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Deutsche Zusammenfassung

Das sichere und stabile Greifen mit humanoiden Roboterhänden stellt eine große
Herausforderung dar. Menschen dagegen können Objekte schnell, zuverlässig
und intuitiv greifen. Sie bestimmen geeignete Fingerstellungen, um das Objekt
zu Umschließen und die geplante Verwendung des Objektes zu ermöglichen.
Zudem erzeugen Menschen mit ihren Händen Kräfte, die das sichere Greifen
und Halten von Objekten garantieren ohne diese zu beschädigen. Aus diesem
menschlichen Erfahrungswissen kann die Robotik lernen und Greifstrategien
für humanoide Roboterhände ableiten. Neben der Pose und Kraft eines Griffs
ist die Annäherungsbewegung an das Objekts entscheidend für den Erfolg der
Griffausführung.

In der Literatur konnten bei einem Griff Korrelationen sowohl zwischen den
Gelenkwinkeln der Finger einer Hand als auch zwischen den Aktivierungen
der am Griff beteiligten Muskeln nachgewiesen werden. Die sogenannten Griff-
synergien legen nahe, dass die Steuerung komplexer menschlicher Griffe ge-
genüber dem Handkonfigurationsraum eine erheblich niedrigere Dimensiona-
lität aufweist. Die Betrachtung des niedrigdimensionalen Raums der Griffsyn-
ergien ermöglicht damit eine Analyse der Charakteristika erfolgreicher mensch-
licher Greifstrategien und deren Übertragung auf die Steuerung humanoider
Hände in der Robotik.

Ziel dieser Arbeit ist es, Greifstrategien für Roboterhände aus der Beobachtung
menschlicher Greifbewegungen abzuleiten. Dabei liegt der Fokus auf der Be-
trachtung des gesamten Greifvorgangs. Dieser umfasst zum einen die Hand-
und Fingertrajektorien während des Greifprozesses und zum anderen die Kon-
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taktpunkte sowie den Kraftverlauf zwischen Hand und Objekt vom ersten Kon-
takt bis zum statisch stabilen Griff. Diese vom Menschen gelernten Greifstrate-
gien sollen für die Steuerung robotischer Prothesenhände angewandt werden.
Im Folgenden werden die drei Einzelbeiträge dieser Arbeit vorgestellt:

Posturale und kinematische Griffsynergien Als Grundlage dieser Arbeit
dient das Konzept der posturalen Griffsynergien, welches Korrelationen zwi-
schen den Fingergelenken der menschlichen Hand ausnutzt, um statische Griff-
posen in einem reduzierten Parameterraum beschreiben zu können. Diese Ar-
beit stellt adaptive posturale Griffsynergien vor, die mithilfe eines tiefen Au-
toencoders gelernt werden. Die Griffpose der Hand, bestehend aus 16 Fin-
gergelenkwinkeln, kann so in einem dreidimensionalen Synergieraum darge-
stellt werden. Der Synergieraum ist hinsichtlich des Grifftyps strukturiert und
ermöglicht über einen zusätzlichen vierten Parameter die direkte Beeinflus-
sung des gewünschten Objektdurchmessers. Damit können neue, nicht direkt
vom Menschen gezeigte Griffe aus dem adaptiven posturalen Synergieraum
generiert werden, die dennoch menschenähnlich sind und deren Griffeigen-
schaften explizit gesteuert werden können.

Zur Beschreibung der gesamten Greifbewegung zum Erreichen der statischen
Griffpose werden kinematische Griffsynergien genutzt. Diese stellen die Greif-
bewegung als Trajektorie im statischen Synergieraum dar. Diese Arbeit stellt ki-
nematische Synergieprimitive vor, die als Via-Punkt-Bewegungsprimitive (engl.
via-point movement primitives) aus menschlichen Synergietrajektorien eines Griff-
typs gelernt werden. Die Synergieprimitive ermöglichen eine generalisierte Dar-
stellung von Greifbewegungen eines Grifftyps, welche hinsichtlich des zeitli-
chen Verlaufs, der Start- und Endpose, sowie des Verlaufs der Greifbewegung
selbst, adaptiert werden kann. Auf diese Weise können neue, menschenähnli-
che Greifbewegungen eines Grifftyps aus dem Spektrum vom Menschen de-
monstrierter Bewegungen generiert werden.

Griffkraftsynergien Neben der Handbewegung und -pose spielt auch die
Griffkraft eine bedeutende Rolle für Stabilität und Erfolg eines Griffes. Auch
zwischen den Griffkräften an verschiedenen Kontaktpunkten zwischen Hand
und Objekt können Korrelationen nachgewiesen werden. Dies motiviert eine
Darstellung der Kraftkonfiguration von Griffen mittels Griffkraftsynergien. Im
Rahmen dieser Arbeit wurde eine allgemeine Darstellung statischer Griffkraft-
synergien entwickelt, die Kraftkonfigurationen für viele verschiedene Griffty-
pen und Objekte berücksichtigt. Auf diese Weise kann die Kraftkonfiguration
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an 18 Kontaktpunkten der Hand mit lediglich acht Kraftsynergien beschrieben
werden.

Zudem präsentiert diese Arbeit zwei neuartige Methoden zur Beschreibung
zeitlicher Griffkraftverläufe mithilfe von Kraftsynergien. Zum einen wird ein
statischer Kraftsynergieraum unter Verwendung einer Hauptkomponentenana-
lyse gelernt. Die Darstellung zeitlicher Griffkraftverläufe erfolgt mittels zeitab-
hängiger Trajektorien in diesem statischen Synergieraum. Weiterhin wird ein
LSTM-Autoencoder mit ganzen Griffkraftverläufen trainiert, um einen zeit-
abhängigen latenten Synergieraum zu lernen. Dieser zeitabhängige Synergie-
raum berücksichtigt den zeitlichen Kraftverlauf direkt in der Synergiedarstel-
lung, sodass die Generierung neuer, menschenähnlicher Griffe unter Beach-
tung des zeitlichen Grifffortschritts möglich wird. Zusätzlich sind verschiedene
Grifftypen im zeitlichen Kraftsynergieraum räumlich strukturiert, sodass die
gewünschte Griffpose bei der Generierung neuer Griffe berücksichtigt werden
kann.

Teilautonome Prothesensteuerung Unter Verwendung einer Datenbank
menschlicher Greifstrategien wird eine Steuerung für eine unteraktuierte Hand-
prothese entwickelt. Die komplexe menschliche Handbewegung wird dabei
auf die Prothesenkinematik mit einer wesentlich geringeren Anzahl unabhängi-
ger Bewegungsfreiheitsgrade übertragen. Unter Verwendung von Kontextin-
formation über den Zustand der Prothese und die Umgebung wird eine ge-
eignete Greifstrategie ausgewählt und dem Nutzenden vorgeschlagen. Dieser
kann den Greifvorgang mit Hilfe von Muskelkontraktionen im Unterarm initi-
ieren und beeinflussen.

Aus der Datenbank menschlicher Griffe werden situationsgerecht Kontrollstra-
tegien ausgewählt, angepasst und ausgeführt. Dabei wird der Nutzende in
den Greifprozess eingebunden und kann Griffauswahl und -ausführung beein-
flussen. Diese teilautonome Prothesensteuerung zeichnet sich gegenüber dem
Stand der Forschung durch die Verwendung menschlicher Greifstrategien und
die trajektorienbasierte, kontinuierliche Greifausführung aus. Aufgrund der
vom Menschen inspirierten Greifbewegungen ist die teilautonome Steuerung
für den Nutzenden intuitiv während die partielle Automatisierung der Greif-
bewegung die kognitive Belastung des Nutzenden verringert.
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Chapter 1. Introduction

CHAPTER 1

Introduction

Grasping is a significant activity in human daily life. Throughout all our daily
actions, we incessantly perform grasps on a wide variety of objects, be it through-
out work, in leisure activities, for cooking or in cleaning and personal hygiene.
Almost without thinking about it - and sometimes even without looking - hu-
mans grasp many objects and even use them as tools to manipulate their en-
vironment. This is very impressive, since the kinematics of the human hand
are quite complex. With 27 joints and more than 20 degrees of freedom (DoF),
the human hand is a complex system driven by several extrinsic and intrinsic
muscles ((Jones and Lederman, 2006) and (León et al., 2014)). A significant part
of the human motor cortex is specifically concerned with hand control ((Grodd
et al., 2001)). Nevertheless, human grasping is done intuitively and is an easy
task for most of us.

In humanoid robotics it is desirable to imitate the versatility of the human hand.
This is especially interesting when robots are cooperating with humans or deal-
ing with environments made for humans. For prosthetic hands the focus on hu-
manoid appearance and behavior goes even beyond the general needs in hu-
manoid robotics. However, the kinematic complexity of the human hand raises
a number of challenges for the mechanical design and the control of robotic
hands. Besides the problem of mechanical integration and actuation, especially
the planning and control of grasps on known and unknown object geometries
is still a hard problem in robotics. Therefore, researchers strive for transferring
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Chapter 1. Introduction

the intuitive human grasping knowledge into robotics, making it accessible for
grasp planning and control on humanoid robots and prostheses.

1.1 Problem Statement

This thesis aims at developing methods for the control of humanoid robotic
and prosthetic hands based on human grasping strategies. To this end, the
thesis builds upon the concept of grasp synergies, which reduces the com-
plexity of human grasping postures by exploiting correlations within the hand
joints discovered in neuroscience in (Santello et al., 1998). Analyzing these low-
dimensional grasp synergies can therefore provide insights on the characteris-
tics of successful human grasp strategies and their transfer to the control of hu-
manoid robot hands and prostheses. These postural synergies describe a static
and stable human grasp posture. Extending this concept, kinematic synergies
provide a description of an entire grasping motion starting from the relaxed
hand towards the static grasp posture. Besides the pose and kinematic grasping
motion, the force applied between the hand and an object is crucial for stable
grasping. Therefore, in this thesis both characteristics are taken into account to
formulate a comprising grasp description. The focus is set on the analysis of the
entire grasping process. This includes the hand and finger trajectories during
reaching, hand preshaping and finally closing the fingers around the object.
In addition, it also involves the development of grasp forces from the initial
contact between the hand and the object until the object is lifted and fully sup-
ported by the hand contact forces.

Human grasping knowledge is leveraged by applying the robotics concept of
programming by demonstration, as shown in Fig. 1.1. In a first step, human
grasp strategies are observed based on recordings of human grasping actions.
Both motion capture and force sensing are needed to measure the inherent char-
acteristics of human grasping. The recorded grasping data is analyzed with re-
spect to correlations indicating synergistic behavior. In addition, the grasping
data is also analyzed in the context of significant grasping characteristics. The
following generalization strives to compile a general model from the findings
of the human grasp observation. In literature, a generalized postural synergy
space has proven to be capable of representing human grasp postures ((Santello
et al., 1998), (Jarque-Bou et al., 2020)). However, there is no such comprehensive
description for grasp forces and little attention has been paid to the entire pro-
cess of grasping.
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Chapter 1. Introduction

Figure 1.1: Structure of this thesis; demonstrated human grasps are formalized in grasp
synergies, which can be used to control humanoid hands

The goal of this thesis is therefore to include the entire grasp process into a gen-
eralized synergy description. In addition, a meaningful semantic structure of
the synergy space shall be induced to simplify its application in robotic control.
Finally, a grasp control based on the general description of human grasping
needs to be implemented and evaluated on a robotic hand. The merit of the de-
veloped human-like grasps shall therefore be shown in daily life activities on a
prosthetic hand, showing a practical example of a real world application.

1.2 Contributions

This thesis contributes to the field of grasp synergies by investigating the kine-
matic hand and finger trajectories as well as temporally changing grasp force
patterns. In addition, it presents a human-inspired grasp control for prosthetic
hands, that enables an intuitive semi-autonomous prosthesis control.

Postural and kinematic synergies: Descriptive postural synergies are presented
that provide a novel encoding of important grasp characteristics into the syn-
ergy space. A deep autoencoder network is applied to learn a non-linear, de-
scriptive latent synergy space. For the first time, a generation of human-like
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Chapter 1. Introduction

grasp postures from synergy space is achieved without a corresponding hu-
man demonstration. Due to the encoded characteristics of grasp type and ob-
ject size into the synergy space, these can be explicitly controlled for the gener-
ation of new grasps. In addition, this thesis defines kinematic hand synergies
that consider the entire grasping process. A novel representation of these kine-
matic synergies in the form of via-point movement primitives (VMPs) enables
the adaptation of human grasp trajectories. By these means, kinematic synergy
trajectories demonstrated by the human can be specifically adapted for the ex-
ecution of novel grasps.

Force synergies: Correlations of grasp contact forces between different con-
tact locations throughout the hand are analyzed for a wide range of grasp
types, object shapes and weights. Static grasp force synergies are described
and investigated for the first time without restriction of the grasp type or ob-
ject shape. These static force synergies are learned by a principal component
analysis. The dynamic progression of grasp forces is initially described by two
models. The description of continuous contact force patterns as trajectories in
a static force synergy space is inspired by the methodology of kinematic syner-
gies from literature and is applied on grasp forces for the first time. In addition,
a novel dynamic synergy space is proposed, that is learned with an LSTM-
autoencoder network. This dynamic synergy space encompasses a notion of
grasp progress and is additionally structured to represent grasp characteristics
to simplify grasp generation.

Semi-autonomous grasping: Grasps learned from human demonstration are
generalized, adapted and applied to a robotic prosthetic hand. Based on grasp
recordings with several subjects and a wide range of everyday objects, a hu-
man grasp database is generated. This database provides control information
for finger and thumb motion as well as wrist orientation to be applied on the
prosthetic hand. It is integrated into a novel, semi-autonomous control of pros-
thetic hands, that focuses on the continuous and simultaneous motion of all
degrees of freedom involved in the grasp. By these means, a human-like timing
and correlation of the hand’s degrees of freedom is ensured, leading to intuitive
and successful grasping.

1.3 Structure of the Thesis

The remainder of this thesis is structured as follows: Chapter 2 discusses the
state of the art with respect to this thesis. It describes taxonomies as conceptual
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Chapter 1. Introduction

grasp representations and introduces computational grasp representations in-
cluding postural, kinematic and force synergies as well as their application to
robotics. In addition, grasp control for prosthetic hands is discussed focusing
on semi-autonomous control schemes.

The descriptive postural synergies are presented in Chapter 3. Including an
explicit description of grasp type and object size, these postural synergies are
designed to generate new human-like grasp postures, that were not demon-
strated by the human. Further, kinematic synergies of both arm and hand mo-
tions are described. Grasp synergy primitives are presented that allow the spe-
cific adaptation of synergy trajectories for the entire finger motion throughout
the grasp.

In Chapter 4, an analysis of the grasp contact forces between the object and the
human hand is detailed. Comprehensive static force synergies are presented
taking into account severals subjects and a wide range of object shapes and
weights. For the description of dynamic contact force patterns, two methods
are proposed. Synergy trajectories in a static force synergy space describe the
time-dependent contact force patterns as a series of static force synergy sam-
ples. In addition, a dynamic force synergy space is proposed, that incorporates
the grasp progress in the synergy space by directly learning time-dependent
contact force patterns.

The human-like grasps generated from grasp synergies are executed on a robotic
prosthetic hand in Chapter 5. A library of human grasp strategies is defined,
that comprises general and adaptable grasp trajectories learned from human
demonstration. These can be applied in the semi-autonomous control of a pros-
thetic hand. This control provides autonomous grasp functionalities to release
the user from the burden of fine-granular finger control, while still keeping the
user in supervision. The semi-autonomous control combines the human grasp
library with environmental sensing to provide object-specific, autonomous grasp
suggestions. It reduces the workload for the user, as shown in a large-scale user
study.

The Chapter 6 concludes the thesis and resumes the contributions in kinematic
and force synergies as well as semi-autonomous grasp control. In addition, an
outlook on future work is given.
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Chapter 2. Fundamentals and Related Work

CHAPTER 2

Fundamentals and Related Work

Understanding the human hand and strategies of human grasp control is cru-
cial for the design and control of humanoid robotic and prosthetic hands. Fur-
ther, intuitive human grasp strategies can provide valuable insights to sim-
plify and improve the grasp control for both human-inspired, but also non-
humanoid robotic grippers. Hence, the description and analysis of human grasp-
ing behavior has been of interest in research for decades. Overall, there are two
main approaches used to represent human grasping behavior. On the one hand,
conceptual grasp representations structure and classify grasps according to a
set of criteria. Thereby, they allow the description of grasps that can be used
for human grasp analysis or grasp objectives in robotic grasping. On the other
hand, computational grasp representations strive for a generalized description
of human grasps on control level. These can then be transferred to the kine-
matics of a humanoid robotic hand to learn robotic grasp control directly from
human demonstration.

Having human-like grasping motions is of specific importance in the field of
prosthetic grasping. In addition to the grasp success, the optical appearance
also plays an important part here, since the prosthetic hand should look and be-
have optically unobtrusive and similar to its human counterpart. Grasp strate-
gies learned from human demonstration are therefore an ideal approach for
prosthetic applications since they can tackle both the successful grasping as
well as a human-like appearance of the grasp motion. Such partially automated
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Chapter 2. Fundamentals and Related Work

grasp control can be provided by semi-autonomous prosthetic control that sim-
plifies grasping for the user while still keeping the user in control of their pros-
thetic hand.

This chapter provides an overview over the different approaches towards con-
ceptual and computational human grasp representations in literature. Subse-
quently, the field of grasp control for myoelectric prosthetic hands is discussed
with an emphasize on semi-autonomous grasping.

2.1 Conceptual Grasp Representation

To describe and categorize human grasps on a conceptual level, observed grasps
are abstracted into grasping taxonomies. Using observed grasp criteria, human
grasps can be classified within a grasp taxonomy. Such a conceptual classifi-
cation of human grasps can be performed based on a variety of characteristic
criteria. Two fundamental grasp taxonomies have been defined in (Kamakura
et al., 1980) and (Cutkosky, 1989). While Kamakura classifies grasps by the con-
tact area covered between the hand and the object, Cutkosky focuses on the
posture of hand and fingers in the grasp. The Kamakura Taxonomoy subdi-
vides grasps in power, precision and intermediate grasp types with the adduc-
tion grip fixing an object between the sides of two fingers denoting an addi-
tional grasp type without thumb contact. Within these grasp categories, a more
precise structure is proposed based on the grasp contact patterns. Cutkosky’s
grasp taxonomy also distinguishes power and precision grasps, but in addi-
tion it suggests a distinction between prehensile and non-prehensile grasps.
Thereby, the platform grasp as additional, non-prehensile support grasp is in-
troduced. By further categorising power and precision grasps in several circu-
lar and prismatic sub-categories, a total of 16 different grasp postures is de-
scribed.

The GRASP Taxonomy in (Feix et al., 2016) provides a review of existing grasp
taxonomies and combines the grasps described in the literature into one tax-
onomy. This results in a very precise distinction of human grasp postures into
33 different grasp types. It is structured based on the methodic description of
opposing hand surfaces as opposition types proposed in (Iberall, 1997). They
categorize grasp opposition based on two or three virtual fingers describing a
combination of palm and fingers placed on opposing sides of the object. By
these means, human grasps are divided into four opposition types involving
the palm, finger pads, finger side or a third virtual finger. These virtual fingers
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Chapter 2. Fundamentals and Related Work

provide an abstract description of grasp posture characteristics independent of
the shape and kinematics of a robotic hand. Besides the opposition type, Feix
et al. consider the ad- and abduction of the thumb as well as a differentiation
between power and precision grasps to structure the GRASP taxonomy. Ap-
plying these criteria, the taxonomy can be structured into 17 different grasp
patterns.

There are only few taxonomies that consider not only the static grasp posture,
but also motion and forces of the hand in a grasp. For object manipulation (Bul-
lock et al., 2013b) defines a taxonomy describing time-varying hand-object re-
lations. The contact with the object distinguishes between non-prehensile and
prehensile grasps and also hand motions without object contact are considered.
In addition, the manipulation strategies are classified according to global hand
motion and motion between the object and the hand. The taxonomy lists 15
manipulation types describing different possible interactions of the hand with
an object and the environment. Twelve of these manipulation types consider
grasping by holding or manipulating an object. (Liu et al., 2014) builds a tax-
onomy conceptually describing dynamic human grasp behavior. It specifies 40
grasp types, that are not represented by the previous state of the art and serve a
very specialized purpose like tying laces or scratching. Furthermore each grasp
description is expanded by a force type, motion and force direction, the mo-
tion’s flow and object-related characteristics like the weight, size and rough-
ness of the object. The motion’s flow is divided into three grades and measures
whether the motion is executed in a controlled or rather casual manner. 20 dif-
ferent force types classify the intention of the applied force and the direction
of both motion and force is described in the world coordinate system. While
this taxonomy results in a comprising description of grasping actions, it also
results in complex grasp categories depending on five individual parameters.
It is therefore most suitable to get a precise annotation of observed grasps.

