584,663 research outputs found

    PMI Sampler: Patch similarity guided frame selection for Aerial Action Recognition

    Full text link
    We present a new algorithm for selection of informative frames in video action recognition. Our approach is designed for aerial videos captured using a moving camera where human actors occupy a small spatial resolution of video frames. Our algorithm utilizes the motion bias within aerial videos, which enables the selection of motion-salient frames. We introduce the concept of patch mutual information (PMI) score to quantify the motion bias between adjacent frames, by measuring the similarity of patches. We use this score to assess the amount of discriminative motion information contained in one frame relative to another. We present an adaptive frame selection strategy using shifted leaky ReLu and cumulative distribution function, which ensures that the sampled frames comprehensively cover all the essential segments with high motion salience. Our approach can be integrated with any action recognition model to enhance its accuracy. In practice, our method achieves a relative improvement of 2.2 - 13.8% in top-1 accuracy on UAV-Human, 6.8% on NEC Drone, and 9.0% on Diving48 datasets

    fpgaHART: A toolflow for throughput-oriented acceleration of 3D CNNs for HAR onto FPGAs

    Full text link
    Surveillance systems, autonomous vehicles, human monitoring systems, and video retrieval are just few of the many applications in which 3D Convolutional Neural Networks are exploited. However, their extensive use is restricted by their high computational and memory requirements, especially when integrated into systems with limited resources. This study proposes a toolflow that optimises the mapping of 3D CNN models for Human Action Recognition onto FPGA devices, taking into account FPGA resources and off-chip memory characteristics. The proposed system employs Synchronous Dataflow (SDF) graphs to model the designs and introduces transformations to expand and explore the design space, resulting in high-throughput designs. A variety of 3D CNN models were evaluated using the proposed toolflow on multiple FPGA devices, demonstrating its potential to deliver competitive performance compared to earlier hand-tuned and model-specific designs.Comment: 7 pages, 3 figures, 4 tables. arXiv admin note: substantial text overlap with arXiv:2305.1847

    Progressive search space reduction for human pose estimation

    Get PDF
    The objective of this paper is to estimate 2D human pose as a spatial configuration of body parts in TV and movie video shots. Such video material is uncontrolled and extremely challenging. We propose an approach that progressively reduces the search space for body parts, to greatly improve the chances that pose estimation will succeed. This involves two contributions: (i) a generic detector using a weak model of pose to substantially reduce the full pose search space; and (ii) employing ‘grabcut ’ initialized on detected regions proposed by the weak model, to further prune the search space. Moreover, we also propose (iii) an integrated spatiotemporal model covering multiple frames to refine pose estimates from individual frames, with inference using belief propagation. The method is fully automatic and self-initializing, and explains the spatio-temporal volume covered by a person moving in a shot, by soft-labeling every pixel as belonging to a particular body part or to the background. We demonstrate upper-body pose estimation by an extensive evaluation over 70000 frames from four episodes of the TV series Buffy the vampire slayer, and present an application to fullbody action recognition on the Weizmann dataset. 1

    Multi-Modal Human-Machine Communication for Instructing Robot Grasping Tasks

    Full text link
    A major challenge for the realization of intelligent robots is to supply them with cognitive abilities in order to allow ordinary users to program them easily and intuitively. One way of such programming is teaching work tasks by interactive demonstration. To make this effective and convenient for the user, the machine must be capable to establish a common focus of attention and be able to use and integrate spoken instructions, visual perceptions, and non-verbal clues like gestural commands. We report progress in building a hybrid architecture that combines statistical methods, neural networks, and finite state machines into an integrated system for instructing grasping tasks by man-machine interaction. The system combines the GRAVIS-robot for visual attention and gestural instruction with an intelligent interface for speech recognition and linguistic interpretation, and an modality fusion module to allow multi-modal task-oriented man-machine communication with respect to dextrous robot manipulation of objects.Comment: 7 pages, 8 figure

    Design and implementation of a user-oriented speech recognition interface: the synergy of technology and human factors

    Get PDF
    The design and implementation of a user-oriented speech recognition interface are described. The interface enables the use of speech recognition in so-called interactive voice response systems which can be accessed via a telephone connection. In the design of the interface a synergy of technology and human factors is achieved. This synergy is very important for making speech interfaces a natural and acceptable form of human-machine interaction. Important concepts such as interfaces, human factors and speech recognition are discussed. Additionally, an indication is given as to how the synergy of human factors and technology can be realised by a sketch of the interface's implementation. An explanation is also provided of how the interface might be integrated in different applications fruitfully
    • …
    corecore