
Emergent Relational Schemas for RDF

Minh Duc Pham

Committee prof.dr. Frank van Harmelen
prof.dr. Martin Kersten
prof.dr. Josep Lluis Larriba Pey
prof.dr. Thomas Neumann
dr. Jacopo Urbani

The research reported in this thesis has been partially carried out at CWI, the Dutch
National Research Laboratory for Mathematics and Computer Science, within the
theme Database Architectures.

The research reported in this thesis has been partially carried out as part of the
continuous research and development of the MonetDB open-source database man-
agement system.

SIKS Dissertation Series No. 2018-19 The research reported in this thesis has been
carried out under the auspices of SIKS, the Dutch Research School for Information
and Knowledge Systems.

The cover was designed by the author. Photo by Leo Rivas on Unsplash.

The printing and binding of this dissertation was carried out by Ipskamp Printing.

ISBN 978-94-028-1110-0

VRIJE UNIVERSITEIT

Emergent Relational Schemas for RDF

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor
aan de Vrije Universiteit Amsterdam,

op gezag van de rector magnificus
prof.dr. V. Subramaniam,

in het openbaar te verdedigen
ten overstaan van de promotiecommissie
van de Faculteit der Bètawetenschappen

op donderdag 6 september 2018 om 15.45 uur
in de aula van de universiteit,

De Boelelaan 1105

door

Minh Duc Pham

geboren te Bac Ninh, Vietnam

promotor: prof.dr. P.A. Boncz
copromotor: prof.dr. S. Manegold

Tặng bố mẹ của con vì tình yêu thương vô bờ bến,
Tặng em yêu vì bao gian khổ, ngọt ngào

và con trai - nguồn vui vô tận ...

Abstract

The main semantic web data model, RDF, has been gaining significant traction in
various domains such as the life sciences and publishing, and has become the unri-
valed standard behind the vision of global data standardization and interoperability
over the web. This data model provides the necessary flexibility for users to repre-
sent and evolve data without prior need of a schema, so that the global RDF graph
(the semantic web) can be extended by everyone in a grass-roots and pay-as-you-go
way. However, as identified in this thesis, this flexibility which de-emphasizes the
need for a schema and the notion of structure in the RDF data poses a number of
data management issues in systems that manage large amounts of RDF data. Specif-
ically, it leads to (i) query plans with excessive join complexity which are difficult
to optimize, (ii) low data locality which blocks the use of advanced relational phys-
ical storage optimizations such as clustered indexing, data partitioning, and (iii)
a lack of schema insight which makes it harder for end-users to write SPARQL
queries with non-empty-results.

This thesis addresses all three problems. We uncover and exploit the fact that
real RDF data, while not as regularly structured as relational data, still has the great
majority of triples conforming to regular patterns. Recognizing this structure in-
formation allows RDF stores to become both more efficient and easier to use. An
important take-away from this thesis is that the notion of “schema” is understood
differently in semantic web than in databases. In semantic web “schema” refers
to ontologies and vocabularies which are used to describe entities in terms of their
properties and relationships in a generic manner, that is valuable across many differ-
ent application contexts and datasets. In databases, “schema” means the properties
of data stored in a single database. We argue both different notions of schema are
valuable. Semantic schemas could be a valuable addition to relational databases,
such that the semantics of a table (the entity it may represent) and of its columns
and relationships is made explicit. This can facilitate data integration. Relational
schemas are valuable for semantic web data, such that RDF stores can better orga-
nize data on disk and in memory, SPARQL engines can do better optimizations,
and SPARQL users can better understand the nature of an RDF dataset. This the-
sis concentrates on these latter points. Concretely, we propose novel techniques to
automatically derive a so-called emergent relational schema from an RDF dataset
that recovers a compact and precise relational schema with high triple coverage and
short human-readable labels. Beyond the use of the derived emergent relational
schema for conveying the structure information of RDF dataset to users and al-
lowing humans to understand RDF dataset better, we have exploited this emergent

schema internally inside the RDF system (in storage, optimization, and execution)
to make RDF stores more efficient. In particular, using emergent relational schema
allows to make RDF storages more compact and faster-to-access, and helps reduc-
ing the number of joins (i.e., self-joins) needed in SPARQL query execution as well
as the complexity of query optimization, showing significant performance improve-
ment in RDF systems. This approach opens a promising direction in developing
efficient RDF stores which can bring RDF-based systems on par with relational-
based systems in terms of performance without losing any of the flexibility offered
by the RDF model.

Besides the contributions on developing high performance RDF stores using
the automatically derived emergent relational schema, in this thesis, we also pro-
vided insights and materials for evaluating the performance and technical chal-
lenges of RDF/graph systems. Particularly, we developed a scalable graph data
generator which can generate synthetic RDF/graph data having skewed data dis-
tributions and plausible structural correlations of a real social network. This data
generator, by leveraging parallelism though the Hadoop/MapReduce paradigm, can
generate a social network structure with billions of user profiles, enriched with
interests/tags, posts, and comments using a cluster of commodity hardwares. The
generated data also exhibited interesting realistic value correlations (e.g., names
vs countries), structural correlations (e.g., friendships vs location), and statistical
distributions (e.g., power-law distribution) akin to a real social network such as
Facebook. Furthermore, the data generator has been extended and become a core
ingredient of an RDF/graph benchmark, LDBC Social Network Benchmark (SNB),
which is designed to evaluate technical challenges and solutions in RDF/graph sys-
tems.

Samenvatting

Het semantische web-datamodel, RDF, wordt in toenemende gebruikt in verschil-
lende domeinen zoals de life sciences en publishing, en is uitgegroeid tot standaard
voor wereldwijde gegevensstandaardisatie en interoperabiliteit. RDF biedt flexi-
biliteit voor gebruikers om gegevens weer te geven en te ontwikkelen zonder dat
daar een schema voor nodig is, zodat de wereldwijde RDF-graaf (het “semantische
web”) door iedereen kan worden uitgebreid op eigen initiatief. Deze flexibiliteit
brengt een aantal problemen met zich mee in systemen die grote hoeveelheden
RDF-gegevens beheren, omdat het de behoefte aan een schema en het begrip van
structuur in de RDF-gegevens minder benadrukt. In de eerste plaats verhoogt het
ontbreken van schema-informatie de complexiteit van query-optimalisatie, zodat in
de praktijk RDF database-systemen een veel kleiner gedeelte van de zoekruimte
kunnen bekijken, en er slechtere en dus veel langzamere query-plannen gevon-
den worden. Daarnaast zorgt de lage gegevenslokaliteit ervoor dat het gebruik van
geavanceerde fysieke opslagoptimalisaties voor relationele databases, zoals geclus-
terde indexering en gegevenspartitionering, niet mogelijk is. Tot slot is het door
een gebrek aan schema-inzicht moeilijk voor eindgebruikers om goede SPARQL
queries te schrijven. Dit proefschrift gaat in op elk van deze drie problemen. We
ontdekken en exploiteren het feit dat echte RDF datasets in vrij hoge mate tabu-
lair gestructureerd zijn. Het automatisch herkennen van zulke structuur maakt het
mogelijk RDF-opslag efficiënter en gebruiksvriendelijker te maken.

Een belangrijke constatering van dit proefschrift is dat aan het begrip “schema”
een verschillende betekenis toegekend wordt in het semantisch web dan in databases.
Binnen het semantisch web verwijst “schema” naar ontologieën en vocabulaires
die worden gebruikt om concepten op een generieke manier te beschrijven, zodat
die concepten in vele situaties en toepassingen (her-)bruikbaar zijn. In databases
verwijst “schema” naar iets heel anders, namelijk naar de specifieke structuur van
gegevens in een enkele dataset. Wij betogen dat beide betekenissen van een schema
waardevol zijn. Semantische schema’s zouden een waardevolle toevoeging kunnen
zijn aan relationele databases: de semantiek van een tabel (de entiteit die het kan
vertegenwoordigen) en van zijn kolommen en relaties wordt expliciet gemaakt. Dit
kan de integratie van gegevens uit verschillende databases vergemakkelijken. Rela-
tionele schema’s zijn ook waardevol voor semantische webgegevens: de opslag van
RDF-gegevens op een schijf of in geheugen kan er beter mee georganiseerd worden
zodat RDF-databases betere optimalisaties kunnen uitvoeren, en gebruikers kunnen
beter begrijpen welke attributen werkelijk in een RDF-dataset aanwezig zijn.

Dit proefschrift stelt nieuwe technieken voor om automatisch een zogenaamd

“emergent” relationeel schema af te leiden van een RDF-dataset. Het resultaat is
een compact en nauwkeurig relationeel schema waarin tabellen, kolommen en re-
laties korte namen krijgen die makkelijk voor mensen leesbaar zijn. Dit emergente
relationele schema is niet alleen nuttig om mensen de structuur RDF-gegevens
beter te laten begrijpen; het kan ook de computer helpen om een RDF database-
systeem efficiënter te maken. In concreto, het gebruik van een emergent, relation-
eel schema maakt het mogelijk om RDF-opslag compacter en sneller toegankelijk
te maken. Daarnaast helpt het bij het verminderen van het aantal joins (met name
zelf-joins) dat nodig is voor SPARQL-queries en het verlagen van de complex-
iteit van de query-optimalisatie. Dit leidt tot een significante prestatieverbetering in
RDF-systemen. Onze methode biedt een veelbelovend perspectief op het ontwikke-
len van een efficiënte RDF-opslag die zich kan meten met relationele systemen qua
prestatie zonder in te leveren op de flexibiliteit die het RDF-model biedt.

Naast de bijdragen aan het ontwikkelen van hoogwaardige RDF-opslag die ge-
bruik maakt van het automatisch afgeleide, emergente, relationele schema geven we
in dit proefschrift ook inzichten en methodes voor het evalueren van de prestaties
van RDF-systemen. We hebben een schaalbare datagenerator ontwikkeld die syn-
thetische RDF-graph gegevens kan genereren met scheve datadistributies en plausi-
bele structurele correlaties. Deze gegevensgenerator kan dankzij parallellisatie via
Hadoop / MapReduce, een sociale netwerkstructuur genereren met miljarden ge-
bruikersprofielen, verrijkt met interesses, labels, berichten en opmerkingen met
behulp van een cluster van alledaagse hardware. De gegenereerde data vertonen
ook interessante, realistische waardecorrelaties (bijv. namen vs. landen), structurele
correlaties (bijv. vriendschappen versus locatie) en statistische verdelingen (“power
laws”) die vergelijkbaar zijn met een echt sociaal netwerk zoals Facebook. Deze
gegevensgenerator vormt nu de kern van een industriële benchmark, de LDBC So-
cial Network Benchmark (SNB), die is ontworpen om RDF-graph systemen te eval-
ueren.

Acknowledgements

I would dedicate this dissertation to my mother, mẹ Tâm, who planted the seed that
I base my life on, but does not have opportunity to witness her beloved son com-
plete his PhD. Her unconditional love, her everlasting belief and encouragement,
however, gave me the strength to not give up in this epic journey.

A long journey would not be completed without the supports of many people.
When it is about to end, I would like to take this unique opportunity to greatly thank
all people whom I deeply owed for their great help.

First and foremost, I would like express my deep gratitude to my supervisor,
prof. Peter Boncz, who picked me up from Schiphol Airport when I first arrived
to Amsterdam and patiently guided me throughout my PhD journey. Peter is an
inspiring and passionate scientist whom I would never stop learning from until the
last day working with him. I honestly admitted that I owed him a lot. Without him,
I would never obtain what I have now.

Being a member of MonetDB team, the Database Architecture group at CWI,
is a honor. I was so glad and proud to work and share my PhD time with those
great minds and supportive members. In particular, I would like to thank Prof. Mar-
tin Kersten and Prof. Stefan Mangegold for not only sharing me their innovative
ideas and thoughtful insights, but also willingly supporting me with administrative
paperwork. I would like to sincerely acknowledge Sjoerd Mullender whose the of-
fice door was always open for my questions on MonetDB coding, and Dr. Niels
Nes for his eager support with my implementation of RDF/SPARQL in MonetDB
SQL engine. My academic life would be a lot less interesting without other col-
leagues in the team: Thank you Mrunal, the 3D Hologram-mate, Holger, my 4-year
officemate, Jenny, Thibault, Eleni, Yagiz, Stratos, Erietta, Sandor, Romulo, Left-
eris, Hannes, Bart, Kostis, Fabian, Arjen, Eyal, Pedro, Mark, Panagiotis, Tim and
Benno.

Further more, I would like to thank all committee members, Frank van Harme-
len, Martin Kersten, Josep Lluis Larriba Pey, Thomas Neumann, and Jacopo Urbani
for their time and efforts in being the committee members of my thesis.

Outside of my academic life and CWI office, lots of friend have made my life
in the Netherlands much more meaningful. I would want to thank my badminton
teammates Mathieu, Joyce, Koen and Mara for many great times together. I want
to thank lots of Vietnamese friends in Amsterdam and Eindhoven, especially the
Catan buddies Vân, Cảnh, Tú and Dũng, who always challenged me on the board
game, and the football team whom I shared lots of joyful weekends.

My kisses and hugs go to all my family members for their endless support dur-

ing this lengthy journey. Their encouragement was worth more than I can express
on paper. I am so grateful to my father, bố Hưởng, my mother-in-law, mẹ Nga, and
my brother-in-law, em Đức, who have come to the Netherlands to give me a hand
during many hard times. I deeply owed my brother, anh Việt Anh and his wife, chị
Hiền, for taking great care of our family when I was busy working on my research. I
would want to thank my brother, em Thịnh and his wife, em Hường, for their instant
help when we are both living in a foreign country.

Finally, I would send all my heartfelt thanks to my beloved wife, Minh Vân, and
my son, Minh. I am forever indebted to my wife for endlessly supporting and loving
me with her compassion and understanding through the toughest moments of my
life. Without her beside, I would never accomplish this degree. Thanks to my dear
son for every single inspiring moments and being the endless driving force of my
life. My every day with them has been a true gift.

Contents

Contents 13

1 Introduction 15
1.1 The Semantic Web . 15
1.2 RDF data management . 16
1.3 RDF and graph benchmarks . 23
1.4 Thesis Outline and Contributions 24

2 Background and Related Work 27
2.1 Semantic Web Technologies . 27
2.2 RDF storage . 42

3 Deriving an Emergent Relational Schema from RDF Data 59
3.1 Introduction . 59
3.2 Emerging A Relational Schema 61
3.3 Experimental Evaluation . 76
3.4 Related Work . 82
3.5 Conclusions . 83

4 Exploiting Emergent Schemas to make RDF systems more efficient 85
4.1 Emergent Schema Introduction 85
4.2 Emergent Schema Aware RDF Storage 87
4.3 Emergent Schema Aware SPARQL Optimization 92
4.4 Emergent Schema Aware SPARQL Execution 93
4.5 Performance Evaluation . 98
4.6 Related Work . 100
4.7 Conclusion . 102

5 Benchmarking RDF stores 105
5.1 S3G2: A Scalable Structure-correlated Social Graph Generator . . 105
5.2 LDBC Social Network Benchmark (SNB) 121

6 Conclusions 125
6.1 Contributions . 125
6.2 Future research directions . 131
6.3 Summary . 132

13

14 CONTENTS

List of Figures 133

List of Tables 134

A Query plan transformation for star pattern 135

B DBpedia queries 139

C LDBC Datagen 143

Bibliography 149

Chapter 1

Introduction

1.1 The Semantic Web

Conceptually outlined by Berners-Lee et al. in 2001, the Semantic Web was pro-
posed as an extension of the Web with semantic meta-data annotations. Specifically,
via globally agreed-upon identifiers (e.g., the Uniform Resource Identifier (URI)),
a well-defined data model (e.g., The Resource Description Framework (RDF)), and
a schema language (RDF Schema) and many other standards, it provides a com-
mon framework for accessing, sharing and reusing data across Web applications
and platforms [50]. In the RDF data model, a data set is represented as a collection
of <subject, predicate, object> triples, in which the object can be considered
as the value for the property (i.e., predicate) of the described resource (i.e., sub-
ject). Using vocabularies and ontologies built from the so-called Web Ontology
Language, the Semantic Web can enrich data with additional meaning, allowing
not only people but also machines to automatically derive meaningful content from
Web data.

Semantic Web technologies got early attention from within the AI research
community who identified it as the emerging standard for knowledge representa-
tion. Subsequently, with the help of this community, standards for defining ontolo-
gies and reasoning were devised (OWL, SKOS, RDFS) [140, 142, 137]. Through
the combination of data model, schema language, ontology definitions and reason-
ing from simple sub/super-class relationships (RDFS) to more complex (and less
tractable) OWL profiles, the Semantic Web and its ontology language become im-
portant artifacts to represent human knowledge.

However, actual usage of Semantic Web data remained low, until researchers
shifted attention to data management aspects, specifically the Linked Open Data
(LOD) initiative that started around the first releases of DBpedia1 (a semantic ver-
sion of Wikipedia2). The drive to create more and more RDF datasets, preferably
in open source, is seen there as an enabling factor that will contribute to the grow-
ing popularity of Semantic Web standards. The large volumes of RDF data avail-
able make the case for a database-style interaction, i.e. using a query language, for

1dbpedia.org
2wikipedia.org

15

16 CHAPTER 1. INTRODUCTION

which the SPARQL language was adopted [161]. The movement to “liberate” data
in RDF should also be seen as part of the more general drive towards open data,
also promoted among governments to increase democratic accountability but also
as a driver for economic innovation based on public data. Berners Lee introduced
the 5-star deployment scheme for open data3 on the Web, where the highest stan-
dard (5-star data) is given to data that uses URIs to denote things and links to other
data to provide context (i.e., RDF). As a result, the Semantic Web data volume has
significantly increased with tens of thousands datasets publicly shared on the Web.
In particular, the Linked Open Data initiative has been building a so-called LOD-
cloud4 of more than 50 billion RDF triples5 from hundreds Semantic Web datasets
in which each dataset may contain millions of entities (e.g., DBpedia6). Neverthe-
less, there remains a long way to go as the majority of open data has lower star
ratings, such as 1-star data in closed formats (e.g. PDF), or three-star data in open
formats (CSV files). Even much of the LOD cloud should actually be considered
4-star data, since the 5-star denomination is given if the data is actually interlinked,
something which is only sparsely present in the current LOD Cloud.

While Linked Open Data is still struggling in capturing the awareness from the
broad field of ICT outside the semantic web community, the day-to-day internet
has silently been “flooded” with RDF through the emergence of semantic web an-
notations in web pages’ metadata7. The flagship semantic web technologies in an-
notating the web metadata are “schema.org” and RDFa (the Resource Description
Framework in Attributes). Launched by Google, Bing, Yahoo, and lately Yandex in
2011 “to create and support common ways to represent web page metadata”, the
schema.org vocabulary together with such machine-readable formats as Microdata
and RDFa facilitate search engines in retrieving the meaning of each web page via
semantic web annotations embedded in its metadata. This allows better rendering of
commercial offerings (e.g., hotels, restaurants, products in search results) at a rela-
tively little effort for the data publisher. The success of internet search annotations
shows that the Semantic Web has potential for growth and can become commer-
cially viable, though idealistic Linked Open Data proponents may be a bit off-put
that the largest success of RDF so far has been in relatively shallow commercial
product advertising.

1.2 RDF data management

The collection of triples in an RDF datasets forms a labeled directed graph. SPARQL
is the W3C recommendation query language for RDF graphs, essentially allowing
subgraph search. Most RDF storage systems that implement SPARQL internally
store their data in SQL-based database systems using so-called triple tables (e.g.,
Sesame [68], Jena SDB [73, 185], ICS-Forth RDFSuite [38], Virtuoso [87], Ora-
cle [23]). As such, each triple table contains three columns corresponding to the

3http://5stardata.info
4http://lod-cloud.net
5State of the LOD cloud http://lod-cloud.net/state
6dbpedia.org
7The availability of microdata, RDFa in web data http://webdatacommons.org/structureddata

1.2. RDF DATA MANAGEMENT 17

subject, predicate and object (S,P,O) of the RDF triple. Even “native” SPARQL
systems (e.g., 4store [105], RDF-3X [150], Hexastore [183]) that do not built di-
rectly on SQL technology still often adopt this representation, e.g. storing the triple
tables as B-tree indexes (typically replicated, using different orders of S,P,O as in-
dex key).

The proponents of RDF often highlight two advantages of the model: (i) it is
based on URIs such that not only meta-data but also data instances (e.g., “keys”)
can be standardized for interoperability over the web and (ii) it is extremely flexible
and imposes few schema constraints [54], so the global RDF graph (the semantic
web) can be extended by everyone in a grass-roots and pay-as-you-go way. How-
ever, some database researchers have taken a critical stance towards RDF [109, 39,
99, 149] because (ii): RDF de-emphasizes the need for a schema and the notion of
structure in the data, and this leads to performance issues in systems that manage
large amounts of RDF data. Specifically, the reliance of RDF stores on triple ta-
bles leads to query plans with many self-joins. Also, the lack of a multi-attribute
object structure in triple storage blocks the use of advanced relational physical stor-
age optimizations, such as clustered indexing, hash/range data partitioning, etc.,
which are the cornerstone of mature data warehousing solutions. Our research in
Section 3 reveals that despite the fact that most RDF data does not have a (RDFS)
schema, the great majority of RDF triples in actual datasets do conform to regular
structural patterns. Additionally, the lack of a schema also makes it harder for users
to formulate queries on RDF graphs as it may not be obvious to the user which
combination of triple predicates actually occurs in the data. To tackle this latter
problem, the semantic web community has recently been studying graph structure
analysis techniques to construct visual graph summaries to help users comprehend
RDF graphs [72].

Despite these issues, RDF is the unrivaled standard behind the vision of global
data standardization (e.g., LOD, see point (i)), and simply because RDF has been
gaining significant traction in certain domains, such as the life sciences. With
quickly growing RDF data volumes, there is a true need to better support it in
database systems.

1.2.1 The RDF data management challenges

Even though there have been significant efforts in building efficient RDF stores, we
identify here three main problems in RDF data management, namely (i) excessive
join complexity, (ii) low storage locality and (iii) lack of user schema insight.
Excessive join complexity. Consider a simple SPARQL query:

SELECT ?a ?n WHERE {
?b <has_author> ?a.
?b < in_year> ‘‘1996’’.
?b <isbn_no> ?n }

This SPARQL query looks for the author and the ISBN number of a book
published in 1996. Despite the fact that a book entity almost always has both the

18 CHAPTER 1. INTRODUCTION

isbn_no and has_author properties, the query plan typically used for this
query by triple store systems still needs two separate joins for these properties to
construct the answer (as shown in Figure 1.1). Note that a relational database sys-
tem storing Book information would have a Book table and this would be a simple
Scan-Select query without a join. The problem of having unnecessary joins is se-
rious in most SPARQL queries as they commonly ask for many properties from a
common subject i.e., containing so-called “star” pattern [96, 99]. However, rela-
tional query processors that know about the structure of data waste no effort here
as they would store all data for each entity in a table (e.g., Book table). The only
joins they process are “real” joins between different entities. The superfluous joins
in SPARQL queries are not only costly at query execution time but also explode
the query optimization complexity since the optimization search space (e.g., the
number of bushy join trees) generated by widely-used dynamic programming algo-
rithms for finding a good join order isO(3N) where N is the number of joins [146].
In other words, if SPARQL queries contain star patterns of average size k, then the
SPARQL query optimizer search space is O(3k) times larger than necessary.

To make matters even worse, being unaware of structural correlations (e.g., the
presence of a isbn_no triple makes the occurrence of a has_author triple
with the same subject almost a certainty) also makes it difficult to estimate the
join hit ratio between triple patterns. Capturing all correlated predicates in query
plan cardinality estimation is unfeasible in the general case, resulting in the situa-
tion that even state-of-the-art query optimizers use the “independence assumption”
(i.e., calculating the selectivity of conjunctive predicates using the simple product
of individual predicate selectivities). In other words, if 1:100 of subjects have a
has_author triple as well as isbn_no triple, the query optimizer will estimate
the probability to have both as 1

100 ·
1

100 = 0.0001 while the real value is 0.01.
Therefore, due to the independence assumption of that query optimizer, the cost
model and the result sizes will be badly estimated, causing the choosing of a wrong
query plan.

Concluding, SPARQL queries have more joins than necessary. This is not only
a problem during runtime execution because of the extra join work. The other prob-
lem is that query optimization takes exponentially more effort, and given that search
algorithms cannot cover the full space in queries with many joins and cut short the
search, this often results in missing the best plan. Finally, the third problem is that
in determining what is the best plan, a query optimizer depends on cost estimation,
of which cardinality estimation is the most important component [125]. And due to
the predicate correlation typically associated with these extra joins (star patterns)
the estimates are often very wrong. The result of these three problems often is a
performance disaster on complex SPARQL queries in RDF systems based on triple
storage.
Low storage locality. A crucial aspect of efficient analytical query processing is
data locality, as provided by a clustered index or partitioning schemes [163]. How-
ever, without the notion of classes/tables with regular columns/attributes, it is im-
possible to formulate a clustered index or partitioning schemes, which RDF stores
therefore do not offer.

Current state-of-the-art RDF stores such as RDF-3X[150], Hexastore[183] cre-

1.2. RDF DATA MANAGEMENT 19

on

on

IndexScan(PSO)
(?s, in_year, “1996”)

IndexScan(PSO)
(?s, has_author, ?a)

IndexScan(PSO)
(?s, isbn_no, ?n)

Figure 1.1: Example query plan

ate exhaustive indexes for all permutations of subject(S), predicate(P), object(O)
triples as well as their binary and unary projections. This abundance of access paths
does not create any of the access locality that a relational clustered index or parti-
tioning scheme offers. As shown in the Figure 1.2a, the above example SPARQL
query may use a OPS index (or POS index) to execute a range selection on the
in_year attribute quickly, resulting in an ordered list of S values, however, for re-
trieving the other attributes (i.e., isbn_no and author) it needs a CPU intensive
nested-loop index join into a PSO index; one for each attribute. This nested-loop
join will hit the index all over the place: no locality despite so-called exhaustive
indexing.

This is similar to relational query processing without index locality, i.e. un-
clustered index access: while the first access to the index is fast, the subsequent
RID-list needs to be fetched from the main table leading to random lookups, re-
sulting in random disk-IO or CPU cache misses. Even if the lookups can use index
structures (e.g., B-tree), we get large amounts of random fetches, which on current
hardware does not scale. Due to the growing imbalance between latency and band-
width, both in the disk and the RAM level of the memory hierarchy, the cut-off
point where such index-lookup queries are better than sequential column (range)
scans has been exponentially decreasing. Where previously a 5% or smaller selec-
tion predicate could be run faster with an index than with a full scan, in 2012 this
is 0.0000005% (and decreasing) [33, 64].

While RDF systems with exhaustive indexing still fall into the trap of non-
locality of access, relational systems with their common optimization techniques
such as clustered indexing and table partitioning can fully preserver the data locality
for such star pattern SPARQL queries as the above example query. Specifically,
as shown in Figure 1.2b, using clustered index, all the data records of the Book
table are physically stored on the disk in the exact same order with respect to the
clustering key year. The qualifying records can be retrieved by following a binary
search on the clustering key year in order to locate the start and end RIDs of the
qualifying data records (O(logn) time complexity), and then sequentially fetching
a contiguous collection of records (from start to the end qualifying RIDs) which
typically touches only a few data pages. Alternatively, using the table partitioning
technique, the relational systems subdivides the table into small chunks accruing
to the ranges (range partitioning) or the hash-based value (hash partitioning) of
an attribute (e.g., year for the example data as shown in the Figure 1.2c) so that
data records can be accessed at a finer level of granularity. In order to retrieve the
qualifying data for a selection predicate (e.g., year = 1996), table partition pruning

20 CHAPTER 1. INTRODUCTION

O P S
. . .
1995 year 4
1996 year 0
1996 year 6
1997 year 3
1998 year 2
. . .

P S O
. . .
isbn 0 i1996
isbn 2 i1998
isbn 3 i1997
isbn 4 i1995
isbn 6 i1996
. . .

P S O
. . .
auth. 0 a1996
auth. 2 a1998
auth. 3 a1997
auth. 4 a1995
auth. 5 foo
auth. 6 a1996
auth.
. . .

(a) Triple tables: while the first OPS access has locality (green), the subsequent PSO joins
hit the indexes without locality (red)

year author isbn
. . .
1995 a1995 i1995
1996 a1996 i1996
1996 a1996 i1996
1997 a1997 i1997
1998 a1998 i1998
. . .

(b) Relational clustered index

author isbn
a1995 i1995

author isbn
a1997 i1997

author isbn
a1997 i1997

author isbn
a1996 i1996
a1996 i1996

1995

1996

1997

1998

(c) Relational partitioned tables

Figure 1.2: Access locality on the example Book query: Triple tables (a) vs rela-
tional clustered index (b) and partitioned tables (c). Both (b) and (c) achieve access
locality (green)

will be performed to prune all the non-matching partitions whose their partitioning
attribute year does not match the selection predicate. Then, the results can be
retrieved by sequentially fetching qualifying records from a typically very small
remaining chunk of data.

Essentially, the problem of non-locality in RDF query plan boils down to the
numbering scheme for object identifiers (OIDs) in RDF systems. While loading
RDF triples, current RDF stores typically assign OIDs to Subject (S), Predicate
(P), Object (O) in order of appearance. This data-import friendly order might be
quite random and uncorrelated with the access paths of interest to the database
users. Given the fact that the OID order (whatever it happens to be) is heavily
exploited in RDF systems, this is in fact the direct cause of non-locality in RDF
query plans. Thus, one of the things that could be done in order to gain locality
in RDF systems is to re-order the OIDs in a meaningful way such as ordering the
OIDs of S,P,O with respect to important properties (e.g., year), and grouping
triples by the entity they describe. However, this is not trivial as it may not be clear
which entity a triple belongs to, and subjects of different entities may share the
same property. Obviously, in order to do this properly, one needs to understand the

1.2. RDF DATA MANAGEMENT 21

structure of RDF graph which is still missing in current RDF systems and will be
addressed in our work.
Lack of user schema insight and empty query results. SPARQL query writers
who are not familiar with the data they are querying, face the problem of having
to guess which properties may actually occur in the data. Even if they would be
informed by ontology classes, that define entities and their properties, queries that
use these properties in star patterns will come back with empty answers if one or
more of these properties does not occur in the data. What is missing in short is a
relational database schema.

In this thesis, which walks the boundary of database techniques and semantic
data management, we observe that the notion of “schema” is differently understood
in the Semantic Web and database research communities. In the Semantic Web,
“schemas” are ontologies and vocabularies which aim at modeling a knowledge
universe in order to allow diverse organizations to consistently denote certain con-
cepts in a variety of contexts, and are not required to be defined upfront (“schema-
last”). Whereas, in the database world, a “schema” describes the structure of one
particular dataset (i.e., database) without the intention for reuse or data integra-
tion, and must be declared before using the data (“schema-first”). We argue that
both of the schema notions are valuable and should be available to data stores and
their users. Relational database applications could benefit from the data integration
power of the Semantic Web schema if tables and column names would have a mean-
ing conveyed by a URI defined by an ontology. Semantic Web applications could
profit from a relational database schema in order to help users better understand the
dataset [160] and make RDF systems more efficient [158].

In this thesis, we are interested in deriving a relational schema for RDF data
automatically. This schema could help SPARQL users write meaningful queries
but it would also allow potentially to consider using SQL as a query language for
RDF data, which would enable a huge amount of installed base of software tools to
leverage Semantic Web data.

1.2.2 Self-organizing structured RDF

In this thesis, we propose self-organizing structured RDF data management in order
to tackle the afore-mentioned three RDF data management problems. As the causes
of these problems come from the fact that RDF model does not pay attention to
the structure present in RDF graph, the key idea in this thesis research is to fully
automatically discover the structure of RDF data sets without losing the flexibility
of RDF, and leverage this structure both internally inside the database system (in
storage, optimization, and execution), and externally towards the users who pose
queries. This idea has been realized and experimentally evaluated inside the open-
source MonetDB column-store system8, known for its adaptive storage structures
(such as Recycling [116] and Cracking [114]).

Our approach is to first provide an efficient technique for automatically discov-
ering a compact and precise “emergent” relational schema in RDF datasets which

8www.monetdb.org

22 CHAPTER 1. INTRODUCTION

covers most of the input RDF triples (e.g., 90% of the dataset) and has useful la-
bels. This schema not only helps the user to have better understanding of the RDF
dataset, but also can be used for making RDF store much more efficient. Specifi-
cally, by exploiting this schema, we physically store the majority of the data (“regu-
lar” triples) in relational tables under the hood, and use a reduced triple table (e.g.,
PSO table) for the remaining “exception” data. With our relational table-based stor-
age scheme, columnar decomposition offers much more compact storage as well as
faster access than a normal triple table. Figure 1.3 shows the architecture of the pro-
posed RDF store. As shown in this figure, the proposed store supports both SQL
and SPARQL. This architecture is specifically applicable for RDF stores build-
ing on top of a relational technology such as MonetDB [61], Virtuoso [87], IBM-
DB2 [63], Oracle [23] to adopt. As a by-product, all existing SQL tools such as data
visualization can also be used for RDF data.

In our proposal self-organization is performed at bulk-load time. Subsequent
modifications to the data are handled by inserting new triples into the exception
table and possibly deleting rows from tables. As the exception table grows, periodi-
cally tuples are moved from there into the relational tables in addition to periodical
self-reorganization that will add columns to tables or add new tables.

publisher book
author

<writes>
<publishes>

pso

SQL database engine

SPARQL

Exception

Triple Table

SQL Queries
on > 95%
of the RDF

100% correct
SPARQL queries

triples

Figure 1.3: Proposed RDF store’s architecture

1.2.3 Research questions

In order to realize the idea of building efficient self-organizing RDF store as well
as providing user schema insight from RDF data, the following are the research
questions which need to be addressed in the thesis:

Question 1: What is an “emergent” relational schema exactly and to which
extent do actual RDF datasets conform to it?

Question 2: How to efficiently and scalably discover an emergent relational
schema representation including foreign key relationships from RDF datasets?

Question 3: How to derive human-friendly names for the tables and columns
in the emergent relational schema?

1.3. RDF AND GRAPH BENCHMARKS 23

Question 4: How to exploit the emergent schema in order to make RDF stores
efficient in terms of storage?

Question 5: How to exploit the emergent schema in order to make RDF stores
efficient in terms of query execution?

Question 6: How to exploit the emergent schema in order to make RDF stores
efficient in terms of query optimization?

Question 7: How do we exploit the emergent schema with minimum impact to
RDBMS kernel?

1.3 RDF and graph benchmarks

During the course of this PhD research, addition work was performed on the topic
of RDF database benchmarking. In order to evaluate the performance of RDF
stores, a number of RDF/SPARQL benchmarks have been proposed such as BSBM [55],
LUBM [100], SP2Bench [169], and LDBC SNB [88]. As our work on emergent
schemas aims at developing a high performance RDF store, RDF/SPARQL bench-
marks play an important role in evaluating and analyzing technical challenges in
our research. During this PhD, a lot of time was invested in the LDBC project9

in order to develop and standardize the LDBC SNB benchmark (Social Network
Benchmark) and specifically on developing its novel data generator. A problem with
existing benchmarks is that they are either limited in representing real datasets or
are mostly relational-like [86]. While real-life data is highly correlated with skewed
data distributions, these previous benchmarks commonly assumed data indepen-
dence in their generated datasets, with often uniform data distributions. Besides, as
the data models and the logical schemas of these benchmarks can be easily repre-
sented in the relational model as well, they hardly highlight the advantages of using
RDF/SPARQL in modeling and processing generated data. This also de-motivates
RDF vendors in leveraging RDF support for their database engines since the rela-
tional model with SQL can often perform even better than RDF engines over such
regularly-shaped homogeneous datasets. Therefore, in order to test the performance
of RDF stores over real datasets, building a benchmark that can generate a synthetic
dataset simulating the real knowledge bases with highly correlated data and foster
the advantages of RDF/SPARQL model is truly needed.

As RDF data can also be viewed as graph data, the emerging class of “property
graph” databases can also be used for efficiently storing and querying RDF datasets.
In recent years there has been a flurry of activity around graph databases, espe-
cially considering start-up companies providing new graph database systems (e.g.,
AllegroGraph[1], Bigdata[7], Neo4j[22], Sparksee[28], Virtuoso[31])10. However,
by the time of our research on the RDF and graph benchmarks, no real property
graph database benchmarks were available. Therefore, the LDBC SNB benchmark
is not only aimed at evaluating RDF stores, but also designed for evaluating graph
database systems. Specifically, our work aims at creating a RDF and graph bench-
mark for challenging query processing over scalable highly connected graphs in

9LDBC council, http://ldbcouncil.org/
10Graph database projects (http://en.wikipedia.org/wiki/Graph _database)

24 CHAPTER 1. INTRODUCTION

which the generated graph has specific characteristics of a social network and real
data correlations. To do that, these following research questions will be addressed
in the thesis:

Question 8: How to scalably generate realistic RDF/graph data that simulates
the skewed data distributions and plausible structural correlations in a real social
network graph?

Question 9: How to design an RDF/graph benchmark over the realistic dataset
so that important technical challenges for RDF/graph database systems will be eval-
uated?