These conceptual grasp taxonomies can be used to structure and classify ob-
served human grasp strategies. This allows the identification of grasps fre-
quently used for a specific task or in a defined environment that can then be
transferred to a robotic execution of the same task. Further, the determination
of important grasp types that are frequently used by humans throughout their
daily activities can provide a prioritization of grasping skills needed on a flex-
ible, universal robot working in a human-centered environment. To this end,
(Bullock et al., 2013a) provides the statistical frequency of grasp types by ana-
lyzing 31 hours of hand recordings taken in the daily life of two machinists and
two housekeepers. The study evaluates all grasps performed with the subjects’
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dominant right hand. For each subject ∼ 4700 grasps are annotated and cate-
gorized according to the GRASP Taxonomy. From the 33 different grasp types
recognized in the recordings, ten grasp types account for 71% of the observed
grasps. For housekeepers, more than half of all grasps are power grasps, while
the machinists also use precision and intermediate grasps more frequently. A
study on grasp frequency based on 180 videos of 43 subjects performing every-
day activities is presented in (Vergara et al., 2014). The recorded scenes cover
eight areas of the activities of daily living including household and care as well
as mobility and provisioning. More than 1500 grasps with both hands are iden-
tified in the videos and categorized in nine grasp types based on the literature
on occupational therapy. Overall, nearly half of all grasps are classified as pinch
grasps. However, oblique palmar grasps are predominant in driving and trans-
port and cylindrical and lumbrical grasps are frequently used in shopping. In-
terestingly, grasp type frequencies are similar for left and right hand as well as
bimanual tasks.

Overall, grasp taxonomies are a tool to categorize human grasps into abstract
classes of grasp types. This provides an architecture to describe structural grasp
characteristics in a simple and general way and enables the analysis of human
grasp strategies on a symbolic level. Thereby grasp taxonomies help in the def-
inition of suitable grasp strategies learned from human demonstration for spe-
cific situations or the analysis of frequent grasp strategies in human everyday
grasping.

2.2 Computational Grasp Representation

Opposed to conceptual grasp representations, computational grasp represen-
tations aim at a description of grasp strategies on the level of control charac-
teristics. This may include hand muscle activations, angles or velocities of fin-
ger joints as well as grasp contact forces. Computational grasp representations
strive to describe these control characteristics in a generalized and simplified
manner to build a universally valid model of human hand control. Grasp syn-
ergies are a computational grasp representation frequently used in literature.
They are originating from findings in neuroscience showing correlations be-
tween different muscle activations for grasping, as for example presented in
(d’Avella et al., 2003). Such correlations can be exploited to simplify the rep-
resentation of human grasp control by reducing its dimensionality. (Castellini
and Van Der Smagt, 2013) suggests such a control based on muscle synergies
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learned from electromyographic (EMG) measurements of the muscle activation
signals and (Pei et al., 2019) shows the existence of correlations in electroen-
cephalographic (EEG) signals during grasping.

Postural Grasp Synergies

Similarly, for the field of human hand posture analysis, Santello et al. did pio-
neer work by showing strong correlations between the joint angles of human
hands throughout grasping a wide variety of imaginary objects presented in
(Santello et al., 1998). By applying a Principle Component Analysis (PCA) on 15
joint angles of static human grasping postures, a postural synergy space is de-
fined. For four out of five subjects, two synergies are sufficient to describe 80%

of the variance of all grasping postures. For the fifth subject, 80% of the variance
are represented by three synergies. 90% of the overall variance are described
by three synergies for three out of five subjects. For the other two subjects, four
synergies are required to cover 90% of the variance. Overall, this means that
two to three postural synergies are sufficient to describe 80% of the variance
of grasping postures of a single subject. Due to the linear dimensionality re-
duction with the PCA, the postural synergy space is continuous. However, it
is not structured with respect to the grasp type of the static grasp postures. A
comparison of postural and muscular grasp synergies in (Weiss and Flanders,
2004) shows no direct correlation between both representations.

(Della Santina et al., 2017) analyzes postural grasp synergies with and with-
out contact to an object or the environment in grasping with environmental
exploitation. A change in grasp synergies for pre-grasp and contact phase is
only measurable in higher order synergies. Further, (Jarque-Bou et al., 2020)
derives a postural synergy space from a large and comprehensive dataset of
human grasps executed by a large number of subjects on real objects. Similar
to Santello et al. they apply a PCA for synergy definition. On the recorded 22-
dimensional joint angle data, twelve synergies are needed to represent 80% of
the variance of the grasping data over all subjects. This number is significantly
higher than the one reported by Santello et al., since it includes a higher num-
ber of subjects, considers more joint angles and is based on data from grasping
physical instead of imaginary objects, thereby inducing more variance based
on the object’s shape.

All of these postural synergies are linearly defined and therefore capture only
linear correlations within the hand pose. Further, the grasp representation in
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the postural synergy space is not naturally structured according to the grasp
characteristics used in conceptual grasp representations. This complicates a
hand control based on postural synergies, since the choice of synergy parame-
ters corresponding to a specific grasp type or hand aperture is not straightfor-
ward.

This thesis therefore strives to learn a non-linear, adaptable representation of
postural synergies, that can capture non-linear joint correlations and provides
an explicit representation of important grasp characteristics in the synergy space.
For the first time, a postural synergy space is learned with a deep autoencoder
network, exploiting the non-linearity and direct influence on the shape of the
latent synergy space provided by this method. The non-linear, adaptable pos-
tural synergy representation developed in this thesis has been presented in a
scientific publication in (Starke et al., 2020) and has been adopted and extended
by (Dimou et al., 2021). A survey on research and applications in postural hand
synergies is provided in (Santello et al., 2016).

To enable the control of robotic hands only based on postural synergies, the
interaction of the hand with the environment needs to be modeled. Therefore,
(Bicchi et al., 2011) introduces the model of soft synergies. It includes the inter-
action with the object into the control algorithm by introducing a repelling force
field on the object surface. By these means, rigid postural synergies can be ap-
plied to control flexible grasps with a synergy-shaped posture that maximizes
the contact surface between hand and object. The control method of soft syn-
ergies can also be used to predict and influence grasp forces for robotic hands
with known dynamics, as shown in (Prattichizzo et al., 2010), (Gabiccini et al.,
2011) and (Prattichizzo et al., 2013).

A mechanical implementation of postural synergies in an underactuated robotic
hand was presented in (Brown and Asada, 2007). It was later enlarged in (Ros-
marin and Asada, 2008) with a shape memory alloy array to adapt the syn-
ergy controlled hand posture to the object shape. A similar implementation
was later presented in (Chen et al., 2015). Inspired by soft synergies, (Catalano
et al., 2012) presents the concept of adaptive synergies that provides an adap-
tively underactuated implementation of postural synergies for robotic hands.
The Pisa/IIT SoftHand from (Godfrey et al., 2013) is driven by a single motor
implementing an adaptive postural synergy, as explained in (Catalano et al.,
2014). (Chen et al., 2018) aims to design synergies for a robotic hand that can be
implemented in hardware by an underactuated mechanism. Based on a set of
desired grasps, mechanically realizable manifolds are defined, which optimize
the desired grasp posture as well as grasp stability. A tendon-driven continuum
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robot is proposed for synergy-based hand control in (Xu et al., 2019). The ten-
dons actuating individual finger joints are composed into a continuum robotic
structure at the wrist. By externally pulling or pushing the continuum actuation
structure, the hand is closed and opened respectively. Bending the continuum
robot causes the robotic hand to adopt different finger postures. A survey on
humanoid robotic hands with a focus on underactuation and adaptive syner-
gies is presented in (Piazza et al., 2019).

Kinematic Grasp Synergies

Beyond the final grasp posture, the entire grasping motion resulting in that pos-
ture is crucial for a successful, human-like grasp. The coordination of the finger
closing motions shapes the position of the object in the hand and the final grasp
posture. Between different fingers, motion dependencies have been shown in
(Ingram et al., 2008). To explicitly consider this motion coordination of the fin-
gers, kinematic synergies strive to describe the entire grasp motion trajectory
over time in a low-dimensional synergy space. Different approaches have been
presented in literature to consider the aspect of time in kinematic grasp syner-
gies. A representation of hand motions by trajectories in a static postural syn-
ergy space has been proposed by Romero et al. in (Romero et al., 2013). They
compare different linear and non-linear dimensionality reduction techniques
to learn a static hand synergy space independent of time or grasp progress.
Both PCA and Gaussian Process Latent Variable Models (GP-LVM) provide ap-
propriate hand synergy spaces with the PCA resulting in a synergy space that
is more smoothed with respect to the original hand postures. The grasp motion
is then described as a timed trajectory in this static synergy space and multiple
demonstrations are combined using Gaussian Mixture Regression.

(Kent et al., 2014) suggests an alternative approach reducing the dimensional-
ity of the temporal aspect of a grasp motion. By approximating the trajectory
of every joint angle with a polynomial function, the trajectory is reduced to
the polynomial parameters. The space of temporally synchronized synergies
thereby consists of the parameters of all joint polynomials to recalculate the
joint trajectories. (Thomik et al., 2015) defines a set of characteristic eigenmo-
tions of the hand that are used in different phases of the grasp motion. These
eigenmotions are learned by a sparse movement decomposition based on short-
time PCAs performed on time windows within the motion. By combing these
eigenmotions, the grasp movement can be described, whereas usually only two
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or three eigenmotions are active at the same time. (Konnaris et al., 2016) con-
trols a robot hand based on such sparse eigenmotions from a motion dictionary
learned on human activities of daily living. More specialized synergies exist for
various specific tasks like the pegboard test in (Gonzalez et al., 2017) or period-
ical screwing motions in (Karnati et al., 2013).

All kinematic synergy descriptions focus on a generalization of either corre-
lations between the different joint angles or the temporal grasp progress. The
respective second characteristic is then directly deduced from a human grasp
demonstration. Conversely, the generation of new, unseen grasp motions is re-
stricted by the manual definition of the grasp characteristic not generalized
by the kinematic synergies themselves. This means that the definition of kine-
matic synergies in a static synergy space requires the explicit definition of the
trajectory path over grasp progress and temporally synchronized synergies are
conversely limited to a specific grasping motion. Therefore, kinematic syner-
gies in literature do not provide a full generalization of both joint coordination
and timing of grasp motions. Hence, the derivation of robotic control strategies
from these kinematic synergies requires additional knowledge on the grasp
motion, that needs to be either derived from a human demonstration or hand-
crafted.

This thesis contributes to the generalization capabilities of kinematic synergy
trajectories by introducing synergy primitives. Based on the method from
(Romero et al., 2013), kinematic synergy trajectories are defined in a static syn-
ergy space. The static hand postures and their respective timing are then related
using via-point movement primitives (VMPs) learned on the kinematic synergy
trajectories. This methods captures the motion variability in human demonstra-
tions and allows for the direct control of timing in motion execution. Thereby,
human-like grasp motions can be generated from the synergy primitives at a
desired speed using the motion timing learned from human demonstration.

While grasp synergies have been extensively studied with respect to the fin-
ger postures and grasp motion, little attention has been paid to the approach
motion and hand pose. Synergies in wrist pose were individually assessed in
(Casini et al., 2017) by performing a PCA on human wrist orientation for nine
activities of daily living. One arm synergy parameter thereby describes 74%

of the overall variance of the three-dimensional wrist orientation. This thesis
strives to further characterize the role of arm motion and hand pose in grasp-
ing. To this end the global motion of the hand is analyzed in conjunction with
the finger motion and the foundation and merit of synergies in arm motion is
considered.
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To transfer grasp synergies to robotic hands, the concept of eigengrasps was
developed in (Ciocarlie et al., 2007b) and later refined in (Ciocarlie et al., 2007a)
and (Ciocarlie and Allen, 2009). For each hand an individual set of eigengrasps
is defined manually or by analyzing the synergies resulting from teleoperated
grasping. Human eigengrasps are defined by the synergy parameters of a hu-
man postural synergy space. The transfer of a human grasp demonstration to
the robotic hand is then done by a mapping of contact points on both hands.
Solving the optimization problem of contact point alignment yields a control
strategy in the eigengrasp space of the robotic hand, that can be directly ap-
plied to the hand. (Wimböck et al., 2012) derives synergies for the DLR Hand by
performing a dimensionality reduction on predefined grasp poses. The grasps
are demonstrated beforehand by a human shaping the robotic hand in force
controlled mode. A hand control derived from these robotic hand synergies
thereby profits from the teleoperated human demonstrations of successful grasp-
ing postures. To perform different grasps on the Pisa/IIT Softhand actuated
by one adaptive synergy, approach directions and environmental contacts are
taken into account in (Della Santina et al., 2019). Nine different grasp strate-
gies are designed based on human demonstration and the association of these
grasp strategies with 20 everyday objects is learned. By these means an au-
tonomous grasp architecture inspired by human grasp strategies is designed.
(Monforte and Ficuciello, 2020) applies individual synergies for a humanoid
hand and arm to perform different reaching motions demonstrated by humans.
To improve the resulting grasps, the synergy control is combined with a rein-
forcement learning algorithm further refining the synergy parameters. Their
combined approach shows better results compared with only synergy control.
However, further improvement is needed to achieve reliable grasping.

Grasp Force Synergies

The second important grasp characteristic other than hand posture and motion
are the human grasp contact forces. Grasp force analyses have been performed
for different tasks. However, the description of grasp contact forces in the form
of synergies has been considered only sparsely in literature. By using the soft
synergy model presented in (Bicchi et al., 2011) combined with a dynamical
model of the robotic hand, grasp forces have been determined in simulation
in (Gabiccini et al., 2011). By these means, the authors in (Prattichizzo et al.,
2010) and (Prattichizzo et al., 2013) analyze the merit of postural synergies for
the position and force control of robotic hands. They show a direct correlation
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between the number of applied postural synergies and the dimensionality of
controllable internal forces.

Force synergies in human grasping were first analyzed by Santello and Soecht-
ing in (Santello and Soechting, 2000). They considered pinch grasps on a specif-
ically designed sensor object measuring grasp forces on all five fingertips. The
experiments showed correlations between different grasp contact forces and
thereby proved the general existence of force synergies. Later experiments with
the same sensor setup showed a correlation of force synergies to the center of
mass, but no difference for handedness of the subjects, as explained in (Rearick
and Santello, 2002). (De Souza et al., 2014) and (De Souza et al., 2015) describe
human grasps based on opposition force primitives. These are extracted from
the points of contact between hand and object and identify the parts of the
hand, that apply opposing forces on the grasped object. The authors show, that
grasp force opposition types are tightly connected to different grasp intentions.
Thereby, they are used to categorize grasps with different manipulation goals
for the same object.

The human grasp force in a power grasp on a cylindrical object under pertur-
bations is characterised in (Naceri et al., 2014). (Marneweck et al., 2016) ana-
lyzes the force on the thumb and jointly over all opposing fingers in power
grasps. The authors show that grasp forces and finger poses vary between tri-
als, but are correlated with each other. Both thumb posture and grasp force
are adapted based on the center of mass of the object, meaning that different
grasp postures also require different contact force patterns. When grasping is
constrained, the grasp force is also more restricted to the given posture, which
can be seen in a change in activity in the sensorimotor cortex, as measured in
(Parikh et al., 2019). With a high resolution tactile glove, (Sundaram et al., 2019)
provides very detailed grasp force measurements of human grasp executions.
The hand contact force patterns allow to identify 26 different grasped objects
and to deduce information on the object’s weight and shape.

Overall, the importance of the grasp force configuration for grasp success is
strongly emphasized by the mentioned analyses on human grasp forces. Fur-
ther, correlations between grasp forces have been identified in various grasp-
ing conditions. The idea of force synergies has been applied on controlled pinch
grasps. However, there is no general analysis on synergies in human grasp force
patterns spanning a larger variety of unconstrained human grasp postures.

This thesis presents the first static human force synergies learned by a PCA on
human grasp contact forces for wide range of different power and precision
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grasps. Using Pearson’s Correlation Coefficient (PCC), correlations between dif-
ferent contact locations throughout the hand are analyzed over different grasp
types. By these means, the validity of a general force synergy representation is
proven. Further, two strategies for the representation of temporal force syner-
gies are presented. Similar to the kinematic synergies in (Romero et al., 2013), a
temporal force pattern is described as a timed trajectory in a static force syn-
ergy space. Additionally, an LSTM autoencoder network is trained to learn
a novel latent synergy representation with an inherent encoding of time and
grasp progress.

2.3 Prosthetic Grasp Control

Myoelectric prosthetic hands provide a replacement for a lost human limb.
They are attached to the user’s remaining forearm stump and include one or
several motors driving the hand’s grasping motions. The user can control their
prosthetic hand using the forearm muscles meant to actuate the missing human
hand. To this end, electromyographic (EMG) electrodes are attached to the stump
to measure the muscle activations issued by the user. The grasp control of the
prosthetic hand is directly driven by these measured muscle activations.

While myoelectric control relies on the same control input normally used for
the able human hand, it is still limited and imperfect in the practical appli-
cation. Commercial myoelectric prostheses are still strenuous to control, espe-
cially because of the limited number of EMG control inputs and their sensi-
tivity to changing conditions due to temperature or sweat as demonstrated in
(Schweitzer et al., 2018). Therefore, a literature review in (Biddiss and Chau,
2007) shows that the number of amputees, who reject their prosthesis or only
wear it as a passive device is still very high. Improvements are needed in
prosthetic control and sensory feedback for the user, but also in dexterity and
weight of the prosthetic hand, as pointed out in (Cordella et al., 2016) and
(Chadwell et al., 2016). Especially sensory feedback is completely missing in
commercial hand prostheses and (Wijk and Carlsson, 2015) shows that this re-
duces the feeling of ownership of amputees regarding their prosthetic hand.

To simplify the control of myoelectric prosthetic hands and reduce the cognitive
burden for the user, two different strategies are adopted in research. On the one
hand, interpretation and quality of EMG signals are improved by enlarging the
number of sensing electrodes and distinguishing different control commands
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by multi-electrode decomposition. On the other hand, semi-autonomous con-
trol strategies enhance the user control with environmental sensor information
to provide autonomous grasp functionalities. Semi-autonomous grasp control
thereby reduces the general dependency on EMG control signals. It is there-
fore especially interesting for users that have difficulties in producing reliable
muscle signals due to bad stump conditions.

Multi-electrode decomposition for prosthesis control is performed since a long
time, for example in (Light et al., 2002). As shown in (Dalley et al., 2011) and
(Fougner et al., 2012), it is able to distinguish between different grasp pos-
tures or motions. Recently, advances have been achieved in the repeatability
of recognition algorithms, as shown in (Palermo et al., 2017). Further, other
sensor modalities can be taken into account in multi-signal decomposition, e. g.
IMU orientation data used in (Kyranou et al., 2016) and (Piazza et al., 2016) or
mechanomyography (MMG) used in (Wilson and Vaidyanathan, 2017). Further
methods in the field of pattern recognition and multi-electrode decomposition
were presented e. g. in (Ortiz-Catalan et al., 2014), (Hahne et al., 2014), (Zhuang
et al., 2019), (George et al., 2020), (Piazza et al., 2020) and (Paskett et al., 2021).
A comprehensive overview of methods for multi-electrode decomposition is
provided in (Segil et al., 2014) and (Ciancio et al., 2016).

Swain and Nightingale first presented a control for a prosthetic hand in (Swain
and Nightingale, 1980), that was not only based on direct user input but pro-
vided different functionality based on the state of the prosthesis. This semi-
autonomous grasping later emerged to allow sophisticated prosthesis control
with a very limited number of user inputs. The partially autonomous hand con-
trol is defined based on environmental sensor information. At the same time,
grasp control is kept under the supervision of the user. (Bennett et al., 2018)
presents an autonomous wrist rotation combined with a manual grasp con-
trol. The wrist rotation is based on the forearm orientation measured by an
IMU. A similar approach in (Volkmar et al., 2019) provides a semi-autonomous
adaptation of the wrist orientation based on the orientation of the second able
hand. This allows the coordinated interaction of both hands in bimanual tasks.
(Gardner et al., 2015) performs a semi-autonomous selection of different grasp
types based on object images from a camera and IMU information. The user in-
put is given with MMG sensors. Objects are classified according to their shape
and one of four different grasp types is chosen and suggested to the user. For
the task of identifying objects and suggesting appropriate grasp types, several
groups have presented neural networks for visual scene understanding, e. g. in
(Ghazaei et al., 2015), (Degol et al., 2016) and (Ghazaei et al., 2017).
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A sequential grasp control with autonomous grasp type and size suggestion is
presented in (Došen et al., 2010) and (Došen and Popović, 2011). A camera and
a distance sensor are placed on the back of the hand to estimate the shape and
size of the object. Based on this object information, a grasp type and hand aper-
ture are suggested to the user and can be accepted or adjusted manually. The
semi-autonomous control is based on a state machine that sequentially defines
the different grasp characteristics. This work has been continued in (Nobre Cas-
tro and Došen, 2022) using an RGBD camera mounted on the back of a pros-
thetic hand. Using the depth images processed on an external computer, the
orientation, grasp type and hand aperture of the prosthetic hand are controlled
autonomously. The user takes over control for the grasp closing motion, which
is performed manually via a conventional EMG control. (Markovic et al., 2014)
and (Markovic et al., 2015) rely on a stereo camera system and an IMU to infer
information on the scene and the prosthesis’ state for semi-autonomous grasp
control. The user wears AR-glasses including the camera system, which are not
only used to record the object, but also return information on the suggested
grasp to the user. The presented semi-autonomous control includes the wrist
orientation, grasp type and hand aperture. Based on the object’s shape and the
current hand orientation, a grasp configuration is suggested to the user and can
be adjusted manually. In continuation (Mouchoux et al., 2021) provides an au-
tonomous control of hand orientation, grasp type and grasp aperture. Unlike
the previous approaches, all grasp characteristics are controlled simultaneously
and are continually updated based on environmental information. Such infor-
mation is gathered by a multimodal sensor setup including an IMU and an
RGBD camera mounted on AR glasses worn by the subject. An infrared sensor
included in the camera allows to track the prosthesis, which is equipped with
retroreflective markers. A myoelectric control based on eight EMG electrodes
allows the user to take over full control at any stage of the grasping process.

