638 research outputs found

    Emergent relational schemas for RDF

    Get PDF

    Federated Query Processing over Heterogeneous Data Sources in a Semantic Data Lake

    Get PDF
    Data provides the basis for emerging scientific and interdisciplinary data-centric applications with the potential of improving the quality of life for citizens. Big Data plays an important role in promoting both manufacturing and scientific development through industrial digitization and emerging interdisciplinary research. Open data initiatives have encouraged the publication of Big Data by exploiting the decentralized nature of the Web, allowing for the availability of heterogeneous data generated and maintained by autonomous data providers. Consequently, the growing volume of data consumed by different applications raise the need for effective data integration approaches able to process a large volume of data that is represented in different format, schema and model, which may also include sensitive data, e.g., financial transactions, medical procedures, or personal data. Data Lakes are composed of heterogeneous data sources in their original format, that reduce the overhead of materialized data integration. Query processing over Data Lakes require the semantic description of data collected from heterogeneous data sources. A Data Lake with such semantic annotations is referred to as a Semantic Data Lake. Transforming Big Data into actionable knowledge demands novel and scalable techniques for enabling not only Big Data ingestion and curation to the Semantic Data Lake, but also for efficient large-scale semantic data integration, exploration, and discovery. Federated query processing techniques utilize source descriptions to find relevant data sources and find efficient execution plan that minimize the total execution time and maximize the completeness of answers. Existing federated query processing engines employ a coarse-grained description model where the semantics encoded in data sources are ignored. Such descriptions may lead to the erroneous selection of data sources for a query and unnecessary retrieval of data, affecting thus the performance of query processing engine. In this thesis, we address the problem of federated query processing against heterogeneous data sources in a Semantic Data Lake. First, we tackle the challenge of knowledge representation and propose a novel source description model, RDF Molecule Templates, that describe knowledge available in a Semantic Data Lake. RDF Molecule Templates (RDF-MTs) describes data sources in terms of an abstract description of entities belonging to the same semantic concept. Then, we propose a technique for data source selection and query decomposition, the MULDER approach, and query planning and optimization techniques, Ontario, that exploit the characteristics of heterogeneous data sources described using RDF-MTs and provide a uniform access to heterogeneous data sources. We then address the challenge of enforcing privacy and access control requirements imposed by data providers. We introduce a privacy-aware federated query technique, BOUNCER, able to enforce privacy and access control regulations during query processing over data sources in a Semantic Data Lake. In particular, BOUNCER exploits RDF-MTs based source descriptions in order to express privacy and access control policies as well as their automatic enforcement during source selection, query decomposition, and planning. Furthermore, BOUNCER implements query decomposition and optimization techniques able to identify query plans over data sources that not only contain the relevant entities to answer a query, but also are regulated by policies that allow for accessing these relevant entities. Finally, we tackle the problem of interest based update propagation and co-evolution of data sources. We present a novel approach for interest-based RDF update propagation that consistently maintains a full or partial replication of large datasets and deal with co-evolution

    TriAL: A navigational algebra for RDF triplestores

    Get PDF

    Statistical Extraction of Multilingual Natural Language Patterns for RDF Predicates: Algorithms and Applications

    Get PDF
    The Data Web has undergone a tremendous growth period. It currently consists of more then 3300 publicly available knowledge bases describing millions of resources from various domains, such as life sciences, government or geography, with over 89 billion facts. In the same way, the Document Web grew to the state where approximately 4.55 billion websites exist, 300 million photos are uploaded on Facebook as well as 3.5 billion Google searches are performed on average every day. However, there is a gap between the Document Web and the Data Web, since for example knowledge bases available on the Data Web are most commonly extracted from structured or semi-structured sources, but the majority of information available on the Web is contained in unstructured sources such as news articles, blog post, photos, forum discussions, etc. As a result, data on the Data Web not only misses a significant fragment of information but also suffers from a lack of actuality since typical extraction methods are time-consuming and can only be carried out periodically. Furthermore, provenance information is rarely taken into consideration and therefore gets lost in the transformation process. In addition, users are accustomed to entering keyword queries to satisfy their information needs. With the availability of machine-readable knowledge bases, lay users could be empowered to issue more specific questions and get more precise answers. In this thesis, we address the problem of Relation Extraction, one of the key challenges pertaining to closing the gap between the Document Web and the Data Web by four means. First, we present a distant supervision approach that allows finding multilingual natural language representations of formal relations already contained in the Data Web. We use these natural language representations to find sentences on the Document Web that contain unseen instances of this relation between two entities. Second, we address the problem of data actuality by presenting a real-time data stream RDF extraction framework and utilize this framework to extract RDF from RSS news feeds. Third, we present a novel fact validation algorithm, based on natural language representations, able to not only verify or falsify a given triple, but also to find trustworthy sources for it on the Web and estimating a time scope in which the triple holds true. The features used by this algorithm to determine if a website is indeed trustworthy are used as provenance information and therewith help to create metadata for facts in the Data Web. Finally, we present a question answering system that uses the natural language representations to map natural language question to formal SPARQL queries, allowing lay users to make use of the large amounts of data available on the Data Web to satisfy their information need

