334 research outputs found

    Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes

    Get PDF
    This study was funded by the Sars Centre core budget to M. Adamska. Sequencing was performed at the Norwegian High Throughput Sequencing Centre funded by the Norwegian Research Council. O.M.R. and D.E.K.F. acknowledge support from the BBSRC and the School of Biology, University of St Andrews.Sponges are simple animals with few cell types, but their genomes paradoxically contain a wide variety of developmental transcription factors1,2,3,4, including homeobox genes belonging to the Antennapedia (ANTP) class5,6, which in bilaterians encompass Hox, ParaHox and NK genes. In the genome of the demosponge Amphimedon queenslandica, no Hox or ParaHox genes are present, but NK genes are linked in a tight cluster similar to the NK clusters of bilaterians5. It has been proposed that Hox and ParaHox genes originated from NK cluster genes after divergence of sponges from the lineage leading to cnidarians and bilaterians5,7. On the other hand, synteny analysis lends support to the notion that the absence of Hox and ParaHox genes in Amphimedon is a result of secondary loss (the ghost locus hypothesis)8. Here we analysed complete suites of ANTP-class homeoboxes in two calcareous sponges, Sycon ciliatum and Leucosolenia complicata. Our phylogenetic analyses demonstrate that these calcisponges possess orthologues of bilaterian NK genes (Hex, Hmx and Msx), a varying number of additional NK genes and one ParaHox gene, Cdx. Despite the generation of scaffolds spanning multiple genes, we find no evidence of clustering of Sycon NK genes. All Sycon ANTP-class genes are developmentally expressed, with patterns suggesting their involvement in cell type specification in embryos and adults, metamorphosis and body plan patterning. These results demonstrate that ParaHox genes predate the origin of sponges, thus confirming the ghost locus hypothesis8, and highlight the need to analyse the genomes of multiple sponge lineages to obtain a complete picture of the ancestral composition of the first animal genome.PostprintPeer reviewe

    The origin of the Hox/ParaHox genes, the Ghost Locus hypothesis and the complexity of the first animal

    Get PDF
    A key aim in evolutionary biology is to deduce ancestral states in order to better understand the evolutionary origins of clades of interest and the diversification process(es) that have elaborated them. These ancestral deductions can hit difficulties when undetected loss events are misinterpreted as ancestral absences. With the ever-increasing amounts of animal genomic sequence data we are gaining a much clearer view of the preponderance of differential gene losses across animal lineages. This has become particularly clear with recent progress in our understanding of the origins of the Hox/ParaHox developmental control genes relative to the earliest branching lineages of the animal kingdom: the sponges (Porifera), comb jellies (Ctenophora) and placozoans (Placozoa). These reassessments of the diversity and complexity of developmental control genes in the earliest animal ancestors need to go hand-in-hand with complementary advances in comparative morphology, phylogenetics and palaeontology in order to clarify our understanding of the complexity of the last common ancestor of all animals. The field is currently undergoing a shift from the traditional consensus of a sponge-like animal ancestor from which morphological and molecular elaboration subsequently evolved, to a scenario of a more complex animal ancestor, with subsequent losses and simplifications in various lineages.PostprintPeer reviewe

    Comparative transcriptomics enlarges the toolkit of known developmental genes in mollusks

    Get PDF
    Data used for the phylogenetic analysis of Hox and ParaHox genes, including the respective GenBank accession numbers. (DOC 31 kb

    Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications

    Get PDF
    BACKGROUND: The evolutionary lineage leading to the teleost fish underwent a whole genome duplication termed FSGD or 3R in addition to two prior genome duplications that took place earlier during vertebrate evolution (termed 1R and 2R). Resulting from the FSGD, additional copies of genes are present in fish, compared to tetrapods whose lineage did not experience the 3R genome duplication. Interestingly, we find that ParaHox genes do not differ in number in extant teleost fishes despite their additional genome duplication from the genomic situation in mammals, but they are distributed over twice as many paralogous regions in fish genomes. RESULTS: We determined the DNA sequence of the entire ParaHox C1 paralogon in the East African cichlid fish Astatotilapia burtoni, and compared it to orthologous regions in other vertebrate genomes as well as to the paralogous vertebrate ParaHox D paralogons. Evolutionary relationships among genes from these four chromosomal regions were studied with several phylogenetic algorithms. We provide evidence that the genes of the ParaHox C paralogous cluster are duplicated in teleosts, just as it had been shown previously for the D paralogon genes. Overall, however, synteny and cluster integrity seems to be less conserved in ParaHox gene clusters than in Hox gene clusters. Comparative analyses of non-coding sequences uncovered conserved, possibly co-regulatory elements, which are likely to contain promoter motives of the genes belonging to the ParaHox paralogons. CONCLUSION: There seems to be strong stabilizing selection for gene order as well as gene orientation in the ParaHox C paralogon, since with a few exceptions, only the lengths of the introns and intergenic regions differ between the distantly related species examined. The high degree of evolutionary conservation of this gene cluster's architecture in particular - but possibly clusters of genes more generally - might be linked to the presence of promoter, enhancer or inhibitor motifs that serve to regulate more than just one gene. Therefore, deletions, inversions or relocations of individual genes could destroy the regulation of the clustered genes in this region. The existence of such a regulation network might explain the evolutionary conservation of gene order and orientation over the course of hundreds of millions of years of vertebrate evolution. Another possible explanation for the highly conserved gene order might be the existence of a regulator not located immediately next to its corresponding gene but further away since a relocation or inversion would possibly interrupt this interaction. Different ParaHox clusters were found to have experienced differential gene loss in teleosts. Yet the complete set of these homeobox genes was maintained, albeit distributed over almost twice the number of chromosomes. Selection due to dosage effects and/or stoichiometric disturbance might act more strongly to maintain a modal number of homeobox genes (and possibly transcription factors more generally) per genome, yet permit the accumulation of other (non regulatory) genes associated with these homeobox gene clusters

    The Early ANTP Gene Repertoire: Insights from the Placozoan Genome

    Get PDF
    The evolution of ANTP genes in the Metazoa has been the subject of conflicting hypotheses derived from full or partial gene sequences and genomic organization in higher animals. Whole genome sequences have recently filled in some crucial gaps for the basal metazoan phyla Cnidaria and Porifera. Here we analyze the complete genome of Trichoplax adhaerens, representing the basal metazoan phylum Placozoa, for its set of ANTP class genes. The Trichoplax genome encodes representatives of Hox/ParaHox-like, NKL, and extended Hox genes. This repertoire possibly mirrors the condition of a hypothetical cnidarian-bilaterian ancestor. The evolution of the cnidarian and bilaterian ANTP gene repertoires can be deduced by a limited number of cis-duplications of NKL and “extended Hox” genes and the presence of a single ancestral “ProtoHox” gene