1.4 Thesis Outline and Contributions

The thesis studies RDF data management systems and RDF database benchmarks
and is structured as follows.
Background and Related work. In Chapter 2, we first present the background and
related concepts on Semantic Web technologies, focusing on RDF data model. We
then discuss related works on RDF data management and RDF/graph benchmarks
which inspired and motivated the research in this thesis.
Deriving an Emergent Relational Schema. Chapter 3 addresses the first three
research questions on efficiently and scalably discovering a compact and precise
emergent relational schema from RDF datasets. The research in this chapter is based
on the following published paper:

• Minh-Duc Pham, Linnea Passing, Orri Erling and Peter Boncz. Deriving an
Emergent Relational Schema from RDF Data. Proc. WWW Conference, Flo-
rence, May 2015.

Exploiting Emergent Schemas to make RDF systems more efficient. Chapter 4
presents our effort in taking advantage of derived emergent schema to more com-
pactly store RDF data and more efficiently optimize and execute SPARQL queries.
In this chapter, we also propose to extend the database kernel with a new query pro-
cessing operator called RDFscan for handling the exception data. This addresses the
research questions four to seven. The published papers for this chapter are:

• Minh-Duc Pham, Peter Boncz. Exploiting Emergent Schemas to make RDF
systems more efficient. Proc. ISWC, October 2016

• Minh-Duc Pham , Peter Boncz. Self-organizing Structured RDF in Mon-
etDB. PhD Symposium, ICDE, 2013.

Benchmarking RDF stores In Chapter 5, we describe research work on RDF
benchmarking performed while participating in the LDBC Social Network Bench-
mark task force. We shortly introduce and describe this benchmark focusing specif-
ically on my contribution in designing and developing its scalable correlated graph
generator. The work on this chapter gives the answer for the research questions 8
and 9, and is based on the following published papers:

1.4. THESIS OUTLINE AND CONTRIBUTIONS 25

• Orri Erling, Averbuch,A., Larriba-Pey, J., Hassan Chafi, Gubichev, A., Prat,
A., Minh-Duc Pham, Boncz, P. The LDBC Social Network Benchmark: In-
teractive Workload. Proc. SIGMOD, Melbourne, 2015.

• Minh-Duc Pham, Peter Boncz, Orri Erling. S3G2: a Scalable Structure-correlated
Social Graph Generator. Proc. TPCTC, Istanbul, 2012.

Conclusion Chapter 6 concludes the thesis and discusses future directions on RDF
data management.

Chapter 2

Background and Related Work

2.1 Semantic Web Technologies

This section is intended to provide basic knowledge on Semantic Web technologies
for readers outside of the Semantic Web community such as database researchers.
Thus, Semantic Web readers may skip this section and move directly to the Section
2.2.

The Semantic Web provides a common framework that allows data to
be shared and reused across application, enterprise, and community
boundaries. - W3C -

Semantic Web technologies enable people to create formal description of con-
cepts, build vocabularies and rules for given knowledge domains, and create data
that can be shared and reused across applications. Most of these technologies such
as RDF, SPARQL, OWL are represented in the Semantic Web Stack which illus-
trates the architecture of the Semantic Web as shown in Figure 2.1.

Trust

Unifying Logic

Schema & Ontologies
(RDFS & OWL)

Data Model (RDF)

Syntax (XML/Turtle/JSON)

Identifiers (URI/IRI) Character Set (Unicode)

C
ry

p
to

g
ra

p
h
y

User Interface and Application

Querying & Rules
(SPARQL & RIF)

Proof

Figure 2.1: Semantic Web Stack

27

28 CHAPTER 2. BACKGROUND AND RELATED WORK

Each layer of this stack represents a technical component needed to realize the
vision of the Semantic Web. However, while the components indicated at the bot-
tom layers of the stack (in gray color) have been standardized, the upper-layer parts
necessarily need novel technique to be fully implemented. Following is a summa-
rization of the standardized components in the Semantic Web Stack.

• Character Set (Unicode): Like the current Web, the Semantic Web relies on
the well known Unicode character set as a standardized form for encoding,
representing, and manipulating text on the Web.

• Identifiers (URI/IRI): Semantic Web uses globally agreed-upon identifiers
in form of URI/IRI specification for describing thing on the Web. Uniform
Resource Identifiers (URI), which are already used on the World Wide Web,
is a string of characters used to uniquely identify a resource (e.g., web docu-
ment). URIs have been extended to IRIs (Internationalized Resource Identi-
fier) so as to support the usage of Unicode characters in the identifier. In the
rest of our thesis, whenever URI is used, IRI can be used as well as a more
general concept.

• Syntax (XML/Turtle/JSON): Formally defined syntaxes are required in Se-
mantic Web in order to encode the Semantic Web data in machine readable
form. For that, existing syntaxes which have been dominant in all the web
contents such as the Extensible Markup Language (XML) and JavaScript
Object Notation (JSON) can be used. Together with these generic syntaxes,
the Semantic Web also introduced novel syntaxes which have terse grammars
and are generally recognized as being more readable than XML such as Terse
RDF Triple Language (Turtle) and its subset N-triples.

• Data Model (RDF): Semantic Web requires an agreed-upon common data
model in order to share and exchange data across different Semantic Web
applications. This model necessarily needs to be generic and simple enough
so that it can express any data and fact in different knowledge domains, and
yet structured enough for a machine to understand it. Therefore, the Resource
Description Framework (RDF) with the innate flexibility of a schema-less
data model and the simplicity of its “triple-based” representation, is selected
as the core data model for representing Semantic Web data. This data model
can be serialized by any syntaxes described in the lower layer of the stack.

• Schemas and Ontololies (RDFS and OWL): In order to bring semantics
and meaning to the Semantic Web content, formal languages that define
schemata and ontologies using semantically well-defined vocabularies were
created. In the Semantic Web standards, these languages include RDF Schema
(RDFS) and Web Ontology Language (OWL), in which RDFS is created
within RDF to describe taxonomies of classes and properties and use them to
create lightweight ontologies, and OWL describes more detailed ontologies
by offering more constructs over RDFS.

2.1. SEMANTIC WEB TECHNOLOGIES 29

• Querying and Rules (SPARQL and RIF): SPARQL Protocol and RDF
Query Language (SPARQL) is the standardized query language for retrieving
and manipulating RDF data. As ontologies and knowledge bases defined with
RDFS and OWL languages can be used for reasoning, along with SPARQL,
rule-based languages that provide rules beyond the constructs available from
these languages, are being standardized in Semantic Web in order to infer
novel data from existing content. The Semantic Web standard rule language
is Rule Interchange Format (RIF).

A more detailed description of the Semantic Web Stack as well as its variants
can be found in the study of Gerber et al.[97].

2.1.1 Resource Description Framework

The Resource Description Framework (RDF) is the W3C recommendation model
for representing information about resources in the Web data [131, 74]. Using the
RDF data model, each Web resource, which is identified by an Uniform Resource
Identifier (URI) or an Internationalized Resource Identifier (IRI), can be simply
described in term of its properties and property values. For example, a person iden-
tified by the URI <http://dbpedia.org/resource/MT>, whose name is
Mark Twain, whose birth place is Floria, whose birth date is “1835-11-30”, and
who is the author of the book <http://dbpedia.org/resource/The_
Adventures_of_Tom_Sawyer> can be described in four RDF statements as
follows.

<http://dbpedia.org/resource/MT> <name> ‘‘Mark Twain’’

<http://dbpedia.org/resource/MT> <birth_place> ‘‘Floria’’@en

<http://dbpedia.org/resource/MT> <birth_date> ‘‘1835-11-30’’
ˆˆxsd:date

<http://dbpedia.org/resource/MT> <author_of> <http://dbpedia.
org/resource/The_Adventures_of_Tom_Sawyer>

Each RDF statement is thus basically a triple of<subject, property, object> (or
<subject, predicate, object>), in which the subject is the identifier of a resource,
the object is the value for the property (i.e., predicate) of the described resource.

2.1.1.1 Basic RDF Terms

Each element (i.e., subject, property or object) of an RDF statement belongs to one
of the three disjoint sets of RDF terms: URIs (or IRIs), Literals, and blank nodes.

30 CHAPTER 2. BACKGROUND AND RELATED WORK

URIs. URIs (and their internationalized version IRIs) are used as global identifiers
in the RDF data model for identifying any Web resource. The generic syntax of URI
is formally defined in the Internet Standard 66 [133]. A particular kind of URI is the
Uniform Resource Locator (URL) which is typically used to identify a Web page.
For example, the URL http://dbpedia.org/resource/Mark_Twain is
an URI to identify the resource about the writer “Mark Twain” on DBpedia.

In the RDF serialization syntax such as Turtle, URIs are written enclosed in
angle brackets < and > (e.g.,<http://dbpedia.org/resource/Mark_
Twain>). In order to avoid having repeatedly long prefix strings, URIs may also
be abbreviated by using Turtle’s @prefix directive and the CURIE Syntax for
expressing compact URIs [51]. Specifically, if there is a URI prefix defined for
the above example URI such as @prefix dbp: <http://dbpedia.org/
resource/>, the original example URI then can be abbreviated as dbp:Mark_
Twain.
Literals. Literals are a set of lexical values such as numbers, dates, and strings.
Anything represented by a literal may also be represented by a URI, but using lit-
erals is often more convenient or intuitive. Literals can either be plain or typed. A
“plain literal” is a string with an optionally addition language tag. In the above RDF
statements, “Mark Twain” and “Floria”@en are plain literals. A “typed literal” is
a string combined with a datatype URI such as “1835-11-30”^^xsd:date. For
the datatype URIs (e.g., xsd:date), the RDF uses many simple types from XML
Schema [52] such as numerics, date time, booleans.
Blank Nodes. A blank node (or bnode) is an indication used for representing anony-
mous resource (i.e., a resource for which an explicit URI or literal is not given). It
can be denoted through blank node identifiers using RDF serialization format such
as RDF/XML, Turtle, N3 and N-Triples. Following is an example of blank node in
RDF statements using N-Triples format.

<http://dbpedia.org/resource/MT> <author_of> _b:Node01 .

_b:Node01 <rdfs:label> ‘‘The Adventures of Tom Sawyer’’ .

_b:Node01 <rdf:type> dbo:Book

A blank node is only limited in its local scope (e.g., in an particular RDF docu-
ment), and thus, cannot be referenced from the outside of its originating scope.

Hereafter, we will use following formal notations for the three disjoin subsets
of RDF terms:

• U: Set of all URIs

• B: Set of all blank nodes

• L: Set of all literals

Definition 1 The set of RDF terms RDFt = U ∪ L ∪ B

2.1. SEMANTIC WEB TECHNOLOGIES 31

2.1.1.2 RDF triple

In an RDF triple, the subject can either be a URI or a blank node, while the predicate
must be a URI. The object in the RDF triple can be anything, either a URI or a blank
node or a literal. An RDF triple can be formally defined as following.

Definition 2 An RDF triple is defined as a triple t = (s, p, o) in which s ∈U ∪B,
p ∈U, and o ∈U ∪ L ∪ B.

2.1.1.3 RDF graph

A finite set of RDF <s,p,o> triples forms a labeled directed RDF graph, in which
the subjects and the objects are the nodes of the graph and the predicates are the
edges connecting these nodes.

Definition 3 An RDF graph is a finite set of RDF triples G ⊂ (U ∪B) ×U × (U
∪ L ∪ B).

Following is an example RDF dataset in the Turtle syntax and its graph repre-
sentation.

#Prefix declarations
@prefix dbr: <http://dbpedia.org/resource/> .
@prefix dbp: <http://dbpedia.org/property/> .
@prefix dbo: <http://dbpedia.org/ontology/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

#RDF triples
dbr:Mark_Twain foaf:name ‘‘Mark Twain’’ .
dbr:Mark_Twain dbp:birthPlace ‘‘Floria’’@en .
dbr:Mark_Twain dbp:birthDate ‘‘1835-11-30’’ˆˆxsd:date .
dbr:Mark_Twain dbp:authorOf _b:Node001 .
_b:Node001 rdfs:label ‘‘The Adventures of Tom Sawyer’’ .
_b:Node001 rdf:type dbo:Book .

Figure 2.2: RDF triples

2.1.1.4 RDF dataset and named graphs

An RDF store may hold multiple RDF graphs and “name" each graph so as to
allow an application to query either from the whole RDF dataset or from specific
RDF graphs. Each “named graph" is identified by an IRI and formally defined as
following.

32 CHAPTER 2. BACKGROUND AND RELATED WORK

dbr:Mark_Twaindbr:Mark_Twain ``Mark5TwainAA
foaf:name

``FloriaAA@en

db
p:

bi
rth

Pla
ce

dbp:birthDate

``1835-11-30AA _b:Node001

dbp:authorOf

rdfs:label

``The5Adventures5of5Tom5SawyerAA

rdf:type
dbo:Book

Figure 2.3: RDF graph

Definition 4 A named graph is a pair of (u, G) where u ∈ U is the name of the
graph and G is an RDF graph.

An RDF dataset is then composed of one graph, the default graph, which does
not have a name, and zero or more named graphs.

Definition 5 An RDF dataset D is a set {G, (u1, G1), (u2, G2),...,(un, Gn)} where
G is the default graph, u1, u2, ..., un are distinct URIs, and each pair (ui, Gi) is a
named graph.

2.1.2 RDF Semantics and Web Ontology Language (OWL)

In addition to the core RDF data model described in the previous section, in this
section, we will cover the semantics aspects of RDF and outline related standards
that are used for extending RDF with richer semantics such as RDFS and OWL.

2.1.2.1 RDF schema (RDFS)

RDF’s vocabulary description language, RDF Schema, is a semantic extension of
RDF that provides the mechanism to describe groups of related resources and the
relationships between these resources. In early 2004, the RDFS specification be-
came W3C Recommendation data-modeling vocabulary for the RDF data [65].

RDF schema language is written in RDF using a set of “built-in” vocabulary
terms provided by RDF standard. These terms are identified under the core RDF
namespace, http://www.w3.org/1999/02/22-rdf-syntax-ns#, or the

2.1. SEMANTIC WEB TECHNOLOGIES 33

core RDF schema namespace http://www.w3.org/2000/01/rdf-schema#.
Conventionally, the prefixes rdf: and rdfs: are respectively used for associating
with these namespaces. In the following, we will discuss the most prevalent terms
in the core RDF vocabularies.
rdf:type. The most frequently-used term in the core RDF vocabulary is rdf:
type which is used for assigning resources of certain commonalities to classes.
In Turtle syntax, the abbreviation “a” is allowed to be used for the rdf:type
property. Note that a resource can be assigned to multiple classes, e.g., as shown
in the Figure 2.4, ex:MarkTwain is an instance of classes dbo:Person and
dbo:Writer. In this example, rdf:Property, another term in the core RDF
vocabulary, is also used together with rdf:type in order to specify that both
dbo:birthPlace and dbo:birthPlace belong to the class of properties.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix dbo: <http://dbpedia.org/ontology/> .

ex:MarkTwain rdf:type dbo:Person .
ex:MarkTwain rdf:type dbo:Writer .
dbo:birthPlace a rdf:Property .
dbo:birthName a rdf:Property .

Figure 2.4: Example of using rdf:type

Vocabularies for RDF lists. RDF standardizes an agreed-upon vocabulary for de-
scribing collections, i.e. “list structure” using a linked-list pattern. As the set-based
RDF triples do not have any inherent ordering, this vocabulary provides “order-
ing” semantics for the RDF data model. The basic terms of this vocabulary are
rdf:first, rdf:rest, and rdf:nil, in which rdf:first indicates the
first element in the (sub-)list, rdf:rest connects to the subsequent (sub-)list,
and rdf:nil indicates an empty list and is usually used to close the list. Fig-
ure 2.5 shows an example of a closed RDF list which contains ordered elements
{ex:Elem1, ex:Elem2, ex:Elem3}.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

_:list1 rdf:first ex:Elem1 .
_:list1 rdf:rest _:list2 .
_:list2 rdf:first ex:Elem2 .
_:list2 rdf:rest _:list3 .
_:list3 rdf:first ex:Elem3 .
_:list3 rdf:rest rdf:nil .

Figure 2.5: Example of RDF list

Vocabularies for the classes and properties’ relationships. In order to specify

34 CHAPTER 2. BACKGROUND AND RELATED WORK

well-defined relationships between classes and properties, RDFS extends the origi-
nal core RDF vocabulary with the key terms: rdfs:Class, rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:domain, rdfs:range.

• rdfs:Class is a class of resources that are RDF classes. This term is re-
cursive defined as rdfs:Class is also an instance of rdfs:Class itself.

• rdfs:subClassOf indicates that all the instances of one class are in-
stances of another. For example, {foaf:Person rdfs:subClassOf foaf:
Agent} states that every person is an agent. In particular, a triple {c1 rdfs:
subClassOf c2 } indicates that c1 is an instance of rdfs:Class, c2 is
an instance of rdfs:Class, and c1 is a subclass of c2. This term allows
to declare the hierarchies of classes among RDF classes.

• rdfs:subPropertyOf indicates that all resources related by one prop-
erty are also related by another. For example, given the statement {ex:
mother rdfs:subPropertyOf ex:parent}, any RDF statement with
property ex:mother (e.g., {Tom ex:mother Maria}) also infers an-
other statement with property ex:parent (e.g., {Tom ex:parent Maria}).

• rdfs:domain and rdfs:range are used to indicate the domain and the
range of a property, respectively. In particular, rdfs:domain states that the
resource which has a given property is an instance of one or more classes, and
rdfs:range states that the values of a property are instances of a class.
Specifically, a triple {p1 rdfs:domain c1} indicates that all resources
that has property p1 belong to the class c1. A triple {p1 rdfs:range
c2} indicates that the values of the property p1 (e.g., the object in a triple
with property p1) are instances of class c2. If there are multiple classes for
the rdfs:domain and rdfs:range of a property, then the intersection
of these classes will be used. Figure 2.6 shows an example of using rdfs:
domain and rdfs:range. As specified in this example, only instances of
class ex:UsedProduct have property ex:price, and the value for this
property is an integer number (e.g., xsd:int).

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>. .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

ex:price rdfs:domain ex:UsedProduct .
ex:price rdfs:range xsd:int .

Figure 2.6: Example of rdfs:domain and rdfs:range

2.1.2.2 Web Ontology Language (OWL)

The Web Ontology Language (OWL) is a Semantic Web language for representing
rich and complex knowledge about things and the relationships between them. It

2.1. SEMANTIC WEB TECHNOLOGIES 35

evolved from the earlier proposal for Web ontology language DAML+OIL [78],
and soon became a W3C Recommendation language in 2004 [140]. The first ver-
sion of OWL was subsequently revisited and extended to the second OWL (i.e.,
OWL 2) W3C Recommendation language in 2009 [79].

Like RDF Schema (RDFS), OWL provides a vocabulary for representing se-
mantics in RDF data, however with more facilities for expressing meaning and se-
mantics, OWL goes far beyond the basic semantics of RDFS. Specifically, while
RDFS vocabulary merely describes generalization-hierarchies of properties and
classes, OWL adds a wealth of new vocabularies allowing to specify more com-
plex relationships among classes and properties including: “among others, relations
between classes (e.g. disjointness), cardinality (e.g. “exactly one”), equality, richer
typing of properties, characteristics of properties (e.g. symmetry), and enumerated
classes”. Some novel and frequently used terms from OWL are briefly described in
the following.

• owl:equivalentClass is an built-in OWL property to specify that two
classes have the same class extension. For example, classes US_Presidents
and PrincipalResidentOfWhiteHouse are stated to have the same
members.

• owl:disjointWith is an built-in OWL property to specify that two classes
have no individuals in common or the intersection of their extensions is
empty. For example, classes Person and Tree have no common member.

• owl:equivalentProperty is used to states that two properties have the
same property extension (e.g., properties hasParent and childOf).

• owl:disjointPropertyWith is used to states that two properties can-
not be used for relating two things (e.g., properties isMotherOf and isFatherOf
cannot be used for describing the relationship of the same two people in a
same direction).

• owl:inverseOf to specifies the inverse relation between properties. For
example, properties hasChild and hasParent having owl:inverseOf
relationship means that if {P1 hasChild P2} then {P2 hasParent P1}.

• owl:sameAs is used to state that two resources (e.g., identified by two
URIs) actually refer to the same thing. This property is often used for defin-
ing the mapping between different ontologies. For example, { dbr:Citrus
owl:sameAs ex:Citrus }.

• owl:differentFrom is used to state that two resources (e.g., two URI
references) refer to different individuals (e.g., { dbr:A_Dogs_Tale owl:
differentFrom dbr:Eves_Diary }).

OWL has three increasingly-expressive sub-languages designed toward differ-
ent user communities, namely OWL Lite, OWL DL, and OWL Full. These sub-
languages were updated and extended in OWL 2, resulting in an OWL 2 sub-
language (OWL 2 DL) and OWL 2 profiles OWL 2 EL, OWL 2 QL, and OWL

36 CHAPTER 2. BACKGROUND AND RELATED WORK

2 RL. Each of the three sub-languages (i.e., OWL Lite, OWL DL, OWL Full) is a
syntactic extension of its predecessor. In particular, every legal OWL Lite ontology
is a legal OWL DL ontology, and every legal OWL DL ontology is a legal OWL
Full ontology. The following are the short descriptions on these three sub-languages
of OWL:

• OWL Full is designed to provide maximum expressiveness and the syntactic
freedom of RDF with no computational guarantees. It uses all the OWL lan-
guage primitives and allows the combination of these primitives in arbitrary
ways with RDF and RDF Schema. OWL Full is fully upward-compatible
with RDF, both syntactically and semantically, and can be viewed as an ex-
tension of RDF. However, as it is so powerful, OWL Full is undecidable [79]
and it is unlikely that a reasoning software can efficiently perform complete
reasoning for it.

• OWL DL is a sub-language of OWL Full that provides maximum expressive-
ness while retaining computational completeness (all conclusions are guar-
anteed to be computable) and decidability (all computations will finish in
finite time) [79]. It restricts application of the constructors from OWL and
RDF. OWL DL permits efficient reasoning support, however, it loses the full
compatibility with RDF. Accordingly, not every RDF document is a legal
OWL DL document while every legal OWL DL document is a legal RDF
document.

• OWL Lite uses further restriction to limit OWL DL to a subset of the lan-
guage constructors (e.g., OWL Lite excludes enumerated classes, disjoint-
ness statements, and arbitrary cardinality. It supports cardinality constraints,
but only permits cardinality values of 0 or 1). OWL Lite targets at users who
primarily need classification hierarchy and simple constraints.

Further detail on OWL can be found in the reference document of OWL [140]
and OWL 2 [79].

2.1.3 SPARQL - RDF query language

SPARQL (aka SPARQL protocol and RDF query language) is a semantic query lan-
guage for retrieving and manipulating data from RDF stores. The original SPARQL
specification (i.e., SPARQL 1.0) and its extension (i.e., SPARQL 1.1) became offi-
cial W3C Recommendation in 2008 [110] and in 2013 [106], respectively.

2.1.3.1 SPARQL syntax

SPARQL is directly built on top of the RDF data model, and its syntax is closely tied
with RDF-specific syntax such as Turtle. On a high level, a SPARQL query can be
decomposed into five main basic parts: Prefix Declarations, Dataset Clause, Result
Clause, Query Clause, Solution Modifiers.
Prefix Declarations defines URI prefixes (similar to Turtle’s @prefix directive)
in order to use shortcuts instead of repeatedly long URIs in the query.

2.1. SEMANTIC WEB TECHNOLOGIES 37

Dataset Clause specifies the particular part of the dataset over which the query
will be executed.
Result Clause specifies the SPARQL query type (i.e., SELECT, ASK, CONSTRUCT,
or DESCRIBE) so as to indicate what results should be returned by the query. In
our research, we only focus on the SELECT query type which extracts matched
(RDF) graph patterns specified by the input query from a SPARQL endpoint, and
returns the list of bindings for the variables in the SPARQL query as the result in a
table format.
Query Clause consists of the query patterns (i.e., SPARQL triple patterns), con-
junctions, disjunctions, and optional patterns that will be used for generating vari-
able bindings from RDF data. More details on SPARQL query clause will be de-
scribed in Section 2.1.3.2.
Solution Modifiers allow to modify the result by applying standard classical oper-
ators such as ORDER BY (sorts the result set), LIMIT (sets the maximum number
of results returned), DISTINCT (removes all duplications in the result set), RE-
DUCED (allows to eliminate some duplicate results from the result set), OFFSET
(specifies the position in the overall sequence of results from which the results will
be returned), PROJECT (chooses certain variables to return in the results).

The following is an example SPARQL query and its main basic parts. In this
query, lines with prefix ‘#’ are comments, the shortcuts of URIs’ prefixes are de-
fined by using @prefix directive at the beginning of the query. This query asks
for the names of authors and the books which they wrote (i.e., specified by the
Result Clause and the Query Clause) from an RDF document “book_author.xml”
(i.e., specified by the Dataset Clause). The number of returned results is limited to
2 (i.e., specified by the Solution Modifier “LIMIT 2”).

If the matching patterns for the Query Clause are found from the RDF docu-
ment “book_author.xml”, two matching patterns will be returned as the result of
the query like the following.

name book
“Mark Twain” http://dbpedia.org/resource/Adventures_of_Huckleberry_Finn
“Mark Twain” http://dbpedia.org/resource/The_Adventures_of_Tom_Sawyer

Figure 2.8 shows the basic grammar of a SPARQL query. The full SPARQL
grammar can be found from the official W3C recommendation of SPARQL query
language 1.

2.1.3.2 SPARQL query clause

In SPARQL query, the query clause is (almost always) indicated by the WHERE
keyword and surrounded by the opening and closing braces ({ }). It thus can be
simply considered as the WHERE clause of SPARQL query.

The typical forms of the query clause contain one or more set of triple patterns.
Each conjunctive set of triple patterns is called a basic graph pattern (BGP). Like
the RDF triple, a triple pattern (tp) contains three elements subject, predicate, and

1SPARQL grammar: https://www.w3.org/TR/rdf-sparql-query/#grammar

38 CHAPTER 2. BACKGROUND AND RELATED WORK

#Prefix Declarations
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbo: <http://dbpedia.org/ontology/>

Dataset Clause
FROM <http://dbpedia.org/data/book_author.xml>

Result Clause
SELECT ?name ?book

Query Clause
WHERE {

?person foaf:name ?name .
?person dbp:birthPlace ‘‘Floria’’@en .
?person dbp:authorOf ?book .
?book rdf:type dbo:Book

}

Solution Modifiers
LIMIT 2

Figure 2.7: Example SPARQL query

Query := [Header*] Form [Dataset] WHERE Pattern Modifiers
Header := PREFIX pname_rs iri_ref | BASE iri_ref

Form := SELECT [DISTINCT|REDUCED] (‘*’|var*) | ASK | CON-
STRUCT var* | DESCRIBE

Dataset := FROM graph_clause | FROM NAMED graph_clause
Modifiers := ORDER BY [ASK|DESC] var* | LIMIT value | OFFSET value

Pattern := Pattern . Pattern | {Pattern} UNION {Pattern} | Pattern OP-
TIONAL {Pattern} | Triple_Pattern | FILTER Constraint

var := (‘?’|‘$’)value

(value, pname_rs, iri_ref, graph_clause ∈ String)

Figure 2.8: Basic SPARQL grammar

object. However, in a triple pattern, each of these element can be a variable. In
the example SPARQL query shown in Figure 2.7, the query clause contains one
basic graph pattern of four triple patterns. In the triple pattern such as (?person,
dbp:authorOf, ?book), the subject and the object are variables.

The triple pattern and basic graph pattern are formally defined as the following.

Definition 6 A triple pattern is defined as tp = (s,p,o) in which s ∈U ∪B ∪V, p

2.1. SEMANTIC WEB TECHNOLOGIES 39

∈U ∪V, and o ∈U ∪ L ∪ B ∪V where U, B, L, V are the sets of URIs, blank
nodes, literals, and variables respectively.

Definition 7 A basic graph pattern is a set of conjunctive triple patterns: bgp =
{tp} where tp is a triple pattern.

Generally, in SPARQL query, a basic graph pattern is identified by a conjunc-
tive set of triple patterns surrounded by braces { }. From basic graph patterns, more
complex graph patterns can be formed in the SPARQL query clause in various ways
by either conjunctively grouping BGP’s (i.e., group graph pattern) or by using these
four SPARQL keywords: GRAPH, UNION, OPTIONAL, FILTER.
Group Graph Pattern: is a set of graph patterns delimited with { }. When a group
graph pattern consists only of triple patterns or only of BGP’s, the group graph
pattern is equivalent to the corresponding set of triple patterns. Figures 2.9 and
2.10 show examples of group graph patterns which contain one and two basic graph
patterns, respectively. These two group graph patterns are equivalent to the same
set of triple patterns and thus will return the same matchings from RDF dataset. We
note that the {} is the empty group graph pattern.

SELECT ?person
WHERE { ?person foaf:name ‘‘Mark Twain’’ .

?person dbp:birthPlace ‘‘Texas’’ }

Figure 2.9: Query clause with one basic graph pattern

SELECT ?person
WHERE { { ?person foaf:name ‘‘Mark Twain’’ } .

{ ?person dbp:birthPlace ‘‘Texas’’ } }

Figure 2.10: Query clause with two basic graph patterns

GRAPH: specifies the named graph (identified by a URI or the binding values
of a variable) against which a basic graph pattern should be matched. Figure 2.11
shows an example of using GRAPH keyword in the query clause. In this example,
the GRAPH keyword specifies that the query can only access the named graph
<http://example.org/foaf/bob> in order to retrieve the matchings for
the basic graph pattern of its query clause.
UNION: allows the matching on one of several alternative graph patterns. The
result of the query is the union of all the matchings for each of the alternative
graph pattern. Given the RDF dataset and the SPARQL query in Figure 2.12,
using UNION keyword, the query will return the result as the combination of
matchings for each of the graph patterns {?book dc10:creator ?person} and {?book
dc11:creator ?person}. Therefore, the result for this query will be {“Alice”, “Bob”}.

40 CHAPTER 2. BACKGROUND AND RELATED WORK

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX data: <http://example.org/foaf/>

SELECT ?name
FROM NAMED <http://example.org/foaf/alice>
FROM NAMED <http://example.org/foaf/bob>
WHERE {

GRAPH data:bob {
?x foaf:mbox <mailto:b@work.example> .
?x foaf:name ?name }

}

Figure 2.11: Example of using GRAPH in query pattern

OPTIONAL: allows the use of optional patterns in the entire query pattern so
that the query result will be extended with the bindings from an optional pattern
if matching of the pattern exists in the data, and ignores the variable binding if
nothing is matched. From the view of the SQL world, the OPTIONAL operator is
equivalent to the Left Outer Join where the results always include the left part of the
query (e.g., non-optional part), even if there exists no match for the right part of the
query (e.g., optional part). Figure 2.13 shows an example dataset, a SPARQL query
using OPTIONAL keyword, and the query results. As we can see from the example,
even though there is no matching for the pattern {?person foaf:mbox ?mail} with
a person named “Bob”, the result without the binding of ?mail variable is still
returned for “Bob”.
FILTER: specifies further constraints and conditions that the query solutions should
match. Given the RDF dataset as in Figure 2.13, Figure 2.14 shows an example
SPARQL query using FILTER keyword and the query results. In this example, the
FILTER constraint is set for the ?mail variable so that the returned results must con-
tain the “@cwi.nl” in the bindings of this variable. Therefore, only one matching is
returned as the query result.

Concluding, a query pattern can be formally and recursively formed based on
these following rules.

• Any basic graph pattern is a query pattern.

• If p, q are query patterns then { p . q } (conjunction), {p UNION q} (union),
or {p OPTIONAL q} (alternative) is also a query pattern.

• If p is a query pattern, x is a URI or a variable then {p GRAPH x} is also a
query pattern.

• If p is a query pattern, c is a filter condition then {p FILTER c} is also a
query pattern.

2.1. SEMANTIC WEB TECHNOLOGIES 41

Example dataset
@prefix dc10: <http://purl.org/dc/elements/1.0/> .
@prefix dc11: <http://purl.org/dc/elements/1.1/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/>

_:a dc10:label "Book 1" .
_:a dc10:creator "Alice" .
_:b dc11:label "Book 2" .
_:b dc11:creator "Bob" .
_:b foaf:title "Book title 2" .

PREFIX dc10: <http://purl.org/dc/elements/1.0/>
PREFIX dc10: <http://purl.org/dc/elements/1.1/>

SELECT ?person
WHERE {

{ ?book dc10:creator ?person }
UNION
{ ?book dc11:creator ?person }

}

person
“Alice”
“Bob”

Figure 2.12: Example of using UNION in query clause and the result

2.1.3.3 SPARQL query graph

Similar to the RDF dataset and RDF graph, SPARQL query also forms a directed
graph (i.e. SPARQL query graph) where nodes are formed by the subjects and ob-
jects of the query’s triple patterns and edges are the properties of these patterns. We
note that, different from the nodes and edges in an RDF graph, a node or an edge
of a SPARQL graph can also be a variable. Figure 2.15 shows the SPARQL graph
representation for the example query in the Figure 2.7.

Based on the shape of its graph representation, the SPARQL query can further
be classified into such shape-specific categories as SPARQL star query or path
query as shown in the examples in Figures 2.16 and 2.17. The star shape graphs
actually appear frequently in the basic graph patterns of real SPARQL queries [42,
151] and will be discussed more details in the next chapters of this thesis.

2.1.3.4 SPARQL 1.1

SPARQL 1.1 extends the W3C 2008 Recommendation for SPARQL 1.0 by adding
new features to the query language such as aggregates, sub-queries, negation, com-
plex filtering, property paths, and an expanded set of more than 70 new keywords,
built-in functions and operators. It helps fixing many shortcomings and limitations

42 CHAPTER 2. BACKGROUND AND RELATED WORK

Example dataset
@prefix dc10: <http://purl.org/dc/elements/1.0/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/>

_:a foaf:name "Alice" .
_:a foaf:mbox "alice@cwi.nl" .
_:a foaf:mbox "alice@example.com" .
_:a dc10:description "Data scientist" .
_:b foaf:name "Bob" .
_:b dc10:description "A novel writer" .

PREFIX dc10: <http://purl.org/dc/elements/1.0/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?mail
WHERE {

?person foaf:name ?name .
OPTIONAL { ?person foaf:mbox ?mail }

}

name mail
“Alice” “alice@cwi.nl”
“Alice” “alice@example.com”
“Bob”

Figure 2.13: Example of using OPTIONAL in query clause

of the SPARQL 1.0 (e.g., no aggregates, no subqueries, limited graph operations),
and brings the feature set of SPARQL closer to other classical query languages.
Furthermore, while no update operator was introduced in SPARQL 1.0, SPARQL
1.1 Update has been created with the intension to be the standard language for
executing updates to RDF graphs. It allows to perform various update operations
to an RDF store such as insert/delete triples into/from an RDF graph, load/drop
RDF graph into/from the graph store. Beyond the query language, SPARQL 1.1
also adds other features that were widely requested, including service description,
a JSON results format, and support for entailment reasoning.

Even though, SPARQL 1.1 has been introduced for quite many years, there are
still many ongoing efforts in fully supporting SPARQL 1.1 from RDF database
vendors. Several RDF/Graph database systems have claimed to support SPARQL
1.1 and SPARQL 1.1 update such as Oracle Spatial and Graph [24], StarDog [29],
MarkLogic [18], GraphDB (or formerly, BigOwlim [8]), AllegroGraph [32], Jena
TDB [15].

2.2. RDF STORAGE 43

PREFIX dc10: <http://purl.org/dc/elements/1.0/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?mail
WHERE {
?person foaf:name ?name .
?person foaf:mbox ?mail .
FILTER regex(str(?mail), "@cwi.nl")
}

name mail
“Alice” “alice@cwi.nl”

Figure 2.14: Example of using FILTER in query clause

?person ?name
foaf:name

“Florida”@en

db
p:
bi
rth

Pl
ac
e

?book

dbp:authorOf

dbo:Book
rdf:type

Figure 2.15: SPARQL query graph

2.2 RDF storage

In this section, we discuss different approaches for storing data in RDF systems
(i.e., RDF stores). Generally, existing studies categorize RDF stores into two differ-
ent approaches: Non-native RDF stores and native RDF stores [92, 145], in which
non-native RDF stores are the storage solutions that make use of existing database
systems (typically the Relational database systems) for storing RDF data, while na-
tive RDF stores are not based on existing database systems but implement their own
storages (mostly focusing on indexing techniques) specific to the RDF model. How-
ever, we argue that this classification of RDF storage approaches does not convey
exactly the implementation of RDF systems. This is because the literature and prin-
ciples that have mostly come out of relational database research (in development
and experiments) were also applied to the Semantic Web technology as well as to
the RDF/SPARQL systems. Thus, we argue there is no big dividing wall between
non-native RDF systems (or SQL-based systems) and native RDF systems. An ex-

44 CHAPTER 2. BACKGROUND AND RELATED WORK

?person ?name
foaf:name

“Florida”@en

db
p:
bi
rth

Pl
ac
e

?book

dbp:authorOf

dbo:Writer
rdf:type

Figure 2.16: SPARQL star query

?writer ?book “A dog’s tale”
dbp:labeldbp:authorOf

?person
foaf:knows

Figure 2.17: SPARQL path query

ample RDF store that can illustrate our argument is Virtuoso which is, by certain
criteria, one of the best implementations of RDF/SPARQL [55, 147, 60]. Virtuoso
is originally SQL-based and the so-called Virtuoso native RDF store [92] is indeed
implemented and stored entirely within Virtuoso’s SQL database system [91, 87].
In other chapters of this thesis we show that understanding the structure of RDF
data is actually the crucial point that effects RDF data storage as well as SPARQL
query optimization. Thus, in our review of current literature on RDF systems, we
divide these into two classes: structure-aware RDF storage and non-structure-aware
RDF storage.