An autonomous control for grasp force and hand positioning is developed in
(Cipriani et al., 2008). (Hansen et al., 2021) combines an autonomous grasp force
control based on proximity and pressure sensing with a multi-electrode decom-
position approach for hand preshaping and closing. A method to control a hand
prosthesis only based on arm motions and without any need for EMG sensing
is presented in (Gonzalez-Vargas et al., 2015). An electrocutaneous menu con-
tinuously offers different grasp suggestions, which can be chosen and executed
by performing arm motions. Furthermore a range of input modalities for user
control was tested including electrooculography presented in (Hao et al., 2013),
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tongue control presented in (Buckley et al., 2011) and speech presented in (Ja-
farzadeh and Tadesse, 2019).

Overall, it has been widely shown that semi-autonomous grasp control is ben-
eficial for prosthesis users by reducing the cognitive burden of the user and in-
creasing the grasp speed and success. However, existing systems rely on exter-
nal sensors mounted in the room or on the user. Sensor processing and control
is also performed on external computing resources connected to the prosthetic
hand. This allows for sophisticated processing strategies and capable control
systems that are helpful to validate the general merit of semi-autonomous con-
trol strategies. However, the local and static setup limits the mobility of such
systems. Further, existing control systems provide static grasp preshapes and
a wrist orientation preceding the final grasp. Throughout the final grasping
motion the fingers are closed in this fixed configuration. There are several ap-
proaches for simultaneous coordinated grasp control including all available
degrees of freedom in the remote control of robotic arms, e. g. in (McMullen
et al., 2014), (Zhuang et al., 2019) and (Shafti et al., 2019). However, such con-
tinuous coordinated control has not yet been applied to prosthetic hands. This
discards the potential of coordinated finger motions and a simultaneous, corre-
lated hand and finger motion including wrist rotation.

Therefore, this thesis develops a semi-autonomous control scheme that simulta-
neously drives all degrees of freedom of the prosthetic hand. It is the first semi-
autonomous control based on grasping motions learned from human demon-
stration. The control scheme is applied on the KIT Prosthetic Hand described
in (Weiner, Starke, Rader et al., 2022) and is evaluated in a use study with able-
bodied subjects.
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CHAPTER 3

Postural and Kinematic Synergies

To grasp objects safely with a humanoid robotic hand, all the degrees of free-
dom of the five fingers need to be coordinated in order to achieve a stable grasp-
ing posture. This requires the synchronization of up to 23 individual joints to
accurately mimic the human hand kinematics (Sancho-Bru et al., 2003). More-
over, not only the final grasping posture is important for a successful grasp.
The coordinated finger motion starting from the hand’s resting configuration
is vital for grasp success. The finger motion defines the position and order of
contacts made between the hand and the object. A well-designed grasp motion
needs to avoid undesired object movement and can even include purposeful
object re-positioning to improve grasping.

The existence of synergies between the individual joint angles of the human
hand is well established in grasping, manipulation and hand gestures, as pre-
sented in Chapter 2. Primarily linear postural synergies identified by a princi-
pal component analysis are described not only for the human hand (Santello
et al., 1998), (Jarque-Bou et al., 2020) but also for a wide range of robotic hands
and grippers (Ciocarlie et al., 2007b), (Wimböck et al., 2012). These postural
synergies allow to simplify the grasp synthesis for complex humanoid hands
by reducing the dimensionality of the hand’s parameter space. Thereby, new
grasps can be sampled from the low-dimensional space of postural synergies,
which decreases computation complexity and leaves unnatural hand configu-
rations and configurations unsuitable for grasping aside from the beginning.
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However, for grasp control of a humanoid hand, a formal description is needed
that covers not only the stable grasp posture, but also any hand motion required
to achieve the final grasp. A hand synergy representation able to characterize
the finger joint trajectories of entire grasping motions can be provided by a
set of kinematic synergies. In addition to the general challenges of postural
synergies, these require an association of time with the synergy representation.
Ideally, timing should be considered in posture sampling to take advantage of
the additional information on grasp progress and continuity.

Finally, a robotic hand must be able to cope with very different object shapes,
weights and grasping tasks. Given a limited number of human grasping demon-
strations, the hand control needs to be adapted to different situations and re-
quirements. Therefore, a grasp synergy representation needs to be general and
allow for the generation of synthetic, human-like grasps. This implies that the
synergy space is well structured with respect to relevant grasp characteristics
and thereby permits purposeful sampling of specific grasps. The generated
grasps ought to be represented in a way that allows adaptation to changing
environmental conditions like different object position or size.

In this chapter, a general grasp synergy representation for robotic hand con-
trol is presented. Adaptable postural synergies are described first, allowing the
intuitive generation of human-like grasp postures. Based on this static postu-
ral synergies, kinematic synergies are described in a static synergy space. In
addition, the arm trajectories complementing finger motions in grasping are
considered. Finally, grasp synergy primitives are introduced as an adaptable
representation of kinematic grasp synergies.

3.1 Postural Synergies

Postural synergies provide a low-dimensional representation of static grasp
postures. They are derived based on an extensive study of human hand pos-
tures in different grasp types. A non-linear learning approach applying an au-
toencoder network is proposed to capture the synergies inherent in the human
grasping data. Additionally, the approach allows structuring of the synergy
space in an intuitive manner regarding the grasp type and object diameter. The
resulting adaptable postural synergies are used to generate new, human-like
grasps for robotic hands. They are evaluated on the human hand in simulation
and are later applied to a hand prosthesis.
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Figure 3.1: Architecture of the autoencoder to describe postural grasp synergies; the
latent synergy space is complemented by the object size (Starke et al., 2020)
©2020 World Scientific Publishing

The work described in this section was presented in a conference and a journal
publication (Starke et al., 2018, 2020). Graphs and images in this section are
partially adapted from these publications.

3.1.1 Adaptable Synergy Description

Postural grasp synergies do not provide any distinction regarding grasp char-
acteristics like the grasp type, as was shown in (Santello et al., 1998). In their
work, the authors apply a linear PCA on the joint angles of human grasping
postures to derive low-dimensional grasp representations. This limits the re-
sulting synergy space to the representation of linear correlations between joint
angles for a grasping posture. To address this limitation and account for non-
linear correlations in joint angles, this thesis proposes a deep autoencoder net-
work, that is trained with human grasping data. The human grasp posture is
described by a vector of 16 dimensions denoting 16 joint angles of the human
hand. The network learns a postural synergy space while taking into account
meaningful grasp characteristics within the shape of the latent synergy space.
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Figure 3.2: Loss function of the autoencoder for postural grasp synergies; the three-
fold execution of the encoder enhances clustering of grasp types in latent
synergy space while preserving the replicability of grasps by the encoder
(Starke et al., 2020) ©2020 World Scientific Publishing

The network structure is depicted in Fig. 3.1. The encoder has a classical trian-
gular shape. Within two layers, the encoder reduces the input vector of 16 joint
angles of the human grasping posture to three synergies. The diameter of the
object is fed into the decoder as a scalar fourth input parameter in addition to
the three synergy variables. The object diameter is normalized according to the
size of the hand. To ensure a continuous synergy representation, a normally
distributed noise is added to the latent variables before they are fed into the
decoder. A reversed triangular structure is used for the decoder to allow the
processing of the synergies, that are applied with the noise. All internal layers
apply a hyperbolic tangent activation function. The output layer is used with a
linear activation function.

To enhance the structure of the latent synergy space, a threefold loss func-
tion is applied, as shown in Fig. 3.2. The loss function consists of the following
terms:

1. The first row shows the mean squared error between a real grasp posture
ygi of the grasp type g and the corresponding decoded grasp posture ŷgi ,
which is returned by the autoencoder. This classical reconstruction loss
contributes with a weight of α = 1.0 to the overall loss function.

2. In addition, the mean squared distance is calculated between two synergy
representations agi and agj , which correspond to the human grasp pos-
tures ygi and ygj . gi and gj denote different demonstrations of the same
grasp type g. This loss describes the distance between two grasps of the
same grasp type in latent space and thereby enhances clustering of simi-
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lar grasps. A weight of β = 0.5 is applied to keep the focus on the quality
of the overall grasp representation.

3. To promote the separation of distinct grasps, a third loss term considers
the mean squared distance between two synergy representations agi and
ahi

. g and h denote different grasp types. This distance between grasps of
different grasp types in the synergy space is included in the loss function
with a negative weighting of γ = −0.15. Thereby the clustering of grasp
types in the synergy space is further enhanced.

As shown on the left of Fig. 3.2, the encoder is thus executed three times in
parallel with the input postures ygi , ygj and yhi

.

The autoencoder network is trained on 2250 human grasp postures described
by 16 joint angles within the hand using an Adam optimizer. Hence, an input
vector of 16 joint angles is fed into the encoder of the network. The grasping
data is split into a training and test set by a proportion of 90% to 10%. Since the
amount of available data is quite large in terms of human grasping analyses,
but small in terms of machine learning datasets, a large proportion of the grasp
demonstrations is required for training. 10-fold cross validation is used to ob-
viate the need for a separate validation set and the noise applied to the latent
synergy space prevents over-fitting of learned grasps.

3.1.2 Static Grasp Posture Analysis

To learn the expressive postural grasp synergies, a static grasping study was
performed comprising 2250 grasps from 15 subjects on 35 objects. The nine
male and six female subjects aged 27.0 years ± 2.0 years hand an average hand
length from the wrist to the tip of the middle finger of 180.2mm ± 16.9mm.
They were wearing a data glove (CyberGlove III, CyberGlove Systems) mea-
suring 16 joint angles of the hand. The measured joint angles and their annota-
tion are shown in Fig. 3.3. All subjects performed the grasping study with their
dominant hand.

The study concentrates on five grasp types, each corresponding to one or two
classes from the grasp taxonomy in (Cutkosky, 1989). These grasp types are
namely cylindrical (1, 2), spherical (11, 13), disk (10, 12), pinch (8, 9) and lateral
(16) grasps, with the numbers in brackets denoting the corresponding grasp
classes according to Cutkosky’s taxonomy. Comparing analyses of grasp type
frequency in literature, these five grasp types are invariably within the eight
most frequent postures for grasping according to (Bullock et al., 2013a) and
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Figure 3.3: Annotation of the 16 joint angles measured in the static grasping study
(Starke et al., 2020) ©2020 World Scientific Publishing

(Vergara et al., 2014). Exemplary grasps within each grasp type are depicted in
Fig. 3.4.

The data glove for joint angle measurement was calibrated based on reference
measurements of fixed joint angles achieved with wooden reference blocks.
Joint angles were then calculated by linear interpolation between at least two
reference measurements taken for each joint. In addition, a closed-chain motion
was recorded with the tips of thumb and index finger pressed together. This cal-
ibration procedure was adapted from (Gracia-Ibáñez et al., 2017) according to
the requirements and timeframe of the static grasping study.

During the study procedure, subjects were seated comfortably in front of a
table. They were shown images from the taxonomy in (Cutkosky, 1989) depict-
ing the classes included in the required grasp type. Then subjects were asked
to perform the presented grasp on a single object three times. The same grasp
was repeated on ten different objects placed one after the other on the table in
front of the subject. The objects were chosen from a household and workshop
environment and are a subset of the YCB Object Set (Calli et al., 2015) and the
KIT Object Database (Kasper et al., 2012). The objects are shown in Fig. 3.5.

An analysis of the joint angle data from these static grasp recordings directly
shows a correlation between the diameter of the grasped object and the finger
flexion angles. As to be expected, the finger joint angles decrease with increas-
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(a) (b)

(c) (d) (e)

Figure 3.4: Grasp types applied in the static grasping study: cylindrical (a), spherical
(b), disk (c), pinch (d) and lateral (e) grasps (Starke et al., 2020) ©2020 World
Scientific Publishing

Figure 3.5: Objects used in the static grasping study
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(a) (b)

Figure 3.6: Finger joint angles in relation to the object diameter for the metacarpopha-
langeal joints of index and middle finger (Starke et al., 2020) ©2020 World
Scientific Publishing

ing objects size, as can be seen in Fig. 3.6. However, the hand size also influences
the finger joint configuration for a given object size. Therefore, the grasping
data was normalized according to the subject’s hand length. The latent postu-
ral synergy space was then derived by training the synergy autoencoder with
these human grasp postures.

3.1.3 Generation of Human-Like Grasps

The learned postural synergies can be used to represent demonstrated human
grasp postures in a low-dimensional space by applying the encoder on the orig-
inal joint angles. Besides, the decoder can also be applied to generate new, un-
seen grasp postures that are similar to the learned demonstrations and hence
similar to human grasps. The desired grasp type and object size can be con-
trolled separately in generation. Since the object diameter was fed to the de-
coder as a fourth, independent parameter, the object can be controlled directly
with this input parameter. Since grasp types are clustered in the synergy space,
the posture of a generated grasp can be deliberately influenced by targeted
sampling from the latent synergy space. The center and expanse of each cluster
mark the sampling area of the corresponding grasp type.

Grasp generation is done by sampling from the area populated by the respec-
tive grasp type in synergy space with the object diameter normalized to the
length of the human hand model of the Master Motor Map (Mandery et al.,
2016) scaled to a person of 1.70m height. The grasps are applied in simulation
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η = 0.01 η = 0.24 η = 0.48

η = 0.72 η = 0.88 η = 0.97

Figure 3.7: Cylinder grasps generated for different object diameters; the size parameter
η describes the object diameter normalized with respect to the hand length
(Starke et al., 2018) ©2018 IEEE

as soft synergies according to (Bicchi et al., 2011) to guarantee contact between
the fingers and the object. The same, synergy-generated cylinder grasp for dif-
ferent object diameters can be seen in Fig. 3.7. Generated grasps for all five
grasp types simulated on different objects are shown in Fig. 3.8. The shown
objects were also used in the human demonstrations.

3.1.4 Evaluation

The approach is evaluated regarding 1) reproduction error, 2) clustering of
grasp types and 3) generalization for the generation of unseen, human-like
grasp postures. The linear postural synergies defined by a PCA with two syn-
ergy variables in (Santello et al., 1998) are considered as the baseline for com-
parison.

First and foremost the reproduction error of three variations of the presented
autoencoder is considered. To allow a fair comparison with the results from
Santello et al., an autoencoder with two latent synergy variables is trained with
the structure and loss described in the previous section. Further, an autoen-
coder with two latent synergy variables and an additional decoder input for the
object size is considered. And finally, the presented autoencoder with three la-
tent synergy variables and the object size as fourth decoder input is included in
the evaluation. The reproduction error for all grasp types is shown in Fig. 3.9.

29



Chapter 3. Postural and Kinematic Synergies

(a) (b) (c)

(d) (e)

Figure 3.8: Grasps generated from the postural synergy space with the decoder and
executed in simulation; cylinder grasp on a tomato soup can (a), spherical
grasp on an orange (b), disk grasp on a tuna can (c), tripod grasp on a toy
block (d) and lateral grasp on a credit card (e) (Starke et al., 2020) ©2020
World Scientific Publishing

The two-dimensional autoencoder clearly outperforms the PCA-derived syner-
gies in terms of reproduction accuracy. An additional boost of the synergy accu-
racy is achieved by adding the normalized object size as an additional parame-
ter to the decoder. This allows the encoder to shift attention to the hand shape
and focus less on the grasp aperture defined by the object. The reproduction
error is thereby reduced by 26% compared to the basic reference autoencoder.
Enlarging the latent synergy space to three dimensions yields a relatively small
improvement in reproduction error. However, this additional synergy variable
facilitates the secondary goal of clustering grasp types in the synergy space,
since it provides more flexibility for grasp representation and reorganization in
the latent space. Because of the merit of a descriptive, structured synergy space
in generation of novel grasp postures, this enlarged synergy space is applied in
this work at the cost of a third synergy variable.

The resulting structured synergy space is depicted in Fig. 3.10 (a). For visual-
ization purposes the three-dimensional synergy space is reduced to two dimen-
sions by t-distributed stochastic neighbor embedding (t-SNE). The clustering of
different grasp types can be clearly seen and Fig. 3.10 (b) shows a clear distance
in mean synergy value between grasp types in three dimensions. The pinch
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Figure 3.9: Reproduction error of three variations of the autoencoder synergies com-
pared to the baseline approach using PCA (Starke et al., 2020) ©2020 World
Scientific Publishing

grasp shows a significant cluster separation. The distance between the means
of the pinch and the closest other cluster, being cylinder grasps, is 50% of the
size of the synergy space. The two cluster means of sphere and disk grasps are
significantly closer with a distance of 25% of the synergy space size. These two
grasp types only differ in the adduction of fingers and therefore, both grasp
types transition fluently in synergy space. This shows that the synergy space
is able to descriptively represent different human grasp postures in a way that
allows to interpret and control the grasp type directly using the synergy repre-
sentation.

To assess the generalization of the postural synergy representation, human-
like grasps generated from the decoder are evaluated. Grasps on 24 objects are
generated and executed in simulation with the human hand models of the Mas-
ter Motor Map (Mandery et al., 2016) as described in the previous section. The
evaluation includes objects used in the human grasp demonstrations as well as
objects unknown to the synergy network. Grasps are generated by the decoder
by sampling from within one standard deviation around the cluster mean of the
desired grasp type. Additionally, the normalized object diameter is provided
to the decoder. The generated grasp is applied as a soft synergy according to
(Bicchi et al., 2011), thereby allowing the hand to adapt to the complex, non-
smooth surface of the object. Grasp are simulated in the grasp simulator Simox
(Vahrenkamp et al., 2010). The grasp quality is evaluated with the ϵ-metric (Fer-
rari and Canny, 1992). To assess the robustness and stability of a grasp posture,
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(a)

(b)

Figure 3.10: Clustering of grasp types in synergy space; a two-dimensional representa-
tion of the synergy space generated by t-SNE (a) and the mean representa-
tion of each grasp type cluster in all three synergy dimensions (b) (Starke
et al., 2018, 2020) ©2018 IEEE

the mean ϵ-metric is calculated over 50 hand poses with a deviation of ±10mm

and ±10◦ (Weisz and Allen, 2012).

Due to the stiff palm of the human hand model, contact points between the ob-
ject and the palm cannot be considered appropriately in the given simulation.
Therefore, the grasp quality of lateral grasps cannot be adequately assessed.
The grasp quality evaluation is hence restricted to the four grasp types cylin-
der, sphere, disk and pinch/tripod. Fig. 3.11b shows the mean ϵ quality for
these four grasp types. It can be seen that all power grasp types achieve a grasp
quality in the range of 0.3 to 0.5. However, the pinch/tripod grasps show a sig-
nificantly lower grasp quality of 0.05 to 0.2. These precision grasps rely on only
two or three contact points, which makes them far more sensitive to perturba-
tions in the object pose. The wide range of perturbations applied to calculate
the mean ϵ-metric therefore significantly reduces the overall quality for these
precision grasps. A comparison of cylinder grasps is shown in Fig. 3.11a on
known objects included in the human demonstrations and similar objects the
autoencoder was not trained on. There is no significant difference observed in
the grasp quality on similar objects compared to the ones included in the train-
ing examples. Instead, the object size impacts the overall grasp quality with
larger objects like a soup can or a coffee can yielding better results than thin
objects like a spoon or a banana. Altogether all generated grasps yield an ade-
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(a) (b)

Figure 3.11: ϵ-metric of grasps generated from the postural synergies; cylinder grasp
quality of objects known from the training examples and unseen similar
objects (a) and grasp quality on different grasp types with known objects
(b) (Starke et al., 2020) ©2020 World Scientific Publishing

quate grasp quality, thereby proving the capability of the decoder to generate
feasible grasp postures.

3.2 Kinematic Synergies

To achieve a desired grasp posture, the alignment of finger closure is important.
The timing of the closing trajectories of individual finger joints determines the
coordination of fingers throughout the grasp execution. This finger coordina-
tion can severely influence grasp success. Ideally, a good coordination ensures
that fingers simultaneously wrap around the object to grasp it. A sub-optimal
coordination however, might cause the object to be pushed out of the hand,
if antagonistic fingers are not closed simultaneously. For small or thin objects,
even more complex finger movements are needed to pick an object up from
a table surface and push it into the hand. Therefore, a grasp representation
should also consider the finger joint angle trajectories during the entire grasp-
ing process. In addition, the reaching motion of the arm also complements the
grasping action. While it is affected mostly by the global hand and object po-
sitions, the timing of reaching and grasping overlap and a reorientation of the
hand pose can be used as a means of adjusting a grasp posture throughout its
formation.

Due to the importance of both finger and arm movement throughout the grasp-
ing process, this thesis analyzes both characteristics in human grasp demon-
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Figure 3.12: Approach trajectories in the arm synergy space shown from two differ-
ent angles; grasps with different approach directions are clearly structured
with a smooth transition

strations. Correlations of the hand pose trajectory resulting from the arm’s reach-
ing motion are analyzed with respect to different grasp characteristics. Finally,
kinematic synergies inspired by Romero et al. are explained (Romero et al.,
2013), which lay the basis for the adaptable synergy primitives presented in
this work.

