all the parts using an Object 30 Prime 3D printer. Results reported from physical validation experiments of the robotic hand demonstrate the feasibility of the proposed design approach

    Dexterous manipulation of unknown objects using virtual contact points

    Get PDF
    The manipulation of unknown objects is a problem of special interest in robotics since it is not always possible to have exact models of the objects with which the robot interacts. This paper presents a simple strategy to manipulate unknown objects using a robotic hand equipped with tactile sensors. The hand configurations that allow the rotation of an unknown object are computed using only tactile and kinematic information, obtained during the manipulation process and reasoning about the desired and real positions of the fingertips during the manipulation. This is done taking into account that the desired positions of the fingertips are not physically reachable since they are located in the interior of the manipulated object and therefore they are virtual positions with associated virtual contact points. The proposed approach was satisfactorily validated using three fingers of an anthropomorphic robotic hand (Allegro Hand), with the original fingertips replaced by tactile sensors (WTS-FT). In the experimental validation, several everyday objects with different shapes were successfully manipulated, rotating them without the need of knowing their shape or any other physical property.Peer ReviewedPostprint (author's final draft

    A novel type of compliant and underactuated robotic hand for dexterous grasping

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugÀnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The usefulness and versatility of a robotic end-effector depends on the diversity of grasps it can accomplish and also on the complexity of the control methods required to achieve them. We believe that soft hands are able to provide diverse and robust grasping with low control complexity. They possess many mechanical degrees of freedom and are able to implement complex deformations. At the same time, due to the inherent compliance of soft materials, only very few of these mechanical degrees have to be controlled explicitly. Soft hands therefore may combine the best of both worlds. In this paper, we present RBO Hand 2, a highly compliant, underactuated, robust, and dexterous anthropomorphic hand. The hand is inexpensive to manufacture and the morphology can easily be adapted to specific applications. To enable efficient hand design, we derive and evaluate computational models for the mechanical properties of the hand's basic building blocks, called PneuFlex actuators. The versatility of RBO Hand 2 is evaluated by implementing the comprehensive Feix taxonomy of human grasps. The manipulator's capabilities and limits are demonstrated using the Kapandji test and grasping experiments with a variety of objects of varying weight. Furthermore, we demonstrate that the effective dimensionality of grasp postures exceeds the dimensionality of the actuation signals, illustrating that complex grasping behavior can be achieved with relatively simple control

    Grasp plannind under task-specific contact constraints

    Get PDF
    Several aspects have to be addressed before realizing the dream of a robotic hand-arm system with human-like capabilities, ranging from the consolidation of a proper mechatronic design, to the development of precise, lightweight sensors and actuators, to the efficient planning and control of the articular forces and motions required for interaction with the environment. This thesis provides solution algorithms for a main problem within the latter aspect, known as the {\em grasp planning} problem: Given a robotic system formed by a multifinger hand attached to an arm, and an object to be grasped, both with a known geometry and location in 3-space, determine how the hand-arm system should be moved without colliding with itself or with the environment, in order to firmly grasp the object in a suitable way. Central to our algorithms is the explicit consideration of a given set of hand-object contact constraints to be satisfied in the final grasp configuration, imposed by the particular manipulation task to be performed with the object. This is a distinguishing feature from other grasp planning algorithms given in the literature, where a means of ensuring precise hand-object contact locations in the resulting grasp is usually not provided. These conventional algorithms are fast, and nicely suited for planning grasps for pick-an-place operations with the object, but not for planning grasps required for a specific manipulation of the object, like those necessary for holding a pen, a pair of scissors, or a jeweler's screwdriver, for instance, when writing, cutting a paper, or turning a screw, respectively. To be able to generate such highly-selective grasps, we assume that a number of surface regions on the hand are to be placed in contact with a number of corresponding regions on the object, and enforce the fulfilment of such constraints on the obtained solutions from the very beginning, in addition to the usual constraints of grasp restrainability, manipulability and collision avoidance. The proposed algorithms can be applied to robotic hands of arbitrary structure, possibly considering compliance in the joints and the contacts if desired, and they can accommodate general patch-patch contact constraints, instead of more restrictive contact types occasionally considered in the literature. It is worth noting, also, that while common force-closure or manipulability indices are used to asses the quality of grasps, no particular assumption is made on the mathematical properties of the quality index to be used, so that any quality criterion can be accommodated in principle. The algorithms have been tested and validated on numerous situations involving real mechanical hands and typical objects, and find applications in classical or emerging contexts like service robotics, telemedicine, space exploration, prosthetics, manipulation in hazardous environments, or human-robot interaction in general

    Synergy-Based Human Grasp Representations and Semi-Autonomous Control of Prosthetic Hands