In the following sections, we will review these two classes of RDF storages
on a large number of centralized-based RDF systems, and further discuss storage
approaches of distributed RDF data management systems.

2.2.1 Non-structure aware RDF storage

Non-structure aware RDF storages include all RDF stores that do not exploit any
structure information on the input RDF data in order to design the storage solutions.
This respects the inherent schema-less nature of the RDF data model. The repre-
sentative RDF storage solutions of this approach are triple table [183, 151, 108, 45]
and vertical partitioning [34]. We note that, as RDF triples can be viewed as graph
data (i.e., RDF graph), a growing number of pure graph database systems, such as
Apache Titan [6], Neo4j [22], Sparksee [28], OrientDB [25], InfiniteGraph [14], to
name a few, can also be used for storing and processing RDF data without under-
standing the structure of the data. These systems reflect the object-oriented view
of graphs, and elevate graphs to first class citizens in their data model (“property

2.2. RDF STORAGE 45

graphs”), query languages, and APIs. In this thesis, we focus on systems which are
designed to manage semantic web data conforming to the RDF data model.

2.2.1.1 Triple tables

As a RDF dataset is a collection of (s,p,o) triples, using a single large table of three
columns (subject, property, object) – triple table – is the most straight forward ap-
proach to store RDF data. Basically, each column in the triple table corresponds
to an element (subject, property, or object). We note that the literal values and
the IRIs are typically not stored directly as strings in the triple table, but instead,
stored as numeric object identifiers (OIDs) uniquely associated with these values.
This allows the use of fixed-length records in the triple-table as well as signifi-
cantly reduces the storage space as the RDF data commonly has many frequently
repeated IRIs and literal values. The OID’s are typically generated using a hash-
based approach (i.e., using a hash-function) [103, 102, 167] or a counter-based
approach (i.e., maintaining a counter and increasing the counter for each new re-
source) [68, 107, 108, 150, 151]. A dictionary (in form of a table or a certain data
structure such as BTree+) is usually created to maintain the mapping between an
OID and its corresponding IRI or literal value. Further optimizations can also be
applied for improving the storage space of the dictionary such as separately storing
and encoding the common namespace prefix of many IRIs [130, 90]. More discus-
sions on the variations of OID dictionary implementation can be found at [132]. We
also note that for storing the “triple table” (or “quad table” in case the named graph
is taken into account in addition to the existing {s, p, o} triples), an RDF store may
use any data structure (e.g., B-tree, Hash map, Bitmap, etc). Early RDF systems
which follow the triple-table approach are Redland [48], 3store [102], Oracle [76],
and RDFStore [164]

To improve the performance of the query processing (e.g., faster look-up, less
expensive joins), indexes are additionally added for each of the columns of the triple
table. A typical indexing approach is to store the RDF triples in a collation order of
(s, p, o). For example, a “SPO table” is a triple table which is first ordered by the
subject (S), then for each S, sub-ordered by the property (P), and finally ordered
by the object (O) for the same (S,P). To efficiently answer queries on different
SPARQL patterns, many RDF systems store the input RDF triples in sorted orders
on all the various permutation of (s, p, o). This is an aggressive indexing technique
as it is a maximal approach and confronts the RDF store with the generic downsides
of unclustered indexes: namely, increased storage space (a factor 6 if all triple orders
are indexed or even 24 for all quad orders), as well as additional maintenance cost
when the RDF data is updated. Examples include Mulgara [187], HexaStore [183],
RDF-3X [151], YARS [108], HPRD [45], Virtuoso [90], BitMat [43], TripleT [93],
BRAHMS [117], RDFJoin [138], RDFKB [139], iStore [175], Parliament [121],
Owlim [120], and BlazeGraph [9].

In particular, Mulgara (formerly, Kowari), a native transactional RDF store,
builds a so-called “Perfect Indexing” based on six different order of “quads” {s, p,
o, m} (where m describes which model, or more correctly graph, the RDF state-
ments appear in) to store RDF data: spom, posm, ospm, mspo, mpos, mosp.

46 CHAPTER 2. BACKGROUND AND RELATED WORK

Each of these six indexes is implemented as a multi-version blocked AVLTree. If
the meta data is ignored for simplicity, the required indexes in Mulgara are reduced
to 3 different orderings of (s, p, o): spo, pos, osp.

Yars [107] adapts information retrieval and database techniques in order to
build two sets of indexes called lexicon and quad indexes for efficient RDF storage
and indexing. In particular, the former covers the string representations of RDF
graph and includes an inverted index for fast full text searches. The latter is used
to efficiently store all RDF quads of {s, p, o, c}, in which c (context) refers to
various kind of application-specific metadata for a given set of RDF statements.
The quad indexes is the combination of six B+Tree indexes building on different
orders of {s, p, o, c} (i.e., spoc, poc, ocs, csp, cp, os), which can supposedly cover
all 16 possible access patterns of the quad {s, p, o, c}. In a more recent version of
the system, YARS2 [108], instead of using B-Tree indexes, Harth et al. consider
two alternative index structures: extensive hash-tables and an in-memory sparse
index. Using hash tables can significantly decrease the disk I/Os as it enables search
operation in constant time, however, this requires maintaining 16 hash tables for a
complete index on quads. On the other hand, the in-memory sparse index which
refers to an on-disk sorted and blocked data file can achieve constant lookup times
similar to the hash-tables, however, there is a trade-off between the performance
and the occupied memory size as larger blocks requires less sparse index entries,
but more disk I/Os for reading, while smaller blocks requires more less sparse index
entries, but less disk I/Os.

HexaStore [183] engine stores the RDF data in six collation orders spo, sop,
pso, pos, ops, osp using clustered BTree indexes. This helps providing efficient
single triple pattern lookup and fast merge-join of two triple patterns. However,
even though HexaStore uses typical dictionary encoding to limit the storage space
needed for the URIs and the literals, the space requirement of Hexastore is still five
time larger than the space required for storing RDF triples in a single triple table.

In addition to the six indexes of {s, p, o} orders (like in HexaStore), Neumann et
al. add so-called projection indexes for each strict subset of {s, p, o} to their RDF-
3X engine [151]. Specially, they build clustered B+tree indexes with composite
keys over 9 collation orders s, p, o, sp, so, ps, po, os, op. However, thanks to their
delta compression scheme (e.g., storing only the difference between sorted triples),
the size of indexes in RDF-3X does not exceed the dataset size.

Taking the context information (e.g., named graph) into consideration, Virtu-
oso [90], a widely used RDF system, builds a quad store on different permutations
of {s, p, o, g} (where g is the named graph). Its current index scheme consists
of two full indices over RDF quads (i.e., PSOG and POGS) and three partial in-
dices (SP, OP, and GS). Being rooted in a row-wise RDBMS, Virtuoso has recently
been turned into a compressed column store and its performance has been signif-
icantly improved by incorporating advanced relational database techniques (e.g.,
vectorized execution) from state-of-the-art column stores such as MonetDB [20]
and Vectorwise [192]. This conversion of Virtuoso to column store was performed
during the course of my PhD as one of our task for the LOD2 project [59]. We
note that the use of row-wise or column-wise storage is effectively orthogonal to
the discussion of structure-aware vs non-structure aware store. Even though Virtu-

2.2. RDF STORAGE 47

oso still maintains both the row/column storage schemes, Virtuoso 7 (the currently
latest version of Virtuoso), by default, uses column-wise storage for its indices be-
cause of several compelling advantages. First of all, column store leads to better
compression. In particular, the space consumption for column-wise Virtuoso index
structures is usually about one-third of the space consumed by the equivalent row-
wise structures. Secondly, column store interfaces better with vectorized execution
(i.e., a bulk processing of “cache-sized” block, typically 100-10000, of tuples be-
tween operators in a query execution pipeline [193]) which makes the query inter-
preter more CPU efficient. It finally also exposes opportunities for better parallel
I/O in index access. Moreover, the performance difference between column store
and row store can be viewed more clearly in considering typical database work-
loads, namely, OLTP (On-line Transaction Processing) workload which contains a
large number of short on-line transactions and OLAP (On-line Analytical Process-
ing) workload which contains complex queries. In the RDF world, OLTP workload
typically contains RDF lookup workloads (e.g., simple web requests) which have
low query complexity and are index intensive. For these workloads, column store
has less locality than row store, but the workloads have small queries with no lo-
cality anyways. Thus, locality is not the dominant performance factor and hence
the performance difference between these storage schemes is small (column store
is a bit slower than row store). For the OLAP-like RDF workloads such as BSBM-
BI [59] and RDF-ized TPC-H [89], the query evaluation is the dominant cost, and
massive data volumes are involved. Consequently, the smaller footprint of com-
pressed columnar storage and the more efficient vectorized execution clearly make
columnar storage better than row storage. As real-world use is a mix of such work-
loads, Virtuoso 7 decided to move to column-storage by default. Last but not least,
even though Virtuoso is one of the best non-structure aware RDF store, it is being on
the way to becoming a structure-aware system as Orri has created structure aware
prototype and showed further improvement on the query processing (see more de-
tails in Chapter 4).

BitMat [43] is a main-memory based bit-matrix structure that is used for mak-
ing RDF triples representation compact and allowing efficient basic join query
processing by employing logical bitwise AND/OR operators on the structure. In
particular, as each RDF triple can be viewed as a 3-dimensional entity, Bitmap in
essence is built as a 3-dimensional bit-cube, in which each cell is a bit (of value 1 or
0) representing a unique triple and denoting the presence or absence of that triple.
Moreover, as a typical RDF dataset covers a very small set of the 3-dimensional
space formed by distinct subjects × distict predicates × distinct objects, Bitmat
tends to be very sparse. It exploits this sparsity in order to achieve compactness by
applying the D-gap compression scheme [10] for compressing each bit-row, show-
ing small memory footprint in comparing to the size of raw RDF data. However,
doing compression on a sparse bit vector is getting to the delta compression on the
columnar store. Thus, the BitMat representation of RDF triples is in fact not so
different comparing to the columnar representation of e.g., SPO index, using delta
compression at physical level.

Fletcher et al. propose a so-called Three-way Triple Tree (TripleT) [93] sec-
ondary memory index to improve the data locality of existing indexing techniques.

48 CHAPTER 2. BACKGROUND AND RELATED WORK

Specifically, they observe that existing multi-indexes approaches suffer from weak
data locality since a piece of data can appear in multiple locations and in several
different data structures. Thus, in contrast to these approaches, they build a single
B-Tree index over all the “atoms” occurring in RDF graph regardless of the role
of each atom in the RDF triples (i.e., an atom can be either a subject, a predicate,
or an object). Each key atom in the index points to actual data stored in one of
three different buckets namely S-bucket, P-bucket, and O-bucket, corresponding to
the atoms which appear as subjects, predicates, or objects in RDF triples, respec-
tively. Moreover, to facilitate query processing (e.g., merge join), the actual data
in these buckets are sorted in different orders, in which S-bucket contains pairs of
(p, o) sorted in OP order, P-bucket contains pairs of (s,o) sorted in SO order, and
O-bucket contains pairs of (s,p) sorted in SP order. However, given the fact that an
appropriate implementation of S, P, O indexes should use the dictionary for storing
and mapping the real S, P, or O literals/URIs to 32-bits OID’s, all S’s (or P’s, or
O’s) in different S, P, O indexes are physically stored as pointers to S’s (or P’s or
O’s) in the common dictionary. Thus, the common dictionary plays a similar role
as the TripleT atoms index, and there is no clear advantages of TripleT-buckets in
comparing to the SOP , PSO and OSP indexes.

OWLIM (and currently GraphDB) [120, 53, 13] is a family of semantic repos-
itory components implemented in Java and packaged as a Storage and Inference
Layer (SAIL) for the Sesame openRDF framework [68]. It is comprised of a native
RDF store, a reasoner and a query answering engine that supports the SeRQL [67]
and SPARQL languages. The OWLIM reasoner is implemented on top of the Triple
Reasoning and Rule Entailment Engine (TRREE) [30]. There are two variants of
OWLIM for different environments: SwiftOWLIM (free-for-use) and BigOWLIM
(commercial), that share the same rule-language and are identical in terms of rea-
soning expressivity and integration. However, whereas SwiftOWLIM is an entirely
in-memory system, has no query processing engine of its own but relies on the
Sesame framework, BigOWLIM uses a file-based storage layer and implements a
number of its own query and reasoning optimizations. Besides, while the indices of
SwiftOWLIM are essentially hash-tables, BigOwlim consists of two main sorted in-
dices on RDF statements POS and PSO, two context indices PSCO and POCS,
and a literal index allowing faster look-ups of numeric and date/time object val-
ues [119].

BlazeGraph (formerly BigData) [9] is a high performance RDF graph database
platform that provides supports RDF/SPARQL Sesame APIs, the Apache TinkerPopTM

stack, and graph mining API with scalable solutions. The product has been written
entirely in Java and available via either a GPL or a commercial license, and can be
deployed either on a standalone server or on a cluster-based architecture. Recently,
Blazegraph has extended its implementation with the use of graphical processing
units (GPU) as accelerator for graph analytics, leveraging its high computational
power and high memory bandwidth (for graphs that fits inside the GPU memory).
Its stand-alone implementation can support up to fifty billion triples or quads. Even
though it is hard to find the implementation details of BlazeGraph storage engine
in published literatures, its presentations and white papers [9] mention that RDF
data is stored in two set of indexes (lexicon indexes and statement indexes) built by

2.2. RDF STORAGE 49

using sharded B+Tree. The lexicon indexes map RDF terms to unique IDs, while
the statement indexes contains three indexes i.e., spo, pos, osp, (or six indexes) to
provides perfect access path for RDF triples (or quads). Besides, the system also
implements certain advanced query optimization technique such as runtime query
optimization (inspired by ROX [35]) and vectorized query engine.

2.2.1.2 Vertical partitioning

The vertical partitioning approach was suggested by Abadi et al. in SwStore [34]
to leverage the use of fully decomposed storage model [80] in storing RDF data.
Specifically, in this approach, RDF triples are decomposed into multiple binary
tables of (subject, object) columns where each table is corresponding to a unique
property (the number of tables is thus equal to the number of unique properties in
the input RDF data). Naturally, this approach can be implemented using column-
oriented database system. As such, SwStore is built on top of the C-Store engine
[174]. In this RDF store, an input SPARQL query is mapped into its equivalent SQL
and then handled by the C-Store engine. According to the studies of [34] and [170]
– an extensive experiment of this approach by Sidirourgos et al – the vertically-
partitioned RDF store performs the best when all binary tables are lexicographically
sorted according to the SO order. Each table thus can also be viewed as a slice of
PSO triple table on the same P value. However, even though materialized views are
created for frequent joins, SwStore does not show better performance than triple-
table-based RDF stores such as HexaStore [183] and RDF-3X [151].

2.2.1.3 Summary

All the triple table-based systems even with the use of the exhaustive multiple in-
dexing schemes will suffer high query execution cost due to a large number of
self-joins that typical SPARQL processors must perform (i.e., one join for each
query triple pattern). Accordingly, it is hard to get a good quality SPARQL query
optimization as the query optimization complexity is exponential in the amount
of joins [179]. And without analyzing the full optimizer search space (i.e., when
there is a large number e.g., more than 10, of joins needed), the best optimization
plan will potentially be missing. The indexing approaches taken all fall in the “un-
clustered index” category, which means that they lack physical locality and lead to
random access, which hardware does not support efficiently. Further, all this index-
ing makes updating RDF stores expensive, something which is not tested by the
current generation of benchmarks.

2.2.2 Structure-aware RDF stores

Structure-aware RDF storage leverages structure information derived from the input
RDF data in order to improve the storage solutions as well as the efficiency of their
SPARQL execution engine. Most of the existing RDF stores of this approach build
so-called property tables to store the RDF dataset, or automatically discover the set
of correlated properties for optimizing their query execution.

50 CHAPTER 2. BACKGROUND AND RELATED WORK

Property tables were introduced to reorganize RDF data in multiple tables so
that subjects of the same fixed set of properties are stored in a single table (sim-
ilar to a traditional relational table with a fixed set of columns). This allows to
retrieve multiple triple patterns of a same subject without a single join. However,
most of the early RDF systems [184, 68, 69, 76] do not provide automatic meth-
ods for recognizing the schema. They rely on the database administrator doing the
table modeling manually, but given that RDF graphs often contain many different
structures, this limits the applicability (and observed popularity) of this approach.

Sesame [68] is an open source framework for storing, querying RDF data, and
reasoning with RDF schema. Using its Storage And Inference Layer (SAIL) which
abstracts the actual storage from querying and inferencing interfaces, Sesame al-
lows the use of different storage engines including relational databases (e.g., Post-
greSQL [26], MySQL [21]), RDF triple stores (e.g., Ontotext GraphDB [13], Mul-
gara [187], Allegograph [32]), and even remote storage services for its backends
without modifying any other Sesame components. Sesame native is the native triple
store offering from Sesame as a reference implementation of the Sesame API. It
uses dedicated on-disk data structures to store RDF data. We note that from May
2016, Sesame officially forked into an Eclipse project called RDF4J [11]. While
most storage backends place Sesame in the non-structure-aware camp, the Sesame
framework also supports the use of property table storage. However, as mentioned
before, actual schema and physical design is left to the application tuning expert.
It also allows to derive the table definitions automatically from the ontology of a
dataset, which we discuss in the sequel.

Jena is a Java open-source framework which provides similar features as Sesame
including a connection API to different storage engines and inferencing support
[135, 136, 185]. Moreover, this framework not only provides reasoning support for
RDFS (like Sesame) but also for OWL (Web Ontology Language) semantics. Jena
implements two components for RDF storage and query namely Jena SDB 2 and
Jena TDB 3, in which SDB uses conventional SQL databases (e.g., PostgreSQL,
MySQL, Oracle) for the storage and query of RDF data, and TDB is a Jena na-
tive store supporting full range of Jena APIs. As of June 2013, Jena SDB has not
been actively developed while still being maintained, and it is recommended to
use Jena TDB for better performance and scalability. While most configurations
of TDB and SDB fall into the non-structure aware camp, the Jena framework also
supports a property table implementation [184] in which a new table is created
for each rdf:type property, however the actual layout (i.e., grouping of predi-
cates) of each property table needs to be defined by the application. In particular,
the database developer also needs to specify multi-valued predicates so as to store
them separately in new tables.

As ontologies and semantics web vocabularies also provide descriptions on cer-
tain concepts (or “ontology classes”) and relationships between them, a number of
RDF systems such as DLDB [155], DBOWL [148], Rstar [130], RDFSuite [38]
use the ontology class structure as relational schemas for structurally storing their

2Jena SDB, https://jena.apache.org/documentation/sdb/
3Jena TDB, https://jena.apache.org/documentation/tdb/

2.2. RDF STORAGE 51

RDF data. In particular, DLDB [155] creates tables corresponding to the definition
of classes or properties in ontology. This can be considered as the hybrid of the
property table and the vertical partitioning approaches. For naming the tables in the
schema, the ontology classes’ names or the properties ID are used. DBOWL [148]
maps axioms in a given ontology to a set of relational database views in order to
facilitate the execution of instance retrieval queries (e.g., get all instances of a con-
cept defined in the ontology). Rstar maintains structural information of RDF data
by storing both the ontology classes and instance data separately in different ta-
bles in the database and using as so-called “InstanceOfClass” table to bridge the
ontology information and the instance data. ICS-Forth RDFSuite [38], a suite of
tools for RDF validation, storage and querying, explores the available knowledge
on RDF schema (RDFS) in designing a persistent RDF storage for loading resource
descriptions in an object-relational DBMS (e.g., PostgreSQL [26]).

Using ontologies can be a quick approach to get certain knowledge on the struc-
ture in RDF data, however, according to our analysis [160] (and Chapter 3), each
single ontology class is actually a poor descriptor for the actual structure (i.e., “rela-
tional” schema) of the data. This is because in all prominent RDF datasets (e.g., the
LOD cloud) typically only a small percentage (e.g., 30%) of ontology class prop-
erties are used in the actual RDF triples, and a subject usually contains attributes
from multiple ontologies. In other words, RDF triples in the wild tend not to con-
form 1:1 to a single ontology class, and assuming so goes counter to the grass-roots
decentralized pay-as-you-go philosophy of the Semantic Web.

Automated methods for detecting property tables as well as structure informa-
tion from RDF triples have been proposed in some newer systems [171, 128, 181,
134, 63]. One of the first implementation that automatically explores the structure
from RDF data was proposed by Sintek et al. [171]. In their RDFBroker system,
they identify for each subject in the RDF graph a so-called “signature” which is
actually the set of properties of that subject, then create a signature table for storing
the subjects of the same signature and its property values. In order to reduce the
large number of signature tables, a greedy algorithm is proposed to merge smaller
tables into a larger one while trying to minimum the number of NULL values added
because of the merging operation.

Levandoski et al. [128] later built a so-called data-centric storage by leveraging
previous work on association rule mining to automatically identify predicates that
often occur together. They propose two-phase algorithm involving clustering and
partitioning which aims to maximize the size of each group of predicates while
trying to keep NULL values under certain threshold.

Matono and Kojima [134] construct so-called paragraph tables which are sim-
ilar to property tables from adjacent RDF triples that are physically correlated.
However, this method relies on well-structured input RDF documents and the parse
order of RDF triples.

Recently, Bornea et al. [62] built an RDF store, DB2RDF, on top of IBM’s
relational system DB2 using hash functions to shred RDF data into multiple multi-
column tables. In particular, each predicate is hashed to a specific column pair of
a relational table where one column stores the predicate label and the other stores
the predicate value. All predicates of a given entity are aimed to (ideally) fit on a

52 CHAPTER 2. BACKGROUND AND RELATED WORK

single row, in order to avoid self-joins when retrieving multiple predicate values of
the entity. For that, DB2RDF tries to assign predicates that do co-occur together
to different columns, and overload columns with predicates that do not co-occur
together. The promising initial research prototype regrettably was never realized
into a competent commercial variant. This proposal may capture the co-occurring
predicates of each entity, however as all the entities with different set of predicates
are stored together in a single relational table, it does not provide a human-readable
entity-based schema to the users. This lack of human-readable representation is also
a disadvantage of the other mentioned automatic structure-aware systems.

In addition to the use of structure information in the storage engine, there are
also a number of studies on exploiting structure information from RDF data in
order to improve SPARQL query optimization. Neumann et al. [149] extract the so-
called “characteristic sets” – a set of properties that occurs frequently with the same
subject – from RDF triples but merely use them for estimating join cardinalities to
facilitate query processing. Gubichev et al. further exploits characteristics sets in
exploring the structure of SPARQL query in order to improve the cost model of
a query plan. Both of these works are implemented in the RDF-3X engine and
do not make any effort in optimizing the storage based on the explored structure
information. Brodt et al. [66] recognize that all relations and attributes of a resource
are stored continuously in such index as SPO which is similar to a record-based
RDBMS where all attributes of a resource are physically and continuously stored
in the same record. They thus proposed a new operator, called Pivot Index Scan, to
efficient deliver attribute values for a resource (i.e., subject) with less joins using
something similar to a SPO index. However, as such, it does not recognize structure
in RDF to leverage it on the physical level.

None of the existing structure-aware RDF stores attempt to find (foreign key)
relationships between property tables, nor do they attempt to make the schemas
human-readable, nor do they aim to allow both SQL and SPARQL access to the
same data, nor do these efforts focus on leveraging such storage inside database
kernels with new algorithms. Our research tries to achieve all of the aims.

Table 2.1 summaries the storage layouts and supported features (e.g., updating,
inferencing) of centralized RDF stores.

2.2.3 Distributed RDF Stores

Most of the existing distributed RDF stores either relies on novel cloud-based plat-
forms such as NoSQL key-value stores [75] and MapReduce implementation [85]
(e.g., Hadoop), or exploits a set of centralized RDF systems distributed among
many nodes for parallel processing.

The MapReduce-based approach has led to RDF systems in which RDF triples
are stored in distributed file system (e.g., HDFS), and query processing is done by
leveraging the MapReduce paradigm [83]. Representative works in this approach
are SHARD [166], HadoopRDF [113], PredicateJoin [190], EAGRE [189]. Gen-
erally, in this approach, HDFS files are first scanned to find matching bindings of
each triple pattern, then MapReduce joins [85] are executed in order to retrieve
the matching for all triple patterns of the input SPARQL query. Obviously, the

2.2. RDF STORAGE 53

detailed storage model in HDFS files significantly influences the performance of
these systems as it determines the access of RDF triple and the number of MapRe-
duce joins [153]. In particular, SHARD directly stores RDF triples of the same
subject in one line in HDFS file. HadoopRDF and PredicateJoin use the property-
based partitioning approach (similar to the vertical partitioning in the centralized
RDF systems) in order to group triples having the same property in a single file.
As the rdf:type property file may have many triples, HadoopRDF further splits
this HDFS file of this property into multiple files based on the object values of the
triples. While these above mentioned systems are non-structure-aware RDF stores,
EAGRE propose a structure-aware approach for storing RDF graphs in HDFS files.
In this system, by grouping subjects of similar properties into an entity class, the
input RDF graph is first transformed into a compressed entity-based RDF graph
which contains entity classes and connections between them. Then, the global com-
pressed entity graph is partitioned using the METIS algorithm [118, 19] so that en-
tities will be stored in HDFS according to the partition they belong to. This storage
layout together with carefully scheduling Map tasks can reduce the I/O cost of the
query processing by determining and only scanning the data blocks that contain
query answer in the Map phase, and exploiting the use of multidimensional in-
dexing techniques i.e., space filling curves [124] for efficient data indexing. These
approaches benefit from the high scalability and fault-tolerance offered by MapRe-
duce, but also suffer a non-negligible overhead due to the iterative, synchronous
communication protocols of this framework. Even the system that try to mini-
mize the I/O costs like EAGRE by cannot completely avoid costly Hadoop-based
joins. [101].

Instead of using HDFS for storing data, many distributed RDF systems use
NoSQL Key-value stores such as Apache Accumulo [3], Apache Cassandra [4],
Amazon SimpleDB [2], HBase [5], Amazon DynamoDB [84] as their underlying
storage facility. Representative key-value store-based RDF systems are Rya [162],
CumulusRDF [123], Stratustore [172], H2RDF [156], and Amada [40]. As the key-
value databases naturally offer an index built on the key itself, most of the existing
key-value-based RDF systems store the data in multiple indexes built on different
permutation of s, p, o like in the centralized RDF systems. However, due to the
storage overhead of having exhaustive indexing, these distributed RDF stores uses
much less indexes than the centralized RDF systems. In particular, most of them
only use three indexes SPO, POS, and OSP for efficiently providing different
access path for RDF s, p, o triples. Moreover, based on the particular capabilities of
underlying key-value stores, these RDF systems propose different design for map-
ping the indexes to the key and values. For example, considering the SPO index,
Rya maps sorted index on combination of S, P , O as the key, and leaves the value
empty, while H2RDF builds sorted index on the combination of S,P as key and
maps O to the values. The key-value RDF stores can provide very fast lookups
and efficient for selective queries, however, as most of the NoSQL databases do
not even support joins, joins need to be performed out of the key-value store using
fullscans, or alternatively lead to avalanches (potentially billions) of key lookups
using the NoSQL APIs. For example, Rya implements an index nested loops join
algorithm which may only be efficient for selective queries. H2RDF, instead of hav-

54 CHAPTER 2. BACKGROUND AND RELATED WORK

ing only one centralized index nested loop algorithm for joins, alternatively uses
Map-Reduce for handling non-selective queries.

Besides using the available cloud-based platforms and frameworks, many dis-
tributed RDF systems exploit existing centralized RDF stores for their storage and
query processing. The input RDF graph is then divided into multiple partitions of
which each will be stored in a node by using a particular centralized RDF store
(e.g., RDF-3X). For query processing, the input SPARQL query is decomposed
into sub-queries such that each sub-query can be processed locally at a node. The
final result is then formed by aggregating over all the answers for each each sub-
query. The detailed query processing algorithm of each system generally depends
on its partitioning strategy. The representative distributed RDF systems of this ap-
proach are GraphPartition [112], WARP [111], Partout [95], TriAD [101], [188],
4store [104], Virtuoso Cluster [87], and BlazeGraph (BigData) [9].

In particular, GraphPartition — one of the first systems with this approach —
uses RDF-3X for storing and indexing triples in each node. In this system, the in-
put RDF graph is partitioned on vertices using METIS [19] such that the number
of edge cuts is minimum. Here, an edge is cut if its source vertex and its desti-
nation vertex (i.e., subject and object of an RDF triple) are partitioned into two
separated partitions. For query processing, it first check whether the decomposed
query is PWOC (parallelizable without communication) so that the final result can
be obtained as the union of answers from each RDF-3X engine. Otherwise, Hadoop
joins need to be performed to join answers of subqueries from RDF-3X engines.
WARP [111] further extends the partitioning and replication strategies of Graph-
Partition in order to reduce the storage overhead by taking into account frequent
structures in query workload. Specially, in this system, the rarely-used RDF data is
not replicated. Partout [95] proposes an optimized data partitioning and allocation
algorithm such that queries can be executed over a minimum number of nodes by
exploiting frequent access pattern in representative query workload (or query log).
Similar to GraphPartition, both WARP and Partout use RDF-3X as the central-
ized RDF store at each node. TriAD (Triple-Asynchronous-Distributeds), instead
of using a particular centralized RDF store, maintains six local indexes over all per-
mutations of SPO in each node (e.g., each local indexes are similar to the exhaustive
indexes in centralized RDF store such as HexaStore, RDF-3X). Its partitioning al-
gorithm is again done by using METIS software. By using a custom Message Pass-
ing Interface (MPI) protocol that allows slave nodes operate largely automatically
and execute multiple join operators in parallel, this main-memory shared-nothing
system can be considered as the first RDF system that employs asynchronous join
execution.

Virtuoso Cluster [87, 59] and 4store [104] use their own centralized RDF stor-
age engine for storing and processing data at each node. In particular, 4store is a
clustered system designed to run on relatively small cluster. It divides the nodes
into Storage nodes and Processing nodes in which data is divided among a num-
ber of segments (non-overlapping slices of data) and stored in storage nodes, while
the SPARQL engine and RDF parser locate in the processing node. In this system,
the partition strategy is simply based on the assigned OID of each resource and
the number of segments (i.e., resource ID mod segments). Virtuoso Cluster uses a

2.2. RDF STORAGE 55

hash-based elastic partitioning strategy in which the data partitions divided among
a number of database server processes can migrate between each others, and parti-
tions may split when growing a cluster. It also maintains statistics per partition for
detecting hot spots and allows the replication of hash tables in every processes for
efficient parallel hash joins (e.g., in case hash join build side is small).

By optimizing the data partition algorithm and the join operators between nodes,
these systems may avoid the overhead of iterative Map-Reduce paradigm and Hadoop-
based joins, however, as these system rely on centralized RDF stores for their stor-
age and query processing, they still have all data management problems mentioned
for centralized RDF stores.

Table 2.2 summaries the storage backend and storage layouts of distributed
RDF systems.

56 CHAPTER 2. BACKGROUND AND RELATED WORK

Store Structure-aware Storage layout Update support Inference support
Redland TT X
3store TT X
Oracle TT X
RDFStore TT X
Mulgara TT/MI X
HexaStore TT/MI
RDF-3X TT/MI X
YARS/YARS2 TT/MI X
HPRD TT/MI
Virtuoso TT/MI X X
BitMat TT/MI
TripleT TT/MI
OWLIM TT/MI X X
BlazeGraph TT/MI X X
BRAHMS TT/MI
RDFJoin TT/MI
RDFKB TT/MI X X
iStore TT/MI
Parliament TT/MI X X
StarDog TT/MI X X
RDFCube TT/MI
SwStore VP
Sesame X PT X X
Jena X PT X X
DLDB X PT/O X
DBOWL X PT/O X
Rstar X PT/O X
RDFSuite X PT/O X X
RDFBroker X PT/A
DataCentric X PT/A
Paragraph X PT/A
DB2RDF X PT/A

Table 2.1: Centralized RDF stores’ storage layout and feature support. (TT: Triple
Table, MI: Multiple Indexing, VP: Vertical Partitioning, PT: Property Table, PT/O:
Ontology and vocabulary-based Property Table, PT/A: Auto-detected Property Ta-
ble)

2.2. RDF STORAGE 57

Systems Storage backend Storage layout/Partitioning Structure-aware
SHARD HDFS Triple-based files
HadoopRDF HDFS Property-based files
PredicateJoin HDFS Property-based files
EAGRE HDFS Entity-based graph partition X
Rya KV/Accumulo SPO, POS, OSP Indexes
CumulusRDF KV/Cassandra SPO, POS, OSP Indexes
Stratustore KV/SimpleDB SPO Index
H2RDF KV/HBase SPO, POS, OSP Indexes
Amada KV/DynamoDB SPO, POS, OSP Indexes
GraphPartition Hadoop/RDF-3X Graph Partition (METIS)
WARP CS/RDF-3X Graph Partition
Partout CS/RDF-3X Graph Partition
TriAD SPO indexes Graph Partition (METIS)
4store CS Modular partitioning
Virtuoso Cluster CS Hash-based elastic partitioning
BlazeGraph CS

Table 2.2: Distributed RDF systems’ storage scheme. (HDFS: Hadoop Distributed
File System, KV: Key-value store, CS: Centralized RDF Store)

Chapter 3

Deriving an Emergent Relational
Schema from RDF Data

In this chapter, we motivate and describe techniques that allow to detect an “emer-
gent” relational schema from RDF data. We show that on a wide variety of datasets,
the found structure explains well over 90% of the RDF triples. Further, we also de-
scribe technical solutions to the semantic challenge to give short names that humans
find logical to these emergent tables, columns and relationships between tables.
Our techniques can be exploited in many ways, e.g., to improve the efficiency of
SPARQL systems, or to use existing SQL-based applications on top of any RDF
dataset using a RDBMS.

3.1 Introduction

By providing flexibility for users to represent and evolve data without the need for
a prior schema – sometimes called the “schema last” approach – and identifying
properties and (references to) subjects uniformly using URIs, RDF has been gain-
ing ground as the standard for global data exchange and interoperability, recently
through the popularization of micro-formats such as RDFa, which are increasingly
used embedded in web pages. This creates a need for database technologies that can
query large amounts of RDF efficiently with SPARQL or SQL.

SQL-speaking relational database systems (RDBMS’s) require to declare a schema
upfront (“schema first”) and can only store and query data that conforms to this
schema. RDF systems typically rely on a “triple-store” architecture, which store all
data in a single table containing S, P and O (subject, property, object) columns1.
SQL systems tend to be more efficient than triple stores, because the latter need
query plans with many self-joins – one per SPARQL triple pattern. Not only are
these extra joins expensive, but because the complexity of query optimization is ex-
ponential in the amount of joins, SPARQL query optimization is much more com-
plex than SQL query optimization. As a result, large SPARQL queries often exe-

1With “triple-store” we mean RDF or graph stores that use any data structure, be it a graph edge-list,
B-tree, hash map, etc. that stores individual triples (or quads), or graph edges without exploiting their
connection structure.

59

60 CHAPTER 3. DERIVING AN EMERGENT SCHEMA

cute with a suboptimal plan, to much performance detriment. RDBMS’s can further
store data efficiently e.g. using advanced techniques such as column-wise compres-
sion, table partitioning, materialized views and multi-dimensional data clustering.
These techniques require insight in the (tabular) structure of the dataset and have
so far not been applicable to RDF stores.

Semantic Web technology has its roots in Artificial Intelligence and knowledge
representation, and we think it is seldom realized that its notion of “schema” in
the term “schema last” differs from the corresponding “schema” notion in “schema
first” for relational technology. Semantic Web schemas – ontologies and vocabular-
ies – are intended to allow diverse organizations to consistently denote certain con-
cepts in a variety of contexts. In contrast, relational schemas describe the structure
of one database (=dataset), designed without regard for reuse in other databases.

Our work shows that actual RDF datasets exhibit (i) a very partial use of on-
tology classes and (ii) subjects share triples with properties from classes defined in
multiple ontologies. To illustrate, (i) in the crawled WebDataCommons data there
is information on less than a third of the ontology class properties in the actual
triples, and (ii) we find in DBpedia that each subject combines information from
more than eight different ontology classes on average. As such, when analyzing
the actual structure of RDF datasets by observing which combinations of proper-
ties typically occur together with a common subject (called “Characteristic Sets” of
properties [149]), any single ontology class tends to be a poor descriptor. Knowl-
edge of the actual structure of a dataset is essential for RDBMS’s to be able to store
and query data efficiently. Our work allows RDF stores to automatically discover
this actual structure, which we call the emergent relational schema. The emergent
relational schema enables to internally store RDF data more like relational tables,
allowing SPARQL query execution to use less self-joins, which also reduces the
complexity of query optimization [99]. Note that not all triples in a RDF dataset
need to conform to this relational schema for these techniques to be effective, as
long as the great majority does. Hence, RDF remains as flexible as ever in emer-
gent relational schema aware systems.