3.2.1 Arm Trajectories in Grasping

An analysis of the human arm motion is performed based on the absolute po-
sition and orientation of the hand. The hand pose in space is described by a
three-dimensional Cartesian position and a quaternion rotation. From these
seven dimensions, a lower-dimensional synergy space is derived by a PCA.
Both Cartesian positions as well as rotation quaternions are normalized sep-
arately to the range of positions and orientations observed in the kinematic
grasping study. The synergy space is calculated over all individual hand poses
disregarding the time dimension. While two synergy dimensions already ac-
count for 81.6% of the overall variance of the static hand pose data, a third
synergy further improves the structure of the synergy space. Arm synergy tra-
jectories are represented by a series of static arm synergy configurations over
time, as shown in Fig. 3.12.
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The arm synergies are analyzed regarding the representation of meaningful
grasp characteristics. Both the arm trajectories as well as their synergy rep-
resentation do not differ significantly for varying grasp types. This is to be ex-
pected, since the categorization of grasp types in grasp taxonomies like
(Cutkosky, 1989), (Kamakura et al., 1980) or (Feix et al., 2016) is focused on
the hand shape and finger placement. Instead, the arm synergy space shows
a structuring of arm trajectories with respect to the approach direction of the
grasp. As visible in Fig. 3.12, the synergy trajectories of different approach di-
rections unfold into dissimilar directions of the arm synergy space. The final
hand poses in the grasps thereby form a continuous spectrum evolving from
grasp motions approaching from above with the elbow rotated outwards to a
sideways approach motion grasping the object from the back. Similar to the
approach directions, also their synergy representations vary continuously. The
transition from a top to a side approach direction is most clearly marked and
can be seen by a less populated gap between the top grasps in blue and green
as well as the side grasps in orange and yellow in Fig. 3.12.

3.2.2 Kinematic Grasp Synergies

Throughout grasping the trajectories of individual finger joints as well as the
timing of joint closure need to be considered. We consider 22 joints j1, j2, ..., j22
within the human hand according to the MMM hand model (Mandery et al.,
2016). This results in a 22-dimensional vector of joint angles jg = (j1, j2, ..., j22)

for a grasp g. The grasping motion is therefore described by a joint trajectory
jg(t) with t ∈ [0, T ]. Hence jg(t = 0) denotes the relaxed hand posture and
jg(t = T ) denotes the posture of the final stable grasp. Applying the methodol-
ogy proposed by Romero et al. a set of kinematic synergies is calculated from
these joint trajectories (Romero et al., 2013). A PCA is trained on all joint config-
urations jg,t from the kinematic grasp recordings regardless of grasp progress
and time t ∈ [0, T ]. This results in a static postural synergy space S learned
from hand postures throughout all stages of the grasping motion.

By again including the time information, the hand trajectory in grasping can be
described as a kinematic synergy trajectory in synergy space. This means that
a postural synergy configuration sg,t is calculated for every joint posture jg,t by
performing the transformation into the synergy space S. A grasp trajectory in
synergy space is defined as a timed series of postural synergy configurations
with sg(t) = (sg,0, sg,1, ..., sg,T ). Six synergies are needed to represent 80% of the
variance within the 22 joint angles of the human hand posture, hence S ⊂ R6.
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Figure 3.13: Kinematic grasp synergies described in a static synergy space and marked
according to grouped grasp types

Table 3.1: Grasp categories subsuming several grasp types with similar grasp charac-
teristics from the GRASP taxonomy

category grasp types (Feix et al., 2016)

cylindrical large diameter, small diameter, medium wrap, power disk,
power sphere

adduction palmar index finger extension, adducted thumb, light tool, fixed hook,
palmar

encaging grasp ring, sphere 3 finger, extension type, sphere 4 finger, distal type
clamping grasp adduction grip, tripod variation
lateral lateral, stick, ventral, lateral tripod
pinch/tripod palmar pinch, tip pinch, inferior pincer, prismatic 2 finger, tripod
precision multi-finger prismatic 3 finger, quadpod, prismatic 4 finger, precision disk,

precision sphere
writing tripod writing tripod
parallel extension parallel extension
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Figure 3.14: Structure of the kinematic synergy space based on the fundamental grasp
categories power, precision and intermediate grasps (a), the position of the
thumb (b) and the grasp opposition type (c)

Fig. 3.13 shows human grasp trajectories of different grasp types in the first
three dimensions of the kinematic synergy space. For visualization purposes,
related grasp types from the GRASP taxonomy (Feix et al., 2016) are clustered
according to the categories listed in Table 3.1. While lateral grasps and adduc-
tion palmar grasps are localized in a confined subspace of the static synergy
space, there is no strict clustering of grasp types. However, Fig. 3.14 shows that
the structure of the static synergy space is defined mostly by thumb circum-
vention and the grasp’s opposition type. The latter distinguishes between pad
opposition with opposing fingers, palm opposition with the palm opposing one
or several fingers and side opposition with at least one finger opposing a plane
perpendicular to the palm (Iberall, 1997).

Additionally, a combination of both arm and hand movement into the same
hand-arm synergy space is investigated. A parameter set is compiled from the
seven-dimensional pose of the hand, comprised of the position and the quater-
nion rotation, and the 22 DoF of the finger joints. Global hand position and
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orientation as well as finger joint angles are normalized according to their cor-
responding range of motion throughout the entire dataset. The entire grasping
process is considered beginning with the start of the arm motion until the final
grasp is reached and the finger joints are not moving any more. A static synergy
space is then learned similar to the kinematic synergies by a PCA trained on all
static arm and hand configurations regardless of grasp progress or grasp type.
However, the resulting synergy space focuses almost exclusively on the hand
posture and discards most information covering the arm motion. Given the
significantly higher dimensionality of the hand posture with 22 DoF compared
with the global hand pose with 7 DoF, the synergies are encouraged to focus
on the hand posture. A more elaborate method of synergy extraction would
therefore be needed to overcome the difference in dimensionality and also the
changing focus from arm to finger movement over the course of the grasping
progress. The concept of grasp synergies combining hand and arm motion is
not further pursued in this thesis.

3.2.3 Human Grasp Trajectories

To study continuous human grasp motions both for the arm and the hand, a
study of human grasp kinematics is performed. The human kinematic syner-
gies are then analyzed on these human grasping motions. The study comprises
15 subjects grasping 30 different objects. The three female and twelve male sub-
jects had a hand length of 188mm ± 15mm measured from the wrist to the tip
of the middle finger. All grasp types from the GRASP taxonomy (Feix et al.,
2016) are demonstrated on at least one object by at least six subjects. Objects are
chosen to accommodate the particular grasp type in a way the object might also
be used in daily life. In addition, complex object geometries are chosen when-
ever reasonable. The objects used in the kinematic grasping study are shown in
Fig. 3.15.

Throughout the study procedure, subjects were standing comfortably in front
of a table, that was adjusted to be at waist height. Colored markings on the
table indicated the starting pose for both hands and the object. Before each trial,
the grasp type was shown to the subjects on a picture using a different object
than the one presented in the study. Subjects started with both hands flat on
the table, grasped the object with the demonstrated grasp type with their right
hand, lifted it and placed it back to the table. Finally, subjects put their right
hand back flat to the table. Each combination of grasp type and object was
recorded three times per subject resulting in a total of 2736 recorded grasps.
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Figure 3.15: Objects used in the kinematic grasping study

A comprising sensor setup was used for data recording. The hand and finger
motions were recorded with a marker-based motion capture system (VICON
Vero, Vicon Motion Systems) as well as a data glove (CyberGlove III, Cyber-
Glove Systems). The data glove was calibrated as described with the grasp
posture analysis in subsection 3.1.2. In addition, intermediate poses for each
degree of freedom of the thumb base joint were recorded and a linear crossgain
was calculated to correct the interference between these joint angles in the mea-
surements. For the marker-based measurement, an additional glove was worn
over the data glove with optical markers attached to every finger segment. The
marker setup on the hand is shown in Fig. 3.16. Furthermore, the human wrist
and lower arm are markered as well, thereby also measuring the hand’s pose.
The object pose is also tracked. Markers on the objects are positioned to mini-
mize the interference with the fingers during grasping.

Given defined hand and object positions in the kinematic grasping study, the
arm movements are analyzed focused on the characteristics of object shape,
grasp type and approach direction. The arm trajectories of all subjects on all
objects used in the study are normalized with respect to the hand’s position
in the beginning of the reaching movement. In addition, grasp recordings are
normalized with the grasp progress over time. The motion of the arm is con-
sidered throughout the entire approach and grasp phases beginning with the
hand placed motionless on the table until the fingers have performed the static,
stable grasp. The later phases of manipulation involving the lifting and plac-
ing of the object are not considered. Kinematic synergies for the arm and the
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Figure 3.16: Marker configuration on the hand for the marker-based motion capture

hand are derived separately from the human grasp motions of this kinematic
grasping study.

3.2.4 Evaluation

The kinematic arm synergies are evaluated regarding the variance explained
with respect to the original grasping data as well as the grasp reproduction
error. Fig. 3.17 (a) shows the explained variance for an increasing number of
synergies in the seven-dimensional space of the hand pose. Two synergies are
enough to represent more than 80% of the overall variance of the hand pose
throughout grasping. Four synergies are needed to ensure a representation of
over 90% of the variance. As explained previously, three synergies are used
to enable a better propagation of grasps with different approach directions in
synergy space. These three-dimensional synergies have a reproduction error of
2.6% of the overall data range. Fig. 3.17 (b) shows that the reproduction of hand
orientation is slightly better than for the hand position.

For the kinematic grasping synergies, explained variance and grasp reproduc-
tion error are depicted in Fig. 3.18 and Fig. 3.19. Six synergies are needed to
represent 80% of the overall variance and eight synergies account for 90% of
the variance. With six synergies, the synergy reproduction of kinematic grasp
trajectories yields an average error of 1.9% of the overall joint angle range. The
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Figure 3.17: Arm synergy characteristics regarding the explained variance for a varying
number of synergies (a) and the reproduction error of arm movements for
grasping from synergy space (b)
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Figure 3.18: Explained variance of the kinematic grasp synergies

reproduction quality is particularly high for the thumb abduction (TAbd) and
the carpometacarpal joint of the ring finger (RCMC). The latter has a very low
range of motion of 5◦ compared to the other joints. Thereby there is less varia-
tion in the RCMC, which causes a palmar arch, and it is simpler to replicate for
the synergies. The highest error is observed in the proximal and distal interpha-
langeal joints of index, middle and little finger, namely IPIP, MDIP, LPIP and
LDIP joints. Overall, both arm synergies and kinematic grasp synergies are able
to represent the human grasp trajectories of arm and hand with three and six
synergy variables respectively. Human grasp trajectories can be reconstructed
from both synergy spaces with an error below 4% of the overall grasp range.
The synergies thereby adequately reflect the human grasping behavior taking
into account both the approach direction and the grasp motion.
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Figure 3.19: Reproduction error of the kinematic grasp synergies for each joint angle
of the joints for abduction (Abd), carpometacarpal (CMC), metacarpopha-
langeal (MCP) and proximal and distal interphalangeal joints (PIP, DIP, IP)
and for the five fingers thumb (T), index (I), middle (M), ring (R) and little
finger (L)

3.3 Grasp Synergy Primitives

For the application of robotic hand control, grasp synergies do not only need
to represent human grasp trajectories, but also need to be adaptable according
to varying environmental constraints and different robotic hand kinematics.
To this end, it is desirable to separate the inherent human grasping motion
from execution-specific details as for example the finger adaptation imposed
by the object’s shape. Therefore, a library of movement primitives is defined
in the kinematic synergy space. These primitives of different human grasping
motions encode the motion-inherent synergy trajectory, while at the same time
being adaptable in terms of time and desired known synergy configurations at
any point throughout the trajectory.

3.3.1 Synergy Primitives

Dynamic movement primitives (DMPs) (Ijspeert et al., 2002) are widely used in
learning from demonstration to describe adaptable motions for robotic arms.
DMPs allow for the adaptation of the start and goal point of a primitive mo-
tion, thereby flexibly adapting it to changing environmental conditions, e. g.
different object placement. In addition, the speed of the motion primitive can
be adapted to achieve a faster or slower execution. Probabilistic movement primi-
tives (ProMPs) (Paraschos et al., 2013) take the variance in human motions into
account. ProMPs can be trained on several human demonstrations and provide
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a mean trajectory as well as a probabilistic description of the valid variation at
each point of the motion trajectory. This work uses via-point movement primitives
(VMPs) (Zhou et al., 2019), which describe a motion trajectory as

y(x) = h(x) + f(x). (3.1)

The elementary trajectory h(x) represents the direct path from the start to the
goal position of the motion. The shape of the motion is encoded by

f(x) = Ψ(x)Tw + ϵ(f), (3.2)

with the weighting w applied on the radial basis kernels Ψ(x) and the noise
ϵ(f).

VMPs combine the approaches of DMPs and ProMPs to achieve a flexible, prob-
abilistic motion description with extrapolation capabilities. In addition, VMPs
allow to constrain the motion to via-points along the trajectory, that need to be
passed throughout the motion execution. By these means VMPs allow a more
precise adaptation of the primitive motion. In contrast to ProMPs, VMPs al-
low for motion extrapolation and can therefore also handle via-points placed
outside of the area covered by the seen demonstrations.

The goal of this section is a general, flexible description of human grasping mo-
tions, that can be easily adapted to different environmental requirements and
desired grasp characteristics. Therefore, a library of synergy VMPs is com-
puted from the kinematic synergy trajectories. One such synergy primitive is
defined for each grasp type within the GRASP taxonomy. Kinematic synergy
trajectories are derived as described in subsection 3.2.2. A VMP is subsequently
trained on the kinematic synergy trajectories of all demonstrations of the same
grasp type. Hence, the resulting synergy primitive learns from demonstrations
of all 15 subjects and is thereby presented with a wide range of functional, yet
individually varying grasp motions.

The synergy primitives of all grasp types from the GRASP taxonomy grouped
according to Table 3.1 are shown in Fig. 3.20. While the first synergy mainly de-
scribes the progress in finger closure throughout the grasp, the synergy struc-
ture of different grasp types is covered by the second and third synergy as well
as the synergies four to six not shown in Fig. 3.20. These synergy primitives
represent an average grasping motion from the respective grasp type.
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Figure 3.20: Synergy primitives for different grasps within the nine grasp type cate-
gories in the static synergy space

3.3.2 Adaptable Grasp Generation

Using the learned synergy primitives, grasps of a given type can be adapted
to different environmental conditions and the grasp motion can be varied both
in time and space. The probabilistic VMP representation allows a variance of
the grasp motion for the same object shape and grasp position according to the
variations seen in human demonstrations. By adjusting the goal of the synergy
primitive trajectory, the final grasp pose can be influenced. Both the grip aper-
ture as well as the proportional joint angle configuration of the grasp can be
adapted. This allows the synergy primitive to adapt to different object sizes and
surface shapes. The grasping motion can be influenced by via-points defined
along the trajectory, thereby forcing the hand closing motion to pass through
these via-points. An onset of the grasp different from a flat hand position can
be accounted for by adapting the start of the synergy primitive.

By these means, the human-learned synergy primitives can be applied to gen-
erate grasps for different environmental conditions, varying e. g. the object size
and shape, the grasp position on the object surface as well as the grasping mo-
tions shape and velocity. Several kinematic synergy trajectories for large diam-
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Figure 3.21: Synergy trajectories for large diameter power grasps generated for grasp
postures demonstrated by humans as well as artificially adapted grasp
postures

eter power grasps are shown in Fig. 3.21. All trajectories are generated based
on the synergy primitive for large diameter grasps. Different grasp trajectories
are generated by changing the goal of the primitive to a grasp pose demon-
strated by a human subject or adapted artificially within the range of human
grasp postures.

3.3.3 Evaluation

The kinematic synergy primitives are evaluated regarding the reproduction er-
ror for known motions as well as the specificity of the synergy primitives in
representing human grasp types. The synergy primitives represent a general-
ization of human demonstrations by a small number of elements in a motion
primitive library. To assess the additional cost in accuracy for the individual
motion demonstration within this generalized representation, the reproduction
error of human motion demonstrations is considered. Fig. 3.22 shows the error
of both the kinematic synergy representation as well as the synergy primitives
in comparison. The synergy primitives are defined in the kinematic synergy
space and therefore include the error arising from the synergy representation.
Hence, the overall error of the synergy primitives described in the kinematic
synergy space of 3.08% is higher than for the direct representation of a spe-
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Figure 3.22: Reproduction error of the kinematic synergy description and the motion
generation based on the synergy primitives, both shown for the different
finger joint angles

cific demonstrated motion in the same kinematic synergy space with an error
of 1.86%.

In many finger joints, the increase in reproduction error due to the synergy
primitive representation is very low, i. e. for all carpometacarpal joints, but also
for the index flexion joints as well as the thumb abduction joint. However,
a significant increase in reproduction error is notable in some specific joints,
especially the thumb interphalangeal joint, the index abduction joint and the
ring finger interphalangeal joints. This indicates, that these joints show a high
variance within each grasp type. The reported error is calculated based on the
mean trajectory of the respective synergy primitive with start and end point
of the motion adapted to the demonstrated human reference trajectory. For
joint angles with a high variance over different demonstrations, this mean syn-
ergy primitive does not reproduce every possible joint angle trajectory. Since
the variance of the demonstrated data is covered in the synergy primitive as
well, it would still be possible to reproduce the different trajectories of the orig-
inal demonstrations by setting via-points or exploiting the primitive’s variance,
given the full knowledge of the desired human trajectory.

In addition, a comparative evaluation was performed to prove the specificity
of the synergy primitives by a classification of grasp types. Given the assump-
tion that a significant divergence exists between primitives of different grasp
types and that each synergy primitive sg is representative for its specific grasp
type g. For this assumption to hold, the synergy primitive sg should be able to
describe hand trajectories from its own grasp type g more accurately than any
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other synergy primitive sh̸=g. Therefore, for each demonstrated grasp, trajec-
tories with start and end point tailored to the demonstration are generated by
each synergy primitive. The evaluation of the representation error with respect
to the demonstrated trajectory shows, that the corresponding synergy primi-
tive sg always provides the best grasp representation over all demonstrations
of its grasp type g. This shows that synergy primitives are specific towards the
grasp type they are trained on and can capture the unique characteristics of this
grasp type.

3.4 Summary and Conclusion

This chapter presented methods for the descriptive representation of postural
and kinematic human grasp synergies. These synergies describe the joint an-
gles of the human hand in grasping. Thereby, the grasp synergies characterize
human grasping postures and motions and hence provide a methodical de-
scription of human grasp strategies. This thesis expands existing human grasp
synergies in three main aspects:

• A postural grasp synergy space is connected to meaningful grasp charac-
teristics. Thereby, the postural grasp synergies can be used for the gener-
ation of specific grasp postures for robotic hand control.

• The motion of arm and fingers in approaching and grasping the object
is considered. The approaching motion of the hand in preparation of the
grasp is thereby taken into account.

• Kinematic synergy trajectories observed from human demonstration are
generalized. Such generalized synergy primitives allow to control and al-
ter grasping motions for robotic hands based on kinematic synergies.

A deep autoencoder is trained to represent descriptive postural synergies in
its latent space. Unlike a principal component analysis the autoencoder is able
to capture also non-linear correlations between joint angles. In addition, the de-
sign of the loss function enforces a clustering of different grasp types in the la-
tent synergy space. The size of the object is considered as additional parameter.
The decoder can be applied to generate novel grasps with specific characteris-
tics from the postural synergy space.

To consider arm motions during grasping, kinematic arm synergies are learned
by a PCA. These describe the global pose of the hand in a lower-dimensional
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synergy space. The arm synergies are analyzed with respect to different grasp
characteristics.

Synergy primitives are learned from kinematic synergy trajectories of the same
grasp type. The synergy primitives are described by Via-Point Movement Prim-
itives capturing the specific behavior as well as the variance of the kinematic
synergy trajectories from human demonstration. Thereby, the synergy primi-
tives can be altered in a controlled way with respect to start-, end- and via-
points of the trajectory as well as the timing of the motion execution. This al-
lows the adaptation of kinematic grasp synergies for the application on robotic
hands.

The evaluation shows a low reproduction error for grasps demonstrated by the
human in all synergy representations - namely the descriptive postural syn-
ergies, the arm synergies and the kinematic synergies. The generalization in
synergy primitives increases the error of simple reproduction, but allows the
adaptation of a single synergy primitive to a range of kinematic synergy trajec-
tories of the same grasp type. The generalization for the generation of novel,
human-like grasps is additionally analyzed for the descriptive postural syner-
gies. Novel, generated grasps have a similar grasp quality compared to grasps
demonstrated by a human.
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CHAPTER 4

Grasp Force Synergies

In addition to the arm motion and finger posture, the forces applied on the
object are also very important for a stable grasp. The number and distribu-
tion of contact points throughout the hand influences the grasp stability and
determines, whether a grasp can withstand external disturbances. The equi-
librium of forces applied at the different contact points influences the stable
grasping posture. Deliberate variations of the grasp force distribution can initi-
ate changes of the grasping posture by in-hand manipulation, while unwanted
disturbances of the grasp force equilibrium can break grasp stability and at its
worst lead to grasp failure. Therefore, grasp contact forces are considered as the
second pillar for successful grasp description and generation in this thesis.