    Computational analysis of transcriptional regulation in metazoans

    Get PDF
    This HDR thesis presents my work on transcriptional regulation in metazoans (animals). As a computational biologist, my research activities cover both the development of new bioinformatics tools, and contributions to a better understanding of biological questions. The first part focuses on transcription factors, with a study of the evolution of Hox and ParaHox gene families across meta- zoans, for which I developed HoxPred, a bioinformatics tool to automatically classify these genes into their groups of homology. Transcription factors regulate their target genes by binding to short cis-regulatory elements in DNA. The second part of this thesis introduces the prediction of these cis-regulatory elements in genomic sequences, and my contributions to the development of user- friendly computational tools (RSAT software suite and TRAP). The third part covers the detection of these cis-regulatory elements using high-throughput sequencing experiments such as ChIP-seq or ChIP-exo. The bioinformatics developments include reusable pipelines to process these datasets, and novel motif analysis tools adapted to these large datasets (RSAT peak-motifs and ExoProfiler). As all these approaches are generic, I naturally apply them to diverse biological questions, in close collaboration with experimental groups. In particular, this third part presents the studies uncover- ing new DNA sequences that are driving or preventing the binding of the glucocorticoid receptor. Finally, my research perspectives are introduced, especially regarding further developments within the RSAT suite enabling cross-species conservation analyses, and new collaborations with exper- imental teams, notably to tackle the epigenomic remodelling during osteoporosis.Cette thĂšse d’HDR prĂ©sente mes travaux concernant la rĂ©gulation transcriptionelle chez les mĂ©tazoaires (animaux). En tant que biologiste computationelle, mes activitĂ©s de recherche portent sur le dĂ©veloppement de nouveaux outils bioinformatiques, et contribuent Ă  une meilleure comprĂ©hension de questions biologiques. La premiĂšre partie concerne les facteurs de transcriptions, avec une Ă©tude de l’évolution des familles de gĂšnes Hox et ParaHox chez les mĂ©tazoaires. Pour cela, j’ai dĂ©veloppĂ© HoxPred, un outil bioinformatique qui classe automatiquement ces gĂšnes dans leur groupe d’homologie. Les facteurs de transcription rĂ©gulent leurs gĂšnes cibles en se fixant Ă  l’ADN sur des petites rĂ©gions cis-rĂ©gulatrices. La seconde partie de cette thĂšse introduit la prĂ©diction de ces Ă©lĂ©ments cis-rĂ©gulateurs au sein de sĂ©quences gĂ©nomiques, et prĂ©sente mes contributions au dĂ©veloppement d’outils accessibles aux non-spĂ©cialistes (la suite RSAT et TRAP). La troisiĂšme partie couvre la dĂ©tection de ces Ă©lĂ©ments cis-rĂ©gulateurs grĂące aux expĂ©riences basĂ©es sur le sĂ©quençage Ă  haut dĂ©bit comme le ChIP-seq ou le ChIP-exo. Les dĂ©veloppements bioinformatiques incluent des pipelines rĂ©utilisables pour analyser ces jeux de donnĂ©es, ainsi que de nouveaux outils d’analyse de motifs adaptĂ©s Ă  ces grands jeux de donnĂ©es (RSAT peak-motifs et ExoProfiler). Comme ces approches sont gĂ©nĂ©riques, je les applique naturellement Ă  des questions biologiques diverses, en Ă©troite collaboration avec des groupes expĂ©rimentaux. En particulier, cette troisiĂšme partie prĂ©sente les Ă©tudes qui ont permis de mettre en Ă©vidence de nouvelles sĂ©quences d’ADN qui favorisent ou empĂȘchent la fixation du rĂ©cepteur aux glucocorticoides. Enfin, mes perspectives de recherche sont prĂ©sentĂ©es, plus particuliĂšrement concernant les nouveaux dĂ©veloppements au sein de la suite RSAT pour permettre des analyses basĂ©es sur la conservation inter-espĂšces, mais aussi de nouvelles collaborations avec des Ă©quipes expĂ©rimentales, notamment pour Ă©udier le remodelage Ă©pigĂ©nomique au cours de l’ostĂ©oporose

    A non-tree-based comprehensive study of metazoan Hox and ParaHox genes prompts new insights into their origin and evolution

    Get PDF
    Hox and the closely-related ParaHox genes, which emerged prior to the divergence between cnidarians and bilaterians, are the most well-known members of the ancient genetic toolkit that controls embryonic development across all metazoans. Fundamental questions relative to their origin and evolutionary relationships remain however unresolved. We investigate here the evolution of metazoan Hox and ParaHox genes using the HoxPred program that allows the identification of Hox genes without the need of phylogenetic tree reconstructions.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    SynBlast: Assisting the analysis of conserved synteny information