There is also a usability advantage if the actual structure of an RDF dataset
would be conveyed to a human user. A common problem when posing SPARQL
queries is that queries come back empty if properties that one expects to occur
given ontology knowledge, turn out not to be present in the data. Or, one may lack
any ontology knowledge and thus have little to go by when querying. However,
automatically deriving a human-friendly relational schema from a RDF dataset in-
troduces additional challenges to recognizing its structure, since all the schema
elements (tables, columns) should get correct and short labels, and the emergent
relational schema must be compact to be understandable.

Our work presents a self-tuning algorithm that surmounts this challenge, which
we tested on a wide variety of RDF datasets. We integrated our techniques in two
open-source state-of-the art data management systems: the well-known RDF store
Virtuoso and the MonetDB DBMS. The RDF bulkload in MonetDB now offers
efficient SQL access to any RDF dataset via its emergent relational schema, allow-
ing the wealth of SQL-based applications over ODBC and JDBC (e.g. Business
Intelligence tools like Tableau) to be used. By doing so we are enriching RDBMS’s

3.2. EMERGING A RELATIONAL SCHEMA 61

CS
2

CS
2

S P O

...

1. Extract

basic CS’s

4. Schema

Filtering

Triple table

3. Merge

similar CS’s

5. Instance

Filtering

Physical relational

schema

Basic CS’s

CS
4

CS
0CS

5

CS
2 CS

3
CS

1

label1

label4

label5

Label3
CS

4

CS
0CS

5

CS
2 CS

3
CS

5

Merged CS’s

CS
0CS

5

CS
7

CS
6

CS
6

CS
7

CS
5

Merged CS’s

CS
0CS

5

CS
7

CS
6

2. Labeling

Parameter Tuning

Figure 3.1: Overall structural exploration steps

with web standards, because these relational tables, columns and foreign key (FK)
constrains are identifiable using ontology-based URIs, and even the primary key
values and foreign key values themselves are URIs (RDF subjects resp. non-literal
objects). As such, our work is a bridge between the Semantic Web and RDBMS’s,
enriching both worlds.
Contributions of our work are the following:

1) We identify an important difference between Semantic Web schema infor-
mation (describing a knowledge universe) and relational schemas (describing one
dataset), and argue that both should be available to data stores and their users.

2) We present methods for detecting the basic table structure and the relation-
ships between them from an RDF dataset, and propose several approaches to se-
mantically and structurally optimize the relational schema to make it compact.

3) We present techniques to assign human-friendly names to tables/columns
and their FK relationships.

4) Our experiments on a wide variety of RDF datasets show that (i) over 90% of
the triples in these conform to a compact emergent relational schema, (ii) our algo-
rithms are efficient and can be executed during RDF bulk load with little overhead,
(iii) RDF stores can improve both query optimization and execution by exploiting
the emergent relational schema, and (iv) we illustrate with a user survey that the
short human-readable labels we find have good quality.

3.2 Emerging A Relational Schema

The five steps of our emergent relational schema algorithm detect something akin
to a UML class diagram by analyzing Characteristic Sets (CS’s) [149] in an RDF
input dataset:
1. Basic CS Discovery. We discover all occurring CS’s from a bulk-loaded SPO
table and count their frequencies. Then, we analyze properties in each CS that are
not literals, i.e. refer to URIs (and hence to other CS’s) in order to explore the
relationships between CS’s.

62 CHAPTER 3. DERIVING AN EMERGENT SCHEMA

2. CS Labeling. We assign class, attribute and relationship labels (human-understandable
names) to the recognized CS’s using multiple methods.
3. CS Merging. We merge CS’s that are semantically or structurally similar to each
other, with the purpose of making the schema more compact. We re-run Steps 2
and 3 iteratively in order to automatically tune the similarity threshold parameter
τsim to the nature of the dataset.
4. Schema Filtering. We filter low frequency CS’s, but make sure to conserve
highly referenced CS’s (akin to relational “dimension tables”). As reference rela-
tionships can be indirect (via via) we use a PageRank-like algorithm to count how
often referenced each CS is. We also filter out CS properties that are too sparsely
populated.
5. Instance Filtering. We filter out instances (rows) to increase literal type ho-
mogeneity, and filter out individual triples to eliminate erroneously multi-valued
attributes, and to improve foreign-key cardinality homogeneity.

The “class diagram” where each merged-CS that survived filtering is a class, is
represented as a relational schema consisting of tables and foreign key relationships.
Each class becomes one table, and its properties its columns, but relationships and
multi-valued attributes lead to additional tables. Properties for which multiple lit-
eral types occur frequently, are represented by multiple table columns. The <10%
triples that do not fit this schema remain stored in a separate SPO table. We now
discuss the five steps in detail.

3.2.1 Basic CS Discovery

Given an RDF dataset R, the Characteristic Set of a subject s is defined as cs(s) =
{p|∃o : (s, p, o) ∈ R} [149].

We first identify the basic set of CS’s by analyzing all triples stored in an RDF
table in SPO order. Such table is produced by a standard bulk load employed by
triple stores. While loading the triples into this representation, the URIs get encoded
in a dictionary, such that columns S, P and O are not URI strings, but integers called
object identifiers (OIDs) pointing into this dictionary. This is a standard technique.
These integer OIDs form a dense domain starting at 0.

We now make a single pass through the SPO table and fill a hash map where
the key is the set of OIDs of properties that co-occur for each subject. Note that due
to the SPO ordering these are easily found as the P’s of consecutive SPO triples
with equal S. The key of the hash map is the offset in the SPO table where the
CS first occurs. Its hash is computed by XOR-ing the hashes of all P’s (which are
OIDs). The insert-order in the hash table (starting at 1) provides us with a dense
numeric OID for each CS. Further, we remember in an array indexed by S which
stores such CS-OIDs, to which CS each subject belongs (this array is part of the
URI dictionary). Note that not all URIs in the dictionary may occur as a subject in
the SPO table, for which case this array is initialized with zeros. After making the
single pass over the SPO table, we will have all occurring basic CS-s in the hash
map, and we also keep an occurrence count there.

Further we make a second pass over the SPO table, where we look at type
information. For each triple with a literal object, we maintain a histogram of literal-

3.2. EMERGING A RELATIONAL SCHEMA 63

Figure 3.2: CS Frequency (light blue) vs. Cumulative number of covered triples
(dark red)

type occurrences per property in a second hash map with key [P,type] and a
count value. For each triple that is a non-literal, on the other hand, we look up
to which CS its subject belongs (srcCS) and to which its object (dstCS) – this
can be done efficiently using the array mentioned before. If there is a dstCS, we
maintain another histogram stored in a third hash map with as key [srcCS,P,
dstCS] and a count value. This histogram records how often basic-CS’s refer to
each other and over which property (relationship statistics).

These algorithms are all simple and obviously linear in average-case complex-
ity, therefore we omit a listing or further analysis. Figure 3.3 shows an example of
the found basic CS and their relationships after the exploration process.
Diversity of the basic CS’s. Table 3.1 shows statistics on the basic CS’s and their
properties for the synthetic RDF benchmark datasets LUBM2, SP2B3,and BSBM4,
the originally relational datasets converted to RDF MusicBrainz5, EuroStat6, and

2swat.cse.lehigh.edu/projects/lubm/
3dbis.informatik.uni-freiburg.de/forschung/projekte/SP2B/
4wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
5linkedbrainz.c4dmpresents.org/data/musicbrainz_ngs_dump.rdf.ttl.gz
6eurostat.linked-statistics.org

64 CHAPTER 3. DERIVING AN EMERGENT SCHEMA

(s1, offers, offer1)

(s1, region, region1)

(s2, offers, offer2)

(s2, offers, offer3)

(s2, region, region1)

...

(offer1, availableDeliveryMethods, DHL)

(offer1, description, “Offer data”)

(offer1, hasBusinessFunction, “Sell”)

(offer1, hasEligibleQuantity, 1)

(offer1, hasInventoryLevel, 1)

(offer1, hasStockKeepingUnit, 112)

(offer2, availableDeliveryMethods, DHL)

(offer2, hasPriceSpec, price1)

(offer2, hasStockKeepingUnit, 112)

(offer2, type, Offering)

...

(price1, hasCurrency, “EUR”)

(price1, hasCurrencyValue, “35.99”)

(price1, hasUnitOfMeasurement, “C62”)

(price1, valueAddedTaxIncluded, “false”)

(price1, eligibleTransactionVolume, 0)

(price1, ...

...

cs
8

cs
7

cs
9

cs
10

a
d
d
re
s
s

cs
1

cs
3

cs
5

cs
2 cs

4

offers

hasPriceSpec.

cs
6

cs
1

= {offers, region}

cs
2

= {availableDeliveryMethods, description,

hasBusinessFunction, hasEligibleQuantity,

hasInventoryLevel, hasStockKeepingUnit}

cs
3

= {availableDeliveryMethods, hasPriceSpec,

hasStockKeepingUnit, type}

cs
4

= {hasCurrency, hasCurrencyValue,

hasUnitOfMeasurement,

valueAddedTaxIncluded,

eligibleTransactionVolume, ... }

... ...

<Example RDF triples>

<Basic explored CS’s>

Figure 3.3: Example of basic CS’s and their relationships

DBLP7, PubMed8 and the native RDF datasets WebDataCommons9 (“WebData.”)
and DBpedia10. The number of basic CS’s can vary significantly regardless the
number of input triples. If one would naively propose to store RDF data using a
separate relational table for each basic CS, we now see that a complex RDF dataset
like DBpedia would lead to an unacceptable number of small tables. As we can also
see that while most of the datasets have a single literal type for each CS property,
DBpedia and WebDataCommons have many properties with more than one literal
type in its object values (i.e., multi-type properties), so native datasets appear to be
both complex and “dirty”.
Data coverage by basic CS’s. Figure 3.2 shows the frequencies and the cumulative
number of triples covered by the basic CS’s sorted by their frequencies, for one of
each kind of dataset (synthetic, relational, native). In this figure, the number of CS’s
needed for covering a large portion of the triples (e.g., 90%) can be significantly
different between the datasets. We show for reference in Table 3.1, that 90% of the
synthetic benchmark datasets can be covered by using a small number of CS’s (e.g.,
7 for SP2Bench). Many Linked Open Data datasets originate from existing sources
whose data is kept in relational databases. We see that in such datasets a few CS’s
can cover almost all data. However, for complex datasets originally created as RDF
(native), in order to cover 90% of the triples, many CS’s are needed, in case of
DBpedia more than 85,000.

7gaia.infor.uva.es/hdt/dblp-2012-11-28.hdt.gz
8www.ncbi.nlm.nih.gov/pubmed
9A 100M triple file of webdatacommons.org

10dbpedia.org - we used v3.9

3.2. EMERGING A RELATIONAL SCHEMA 65

Datasets #triples* #CS’s #CS’s to Avg. #multi-type
cover 90% #prop. properties

LUBM 100M 17 7 5.71 0
BSBM 100M 49 14 12.61 0

SP2Bench 100M 554 7 9.8 0
synthetic data created by benchmark data generator

MusicBrainz 179M 27 10 4.7 0
EuroStat 70K 44 8 7.77 0
DBLP 56M 249 8 13.70 0

PubMed 1.82B 3340 35 19.27 0
relational RDF data from a relational database dump
WebData. 90M 13354 930 7.94 551
DBpedia 404M 439629 85922 24.36 1507
native real data originating as RDF

Table 3.1: Statistics on basic CS’s.
(*: Number of triples after removing all duplicates)

mixed partial
number of %ontology
ontology class
classes properties

dataset used per CS used per CS
LUBM 1.94 37%
BSBM 3.96 3%

SP2Bench 4.94 4%
MusicBrainz 3.93 1%

EuroStat 3.14 84%
DBLP 6.58 8%

PubMed 4.94 -
WebData. 2.27 33%
DBpedia 8.35 5%

Table 3.2: Partial & mixed ontology class usage in CS’s

3.2.2 CS Labeling

When presenting humans with a relational schema, short labels should be used
as aliases for machine-readable and unique URIs for naming tables, columns and
relationships between tables. For assigning labels to CS’s, we exploit semantic in-
formation (ontologies) as well as structural information. Because not all ontologies
follow the same structure, we developed a simple vocabulary to standardize mini-
mal aspects of an ontology, namely classes and their properties, relationships be-
tween classes, their labels, as well as the subclass hierarchy. We expressed a large

66 CHAPTER 3. DERIVING AN EMERGENT SCHEMA

Ontologies in DBpedia dataset

dc

dcterms

rdf

rdfsskosowl
geo

foaf

dbpedia-owl

dbpprop

no ontology

Ontologies in WebDataCommons dataset

fbml

fbml (https)
dc

dcterms
gr

ogp

rdf

rdfs

skos

vcard2006

ogp (alt)

cc sioc
foaf

ctag

no ontology

Figure 3.4: Ontologies used in native RDF datasets

set of common ontologies in this vocabulary. Our proposed system is extensible, as
new ontology information can easily be added.

Figure 3.4 shows ontology class usage in the CS’s and the percentage of triples
corresponding to each ontology in several datasets. As shown in the graphs, each
dataset contains a mix of multiple ontologies where even the most popular ontology
covers less than 56% of the data. The first column in the table shows that proper-
ties from within a single CS typically stem from a number of different ontologies,
e.g., the average number of ontologies used in each CS in DBpedia is 8.35. We
also looked at the percentage of properties of each ontology class when used in a
CS. Since an ontology class may be used in multiple CS’s, we compute a weighted
average (where the number of subjects in a CS is the weight). The second column
in the table shows this percentage to be less than 10% in most of the datasets. In
other words, the datasets make only very partial usage of the properties of each
ontology class. The partial usage and mixing together mean that any individual on-

3.2. EMERGING A RELATIONAL SCHEMA 67

label of subjects
rdf:type CS % all %
Thing 100 83
Organization 100 7
RadioStation 97 0.2
Company 1 4

<Broadcaster>

<RadioStation> <TelevisionStation>

<Thing>

...

...

... ...

<Person> ...

...
<Althlete>

...

<BaseBallPlayer>

...

...
<BasketBallPlayer> ...

... ...

... ...

...

Figure 3.5: Choosing a CS label from explicit RDF type annotations that refer to
ontology classes in a hierarchy.

tology class is a poor descriptor of the structure of the data. Our emergent relational
schema, aims to provide a better description.
Type properties. Certain specific properties explicitly specify the concept a subject
belongs to. The most common RDF property with this role is rdf:type, where
the O of triples with this property may be the URI identifying an ontology class.
Recall that our first step is to find a good UML-like class diagram for the RDF
dataset, where a CS roughly corresponds to an UML class, and specifically here we
are trying to find a human-friendly short name (label) for each CS. Even though we
stated above that any individual ontology class is a poor descriptor for the structure
of a CS, ontologies do provide valuable clues for choosing a label (name) for the
CS. The subjects that are member of a CS may have different rdf:type object
values, this number is also variable (there can be zero such type annotations, but
also multiple). To choose one, we look at the frequency of that type annotation.
First, we use the global infrequent threshold τinf (e.g., 5%) to exclude infrequent
type annotations to be used for finding the CS class label. For the rest, we count
(i) how many subjects in the CS have it, and (ii) how many subjects in the whole
dataset have it. Similar to TF/IDF [168], dividing (i) by (ii) provides a reasonable
ranking to choose an appropriate ontology class. Finally, if the ontology class has
label information (and this information is typically available), we then use it as the
label for the CS.

We should, however, in this ranking also take into account the class hierarchy
information that an ontology provides. Thus, we account for missing superclass
annotations by inferring them for the purpose of this ranking. In Figure 3.5, if a
triple in some CS has rdf:type Company, but not Organization or Thing
explicitly, we still include these annotations in the ranking calculation.

In this example, “RadioStation” is chosen as its coverage of the subjects in the
CS is above τinf (97 > 5) and its ranking score (97/0.2=485) is the highest.
Discriminative Properties. Even if no type property is present in the CS, we can
still try to match a CS to an ontology class. We compare the property set of the CS
with the property sets of ontology classes using the TF/IDF similarity score [168].

68 CHAPTER 3. DERIVING AN EMERGENT SCHEMA

cs
4

dc:description

gor:validFrom

gor:validThrough

gor:hasCurrency

gor:hasCurrencyValue

gor:hasUnitOfMeasurement

gor:valueAddedTaxIncluded

gor:eligibleTransactionVolume

PriceSpecification

gor:description

gor:name

gor:eligibleTransactionVolume

gor:validFrom

gor:validThrough

gor:hasCurrency

gor:hasCurrencyValue

gor:hasUnitOfMeasurement

gor:valueAddedTaxIncluded

gor:hasMaxCurrencyValue

gor:hasMinCurrencyValue

(prefix gor:

http://purl.org/goodrelations/v1#

prefix dc:

http://purl.org/dc/elements/1.1/)

Figure 3.6: Example CS vs. Ontology class

This method relies on identifying “discriminative” properties, that appear in few
ontology classes only, and whose occurrence in triple data thus gives a strong hint
for the membership of a specific class. An example is shown in Figure 3.6. In
this example, as cs4 and the class PriceSpecification of the GoodRelations
ontology11 share discriminative properties like gor:hasUnitOfMeasurement
and gor:valueAddedTaxIncluded, PriceSpecification can be used
as the label of cs4. Detailed computation of the TF/IDF-based similarity score be-
tween a CS and an ontology class can be found in [157]. An ontology class is
considered to be matching with a CS if their similarity score exceeds the similarity
threshold τsim. The ontology class correspondence of a CS, if found, is also used
to find labels for properties of the CS (both for relationships and literal properties).
Relationships between CS’s. If the previous approaches do not apply, we can look
at which other CS’s refer to a CS, and then use the URI of the referring property to
derive a label. For example, a CS that is referred as Address indicates that this CS
represents instances of an Address class. We use the most frequent relationship to
provide a CS label. For instance, in WebDataCommons 93532 instances refer to a
CS via property address and only 3 via property locatedAt. Thus, Address
is chosen as the label.
URI shortening. If the above solutions cannot provide us a link to ontology in-
formation for providing attribute and relationship labels, we resort to a practical
fall-back, based on the observation that often property URI values do convey a hint
of the semantics. That is, for finding labels of CS properties we shorten URIs (e.g.,
http://purl.org/goodrelations/v1#offers becomes offers), by
removing the ontology prefix (e.g., http://purl.org/goodrelations/
v1#), as suggested by [152].

Note that for CS’s without any ontology match or relationships with other CS’s,
we may find no class label candidates, in which case a synthetic default label is

11purl.org/goodrelations/

3.2. EMERGING A RELATIONAL SCHEMA 69

cs
8

cs
7

cs
9

cs
10

a
d
d
re
s
s

RadioStation

TelevisionStation

Location

cs
1

cs
3

cs
5

cs
2 cs

4hasPriceSpec.

Offering PriceSpecificationOffering

cs
6

Region

Labels assigned by

AAA: using ontologies

AAA: using rdf:type property

: using CS’s relationships

Figure 3.7: CS’s with assigned labels

used. Labels are intended to help users comprehend the data, but in any case should
be overridable by manual labeling. A future approach might be to look for sources
on the web, such as search engines; but for the moment we prefer to keep our
techniques stand-alone, as these are part of RDF bulk-load.

Figure 3.7 shows the labels assigned to each CS in the example dataset by using
different labeling methods (e.g., the label of cs4 is assigned based on the matching
between its property set and that of ontology classes, the label of cs7 is derived
from the CS’s relationships, ...). In this example, cs1 does not have any specific
label as there is no sufficient information for assigning a good label to it.

3.2.3 CS Merging

After basic exploration, there may be thousands of CS’s, in case of DBpedia even
100,000. This means the individual CS’s have only a few subjects (=rows, in rela-
tional terms) in them, so that storing them in a relational table would incur over-
heads (e.g. tables not filling a disk page, large database catalog, expensive metadata
lookup). Further, many of these basic CS’s are very similar to each other (differing
only in a few properties) and denote the same concept. When querying for that con-
cept, one would have to formulate a UNION of many tables, which is cumbersome
and also slows down queries. Finally, a relational schema with thousands of tables
is just very hard to understand for humans. Therefore, the next step is to reduce the
number of tables in the emergent relational schema by merging CS’s, using either
semantic or structural information.

Figure 3.8 shows an example of merging csi and csj . We note that all subjects
that fall in a basic CS do so because there exist triples for all properties in that
CS, such that a relational table representing the CS would have no NULL cells. In
this example, csi and csj represent already the results of merging other CS’s (the
merging process is iterative) . As shown in the figure, the number of NOT-NULL
cells in table tij is equal to the total number of NOT-NULL cells of the tables ti
and tj , however, the number of NULL cells increases due to properties not in the
intersection of the two CS’s becoming padded with NULLs in the merged CS.
Semantic merging. We can merge two CS’s on semantic grounds when both CS
class labels that we found were based on ontology information. Obviously, two

70 CHAPTER 3. DERIVING AN EMERGENT SCHEMA

+ =

Table ti
(csi)

Table tj
(csj)

Table tij
(csij)

Figure 3.8: Example of merging CS’s

CS’s whose labels were taken from the same ontology class URI represent the same
concept, and thus can be merged. If the labels stem from different ontology classes
we can examine the class hierarchy and identify the common concept/class shared
by both CS’s, if any, and then justify whether these CS’s are similar based on the
“generality” of the concept. Here the “generality” score of a concept is computed by
the percentage of instances covered by it and its subclasses among all the instances
covered by that ontology (Equation 3.1).

gscore(Oc) =
#instances_coveredby(Os)

#instances_coveredby_ontology
where Os is Oc or a subclass of Oc

(3.1)

Figure 3.5 showed an example of an ontology class hierarchy from DBpedia.
Consider two CS labels such as RadioStation and TelevisionStation
assigned by using ontology class names. By following the ontology’s class hierar-
chy, it can be found that the corresponding classes of these labels share the same
infrequent superclass Broadcaster. Therefore, these CS’s can be considered as
semantically similar, and could be merged with Broadcaster as new label.

More formally, there are two rules for semantic merging:

Rule 1 If an ontology class URI exists equal to the labels of both csi and csj then
merge csi and csj . (S1)

Rule 2 If there exists an ontology class Oc being an ancestor of the labels of csi
and csj and gscore(Oc) is less than 1

Ubtbl
then merge csi and csj . (S2)

In S2, 1
Ubtbl

is used as the threshold for the generality score based on Ubtbl, the
upper bound for the number of tables in the schema – which is one of the only three
parameters of emergent relational schemas, see Table 3.3.

Figure 3.9 demonstrates the modifications to the explored CS’s of the exam-
ple dataset and their relationships when sequentially applying merging rules S1
and S2. Here, since cs2 and cs3 both derived their label Offering from the
Offering class of the GoodRelation ontology, according to S1, they are merged

3.2. EMERGING A RELATIONAL SCHEMA 71

cs
8

cs
7

cs
9cs

10

RadioStation

Television

StationLocation

cs
1

cs
5

cs
4

offers

Offering PriceSpecification

cs
6

Region

Rule S1: = merge cs
2

& cs
3
� cs

11

cs
11

cs
7

cs
10

BroadCaster

Location

cs
1

cs
5

cs
4

offers

Offering PriceSpecification

cs
6

Region

Rule S2: = merge cs
8

& cs
9
� cs

12

cs
11

cs
12

Figure 3.9: Example of merging CS’s by using rules S1, S2

cs
7

cs
10

BroadCasterLocation

cs
1

cs
4

Offering PriceSpecification

cs
6

Region

Rule S3: = merge cs
5

& cs
11
� cs

13

cs
13

cs
12

cs
14

BroadCaster

Location

cs
1

cs
4

Offering PriceSpecification

cs
6

Region

Rule S4: = merge cs
7

& cs
10
� cs

14

cs
13

cs
12

Figure 3.10: Example of merging CS’s by using rules S3, S4

into a new CS (cs11). The references from/to cs2 and cs3 are also updated for cs11.
Besides, since the labels of cs8 and cs9 have Broadcaster as their non-general
common ancestor in the ontology hierarchy, they are merged into cs12 according
to S2. The label of cs12 is assigned by using the name of the common ancestor
ontology class. The full description about updating the label of a CS after merging
can be found in [157].
Structural merging. While semantic merging is a relatively safe bet, it may not
always be applicable or effective enough to reduce the amount of merged CS’s.
Therefore, we also look at the structure of the CS’s and their relationships to see if
these can be merged. The idea here is to identify CS’s that denote the same concept

72 CHAPTER 3. DERIVING AN EMERGENT SCHEMA

based on so-called “discriminative” properties, which are those with a high TF/IDF
score (see the previous section). If the overlap between two CS’s contains enough
“discriminative” properties, we can merge them.

Figure 3.11 shows an example where the overlapping properties of cs7 and cs10
indicate that these CS’s both originate from the “Location” entity. Here, the prop-
erty rdfd:name is not discriminative since it appears in most of the CS’s. How-
ever, properties rdfd:street-address and rdfd:region give evidence
that both represent a “Location”.

Equations 3.2 and 3.3 formally show the detailed computations for the TF/IDF
score of each property in a cs and the cosine similarity score (simij) between two
cs’s (csi and csj), respectively. In these functions total#CSs is the total number of
CS’s, #containedCSs(p) is the number of CS having property p in their property
list.

tfidf(p, cs) =
1

|Dp(cs)|
× log total#CSs

1 + #containedCSs(p)
(3.2)

simij =

∑
p∈(csi∩csj) tfidf(p, csi)× tfidf(p, csj)√ ∑

pi∈csi
tfidf(pi, csi)2 ×

√ ∑
pj∈csj

tfidf(pj , csj)2
(3.3)

In addition to the set of properties in a CS, incoming relationship references from
other CS’s can also be used as an evidence in identifying similar CS’s. Normally, a
subject refers to only one specific entity via a property. For example, the property
has_author of the subject “Book” always refers to an “Author” entity. Thus, if
one CS, e.g., cs1, refers to several different CS’s e.g., cs2 and cs3, via a property p,
this hints at cs2 and cs3 being similar.

In summary, two CS’s are considered structurally similar if they are both re-
ferred from the same CS via the same property (rule S3) or their property sets have
a high TF/IDF similarity score (rule S4). In Rule 3, ref(cs, p, csi) is the number of
references from cs to csi via property p, and τinf is the infrequent threshold which
is used to prevent non-frequent references from being considered in applying the
rule S3. In Rule 4, τsim is the similarity threshold above which we decide to merge
two CS’s.

Rule 3 If cs and p exist with ref(cs,p,csi)
freq(cs) and ref(cs,p,csj)

freq(cs) greater than τinf then
merge csi and csj . (S3)

Rule 4 If the similarity score simij between csi and csj is greater than τsim then
merge csi and csj . (S4)

Figure 3.10 shows the updates to the CS’s and their relationships when we con-
tinue applying the rules S3 and S4. In this figure, cs5 and cs11 are merged ac-
cording to the rule S3 as they are both referred by cs1 via the property offers.
Besides, since cs7 and cs10 have high similarity score (as shown in Figure 3.11),
they are merged into cs14.

We experimentally observed that the best order of applying the rules for merg-
ing CS’s is S1, S3, S2, S4. Further details can be found in [157].

3.2. EMERGING A RELATIONAL SCHEMA 73

cs
7

rdfd:name

rdfd:street-address

rdfd:locality

rdfd:region

rdfd:geo

cs
10

rdfd:name

rdfd:street-address

rdfd:locality

rdfd:region

rdfd:postal (prefix rdfd: http://rdf.data-vocabulary.org/#)

Merged CS

rdfd:name

rdfd:street-address

rdfd:locality

rdfd:region

rdfd:geo

rdfd:postal

Figure 3.11: Merging CS’s based on discriminative properties

3.2.4 Schema Filtering

Our goal is to represent a large portion of the input triples in a compact, human-
friendly, relational schema. After CS merging, most of these merged classes12 cover
a large amount of triples. However, it may happen that some classes still cover a
limited number of RDF subjects, so if the merged CS covers < mint (e.g. 1000,
see Table 3.3) subjects, it is removed from the schema; and we limit the UML class
diagram to the merged Ubtbl CS’s with highest frequency. Note that omitting CS’s
with low frequency will only marginally reduce overall coverage.

Preserving Dimension Tables. However, for this removal of classes (merged CS’s)
we make one exception, namely we conserve CS’s that – although small in terms
of covered subjects – are referred to many times from other tables. The rationale is
that such CS’s thanks to the large amount of incoming references represent impor-
tant information of the dataset that should be part of the schema. This is similar to
a dimension table in a relational data warehouse, which may be small itself, but is
referred to by many millions of tuples in large fact tables over a foreign key. Thus,
combining the information of basic CS detection and relationship detection, we
preserve CS’s with a high frequency of incoming references. However, detecting
dimension tables should not be handled just based on the number of direct rela-
tionship references. The relational analogy here are snowflake schemas, where a
finer-grained dimension table like CITY refers to an even smaller coarse-grained
dimension table COUNTRY. To find the transitive relationships and their relative
importance, we use the PageRank [154] algorithm on the graph formed by all CS’s
(vertexes) and relationships (edges, regardless of direction). In each iteration, the
score of a merged CS is computed based on the references from other merged CS’s
and their scores computed in the previous iteration. Equation 3.4 shows the formula

12At this stage, we also refer surviving merged CS’s as classes, similar to UML classes.

74 CHAPTER 3. DERIVING AN EMERGENT SCHEMA

for each iteration:

IRk(csi) =
∑

csj→csi

IRk−1(csj)×
ref(csj , csi)

refsTo(csi)

×ref(csj , csi)

freq(csj)
+ refsTo(csi)

If(IRk(csi) ≥ Ubtbl)→ csi is a dimension CS.

(3.4)

The merged CS’s having a score higher than a threshold Ubtbl will be selected
for inclusion in the schema. in which IRk(csi) is the indirect-referenced score of
csi after k iterations, ref(csj , csi) is the number of references from csj to csi,
freq(csj) is the frequency of csj , and refsTo(csi) is the total number of direct
references to csi.

Specifically, the number of iterations k is set the same as the diameter of the
CS graph. It is because, with that value, after k iterations, the IRk score of each
CS will get computed from all the CS’s. To compute the diameter of the graph, we
implemented a fast and simple algorithm described by [57].
Minimizing the number of infrequent properties. A final step of schema filtering
considers eliminating CS properties, which as column in a relational table would
have many NULL values. If the property coverage ratio (see Equation 3.5) is less
than the infrequent threshold τinf , that property is infrequent and it gets removed
from the CS.

coverageRatio(p, cs) =
freq(p, cs)

freq(cs)
(3.5)

3.2.5 Instance Filtering

The output after labeling, merging, and schema filtering is a compact relational
emergent schema. In the instance filtering phase, all RDF triples are visited again,
and either stored in relational tables (typically > 90% of the triples, which we
consider regular), or (the remainder) separately in a PSO table. Hence, our final
result is a set of relational tables with foreign keys between them, and a single triple
table in PSO format. In principle, the regular triples are those belonging to a merged
CS (that survived schema filtering). However, not all such triples are considered
regular in the end, as we perform three types of instance filtering, described next.
Maximizing type homogeneity. Literal object values corresponding to each prop-
erty in a CS can have several different types e.g., number, string, dateTime. The
relational model can only store a single type in each column, so in case of type
diversity, a relational system like MonetDB must use multiple columns for a single
property. They contain the type-cast value of the literal, if possible, and NULL oth-
erwise. The number of columns needed for representing the data from a csi hence
is
∑
p∈csi #ofTypes(p). This number can be large just due to a few triples having

the wrong type (dirty data). To minimize the number of such columns, for each
property, we filter out all the infrequent literal types (types that appear in < τinf
percent of all instances). All triples of class instances with infrequent types are
moved to the PSO table.

3.2. EMERGING A RELATIONAL SCHEMA 75

Parameter Default Description
Ubtbl 1000 number of tables upper bound
mint 1000 minimum table size
τinf 5% infrequent threshold

Table 3.3: Emergent Relational Schema Detection Parameters

Relationship Filtering. We further filter out infrequent or “dirty” relationships be-
tween classes. A relationship between csi and csj is infrequent if the number of
references from csi to csj is much smaller than the frequency of csi (i.e., less than
τinf percent of the CS’s frequency). A relationship is considered dirty if the major-
ity but not all the object values of the referring class (e.g., csi) refer to the instances
of the referred class (csj). In the former case, we simply remove the relationship
information between two classes. In the latter case, the triples in csi that do not
refer to csj will be filtered out (placed in the separate PSO table).

We note that in the general case of n-m cardinality relationships, the relational
model requires to create a separate mapping table that holds just the keys of both
relations. However, in case one of the sides is 0. . . 1, this is generally avoided by
attaching a FK column to the table representing the other side. We try to optimize
for this, by observing whether a multi-valued relationship is infrequent (< τinf).
If so, we remove the excess relationship to the separate PSO table, such that all
remaining subjects in the class have maximally one relationship destination. Finally,
if almost all instances of one class have exactly one match in the other class but
a few (< τinf) have none, we move all triples with that subject to the separate
PSO table to preserve the exact n-1 cardinality (which keeps the FK column non-
NULLable).
Multi-valued attributes. The same subject may have 0, 1 or even multiple triples
with the same property, which in our schema leads to an attribute with cardinality
> 1. While this is allowed in UML class diagrams, direct storage of such values is
not possible in relational databases. Practitioners handle this by creating a separate
table that contains the primary key (subject OID) and the value (which given literal
type diversity may be multiple columns). The RDF bulk-loader of MonetDB does
this, but only creates such separate storage if really necessary. That is, we analyze
the mean number of object values (meanp) per property. If themeanp of a property
p is not much greater than 1 (e.g., less than (1+τinf /100), we consider p as a single-
valued property and only keep the first value of that property in each tuple while
moving all the triples with other object values of this property to the non-structured
part of the RDF dataset. Otherwise, we will add a table for storing all the object
values of each multi-valued property.

meanp(p) =
∑

p(k)× k

where p(k) =
#times p has k object values

freq(p)

(3.6)

76 CHAPTER 3. DERIVING AN EMERGENT SCHEMA

3.2.6 Parameter Tuning

An important question that we needed to address is how the various parameters
guiding the recognition process should be set. Choosing improper parameters might
result in a “bad” final schema with e.g., small data coverage, lots of NULLs, etc.
Further, since each input dataset can have different characteristics, it would be un-
feasible to find a fixed parameter set that works optimally for all datasets.

The most dataset sensitive parameter we found to be the τsim, used in labeling
while matching ontologies using discriminative properties, as well as in the CS
merging Rule 4 that determines up until which point merging should continue. It is a
control on the strictness of finding equivalences between structures and ontologies,
at 1 it is very strict while at 0 it is very lax. We evaluate the quality of the relational
schema on two dimensions, namely (i) the number of tables (compactness of the
schema) and (ii) its precision, which is the number of NOT-NULL cells, fill(t),
divided by the total number of cells, cap(t), in all tables, as in Equation 3.7. There is
a clear trade-off between having a compact schema and higher precision, depending
on τsim.

Our auto-tuned algorithm iteratively re-runs the labeling and merging steps with
different values of τsim. In each run, we measure the number of tables and the
precision; we also compute a delta of these between successive values of τsim. In
Equation 3.8, k is the total number of runs; nTi (nTnomi) and preci (prNomi)
are the (normalized) number of tables and the schema precision at the ith run;
nTdeltai and prDeltai are the relative change in the normalized number of tables
and the precision at the ith run, respectively. We use the lowest value of τsim > 0
where nTdeltai > prDeltai.

prec =

∑
t fill(t)∑
t cap(t)

(3.7)

nTnomi =
nTi − nT1
nTk − nT1

prNomi =
preci − prec1
preck − prec1

nTdeltai = nTnomi − nTnomi−1

prDeltai = prNomi − prNomi−1

(3.8)

The left of Figure 3.12 shows normalized nTi and preci for WebData Commons as
a function of τsim in steps of 0.05, while the right side shows the deltas between
steps. Auto-tuning chooses the cross-over point of the deltas (τ_sim=0.7).

3.3 Experimental Evaluation

Metrics. We propose several metrics for evaluating the quality of the emergent
schema. These metrics rely on the fact that a structure is considered to be good if it
is compact (few and thin tables), precise (few NULLs) and has large coverage (few
triples that have to be moved to separate PSO storage). Given an RDF datasetR and
its total number of triples |R|, the first performance metric, C, is the percentage of

3.3. EXPERIMENTAL EVALUATION 77

0.5 0.6 0.7 0.8 0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Similarity threshold

N
or

m
al

iz
ed

 P
re

ci
si

on
 a

nd
 #

Ta
bl

e

●

●

●

●

●

● ● ●

●

●

● Precision
#tables

●

●

●

● ●

● ●

●
●

0.6 0.7 0.8 0.9
Similarity threshold

P
re

ci
si

on
 a

nd
 #

Ta
bl

e
tr

en
ds

0
0.

1
0.

2
0.

3

● Precision Delta
of tables delta

(a) DBpedia.

0.5 0.6 0.7 0.8 0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Similarity threshold

N
or

m
al

iz
ed

 P
re

ci
si

on
 a

nd
 #

Ta
bl

e

●

●

●

●

●

●
●

●
● ●

● Precision
#tables

●

●

● ●

●

● ●
●

●

0.6 0.7 0.8 0.9
Similarity threshold

P
re

ci
si

on
 a

nd
 #

Ta
bl

e
tr

en
ds

0
0.

1
0.

2
0.

3
● Precision Delta

of tables delta

(b) WebData.