Different to grasp postures however, there is little analysis on grasp forces in
unconstrained human grasping over different grasp types and objects. The im-
portance of grasp forces is widely recognized and there are thorough analyses
on forces for specific grasp characteristics, as described in Section 2.2. Only re-
cently, technology allows for spatially comprehensive and less-restrictive force
measurement within human hands. This enables the comprehensive analysis
of grasp contact forces (De Souza et al., 2015; Sundaram et al., 2019).

A common observation of all research done in human grasp force analysis is
the importance of the coordination of grasp contact forces. Therefore, it seems
natural to consider a synergy space used as a comprehensive general descrip-
tion of grasp forces. In this work, grasp forces are studied in human handover
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tasks on a large variety of object shapes and weights. These grasp forces are an-
alyzed and significant correlations between different grasp contact points are
found. In addition, grasp contact patterns can be directly correlated to differ-
ent grasp types and hence the kinematic posture of the hand. Inspired by the
grasp force correlation, novel static force synergies are defined, that describe the
contact force configurations for stable grasps. In a second step, two represen-
tations are proposed to describe the contact force patterns over the time of the
entire grasping process. For the first time, these dynamic force synergies allow the
representation of grasp forces from the first contact between the hand and the
object until the final, stable grasp in a comprehensive synergy space. The two
representations apply 1) synergy trajectories evolving over time in a static syn-
ergy space and 2) a dynamic synergy space that learns a notion of time within
the synergy description. The work described in this section was presented in
two conference publications (Starke et al., 2019, 2021). Graphs and images in
this section are partially adapted from these publications.

4.1 Grasp Force Analysis

To understand the underlying principles of force distribution in human grasp-
ing, a study of human grasping and handover actions is performed. The grasp
forces recorded throughout intuitive and unconstrained human grasping are
analyzed regarding the force correlation between different contact points. In
addition, grasp forces in the two different settings of the study, namely grasp-
ing from a table and grasping an object presented by another person, are com-
pared. Finally, force contact patterns are analyzed with respect to the hand pos-
ture and grasp type.

4.1.1 Human Handover Study

Human grasp contact forces can only be considered in a comprising manner by
taking into account all varieties of grasps, that can be observed in everyday life.
However, most grasp studies measuring interaction forces with the object are
limited to specific object shapes or grasp contact points due to the placement
of force sensors. In this work, an extensive human grasping study is performed
in cooperation with the École Polytechnique Fédérale de Lausanne (EPFL), that
captures a wide variety of grasps spontaneously performed by the subjects.
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Figure 4.1: Placement of the 18 pressure sensors recording contact forces within the
human hand

The measurement system is set up to measure all aspects of the grasping pro-
cess. To measure grasp contact forces within the entire human hand, a Grip
System (Tekscan Inc., USA) is attached to a data glove on the palmar side of the
hand. It covers the palm as well as the fingers with 18 flexible pressure sensor
pads, as shown in Fig. 4.1. Thereby, the normal forces at these 18 contact loca-
tions are measured, forming an 18-dimensional normal force vector f . In order
to record the corresponding hand posture, the grip system is attached to a data
glove (CyberGlove III, Cyber Glove Systems LLC, USA) which is worn by the
subject and measures finger joint angles in addition to the forces acquired by
the grip system. The subject’s arm motion is recorded using three optical mark-
ers at the wrist, elbow and shoulder which are tracked by an optical motion
capture system (Optitrack, Natural Point Inc., USA). In addition, the scene is
recorded by two RGBD cameras placed behind each subject and an RGB cam-
era placed above the table. Two egocentric cameras are fixed to each subject’s
head. Finally, some of the subjects wear an eye-tracking system. The image data
from the cameras is not used in this thesis, but it enhances the dataset for a
wider range of applications in human grasp analysis.

The handover grasping study was performed by eight subjects executing the
study tasks in pairs. All of the seven male and one female subjects considered
their right hand as the dominant one. Subjects stood comfortably at two oppo-
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(a) (b)

Figure 4.2: Two handover actions with a softball (a) and a pitcher (b) performed in the
human handover study (Starke et al., 2019) ©2019 IEEE

site sides of a table, thereby facing each other. The object was placed on the table
between the two subjects. One subject, in the following denoted as the presen-
ter, took the object from the table and handed it over to the second subject. This
second subject, further on denoted as the receiver, took the object from the pre-
senter’s hand and placed it back on the table. The placing position was freely
chosen by the receiver and in the subsequent run the presenter took the object
directly from that placing position. The presenter performed the handover with
their right hand, while the receiver used their left hand. However, it has been
shown in (Rearick and Santello, 2002), that hand dominance has no influence
on simple grasping tasks. The setup of the human handover study is shown in
Fig. 4.2.

The study procedure included subjects handing over 14 household and work-
shop objects. The objects were chosen from the KIT Object Database (Kasper
et al., 2012) and the YCB Object Set (Calli et al., 2015) and the set was enlarged
with several custom objects. All utilized objects are listed in Table 4.1. A num-
ber of containers were used with different filling levels, thereby varying the
weight of an object while keeping the same object shape. For several tools, the
task was performed with two different strategies. In a handover task, the ob-
jects were handed over by the presenter directly after grasping them from the
table. In a tool use task, the presenter grasped the object from the table, used it
several times for its usual purpose (i. e. hammering with the hammer or writing
with the pen) and finally handed the object over to the receiver. Each task was
performed subsequently at least four times by the same pair of participants.
Subjects were asked to grasp the objects naturally and vary their grasp pos-
ture throughout the repetitions. There were no restrictions of the grasp type or
direction by the experimenter.
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Table 4.1: Object characteristics (Starke et al., 2019) ©2019 IEEE

Object Configurations Weight Object Set

Bowl E / F 163 g / 297 g YCB
Brush HO / TU 75 g KIT
Champagne Glass E / HF / F 31 g / 71 g / 138 g
Clear Plastic Cup E / HF / F 18 g / 82 g / 142 g KIT
Hammer HO / TU 796 g KIT
Mug E / HF / F 107 g / 278 g / 423 g YCB
Pasta Box E / HF / F 46 g / 324 g / 497 g
Pen HO / TU 16 g YCB
Pitcher E / HF 125 g / 715 g KIT
Plate E 87 g KIT
Red Plastic Cup E / HF / F 27 g / 225 g / 389 g
Screwdriver HO / TU 159 g KIT
Softball HO 138 g YCB
Wineglass E / HF / F 151 g / 207 g / 277 g

E: empty HF: half full F: full
HO: handover TU: tool use

Figure 4.3: Distribution and frequency of the grasp types demonstrated in the human
handover study; in total 16 grasp types were used by the subjects (Starke
et al., 2019) ©2019 IEEE
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Grasp classification of the 466 recorded grasps is performed according to the
GRASP Taxonomy (Feix et al., 2016). Overall 16 different grasp types were
demonstrated by the subjects. Six grasp types were recorded in more than 30
demonstrations, as shown in Fig. 4.3. The label others in this figure summa-
rizes the grasp types adduction grip, middle palmar pinch, tripod variation, power
sphere, power large diameter, little palmar pinch and fixed hook. In the following,
all recorded grasps will be used to describe the force synergy spaces. For eval-
uation purposes however, only the six most frequent grasp types are used, to
ensure the representative status of the evaluation data. As an exemplary case,
the lateral grasp type is considered in addition due to its exceptionally strong
thumb adduction.

Table 4.2: Grasp contact patterns (adapted from (Starke et al., 2019) ©2019 IEEE)
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thumb DP • • • • • • •
thumb PP ◦ ◦ ◦ ◦ ◦ ◦ ◦
index DP • • • • • • •
index MP • • • ◦ • ◦ •
index PP • ◦ ◦ ◦ ◦ ◦ ◦
middle DP • • • ◦ • • ◦
middle MP • ◦ ◦ ◦ ◦ ◦ ◦
middle PP ◦ ◦ ◦ ◦ ◦ ◦ •
ring DP • ◦ • ◦ • • ◦
ring MP • ◦ ◦ ◦ ◦ ◦ •
ring PP • ◦ ◦ ◦ ◦ ◦ •
little DP • ◦ ◦ ◦ ◦ ◦ ◦
little MP ◦ ◦ ◦ ◦ ◦ ◦ ◦
little PP ◦ ◦ ◦ ◦ ◦ ◦ ◦
palm distal ◦ ◦ ◦ ◦ ◦ ◦ ◦
palm radial ◦ ◦ ◦ ◦ ◦ ◦ ◦
palm ulnar ◦ ◦ ◦ ◦ ◦ ◦ ◦
palm proximal ◦ ◦ ◦ ◦ ◦ ◦ ◦
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4.1.2 Correlations in Human Grasp Forces

The human grasp normal forces recorded in the handover study are analyzed
regarding their amount and distribution. For the analysis of grasp contact dis-
tribution, a binary contact label is defined based on the continuous normal force
at the respective contact point. Any location with a measured contact force >

1N is considered as a grasp contact point. Table 4.2 shows the grasp contact
points for different grasp types. All grasp types except for parallel extension and
prismatic 3 finger exhibit a unique grasp contact pattern, thereby allowing the
distinction of different grasp types. The precision grasps parallel extension and
prismatic 3 finger differ mostly in the kinematic hand posture as well as the us-
age of the little finger. In the handover study, the force configurations of these
two grasps transition fluently. While the little finger is not involved at all in
prismatic 3 finger grasps, its contribution to the parallel extension grasps is mea-
surable, but still small and therefore below the aforementioned threshold of
1N. Therefore, a distinction of these two grasp types is not possible only with
the grasp contact pattern, but needs to be additionally based on the grasp pos-
ture.

Overall it can be seen that the power grasps like power small diameter have a high
number of different contact points compared to precision grasps like tripod or
palmar pinch. The lateral grasp type exhibits a number of contact points along
the middle and ring finger, that cannot be directly attributed to the expected
grasp posture. These are likely caused by contacts between the fingers and the
palm, as all four fingers are closed to support the object held between thumb
and index finger.

The correlation of grasp forces at different contact locations is analyzed by
applying Pearson’s correlation coefficient (PCC) on the continuous normal forces
of static grasps, as shown in Fig. 4.4. Most notably, the thumb force does not
exhibit any significant correlations with respect to any other part of the hand.
This is to be expected as the thumb usually counteracts an opposing virtual fin-
ger being represented by either the palm or a varying number of other fingers.
Therefore, the number of contact points opposing the thumb’s force is varying
depending on grasp type and posture and no general correlation exists over the
entire range of human grasps.

Within the fingers and the palm, a consistent correlation is demonstrated by
Fig. 4.4. Most notable correlations can be seen between the palm and the index
and middle finger respectively. The proximal phalanges of index and middle
finger show a PCC of 0.84 and 0.86 with respect to the distal area of the palm.
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Interestingly, no correlation can be seen with the proximal phalanx of the little
finger as well as the radial part of the palm with respect to any other part of
the hand. The radial part of the palm is situated directly below the thumb and
is integrated into the kinematic chain of the thumb, containing the metacarpal
bone of the thumb. Therefore, it contributes to the opposing force of the thumb
and adapts according to the grasp’s posture, as explained above. The little fin-
ger is only used in a small number of grasps and proximal finger phalanges
only make contact with the object in the case of power grasps. Therefore, few
human demonstrations show a significant contact force at the lower little finger
in general.

In accordance with existing analyses on specific grasp types or objects (Rearick
and Santello, 2002; Naceri et al., 2014; Marneweck et al., 2016), correlations be-
tween normal forces at different grasp contact locations could be shown for the
general grasping study considered in this work. Such correlations thereby exist
not only for specific grasp postures, but also over the entire range of human

Figure 4.4: Correlation between grasp forces at different contact locations throughout
the hand over all demonstrated human grasps, calculated by Pearson’s cor-
relation coefficient (Starke et al., 2019), warmer colors denote higher cor-
relation between joints, a high correlation can be seen between the fingers
and the palm while the thumb force does not exhibit any correlation with
the forces at other contact points ©2019 IEEE
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grasping. These findings motivate the description of grasping forces within a
lower-dimensional force synergy space.

4.2 Static Force Synergies

The general correlations observed over normal contact forces throughout a
wide range of human grasps prove the existence of force synergies similar
to the postural synergies for hand kinematics. Therefore, this thesis presents
a novel description of force synergies in general and unconstrained human
grasping, i. e. covering a wide range of different grasp types and objects. For
the first time a synergy space describing static human grasping forces is de-
rived and analyzed.

4.2.1 Force Synergy Description

Given a human grasp g with a number of n grasp contact points c1, c2, ..., cn.
Each grasp contact point ci is associated with a normal force fi excerted on
the grasped object. The static grasp force can thereby be described by an n-
dimensional vector fg = (f1, f2, ..., fn). The human handover study described
in Section 4.1 measures grasp contact forces at 18 different contact locations
and thereby the dimensionality of the grasp force will be fg ∈ Rn=18 in the
following. This work aims to derive a synergy space S ⊂ Rk that encompasses
the description of grasp forces fg by force synergies sg = (s1, s2, ..., sk). The
dimensionality of this static force synergy space shall be lower than for the
original static grasp force patterns, i. e. k < n.

Similar to the postural synergies by Santello et al., a PCA is performed on all
force patterns fg, to describe this synergy space S (Santello et al., 1998). This
yields the transformation

sg = W · fg , (4.1)

with W being the weight matrix defined by the PCA. As shown in Fig. 4.5, eight
synergy parameters can describe over 90% of the variance of human grasp force
patterns. Therefore, the static force synergy space is defined as S ⊂ Rk=8.

The grasp force patterns for different grasp types in the force synergy space
can be seen in Fig. 4.6. It shows the eight-dimensional synergy space projected
into two dimensions by t-Distributed Stochastic Neighbour Embedding (tSNE). For
specific grasp types, e. g. power small diameter or palmar pinch, a clustering of

57



Chapter 4. Grasp Force Synergies

Figure 4.5: Overall explained variance over the number of linear static force synergies
(Starke et al., 2019), eight synergies can describe over 90% of the total vari-
ance of the grasp ©2019 IEEE

force synergies can be seen. However, similar to the linear postural synergy
space (Santello et al., 1998), there is no clear structure of the grasps in the static
force synergy space with respect to the grasp type.

Grasp force synergies

power small diameter
tripod
parallel extension
palmar pinch
prismatic 3 finger
power disk
index finger extension
power palmar
lateral

Figure 4.6: Distribution of grasps in the static force synergy space; the eight-
dimensional space is projected to two dimensions by tSNE (Starke et al.,
2019) ©2019 IEEE
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4.2.2 Analysis and Evaluation

Based on the normal contact forces, the discriminability of grasp types can
be measured with a numerical index similar to the sensorimotor efficiency in-
dex for hand postures (Santello et al., 1998). On average the contact forces can
transmit 93.9% of all possible information. This demonstrates the suitability of
grasp contact forces to discriminate and classify different grasp types in human
grasping.
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Figure 4.7: Mean force synergies of different grasp types (Starke et al., 2019), the plot
shows a notable distinction between grasp types in the first synergy with
1.00 for palmar pinch and -0.91 for power disk and in the fourth synergy
with 0.75 for index finger extension and -0.93 for tripod grasps ©2019 IEEE

Further, the mean synergy representation of each grasp type is shown in Fig. 4.7.
A clear differentiation of grasp types can be seen in the first and fourth synergy.
In accordance with the direct observations in synergy space, the distribution of
grasp types is rather homogeneous. Similar to the postural hand synergies, a
more explicit structure of the static force synergy space requires a synergy ex-
traction strategy, that explicitly fosters the separation of grasp types.

Two exemplary grasp force configurations are shown in Fig. 4.8. Human grasp
demonstrations of a power small diameter grasp on a hammer and a tripod grasp
on a pen yield the depicted grasp force configurations and corresponding syn-
ergy representations. For these two exemplary grasps, differences in synergy
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Exemplary human grasp demonstrations, the corresponding normal force
configurations with darker colored parts applying a larger normal force on
the object and their respective representation in the force synergy space;
power small diameter grasp on a hammer (a) with the corresponding force
configuration (b) and synergy representation (c) as well as a tripod grasp
on a pen (d) with its force configuration (e) and synergy representation (f)
respectively (adapted from (Starke et al., 2019) ©2019 IEEE)

representation can be clearly seen. Also, expected characteristics of both grasp
types can be found in the grasp force configuration. While the power grasp
shows a wide force distribution with almost all finger segments in direct con-
tact with the object, the tripod grasp reflects the expected grasp contacts at the
tips of thumb, index and middle finger. The static force synergy space allows
to represent these distinct features of both grasps in a low-dimensional space,
that preserves meaningful force characteristics while taking into account gen-
eral correlations between grasp contact forces. With these force synergies, the
complexity of force control for humanoid robotic hands can be reduced.

4.3 Time-Dependent Force Synergies

The quality of a grasp is not only influenced by its static posture and configura-
tion of contact forces. In addition, the motion and interacting forces applied by
the hand throughout the grasping action are contributing significantly to the
final grasp. The interaction of contact forces throughout the grasp execution
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shape the final grasp posture. Furthermore, the balanced increase of counter-
acting forces is crucial for grasp success. An imbalanced force configuration
throughout the grasp execution may lead to undesired object motions or even
grasp failure due to the object being pushed out of the hand.

Therefore, this work considers the entire grasping process with the evolution
of normal grasp force patterns from the first contact to the stable grasp. In-
stead of a static normal force pattern fg,T , this requires the consideration of a
temporal force pattern fg(t) for t ∈ [0, T ] with T being the time the final grasp
is achieved. Based on the correlations found within static force patterns, this
work aims at defining temporal force synergies sg(t) that represent the entire
temporal progression of the normal force pattern fg(t) throughout the grasping
process.

Towards this goal, two synergy representations are presented. Firstly, a static
synergy space is learned by applying the method used in Section 4.2. Temporal
force sequences can then be represented as temporal trajectories within this
static synergy space. Secondly, a dynamic synergy space is learned based on
entire temporal force sequences. By these means, the force synergies directly
take the progression of the contact forces into account. Both approaches are
evaluated regarding their reproduction and generation capabilities.

4.3.1 Static Force Synergy Space

As presented in Section 4.2, a static force synergy space S can be described
by eight synergy parameters learned by a PCA. Inspired by Romero et al., this
static force synergy space can be exploited for the representation of tempo-
ral normal force patterns fg(t) by describing them as a chronology of time-
independent force synergies sg(t) = (sg,0, ..., sg,T ) (Romero et al., 2013). Hence,
the static synergy space S is retrained on all force patterns within the human
demonstrations of the handover study regardless of their grasp type or timing
within the grasping process. By these means, the shape of the synergy space
is adapted to represent not only possible stable grasp force configurations, but
also any grasp force patterns observed throughout the grasping process that
leads to this final grasp configuration. The force synergy trajectories in the first
three dimensions of the static synergy space S are shown in Fig. 4.9. All syn-
ergy trajectories start in a mutual point representing fg(0) = 0N right before
the initial contact between the hand and the object is made. From there on, syn-
ergy trajectories evolve into different directions of the synergy space depending
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Figure 4.9: Force synergy trajectories of different grasp types in the first three dimen-
sions of the eight-dimensional linear force synergy space (Starke et al.,
2021), all synergy trajectories start at the same point marking no contact
force, from there, synergy trajectories evolve into different directions of the
force synergy space depending on their grasp contact configurations ©2021
IEEE

on their grasp force configuration. Interestingly, a differentiation of grasp types
can be seen in the force synergy space. The directions of the synergy trajectories
opening a spectrum from embracing power grasps to fine-granular precision
grasps vary mainly in the first and third synergy.

To generalize synergy trajectories for different grasp types, a Gaussian Mixture
Regression (GMR) is performed on several demonstrations of the same grasp
type. For each grasp type, five Gaussian Mixture Models (GMM) are learned
using expectation maximization on all demonstrated force synergy configu-
rations. The initialization of the GMMs is performed by k-means clustering.
Based on these Gaussians, the GMR yields an expectation Eg(t) as well as a
corresponding variance varg(t) for the synergy trajectory of each grasp type
g.

The grasp generation of new, human-like temporal grasp force patterns can
then be performed by using the synergy expectation Eg(t), which represents an
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Figure 4.10: Average synergy trajectories in the static synergy space for each grasp type
calculated by GMR; force synergy variables for the different grasp types
are represented as bars, the temporal evolution of synergy variables is de-
picted by an continually increasing coloring within each bar (Starke et al.,
2021) ©2021 IEEE

average force synergy trajectory of the desired grasp type. To cover the entire
variety of human grasp force demonstrations, the synergy variance varg(t) pro-
vides the range for adaptions with respect to the average force synergy trajec-
tory that still result in valid, human-like temporal grasp force patterns. The av-
erage force synergy trajectories for different grasp types are shown in Fig. 4.10.
It can be seen that the synergy trajectories of different grasp types evolve into
distinct directions in synergy space. In the first synergy variable, the amplitude
of the final grasp force is especially high for power grasps like the power small
diameter. In the third to seventh synergy, synergy directions vary notably be-
tween grasp types. These findings match the qualitative observations for the
trajectories in the static synergy space in Fig. 4.9.
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Figure 4.11: Structure of the LSTM autoencoder to represent the dynamic force syn-
ergy space; entire sequences of temporal force patterns are fed into an
LSTM-encoder, synergy mean and variance are represented in two par-
allel fully connected layers, temporal force patterns are reproduced by an
LSTM-decoder (Starke et al., 2021) ©2021 IEEE

4.3.2 Dynamic Force Synergy Space

While the static force synergy space can be used to represent time-dependent
trajectories of human grasp forces, it has no notion of time by itself. This means
that the consistency of a synergy trajectory over time is not inherently guar-
anteed, but needs to be ensured by an operator throughout the generation of
new, human-like synergy trajectories for robotic hand control. Therefore, a sec-
ond, dynamic synergy space is defined, that encodes the time-dependent grasp
progress directly in the force synergies.