    Get PDF
    Das sichere und stabile Greifen mit humanoiden RoboterhĂ€nden stellt eine große Herausforderung dar. Diese Dissertation befasst sich daher mit der Ableitung von Greifstrategien fĂŒr RoboterhĂ€nde aus der Beobachtung menschlichen Greifens. Dabei liegt der Fokus auf der Betrachtung des gesamten Greifvorgangs. Dieser umfasst zum einen die Hand- und Fingertrajektorien wĂ€hrend des Greifprozesses und zum anderen die Kontaktpunkte sowie den Kraftverlauf zwischen Hand und Objekt vom ersten Kontakt bis zum statisch stabilen Griff. Es werden nichtlineare posturale Synergien und Kraftsynergien menschlicher Griffe vorgestellt, die die Generierung menschenĂ€hnlicher Griffposen und GriffkrĂ€fte erlauben. Weiterhin werden Synergieprimitive als adaptierbare ReprĂ€sentation menschlicher Greifbewegungen entwickelt. Die beschriebenen, vom Menschen gelernten Greifstrategien werden fĂŒr die Steuerung robotischer ProthesenhĂ€nde angewendet. Im Rahmen einer semi-autonomen Steuerung werden menschenĂ€hnliche Greifbewegungen situationsgerecht vorgeschlagen und vom Nutzenden der Prothese ĂŒberwacht

    Bio-Inspired Motion Strategies for a Bimanual Manipulation Task

    Get PDF
    Steffen JF, Elbrechter C, Haschke R, Ritter H. Bio-Inspired Motion Strategies for a Bimanual Manipulation Task. In: International Conference on Humanoid Robots (Humanoids). 2010

    Human Hand Motion Analysis and Synthesis of Optimal Power Grasps for a Robotic Hand

    Get PDF
    Biologically inspired robotic systems can find important applications in biomedical robotics, since studying and replicating human behaviour can provide new insights into motor recovery, functional substitution and human-robot interaction. The analysis of human hand motion is essential for collecting information about human hand movements useful for generalizing reaching and grasping actions on a robotic system. This paper focuses on the definition and extraction of quantitative indicators for describing optimal hand grasping postures and replicating them on an anthropomorphic robotic hand. A motion analysis has been carried out on six healthy human subjects performing a transverse volar grasp. The extracted indicators point to invariant grasping behaviours between the involved subjects, thus providing some constraints for identifying the optimal grasping configuration. Hence, an optimization algorithm based on the Nelder-Mead simplex method has been developed for determining the optimal grasp configuration of a robotic hand, grounded on the aforementioned constraints. It is characterized by a reduced computational cost. The grasp stability has been tested by introducing a quality index that satisfies the form-closure property. The grasping strategy has been validated by means of simulation tests and experimental trials on an arm-hand robotic system. The obtained results have shown the effectiveness of the extracted indicators to reduce the non-linear optimization problem complexity and lead to the synthesis of a grasping posture able to replicate the human behaviour while ensuring grasp stability. The experimental results have also highlighted the limitations of the adopted robotic platform (mainly due to the mechanical structure) to achieve the optimal grasp configuration

    Synergy-based policy improvement with path integrals for anthropomorphic hands

    Get PDF
    In this work, a synergy-based reinforcement learning algorithm has been developed to confer autonomous grasping capabilities to anthropomorphic hands. In the presence of high degrees of freedom, classical machine learning techniques require a number of iterations that increases with the size of the problem, thus convergence of the solution is not ensured. The use of postural synergies determines dimensionality reduction of the search space and allows recent learning techniques, such as Policy Improvement with Path Integrals, to become easily applicable. A key point is the adoption of a suitable reward function representing the goal of the task and ensuring onestep performance evaluation. Force-closure quality of the grasp in the synergies subspace has been chosen as a cost function for performance evaluation. The experiments conducted on the SCHUNK 5-Finger Hand demonstrate the effectiveness of the algorithm showing skills comparable to human capabilities in learning new grasps and in performing a wide variety from power to high precision grasps of very small objects

    Human to robot hand motion mapping methods: review and classification

    Get PDF
    In this article, the variety of approaches proposed in literature to address the problem of mapping human to robot hand motions are summarized and discussed. We particularly attempt to organize under macro-categories the great quantity of presented methods, that are often difficult to be seen from a general point of view due to different fields of application, specific use of algorithms, terminology and declared goals of the mappings. Firstly, a brief historical overview is reported, in order to provide a look on the emergence of the human to robot hand mapping problem as a both conceptual and analytical challenge that is still open nowadays. Thereafter, the survey mainly focuses on a classification of modern mapping methods under six categories: direct joint, direct Cartesian, taskoriented, dimensionality reduction based, pose recognition based and hybrid mappings. For each of these categories, the general view that associates the related reported studies is provided, and representative references are highlighted. Finally, a concluding discussion along with the authors’ point of view regarding future desirable trends are reported.This work was supported in part by the European Commission’s Horizon 2020 Framework Programme with the project REMODEL under Grant 870133 and in part by the Spanish Government under Grant PID2020-114819GB-I00.Peer ReviewedPostprint (published version
    • 

    corecore