Figure 3.12: Left: τsim steps on X, #Tables&Precision on Y. Right: step deltas,
auto-tuning selects cross-over

input triples covered by the schema:

C =

∑n
1 cov(ti)

|R|
(3.9)

Each class in the structure is physically stored in a separate relational table. We
define worth w(ti) of table ti as:

w(ti) =

(I)︷ ︸︸ ︷
cov(ti)∑n
1 cov(ti)

×

(II)︷ ︸︸ ︷(
prec(ti) +

ref(ti)∑n
1 ref(ti)

)
where prec(ti) =

fill(ti)

cap(ti)

(3.10)

The precision prec(ti) of the table ti is the fraction of non-NULL values in table
ti, cov(ti) is the number of RDF triples stored in ti; n is the number of tables and

78 CHAPTER 3. DERIVING AN EMERGENT SCHEMA

labels WebData. DBpedia
top 3 3.6 3.8
final 4.1 4.6

Table 3.4: Human survey results on Likert scale

ref(ti) is the number of FK’s referring to ti. Here, (II) sums the precision and
the relative importance of the table considering the relationships between tables,
while (I) denotes the contribution of the table for the coverage of the schema. As
the schema is only compact if n is small, the quality of the explored structure, Q, is
defined as: Q =

∑n
1 w(ti)

n .

3.3.1 Experimental Results

Labeling evaluation. We presented the emergent schemas of the DBpedia and
WebDataCommons datasets to 19 humans and asked them to rate the labels.On
a 5-point Likert scale from 1 (bad) to 5 (excellent) label quality, the top 3 labels of
each table were scored by at least 3 persons. As shown in Table 3.4, the top 3 label
candidates received an average rating of 3.6 for WebDataCommons and 3.8 for the
DBpedia dataset. The finally chosen labels (one among the top 3) got better scores
(4.1 and 4.6, respectively). We therefore conclude that the ordering of label candi-
dates created by our algorithms produces encouraging results, as the chosen labels
get higher ratings than the other candidates. Furthermore, our evaluation shows that
78% (WebDataCommons) and 90% (DBpedia) of the labels are rated with 4 points
or better, hence are considered “good” labels by the users. The emergent relational
schemas for the nine datasets we tested are too large to include in this chapter,
Figure 3.13 shows EuroStat, one of the simpler schemas.13

Merging/Filtering performance. Figure 3.14 and Table 3.5 show the performance
of the proposed merging algorithms and the filtering techniques for detecting a
compact relational emergent schema with high coverage. According to Figure 3.14,
the metric Q of the explored structure, except for WebDataCommons, always in-
creases after the merging and filtering steps. For WebDataCommons, the value of
Q decreases when merging CS’s using rule S1. This stems from the fact that in
WebDataCommons dataset each CS describing a certain entity such as Website
may have many additional properties describing application attached to the website,
and even use various properties for the same attribute (e.g., ogp.me/ns#url,
opengraphprotocol.org/schema/url, rdf.data-vocabulary.org/
#url for the website’s URL), and thus, their merged CS’s may contain properties
with lots of NULLs values, causing the decrease of the metric Q. Nevertheless, the
filtering step, by refining infrequent properties in the explored structure, can help
addressing this issue and significantly increases the score of the metricQ. Compar-
ing to the basic structure, the final schema of each experimental dataset is several
orders of magnitude better in this metric.

13See www.cwi.nl/~boncz/emergent for the other datasets.

3.3. EXPERIMENTAL EVALUATION 79

Figure 3.13: Final emergent schema for EuroStat – the lighter a column, the more
NULLs (percentage in parentheses).

 0.1

 1

 10

 100

PubM
ed

DBpedia

W
ebData.

DBLP
SP2B

M
usicBrainz

LUBM
BSBM

EuroStat

Basic structure
After merging by S1
After merging by S3
After merging by S2
After merging by S4

After Filtering

Figure 3.14: Schema quality Q during merging & filtering

Table 3.5 also shows that after the schema filtering, the final schema in all cases
achieves very high coverage. We see that synthetic RDF benchmark data (BSBM,
SP2B, LUBM) is fully relational, and also all dataset with non-RDF roots (PubMed,
MusicBrainz, EuroStat) get > 99% coverage. Most surprisingly, the RDFa data
that dominates WebDataCommons and even DBpedia is more than 90% regular.
Further, a non-complete manual inspection of the < 10% irregular triples in these
datasets appeared to show mainly mistyped properties, so our suspicion is that much
of this irregularity is in fact data “dirtiness”.

80 CHAPTER 3. DERIVING AN EMERGENT SCHEMA

 0

 20

 40

 60

 80

 100

 120

 140

 160

PubM
ed

DBpedia

W
ebData.

DBLP

SP2B
M
usicBrainz

LUBM
BSBM

EuroStat

N
o
rm

a
liz

e
d
 t

im
e
/s

iz
e
 (

%
)

ALL
SPO TIME [bulk-load]

CS-based TIME [detection]
SPO DB SIZE

CS-based DB SIZE

Figure 3.15: Building time & database size for single triple table (SPO) and reorga-
nized relational tables (CS-based) (normalized by bulk-load time and database size
for all six S,P,O table permutations (ALL)).

Datasets
Number of tables Coverage – Metric C (%)

before after remove remove prune final
merging merging small small infreq. schema

tables tables prop.
LUBM 17 13 12 100 100 100.00
BSBM 49 8 8 100 100 100.00
SP2B 554 13 10 99.99 99.65 99.65

MusicBrainz 27 12 12 100 99.9 99.60
EuroStat 44 10 5 99.73 99.53 99.53
DBLP 249 9 6 100 99.68 99.60

PubMed 3340 14 12 100 99.75 99.73
WebData. 13354 3000 253 98.17 94.37 92.79
DBpedia 439629 542 234 99.12 96.68 95.82

Table 3.5: #tables and metric C after merging & filtering

Computational cost. Figure 3.15 shows that the time for detecting the emerging
schema is negligible compared to bulk-loading time for building a single SPO ta-
ble as well as building all the six permutations of S, P, O (marked [ALL]). Thus,
MonetDB integrates emergent schema detection into its RDF bulk-loading without
recognizable delay.
Compression. Figure 3.15 shows that the database size stored using relational ta-
bles can be two times smaller than the database size of a single SPO triple table.
The reason is that in the relational representation the S and P columns effectively
get compressed away, only the O columns remain.
Query processing. As a proof that the recognized emergent schema can be easily
integrated and boost the performance of existing RDF stores, we report on the ef-

3.3. EXPERIMENTAL EVALUATION 81

Queries
Cold Hot Opt.

Virt-Quad Virt-CS Virt-Quad Virt-CS Virt-Quad Virt-CS
Q2 11567 2485 7 6 4.2 3.5
Q3 4210 2965 53 9 40.2 5.4
Q5 3842 2130 1350 712 18.6 4.2
Q7 19401 11642 9 6 5.3 4.5
Q8 14644 5370 9 5 4.4 3.3

Table 3.6: Query time (msecs) w/wo the recognized schema

(Cold: First query runtime after re-starting the server; Hot: Run the query 3 times
and get the last runtime; Opt.: Query optimization time)

fort at OpenLink to integrate emergent relational schema technology in one of the
state-of-the-art RDF stores, Virtuoso [87]14 It was a few months work to integrate
Characteristic Set based storage, query execution and query optimization in Virtu-
oso. We compare a classic Virtuoso RDF quad table (Virt-Quad) and this CS-based
implementation (Virt-CS) on the BSBM benchmark at 10 billion triples scale.

The Virtuoso CS implementation makes a column-wise table for each entity
type with all single-valued or sparse properties as columns. The primary key of
each CS table is SG (Subject-Graph). Exceptions, i.e. “irregular” triples as defined
in Section 3.2.5, are represented by standard rows in the RDF quad table (i.e. default
RDF storage). The implementation recognizes groups of triple patterns sharing a
subject and having properties associated with CS’s and treats these as a table in
query optimization. At run time, the abstract table, which may match multiple CS’s,
is expanded into a per-CS plan for each CS. The per-CS plan is in concept a full
outer join of the CS table and the exceptions for each property. A Bloom filter on S
is used to indicate the possibility of exceptions for a given P in a CS, so the quads
are most often not accessed at all.

Multi-valued and very sparse properties are represented as quads. Some P’s
and common O values e.g, common RDF types, are omitted from Virtuoso’s POSG
index and a scan of the CS is used instead. Rare values may still exist in the POSG
index. The just-in-time plan generation may alternate between scans of CS + PSOG
and POSG index lookups depending on values seen at run time.

The experimental results in Table 3.6 show that exploiting the emergent rela-
tional schema even in this very preliminary implementation already improves the
performance of Virtuoso on a number of BSBM Explore queries by up to a factor
of 5.8 (Q3, Hot run). Note that the Cold run is much slower comparing to the Hot
run as most of the time goes in the statistics gathering, not in the execution. We
see less gain from CS’s in other queries, e.g., Q5, since the first condition on the
BSBM products (on a range of numeric property) is selective, so the other columns
of the CS (or self-joins to RDF quads) are done on a small fraction of the subjects of
the first range check. In Q3 more single-valued properties are accessed per subject,
resulting in much more gain.

14https://github.com/v7fasttrack/virtuoso-opensource

82 CHAPTER 3. DERIVING AN EMERGENT SCHEMA

By collapsing multiple triple patterns into a single abstract CS table, query op-
timization gets a plan search space of the same order as for the equivalent SQL.
For Q3, the compilation time drops from 40.2 msecs to 5.4 msecs when using the
recognized schema. In many RDF applications, e.g. Open PHACTS15, query opti-
mization time dominates and can run into the tens of seconds. Due to the extreme
search space resulting from triple patterns, there are often ad hoc restrictions on
plans, e.g. no hash join or no joins on hash build sides. With CS, a more thorough
search of the plan space becomes again practicable and we expect qualitatively bet-
ter plans to result.

We also note that the space consumption in allocated pages is 59 GB for Virt-CS
and 116 GB for Virt-Quad. This comes in part from no indexing of low-cardinality
O’s and from not storing IRI string to ID mapping for IRI’s which consist of a
fixed text plus a numeric id. The Virt-CS is nearly two times more space-efficient,
which directly translates to lower cost of deployment. The larger the data, the more
important space efficiency becomes.

3.4 Related Work

We note that previous work has already proposed building relational-resembling
RDF stores [184, 76, 128, 181, 62]. However, these proposals either demand the
presence of an all-explaining ontology (which then gets remapped to relational ta-
bles), or ask the database system administrator to create and maintain “property
tables” explicitly. Our approach, in contrast, does not require any form of explicit
schema ingestion. Second, since these approaches just use the structure internally
in the SPARQL engine to make things faster, they do not address the challenge of
making the schema understandable to humans (compactness, finding short aliases).
For the latter, a related line of work is creating summaries of the graph structure to
aid query formulation [71], yet these do not focus on making RDF database systems
faster, and typically require a cluster to compute, whereas our approach is cheap and
can piggyback on RDF bulk-loading. Related to the automatic structure exploration
from data is work on ontology mining [129] which discovers ontologies from un-
structured text on the web. In our approach, we recognize the emergent structure in
RDF data (e.g., mixing of ontologies), and do not change the semantics, and focus
on providing a relational view of it.

Frequent itemset mining, which has been studied in many data mining pa-
pers [36, 70, 98], is equivalent to the basic CS recognition, originally proposed
by [149]. We use this technique but go beyond that by finding a schema graph with
cross-CS relationships, and we employ a host of techniques to make this schema
graph compact and human-friendly (finding labels).

A recent study on the structure refinement for the RDF data, [41] proposed an
integer linear programming (ILP)-based algorithm which allows an RDF dataset
being partitioned into a number of “sorts” where each sort satisfies a predefined
structured-ness fitting threshold. This approach, relying mainly on the similarity
and correlation between the properties of sorts, may merge subjects describing

15http://www.openphacts.org/

3.5. CONCLUSIONS 83

unrelated entities but having many common properties into a single sort (as also
shown in their experiment with Drug Company and Sultan), while our solution
only merges related CS’s together by exploiting the discriminating properties and
the availability of the semantics/ontologies information. Besides, no relationship
exploration as well as labeling for the sorts are considered in this work, and thus,
no relational schema is recognized.

Consulting external resources for entity labeling is suggested by [180] in the
context of table data reconstruction as well as by [176] a study on labeling hierar-
chical clusters. The former study shows that column names and table names usually
cannot be found in table data itself. To reconstruct HTML table data they therefore
rely on an external database with hyponym information. The latter study also men-
tions that documents often do not contain self-descriptive terms. To overcome this,
they suggest using “anchor texts” as an additional resource in their document la-
beling task. Anchor texts are pieces of text on and next to hyperlinks to a specific
document. The relational equivalent of anchor texts are names of foreign key rela-
tionships. In our case we rely on property names that refer to other tables for name
suggestions, supplemented by ontology information when present.

3.5 Conclusions

In this chapter, we introduced the notion of – and demonstrated practical techniques
for – discovering an emergent relational schema in RDF datasets, that recovers
a compact and precise relational schema with high coverage and useful labels as
alias for all machine-readable URIs (which it preserves). The functional benefit of
an emergent relational schema for RDF datasets is both in giving users better under-
standing of the structure of an RDF dataset, while also allowing the often> 90% of
regular triples to be queried from existing SQL applications, which still dominate
the IT industry. Our MonetDB RDF bulk loader enables this. We think that this also
provides impetus to make SQL more semantic, e.g. stimulating usage of URIs in
SQL metadata.

The emergent relational schema can also be used under the cover of an SPARQL
engine as a new storage approach, where the 90% regular triples are stored in tabu-
lar structures and the rest in SPO format. We think that the knowledge of an emer-
gent schema gives SPARQL engines just what they need to close the performance
gap with SQL systems. This we demonstrated in Virtuoso, with gains both in com-
pression, query execution and query optimization. The tabular structure opens up
many opportunities to improve physical access patterns using (partial) clustered
indexes, zone maps, table partitioning and even database cracking [114].

Looking ahead, the prospect of people supporting SQL applications on top of
RDF data raises many new questions. Users will desire to tweak a found emergent
schema by hand, e.g. by manually improving some labels. We propose making a
found emergent schema explicit using a vocabulary, and researching techniques to
control schema evolution to preserve schema stability while the emergent schema
adapts over time to changes in the underlying RDF datasets.

84 CHAPTER 3. DERIVING AN EMERGENT SCHEMA

Chapter 4

Exploiting Emergent Schemas to
make RDF systems more efficient

We build on our earlier finding that more than 95% of the triples in actual RDF
triple graphs have a remarkably tabular structure, whose schema does not necessar-
ily follow from explicit metadata such as ontologies, but for which an RDF store
can automatically derive by looking at the data using so-called “emergent schema”
detection techniques. In this chapter we investigate how computers and in particular
RDF stores can take advantage from this emergent schema to more compactly store
RDF data and more efficiently optimize and execute SPARQL queries. To this end,
we contribute techniques for efficient emergent schema aware RDF storage and new
query operator algorithms for emergent schema aware scans and joins. In all, these
techniques allow RDF schema processors fully catch up with relational database
techniques in terms of rich physical database design options and efficiency, with-
out requiring a rigid upfront schema structure definition.

4.1 Emergent Schema Introduction

In previous chapter, we introduced emergent schemas: finding that >95% of triples
in all LOD datasets we tested, including noisy data such as WebData Commons and
DBpedia, conform to a small relational tabular schema. We provided techniques to
automatically and at little computational cost find this “emergent” schema, and also
to give the found columns, tables, and “foreign key” relationships between them
short human-readable labels. This label-finding, and in fact the whole process of
emergent schema detection, exploits not only value distributions and connection
patterns between the triples, but also additional clues provided by RDF ontologies
and vocabularies.

A significant insight from Chapter 3 is that relational and semantic practitioners
give different meanings to the word “schema”. It is thus a misfortune that these two
communities are often distinguished from each other by their different attitude to
this ambiguous concept of “schema” – the semantic approach supposedly requiring
no upfront schema (“schema-last”) as opposed to relational databases only working
with a rigid upfront schema (“schema-first”).

85

86 CHAPTER 4. EXPLOITING EMERGENT SCHEMAS

Semantic schemas, primarily ontologies and vocabularies, aim at modeling a
knowledge universe in order to allow diverse current and future users to denote
these concepts in a universally understood way in many different contexts. Rela-
tional database schemas, on the other hand, model the structure of one particular
dataset (i.e., a database), and are not designed with a purpose of re-use in different
contexts. Both purposes are useful: relational database systems would be easier to
integrate with each other if the semantics of a table, a column and even individual
primary key values (URIs) would be well-defined and exchangeable. Semantic data
applications would benefit from knowledge of the actual patterns of co-occurring
triples in the LOD dataset one tries to query, e.g. allowing users to more easily for-
mulate SPARQL queries with a non-empty result (this often results from using a
non-occurring property in a triple pattern).

In [160], we observed partial and mixed usage of ontology classes across LOD
datasets: even if there is an ontology closely related to the data, only a small part
of its class attributes actually occur as triple properties (partial use), and typically
many of the occurring attributes come from different ontologies (mixed use). DB-
pedia on average populates <30% of the class attributes it defines [160], and each
actually occurring class contains attributes imported from no less than 7 other on-
tologies on average. This is not necessarily bad design, rather good re-use (e.g.
foaf), but it underlines the point that any single ontology class is a poor descriptor
of the actual structure of the data (i.e., a “relational” schema). Emergent schemas
are helpful for human RDF users, but in this chapter, we investigate how RDF stores
can exploit emergent schemas for efficiency.

We address three important problems faced by RDF stores. The first and fore-
most problem is the high execution cost resulting from the large amount of self-
joins that the typical SPARQL processor (based on some form of triple table stor-
age) must perform: one join per additional triple pattern in the query. It has been
noted [99] that SPARQL queries very often contain star-patterns (triple patterns
that share a common subject variable), and if the properties of the patterns in these
stars reference attributes from the same “table”, the equivalent relational query can
be solved with a table scan, not requiring any join. Our work achieves the same
reduction of the amount of joins for SPARQL.

The second problem we solve is the low quality of SPARQL query optimiza-
tion. Query optimization complexity is exponential in the amount of joins [179].
In queries with more than 12 joins or so, optimizers cannot analyze the full search
space anymore, potentially missing the best plan. Note that SPARQL query plans
typically have F times more joins than equivalent SQL plans. Here F is the average
size of a star pattern1. This leads to a 3F times larger search space. Additionally,
query optimizers depend on cost models for comparing the quality of query plan
candidates, and these cost models assume independence of (join) predicates. In
case of star patterns on “tables”, however, the selectivity of the predicates is heav-
ily correlated (e.g. subjects that have an ISBN property, typically instances of the
class Book, have a much higher join hit ratio with AuthoredBy triples than the

1A query of X stars has X×F triple patterns, so needs P1=X×F -1 joins. When each star is
collapsed into one tablescan, just P2=(X-1) joins remain: P1

P2
≥F times.

4.2. EMERGENT SCHEMA AWARE RDF STORAGE 87

independence assumption would lead to predict) which means that the cost model
is often wrong. Taken together, this causes the quality of SPARQL query optimiza-
tion to be significantly lower than in SQL. Our work eliminates many joins, making
query optimization exponentially easier, and eliminates the biggest source of cor-
relations that disturb cost modeling (joins between attributes from the same table).

The third problem we address is that mission-critical applications that depend
on database performance can be optimized by database administrators using a plethora
of physical design options in relational systems, yet RDF system administrators lack
all of this. A simple example are clustered indexes that store a table with many at-
tributes in the value order of one or more sort key attributes. For instance, in a data
warehouse one may store sales records ordered by Region first and ProductType
second – since this accelerates queries that select on a particular product or region.
Please note that not only the Region and ProductType properties are stored in this
order, but all attributes of the sales table, which are typically retrieved together in
queries (i.e. via a star pattern). A similar relational physical design optimization is
table-partitioning or even database cracking [115]. Up until this chapter, one cannot
even think of the RDF equivalent of these, as table clustering and partitioning im-
plies an understanding of the structure of an RDF graph. Emergent schemas allow
to leave the “pile of triples” quagmire, so one can enter structured data management
territory where advanced physical design techniques become applicable.

In all, we believe our work brings RDF datastores on par with SQL stores in
terms of performance, without losing any of the flexibility offered by the RDF
model, thus without introducing a need to create upfront or enforce subsequently
any explicit relational schema.

4.2 Emergent Schema Aware RDF Storage

The original emergent schema work allows to store and query RDF data with SQL
systems, but in that case the SQL query answers account for only those “regu-
lar” triples that fit in the relational tables. In this work, our target is to answer
SPARQL queries over 100% of the triples correctly, but still improve the efficiency
of SPARQL systems by exploiting the emergent schema.

RDF systems store triple tables T in multiple orders of Subject (S), Property
(P) and Object (O), among which typically TPSO (“column-wise”), TSPO (“row-
wise”) and either TOSP or TOPS (“value-indexed”) – or even all permutations.2

In our proposal, RDF systems storage should become emergent schema aware
by only changing the TPSO representation. Instead of having a single TPSO triple
table, it gets stored as a set of wide relational tables in a column-store – we use
MonetDB here. These tables represent only the regular triples, the remaining< 5%
of “exception” triples that do not fit the schema (or were updated recently) remain
in a smaller PSO table Tpso. Thus, TPSO is replaced by the union of a smaller Tpso
table and a set of relational tables.

2To support named RDF graphs, the triples are usually extended to quads. Our approach trivially
extends to that but we discuss triple storage here for brevity.

88 CHAPTER 4. EXPLOITING EMERGENT SCHEMAS

Relational storage of triple data has been proposed before (e.g. property ta-
bles [184]), though these prior approaches advocated an explicit and human-controlled
mapping to a relational schema, rather than a transparent, adaptive and automatic
approach, as we do. While such relational RDF approaches have performance ad-
vantages, they remained vulnerable in case SPARQL queries do not consist mainly
of star patterns and in particular when they have triple patterns where the P is a
variable. This would mean that many, if not all, relational tables could contribute to
a query result, leading to huge generated SQL queries which bring the underlying
SQL technology to its knees.

Our proposal hides relational storage behind TPSO, and has as advantage that
SPARQL query execution can always fall back on existing mechanisms – typically
MergeJoins between scans of TSPO, TPSO and TOPS . Our approach at no loss of
flexibility, just makes TPSO storage more compact as we will discuss here, and
creates opportunities for better handling of star patterns, both in query optimization
and query execution, as discussed in the following sections.

Formal definition. Given the RDF triple dataset ∆ = {t|t = (tS , tP , tO)}, an
emergent schema (∆, E , µ) specifies the set E of emergent tables Tk, and mapping
µ from triples in ∆ to emergent tables in E . A common idea we apply is rather than
storing URIs as some kind of string, to represent them as an OID (object identifier)
– in practice as a large 64-bit integer. The RDF system maintains a dictionary D :
OID → URI elsewhere. We use this D dictionary creatively, adapting it to the
emergent schema.

Definition 8 Emergent tables (E = {T1, ..}): Let s, p1, p2,..., pn be subject and
properties with associated data types OID andD1, D2, ...,Dn, then Tk = (Tk.s:OID,
Tk.p1:D1, Tk.p2:D2, ..., Tk.pn:Dn) is an emergent table where Tk.pj is a column
corresponding to the property pj and Tk.s is the subject column.

Definition 9 Dense subject columns: Tk.s consists of densely ascending numeric
values βk, .. βk + |Tk| − 1, so s is something like an array index, and we denote
Tk [s] .p as the cell of row s and column p. For each Tk its base OID βk = k ∗ 240.
By choosing βk to be sufficiently apart, in practice the values of column Ti.s and
Tj .s never overlap when i 6= j.3

Definition 10 Triple-Table mapping (µ : ∆ → E): For each table cell Tk [s] .pj
with non-NULL value o, ∃(s, pj , o) ∈ ∆ and µ(s, pj , o) = Tk. These triples we
call “regular” triples. All other triples t ∈ ∆ are called “exception” triples and
µ(t) = Tpso. In fact Tpso is exactly the collection of these exception triples.

The emergent schema detection algorithm [160] assigns each subject to at most 1
emergent table – our storage exploits this by manipulating the URI dictionary D so
that it gives dense numbers to all subjects s assigned to the same Tk.

3In our current implementation with 64-bit OIDs we thus can support up to 216 emergent tables
with each up to 240=1 trillion subjects, still leaving the highest 8 bits free, which are used for type
information – see footnote 4.

4.2. EMERGENT SCHEMA AWARE RDF STORAGE 89

T1 s p1
β1 +0

1
2

n-1

.

..

p2 p3

T2 s p1
β2 +0

1
2..

p4

T3 s p2
β3 +0

1
2..

p4

Tpso s op

Figure 4.1: Columnar Storage of
Emergent Tables Tk and exception ta-
ble Tpso

s op
p1

p1

p2

p2

p3

p4

p4

Figure 4.2: PSO as view PPSO∪Tpso

Except% Null% Compr
Synthetic RDF datasets

LUBM 0.0% 6.0% 1.8x
BSBM 0.0% 4.2% 2.5x
SP2Bench 0.4% 5.2% 2.0x
LDBC SNB 0.0% 12.2% 2.0x

RDF datasets with Relational Roots
MusicBrz 0.4% 3.9% 2.2x
Eurostat 0.5% 3.8% 1.4x
DBLP 0.4% 12.6% 1.7x
PubMed 0.3% 15.3% 1.9x

Native RDF datasets
WebData 7.5% 42.7% 1.4x
DBpedia 3.8% 32.2% 1.4x

Table 4.1: Exception percentage, NULL percentage and Compression Factor
achieved by Emergent Table-aware PSO storage, over normal PSO storage.

Columnar relational storage. On the physical level of bytes stored on disk, colum-
nar databases can be thought of as storing all data of one column consecutively.
Column-wise data generally compresses better than row-wise data because data
from the same distribution appears consecutively, and column-stores exploit this
by having advanced data compression methods built-in in their storage and query
execution infrastructure. In particular, the dense property of the columns Tk.s will
cause column-stores to compress it down to virtually nothing, using a combina-

90 CHAPTER 4. EXPLOITING EMERGENT SCHEMAS

tion of delta encoding (the difference between subsequent values is always 1) and
run-length encoding (RLE), encoding these subsequent 1’s in just a single run. Our
evaluation platform MonetDB supports densely ascending OIDs natively with its
VOID (virtual OID) type, that requires no storage.

Figure 4.1 shows an example of representing RDF triples using the emergent
tables {T1, T2, T3} and the triple table of exception data Tpso (in black, below). We
have drawn the subject columns Tk.s transparent and with dotted lines to indicate
that there is no physical storage needed for them.

For each individual property column Tk.pj , we can define a triple table view
Pj,k=(pj ,Tk.s,Tk.o), the first column being a constant value (pj) which thanks
to RLE compression requires negligible storage and the other two reusing stor-
age from emergent table Tk. If we concatenate these views Pj,k ordered by j and
k, we obtain table PPSO = ∪j,kPj,k. This PPSO is shown in Figure 4.2. Note
that PPSO is simply a re-arrangement of the columns Tk.pj . Thus, with emergent
schema aware storage, one can always access the data PPSO as if it were a PSO
table at no additional cost.4 In the following, we show this cost is actually less.

Space Usage Analysis. PPSO storage is more efficient than PSO storage in an
efficient columnar RDF store such as Virtuoso would be. Normally in a PSO table,
the P is highly repetitive and will be compressed away. The S column is ascending,
so delta-compression will apply. However, it would not be dense and it will take
some storage (log2(W) bits per triple, where W is the average gap width between
successive s values5) – while a dense S column takes no storage.

Compressing-away the S column is only possible for the regular part PPSO,
whereas the exception triples in Tpso must fall back to normal PSO triple storage.
However, the left table column of Figure 4.1 shows that the amount of exception
triples is negligible anyway – it is almost 0 in synthetic RDF data (stemming from
the LUBM, BSBM, SP2Bench and LDBC Social Network Benchmark), as well as
in RDF data with relational roots (EuroStat, PubMed, DBLP, MusicBrainz), and
is limited to < 10% in more noisy “native” RDF data (WebData Commons and
DBpedia). A more serious threat to storage efficiency could be the NULL val-
ues that emergent tables introduce, which are table cells for which no triple exists.
In the middle column we see that the first-generation RDF benchmarks (LUBM,
BSBM, SP2Bench) ignore the issue of missing values. The more recent LDBC
Social Network benchmark better models data with relational roots where this per-
centage is roughly 15%. Webdata Commons, which consists of crawled RDFa, has
most NULL values (42 percent) and DBpedia roughly one third. We note that the
percentage of NULLs is a consequence of the emergent table algorithm trying to
create a compact schema that consists of relatively few tables. This process makes
it merge initial tables of property-combinations into tables that store the union of
those properties: less, wider, tables means more NULLs. If human understandabil-
ity were not a goal of emergent table detection, parameters could be changed to let
it generate more tables with less NULLs. Still, space saving is not really an argu-

4SQL-based SPARQL systems (MonetDB, Virtuoso) still allow SQL on Tk tables.
5W= 1

n−1

∑n−1
1 (si+1 − si) where si is the subject OID at row i (table with n rows)

4.2. EMERGENT SCHEMA AWARE RDF STORAGE 91

ment for doing so, as the rightmost table column of Figure 4.1 shows that emergent
table storage is overall at least a factor 1.4 more compact than default PSO storage.

Query Processing Microbenchmark. While the emergent schema can be physi-
cally viewed as a compressed PSO representation, we now will argue that every
use a RDF store will give to a PSO table can be supported at least as efficiently on
emergent table aware storage.

Typically, the PSO table is used for three access patterns during SPARQL pro-
cessing: i) Scanning all the triples of a particular property p (i.e., p is known), ii)
Scanning with a particular property p and a range of object value (i.e., p is known +
condition on o), and iii) Having a subset of S as the input for the scan on a certain p
value (i.e., typically s is sorted, and the system performs a filtering MergeJoin). The
first and the second access patterns can be processed on the emergent schema in the
similar way as with the original PSO representation by using a UNION operator:
σ(pso, p, o) = σ(PPSO, p, o) ∪ σ(Tpso, p, o)

The third access pattern, which is a JOIN with s candidate OIDs is very com-
mon in SPARQL queries with star patterns. We test two different cases: with and
without of exceptions (i.e. Tpso).

20 40 60 80

10
20

30
40

50
60

Join Input Size (perc. of triples)

P
ro

ce
ss

in
g

tim
e

(m
s)

●
●

●
●

●
●

●

●

●

●

●

●

●

●

● Join with dense column
Join with sorted column

Figure 4.3: PSO join performance vs
input size (no exceptions)

20 40 60 80

10
20

30
40

50
60

Join Input Size (perc. of triples)

P
ro

ce
ss

in
g

tim
e

(m
s)

●

●

●
●

●●

●

●

●

●

●

●

●

●

● Join with dense column
Join with sorted column

Figure 4.4: PSO join performance vs
input size (with exceptions)

Without Tpso. In this case, the JOIN can be pushed through the PPSO view and
is simply the UNION of JOINs between the s candidates and dense Tk.s columns
in each emergent table Tk. MonetDB supports joins into VOID columns very effi-
ciently, essentially this is sequential array lookup.

We conducted a micro-benchmark to compare the emergent schema aware per-
formance with normal PSO access. It executes the JOIN between a set of I.s input
OIDs with two different Tk.s columns: a dense column and a sorted (but non-dense)
column; in both cases retrieving the Tk.o object values. The benchmark data is ex-
tracted from the subjects corresponding to the Offer entities in BSBM benchmark,
containing ≈5.7 million triples. Each JOIN is executed 10 times and the minimum

92 CHAPTER 4. EXPLOITING EMERGENT SCHEMAS

running time is recorded. Figure 4.3 shows that dense OID joins are 3 times faster
on small inputs: array lookup is faster than MergeJoin.
With Tpso. Handling exception data requires merging the result produced by the
JOIN between input (I.s) and the dense S column of emergent table Tk.s with
the result produced by the JOIN between I.s and the exception table Tpso.s – the
latter requires an actual MergeJoin. We implemented an algorithm that performs
both tasks simultaneously. In order to form the JOIN result between I.s with both
Tk.s and Tpso.s simultaneously, we modify the original MergeJoin algorithm by
checking for each new index of I.s, whether the current element from I.s belongs
to the dense range of Tk.s.

We conducted another micro-benchmark using the same 5.7 million triples. The
exception data is created by uniformly sampling 3% of the regular data (BSBM
itself is perfectly tabular and has no exceptions). We note that 3% is already more
than the average percentage of exception data in all our tested datasets. The list of
input I.s candidates is also generated by sampling from 5% to 90% of the regular
data. Figure 4.4 shows that the performance of the JOIN operator on the emergent
schema still outperforms that on the original PSO representation even though it
needs to handle exception data.

The conclusion of this section is that emergent schema aware storage reduces
space by 1.4 times, provides faster PSO access, and importantly hides the relational
table storage from the SPARQL processor – such that query patterns that would
be troublesome for property tables (e.g. unbound property variables) can still be
executed without complication. We take further advantage of the emergent schema
in many common query plans, as described next.

4.3 Emergent Schema Aware SPARQL Optimization

The core of each SPARQL query is a set of (s,p,o) triple patterns, in which s, p,
o are either literal values or variables. Viewing each pattern as a property-labeled
edge between a subject and object, these triples form a SPARQL graph. We group
these triple patterns, where originally each triple pattern is a group of one.

Definition 11 Star Pattern (ρ=($s, p1, o1), ($s, p2, o2), ...): A star pattern is a col-
lection of more than one triple patterns from the query, that each have a constant
property pi and an identical subject variable $s.

To exploit the emergent schema, we identify star patterns in the query and at
the query optimization, group query’s triple patterns by each star. Joins are needed
only between these triple pattern groups. Each group will be handled by one table
scan subplan that uses a new “RDFscan” operator described further on. SPARQL
query optimization then largely becomes a join reordering problem. The complex-
ity of join reordering is exponential in the number of joins.

To show the effects on query optimization performance, we created a micro-
benchmark that forms queries consisting of (small) stars of size F=4. The smallest
query is a single star, followed by one with two stars that are connected by sharing
the same variable for an object in the first star and the subject of the star star, etc

4.4. EMERGENT SCHEMA AWARE SPARQL EXECUTION 93

?s1

name

place party

?name1

“Hawaii” Democracy

?s2

?s3

“Lawyer”

spouse

study

campuscity

website

?site

?campus“Princeton”
?name2

“Chicago”
prof.

name

place

star pattern

Figure 4.5: Example SPARQL graph with three star patterns

(hence queries have 4, 8, 12, 16 and 20 triple patterns). Our optimization identifies
these stars, hence after grouping star patterns their join graph reduces to 0, 1, 2 and
3 joins respectively. We ran the resulting queries through MonetDB and Virtuoso
and measured only query optimization time. Figure 4.6 shows that emergent schema
aware SPARQL query optimization becomes orders of magnitude faster thanks to
its simplification of the join ordering problem. The flattening Virtuoso default line
beyond 15 patterns suggests that with large amount of joins, it stops to fully traverse
the search space using cutoffs, introducing the risk of choosing a sub-optimal plan.

4.4 Emergent Schema Aware SPARQL Execution

The basic idea of emergent schema aware query execution is to handle a complete
star pattern ρ with one relational table scan(Ti,[p1,p2,..]) on the emergent table Ti
with whose properties pi from ρ. Assuming a SQL-based SPARQL engine, as is
the case in Virtuoso and MonetDB, it is crucial to rely on the existing relational ta-
ble scan infrastructure, so that advanced relational access paths (clustered indexes,
partitioned tables, cracking [115]) get seamlessly re-used.

In case of multiple emergent tables matching star pattern ρ, the scan plan (de-
noted ϑρ) we generate consists of the UNION of such table scans. Details on gen-
erating ϑρ can be found in the Appendix A. We note that in ϑρ we also push-down
certain relational operators (at least simple filters) below these UNIONs – a stan-
dard relational optimization. This push-down means that selections are executed
before the UNIONs and optimized relational access methods can be used to e.g.
perform IndexScans. Moreover, we should mention that OPTIONAL triple patterns
in ρ are marked and can be ignored in the generated scans (because missing prop-
erty values are already represented as NULL in the relational tables). Another detail
is that on top of ϑρ, we must introduce a Project operator to cast SQL literal types
to a special SPARQL value type, that allows multiple literal types as well as URIs

94 CHAPTER 4. EXPLOITING EMERGENT SCHEMAS

5 10 15 20

0
5

10
15

20

Number of triple patterns

O
pt

im
iz

at
io

n
tim

e
(m

s)

● ● ● ● ●

●
emergent schema
aware
default

(a) MonetDB

5 10 15 20
0

20
40

60
80

Number of triple patterns

●
● ● ●

●

(b) Virtuoso

Figure 4.6: Optimization time as a function of query size (#triple patterns)

to be present in one binding column.6 Executing (pushed-down) filter operations
while values are still SQL literals allows to avoid most casting effort, since after
selections much fewer tuples remain.

This whole approach will still only create bindings for the “regular” triples. To
generate the 100% correct SPARQL result, we introduce an operator called RDF-
scan, that produces only the missing bindings. The basic idea is to put another
UNION on top of the scan plan ϑρ that adds the RDFscan(ρ) bindings to the output
stream, as shown in Figure 4.7. Unlike normal scans, we cannot push down filters
below the RDFscan - hence these selections remain placed above it, at least until
optimization 1 (see later).