To this end, the methodology of a recurrent neural network is applied. It is
trained to represent entire temporal sequences of human grasp force patterns.
The structure of an long short-term memory (LSTM) autoencoder allows a non-
linear reduction of the dimensionality of the contact force patterns while con-
sidering the temporal relation of the forces evolving over the entire grasping
process. The structure of the LSTM autoencoder network is shown in Fig. 4.11.
Entire normalized temporal human grasp normal force patterns fg(t) are fed
into the encoder. Hence, the input of the network is a matrix denoting the 18-
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Figure 4.12: Loss function to train the dynamic force synergy space; the encoder is exe-
cuted threefold to encourage both a good grasp representation and a clus-
tering of grasp types in synergy space (Starke et al., 2021) ©2021 IEEE

dimensional vectors of the 18 scalar normal forces within a grasp configuration.
The second dimension of the input matrix represents the grasp progress and is
defined by concatenating static normal force vectors over every time step of
the grasping motion. The encoder network consists of two LSTM-layers with
a width of 18 and 13 variables, respectively. To ensure the consistent valid-
ity of the synergy space, the LSTM-encoder is followed by two parallel fully
connected layers describing the expectation E(s̃g) and logarithmic variance
varlog(s̃g) of the demonstration in the dynamic synergy space S̃. A sample s̃g(t)

is drawn from this synergy space by

s̃g(t) = E(s̃g(t)) + ϵ · e0.5varlog(s̃g(t)) , (4.2)

with ϵ being a random number with a mean of 0.0 and a standard deviation
of 1.0. E(s̃g) thereby represents the dynamic force synergy space projecting the
mean synergy trajectories of the human temporal grasp force patterns. varlog(s̃g)
describes the feasible variation of synergy trajectories that is still attributed to
the same human demonstration. The dynamic synergy space S̃ has eight di-
mensions. The synergy sample s̃g(t) is fed into the decoder consisting of two
LSTM-layers with 13 and 18 dimensions respectively. The network outputs the
reconstructed temporal grasp force pattern f̂g(t).

A contrastive loss function is applied to structure the dynamic synergy space
in a meaningful way. This allows to control the grasp type when generating
human-like grasps by sampling directly from the synergy space. The loss func-
tion is shown in Fig. 4.12. The encoder is run three times in parallel with a
temporal force pattern fg(t) of grasp type g, a reference sample fg̃(t) of the same
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grasp type and a second reference fh(t) of a different grasp type h. The loss is
thereby structured into three parts.

1. A general reproduction loss between the original and reproduced tempo-
ral force patterns fg(t) and f̂g(t) ensures that meaningful temporal force
patterns can be generated from the dynamic synergy space.

2. In addition, a second term minimizes the distance between two synergy
patterns originating from the same grasp type.

3. A separation between synergy patterns belonging to different grasp types
is promoted by the third loss term, that approximates the squared dis-
tance in synergy space to a desired threshold d = 0.15.

Altogether this enforces a clustering of grasp types in the synergy space, similar
to the approach used for the adaptable postural grasp synergies in Section 3.1.
Temporal force patterns all start similarly with f(0) = 0 right before contact
between the hand and the object is established and only evolve into different
force configurations over the grasp progress. Therefore, the separation of grasp
types can only be preformed at later stages of the grasping process. To achieve
this, both parts of the contrastive loss are weighted with the relative grasp time
t, thereby continually increasing the amount of separation that is enforced over
the progress of the grasp. The overall loss function is then given by

L = α · MSE(fg(t), f̂g(t)) + β · t · MSE(s̃g(t), s̃g̃(t))

+ γ(d− t · MSE(s̃g(t), s̃h(t))) ,
(4.3)

with MSE(·) being the mean squared error function and the weighting param-
eters α = 1.0, β = 0.05 and γ = 0.005. s̃(t) denotes a synergy trajectory in the
latent dynamic synergy space S̃.

For network training, the human grasp force demonstrations were split into
training, validation and test motions by 90%, 10% and 10% respectively. The
network is trained using an Adam optimizer with a learning rate of 10−3 and
gradient scaling with a norm of 0.5. Pretraining is preformed applying only the
reproduction loss for 1500 epochs, before training with the entire loss function
for another 1500 epochs.

The first three dimensions of the learned dynamic synergy space are shown in
Fig. 4.13. Synergy trajectories start from a mutual point marked in red, that rep-
resents the unloaded hand without grasp contacts. From there on, the synergy
trajectories evolve into the entire synergy space, with the temporal progress
depicted by increasingly solid lines in Fig. 4.13. The synergy trajectories of dif-
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Figure 4.13: First three dimensions of the dynamic force synergy space, synergy tra-
jectories are depicted with increasingly solid color throughout the grasp
process (adapted from (Starke et al., 2021) ©2021 IEEE)

ferent grasp types evolve into different directions of the synergy space. A clear
separation is also notable in the mean synergy trajectories of the different grasp
types shown in Fig. 4.14. In comparison to trajectories in the static synergy
space, synergy parameters in the dynamic synergy space vary less over time.
Instead, a separation of grasp types can be seen early on over all synergy vari-
ables. Simultaneously, the inherent notion of time embedded into the dynamic
synergy space reduces the necessity to encode the overall grasp progression
into the synergy variables. By these means, the grasp progress does not need
to be considered explicitly in the dynamic synergy space, but the same syn-
ergy configuration can generate a valid grasp force pattern for a timed series of
momentary grasp forces.
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Figure 4.14: Evolution of the mean synergies of different grasp types throughout the
grasp process, evolution over time is depicted by an increasingly solid bar
color (Starke et al., 2021) ©2021 IEEE

4.3.3 Generation of Human-Like Grasp Forces

To control humanoid robotic or prosthetic hands in grasping a large variety
of different, possibly unknown objects, grasp normal force patterns should be
directly generated based on the presented force synergies without the need to
specifically record a human demonstration under exactly similar conditions.
Similar to the adaptive postural and kinematic synergies, force synergies are
therefore shaped to allow a simple definition of the grasp’s characteristics and
temporal progress for the artificial generation of grasp force configurations
from synergy space. By feeding the decoder with an artificially sampled syn-
ergy configuration, new, human-like temporal grasp force patterns can be gen-
erated from the dynamic force synergy space. This is shown for four generated
grasps of different grasp types in Fig. 4.15. Similarly, a trajectory can be defined
in the static synergy space to achieve a newly generated grasp normal force
pattern for a humanoid hand.

For the grasp generation from the static synergy space, the temporal progress
of the grasp has to be considered manually for the static synergy space, an artifi-
cially generated synergy trajectory should be defined within the expected vari-
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ance of the desired grasp type’s human demonstrations. By these means, the
resulting temporal grasp force pattern is ensured to be meaningful. To choose
a grasp type for the dynamic synergies, it is sufficient to position the trajectory
within the associated area of the clustered synergy space. Two temporal force
patterns generated from the static and dynamic synergy spaces as well as com-
parable human demonstrations of palmar pinch grasps are shown in Fig. 4.16.
Both generated trajectories show a focus on normal forces at the thumb and

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.15: Application of the dynamic force synergies for four different grasps, a hu-
man demonstration of a palmar pinch (a), a prismatic 3-finger grasp (d),
a tripod grasp (g) and a parallel extension grasp (j) are shown together
with corresponding trajectories in synergy space (b, e, h, k) and generated,
human-like grasp force patterns (c, f, i, l), force contact points are high-
lighted in green (adapted from (Starke et al., 2021) ©2021 IEEE)
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(a)

(b)

Figure 4.16: Human-like temporal force patterns of palmar pinch grasps generated
from the static (a) and dynamic (b) synergy spaces, both depicted in
dashed lines, solid lines show an exemplary human demonstration of the
same grasp type (Starke et al., 2021) ©2021 IEEE

index finger, as expected in a palmar pinch grasp. The proximal palmar force
generated by the dynamic synergy space is situated at the ball of the thumb,
thereby contributing to the force applied by the thumb. The examples gener-
ated from both synergy spaces show plausible, human-like grasps while no-
tably varying from the given human observations. Fig. 4.17 shows the final
grasp force configurations of three different grasps generated from the dynamic
force synergy space. Grasp contact forces are visualized using the Master Motor
Map’s model of the human hand (Mandery et al., 2016) with contact locations
marked in red.
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(a) (b) (c)

Figure 4.17: Grasp force configurations generated from the dynamic synergy space for
a parallel extension grasp (a), a palmar pinch (b) and a power small diam-
eter grasp (c), visualized on a simulated human hand with normal force
contact areas highlighted in red (Starke et al., 2021) ©2021 IEEE

4.3.4 Evaluation

Both force synergy spaces are evaluated regarding their ability to represent
temporal grasp force patterns demonstrated by humans. Further, the grasp
quality of generated grasp normal force configurations from the dynamic force
synergies is assessed.

To evaluate the validity of both force synergy representations, all human demon-
strations from the handover study are mapped into synergy space. The repro-
duction error caused by the retrieval of temporal force patterns from the syn-
ergy trajectories is shown in Fig. 4.18. Over all grasps, the reproduction error in
the static synergy space amounts to 0.32N being 0.98% of the maximum grasp
force of 32.4N. For the dynamic force synergies, a reproduction error of 1.99%
or 0.65N is measured on the data of the test set. As depicted in Fig. 4.18, the re-
production error between different grasp types varies equally for both synergy
representations. Precision grasps like the tripod and palmar pinch are very well
defined in the distribution of contact points and the relation of forces applied
to the object. Therefore, they exhibit particularly low reproduction errors. In
contrast, power grasps require a higher number of contact points. Hence, the
variance within grasp forces is naturally higher for power grasps, as force coor-
dination depends on the task and object shape. Overall, the static synergy space
has a lower reproduction error for grasp force patterns observed from human
demonstration, while both synergy representations prove to be generally able
to represent human grasp force patterns.

To analyze the validity of grasps represented in the dynamic synergy space,
their grasp quality is assessed in grasp simulation. To this end, the final grasp
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Figure 4.18: Reproduction error of grasp force patterns from human demonstration for
both synergy representations and different grasp types (Starke et al., 2021)
©2021 IEEE

normal force patterns f(T ) from the dynamic synergies s̃(T ) are simulated on
the hand of the model of the Master Motor Map (Mandery et al., 2016) in the
grasp simulator Simox (Vahrenkamp et al., 2010). In total, 75 grasps on nine
different objects used in the human handover study are simulated. To apply
the force patterns, kinematic hand postures and the relative positioning of the
hand with respect to the object are directly taken from the human grasp record-
ings. Hand postures are optimized with respect to the defined grasp contact
points to compensate inaccuracies in the recorded postural human data. Op-
timization is performed by gradually closing the fingers until grasp contact is
established. Further, the hand’s position and orientation relative to the object
is gradually varied. Among all valid grasps, which achieve the correct contact
points, the best grasp quality is chosen. The same hand pose and grasp pos-
ture is applied to evaluate both the grasp forces from human demonstration
as well as the synergy-generated forces. Therefore, an objective comparison of
both grasp force patterns is achieved.

The grasp quality is measured with the metric ϵ (Ferrari and Canny, 1992). The
resulting grasp quality for different grasp types is shown in Fig. 4.19. Overall,
the grasp quality of synergy-generated grasps with ϵ = 0.338 is similar to the
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Figure 4.19: ϵ-quality of grasp force configurations demonstrated by humans and gen-
erated from the dynamic force synergy space (Starke et al., 2021) ©2021
IEEE

quality of human-demonstrated grasps with ϵ = 0.337. Also considering differ-
ent grasp types separately, there is no significant difference between human-
demonstrated and syergy-generated, human-like grasps in terms of the grasp
quality. However, there are notable differences in quality between the distinct
grasp types. The tripod grasps and prismatic three finger grasps generally yield
a higher grasp quality than the parallel extension grasp or power disc grasp for
both human-demonstrated and synergy-generated grasps. These differences in
grasp quality are caused by the high influence of the number of contact points
on the ϵ-quality. In addition, the grasp quality is calculated assuming only point
contact, which significantly simplifies the contribution of the palm in power
grasps.

Overall, two novel synergy spaces are presented, that are able to represent and
generate human-learned temporal contact force patterns in grasping. The static
synergy space has a lower reproduction error than the dynamic synergy space.
Therefore, trajectories in static synergy space are the preferable method to en-
code and represent human grasp demonstrations. However, the static synergy
space has no inherent notion of time and the generation of new force pat-
terns therefore requires hand-crafted synergy trajectories ensuring the feasi-
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bility of the designed force progression. A comparison of grasp quality for hu-
man demonstrations and grasps generated by the dynamic synergies proves
the functionality of the dynamic synergy space. Therefore, the dynamic syner-
gies are preferable for the generation of new, human-like fore patterns due its
inherent encoding of temporal grasp progress.

4.4 Summary and Conclusion

This chapter presented a thorough analysis of human grasp contact forces over
a wide range of grasp types and objects. Based on correlations found in human
grasping, static grasp force synergies are introduced. For the representation of
temporally changing human grasp force patterns throughout the entire process
of grasping, two methods for the description of time-dependent force synergies
are presented. Besides the description of human grasps, these force synergies
can also be applied in the control of human-like robotic hands. This thesis ex-
pands existing analysis and repesentation of human grasp forces in three main
aspects:

• Correlations between grasp normal forces at different contact points are
shown over a wide range of different grasp types. Human subjects in
the grasp recordings could grasp spontaneously without any restrictions
from the operator or the measurement setup regarding the grasp type and
hand positioning.

• Static grasp force synergies are defined based on the correlations in hu-
man contact force patterns. These force synergies describe 18 grasp con-
tact forces in an eight-dimensional synergy space.

• Two novel methods are proposed for the description of temporal force
patterns. Time-dependent trajectories in a static synergy space allow an
accurate, low-dimensional representation of temporal force patterns. A
dynamic synergy space with an inherent notion of time allows the gener-
ation of new, human-like temporal grasp force patterns from the synergy
space.

Correlations in human grasp contact force patterns have been shown in an
open analysis of human grasping. Different from similar analyses in related
works, this correlation analysis is not restricted to specific grasp types or spe-
cial, sensorized objects. Instead, correlations can be proven in general over a
wide range of spontaneous, unconstrained grasping actions.
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Static grasp force synergies are defined based on the found force correlations.
Similar to the basic postural synergies (Santello et al., 1998), the force synergies
are learned by a PCA applied on human static grasp force patterns of stable
grasps. The resulting synergy space describes 18 contact forces in eight dimen-
sions.

Time-dependent force synergies are presented to describe entire temporal force
patterns up to the final static grasp. Based on methodology used for kinematic
synergies Romero et al. (2013), temporal force patterns are described as time-
dependent trajectories in a static force synergy space, that has no notion of time
by itself. In a second approach, a dynamic synergy space is learned from en-
tire temporal force patterns by an LSTM-autoencoder. It encodes the temporal
progression of grasp forces in the synergy space and additionally enforces a
clustering of grasp types.

The evaluation shows that grasp types can be classified based on their static
grasp force pattern and hence are relevant for the distribution of grasp contact
forces. The structure of the eight-dimensional static force synergy spacehow-
ever, does not show any clustering of grasp types. Even so, the static synergy
space is able to accurately represent human grasp force patterns. Similarly, also
temporal force patterns can be represented by a static synergy space with an
error of less than 1% of the maximum grasp force. The dynamic synergy space
allows for a direct encoding of grasp progress and can be used to generate
new, human-like temporal force patterns that result in a grasp quality similar
to human-demonstrated grasps.
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CHAPTER 5

Semi-Autonomous Grasping

The grasp synergies in this work enable a simplified, human-like control for
humanoid hands. Such control is applied on robotic prosthetic hands, which
combine the requirements of versatile, human-like grasping and simple, yet
reliable grasp control. This chapter presents three contributions of this thesis.

1. The postural synergies are applied on the female KIT Prosthetic Hand
(Weiner, Starke, Rader et al., 2022; Weiner, Starke et al., 2018) to grasp
objects from daily life. While this robotic prosthesis simplifies grasp con-
trol by mechanical intelligence using an adaptively underactuated mech-
anism to drive the four fingers, the synergy-based control considers the
coordination of thumb and fingers within the grasp to enhance grasp
stability. Further, the object size is considered in the synergy-based gen-
eration of human-like grasps, enabling customized, object-specific grasp
apertures.

2. A human grasp library is defined based on human grasp demonstra-
tions, that allows the transfer of human grasping motions onto humanoid
robotic or prosthetic hands. This includes the generalization and adap-
tation of robotic grasp trajectories based on different object characteris-
tics. A fingertip trajectory mapping is applied to transfer human power
grasp trajectories to a prosthetic hand. Complemented by a trajectory of
the hand orientation, which is also extracted from human demonstration,
a database of human grasps on a wide variety of object shapes and sizes is
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defined, including different approach directions of the hand. The grasps
in the human grasp database can be adapted with respect to the final
grasp aperture. In addition, an object database is defined, which provides
information on shape and fragility characteristics of objects of daily life.

3. A novel semi-autonomous prosthetic control is designed based on con-
tinuous human grasp trajectories. It aims at simplifying prosthetic con-
trol for the user by automating parts of the grasping process. Thereby, the
number and frequency of control signals directly issued by the user is re-
duced, while keeping the user in control of the prosthesis. In comparison
to the state of the art, this is the first semi-autonomous control that does
not only provide static preshape and grasp postures, but a continuous
and coordinated control of the hand closing motion as well as the wrist
orientation. This allows a seamless coordination of all DoF of the pros-
thetic hand throughout the entire grasp execution. A user study proves
the intuitiveness of the human-learned semi-autonomous grasp control,
while users still feel in control of their prosthetic hand.

The work described in this section was presented in a journal publication ((Starke,
Weiner et al., 2022)). Graphs and images are partially adapted from this publi-
cation.

5.1 Myoelectric Hand Prostheses

Prosthetic hands provide a replacement for a missing or lost human limb to in-
dependently master daily life. Very simple, cosmetic prostheses cannot perform
any grasping motions and only provide an optical replacement of the missing
hand. Movable prosthetic hands, that are able to partially replace the human
hand’s grasping abilities can be either driven by muscle power or or be electri-
cally powered. Body-powered prosthesis harness remaining human motion ca-
pabilities, usually by the shoulder, to actuate the hand’s grasping motion over
mechanical or hydraulic force transmission as for example presented in (Smit
et al., 2015). These body-powered prostheses provide a direct and robust, but
less intuitive control applying a motion coupling between the hand and other
parts of the human body.

In contrast, myoelectric prosthetic hands are driven by electric motors with
a power supply directly integrated into the prosthetic shaft. The user does not
need to power the prosthetic motion, but merely needs to control the hand with
the use of myoelectric muscle signals measured on the muscles of the remaining
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stump. (Belter et al., 2013) gives an overview of commercial myoelectric hand
prostheses and (Piazza et al., 2020) presents a survey of humanoid robotic and
prosthetic hands in research. Myoelectric prostheses are controlled by the mus-
cles originally actuating the human hand, with the aim of an intuitive control
interface. However, the robust generation and detection of control signals is
difficult due to changing stump conditions including temperature variations
and sweat. In addition, arm muscles can degenerate after the loss of the limb
or might be affected by injuries or deformity themselves. Therefore, the band-
width of myoelectric control signals is very limited in commercial prosthet-
ics and varies significantly among prosthesis users. Meanwhile, the kinematics
and grasp functionality of prosthetic hands become increasingly versatile. Con-
sequently, the necessity for simple, yet reliable control of highly complex sys-
tems arises. Therefore, prosthetic research focuses on adaptivity and automa-
tion of prosthetic mechatronics as well as advanced myoelectric signal decod-
ing to provide simple control for the increasingly complex prostheses.

The KIT Prosthetic Hand (Weiner, Starke et al., 2018; Weiner, Starke, Rader et
al., 2022) is used as a platform for the human-learned grasp control presented in
this work. This prosthesis aims to implement grasping intelligence in hardware
as well as provide sensorization and computing power for intelligent grasp
control. The hand is designed to be personalizable in size and functionality
and has been built in two different versions with the size of an average male
and female hand. The prosthetic hand can be connected to a self-experience
shaft to be worn below a person’s able hand. This allows the evaluation of
prosthetic grasp control with able-bodied subjects. The mechanics of hand and
self-experience shaft are shown in Fig. 5.1.

The actuation of the prosthesis consists of two motors driving the fingers (blue)
and the thumb (red) individually. The wrist pronation and supination is driven
by a third motor (green) integrated into the self-experience shaft. While thumb
and wrist rotation are directly actuated, the four fingers are driven by a sin-
gle motor over an adaptive underactuation mechanism. The mechanism dis-
tributes the force evenly over all four fingers and allows the continuation of the
closing motion even if individual fingers are blocked. By these means, the fin-
gers mechanically adapt to the object’s shape without any software control.