    Get PDF
    <p>Abstract</p> <p>Motivation</p> <p>In the last years more than 20 vertebrate genomes have been sequenced, and the rate at which genomic DNA information becomes available is rapidly accelerating. Gene duplication and gene loss events inherently limit the accuracy of orthology detection based on sequence similarity alone. Fully automated methods for orthology annotation do exist but often fail to identify individual members in cases of large gene families, or to distinguish missing data from traceable gene losses. This situation can be improved in many cases by including conserved synteny information.</p> <p>Results</p> <p>Here we present the <monospace>SynBlast</monospace> pipeline that is designed to construct and evaluate local synteny information. <monospace>SynBlast</monospace> uses the genomic region around a focal reference gene to retrieve candidates for homologous regions from a collection of target genomes and ranks them in accord with the available evidence for homology. The pipeline is intended as a tool to aid high quality manual annotation in particular in those cases where automatic procedures fail. We demonstrate how <monospace>SynBlast</monospace> is applied to retrieving orthologous and paralogous clusters using the vertebrate <it>Hox </it>and <it>ParaHox </it>clusters as examples.</p> <p>Software</p> <p>The <monospace>SynBlast</monospace> package written in <monospace>Perl</monospace> is available under the GNU General Public License at <url>http://www.bioinf.uni-leipzig.de/Software/SynBlast/</url>.</p

    Comparative genomics of Hox and ParaHox genes among major lineages of Branchiopoda with emphasis on tadpole shrimps

    Get PDF
    Hox and ParaHox genes (HPHGs) are key developmental genes that pattern regional identity along the anterior–posterior body axis of most animals. Here, we identified HPHGs in tadpole shrimps (Pancrustacea, Branchiopoda, Notostraca), an iconic example of the so-called “living fossils” and performed a comparative genomics analysis of HPHGs and the Hox cluster among major branchiopod lineages. Notostraca possess the entire Hox complement, and the Hox cluster seems to be split into two different subclusters, although we were not able to support this finding with chromosome-level assemblies. However, the genomic structure of Hox genes in Notostraca appears more derived than that of Daphnia spp., which instead retains the plesiomorphic condition of a single compact cluster. Spinicaudata and Artemia franciscana show instead a Hox cluster subdivided across two or more genomic scaffolds with some orthologs either duplicated or missing. Yet, branchiopod HPHGs are similar among the various clades in terms of both intron length and number, as well as in their pattern of molecular evolution. Sequence substitution rates are in fact generally similar for most of the branchiopod Hox genes and the few differences we found cannot be traced back to natural selection, as they are not associated with any signals of diversifying selection or substantial switches in selective modes. Altogether, these findings do not support a significant stasis in the Notostraca Hox cluster and further confirm how morphological evolution is not tightly associated with genome dynamics

    The crown pearl: a draft genome assembly of the European freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758)

    Get PDF
    Since historical times, the inherent human fascination with pearls turned the freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758) into a highly valuable cultural and economic resource. Although pearl harvesting in M. margaritifera is nowadays residual, other human threats have aggravated the species conservation status, especially in Europe. This mussel presents a myriad of rare biological features, e.g. high longevity coupled with low senescence and Doubly Uniparental Inheritance of mitochondrial DNA, for which the underlying molecular mechanisms are poorly known. Here, the first draft genome assembly of M. margaritifera was produced using a combination of Illumina Paired-end and Mate-pair approaches. The genome assembly was 2.4 Gb long, possessing 105,185 scaffolds and a scaffold N50 length of 288,726 bp. The ab initio gene prediction allowed the identification of 35,119 protein-coding genes. This genome represents an essential resource for studying this species' unique biological and evolutionary features and ultimately will help to develop new tools to promote its conservation.A.G.-d.-S. was funded by the Portuguese Foundation for Science and Technology (FCT) under the grants SFRH/BD/137935/2018, EF (CEECIND/00627/2017) and MLL (2020.03608.CEECIND). This research was developed under ConBiomics: the missing approach for the Conservation of freshwater Bivalves Project No. NORTE-01-0145-FEDER- 030286, co-financed by COMPETE 2020, Portugal 2020 and the European Union through the ERDF, and by FCT through national funds. Additional strategic funding was provided by FCT UIDB/04423/2020 and UIDP/04423/2020. Authors’ interaction and writing of the article was promoted and facilitated by the COST Action CA18239: CONFREMU—Conservation of freshwater mussels: a pan- European approach.info:eu-repo/semantics/publishedVersio
    • 

    corecore