∪

ϑρ σo1>10,o3=5

RDFscan(ρ)

Figure 4.7: Query plan for handing exception

Generating Exception Bindings. Correctly generating all result bindings that SPARQL
semantics expect is non-trivial, since the exception triples in Tpso when combined

6In our MonetDB implementation, the 64-bits OID that encodes (subject) URIs, also encodes liter-
als by using other patterns in its highest 8 bits.

4.4. EMERGENT SCHEMA AWARE SPARQL EXECUTION 95

with any emergent table Tk (not only those covering ρ) could produce valid bind-
ings. Consider the example SPARQL query, consisting of a single star pattern and
two selections (o1 > 10, o3 = 5):

T1 T2 Tpso Result
s p1 p2 p3 s p1 p3 p4 p s o s o1 o2

100 11 2 5 200 11 7 1 p1 0 20 100 11 2
101 13 4 6 201 5 2 p1 1 9 104 15 8
102 14 5 202 13 9 3 p1 201 15 0 20 8
103 9 6 p2 0 8 102 14 6
104 15 8 5 p2 102 6 201 15 4

p2 201 4
p3 0 5
p6 6 7

Figure 4.8: Example RDF data and expected query result.

SELECT ?s ?o1 ?o2 WHERE {
?s p1 ?o1 .
?s p2 ?o2 .
?s p3 5 .
FILTER (?o1 > 10) }

Figure 4.8 shows the expected result of this query on an example data. (For a
better view of the example, we assume s base OID of T1, T2 are 100, 200, respec-
tively). In this result, the first two tuples come from the regular triples while the
last three tuples is the combination of triples stored in Tpso table (i.e., in red color)
with those stored in tables T1 and T2.

Basic approach. RDFscan returns all the bindings for a star pattern, in which each
binding is generated by at least one irregular triple (the missing bindings). Formally,
given a star pattern ρ = {(s, pi, oi), i = 1,..,k}, the RDF dataset ∆, the output of the
RDFscan operator for this star pattern is defined as:

RDFscan(ρ) = {(s, o1, ..., ok)}|(s, pi, oi) ∈ ∆ ∧ (∃i : (s, pi, oi) ∈ Tpso) (4.1)

RDFscan generates the “exception” bindings in 2 steps:
Step 1: Get all possible bindings (s, o1, ..., ok) where each oi stems from triple
(s,pi,oi) ∈ Tpso (for those pi from ρ), or oi=NULL if such a triple does not exist,
with the constraint that at least one of the object values oi is non-NULL.
Step 2: Merge each binding (s, o1, ...,ok) with the emergent table Tk corresponding
to s (βk ≤ s < βk + |Tk|) to produce output bindings for RDFscan.

Step 1 is implemented by first extracting the setEi of all {(s, oi)} corresponding
to each property pi from the Tpso: Ei = σp=pi(Tpso). Then, it returns the output,
S1, by performing a relational OuterJoin on s between all Ei. We note that, as Tpso
table is sorted by p, extracting Ei from Tpso can be done with no cost by reading a
slice of Tpso from the starting row of pi and the ending row of pi (the information

96 CHAPTER 4. EXPLOITING EMERGENT SCHEMAS

E1 E3

s o1 s o3
0 20 0 5
1 9

201 15 Output(S1)
E2 s o1 o2 o3
s o2 0 20 8 5
0 8 1 9

102 6 102 6
201 4 201 15 4

Figure 4.9: Step 1 on example data & query

on starting, ending rows of each p in Tpso table is pre-loaded before any query
processing). Furthermore, as for each p in Tpso, {(s,o)} are sorted according to s,
Ei are also sorted by s. Thus, the full OuterJoin of all Ei can be efficiently done by
using a multi-way sort merging algorithm. Figure 4.9 demonstrates Step 1 for the
example query.

Algorithm 1 Merge-exception-regular algorithm
Input: S1: Step 1 output

lstP : List of required properties
E : Emergent tables

Output: Tfin: Merging results
1: for each tuple t=(s, o1,...,ok) in S1 do
2: id, r = getT_row(t.s) /*table & row id*/
3: accept = true
4: for each pi in lstP do
5: if t.oi = null & E [id] [r].pi = null then
6: accept = false
7: Continue next tuple
8: else
9: store_cand(bind, t.oi, E [id] [r].pi)

10: if accept = true then
11: append(Tfin, bind)

Step 2 merges each tuple in S1 with a tuple of the same s in the regular table in
order to form the final output of RDFscan. For example, the 4th tuple of S1 (201,
15, 4, null) merged with the 2nd tuple of T2 (201, null, 5, 2) returns a valid binding
(201, 15, 4) for the (s, o1, o2) of the example query. Figure 1 shows the detailed
algorithm of Step 2. For each tuple t in S1, it first extracts the corresponding regular
table and row Id of the current t.s from encoded information inside each s OID
(Line 2). Then, for each property pi, the algorithm will check whether there is any
non-NULL object value appearing in either t (i.e., t.oi) or the regular column pi
(i.e., E [id] [r].pi) (Line 5). If yes, the non-NULL value will be placed in the binding

4.4. EMERGENT SCHEMA AWARE SPARQL EXECUTION 97

for pi (Line 9). Otherwise, if both of the values are NULL, there will be no valid
binding for the current checking tuple t. Finally, the binding that has non-NULL
object values for all non-optional properties will be appended to the output table
Tfin.

Optimization 1: Selection push-down. Pushing selection predicates down in the
query plan is an important query optimization technique to apply filters as early
as possible. This technique can be applied to RDFscan when there is any selection
predicate on the object values of the input star pattern (e.g., o1 > 10, o3=5 in the
example query). Specifically, we push the selection predicates down in Step 1 of
the RDFscan operator to reduce the size of each set Ei (i.e., σp=pi(Tpso)), accord-
ingly returning a smaller output S1 of this step. Formally, given λi being a selection
predicate on the object oi, the set Ei of {(s,oi)} from Tpso) is computed as: Ei =
σp=pi,λi(Tpso). In the example query, E1 = σp=p1,o1>10(Tpso). Figure 4.10 shows
that the size of E1 and the output S1 are reduced after applying the selection push-
down optimization, which thus improves the processing time of RDFscan operator.

E1 Output(S1)
s o1 s o1 o2 o3
0 20 0 20 8 5

201 15 102 6
201 15 4

Figure 4.10: Step 1 output with pushing down Selection predicates

Optimization 2: Early check for missing property. If a regular table Tk does not
have pi in its list of columns, to produce a valid binding by merging a tuple t of S1

(i.e., output of Step 1) and T , the exception object value t.oi must be non-NULL.
Thus, we can quickly check whether t is an invalid candidate without looking into
the tuple from Tk by verifying whether t contains non-NULL object values for all
missing columns of Tk. We implement this by modifying the algorithm for Step
2. Before considering the object values of all properties from both exception and
regular data (Line 4), we first check exception object value t.oi of each missing
property to prune the tuple if any t.oi is NULL. Then, we continue the original
algorithm with the remaining properties.

Optimization 3: Prune non-matching tables. The exception table Tpso mostly
contains triples whose subject was mapped to some emergent table. For example,
the triple (201, p2, 4) refers to the emergent table T2 because s ≥ 200=β2. During
the emergent schema exploration process [160] this triple was temporarily stored
in the initial emergent table T ′2, but was then moved to Tpso during the so-called
“schema and instance filtering” step. This filtering moves not only triples but also
whole columns from initial emergent tables to Tpso, in order to derive a compact
and precise emergent schema. Assume column p2 was removed from T2 during
schema filtering. We observe that before filtering, all triples (regular + exception
triples) of subject s were part of the initial emergent table which means that had

98 CHAPTER 4. EXPLOITING EMERGENT SCHEMAS

a particular set of properties. Accordingly, if C is the set of columns of an initial
emergent table T ′ and if C does not contain the set of properties in ρ, there cannot
be a matching subject with all properties of ρ stemming from T ′ even with the help
of Tpso. This observation can be exploited to prune all subject ranges corresponding
to (initial) emergent tables that cannot have any matching for ρ from the pass over
Tpso.

Specifically, we pre-store, for each emergent table, its set of columns C before
schema and instance filtering was applied during emergent schema detection. Then,
given the input star pattern ρ, the possible matching tables for ρ are those tables
whose set of columns C contain all properties in ρ. Finally, Step 1 is optimized
by removing from Ei all the triples that the subject does not refer to any of the
matching tables.

4.5 Performance Evaluation

We tested with both synthetic and real RDF datasets BSBM [55], LUBM [100],
LDBC-SNB[88] and DBpedia (DBPSB) [147]; and their respective query work-
loads. For BSBM, we also include its relational version, namely BSBM-SQL, in
order to compare the performance of the RDF store against a SQL system (i.e.,
MonetDB-SQL). We used datasets of 100 million triples for LUBM and BSBM,
and scale factor 3 (≈200 million triples) for LDBC-SNB. The experiments were
conducted on a Linux 4.3 machine with Intel Core i7 3.4Ghz CPU and 16 GBytes
RAM. All approaches are implemented in the RDF experimental branch of Mon-
etDB.

Query workload. For BSBM, we use the SELECT queries from Explore workload
(ignoring the queries with DESCRIBE and CONSTRUCT). For LUBM, we use its
published queries and rewrite some queries (i.e., Q4, Q7, Q8, Q9, Q10, Q13) that
requires certain ontology reasoning capabilities in order to account for the ontol-
ogy rules and implicit relationships. For LDBC-SNB, we use its short read queries
workload. DBPSB exploits the actual query logs of the DBpedia SPARQL end-
points to build a set of templates for the query workload. Using these templates,
we create 10 non-empty result queries w.r.t DBpedia 3.9 dataset7. Table 4.2 show
the features of tested DBpedia queries. In Figures 4.11, 4.12 and 4.13, X-axis holds
query-numbers: 1 means Q1. For each benchmark query we run three times and
record the last query execution (i.e., Hot run).

Emergent schema aware vs Triple-based RDF stores. We perform the bench-
marks against two different approaches of MonetDB RDF store: the original triple-
based store (MonetDB-triple) and the emergent schema-based store (MonetDB-
emer).

Figure 4.11 shows the query processing time using two approaches over four
benchmarks. For BSBM and LDBC-SNB, the emergent schema aware approach
significantly outperforms the triple-based approach in all the queries, by up to two
orders of magnitude faster (i.e., Q1 SNB). In a real workload such as DBpedia

7The detailed DBpedia queries can be found at goo.gl/RxzOmy

4.5. PERFORMANCE EVALUATION 99

MonetDB-triple MonetDB-emer MonetDB-SQL

Queries

P
ro

ce
ss

in
g

tim
e

(m
s)

1
5

50
50

0
50

00

1 3 5 7 9 11 132 4 6 8 10 12 14

(a) LUBM

1 2 3 4 5 6 7

Queries

P
ro

ce
ss

in
g

tim
e

(m
s)

1
5

50
50

0
50

00

(b) SNB

1 2 3 4 5 7 8 10

Queries

P
ro

ce
ss

in
g

tim
e

(m
s)

1
5

50
50

0
50

00

(c) BSBM + BSBM-SQL

Queries

P
ro

ce
ss

in
g

tim
e

(m
s)

1
5

50
50

0
50

00

1 3 5 7 92 4 6 8 10

(d) DBpedia

Figure 4.11: Query processing time: Emergent schema-based vs triple-based

where there is significant amount of exception triples, our approach is still much
faster (note: logscale) by up to more than an order of magnitude (Q8). We also note
that multi-valued properties appear in most of DBpedia queries, and this is costly
for the emergent schema aware approach as it requires additional MergeJoins to
retrieve the object values. In Figure 4.11d, the best-performing query Q8 is the one
having no multi-valued property.

For LUBM, a few queries (i.e. 7, 14) show comparable processing times for
triple-table based and emergent schema aware query processing. The underlying
reason is that each subject variable in these queries only contains one or two com-
mon properties (e.g., Q14 only contains one triple pattern with the properties rdf:
type). Thus, the emergent schema aware approach will not improve the query ex-
ecution time – however as the optimization does not trigger then it also does not
degrade performance in absence of fruitful star patterns. For the queries having
discriminative properties [160] in a star pattern (e.g., Q4, 11, 12), the emergent

100 CHAPTER 4. EXPLOITING EMERGENT SCHEMAS

Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Operators: OPTIONAL, FILTER, UNION - - O - U F - F,U O,F,U O

Modifiers: Distinct, Limit, ORDER D D D,L,O D D,L D D,L - - D

of triple pattern 4 5 5 3 10 3 6 4 6 7

constraints onO? 1 0 1 1 2 2 1 4 2 0

Has multi-valued prop.?
√ √ √ √ √ √ √

-
√

-

Table 4.2: Properties of DBpedia queries

schema aware approach significantly outperforms the original triple-based version,
by up to two order of magnitude (i.e, Q4).

Emergent schema-based RDF store vs RDBMS As shown in Figure 4.11c, the
emergent schema aware SPARQL processing (MonetDB-emer) provides compara-
ble performance on most queries (i.e., Q1,Q3,Q4,Q5,Q8) compared to MonetDB-
SQL. In other queries (Queries 7,10), the emergent schema aware approach also
significantly reduces the performance gap between SPARQL and SQL, from almost
two orders of magnitude slower (MonetDB-triple vs MonetDB-SQL) to a factor of
3.8 (MonetDB-emer vs MonetDB-SQL).

RDFscan optimizations. Figure 4.12 shows the effects of each of the three de-
scribed RDFscan optimization by running the DBpedia benchmark without us-
ing with each of them. All optimizations have positive effects, though in different
queries, and the longer running queries show stronger effects. Selection push-down
(Opt. 1) has most influence, while the early check in Tpso to see if it delivers miss-
ing properties has the least influence. Obviously, selection push-down does not
give any performance boost when there is no constraint on the object variables in
the queries (e.g., Query 2). For queries having constraints on the object variables,
which are quite common in any query workload, it does speed up query processing
by up to a factor of 24 (i.e., Q8).

Query optimization time. Figure 4.13 shows query optimization time on LDBC-
SNB and DBPSB (due to lack of space, we omit similar results for BSBM and
LUBM). For all queries, the emergent schema aware approach significantly lowers
optimization time, by even up to two orders of magnitude (Q1 SNB) or a factor of 37
(Q7 DBPSB). Note also that due to the smaller plan space and strong reduction of
join correlations, query optimization also qualitatively improves, a claim supported
by its performance improvements across the board.

4.6 Related Work

Most state-of-the-art RDF systems store their data in triple- or quad-tables creating
indexes on multiple orders of S,P,O[183, 87, 150, 177]. However, according to [99,
160], these approaches have several RDF data management problems including
unpredictably bad query plans and low storage locality.

4.6. RELATED WORK 101

1 2 3 4 5 6 7 8 9 10

Queries

P
ro

ce
ss

in
g

tim
es

 (
m

se
co

nd
s)

20
50

20
0

10
00

50
00

MonetDB−emer
MonetDB−triple
MonetDB−emer w/o Opt. 1
MonetDB−emer w/o Opt. 2
MonetDB−emer w/o Opt. 3

Figure 4.12: Query processing with/with-out optimizations

Structure-aware storage was first exploited in RDF stores with the“property ta-
bles” approach[184, 76, 128, 181]. However, early systems using this approach [184,
76] do not support automatic structure recognition, but rely on a database admin-
istrator doing the table modeling manually. Automatic recognition is introduced in
some newer systems[128, 181, 134], however unlike emergent schemas these struc-
tures are not apt for human usage, nor did these papers research in depth integration
with relational systems in terms of storage, access methods or query optimization.
Recently, Bornea et al.[62] built an RDF store, DB2RDF, on top of a relational

102 CHAPTER 4. EXPLOITING EMERGENT SCHEMAS

MonetDB−emer
MonetDB−triple

Queries

O
pt

im
iz

at
io

n
tim

e
(m

s)
0

2
4

6
8

10

1 3 5 72 4 6

(a) SNB

Queries
O

pt
im

iz
at

io
n

tim
e

(m
s)

0.
0

0.
5

1.
0

1.
5

1 3 5 7 92 4 6 8 10

(b) DBpedia

Figure 4.13: Optimization time: Emergent schema-based vs triple-based

system using hash functions to shred RDF data into multiple multi-column tables.
This approach (nor any of the others) allows both SQL and SPARQL access to the
same data, as emergent schemas do. Gubichev et al. [99] and Neumann et al.[149]
use structure recognition to improve join ordering in SPARQL queries alone. Brodt
et al. [66] proposed a new operator, called Pivot Index Scan, to efficient deliver
attribute values for a resource (i.e., subject) with less joins using something similar
to a SPO index – as such it does not recognize structure in RDF to leverage it on
the physical level.

4.7 Conclusion

Emergent Schema detection is a recent technique that automatically analyzes the
actual structure an RDF graph, and creates a compact relational schema that fits
most of the data. We investigate here how these Emergent Schemas, beyond help-
ing humans to understand a RDF dataset, can be used to make RDF stores more
efficient. The basic idea is to store the majority of data, the “regular” triples (typ-
ically >95% of all data) in relational tables under the hood, and the remaining
“exception” triples in a reduced PSO triple table. This storage still allows to see
the relational data as if it were a PSO table, but is in fact > 1.4x more compact
and faster to access than a normal PSO table. Furthermore, we provide a simple
optimization heuristic that groups triple patterns by star-shape. This reduces the
complexity of query optimization by often more than a magnitude, since the size of
the join graph is reduced thanks to only joining these groups. Finally, we contribute
the RDFscan algorithm with three important optimizations. It is designed to work
in conjunction with relational scans, which perform most of the heavy-lifting, and

4.7. CONCLUSION 103

can benefit from existing physical storage optimizations such as table clustering and
partitioning. RDFscan keeps the overhead of generating additional binding results
for “exception” triples low, yielding overall speed improvements of 3-10x on a wide
variety of datasets and benchmarks, closing the performance gap between SQL and
SPARQL.

Chapter 5

Benchmarking RDF stores

In this chapter, we present our work on RDF benchmarking performed while par-
ticipating in the LDBC Social Network Benchmark (SNB) task force. In particular,
we first describe our main contribution on this benchmark focusing specifically in
designing and developing its scalable correlated graph generator. Then, we shortly
introduce the benchmark and its workloads.

5.1 S3G2: A Scalable Structure-correlated Social Graph
Generator

Benchmarking graph-oriented database workloads and graph-oriented database sys-
tems is increasingly becoming relevant in analytical Big Data tasks, such as social
network analysis. In graph data, structure is not mainly found inside the nodes, but
especially in the way nodes happen to be connected, i.e. structural correlations.
Because such structural correlations determine join fan-outs experienced by graph
analysis algorithms and graph query executors, they are an essential, yet typically
neglected, ingredient of synthetic graph generators. To address this, we present
S3G2: a Scalable Structure-correlated Social Graph Generator. This graph genera-
tor creates a synthetic social graph, containing non-uniform value distributions and
structural correlations, which is intended as test data for scalable graph analysis al-
gorithms and graph database systems. We generalize the problem by decomposing
correlated graph generation in multiple passes that each focus on one so-called cor-
relation dimension; each of which can be mapped to a MapReduce task. We show
that S3G2 can generate social graphs that (i) share well-known graph connectiv-
ity characteristics typically found in real social graphs (ii) contain certain plausible
structural correlations that influence the performance of graph analysis algorithms
and queries, and (iii) can be quickly generated at huge sizes on common cluster
hardware.

5.1.1 Introduction

Data in real life is correlated; e.g. people living in Germany have a different distri-
bution in names than people in Italy (location), and people who went to the same

105

106 CHAPTER 5. BENCHMARKING RDF STORES

university in the same period have a much higher probability to be friends in a social
network. Such correlations can strongly influence the intermediate result sizes of
query plans, the effectiveness of indexing strategies, and cause absence or presence
of locality in data access patterns. Regarding intermediate result sizes of selections,
consider:

SELECT personID FROM person
WHERE firstName = ’Joachim’ AND addressCountry = ’Germany’

Query optimizers commonly use the independence assumption for estimating
the result size of conjunctive predicates, by multiplying the estimates for the indi-
vidual predicates. This would underestimate this result size, since Joachim is more
common in Germany than in most other countries; similar would happen e.g. when
querying for firstName ’Cesare’ from ’Italy’. Overestimation can also easily hap-
pen, if we would query for ’Cesare’ from ’Germany’ or ’Joachim’ from ’Italy’ (i.e.
anti-correlation).

This correlation problem has been recognized in relational database systems
as relevant, and some work exists to detect correlated properties inside the same
table (e.g., see [173]). Still, employing techniques for the detection of correlation
is hardly mainstream in relational database management, and this is even more
so when we start considering correlations between predicates that are separated
by joins. Consider for instance the DBLP example of co-authorship of papers that
counts the number of authors that have published both in TODS and in the VLDB
Journal:

SELECT COUNT(*)
FROM paper pa1 JOIN journal jn1 ON pa1.journal = jn1.ID

paper pa2 JOIN journal jn2 ON pa2.journal = jn2.ID
WHERE pa1.author = pa2.author AND

jn1.name = ’TODS’ AND jn2.name = ’VLDB Journal’

The above query is likely to have a larger result size than a query that substi-
tutes ’TODS’ for ’Bioinformatics’, even though Bioinformatics is a much larger
publication than TODS. The underlying observation is that database researchers
are likely to co-publish in TODS and The VLDB Journal, but are much less likely
to do cross-disciplinary work. For database technology, this example poses (i) a
challenge to the optimizer to adjust the estimated join hit ratio of pa1.author =

pa2.author downwards or upwards depending on other (selection or join) predi-
cates in the query (ii) provide indexing support that can accelerate this query: the
anti-correlated query (Bioinformatics and The VLDB Journal) has a very small re-
sult size and thus could theoretically be answered very quickly. However, just em-
ploying standard join indices will generate a large intermediate result for the Bioin-
formatics sub-plan containing all Bioinformatics authors, of which only a minute
fraction is actually useful for the final answer.

Summarizing, correlated predicates are still a frontier area in database research,
and such queries are generally not well-supported yet in mature relational systems.
This holds still more strongly in the emerging class of graph database systems,

5.1. S3G2: A SCALABLE STRUCTURE-CORRELATED SOCIAL GRAPH
GENERATOR 107

where we argue the need for correlation-awareness in query processing is even
higher.

In the particular case of RDF, its graph data model is expressly chosen to work
without need for an explicit schema, such that graph datasets get stored as one big
pile of edges (in particular, subject-property-object “triples”). Here we see a dual-
ism between structure and correlation: in the relational model, certain structure is
explicit in the schema, whereas in RDF such structure only re-surfaces as structural
correlation. That is, it will turn out a journal paper (subject) always happens to
have one title property, one issue property, one journalName, etc; and that these
properties exclusively occur in connection to journal issues. The extreme flexibil-
ity of RDF systems in the data they can store, thus poses a significant challenge
to SPARQL query optimizers, as they need to understand such correlations to get
the planning of even basic queries right. Other graph database systems which use
a richer data model, where nodes have a declared structure, suffer less from this
problem. Still, when considering that graph analysis queries often involve a combi-
nation of (property) value constraints and structural constraints (pattern matching),
it is likely that correlations between the structure of the graph and the values in
them will strongly affect the performance of systems and algorithms. Yet, systems
are not sufficiently aware of this, and existing graph benchmarks do not specifically
test for this; and synthetic graphs used for benchmarking do not have such structure
correlations. As such, we argue that for benchmarking graph data analysis systems
and algorithms, it would be very worthwhile if a data generator could generate syn-
thetic graphs which such correlated structure. To our knowledge, there exists no
solution for generating a scalable random graph with value and structure correla-
tions. Existing literature on random graph generation [47, 126, 58, 94] either does
not consider node properties at all or ignores correlations between them.

In this chapter, we describe the Scalable Structure-correlated Social Graph Gen-
erator (S3G2), and its underlying generic conceptual correlated graph generation
framework. This framework organizes data generation in multiple phases that each
center around a correlation dimension. In the case of our social graph use case,
these dimensions are (i) education and (ii) personal interests. The data generation
workflow is constrained by correlation dependencies, where certain already gen-
erated data influences the generation of additional data. A graph generator gener-
ates new nodes (with property values), and edges between these nodes and existing
nodes. The probability to choose a certain value from a dictionary, or the probabil-
ity to connect two nodes with an edge are thus influenced by existing data values.
For instance, the birth location of a person influences probability distribution of
the firstName and university dictionaries. As another example, the probability to
create a friendship edge is influenced by (dis)agreement on gender, birthYear and
university properties of two person nodes.

A practical challenge in S3G2 is that a naive approach to correlated graph gen-
eration would continuously access possibly any node and any edge in order to make
decisions regarding the generation of a next node or edge. For generating graphs of
a size that exceeds RAM, such a naive algorithm would grind down due to expen-
sive random I/O. To address this challenge, we designed a S3G2 graph generation
algorithm following the MapReduce paradigm. Each pass along one correlation di-

108 CHAPTER 5. BENCHMARKING RDF STORES

mension is a Map phase in which data is generated, followed by a Reduce phase
that sorts the data along the correlation dimension that steers the next pass. We
show that this algorithm achieves good parallel scale-out, allowing it e.g. to gen-
erate 1.2TB of correlated graph data in half an hour on a Hadoop cluster of 16
machines.

Contributions of our work are the following: (1) we propose a novel frame-
work for specifying the generation of correlated graphs, (2) we show the usefulness
of this framework in its ability to specify the generation of a social network with
certain plausible correlations between values and structure, and (3) we devise a
scalable algorithm that implements this generator as a series of MapReduce tasks,
and verify both quality of its result as well as its scalability. In our vision, this data
generator is a key ingredient for new benchmarks for graph query processing.

Outline. In Section 5.1.2, we present our framework for the generation of cor-
related graphs, and describe how such it maps on a MapReduce implementation. In
Section 5.1.4 we use our framework to generate a synthetic social network graph.
In Section 5.1.5 we evaluate our approach, confirming that the generated data has
typical social network characteristics, and showing the scalability of our generator.
Finally, in Section 5.1.6, we review related work before concluding in Section 5.1.7.

5.1.2 Scalable Structure-correlated Social Graph Generator (S3G2)

We first formally define the end product of S3G2 which is essentially a directed
graph of objects, and introduce the main ingredients of the S3G2 framework. Then,
we describe the MapReduce-based generation algorithm that follows from these
ingredients.

S3G2 generates a directed labeled graph, where the nodes are objects with prop-
erty values, and their structure is determined by the class a node belongs to. Such a
data model is common in graph database systems, and is more structured than RDF
(though it can be represented in RDF, as our S3G2 implementation in fact does).

Definition 12 S3G2 produces a graph G(V , E, P , C) where V is a set of nodes,
E is a set of edges, P is a set of properties and C is a set of classes.

V = L ∪
⋃
c∈C

Oc

P =
{
PL(x) |x ∈ C

}
∪
{
PE(x,y) |x, y ∈ C

}
E =

{
(n1, n2, p)|n1 ∈ Ox ∧ ((n2 ∈ L ∧ p ∈ PL(x)) ∨ (n2 ∈ Oy ∧ p ∈ PE(x,y)))

}
in whichOc is an object of class c in C; L is the set of literals; PL(x) is set of literal
properties of class x in C; PE(x,y) is the set of properties representing relationship
edges that go from instances of class x to class y.

We now discuss the main concepts in S3G2, which are (i) property dictionaries,
(ii) simple subgraph generation, and (iii) edge generation along correlation dimen-
sions.

Property Dictionary. Property values for each literal property l ∈ PL(x) are gen-
erated following a property dictionary specification PDl(D,R, F), consisting of a

5.1. S3G2: A SCALABLE STRUCTURE-CORRELATED SOCIAL GRAPH
GENERATOR 109

dictionary D, a ranking function R and a probability function F (if the context is
unclear, we can also write Dl, Rl and Fl).

A dictionary D is simply a fixed set of values: D = {v1, .., v|D|}. The rank-
ing function R is a bijection R : D → {1, .., |D|} which gives each value in
a dictionary a unique rank between 1 and |D|. The probability density function
F : {1, .., |D|} →[0, 1] steers how the generator chooses values; i.e. by having it
draw random numbers 0≤p≤1, it chooses the largest rank r such that F ′(r) < p,
where F ′ is the cumulative version of F , that is F ′ =

∑r
i=1 F (i). It finally emits

the value vpos from dictionary D from position pos = R(r). Thus, our framework
can generate data corresponding to any discrete probability distribution.

The idea to have a separate ranking and probability function comes from gen-
erating correlated values. In particular, the ranking function R[z](c) is typically
parametrized by some parameters z; which means that depending on the parameter
z, the value ranking is different. For instance, in case of a dictionary of firstName
we could have R[g, c, y]; e.g. the popularity of first names, depending on gender g,
country c and the year y from the birthDate property (let’s call this birthYear).
Thus, the fact that the popularity of first names in different countries and times is
different, is reflected by the different ranks produced by function R() over the full
dictionary of names. Name frequency distributions do tend to be similar in shape,
which is guaranteed by the fact that we use the same probability distribution F ()
for all data of a property.

Thus, the S3G2 data generator must contain property dictionaries Dl for all lit-
eral properties in l ∈ PL(x), and it also must contain the ranking functions Rl, for
all literal properties defined in all classes x ∈ C. When designing correlation pa-
rameters for a ordering functionRl, one should ensure that the amount of parameter
combinations such as (g, c, y) stays limited, in order to keep the representation of
such functions compact. We want the generator to be a relatively small program and
not depend needlessly on huge data files with dictionaries and ranking functions.

Figure 5.2 shows how S3G2 compactly represents R[g, c, y], by keeping for
each combination of (g, c, y) a small table with only the top-N dictionary val-
ues (here N=10 for presentation purposes, but it is typically larger). Rather than
storing an ordering of all values, a table like R[male,Germany, 2010] is just an
array of N integers. A value j here simply identifies value vj in dictionary D.
The values ranked lower than N get their rank assigned randomly. Given that in a

P1

“Anna”

“University of Leipzig”
P2

P3

P4

<location> “Germany”

“1990”

“University

of Leipzig”

Photo1

Post1 Comment1

Photo2

<replyTo>

Figure 5.1: Example S3G2 graph: Social Network with Person Information.

110 CHAPTER 5. BENCHMARKING RDF STORES

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 10 20 30 40 50

pr
ob

ab
ili

ty
randomly ranked

ranked from table

Ben
Leon

Lucas

Luka

Francesco
Alessandro

Andrea

R[male,Germany,2010]=
<Ben, Leon, Lucas, Finn,
 Fynn, Jonas, Maximilian,
 Luis, Paul, Felix, Luka>

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 10 20 30 40 50

pr
ob

ab
ili

ty

rank in dictionary

randomly ranked
ranked from table

Francesco
Alessandro

Andrea

Leonardo

Ben
Leon

Lucas

R[male,Italy,2010]=
<Francesco, Alessandro, Andrea,
 Lorenzo, Matteo, Mattia, Gabriele,
 Riccardo, Davide, Leonardo>

Figure 5.2: Compact Correlated Dictionary Distributions: boy names in Germany
(up) vs. Italy (lo)

monotonically decreasing probability function like the geometric distribution used
here, the probabilities below that rank are very small anyway, this approximation
only slightly decreases the plausibility of the generated values. In Figure 5.2 we see
in the top graph that for (male,Germany,2010) we keep the 10 most popular boys
names, which get mapped on the geometric distribution. All other dictionary values
(among which Italian names) get some random rank > 10. In the lower graph, we
see that for (male,Italy,2010) these Italian names are actually the most popular, and
the German names get arbitrary (and low) probabilities.

Simple Graph Generation. Edges are often generated in one go together with
new nodes, essentially starting with an existing node n, and creating new nodes
to which it gets connected. This process is guided by a degree distribution function
N : h→ [0, 1] that first determines how many h such new children (or descendants)
to generate. In many social networks, the amount of neighbour edges h is distributed
following a power law distribution (the probability that a node has degree h ∼
γ.h−λ).

In the S3G2 framework, it is possible to have a correlated the degree distribution
functionN [ni](h), from which the degree of each nodes ni is generated, correlated
with properties of node ni, e.g. by having these properties influence λ or γ. For
instance, people with many friends in a social network will typically post more
pictures than people with few friends (hence, the amount of friend nodes in our use
case influences the amount of posted comment and picture nodes).

Generating new nodes and connecting them on the fly among mostly themselves
and to an existing node ni leads to isolated subgraphs that are dangling off the main
graph connected to it by ni. Typically, such subgraphs are small or have the shape

5.1. S3G2: A SCALABLE STRUCTURE-CORRELATED SOCIAL GRAPH
GENERATOR 111

of shallow trees if they are larger.

Correlation Dimensions. To generate correlated and highly connected graph data,
we need a different approach that generates edges after generating many nodes. This
is computationally harder than generating edges towards new nodes. The reason is
that if node properties influence their connectivity, a naive implementation would
have to compare the properties of all existing nodes with all nodes, which could
lead to quadratic computational cost and a random access pattern, so the generation
algorithm would only be fast as long as the data fits in RAM (to avoid a random
I/O access pattern).

Data correlation actually alleviates this problem. We observe that the probabil-
ity that two nodes are connected is typically skewed with respect to some similarity
between the nodes. Given node ni, for a small set of nodes that are somehow simi-
lar to it, there is a high connectivity probability, whereas for most other nodes, this
probability is quite low. This observation can be exploited by a graph data generator
by identifying correlation dimensions.

For a certain edge label e ∈ PE(x,y) between node classes Ox and Oy , a
correlation dimension CDe(M

x,My, F) consists of two similarity metric func-
tions Mx : n → [0,∞], My : n → [0,∞] , and a probability distribution
F :[1,W.t]→[0,1]. Here the W.t is a window size, of W tiles with each t nodes,
as explained later. Note that in case of friends in a social network, both start and
end of the edges are of the same class persons (Ox = Oy), so a single metric
function would typically be used. For simplicity of discussion we will assume
M = Mx = My in the sequel.

We can compute the similarity metric by invoking M(ni) on all nodes ni, and
sort all nodes on this score. This means that similar nodes are brought near each
other, and we observe that the larger the distance between two nodes, their sim-
ilarity difference monotonically increases. Again, we use a geometric probability
distribution for F () that provides a probability for picking nodes to connect with
that are between 1 and W.t positions apart in this similarity ranking. To fully com-
ply with a geometric distribution, we should not cut short atW.t positions apart, but
consider even further apart nodes. However, we observe that for a skewed monoton-
ically decreasing distribution like geometric, the probability many positions away
will be minute, i.e. ≤ ε (F (W.t) = ε). The advantage of this window shortcut is
that after sorting the data, it allows S3G2 to generate edges using a fully sequen-
tial access pattern that needs little RAM resources (it only buffers W.t nodes). An
example of a similarity function M() could be location. Location, i.e., a place
name, can be mapped to (longitude,latitude) coordinates, yet for M() we need a
single-dimensional metric that can be sorted on. In this case, one can keep (lon-
gitude,latitude) at 16-bits integer resolution and mix these by bit-interleaving into
one 32-bits integer. This creates a two-dimensional space filling curve called Z-
ordering, also known in geographic query processing as QuadTiles1. Such a space
filling curve “roughly” provides the property that points which are near each other
in the Euclidean space have a small z-order difference.

1See http://wiki.openstreetmap.org/wiki/QuadTiles

112 CHAPTER 5. BENCHMARKING RDF STORES

Note that the use of similarity functions and probability distribution functions
over ranked distance drives what kind of nodes get connected with an edge, not
how many. The decision on the degree of a node is made prior to generating the
edges, using the previously mentioned degree function N [ni](h), which in social
networks would typically be a power-law function. During data generation, this
degree ni.h of node ni is determined by randomly picking the required number of
edges according to the correlated probability distributions as described before in
the example with person who have many friends generating more discussion posts.
In case of multiple correlations, we use another probability function to divide the
intended number of edges between the various correlation dimensions. Thus, we
have a power-law distributed node degree, and a predictable (but not fixed) average
split between the causes for creating edges.

Random Dimension. The idea that we only generate edges between the W.t most
similar nodes in all correlation dimensions is too restrictive: unlikely connections
in a social network that the data model would not explain or make plausible, will
occur in practice. Such random noise can be modeled by partly falling back onto
uniformly random data generation. In the S3G2 framework this can be modeled as
a special case of a correlation dimension, by using a purely random function as
similarity metric, and a uniform probability function. Hence, data distributions can
be made more noisy by making a pass in random order over the data and generating
(a few) additional random edges.

5.1.3 MapReduce S3G2 Algorithm

In the previous discussion we have introduced the main concepts of the S3G2
framework: (i) correlated data dictionaries (ii) simple graph generation (iii) edge
generation according to correlation dimensions. We now describe how a MapRe-
duce algorithm is built using these ingredients.

In MapReduce, a Map function is run on different parts of the input data on
many cluster machines in parallel. Each Map function processes its input data item
and produces for each a result with a key attached. MapReduce sends all produced
results to Reduce functions that also run on many cluster machines; the key deter-
mines to which Reducer each item is sent. The Reduce function then processes this
stream of data.

In the S3G2 algorithm, the key generated between Map and Reduce is used
to sort the data for which edges need to be generated according to the similarity
metric (the Mx,My functions) of the next correlation dimension. As mentioned,
there may be multiple correlation dimensions, hence multiple successive MapRe-
duce phases. Both the Map and Reduce functions can perform simple graph gener-
ation, which includes generation of (correlated) property values using dictionaries,
as described before in the example with boys names in Germany vs. Italy. The main
task of the Reduce function is sorting on correlation dimension and subsequent edge
generation between existing nodes using a sliding window algorithm described in
Algorithm 2.