    Distributed pattern mining and data publication in life sciences using big data technologies

    Get PDF

    Linked Data Supported Information Retrieval

    Get PDF
    Um Inhalte im World Wide Web ausfindig zu machen, sind Suchmaschienen nicht mehr wegzudenken. Semantic Web und Linked Data Technologien ermöglichen ein detaillierteres und eindeutiges Strukturieren der Inhalte und erlauben vollkommen neue Herangehensweisen an die Lösung von Information Retrieval Problemen. Diese Arbeit befasst sich mit den Möglichkeiten, wie Information Retrieval Anwendungen von der Einbeziehung von Linked Data profitieren können. Neue Methoden der computer-gestützten semantischen Textanalyse, semantischen Suche, Informationspriorisierung und -visualisierung werden vorgestellt und umfassend evaluiert. Dabei werden Linked Data Ressourcen und ihre Beziehungen in die Verfahren integriert, um eine Steigerung der Effektivität der Verfahren bzw. ihrer Benutzerfreundlichkeit zu erzielen. Zunächst wird eine Einführung in die Grundlagen des Information Retrieval und Linked Data gegeben. Anschließend werden neue manuelle und automatisierte Verfahren zum semantischen Annotieren von Dokumenten durch deren Verknüpfung mit Linked Data Ressourcen vorgestellt (Entity Linking). Eine umfassende Evaluation der Verfahren wird durchgeführt und das zu Grunde liegende Evaluationssystem umfangreich verbessert. Aufbauend auf den Annotationsverfahren werden zwei neue Retrievalmodelle zur semantischen Suche vorgestellt und evaluiert. Die Verfahren basieren auf dem generalisierten Vektorraummodell und beziehen die semantische Ähnlichkeit anhand von taxonomie-basierten Beziehungen der Linked Data Ressourcen in Dokumenten und Suchanfragen in die Berechnung der Suchergebnisrangfolge ein. Mit dem Ziel die Berechnung von semantischer Ähnlichkeit weiter zu verfeinern, wird ein Verfahren zur Priorisierung von Linked Data Ressourcen vorgestellt und evaluiert. Darauf aufbauend werden Visualisierungstechniken aufgezeigt mit dem Ziel, die Explorierbarkeit und Navigierbarkeit innerhalb eines semantisch annotierten Dokumentenkorpus zu verbessern. Hierfür werden zwei Anwendungen präsentiert. Zum einen eine Linked Data basierte explorative Erweiterung als Ergänzung zu einer traditionellen schlüsselwort-basierten Suchmaschine, zum anderen ein Linked Data basiertes Empfehlungssystem

    Thinking outside the graph: scholarly knowledge graph construction leveraging natural language processing