Further, the prosthesis features a sensor setup including an inertial measure-
ment unit (IMU), a distance sensor and a camera for environmental perception
as well as a high-performance embedded system for resource-aware intelligent
scene understanding and grasp control. The components for sensing and com-
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Figure 5.1: Actuation and sensorization of the KIT Prosthetic Hand, each degree of free-
dom is marked by one color (Starke, Weiner et al., 2022) © CC BY 4.0

putation are embedded into the palm. A display on the back of the hand can
provide feedback to the user of the prosthesis.

5.2 Grasp Synergy Mapping and Control

To easily control human-like grasping, grasps generated by the adaptable pos-
tural synergies from Section 3.1 are applied on the KIT Prosthetic Hand. Due to
the fixed thumb opposition of the prosthesis, only four of the five learned grasp
types can be considered. These four grasp types are cylinder grasps, spherical
grasps, disk grasps and pinch/tripod grasps. Lateral grasps, that require thumb
adduction, are therefore excluded. Further, the prosthesis control is focused on
power grasps due to the joint underactuation of all four fingers. While preci-
sion grasps cannot be directly executed, they can still occur when only some
of the fingers get in contact with a small object. Therefore, pinch/tripod grasps
are considered, but evaluated separately since the prosthesis does not allow the
accurate implementation of these grasps. For each grasp type, grasps on all ten
objects used in the static grasping study (subsection 3.1.2) are generated from
the adaptable postural synergy space. Further, grasps on three novel house-
hold objects from the KIT Object Database (Kasper et al., 2012) and the YCB
Object Set (Calli et al., 2015) are generated, that were not used in training of
the synergy network. These additional objects are the coke bottle, fizzy tablets
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and canned meat for the cylinder grasp, the pear, strawberry and plum for the
sphere grasps, the chips, water glass and powdered sugar for the disk grasps
and the bandaid package, rusk and green soup for the pinch grasps. The diam-
eters of all new objects are within the range of the demonstrations of the static
grasping study.

For pose and motion mapping from the generated, 16-dimensional hand con-
figurations onto the two degrees of actuation (DoA) of the prosthesis, mutually
actuated joints are summarized. The thumb motor is actuated according to the
mean joint angle of the thumb CMC, MCP and IP joints. The average of the
MCP and PIP joint angles of index, middle, ring and little finger is applied on
the finger motor. All abduction angles and the palm arch are discarded, since
these joints are fixed for the prosthetic hand. The desired joint angles for thumb
and fingers are transferred to the position of the respective motor by calculat-
ing the relative joint angle with respect to the fingers full range of motion. This
relative joint angle closure is then mapped to the relative motor position with
respect to the range between the fully opened and fully closed hand state. The
postural synergies only provide a static grasp posture. This target position is
approached using a cascaded position and velocity control with a PI-controller
for the position and a P-controller for the velocity. The controller gains are ex-
perimentally tuned to KP = 0.5 and KI = 10−6 for the position control and
KP = 100 for the velocity control. The velocity controller is further capped at

4.25
turns

s
for the thumb and 6, 37

turns
s

for the fingers.

The postural synergies are evaluated on the prosthetic hand regarding the
grasp success and quality. The prosthesis is worn by the experimenter using the
self-experience shaft. Objects are placed one by one on a table at chest height for
the standing experimenter. Grasp commands are issued with a smartphone that
is connected to the prosthesis via bluetooth. Grasp execution and motor control
are computed directly on the embedded system integrated into the prosthetic
hand. The objects are grasped from the table with the hand positioned manu-
ally in the direction promoting the desired grasp direction and type. Inspired
by the YCB Gripper Assessment Protocol by (Calli et al., 2015), objects are lifted
and held for 3 s, then rotated by 90◦ and held for another 3 s. Rotation is per-
formed in the most critical direction, i. e. for a side grasp, the hand is rotated
into a top grasp with the open fingers held downwards and for a top grasp,
the hand is rotated sideways into a side grasp. If the object can be grasped and
lifted from the table, one point is given. Another point is added for lifting the
object without any motion within the hand. If the object stays within the hand,
another point is scored and a last point is given for rotating the hand without
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Figure 5.2: Cylindrical power grasp on a spoon generated by from the postural syner-
gies (a) and grasp success of synergy-generated human-like grasps (b)

any motion of the object within the hand. In total, four points can be achieved
per grasped object.

Overall, a grasp success rate of 84.9% (177 points out of 208) is achieved by the
evaluated grasp control learned based on the postural synergies. An example of
a cylindrical power grasp generated from the postural synergies and executed
on the prosthetic hand is shown in Fig. 5.2 a). As can be seen in Fig. 5.2 b), the
grasp success rate is significantly lower for pinch grasps, since these are applied
on smaller, more difficult objects and cannot be directly executed with the un-
deractuated prosthetic hand. For power grasps of the cylinder, sphere and disk
grasp types, a success rate of 94.0% (147 points out of 156) is achieved. This
shows, that functional human-like grasps can be generated from the postural
grasp synergies and can be applied in the grasp control of robotic prosthetic
hands.

5.3 Human Grasp Database

A continuous and coordinated grasp motion is important both for fast and suc-
cessful grasp execution as well as human-like, predictable grasping behavior.
This implies the simultaneous control of all degrees of actuation of a robotic
prosthesis. Commercially applied sequential control schemes control grasp char-
acteristics like the wrist orientation, hand preshape defining the grasp type and
the hand closing motion in an ordered sequence of isolated actions (Farina et al.,
2014). This slows down the grasping process and visibly isolates its different
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parts, since the prosthesis stops all motion when switching from one control
phase to the next. In addition, such sequential control does not use the poten-
tial emerging from the coordinated interplay of motions in different joints for
grasp success. Especially for thin or hard to reach objects, it might be benefi-
cial to continuously rotate the hand throughout the finger closing to slide the
fingers between the object and an environmental surface, e. g. from the support-
ing table, as has been done for a robotic hand in (Della Santina et al., 2019). To
achieve such coordinated, continuous grasp motions, timed simultaneous con-
trol of all degrees of actuation of the prosthetic hand needs to be achieved.

To this end, a human grasp database is built. 510 grasps were demonstrated
by five subjects on 29 different household and workshop objects. The objects
are chosen to span a wide variety of sizes and shapes including cylindrical and
spherical objects, boxes, handles and specific shape variations like a banana,
a pear or a bowl. Subjects wear a sensorized glove measuring the finger joint
angles (CyberGlove III, Cyber Glove Systems Inc.) and an IMU at the back of
the hand to measure the wrist orientation. By these means, the human grasp
recordings include all DoF present in the prosthetic hand. Subjects were seated
comfortably in front of a table and the objects were placed one by one on top of
the table. All objects were grasped from the top and the side if their size allowed
both approach directions. For flat or spherical objects, only a top grasp was
demonstrated. Fig. 5.3 shows two exemplary human grasp demonstrations. All
human grasp recordings are available on the KIT Whole Body Human Motion
Database by (Mandery et al., 2016) 1.

To use these human grasp demonstrations for the control of the prosthetic hand,
the grasps are generalized and transferred to the prosthesis kinematics. In a
second step, grasp motions are segmented into a pregrasp and grasp phase to
be applied within an interactive semi-autonomous grasp control. These human-
learned grasp strategies for prosthetic hand control form a human grasp data-
base as the first part of a human-learned, semi-autonomous grasp control for
prosthetic hands.

5.3.1 Grasp Generalization

The recorded set of human grasp demonstrations for a single object and ap-
proach direction need to be generalized and transferred to the prosthetic hand.
The latter is done by an endpoint mapping, similar to the approaches by (Ek-

1https://motion-database.humanoids.kit.edu/
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(a) (b)

Figure 5.3: Grasps demonstrated by a human on a banana (a) and the handle of a
pitcher (b)

vall and Kragic, 2004) and (Peer et al., 2008). The method applied for grasp
generalization and transfer is listed in Alg. 1 for the example of the finger tra-
jectory. The thumb and wrist trajectories are generated in a similar way. For the
finger motion, the human middle finger trajectory serves as demonstration for
the mapping. In the recorded power grasps, the middle finger forms the central
of the second virtual finger, as defined by (Iberall, 1997), and is therefore rep-
resentative for all four fingers controlled by the underactuated mechanism in
the prosthetic hand. Hence, the fingertip trajectories of the middle finger pi(t)

are given for all subjects i over the time of the entire grasping process t ∈ [0, T ]

ending with the final grasp posture at time T . In addition, the length of the
middle finger li of each subject i is required to normalize the fingertip trajec-
tories with respect to the hand dimensions. Both parameters are summarized
in a tuple Ho := (pi(t), li) for each object o and all subjects i. In addition, the
fingertip closing trajectory of the prosthetic hand pprosthesis(t) is extracted from
a video recording of the hand closing at constant speed.

A normalization of all human grasp trajectories over the finger length is per-
formed in Alg. 1 Line 4. Further, grasp motions are also normalized over the
execution time in Alg. 1 Line 9. By finding the average over all human demon-
strations in Alg. 1 Line 12, a generalized human grasp trajectory is calculated.
The points of this generalized human trajectory are mapped to the prosthesis
by finding the closest point that lies on the prosthesis trajectory and is there-
fore reachable for the prosthetic hand in Alg. 1 Line 15. Finally, the resulting
human-learned trajectory for the prosthetic hand pmapped(t) is stored in the hu-
man grasp database.
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Algorithm 1 Fingertip Trajectory Mapping (Starke, Weiner et al., 2022) © CC
BY 4.0
Require: Hobj,pprosthesis(t)

1: Pobj := ∅
2: tmax := 0
3: for all (pi(t), li) ∈ Hobj do
4: Pobj = Pobj ∪ NORMALIZE LENGTH(pi(t), li)
5: tmax = MAX (tmax,LENGTH(pi(t)))
6: end
7: P̂obj = ∅
8: for all p̃i(t) ∈ Pobj do
9: P̂obj = P̂obj ∪ NORMALIZE TIME(p̃i(t), tmax)

10: end
11: for τ := 0 to tmax do

12: pmean(τ) :=
1

|P̂obj|
·

∑
p̂i(t)∈P̂obj

p̂i(τ)

13: end
14: for all τ do
15: pmapped(τ) := NEAREST NEIGHBOUR(pmean(τ),pprosthesis(t))
16: end
17: return pmapped(t)

The grasp in the database consist of simultaneous and coordinated motions of
thumb, fingers and wrist orientation over the entire grasping process. Fig. 5.4
shows a generalized, human-learned grasp trajectory on the handle of a pitcher
from the human grasp database. By these means, the potential of hand reorien-
tation throughout the finger closing is exploited. The corresponding prosthesis
motor trajectories for the same grasp are also shown in Fig. 5.4. This represen-
tation clearly shows that both finger and wrist start moving simultaneously
early on in the grasping motion. The wrist motion only stops after the fingers
are more than halfway closed. Further, it can be seen that the fingers close with
a varying speed, thereby achieving a different grasping behavior than using a
conventional constant-velocity control.

A temporal alignment with the user’s reaching motion needs to be enabled
within the continuous human-learned grasp motions to apply them in pros-
thetic grasp control. To this end, a segmentation in pregrasp and final grasping
motion is performed in a pre-processing step. This provides the user with a
pregrasp motion to help aligning the grasp, but allows to pause the grasp in
a preshaping state, if the user has not yet finished approaching the object. To
find the correct segmentation time tseg, the velocities of the tip of the fingers
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Figure 5.4: Grasping motion on the handle of a pitcher learned from human demon-
stration, it shows the temporal progress of finger and wrist motions (a)
as well as the corresponding motor trajectories on the prosthetic hand (b)
(Starke, Weiner et al., 2022) © CC BY 4.0

Algorithm 2 Pregrasp Segmentation

Require: vfingers(t), vthumb(t), vwrist(t), vthresh
1: if MAX(vwrist(t)) > vthresh then
2: tmaxw := find τ where vwrist(τ) = MAX(vwrist(t))
3: tseg := find minimal τ where τ > tmaxw and vwrist(τ) ≤ 0
4: else
5: vhand(t) =

vfingers(t) + vthumb(t)

2
6: tmaxh

:= find τ where vhand(τ) = MAX(vhand(t))
7: tv=0 := find maximal τ where τ < tmaxh

and vhand(τ) ≤ 0
8: tseg := tv=0 + 0.2(tmaxh

− tv=0)
9: end

10: return tseg

vfingers(t), the tip of the thumb vthumb(t) and the angular velocity of the wrist
vwrist(t) are considered. The outline of the applied segmentation is illustrated
in Alg. 2. One highly important goal of the pregrasp motion is to have a correct
orientation of the palm towards the object. Hence the wrist orientation needs to
be set according to the approach direction of the hand within the pregrasp. To
ensure this, the segmentation time is mainly determined by the wrist velocity.
In case of top grasps, first the timestep tmaxw with the maximum wrist velocity
is determined in Alg. 2 Line 2. The segmentation time tseg is chosen as the first
point in time where the wrist stops after tmaxw in Alg. 2 Line 3.

In the case of a side grasp, however, the wrist does not need to be reoriented sig-
nificantly and its velocity does not exceed vthresh. The wrist velocity is therefore
not a sensible measure of grasp progress in this case. To nevertheless segment
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the grasp motion, finger closure is considered. For preshaping, the fingers need
to adopt the shape of the object to enhance the predictability of the grasping
process that follows and ease the hand-to-object positioning for the user. At
the same time it is crucial that the fingers are still opened wide enough to be
moved around the object without touching it. The segmentation in these cases,
is based on the finger and thumb motion trajectory, stopping the pregrasp mo-
tion at 20% of the time before the maximal closing velocity is reached, as shown
in Alg. 2 Line 8. Thereby, the hand closing motion is kept mostly within the final
grasp trajectory.

Altogether, the human grasp database provides human-learned grasping mo-
tion on a variety of common objects. Grasp motions are transferred to the pros-
thesis kinematics based on several demonstrations from different human sub-
jects. The grasp in the database include a continuous and simultaneous mo-
tion of the wrist and fingers of the prosthesis. Coordinated motor trajectories
for the preshape and grasp phase of these grasp motions learned from human
demonstration can therefore be queried from the database for the control of the
prosthetic hand.

5.4 Prosthetic Grasping

Myoelectric prosthetic hands provide a functional replacement for a missing
human limb, that is internally powered and does not rely on the user’s force,
as opposed to body-powered prostheses. Hand actuation is driven electrically
with the motors and battery for power supply directly integrated into the pros-
thetic hand and shaft. The user can control the motion of such myoelectric pros-
thetic hands using the muscles in their remaining forearm stump, that were
originally driving the strings of the human fingers. Commercial myoelectric
hands most commonly rely on two electromyographic (EMG) electrodes, that
measure the activation of the main flexor and extensor muscle strands along
the forearm (Farina et al., 2014). In research, multi-electrode setups covering a
wider range of muscles and monitoring points along the forearm, as well as
partially automated grasp control are applied to simplify the control task for
the user. A comprehensive overview of this field of research is given in Chap-
ter 2.

The field of semi-autonomous grasp control strives to partially automate the
grasping process and thereby reduce the amount of control needed based on di-
rect user inputs. At the same time, the user should still keep in control of their
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prosthetic device and should be able to manually influence the grasping pro-
cess at any time. By these means, the dependency on direct, reliably measured
user inputs is reduced without taking the control away from the user. This is es-
pecially helpful for users with bad stump conditions or a poorly fitting socket,
who have difficulties in producing accurate muscular control signals.

In this thesis, continuous grasp motions, that are learned from human demon-
stration, are used to provide an automatic low-level control of the correlated
finger and wrist motion throughout a grasp on the KIT Prosthetic Hand. Com-
plemented by environmental information and high-level user commands, a
semi-autonomous grasp control is developed that enables fluent grasp motions
with only two direct user inputs. The semi-autonomous control scheme is eval-
uated in a user study in comparison with a conventional EMG control. Results
show that the semi-autonomous control reduces the physical and mental de-
mand for the user while allowing faster and more intuitive grasping. It is the
first semi-autonomous control scheme that provides a continuous, coordinated
grasp motion of wrist and fingers directly learned from human demonstra-
tion.

5.4.1 Semi-Autonomous Control

The semi-autonomous grasp control combines knowledge gained by proprio-
ceptive and environmental sensing with continuous grasp strategies learned
from human demonstration to simplify grasp control for the user. It has been
developed in joint work of several researchers, the contribution of this thesis
is the autonomous grasp execution learned from human demonstration, that
is supervised by the user. A graphical representation of the incorporation of
human-learned grasps into this prosthetic control is shown in Fig. 5.5. The pro-
cedure of the semi-autonomous control scheme is presented in Fig. 5.6. A dia-
gram of the control architecture is shown in Fig. 5.7.

The general idea of our semi-autonomous control is to enhance the user’s con-
trol input with the human grasp database and environmental sensor informa-
tion. Both the sensing capability as well as the database are locally implemented
on the prosthetic hand without any dependency on external computing power
or resources. To start the semi-autonomous control, the user takes an image
of the object to be grasped using the camera integrated into the palm of the
prosthetic hand. The image recording and subsequent recognition of the ob-
ject is triggered by a single EMG signal from the user. The object recognition
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Figure 5.5: Procedure of the interactive prosthetic control based on human-learned
grasping motions from the human grasp database

is performed by a neural network directly running on the processing system
within the prosthetic hand (Hundhausen et al., 2019). After the object is recog-
nized, specific object information is retrieved from an object database includ-
ing the object class, the fragility and weight of the object. Based on the deter-
mined object class, available human demonstrations of object specific grasps
are queried.

For grasp suggestion, one of the available grasps is picked based on the user
intention. With an IMU the hand orientation is measured allowing to draw a
conclusion on the grasp approach direction (top or side) intended by the user. A
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Figure 5.6: Flowchart of the semi-autonomous control depicting the different control
states, user control inputs, the knowledge queried from databases and the
hand’s motion (adapted from (Starke, Weiner et al., 2022) © CC BY 4.0)
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Figure 5.7: Architectural diagram of the semi-autonomous control with the control
state machine including image processing, interactive grasp selection and
grasp execution; the control uses information from sensors and databases
to control the grasping motion of a prosthetic hand (adapted from (Starke,
Weiner et al., 2022) © CC BY 4.0)

top grasp is chosen for a horizontal hand orientation while a rotation of ⩾ ±15◦

commands a side grasp. This allows the intuitive differentiation of the grasp
direction based on the inceptive approach performed by the user. Based on the
intended grasp direction, a grasp control strategy can be chosen from the set
of object-specific grasps from the human grasp database and the grasp can be
suggested to the user on a display at the back of the prosthetic hand. The user
is able to change the grasp direction by rotating the prosthesis or switch the
suggested object by a quick shaking motion. The user can accept the suggested
grasp with a single EMG signal.

During grasp execution, the corresponding motor trajectories for the preshape
motion are performed on the prosthetic hand. The hand’s state is continually
monitored and the wrist orientation is adapted to compensate user-induced ro-
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tations of the prosthetic hand. By these means, the correct orientation of the
wrist is ensured irrespective of any rotations of the user’s arm throughout
the reaching motion. This prevents the need for uncomfortable compensatory
shoulder motions for the user and allows them to approach the object with a
comfortable arm motion.

Grasp closing is started once the hand reaches the object. This is detected using
the distance sensor in the palm of the hand. As soon as the distance to the object
falls below a predefined threshold, the final grasping motion is triggered with-
out the need for any additional user commands. The grasping motion is then
continued from the preshape pose and the fingers wrap around the object. Fi-
nally, a constant grasp force is applied on the object, which is defined based on
the object’s fragility known from the object database. By these means, a stable
grasp is performed and the object can be securely lifted.

An intervention by the user is possible at any time throughout the entire grasp
execution by quickly shaking the prosthetic hand. This aborts the grasping pro-
cess and the hand returns to a relaxed open posture. The semi-autonomous
control can then be started from the beginning by taking an image of the object
to be grasped. Overall, the user only needs to provide two direct control inputs
issued over the same EMG channel to use the semi-autonomous control. User
intention is further indirectly assessed using the IMU measurements and a con-
tinuous, grasping motion learned from human demonstration is automatically
executed supervised by the user.

5.4.2 Evaluation

The semi-autonomous control scheme is evaluated in a user study with 20 able-
bodied participants. Half of the nine female and eleven male subjects had a
background in robotics, five had no technical background at all. None of the
subjects had experience with prosthetics or EMG control. To assess the merit of
the semi-autonomous control scheme, it is compared to a conventional sequen-
tial control scheme used by commercial prosthetic hands as well as a hybrid
approach.

• The conventional sequential control (CSC) is fully driven by EMG commands
triggered by the user and is also applied in commercial hand prostheses
as for example described by (Farina et al., 2014). It consists of two control
modes driving the wrist rotation and hand closing respectively. In wrist
rotation mode, the user can execute a clockwise rotation of the hand by
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activating their extensor muscles and a counterclockwise rotation with
the flexor muscle activation. For hand closing mode, the closing of the
prosthesis is mapped to flexor muscle activation, while extensor mus-
cle activation causes the fingers to open. Finger closing and opening or
wrist rotation are performed at constant speed as long as the respective
EMG electrode is activated. A muscle co-contraction triggers switching
between the two control modes. This co-contraction is performed by si-
multaneously contracting flexor and extensor muscles. In order to execute
a grasp, the user needs to activate the wrist rotation and the fingers se-
quentially. All motions are directly controlled by the user over two EMG
electrodes at the forearm.