The main idea of the sliding window approach to correlated edge generation is
that when generating edges, we only need to consider nodes that are sufficiently

5.1. S3G2: A SCALABLE STRUCTURE-CORRELATED SOCIAL GRAPH
GENERATOR 113

Tile being filled Window of W most recent tilesTile of t nodes

nodes for which edges are being generated

Figure 5.3: Sliding window of W tiles along the graph.

similar. By ordering the nodes according to this similarity (the metric Mx,My)
we can keep a sliding window of nodes (plus their properties and edges) in RAM,
and only consider generating edges between nodes that are cached in this window.
If multiple correlations influence the presence of an edge, multiple full data sorts
and sequential sliding window passes are needed (i.e. multiple MapReduce jobs).
Thus, each correlation dimension adds one MapReduce job to the whole process,
that basically re-sorts the data. One may remark that if the simple graph generation
activities that kick off graph generation already generate data ordered along the first
correlation dimension, we can save one MapReduce job (as data is already sorted).

The sliding window approach is implemented by dividing the sorted nodes con-
ceptually in tiles of t nodes. When the Reduce function accepts a data item, it adds
it to the current tile (an in-memory data structure). If this tile is full, and it has W
tiles already in memory, the oldest tile is dropped from memory. This is visualized
in Figure 5.3.

The Reduce function generates edges for all nodes in the oldest tile right be-
fore it is dropped, using Algorithm 2, implementing the windowing approach and
generating edges along a correlation dimension. For each node u in this tile, it se-
quentially scans nodes in the window, and picks a node to be connected based on
a probability function F (), until N(u) nodes are connected. Function F () com-
putes the probability of connecting two nodes based on their absolute distance in
the window. Using this function nearby nodes are most likely to be picked; since
successive nodes do the same, there is a high likelihood that similar (nearby) nodes
have some overlapping neighbours (e.g. friends).

In principle, simple graph generation only requires local information (the cur-
rent node), and can be performed as a Map task, but also as a post-processing job
in the Reduce function. Note that node generation also includes the generation of
the (correlated) properties of the new nodes.

We should mention that data correlations introduce dependencies, that impose
constraints on the order in which generation tasks have to be performed. For in-
stance, if the firstName property of a person node depends on the birthYear and
university properties, then within simple node generation, the latter properties
need to be generated first. Also, if the discussion posts forum that a user might
have below a posted picture involves the friends of that user, the discussion node
generation should follow the generation of all friend edges. Thus, the correlation
rules one introduces, naturally determine the amount of MapReduce jobs needed,
as well as the order of actions inside the Map and Reduce functions.

114 CHAPTER 5. BENCHMARKING RDF STORES

Algorithm 2 GenerateEdges(t, N(), F ())

Input: t: tile of nodes to generate edges for
Input: N : a function determines the degree of a node
Input: F : computes probability of connecting two nodes based on their distance

1: for each node u in tile t do
2: for each node v in window do
3: if numOfEdges(v) = N(v) then
4: continue
5: generate a uniform random number p in [0,1)
6: distance = position of v - position of u;
7: if (F (distance) < p) & (u not yet connected to v) then
8: createEdge(u,v)
9: if numOfEdges(u) = N(u) then

10: break
11: flushTile(t);

5.1.4 Case study: generating social network data

In this section, we show how we applied the S3G2 framework for creating a social
network graph generator. The purpose of this generator is to provide a dataset for
a new graph benchmark, called the Social Intelligence Benchmark (SIB).2 As we
focus here on correlated graph generation, this benchmark is out of scope for this
chapter. Let us state clearly that the purpose of this generator is not to generate
“realistic” social network data. Determining the characteristics of social networks is
the topic of a lot of research, and we use some of the current insights as inspiration
(only). Our data generator introduces some plausible correlations, but we believe
that real life (social network) data is riddled with many more correlations; it is a true
data mining task to extract these. Given that we want to use the generated dataset
for a graph database benchmark workload, having only a limited set of correlations
is not a problem; as in a benchmark query workload only a limited set of query
patterns will be tested.

Figure 5.4 shows the ER diagram of the social network. It contains persons and
entities of social activities (posted pictures, and comments in discussions in the
user’s forum) as the object classes of C. These object classes and their properties
(e.g., user name, post creation date, ...) form the set of nodes V . E contains all the
connection between two persons including their friendship edges and social activity
edges between persons and a social activity when they all join a social activity (e.g.,
persons discussing about a topic). P contains all attributes of a user profile, the
properties of user friendships and social activities.

Correlated Dictionaries. A basic task is to establish a plausible dictionary (D) for
every property in our schema. For each dictionary, we subsequently decide on a fre-
quency distribution. As mentioned, in many cases we use a geometric distribution,
which is the discrete equivalent of the exponential distribution, known to accurately

2See: www.w3.org/wiki/Social_Network_Intelligence_Benchmark

5.1. S3G2: A SCALABLE STRUCTURE-CORRELATED SOCIAL GRAPH
GENERATOR 115

person

userAccount

firstName

lastName

location

university

employer

employSince

gender

birthday

IpAddress

email

browser

userId

forumId

status

createdDate

interests

userId

interest

userTags

userId

tag

friendship

userId1

userId2

requestDate

approveDate

deniedDate

terminationDate

terminator

post

postId

title

content

createdDate

author

forumId

IpAddress

userAgent

comment

commentId

content

postId

replyTo

author

createdDate

forum

forumId

createdDate

postLikes

postId

userId

postTags

postId

tag

photoAlbum

albumId

creator

Title

createdDate

photoTags

photoId

tagAccount

photo

photoId

albumId

location

Latitude

Longitude

takenTime

IpAddress

userAgent

groupMemberShip

memberShipId

groupId

memberAccount

joinedDate
group

groupId

title

moderator

forumId

createdDate

n..1

n
.
.
1

n..1

n..1

1..n

n..1

n
.
.
1

n
.
.
1

1..1

n
.
.
1

1..n

n..1

1..n

1..n

n..1

2
.
.
1

1
.
.
n

Figure 5.4: The Generated Social Network Schema (SIB).

model many natural phenomena. Finally, we need to determine a ranking of these
values in the probability distribution (the R() function). For correlated properties,
this function is parameterized (R[z]()) and is different for value of z. Our com-
pact approximation stores for each z value a top-N (typically N=30) of dictionary
values.

The following property value correlations are built in (Rx[z] denoted as z x):

• (person.location,person.gender,person.birthDay) person.firstName

• person.location person.lastName

• person.location person.university

• person.location person.employer

• person.location person.employSince

• (person.location,person.Gender,person.birthDay) person.interests.interest

• person.location person.photoAlbum.photo.location

• person.employer person.email

• person.birthDate person.createdDate

• person.createdDate person.photoAlbum.createdDate

• photoAlbum.createdDate photoAlbum.photo.takenTime

116 CHAPTER 5. BENCHMARKING RDF STORES

• photoAlbum.photo.location photoAlbum.photo.latitude

• photoAlbum.photo.location photoAlbum.photo.longitude

• friendship.requestDate friendship.approveDate

• friendship.requestDate friendship.deniedDate

• (friendship.userId1,friendship.userId2) friendship.terminator

• person.createdDate person.forum.createdDate

• forum.createdDate forum.groupmembership.joinedDate

• forum.createdDate,forum.post.author.createdDate forum.post.createdDate

• post.createdDate post.comment.createdDate

Our main source of dictionary information is DBpedia [44], an online RDF
version of Wikipedia, extended with some ranking information derived with in-
ternet search engine scripts. From DBpedia one can obtain a collection of place
names with population information, which is used as person.location. For the
place names, DBpedia also provides population distributions. We use this actual
distribution as found in DBpedia to guide the generation of location.

The person.university property is filled with university names as found in
DBpedia. The sorting function Runiversity[location] ranks the universities by dis-
tance from the person location, and we keep for each location the top-10 universi-
ties. The geometric distribution is used as Funiversity and its parameters are tuned
such that over 90% of persons choose one of the top-10. Arguably, it is not plausible
that all persons have gone to university, but absolute realism is not the point of our
exercise.

From the cities, DBpedia allows to derive country information. DBpedia con-
tains a large collection of person names (first and lastnames) and their country of
birth, plus certain explicit information on popularity of first-names per country,
which was used as well. Other information was collected manually on the internet,
such as a distribution of browser usage, which is not correlated with anything, cur-
rently. A special rule for dates is applied that ensures that certain dates (e.g. the date
a user joined the network) precede another date (the date that a user became friends
with someone). This is simply done by repeating the process of randomly picking
a date until it satisfies this constraint.

Correlation Dimensions. In our social network graph, the graph with most com-
plex connectivity is the friends graph. The main correlations we have built in are
(i) having studied together (ii) having common interests (hobbies). Arguably, the
current schema allows more plausible correlations like working in the same com-
pany, or living really close, but these can easily be added following our framework.
Further, the concept of interest is currently highly simplified to favorite musical
artists/composers. Consequently, there are three correlation dimensions, where the
first is studying together, the second is musical interests and the third is random (this
will create random connections). The degree of the persons (function N [n](h)) is

5.1. S3G2: A SCALABLE STRUCTURE-CORRELATED SOCIAL GRAPH
GENERATOR 117

a power-law distribution that on average produces h=30 friends per person node
n; it is divided over the three correlation dimensions in a 45%, 45%, 10% split:
on average we generate 13.5 study friends, 13.5 friends with similar interests and
3 random friends. For having studied together we use the Mstudy() function de-
scribed before, It depends on gender, university and birthYear, to give highest
probability for people of same gender who studied together to be friends. The sim-
ilarity metric Mstudy() hashes the university to the highest 20 bits of an integer;
the following 11 bits are taken by filled with the birthYear and the lowest bit by
gender. The musical-interests correlation dimension is also a multi-valued func-
tion, because the persons have a list of favorite artists/composers. The similarity
metric Minterests creates a vector that holds a score for each genre (S3G2 has pre-
determined genre vectors for all artists, and the result vector contains the maximum
value of all favorite artists for each genre). Then, like the previous example with lo-

cation, z-ordering is used to combine the various genre scores (the genre vector)
into a single integer metric.

Graph Generation. The generation of the social graph kicks off by generating per-
son nodes; and all its properties. This “simple graph” generation process forms
part of the first MapReduce job and is executed in its Map function. The data
is generated in a specific order: namely location. From location, we generate
university in the Map phase and with that (and the uncorrelated gender and
birthYear we are able to emit an Mstudy key, that the first Reduce phase sorts
on. Because the members of the forum groups of a user (who tag photos and com-
ment on discussions of the user page) and their activity levels are correlated with
the user’s friends, the objects for these “social activities” cannot be generated be-
fore all friends have been generated. Therefore, the algorithm first continues with
all correlation dimensions for friendship. The second MapReduce job generates
the first 45% percent of friendship edges using the Fstudy probability distribution
in its Map function, and emits the Minterest keys. Note that we sort person ob-
jects that include all their properties and all their generated friendship edges (user
IDs); which are stored twice, once with the source node and once at the destination
node. The third MapReduce job generates the second 45% percent of friendship
edges in its Map function using the Finterests probability distribution, and emits
theMrandom keys. The key produced is simply a random number (note that all ran-
domness is deterministic, so the generated dataset is always identical for identical
input parameters). The Reduce phase of the third MapReduce job sorts the data on
Mrandom, but as this is the last sort, it runs the window edge-generation algorithm
right inside the Reduce function. This Reduce function further performs simple
graph generation for the social activities. These social activities are subgraphs with
only “local” connections and shallow tree-shape, hence can be generated on-the-fly
with low resource consumption. Here, the discussion topics are topics from DB-
pedia articles, and the comments are successive sentences from the article body
(this way the discussions consist of real English text, and is kind-of on-topic). The
forum group members are picked using a ranking function that puts the friends of
a user first, and adds some persons that are in the window at lower ranks; using a
geometric probability distribution.

118 CHAPTER 5. BENCHMARKING RDF STORES

5.1.5 Evaluation

We evaluate S3G2 both qualitatively and quantitatively (scalability). Existing liter-
ature studying social networks has shown that popular real social networks have the
characteristics of a small-world network [144, 186, 49]. We consider the three most
robust measures, i.e. the social degrees, the clustering coefficient, and the average
path length of the network topology. We empirically show that S3G2 generates a
social graph with such characteristics. In this experiment, we generated small so-
cial graphs of 10K, 20K, 40K, 80K, and 160K persons, which on average have 30
friends.

Table 5.1: Graph measurements of the generated social network.

users Diameter Avg. Path Len. Avg. Clust. Coef.
10000 5 3.13 0.224
20000 6 3.45 0.225
40000 6 3.77 0.225

Clustering coefficient. Table 5.1 shows the graph measurements of the generated
social network while varying the number of users. According to the experimental
results, the generated social networks have high clustering coefficients of about
0.22 which adequately follow the analysis on real social networks in [186] where
the clustering coefficients range from 0.13 to 0.21 for Facebook, and 0.171 for
Orkut. Figure 5.5a shows the typical clustering coefficient distribution according
to the social degrees that indicates the small-world characteristic of social networks.

Average path length. Table 5.1 shows that the average path lengths of generated
social graphs range from 3.13 to 3.77 which are comparable to the average path
lengths of real social networks observed in [186]. These experimental results also
conform to the aforementioned observations that average path length is logarith-
mically proportional to the total number of users. Since we used a simple all-
pair-shortest-path algorithm which consumes a lot of memory for analyzing large
graphs, Table 5.1 only shows the results of the average path length for a social graph
of 40K users.

Social degree distributions. Figure 5.5b shows the distribution of the social degree
with different number of users. All our experimental results show that the social
degree follows a power-law distribution with an alpha value of roughly 2.0.

Scalability. We conducted scalability experiments generating up to 1.2TB of data
on Hadoop a cluster of 16 nodes. Each node is a PC with an Intel i7-2600K,
3.40GHz CPU, 4-core CPU and 16 GB RAM. 3 The intermediate results in the
MapReduce program use Java object serialization, and the space occupancy of a
person profile+friends is 2KB. The final datasize per person is 1MB: most is in
the few hundred comments and picture tags each person has (on average), which
contain largish text fields.

3We used the SciLens cluster at CWI: www.scilens.org

5.1. S3G2: A SCALABLE STRUCTURE-CORRELATED SOCIAL GRAPH
GENERATOR 119

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 8 16 24 32 40 48

A
vg

 c
lu

st
er

in
g

co
ef

fic
ie

nt

Social degree

10000 users 40000 users 160000 users

(a) Clustering coefficient

 0

 20

 40

 60

 80

 100

 0 8 16 24 32 40 48

P
er

ce
nt

ag
e

of
 u

se
rs

 (
C

D
F

)

Social degree

10000 users 40000 users 160000 users

(b) User distribution

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 4 8 16

G
en

er
at

io
n

tim
e

(s
ec

on
ds

)

Number of machines

160GB 320GB 1.2TB

(c) Speed-Up Experiments

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 200 400 600 800 1000 1200

G
en

er
at

io
n

tim
e

(s
ec

on
ds

)

Data size (GB)

1 node 4 nodes 8 nodes 16 nodes

(d) Scale-Up Experiments

 1000

 1500

 2000

 1 4 16G
en

er
at

io
n

tim
es

 (
se

co
nd

s)

Number of machines (one machine per 80 GB)

(e) Scale-Out Experiments

Figure 5.5: Experimental Evaluation of S3G2

In Figure 5.5d, for a specific number of nodes, we increase the data size. These
results shows that the generation increases linearly with data size. Most of the com-
putational effort is in the first Map function that generates all person nodes and
its properties. Further, most data volume (and I/O) appears in the last Reduce that
generates the social activities (photos, forum posts). Both these first and last steps
are time intensive and benefit strongly from parallel execution. Therefore, the cost
of data sorting, which is the mainstay of the intermediate steps, and which due to
its N.log(N) complexity should causes less than linear scaling, is not visible yet at
these data sizes.

Figure 5.5c shows the speed-up of the generator when adding nodes and keeping

120 CHAPTER 5. BENCHMARKING RDF STORES

data size fixed. It shows the MapReduce approach works well, and speed-up is
especially good at the larger data sizes.

Figure 5.5e shows the scale-out capability of S3G2 increasing together the
dataset size and amount of cluster machines. In these experiments we keep the
data generated per machine at 80GB; hence with 4 machines we generate 320GB
and with 16 this is 1.2TB. The experimental result shows that performance remains
constant at half an hour when scaling out from 4 machines to 16 nodes. This sug-
gests that S3G2 can generate extremely large graphs quickly on a Hadoop cluster
with large resources.

5.1.6 Related Work

There is a lot of work studying the characteristics of social networks [143, 82, 144,
186, 49, 37, 122] and also on the generation of random graphs having global prop-
erties similar to a social network [182, 46, 47, 126, 58, 94]. However, to the best
of our knowledge, there is no generator that creates a synthetic social graph with
correlations. The existing graph generators mostly consider the topology and the
structures of the generated graph, i.e., global properties, not the individual connec-
tions of nodes and their correlations.

One of the first studies to generate social-network-like random graph is [182].
This graph generator with small world properties such as a high clustering coeffi-
cient and low path lengths, by connecting a node with its k-nearest-neighbors and
then rewiring edges. To satisfy the degree distributions [46] introduced the model
of preferential attachment which was subsequently improved by [47]. The main
idea of this model is that, for a new vertex, the probability that an edge is cre-
ated between this vertex to an existing vertex depends on the degree of that vertex.
Leskovec et al.[126] proposed a tractable graph that matches several properties of
a social graph such as small diameter, heavy-tails in/out degree distribution, heavy-
tails eigenvalues and eigenvectors by recursively creating a self-similar graph based
on Kronecker4 multiplication. None of these algorithms considers the correlation
of a node attributes in the social graph.

Recently, Bonato et al.[58] studied the link structure of a social network and
provided a model that can generate a graph satisfying many social graph properties
by considering the location of each graph node by ranking each node. In this model,
each node is randomly assigned a unique rank value and has a region of influence
according to its rank. The probability that an edge is created between a new node
and an existing node depends on the ranking of the existing node. Similar to the
approach of using influent regions [94] constructed a set of cliques (i.e., groups)
over all the users. For each new node (i.e., a new user), an edge to an existing node
is created based on the size of cliques they have in common. These models are
approaching the realistic observation that users tend to join and connect with people
in a group of same properties such as the same location. However, the simulation of
realistic data correlations is quite limited and both do not address the correlations
between different attributes of the users.

4http://en.wikipedia.org/wiki/Kronecker_product

5.2. LDBC SOCIAL NETWORK BENCHMARK (SNB) 121

Additionally, all of the existing models need a large amount of memory for stor-
ing either the whole social graph or its adjacency matrix. Leskovec et al. [126]
may need to store all stages of their recursive graph. Although Batagelj et al.
aimed at providing a efficient space-requirement algorithm, the space-requirement
is O(|V |+ |E|) where V is the set of vertices and E is the set of edges [47].

5.1.7 Conclusion

In this chapter, we have proposed S3G2, a novel framework for scalable graph gen-
erator that can generate huge graphs having correlations between the graph struc-
ture and graph data such as node properties. While current approaches at generating
graphs require holding it in RAM, our graph generator can generate the graph with
little memory by using a sliding window algorithm, and exploit parallelism offered
by the MapReduce paradigm. It thus was able to generate in half an hour 1.2TB of
tightly connected, correlated social graph data, on 16 cluster machines using only
limited RAM.

In order to address the problem of generating correlated data and structure to-
gether, which has not been handled in existing generators, we propose an approach
that separates value generation (data dictionaries) and probability distribution, by
putting in between a value ranking function that can be parametrized by correlat-
ing factors. We also showed a compact implementation of such correlated ranking
functions.

Further, we address correlated structure generation by introducing the concept
of correlation dimensions. These correlation dimensions allow to generate edges ef-
ficiently by relying on multiple sorting passes; which map naturally on MapReduce
jobs.

We demonstrate the utility of the S3G2 framework by applying it to the scenario
of modeling a social network graph. The experiments show that our generator can
easily generate a graph having important characteristics of a social network and
additionally introduce a series of plausible correlations in it.

Future work, is to apply the S3G2 framework to other domains such as telecom-
munications networks, and a possible direction is to write a compiler that automat-
ically generates a MapReduce implementation from a set of correlation specifi-
cations. As we believe that correlations between value and structure are an im-
portant missing ingredient in today’s graph benchmarks, we intend to introduce a
RDF/graph benchmark that uses S3G2 as data generator to fill that gap. By the time
of writing this thesis, S3G2 has been extended and become the main data generator,
DATAGEN, for LDBC Social Network Benchmark (SNB) which we will introduce
in the next section. Our work on DATAGEN and its updated features can be found
in Appendix C.

5.2 LDBC Social Network Benchmark (SNB)

Managing and analyzing graph-shaped data is an increasingly important use case
for many organizations, in for instance marketing, fraud detection, logistics, pharma,

122 CHAPTER 5. BENCHMARKING RDF STORES

healthcare but also digital forensics and security. People have been trying to use ex-
isting technologies, such as relational database systems for graph data management
problems. It is perfectly possible to represent and store a graph in a relational table,
for instance as a table where every row contains an edge, and the start and end ver-
tex of every edge are a foreign key reference (in SQL terms). However, what makes
a data management problem a graph problem is that the data analysis is not only
about the values of the data items in such a table, but about the connection patterns
between the various pieces. SQL-based systems were not originally designed for
this – though systems have implemented diverse extensions for navigational and
recursive query execution.

In recent years, the database industry has seen a proliferation of new graph-
oriented data management technologies. Roughly speaking, there are four families
of approaches. One are pure graph database systems, such as Neo4j, Sparksee and
Titan, which elevate graphs to first class citizens in their data model (“property
graphs”), query languages, and APIs. These systems often provide specific features
such as breadth-first search and shortest path algorithms, but also allow to insert,
delete and modify data using transactional semantics. A second variant are systems
intended to manage semantic web data conforming to the RDF data model, such as
Virtuoso or OWLIM. Although RDF systems emphasize usage in semantic appli-
cations (e.g. data integration), RDF is a graph data model, which makes SPARQL
the only well-defined standard query language for graph data. A third kind of new
system targets the need to compute certain complex graph algorithms, that are nor-
mally not expressed in high-level query languages, such as Community Finding,
Clustering and PageRank, on huge graphs that may not fit the memory of a sin-
gle machine, by making use of cluster computing. Example systems are GraphLab,
Stratosphere and Giraph, though this area is still heavily in motion and does not
yet have much industrial installed base. Finally, recursive SQL, albeit not very el-
egant, is expressive enough to construct a large class of graph queries (variable
length path queries, pattern matching, etc.). One of the possibilities (exemplified
by Virtuoso RDBMS) is to introduce vendor-specific extensions to SQL, which are
basically shortcuts for recursive SQL subqueries to run specific graph algorithms
inside SQL queries (such as shortest paths).

The Linked Data Benchmark Council5 (LDBC) is an independent authority re-
sponsible for specifying benchmarks, benchmarking procedures and verifying/publishing
benchmark results. Benchmarks on the one hand allow to quantitatively compare
different technological solutions, helping IT users to make more objective choices
for their software architectures. On the other hand, an important second goal for
LDBC is to stimulate technological progress among competing systems and thereby
accelerate the maturing of the new software market of graph data management sys-
tems.

This section introduces the Social Network Benchmark (SNB), the first LDBC
benchmark, which models a social network akin to Facebook. The dataset consists
of persons and a friendship network that connects them; whereas the majority of the
data is in the messages that these persons post in discussion trees on their forums.

5ldbcouncil.org - LDBC originates from the EU FP7 project (FP7-317548) by the same name.

5.2. LDBC SOCIAL NETWORK BENCHMARK (SNB) 123

While SNB goes through lengths to make its generated data more realistic than
previous synthetic approaches, it should not be understood as an attempt to fully
model Facebook – its ambition is to be as realistic as necessary for the benchmark
queries to exhibit the desired effects – nor does the choice for social network data
as the scenario for SNB imply that LDBC sees social network companies as the
primary consumers of its benchmarks – typically these internet-scale companies do
not work with standard data management software and rather roll their own. Rather,
the SNB scenario is chosen because it is an appealing graph-centric use case, and
in fact social network analysis on data that contains excerpts of social networks is a
very common marketing activity nowadays.

There are in fact three SNB benchmarks on one common dataset (generated by
DATAGEN), since SNB has three different workloads. Each workload produces a
single metric for performance at the given scale and a price/performance metric at
the scale and can be considered a separate benchmark. The full disclosure further
breaks down the composition of the metric into its constituent parts, e.g. single
query execution times. These workload have been carefully designed according
to so-called choke-point analysis that identifies important technical challenges to
evaluate in a workload. Specifically, a choke point is an aspect of query execution
or optimization which is known to be problematical for the present generation of
various DBMS (relational, graph and RDF). It generally covers the “usual” chal-
lenges of query processing (e.g., subquery unnesting, complex aggregate perfor-
mance, detecting dependent group-by keys etc.)), as well as some hard problems
that are usually not part of synthetic benchmarks. Some examples of the choke
points are “estimating cardinality in graph traversals with data skew and correla-
tions”, “choosing the right join order and type”, “handling scattered index access
patterns”, “parallelism and result reuse”, ...

SNB-Interactive. This workload consists of a set of relatively complex read-only
queries, that touch a significant amount of data, often the two-step friendship neigh-
borhood and associated messages. Still these queries typically start at a single point
and the query complexity is sublinear to the dataset size. Associated with the com-
plex read-only queries are simple read-only queries, which typically only lookup
one entity (e.g. a person). Concurrent with these read-only queries is an insert work-
load, under at least read committed transaction semantics. All data generated by the
SNB data generator is timestamped, and a standard scale factor covers three years.
Of this 32 months are bulkloaded at benchmark start, whereas the data from the last
4 months is added using individual DML statements.

The goal of SNB-Interactive is to test graph data management systems that com-
bine transactional update with query capabilities. A well-known graph database
system that offers this is neo4j, but SNB-Interactive is formulated such that many
systems can participate, as long a they support transactional updates allowing si-
multaneous queries. The query workload focus on interactivity, with the intention
of sub-second response times and query patterns that start typically at a single graph
node and visit only a small portion of the entire graph. One could hence position
it as OLTP, even though the query complexity is much higher than TPC-C and
does include graph tasks such as traversals and restricted shortest paths. The ra-

124 CHAPTER 5. BENCHMARKING RDF STORES

tionale for this focus stems from LDBC research among its vendor members and
the LDBC Technical User Community of database users. This identified that many
interactive graph applications currently rely on key-value data management sys-
tems without strong consistency, where query predicates that are more complex
than a key-lookup are answered using offline pre-computed data. This staleness
and lack of consistency both impact the user experience and complicate application
development, hence LDBC hopes that SNB-Interactive will lead to the maturing of
transactional graph data management systems that can improve the user experience
and ease application development.

SNB-BI. This workload consists of a set of queries that access a large percentage
of all entities in the dataset (the “fact tables”), and groups these in various dimen-
sions. In this sense, the workload has similarities with existing relational Business
Intelligence benchmarks like TPC-H and TPC-DS; the distinguishing factor is the
presence of graph traversal predicates and recursion. Whereas the SNB Interactive
workload has been fully developed, the SNB BI workload is a working draft, and
the concurrent bulk-load workload has not yet been specified.

SNB-Algorithms. This workload is under construction, but is planned to consist
of a handful of often-used graph analysis algorithms, including PageRank, Com-
munity Detection, Clustering and Breadth First Search. While we foresee that the
two other SNB workloads can be used to compare graph database systems, RDF
stores, but also SQL stores or even noSQL systems; the SNB-Algorithms workload
primary targets graph programming systems or even general purpose cluster com-
puting environments like MapReduce. It may, however, be possible to implement
graph algorithms as iterative queries, e.g. keeping state in temporary tables, hence
it is possible that other kinds of systems may also implement it.

Given that graph queries and graph algorithm complexity is heavily influenced
by the complex structure of the graph, we specifically aim to run all three bench-
marks on the same dataset. In the process of benchmark definition, the dataset gen-
erator is being tuned such that the graph, e.g. contains communities, and clusters
comparable to clusters and communities found on real data. These graph proper-
ties cause the SNB-Algorithms workload to produce “sensible” results, but are also
likely to affect the behavior of queries in SNB-Interactive and SNB-BI. Similarly,
the graph degree and value/structure correlation (e.g. people having names typi-
cal for a country) that affect query outcomes in SNB-Interactive and BI may also
implicitly affect the complexity of SNB-Algorithms. As such, having three diverse
workloads on the same dataset is thought to make the behavior of all workloads
more realistic, even if we currently would not understand or foresee how complex
graph patterns affect all graph management tasks.

By the time of writing this thesis, SNB-Interactive and SNB-BI have been com-
pleted. The detail on LDBC SNB and its workloads can be found from its official
website [17].

Chapter 6

Conclusions

One of the prime goals of much research in the Semantic Web community is to im-
prove the performance of Semantic Web data management, particularly, RDF data
management systems. This thesis has argued that the main problems in current RDF
data management systems are excessive join complexity, low storage locality, and
lack of user schema insight and empty query results, and has presented techniques
to tackle these problems by automatically deriving an emergent relational schema
from RDF data and leveraging the derived schema to make RDF stores efficient
in terms of RDF storage, query execution, and query optimization. Additionally,
we also described our work on evaluating RDF stores by creating an scalable data
generator that can generate realistic RDF/graph data having specific characteristics
and data corrections of a social network, and building a RDF/graph benchmark for
challenging query processing over the generated data. In this chapter, we summa-
rize the research presented in this thesis and iterate over the major contributions.
We also sketch a roadmap for future research on the presented subjects.

6.1 Contributions

In this section we summarize the contributions of this thesis by recapitulating the
semantic web/database “schema” difference and answering the research questions
raised in the Chapter 1.4.

6.1.1 The difference between the semantic web and database schemas

An important contribution in this thesis is identifying the difference between the
notions of schema in the database (i.e., relational schema) and in the semantic web
(i.e., ontologies and vocabularies) communities. In the semantic web, schemas are
intended to allow diverse organizations to consistently denote certain concepts in
a variety of contexts, and are not required to be defined upfront (“schema-last”).
In contrast, database relational schemas describe the structure of one database, de-
signed without regard for reuse in other databases. The relational schema gives the
query writer a clear idea of what the data looks like and must be declared before the
data can be used (“schema first”). In this thesis we also find that ontologies are often

125

126 CHAPTER 6. CONCLUSIONS

mixed and their classes only partially used in describing each RDF resource, so any
single ontology class is a poor descriptor of the actual structure of the data. Never-
theless, we also argued that these schema notions are valuable and one can profit
from the other: The semantic web applications can use database schemas to provide
better understand the dataset, allow users to formulate non-empty-result SPARQL
query, and make the systems more efficient (as shown in Chapter 4), while database
practitioners can create well-defined and exchangeable semantics for the relational
schema by extending its components with URI links to the semantic web schemas,
allowing easier data and instance integration with other datasets.

Future work. Following the above discussions, our proposal would be to extend
the tables, columns and even individual primary key values (URIs) of the relational
schema with the links to the semantic web schemas. In some database systems
it is already possible to add a “comment” to each column name, which could be
used to link to a semantic web schema resource (like an RDF schema or class
property). However rather than using such hacks, it would be desirable that the
ISO SQL standard be augmented with semantic annotations for each table, column
and foreign key relationship. In addition, the SQL query language could also be
extended to better support RDF data, by supplying its type system (prominently
URLs), as well as multi-valued properties.

6.1.2 What is an “emergent” relational schema exactly and how to
efficiently and scalably discover it from actual RDF datasets?
(i.e., Questions 1+2)

An emergent relational schema is a compact and precise relational schema (contain-
ing “emergent” tables, columns and relationships between tables) with high cover-
age (i.e., covering more than 90% of RDF data) and useful labels from RDF data.
In particular, an emergent schema is considered to be compact and precise if it con-
tains few and thin tables and has small number of NULL cells in each table. The
formal definition of emergent schema is provided in the Section 4.2 of Chapter 4.

One of our major contributions in this thesis is providing practical techniques
(presented in Chapter 3) for efficiently and scalably deriving an emergent rela-
tional schema from RDF data. Particularly, we first recognize all basic emergent
classes consisting of properties that frequently co-occur with the same subject from
a bulk-loaded SPO table, and analyze non-literal properties in each class (i.e., the
properties that may refer to subject URIs of other classes) in order to explore the re-
lationships between these classes. To make the schema compact, we proposed mul-
tiple algorithms for merging classes which are semantically or structurally similar.
Finally, we build several filtering approaches (i.e., schema filtering and instance fil-
tering) in order to further optimize the schema and reduce NULLs. The algorithms
that we described are efficient and can be executed during the bulk-load of an RDF
database with little overhead. We showed that on a wide variety of datasets, the de-
rived schema explains well over 90% of the RDF triples, emphasizing the fact that a
great majority of RDF triples do conform to regular structural patterns and provide
useful information to improve the performance of RDF stores. We also note that
our presented techniques in exploring emergent relational schema from RDF data

6.1. CONTRIBUTIONS 127

also exploit and respect semantic web schemas (e.g., ontologies) when present, but
do not require their presence. Because of the partial and mixed ontology class us-
age in each RDF resource, the emergent relational schema actually presents a more
realistic picture of an RDF dataset than one ontology does on its own.

Future work. As deriving the emergent schema, in principle, is to explore the
structural regularity of the RDF data, other related research in finding regulari-
ties in data can also benefit from our work. An example of the related research is a
recent work of Bloem et al. [56] on detecting network motifs (i.e., the subgraph pat-
terns or graphlets which occur more frequently in the data than expected) by using
Minimum Description Length (MDL) principle [165]. In particular, each table in
the emergent schema can serve as a basic star-shape motif in the network. Besides,
in order to achieve a compressed description in designing a code, this research may
also exploit our metrics on the compactness (few and thin tables), preciseness (few
NULL values), and data coverage of the schema. Thus, future work would be to
make use of our techniques on deriving emergent schema in other related graph
analysis research.

6.1.3 How to derive human-friendly names for the tables and
columns in the emergent relational schema? (Question 3)

We presented multiple methods (in Section 3.2.2) that exploit semantic information
(ontologies) as well as structural information for assigning human-friendly labels
to the tables and columns of the emergent relational schema. Specifically, these
methods mainly exploited either the type properties (e.g., rdf:type) available
in a emergent class, or the discriminative properties (i.e., properties which appear
in few ontology classes only and can give a strong hint for the membership of a
specific class), or the URI of the relationship between classes.

Future work. In the emergent relational schema, there can be tables without
any label assigned as our current labeling approach either relies on ontology match-
ing (of a limited number of known ontologies) or the encountered relationships
between tables. Thus, a future approach might be to look for the other labeling
sources on the web e.g., from search engines or from online open database (e.g.,
freebase [12]).

6.1.4 How to exploit the emergent schema in order to make RDF
stores efficient in terms of storage? (Question 4)

The ultimate goal of our research is to build a high-performance RDF store that
can efficiently address the existing RDF data management problems by exploiting
the emergent schema inside the RDF system (in storage, optimization, and execu-
tion). We now summarize our contributions in creating such efficient RDF storage.
Specifically, for storing RDF triples, we created an emergent schema-aware RDF
storage in which the regular triples which conform to the emergent schema (the
majority of RDF data) are represented by relational tables stored in a column-store
database under the hood, while the remaining “exception” triples (typically less
than 5% of the RDF data) are stored in a small pso triple table. The columnar stor-

128 CHAPTER 6. CONCLUSIONS

age allows to see all this relational data as if it were a PSO table (see Chapter 4 for
explanation) and thus SPARQL query execution can always fall back on existing
mechanisms (e.g., triple-table-based storage) if the emergent schema-aware query
execution is not applicable (e.g., when handling hard cases in SPARQL queries if it
contains unbound variables that bind to a property). As column-wise data generally
compresses better than row-wise data, this RDF storage was realized in a columnar
database system i.e., MonetDB, showing> 1.4x more compact storage than default
triple storage (i.e., PSO).

Future work. In the Conclusion section of the Chapter 3, we have shortly dis-
cussed the issue of controlling the evolution of the emergent schema in the RDF
storage over time as the RDF datasets are exposed to updates. Particularly, in or-
der to update the schema when new data arrives, we propose to export the found
schema explicitly using a vocabulary, and then, use that as the “ontology” informa-
tion for re-running the schema recognition process with the newly updated data to
enforce that certain structures remain recognized (schema stability). However, the
details of this proposal as well as the influence of updating emergent schema on
the performance of the RDF system has not been carefully analyzed yet. Thus, this
should be one of the improvements which needs to be addressed in the future work.

6.1.5 How to exploit the emergent schema in order to make RDF
stores efficient in terms of query execution and optimization?
(Questions 5 + 6)

Together with the novel RDF storage, we contributed so-called emergent schema
aware SPARQL optimization and execution to exploit the derived emergent schema
in improving the performance SPARQL query. Specifically, the emergent schema
aware optimization groups triple patterns in the query by each star-shape pattern
so that the SPARQL optimization only needs to be performed on a reduced join
graph (of joins between these groups). Consequently, thanks to the smaller number
of joins, this can significantly reduce the complexity of the query optimization as
well as the optimization time by more than an order of magnitude. The emergent
schema aware SPARQL query execution basically handles each star pattern group
by using a single relational table scan on its matching emergent tables (i.e., tables
which has columns corresponding to the properties in the star pattern), then return
the result by joining these table scans.