    Get PDF
    Despite improved digital access to scholarly knowledge in recent decades, scholarly communication remains exclusively document-based. The document-oriented workflows in science publication have reached the limits of adequacy as highlighted by recent discussions on the increasing proliferation of scientific literature, the deficiency of peer-review and the reproducibility crisis. In this form, scientific knowledge remains locked in representations that are inadequate for machine processing. As long as scholarly communication remains in this form, we cannot take advantage of all the advancements taking place in machine learning and natural language processing techniques. Such techniques would facilitate the transformation from pure text based into (semi-)structured semantic descriptions that are interlinked in a collection of big federated graphs. We are in dire need for a new age of semantically enabled infrastructure adept at storing, manipulating, and querying scholarly knowledge. Equally important is a suite of machine assistance tools designed to populate, curate, and explore the resulting scholarly knowledge graph. In this thesis, we address the issue of constructing a scholarly knowledge graph using natural language processing techniques. First, we tackle the issue of developing a scholarly knowledge graph for structured scholarly communication, that can be populated and constructed automatically. We co-design and co-implement the Open Research Knowledge Graph (ORKG), an infrastructure capable of modeling, storing, and automatically curating scholarly communications. Then, we propose a method to automatically extract information into knowledge graphs. With Plumber, we create a framework to dynamically compose open information extraction pipelines based on the input text. Such pipelines are composed from community-created information extraction components in an effort to consolidate individual research contributions under one umbrella. We further present MORTY as a more targeted approach that leverages automatic text summarization to create from the scholarly article's text structured summaries containing all required information. In contrast to the pipeline approach, MORTY only extracts the information it is instructed to, making it a more valuable tool for various curation and contribution use cases. Moreover, we study the problem of knowledge graph completion. exBERT is able to perform knowledge graph completion tasks such as relation and entity prediction tasks on scholarly knowledge graphs by means of textual triple classification. Lastly, we use the structured descriptions collected from manual and automated sources alike with a question answering approach that builds on the machine-actionable descriptions in the ORKG. We propose JarvisQA, a question answering interface operating on tabular views of scholarly knowledge graphs i.e., ORKG comparisons. JarvisQA is able to answer a variety of natural language questions, and retrieve complex answers on pre-selected sub-graphs. These contributions are key in the broader agenda of studying the feasibility of natural language processing methods on scholarly knowledge graphs, and lays the foundation of which methods can be used on which cases. Our work indicates what are the challenges and issues with automatically constructing scholarly knowledge graphs, and opens up future research directions

    Enabling automatic provenance-based trust assessment of web content

    Get PDF

    Formalizing Gremlin pattern matching traversals in an integrated graph Algebra

    Get PDF
    Graph data management (also called NoSQL) has revealed beneficial characteristics in terms of flexibility and scalability by differ-ently balancing between query expressivity and schema flexibility. This peculiar advantage has resulted into an unforeseen race of developing new task-specific graph systems, query languages and data models, such as property graphs, key-value, wide column, resource description framework (RDF), etc. Present-day graph query languages are focused towards flex-ible graph pattern matching (aka sub-graph matching), whereas graph computing frameworks aim towards providing fast parallel (distributed) execution of instructions. The consequence of this rapid growth in the variety of graph-based data management systems has resulted in a lack of standardization. Gremlin, a graph traversal language, and machine provide a common platform for supporting any graph computing sys-tem (such as an OLTP graph database or OLAP graph processors). In this extended report, we present a formalization of graph pattern match-ing for Gremlin queries. We also study, discuss and consolidate various existing graph algebra operators into an integrated graph algebra

    Ontology-based infrastructure for intelligent applications

    Get PDF
    Ontologies currently are a hot topic in the areas of knowledge management and enterprise application integration. In this thesis, we investigate how ontologies can also be used as an infrastructure for developing applications that intelligently support a user with various tasks. Based on recent developments in the area of the Semantic Web, we provide three major contributions. We introduce inference engines, which allow the execution of business logic that is specified in a declarative way, while putting strong emphasis on scalability and ease of use. Secondly, we suggest various solutions for interfacing applications that are developed under this new paradigm with existing IT infrastructure. This includes the first running solution, to our knowledge, for combining the emerging areas of the Semantic Web Services. Finally, we introduce a set of intelligent applications, which is built on top of onologies and Semantic Web standards, providing a proof of concept that the engineering effort can largely be based on standard components.Ontologien sind derzeit ein viel diskutiertes Thema in Bereichen wie Wissensmanagement oder Enterprise Application Integration. Diese Arbeit stellt dar, wie Ontologien als Infrastruktur zur Entwicklung neuartiger Applikationen verwendet werden können, die den User bei verschiedenen Arbeiten unterstützen. Aufbauend auf den im Rahmen des Semantischen Webs entstandenen Spezifikationen, werden drei wesentliche Beiträge geleistet. Zum einen stellen wir Inferenzmaschinen vor, die das Ausführen von deklarativ spezifizierter Applikationslogik erlauben, wobei besonderes Augenmerk auf die Skalierbarkeit gelegt wird. Zum anderen schlagen wir mehrere Lösungen zum Anschluss solcher Systeme an bestehende IT Infrastruktur vor. Dies beinhaltet den, unseres Wissens nach, ersten lauffähigen Prototyp der die beiden aufstrebenden Felder des Semantischen Webs und Web Services verbindet. Schließlich stellen wir einige intelligente Applikationen vor, die auf Ontologien basieren und somit großteils von Werkzeugen automatisch generiert werden können
    corecore