• The semi-autonomous control (SAC) autonomously executes a grasping mo-
tion learned from human demonstration under the supervision of the
user, as explained in subsection 5.4.1. Triggered by an EMG signal, a grasp
motion is suggested based on the information provided by an object and
intention recognition system. The user can adapt or abort the suggested
grasp by rotating or shaking the prosthetic hand without any targeted
muscle contraction. Once the grasp is started by the user with a second
EMG signal, a simultaneous grasping motion of wrist and fingers is ex-
ecuted autonomously, incorporating environmental sensor information.
Therefore, there are only two active EMG control signals needed from the
user to start the grasp, while the execution and coordination of the grasp-
ing motion is performed autonomously. The two EMG signals can be is-
sued either by the flexor muscles, the extensor muscles or a cocontraction
of both.

• The hybrid semi-autonomous preshaping control (SAP) provides an
autonomous preshaping motion similar to the SAC. Again, the object de-
tection is started by a first EMG signal and the grasp preshape is per-
formed after the user accepts the grasp suggestion with a second EMG
signal. Since the control of the temporal progress of the grasp execution
is crucial, this hybrid approach leaves the timing of the grasping motion
to the user. In contrast to the SAC, the final grasp motion is not auto-
matically triggered and executed. Instead, the grasp motion starts when
the user issues an EMG signal with a contraction of their flexor muscles.
The motion continues as long as the flexor is contracted and the motion
pauses whenever the user stops to provide an EMG flexor signal. By these
means, the user is in full control of the start and continuation of the hand’s
closing motion. The closing trajectory of the prosthetic hand is still pro-
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Figure 5.8: Study setup with an able-bodied subject wearing the prosthesis with a self-
experience shaft while grasping a can of preserved meat (Starke, Weiner et
al., 2022) © CC BY 4.0

vided by the human grasp database. Hence, the coordination of the finger
and thumb motions as well as the wrist orientation is human-learned and
autonomously controlled similar to the SAC.

In the study procedure, the subjects wear the prosthetic hand attached to the
self-experience shaft below their own able hand, as shown in Fig. 5.8. Two EMG
electrodes attached to the shaft were placed over the subjet’s flexor and ex-
tensor muscles at the forearm and were calibrated regarding their sensitivity.
Throughout all three control schemes, the same electrode calibration was kept.
Subjects stood comfortably in front of a table with the object standing on top of
the table before them. The prosthetic hand was placed on a mark on the table
13 cm to the right of the object.

For each control scheme, subjects got an explanation by the experimenter and
were allowed to practice with an object not included in the study for 1min.
Afterwards, twelve different objects were presented to the subjects in a ran-
domized order. Subjects should perform both a top and a side grasp on the
object, wherever the object allows for both approach directions. Otherwise,
only a top grasp was performed. Subjects performed each grasp once, if the
grasp failed, they were allowed a second trial. If the grasp failed a second time,
it was marked as failed and excluded from the evaluation of grasp time. By
these means, all three control schemes were evaluated in sequence. The order
of the control schemes presented to each subject was varied in a counterbal-
anced crossover design. The order of objects was randomized between subjects
but was kept constant for all three control schemes for the same subject.
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Figure 5.9: Preferred control scheme of the subjects in the user study (Starke, Weiner et
al., 2022) © CC BY 4.0, most subjects prefer the presented semi-autonomous
control scheme and the hybrid control with a semi-autonomous preshape
and manual closing activation is ranked second

A number of evaluation criteria are gathered throughout and after the study.
Throughout the user study, the grasping time and the EMG signals issued by
the user were recorded. The grasping time was measured from a starting com-
mand given by the experimenter until the object was lifted from the table. A
grasp was considered successful, if the object was held stably in the prosthe-
sis for several seconds. For each control scheme, subjects completed a ques-
tionnaire directly after the experimental run. This questionnaire contained the
NASA Task Load Index (NASA TLX) by (Hart and Staveland, 1988) to as-
sess the user’s workload, complemented with some additional questions on
the intuitiveness, feeling of control and perception of feedback. After the en-
tire study procedure including all three control schemes, subjects completed an
additional questionnaire comparing the different control schemes.

Questionnaire results on control scheme preference show that 65.2% of sub-
jects prefer the SAC, as shown in Fig. 5.9. As depicted in Fig. 5.10 a), subjects
further report an increase in intuitiveness of 30% with the SAC compared to
the CSC. This confirms the intuitiveness of the human-like grasping motions
provided by the SAC.

The decrease in workload for both the SAC and the SAP compared to the CSC is
statistically significant (Friedman’s Anova2 < 0.05) with a reduction of 45.1%
and 23.9% respectively. This reduction of workload, shown in Fig. 5.10 b), is
mainly caused by a reduced effort required to control the prosthesis and a re-
duced physical demand, as shown in Fig. 5.10 c) and d). The effort is signif-
icantly decreased from 75% for the CSC to 40% for the SAC. In the physical
demand, an even larger decrease can be seen from 85% to 25% for the CSC

2The Friedman’s Anova is a non-parametrical statistical test to measure the correlation be-
tween two variables.
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and the SAC respectively. The objective EMG measurements support the sub-
jective impression of the subjects. The integrated power of the generated EMG
signal is presented in Fig. 5.10 e). Over the entire grasping process, the EMG
power amounts to 203.7mV in the CSC. Throughout the SAC, only 69.4mV are
measured. Therefore, the muscle power required to control the prosthetic grasp
is reduced by 65.9% by the SAC. By these means, grasp control becomes less
exhausting for the user. Due to the need of only two explicit EMG control in-
puts, the SAC requires significantly less muscular power from the user than a
conventional prosthesis control.

At the same time, no significant difference can be registered in the subjective
feeling of control, as shown in Fig. 5.10 f). Despite the partial automation of
the grasping process with only supervising control by the user, the SAC shows
a perceived control of 62.5%, compared to 60% with full control in the CSC.
This indicates, that the human-like grasping motions provided by the SAC are
intuitive for the user and thereby convey a direct feeling of control over the
prosthetic device.

The grasp execution time is reduced from 9.8 s with the CSC to 8.4 s with the
SAC in the median over all subjects and objects. One major factor for the grasp-
ing time in the SAC is the success of the visual object recognition. Since the
object recognition is not part of this thesis, time needed for correcting a wrong
object classification is excluded in the following, assuming ideal object infor-
mation. Under this assumption, the median time for grasp execution with the
SAC amounts to 7.9 s. It is thereby 19.4% faster than the CSC. The grasp execu-
tion time for the different grasps is shown in Fig. 5.11. The median grasp time
is not significantly faster for the SAC compared to the CSC. However, it can
be seen that the CSC has a significantly higher variance in grasp time than the
SAC, especially including few very slow grasp demonstrations. This might be
caused by the fact that some subjects had notable issues to perform the mode
switching in the CSC. Similar to commercial sequential control, subjects did not
get any feedback on the active prosthesis mode but had to rely on the accuracy
of their own muscle signals. This leads to unintended movements of the wrist
or fingers throughout or directly after mode switching, which prolonged the
overall grasping process.

The number of grasp attempts needed for the different objects is shown in
Fig. 5.12. Overall, there is no significant difference in the number of grasp
attempts needed over the different control schemes. However, three object-
specific differences can be seen. For the top grasp on the thin neck of a cola
bottle, subjects had difficulties in aligning the fingers with the object while si-

95



Chapter 5. Semi-Autonomous Grasping

CSC SAP SAC
Control Scheme

0

20

40

60

80

100
In

tu
it

iv
en

es
s

in
%

Control Intuitiveness

(a)

CSC SAP SAC
Control Scheme

0

5

10

15

20

TL
X

Workload in NASA Task Load Index

(b)

CSC SAP SAC
Control Scheme

0

20

40

60

80

100

Ef
fo

rt
in

%

Required Effort

(c)

CSC SAP SAC
Control Scheme

0

20

40

60

80

100

D
em

an
d

in
%

Physical Demand

(d)

CSC SAP SAC
Control Scheme

0

100

200

300

EM
G

Si
gn

al
in

m
V

Muscle Contraction

(e)

CSC SAP SAC
Control Scheme

0

20

40

60

80

100

C
on

tr
ol

in
%

Feeling of Control

(f)

Figure 5.10: Results of the user study in terms of control intuitiveness (a), workload (b),
required effort (c), physical demand (d), the integral of the EMG signals (e)
and the feeling of control (f); all plots show the first to third quartile as a
grey line with a white point marking the median, individual data points
are shown as colored dots within the area of the vertically plotted kernel
density function (Starke, Weiner et al., 2022) © CC BY 4.0
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line marking the median time, the black line depict the data range exclud-
ing outliers (Starke, Weiner et al., 2022) © CC BY 4.0

multaneously tensing their muscles. Since the distance measurement replaces
a muscle activation in triggering the grasp for the SAC, this grasp was easier to
achieve with the semi-autonomous scheme. Similarly, the alignment of the fin-
gers for the SAP was also difficult in a top grasp on a package of fizzy tablets.
For the CSC, subjects were able to correct their grasp in the process to achieve
an adequate grasp for the relatively light fizzy package at the expense of a pro-
longed grasp time. In contrast the lemon’s shape complicates the alignment of
the prosthesis with the object for a suitable grasp while simultaneously point-
ing the distance sensor in the palm towards the lemon surface. Thereby, several
subjects had difficulties in triggering the final grasping motion with the SAC
leading to a higher number of grasp attempts.

Overall, the semi-autonomous prosthesis control based on continuous grasp
motions learned from human demonstration is more intuitive to the user than
a sequential, EMG-based control. The partial automation of the grasping mo-
tion reduces the user’s physical demand significantly, while they still feel in
control of their prosthetic hand. Grasping is sped up compared to a sequential
EMG-based control with a similar grasp success measured by the number of
grasp attempts needed in the user study. The application of automated grasp-
ing motions learned from human demonstration thereby simplifies prosthetic
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Figure 5.12: Number of attempts needed to grasp each object for all three control
schemes; the ideal outcome of a grasp being successful in the first trial
for all subjects is denoted as one (Starke, Weiner et al., 2022) © CC BY 4.0

grasping for the user while providing stable, coordinated grasping that feels
natural to the user.

5.5 Summary and Conclusion

This chapter presents methods for human-inspired grasp control on prosthetic
hands. The descriptive postural synergies are applied on a prosthetic hand.
Further, a semi-autonomous control scheme is designed and evaluated, that
simplifies grasp control for the user by automating parts of the grasping pro-
cess. This control provides intuitive grasp motions that are learned from human
demonstration and can be executed under the supervision of the user. This the-
sis expands the existing control of prosthetic hands in three main aspects:

• A descriptive postural synergy space is applied for prosthetic grasp con-
trol. It allows for a simple generation of specific grasp postures in hand
control.

• A database of human grasp motions is built. It contains human demon-
strations of power grasp motions for a wide variety of objects.

• A semi-autonomous grasp control is designed, that simplifies prosthesis
control for the user. This control reduces the cognitive burden imposed
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on the user when grasping with their prosthesis. It is the first prosthesis
control that provides continuous, coordinated grasp motions of all DoF of
the prosthetic hand and wrist.

The descriptive postural synergy space derived in this thesis is applied on a
real robotic system. Synergy-generated grasp postures are mapped onto the
prosthetic hand’s kinematics and used as goal poses for a simple constant clos-
ing control. A range of different household and workshop objects is grasped
with the prosthetic hand using this synergy-based control.

A human grasp database is learned from demonstrated human power grasps.
It contains continuous, coordinated grasp trajectories for thumb and finger clos-
ing as well as wrist orientation. Trajectories in the database are generalized over
several human subjects and mapped to the kinematics of the prosthetic hand.
In addition, the grasp database provides a pregrasp segmentation, that is nec-
essary to align the prosthetic grasping motion with the human arm approach
motion in prosthesis control.

A semi-autonomous grasp control is designed based on the grasp trajecto-
ries from the human grasp database. It autonomously provides grasp sugges-
tions based on the object and user intention. Once accepted by the user, an au-
tonomous grasp motion is executed that compensates for hand rotations caused
by the user’s arm motion. The user can intervene at any time during the grasp
process.

The evaluation shows that the descriptive postural synergies can be applied
successfully in the control of prosthetic hands. The semi-autonomous control
based on the human grasp database is preferred over a conventional pros-
thetic control by most subjects. Subjects can grasp objects faster with the semi-
autonomous grasp control. It reduces the workload for the user while being
very intuitive and evoking the same feeling of control over the prosthetic hand
as a conventional, fully manual control.

99





Chapter 6. Conclusion

CHAPTER 6

Conclusion

This thesis aims at understanding human grasping behavior to leverage the so-
phisticated human grasping knowledge for robotic hand control. To this end,
grasp synergies representing both the posture and the forces of a grasp have
been defined and analyzed. Structured grasp synergy spaces have been in-
troduced to allow for an intuitive generation of new, human-like grasps for
prosthetic hand control. In addition, a database of human grasps has been
defined and used within a semi-autonomous control scheme for robotic pros-
thetic hands. In the following, the impact of the different contributions will be
discussed and an outlook on possible directions for future extensions will be
given.

6.1 Scientific Contributions

The posture and motion of the finger joint angles throughout the grasp is de-
scribed by postural and kinematic synergies. An adaptable postural synergy
space is learned in a latent space by an autoencoder network. In contrast to
the state of the art, this synergy space has a non-linear structure and is thereby
able to represent conceptual grasp characteristics. The postural synergy space
is structured according to different grasp types and an additional parameter
is encoding the diameter of the grasped object. By these means, new, human-
like grasps, that were not directly demonstrated by humans can be generated
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from the synergy space. The structure of the synergy space thereby allows to
generate grasps of a specific type and size directly from the postural grasp syn-
ergies. The postural synergies have been evaluated in comparison to a state of
the art representation of linear synergies derived by a PCA. The adaptable pos-
tural synergies have been published in Starke et al. (2018) and the generation
of human-like grasps from these synergies has been presented in further detail
in (Starke et al., 2020).

In addition, kinematic grasp synergy primitives are presented, that provide a
generalized representation of kinematic synergy trajectories for a specific grasp
type. From the demonstrated synergy trajectories, a via-point movement prim-
itive is learned. This synergy primitive describes the general grasp motion for
the particular grasp type in synergy space and also takes the variance of the
synergy trajectories into account. A library of synergy primitives for different
grasp types is built as a general representation of human grasp motions. Gener-
alized kinematic synergy trajectories can be generated by executing the synergy
primitives, which are adaptable in time, start and end position. In addition, the
trajectory itself can be adapted within the learned human variance. Thereby
the library of synergy primitives provides the first synergy representation of
kinematic grasp motions, that allows the generation of human-like, adaptable
grasp motions that have not been directly demonstrated by a human subject.
The accuracy of demonstrated grasp motions regenerated from synergy prim-
itives has been evaluated compared to state of the art kinematic synergies as
well as the original human grasp trajectories.

Analyzing grasp contact forces between the hand and the object, grasp force
synergies are comprehensively described for the first time. Compared to the
state of the art, this work presents static force synergies, that encompass a wide
range of different grasp types and are not limited to a specific grasp config-
uration. An analysis of grasp forces in unrestricted human grasping proves
the existence of correlations between the forces at different contact locations
especially for the fingers and the palm. Thereby, the presence of grasp force
synergies in general human grasping is proven. Static grasp force synergies,
that describe the grasp force configuration of the stable grasp are derived by
a PCA. The static force synergies are evaluated regarding their ability to rep-
resent grasps demonstrated by humans. The grasp force analysis and compre-
hensive static force synergies have been published in (Starke et al., 2019).

Considering the entire force configuration process, two methods for the deriva-
tion of novel temporal force synergies are defined. These temporal synergies
consider the contact force pattern over the entire grasping process from the
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first contact of the hand and the object until the final stable grasp. Firstly, force
synergy trajectories are defined in a static force synergy space learned from
all contact force configurations irrespective of their timing. Secondly, a non-
linear, temporal force synergy space is learned in the latent space of an LSTM-
autoencoder trained with entire temporal grasp force patterns. This synergy
space has an inherent notion of grasp progress and is structured according to
the different grasp types. Both synergy spaces are evaluated regarding their
reproduction quality for grasps demonstrated by humans. Human-like grasp
force patterns generated from the temporal synergy space are further evaluated
regarding their grasp success in comparison to human-demonstrated grasps.
The temporal force synergies have been published in (Starke et al., 2021).

Finally, a semi-autonomous grasping procedure is presented to simplify grasp
control for prosthetic hands. The control is based on a human grasp database
providing continuous coordinated grasp motions learned from human demon-
stration. The grasp motions include both finger and thumb closure as well as
the wrist rotation, all controlled together in a coordinated manner. Using en-
vironmental information gained from sensors within the prosthetic hand, the
user is able to control a human-like grasping motion including motion in all
degrees of freedom of the prosthetic hand simultaneously. Simultaneously, the
semi-autonomous grasp control requires only two EMG commands directly is-
sued by the user. Thereby, it reduces the workload of the user significantly. The
semi-autonomous control scheme is evaluated regarding grasp time, grasp suc-
cess and user workload in comparison to a manual sequential control and a hy-
brid control with semi-autonomous grasp selection and manual finger closing.
The semi-autonomous prosthesis control has been published in (Starke, Weiner
et al., 2022).

6.2 Discussion and Outlook

This thesis introduces a novel adaptable representation for postural synergies
and kinematic synergy primitives to generate new, human-like grasp postures
and motions with defined grasp characteristics for humanoid robotic hands.
Further, it presents the first force synergy representation that covers a wide
range of different objects and grasp types as well as novel temporal force syn-
ergies to describe the temporal grasp force patterns over the entire grasping
process. Finally, a semi-autonomous prosthesis control based on human grasp-
ing motions is developed, that simplifies the control of coordinated, continuous
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grasping motions for the user. In summary, this work contributes to the devel-
opment of simple, intuitive grasp control learned from human demonstration
by providing synergy representations to model human grasp strategies and a
control scheme to apply these human strategies onto robotic prosthetic hands.
In continuation, this thesis can be extended in several directions pushing fur-
ther towards the goal of a versatile, human-inspired robotic hand with human-
like grasping abilities.

Based on the kinematic synergy primitives, generalized primitives for ma-
nipulation actions can be learned. The grasp synergy primitives presented in
this work cover grasping motions of the fingers for a set of different grasp
types. By considering human demonstrations of more complex manipulation
actions, this method could be extended to a more general representation of
goal-oriented finger motions. The most paramount research question in this
context is whether the concept of grasp synergies can generally be transferred
to in-hand manipulation. In addition, the classification of manipulation mo-
tions and the definition of appropriate motion primitives taking into account
variability in demonstrations as well as possible variations of the manipulation
strategy itself introduce questions for further research.

Similar to the application of the postural synergies on a prosthetic robotic hand
presented in this thesis, a synergy-based force control for robotic hands can
be defined. The adaptable postural synergies have been evaluated on the KIT
Prosthetic Hand within this work. Recent developments in humanoid hand
design have generated hands equipped with tactile sensing abilities trying to
mimic the human sense of touch, e. g. the KIT Sensorized Soft Hand by Weiner
et al. (2021). Such hands allow for direct grasp force control based on the tac-
tile sensor information. To this end, the temporal force synergies presented in
this work could set the foundation for an intelligent, human-like grasp force
control for robotic hands. Open research questions in this area include the con-
solidation of hand motion trajectories and temporal force patterns in hand con-
trol. Further, the mapping of human force patterns to the kinematic and sensor
structure of robotic hands remains to be determined.

Finally, an extension of the semi-autonomous grasp control can be designed
to suit prosthetic hands with different functionalities. The presented semi-au-
tonomous control scheme is tailored to the three degrees of actuation of the
female KIT Prosthetic Hand, being thumb and finger flexion as well as wrist
rotation. Applying the methodical approach of the kinematic synergy primi-
tives, the database can be extended to provide human-learned grasp strategies
for varying hand kinematics. This could include individual finger motions, en-
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abling precision grasps or an active thumb abduction, which is required for
platform grasps. In addition, unknown objects can be included based on visual
object segmentation algorithms (e. g. by Hundhausen et al. (2019)), which obvi-
ously cannot rely on an object database providing very detailed object informa-
tion. While the extension of the grasp database itself is a straightforward task,
open research questions remain in the generalization of the semi-autonomous
control scheme. This includes choosing a grasp strategy based on less specific
object information to handle unknown objects as well as the adequate partici-
pation of the user in these increasingly complex grasp choices. Further, explicit
grasp force control based on the human control strategies described by the tem-
poral force synergies can be included in the semi-autonomous prosthetic con-
trol.

Overall, this thesis presents a representation of human grasp strategies includ-
ing finger and hand motion as well as grasp force progression by lower-dimen-
sional synergies. Both kinematic synergy primitives and temporal force syner-
gies are generalizable and can be used for the generation of new, human-like
grasps for robotic hands. In addition, a semi-autonomous grasp control is pre-
sented for prosthetic hands based on coordinated, human-like grasp motions.
Based on a human grasp database this control achieves intuitive grasping be-
havior while reducing the cognitive burden of the user.
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Došen, S., Cipriani, C., Kostić, M., Controzzi, M., Carrozza, M., and Popović, D.
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