Future work. As a complex SPARQL query typically contains a conjunction of
multiple star-patterns, the emergent schema can be further exploited to efficiently
answer multi-star patterns queries. Given the fact that a conjunction of two star-
patterns corresponds to the relationship between their matching emergent tables, a
future approach might be to build an index over the relationships of emergent tables
to efficiently filter out non-matching bindings of the query.

6.1. CONTRIBUTIONS 129

6.1.6 How do we exploit the emergent schema with minimum impact
to RDBMS kernel? (Question 7)

To exploit the emergent schema with minimum impact to existing RDBMS kernels,
we contributed a new database operator, RDFscan that generates complete bind-
ings (including exception data) for a star pattern. This operator performs most of
the heavy-lifting and is designed in conjunction with existing relational table scan
infrastructure so that advanced relational access paths such as clustered indexes and
partitioned tables can seamlessly be re-used. The idea is that most data is scanned
with traditional relational scan methods so that existing physical optimizations can
be re-used. The RDFscan then augments scan data with missing bindings involving
the exception triples. An alternative approach that would generate all RDF bindings
in one go would not be able to profit from existing relational infrastructure. This
RDFscan operator is further optimized with three important optimizations (i.e., se-
lection push-down, early check for missing property, and pruning non-matching
tables), efficiently yielding an overall speed improvement of 3-10x over a wide
variety of RDF benchmarks and closing the performance gap between SQL and
SPARQL.

Future work. Even though RDFscan was designed to efficiently leverage ex-
isting relational access methods, the performance of this operator as well as our
emergent schema aware SPARQL optimization/execution in using advanced rela-
tional database techniques such as database cracking, vectorized execution have
not been carefully evaluated yet. Thus, a future work is to evaluate the efficiency
of our proposed emergent schema aware SPARQL optimization/execution in using
advanced relational database techniques in our prototype systems (i.e., MonetDB,
Virtuoso).

6.1.7 How to scalably generate realistic RDF/graph data that
simulates the skewed data distribution and plausible structural
correlation in a real network graph? (Question 8)

Lots of our research effort has been put into RDF benchmarking. Our main contri-
bution in this research topic is developing a novel data generator called S3G2 (Scal-
able Structure-correlated Social Graph Generator) that can scalably generate realis-
tic RDF/graph data simulating the skewed data distributions and plausible structural
correlations in a real social network graph. Specifically, in order to generate corre-
lated data with realistic skew distribution, we separated the data dictionary (i.e., set
of values) of each literal property and its probability distribution function by associ-
ating each data dictionary with a ranking function that can be parameterized by cor-
related factors. Values in a data dictionary thus will be ranked differently depending
on their correlated parameters (e.g., the ranking of each firstName depends on
gender, country, and birthYear properties). Moreover, as the distribution
function steers each value generation by choosing a position in the dictionary with-
out regard to the specific value at that position, our approach allows to generate
correlated data with any discrete probability distribution. To obtain realistic struc-
tural correlations for the generated graph, we introduced the concept of correlation

130 CHAPTER 6. CONCLUSIONS

dimension and decomposed the graph generation into multiple passes in which each
pass focuses on one correlation dimension. Particularly, in each pass, the nodes are
sorted according to a certain correlation dimension and subsequent edge are gen-
erated between existing nodes based on the nodes’ properties and their positions
along that dimension using a sliding window algorithm. Besides, in order to build
a scalable data generator, we leveraged parallelism through Hadoop and naturally
mapped each correlation dimension-based generating pass to a MapReduce job. As
a result, being designed to create synthetic data that can be representative of a real
social network, the generated data of S3G2 exhibited interesting realistic value cor-
relations (e.g., German people having predominantly German names), structural
correlations (e.g., friends being mostly people living close to one another), and
statistical distributions (e.g., the friendship relationship between people follows a
power-law distribution). The data generator also showed fast and scalable genera-
tion of huge datasets, allowing to generate a social network structure with millions
of user profiles, enriched with interests/tags, posts, and comments using a cluster
of commodity hardwares. Moreover, this data generator has been the basis for sub-
sequent research by others. It has been further developed and become the main data
generator, DATAGEN [16], of the LDBC Social Network Benchmark (SNB).

Future work. The current extended version of the social graph generator (i.e.,
DATAGEN) has allowed to generate a social graph with a set of certain character-
istics (e.g., max number of friends per user, max number of groups per user, prob-
ability of correlation between tags and interests,...). However, this is still limited
as e.g., it does not allow to generate the social graph conforming a given specific
shape or distribution models (although generating a graph following a certain distri-
bution model is already a big research topic). Thus, the generator can be improved
so that it will be robust and support more models or configurations that are theoret-
ically possible to be generated. Nevertheless, we have to acknowledge that this is a
different topic although related to our research on social graph generator.

6.1.8 How to design an RDF/graph benchmark over the realistic
dataset so that important technical challenges for RDF/graph
database systems will be evaluated? (Question 9)

To answer this question, we introduced the LDBC Social Network Benchmark
(LDBC SNB) which is designed to evaluate important technical challenges in RDF/
graph database based on the realistic dataset (generated from DATAGEN). This
benchmark development has been carefully driven by a so-called “choke-point”
based design which covers the usual challenges or known-problematical aspects of
query execution and optimization in various DBMS (e.g., choosing the right join
order and type, estimating cardinality in graph traversals with data skew and corre-
lations). This choke-point analysis requires both user input as well as expert input
from database systems architects. Based on the choke-point design and realistic
generated social graph data, LDBC SNB has provided three different workloads for
covering all the main aspects of social network data management: an interactive
workload, oriented to test a systems throughput with relatively simple queries with
concurrent updates; a business intelligence workload, consisting of complex struc-

6.2. FUTURE RESEARCH DIRECTIONS 131

tured queries for analyzing online behavior of users for marketing purposes; and
a graph analytics workload, thought to test the functionality and scalability of the
systems for graph analytics that typically cannot be expressed in a query language
(this workload is being constructed). Further description on the LDBC SNB and its
workloads can be found in [88] and from its official website [17].

6.2 Future research directions

In the previous section, we have summarized our contributions and also discussed
future works on several research questions. Though, exploiting emergent schema
for building efficient RDF stores and the further development of the social graph
data generator still opened many other interesting improvements and challenges for
future research.

6.2.1 Emergent schema aware distributed system

In Chapter 3 we shortly presented the effort of integrating the emergent schema into
the storage, query execution, and query optimization of a distributed system, Virtu-
oso. Even though the experiment was performed on a single machine, it showed a
great possibility of exploiting emergent schema in improving a distributed RDF sys-
tem. However, this is still a research prototype and the queries were only executed
on completely regular RDF data (i.e., BSBM) which in fact does not require the use
of an operator like RDFscan as there are no exception triples. Thus, there are several
open research questions for future work in leveraging the use of emergent schema
in distributed storage, query execution, and optimization such as “How RDF data
can be partitioned and stored based on to the emergent relational schema?”, “How
RDFscan operator will be designed and implemented in a distributed system?”.

6.2.2 Exploiting emergent schema for stream RDF engines

As streaming RDF engines are not the main focus of this thesis, we have not dis-
cussed these systems and their performance on executing stream SPARQL in detail.
However, with its large market of interesting application (e.g., event-based applica-
tions, financial trading floors, ecommerce purchases, or geospatial services, ...), we
do not ignore the research topics on these systems. Specially, during the time of
my PhD, together with external research institutes, we have done several researches
on benchmarking and analyzing the performance of these systems [81, 191]. Our
basic idea is to incorporate the work originally designed for the non-stream RDF
systems in order to evaluate and improve stream RDF systems. However, while the
stream version of our social graph generator, S3G2, and its benchmark prototype,
Social Network Interlligence Benchmark (SIB) [27], showed a very good testcase
for analyzing RDF streaming engines, we did not have time to exploit the idea of
emergent relational schema in improving the performance of these engines. Realiz-
ing the emergent relational schema-aware execution and optimization on a stream
RDF engine is actually more challenging because of the dynamic properties of the

132 CHAPTER 6. CONCLUSIONS

streaming RDF/graph-based data which are produced and changed over time. Thus,
it should be a interesting and challenging research topic.

6.3 Summary

In this thesis, we have provided hopefully valuable insights and contributions on
developing a high performance RDF store as well as on material for evaluating the
technical challenges of RDF/Graph systems. Particularly, we have characterized the
differences between semantic web and database schemas, and addressed the main
problems in current RDF data management systems by exploiting the emergent rela-
tional schema automatically derived from RDF data. Beyond the use of the derived
emergent relational schema for conveying the structure information of RDF dataset
to users and allowing humans to understand RDF dataset better, we has exploited
this emergent schema internally inside the RDF system (in storage, optimization,
and execution) in order to build an efficient self-organizing structure RDF store.
The use of emergent relational schemas has opened a promising direction in devel-
oping efficient RDF stores and has shown to close the performance gap between
SQL and SPARQL systems. Additionally, we have developed a scalable graph data
generator which can generate synthetic RDF/graph data having skew data distribu-
tions and plausible structural correlations of a real social network. This data genera-
tor has become a core ingredient of an RDF/graph benchmark (LDBC SNB) which
is designed to evaluate technical challenges in RDF/graph systems.

List of Figures

1.1 Example query plan . 19
1.2 Access locality on the example Book query: Triple tables (a) vs rela-

tional clustered index (b) and partitioned tables (c). Both (b) and (c)
achieve access locality (green) . 19

1.3 Proposed RDF store’s architecture 22

2.1 Semantic Web Stack . 27
2.2 RDF triples . 31
2.3 RDF graph . 32
2.4 Example of using rdf:type . 33
2.5 Example of RDF list . 33
2.6 Example of rdfs:domain and rdfs:range 34
2.7 Example SPARQL query . 38
2.8 Basic SPARQL grammar . 38
2.9 Query clause with one basic graph pattern 39
2.10 Query clause with two basic graph patterns 39
2.11 Example of using GRAPH in query pattern 40
2.12 Example of using UNION in query clause and the result 41
2.13 Example of using OPTIONAL in query clause 42
2.14 Example of using FILTER in query clause 43
2.15 SPARQL query graph . 43
2.16 SPARQL star query . 44
2.17 SPARQL path query . 44

3.1 Overall structural exploration steps 61
3.2 CS Frequency (light blue) vs. Cumulative number of covered triples

(dark red) . 63
3.3 Example of basic CS’s and their relationships 64
3.4 Ontologies used in native RDF datasets 66
3.5 Choosing a CS label from explicit RDF type annotations that refer to

ontology classes in a hierarchy. 67
3.6 Example CS vs. Ontology class . 68
3.7 CS’s with assigned labels . 69
3.8 Example of merging CS’s . 70
3.9 Example of merging CS’s by using rules S1, S2 71

133

134 List of Figures

3.10 Example of merging CS’s by using rules S3, S4 71
3.11 Merging CS’s based on discriminative properties 73
3.12 Left: τsim steps on X, #Tables&Precision on Y. Right: step deltas, auto-

tuning selects cross-over . 77
3.13 Final emergent schema for EuroStat – the lighter a column, the more

NULLs (percentage in parentheses). 79
3.14 Schema quality Q during merging & filtering 79
3.15 Building time & database size for single triple table (SPO) and reorga-

nized relational tables (CS-based) (normalized by bulk-load time and
database size for all six S,P,O table permutations (ALL)). 80

4.1 Columnar Storage of Emergent Tables Tk and exception table Tpso . . 89
4.2 PSO as view PPSO ∪ Tpso . 89
4.3 PSO join performance vs input size (no exceptions) 91
4.4 PSO join performance vs input size (with exceptions) 91
4.5 Example SPARQL graph with three star patterns 93
4.6 Optimization time as a function of query size (#triple patterns) 94
4.7 Query plan for handing exception . 94
4.8 Example RDF data and expected query result. 95
4.9 Step 1 on example data & query . 96
4.10 Step 1 output with pushing down Selection predicates 97
4.11 Query processing time: Emergent schema-based vs triple-based 99
4.12 Query processing with/with-out optimizations 101
4.13 Optimization time: Emergent schema-based vs triple-based 102

5.1 Example S3G2 graph: Social Network with Person Information. . . . 109
5.2 Compact Correlated Dictionary Distributions: boy names in Germany

(up) vs. Italy (lo) . 110
5.3 Sliding window of W tiles along the graph. 113
5.4 The Generated Social Network Schema (SIB). 115
5.5 Experimental Evaluation of S3G2 119

A.1 Example SPARQL graph . 135
A.2 Join query graph . 136
A.3 Example query plan . 136

C.1 Friendships generation (NL: The Netherlands, UVA: University of Am-
sterdam, VU: Vrij University) . 145

C.2 (a) Post distribution over time for event-driven vs uniform post genera-
tion on SF=10. (b) Maximum degree of each percentile in the Facebook
graph. 147

C.3 (a) Friendship degree distribution for scale factor 10. (b) DATAGEN
scale-up. 148

List of Tables

2.1 Centralized RDF stores’ storage layout and feature support. (TT: Triple
Table, MI: Multiple Indexing, VP: Vertical Partitioning, PT: Property
Table, PT/O: Ontology and vocabulary-based Property Table, PT/A:
Auto-detected Property Table) . 56

2.2 Distributed RDF systems’ storage scheme. (HDFS: Hadoop Distributed
File System, KV: Key-value store, CS: Centralized RDF Store) 57

3.1 Statistics on basic CS’s. 65
3.2 Partial & mixed ontology class usage in CS’s 65
3.3 Emergent Relational Schema Detection Parameters 75
3.4 Human survey results on Likert scale 78
3.5 #tables and metric C after merging & filtering 80
3.6 Query time (msecs) w/wo the recognized schema 81

4.1 Exception percentage, NULL percentage and Compression Factor achieved
by Emergent Table-aware PSO storage, over normal PSO storage. . . . 89

4.2 Properties of DBpedia queries . 100

5.1 Graph measurements of the generated social network. 118

C.1 Attribute Value Correlations: left determines right 144
C.2 Top-10 person.firstNames (SF=10) for persons with person.location=Germany

(left) or China (right). 144
C.3 SNB dataset statistics at different Scale Factors 147

135

Appendix A

Query plan transformation for star
pattern

Considering the following example SPARQL query:

Select ?s ?o where {
?s <birthPlace> ‘‘Hawaii".
?s <spouse> ?o.
?s <party> <Democratic>

}

This example query contains three triple patterns (tp’s) Figure A.1 show the
SPARQL graph of the query which contains one star pattern.

A “canonical” un-optimized query plan can be derived easily from a SPARQL
graph by creating an index scan for each node in the SPARQL graph and adding
a join for each edge in it. Figures A.2 and A.3 show the query graph and an un-
optimized plan execution built for the example query.

In this section, we represent the query plan transformation for the star pattern
without considering exception data. Basically, the canonical query plan for a star
pattern can be re-written as a single Select operator on the matching emergent ta-
ble. For example, the query plan in Figure A.3 can be rewritten as σe(T1) where e is
{place=“Hawaii", party=Democracy}, given T1 is the only matching emer-
gent table of the star pattern. However, since there can be multiple matching tables
and the star pattern may contain properties of different types e.g., multi-valued

?s

name

place party

?o

“Hawaii” Democracy

Figure A.1: Example SPARQL graph

137

138 APPENDIX A. QUERY PLAN TRANSFORMATION

tp1

tp2 tp3

s

s

s

Figure A.2: Join query graph

on

on

IndexScan(PSO)
(?s,<place>,"Hawaii")

IndexScan(PSO)
(?s,<party>,<Democracy>)

IndexScan(PSO)
(?s,<name>,?o)

Figure A.3: Example query plan

property or optional property, the query plan transformation is much more compli-
cated. In the following, we formally represent the query plan transformation for a
star pattern in different cases, from the simple to the complicated ones.
Case 1. Single matching table, no multi-valued or optional property.

Given the star pattern ρ = {ti=(s, pi, oi), i = 1,..,k} and T is the only matching
table for ρ. The transformed query plan of ρ will be σe(T) in which the Select
predicate e is generated by aggregating all the Select predicates on the subject and
object values of each triple pattern ti. Specifically, a Select predicate on oi (e.g.,
oi = Professor0) will become a Select predicate on the pi column of T (e.g.,
pi = Professor0), and a Select predicate on s will become a predicate on the s
column of T . For example, the plan transformation for the ρ of three triple patterns
{(?s, type, Publication), (?s, author, Professor0), (?s, name, ?o)} will
be σtype=Publication & author=Professor0(T)

Case 2. Single matching table, having multi-valued property
Given a emergent table T and a property p. If p is multi-valued property, the

object values of p will be stored in a separated table (Tp) having foreign key rela-
tionship on the s column with T . Thus, retrieving object values of the multi-valued
property p requires a Join between T and Tp. To generate the plan for a star pat-
tern having multi-valued properties, we first transform the plan without considering
triple pattern of multiple-valued property using the approach in handling Case 1.
Note that, the matching table is identified not only based on single-valued proper-
ties, but on all the properties in the star pattern. Then, for each triple pattern having
a multi-valued property, a Join is added to join the previously created plan with the
multi-valued table of that property.

Given the star pattern ρ = {ti=(s, pi, oi), i = 1,..,k} and the only matching table
T . We assume that pk is a multi-valued property and Tpk is the “multi-valued”
table storing the object values of pk. The query plan for this star pattern will be
σe(T) ./s σek(Tpk). Here, e, ek are the Select predicates generated from the Select
predicates of triple patterns {ti, i = 1,..,k − 1} and triple pattern (tk), respectively.

Case 3. Single matching table, having Optional filter
The OPTIONAL filter in a SPARQL query allows the RDF/SPARQL engine to

return results even without having bindings of a certain triple pattern group by using
NULL value for the bindings. In the query graph representation, the optional pattern
group is connected from the required pattern groups via an outer join edge. Given a
star pattern and its matching emergent table T , we can first transform the required

139

pattern group as well as the optional pattern group using the transformation process
in Case 2, and then, add a Outer join on the column T .s to join these transformed
query plans.

We recognized that the OUTER JOIN is created on the s column of the same
table. Thus, query plan can be re-written without using OUTER JOIN by having if-
then-else clause on the PROJECT operator for optional columns. Specifically, given
{(s, pi, oi)|i = 1,.., h} being an OPTIONAL pattern group, if any of object value the
oi (i = 1,.., h) is null, it returns null value for all the columns pi (i = 1,..,h) in the
final output result. The following example demonstrates this PROJECT operator
where columns p3, p4 belong to an OPTIONAL binding.

(SELECT p1, p2 FROM T) as t1
LEFT JOIN
(SELECT p3, p4 FROM T) as t2
ON t1.s = t2.s

will have the same result as

SELECT p1, p2,
(if (p3 or p4 is null) return null, else p3),
(if (p3 or p4 is null) return null, else p4)

FROM T

Formally, Given the star pattern ρ = {ti=(s, pi, oi), i = 1,..,k} having OP-
TIONAL binding on triple patterns {tj , j=h + 1,...,k)}, ϑ is the query plan gen-
erated for ρ with assumption that all triple patterns in ρ are required. ϑ is gen-
erated using the transformation process in Case 2. The query plan for ρ will be
Πp1,...,ph,cond(ph+1),...,cond(pk)(ϑ). Here, cond(pj) = “if (ph+1 or ph+2 or ... or pk
is null) return null, else pj” (j = (h+ 1),...,k).

Case 4. Multiple matching tables
If there are multiple matching relational tables for a star pattern, we create the

transformed plan w.r.t each matching table by applying the transformation process
in Case 3. Then, we add an UNION operator for combining all the generated plans.

Appendix B

DBpedia queries

In this appendix, we includes the list of queries that we used for DBpedia dataset.
Query 1.

SELECT DISTINCT ?var0 ?var1
WHERE {

?var2 a <http://dbpedia.org/ontology/Organisation> .
?var2 <http://dbpedia.org/ontology/foundationPlace> ?var0 .
?var4 <http://dbpedia.org/ontology/developer> ?var2 .
?var4 <http://dbpedia.org/ontology/location> ?var1 .

}

Query 2.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbpowl:<http://dbpedia.org/ontology/>
SELECT DISTINCT ?var
WHERE {

?var6 rdf:type ?var.
?var6 <http://xmlns.com/foaf/0.1/name> ?var0.
?var6 dbpowl:numberOfPages ?var1.
?var6 dbpowl:isbn ?var2.
?var6 dbpowl:author ?var3.

}

Query 3.

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX space: <http://purl.org/net/schemas/space/>
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT DISTINCT ?var
WHERE { ?var5 dbpedia-owl:thumbnail ?var4 .

?var5 rdf:type dbpedia-owl:Person .
?var5 rdfs:label ?var .
?var5 dbpedia-owl:battle ?battle .
OPTIONAL { ?var5 foaf:homepage ?var10 .} . }

ORDER BY ?var
LIMIT 10

Query 4.

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

141

142 APPENDIX B. DBPEDIA QUERIES

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX space: <http://purl.org/net/schemas/space/>
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>
PREFIX dbpedia-prop: <http://dbpedia.org/property/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT DISTINCT ?var
WHERE {

?var2 rdf:type dbpedia-owl:Person .
?var2 rdfs:label ?var .
?var2 dbpedia-owl:worldChampionTitleYear ?var4.

}

Query 5.

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX space: <http://purl.org/net/schemas/space/>
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT DISTINCT ?var0 ?var1 ?var3
WHERE { { ?s foaf:givenName ?var0;

dbpedia-owl:team ?var1 ;
dbpedia-owl:careerStation ?var2 ;
dbpedia-owl:position ?var3 ;
dbpedia-owl:number 9 .

} UNION {
?s foaf:givenName ?var0;
dbpedia-owl:team ?var1 ;
dbpedia-owl:careerStation ?var2 ;
dbpedia-owl:position ?var3 ;
dbpedia-owl:number 8 .

}

}
LIMIT 100

Query 6.

PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX : <http://dbpedia.org/resource/>
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>
PREFIX dbpedia: <http://dbpedia.org/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
SELECT DISTINCT ?var3 ?var5 ?var7
WHERE { ?var3 rdf:type <http://dbpedia.org/class/yago/Company108058098> .

?var3 dbpedia-owl:numberOfEmployees ?var5
FILTER (?var5 > 100) .
?var3 foaf:homepage ?var7 .

}

Query 7.

SELECT DISTINCT ?var0 ?var2 ?var3 ?var4 ?var5
WHERE {

?s <http://xmlns.com/foaf/0.1/homepage> ?var0 .
?s <http://dbpedia.org/ontology/location> <http://dbpedia.org/resource/Cannes> .
?s <http://dbpedia.org/ontology/startDate> ?var2 .
?s <http://dbpedia.org/ontology/endDate> ?var3 .
?s <http://dbpedia.org/ontology/openingFilm> ?var4 .
?s <http://dbpedia.org/ontology/closingFilm> ?var5 .

143

}
LIMIT 20

Query 8.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>
SELECT ?var2 ?var4
WHERE {

{ ?var2 rdf:type <http://dbpedia.org/class/yago/UrbanArea108675967> .
?var2 dbpedia-owl:populationRural ?var4.
FILTER (?var4 > 2000)

} UNION {
?var2 rdf:type <http://dbpedia.org/class/yago/UrbanArea108675967>.
?var2 dbpedia-owl:populationUrban ?var4.

FILTER (?var4 > 4000)
}

}

Query 9.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?var3 ?var4 ?var5
WHERE {

{ ?var1 foaf:name ?var3 .
?var1 dbpedia-owl:numberOfPostgraduateStudents ?var4.
FILTER (?var4 > 10000)
?var1 foaf:homepage ?var5

} UNION {
?var2 foaf:name ?var3.
?var2 dbpedia-owl:numberOfGraduateStudents ?var4.
FILTER (?var4 < 200)
OPTIONAL {?var2 foaf:homepage ?var5 .}

}
}

Query 10.

SELECT DISTINCT ?var0 ?var1 ?var2 ?var3 ?var4 ?var5 ?var6 ?var7
WHERE {

?var0 <http://dbpedia.org/ontology/numberOfUndergraduateStudents> ?var1 .
?var0 <http://dbpedia.org/ontology/numberOfPostgraduateStudents> ?var2 .
OPTIONAL {?var0 <http://dbpedia.org/ontology/mascot> ?var3. }
OPTIONAL {?var0 <http://dbpedia.org/ontology/staff> ?var4. }
OPTIONAL{?var0 <http://dbpedia.org/ontology/president> ?var5.}
OPTIONAL {?var0 <http://www.w3.org/2003/01/geo/wgs84_pos#lat> ?var6. }
OPTIONAL {?var0 <http://www.w3.org/2003/01/geo/wgs84_pos#long> ?var7. }

}

Appendix C

LDBC Datagen

The LDBC SNB data generator (DATAGEN) evolved from the S3G2 generator [159]
and simulates the user’s activity in a social network during a period of time. Its
schema has 11 entities connected by 20 relations, with attributes of different types
and values, making for a rich benchmark dataset. The main entities are: Persons,
Tags, Forums, Messages (Posts, Comments and Photos), Likes, Organizations, and
Places.

The dataset forms a graph that is a fully connected component of persons over
their friendship relationships. Each person has a few forums under which the mes-
sages form large discussion trees. The messages are further connected to posts by
authorship but also likes. These data elements scale linearly with the amount of
friendships (people having more friends are likely more active and post more mes-
sages). Organization and Place information are more dimension-like and do not
scale with the amount of persons or time. Time is an implicit dimension (there is
no separate time entity) but is present in many timestamp attributes.

C.0.1 Correlated Attribute Values

An important novelty in DATAGEN is the ability to produce a highly correlated
social network graph, in which attribute values are correlated among themselves
and also influence the connection patterns in the social graph. Such correlations
clearly occur in real graphs and influence the complexity of algorithms operating
on the graph.

A full list of attribute correlations is given in Table C.1. For instance, the top
row in the table states that the place where a person was born and gender influence
the first name distribution. An example is shown in Table C.2, which shows the
top-10 most occurring first names for people from Germany vs China. The actual
set of attribute values is taken from DBpedia, which also is used as a source for
many other attributes. Similarly, the location where a person lives influences his/her
interests (a set of tags), which in turn influences the topic of the discussions (s)he
opens (i.e., Posts), which finally also influences the text of the messages in the
discussion. This is implemented by using the text taken from DBpedia pages closely
related to a topic as the text used in the discussion (original post and comments on

145

146 APPENDIX C. LDBC DATAGEN

(person.location, person.firstName (typical names)

person.gender) person.interests (popular artist)

person.location person.lastName (typical names)

person.university (nearby universities)

person.company (in country)

person.languages (spoken in country)

person.language person.forum.post.language (speaks)

person.interests person.forum.post.topic (in)

post.topic post.text (DBpedia article lines)

post.comment.text (DBpedia article lines)

person.employer person.email (@company, @university)

post.photoLocation post.location.latitude (matches location)

post.location.longitude (matches location)

person.birthDate person.createdDate (>)

person.createdDate person.forum.message.createdDate (>)

person.forum.createdDate (>)

forum.createdDate post.photoTime (>)

forum.post.createdDate (>)

forum.groupmembership.joinedDate (>)

post.createdDate post.comment.createdDate (>)

Table C.1: Attribute Value Correlations: left determines right

Name Number

Karl 215
Hans 190
Wolfgang 174
Fritz 159
Rudolf 159
Walter 150
Franz 115
Paul 109
Otto 99
Wilhelm 74

Name Number

Yang 961
Chen 929
Wei 887
Lei 789
Jun 779
Jie 778
Li 562
Hao 533
Lin 456
Peng 448

Table C.2: Top-10 person.firstNames (SF=10) for persons with per-
son.location=Germany (left) or China (right).

it).

Person location also influences last name, university, company and languages.
This influence is not full, there are Germans with Chinese names, but these are in-
frequent. In fact, the shape of the attribute value distributions is equal (and skewed),
but the order of the values from the value dictionaries used in the distribution,
changes depending on the correlation parameters (e.g. location).

147

pr
op

ba
bi

lit
y

...
0.1 -

-
-
-

0.5 -

1.0 -

sliding window

P2 P41 P6 P5 P91... P23

P2 [NL,UVA,2000]
P41 [NL,UVA,2000]
P6 [NL,UVA,2000]
P11 [NL,UVA,1999]

P23 [NL,UVA,1997]
P5 [NL,VU,2000]
P91 [NL,VU,1998]

Persons sorted by 1stcorrelation dimension

...

Person[Location, University, Studied year]

P11

Person the friendships will
be generated for

Figure C.1: Friendships generation (NL: The Netherlands, UVA: University of Am-
sterdam, VU: Vrij University)

C.0.2 Time Correlation and Spiking Trends

Almost all entities in the SNB dataset have timestamp attributes, since time is an
important phenomenon in social networks. The latter correlation rules in Table C.1
are related to time, and ensure that events in the social network follow a logical
order: e.g., people can post a comment only after becoming a friend with someone,
and that can only happen after both persons joined the network.

The volume of person activity in a real social network, i.e., number of mes-
sages created per unit of time, is not uniform, but driven by real world events such
as elections, natural disasters and sport competitions. Whenever an important real
world event occurs, the amount of people and messages talking about that topic
spikes – especially from those persons interested in that topic. We introduced this
in DATAGEN by simulating events related to certain tags, around which the fre-
quency of posts by persons interested in that tag is significantly higher (the topic
is “trending”). Figure C.2(a) shows the density of posts over time with and without
event-driven post generation, for SF=10. When event driven post generation is en-
abled, the density is not uniform but spikes of different magnitude appear, which
correspond to events of different levels of importance. The activity volume around
an event is implemented as proposed in [127].

C.0.3 Structure Correlation: Friendships

The “Homophily Principle” [141] states that similar people have a higher probabil-
ity to be connected. This is modeled by DATAGEN by making the probability that
people are connected dependent on their characteristics (attributes). This is imple-
mented by a multi-stage edge generation process over two correlation dimensions:
(i) places where people studied and (ii) interests of persons.

In other words, people that are interested in a topic and/or have studied in the

148 APPENDIX C. LDBC DATAGEN

same university at the same year, have a larger probability to be friends. Further-
more, in order to reproduce the inhomogeneities found in real data, a third dimen-
sion consisting of a random number is also used.

In each edge generation stage the persons are re-sorted on one dimension (first
stage: study location, second: interests, last: random). Each worker processes a dis-
junct range of these persons sequentially, keeping a window of the persons in mem-
ory – the entire range does not have to fit – and picks friends from the window
using a geometric probability distribution that decreases with distance in the win-
dow. The probability for generating a connection during this stage drops from very
low at window boundary to zero outside it (since the generator is not even capable
of generating a friendship to data dropped from its window). All this makes the
complex task of generating correlated friendship edges scalable, as it now only de-
pends on parallel sorting and sequential processing with limited memory. We note
that one dimension may have the form of multiple single-dimensional values bit-
wise appended. In the particular case of the studied location, these are the Z-order
location of the university’s city (bits 31-24), the university ID (bits 23-12), and the
studied year (bits 11-0). This is exemplified at Figure C.1 where we show a sliding
window along the first correlation dimension (i.e., studied location). As shown in
this figure, those persons closer to person P2 (the person generating friends for) ac-
cording to the first dimension (e.g., P41, P6) have a higher probability to be friends
of P2.

The correlations in the friends graph also propagate to the messages. A per-
son location influences on the one hand interests and studied location, so one gets
many more like-minded or local friends. These persons typically have many more
common interests (tags), which become the topic of posts and comment messages.

The number of friendship edges generated per person (friendship degree) is
skewed [77]. DATAGEN discretizes the power law distribution given by Facebook
graph [178], but scales this according to the size of the network. Because in smaller
networks, the amount of “real” friends that is a member and to which one can con-
nect is lower, we adjust the mean average degree logarithmically in terms of person
membership, such that it becomes (somewhat) lower for smaller networks. A tar-
get average degree of the friendship graph is chosen using the following formula:
avg_degree = n0.512−0.028·log(n), where n is the number of persons in the graph.
That is, when the size of the SNB dataset would be that of Facebook (i.e. 700M
persons) the average friendship degree would be around 200. Then, each person is
first assigned to a percentile p in the Facebook’s degree distribution and second,
a target degree uniformly distributed between the minimum and the maximum de-
grees at percentile p. Figure C.2(b) shows the maximum degree per percentile of the
Facebook graph, used in DATAGEN. Finally, the person’s target degree is scaled by
multiplying it by a factor resulting from dividing avg_degree by the average degree
of the real Facebook graph. Figure C.3(a) shows the friendship degree distribution
for SF=10. Finally, given a person, the number of friendship edges for each cor-
relation dimension is distributed as follows: 45%, 45% and 10% out of the target
degree, for the first, the second and the third correlation dimension, respectively.

149

0

10−11

Feb'10 Feb'11 Feb'12 Feb'13
Timeline

de
ns

ity

EventGeneration

uniform

event−driven

10

1000

0 25 50 75 100
percentile

m
ax

(a) (b)

Figure C.2: (a) Post distribution over time for event-driven vs uniform post genera-
tion on SF=10. (b) Maximum degree of each percentile in the Facebook graph.

SFs Number of entities (x 1000000)

Nodes Edges Persons Friends Messages Forums

30 99.4 655.4 0.18 14.2 97.4 1.8

100 317.7 2154.9 0.50 46.6 312.1 5.0

300 907.6 6292.5 1.25 136.2 893.7 12.6

1000 2930.7 20704.6 3.60 447.2 2890.9 36.1

Table C.3: SNB dataset statistics at different Scale Factors

C.0.4 Scales & Scaling

DATAGEN can generate social networks of arbitrary size, however for the bench-
marks we work with standard scale-factors (SF) valued 1,3,10,30,.. as indicated in
Table C.3. The scale is determined by setting the amount of persons in the network,
yet the scale factor is the amount of GB of uncompressed data in comma separated
value (CSV) representation. DATAGEN can also generate RDF data in Ntriple1

format, which is much more verbose.
DATAGEN is implemented on top of Hadoop to provide scalability. Data gen-

eration is performed in three steps, each of them composed of more MapReduce
jobs.

person generation: In this step, the people of the social network are generated,
including the personal information, interests, universities where they studied and
companies where they worked at. Each mapper is responsible of generating a subset
of the persons of the network.

1When generating URIs that identify entities, we ensure that URIs for the same kind of entity (e.g.
person) have an order that follows the time dimension. This is done by encoding the timestamp (e.g.
when the user joined the network) in the URI string in an order-preserving way. This is important for
URI compression in RDF systems where often a correlation between such identifying URIs and time is
present, yet it is not trivial to realize since we generate data in correlation dimension order, not logical
time order.

150 APPENDIX C. LDBC DATAGEN

2000

4000

8000

16000

0 200 400 600
Node degree

co
un

t

●
●

●

●

●

0
50

00
10

00
0

20
00

0

Scale Factors

G
en

er
at

io
n

tim
e

(s
ec

on
ds

)

30 300 1000

● Single node
3 nodes
10 nodes

(a) (b)

Figure C.3: (a) Friendship degree distribution for scale factor 10. (b) DATAGEN
scale-up.

friendship generation: As explained above, friendship generation is split into a
succession of stages, each of them based on a different correlation dimension. Each
of these stages consists of two MapReduce jobs. The first is responsible for sorting
the persons by the given correlation dimension. The second receives the sorted
people and performs the sliding window process explained above.

person activity generation: this involves filling the forums with posts comments
and likes. This data is mostly tree-structured and is therefore easily parallelized
by the person who owns the forum. Each worker needs the attributes of the owner
(e.g. interests influence post topics), the friend list (only friends post comments and
likes) with the friendship creation timestamps (they only post after that); but other-
wise the workers can operate independently.

We have paid specific attention to making data generation deterministic. This
means that regardless the Hadoop configuration parameters (#node, #map and #re-
duce tasks) the generated dataset is always the same.

On a single 4-core machine (Intel i7-2600K@3.4GHz, 16GB RAM) that runs
MapReduce in “pseudo-distributed” mode – where each CPU core runs a mapper
or reducer – one can generate a SF=30 in 20 minutes. For larger scale factors it is
recommended to use a true cluster; SF=1000 can be generated within 2 hours with
10 such machines connected with Gigabit ethernet (see Figure C.3(b)).

Bibliography

[1] Allegrograph. www.franz.com/agraph/allegrograph/.

[2] Amazon simpledb. https://aws.amazon.com/simpledb/.

[3] Apache accumulo. https://accumulo.apache.org/.

[4] Apache cassandra. cassandra.apache.org.

[5] Apache hbase. https://hbase.apache.org.

[6] Apache titan. http://titan.thinkaurelius.com.

[7] Bigdata. http://www.systap.com/bigdata.htm.

[8] Bigowlim. www.ontotext.com/owlim/.

[9] Blaze graph. https://www.blazegraph.com.

[10] D-gap compression scheme.

[11] Eclipse rdf4j. rdf4j.org.

[12] Freebase. https://developers.google.com/freebase/.

[13] Graphdb. http://graphdb.ontotext.com.

[14] Infinitegraph. http://www.objectivity.com.

[15] Jena tdb. jena.apache.org.

[16] Ldbc datagen. https://github.com/ldbc/ldbc_snb_datagen.

[17] Ldbc snb. http://ldbcouncil.org/benchmarks/snb.

[18] Marklogic. www.marklogic.com.

[19] Metis software. http://glaros.dtc.umn.edu/gkhome/views/metis.

[20] Monetdb. https://www.monetdb.org/.

[21] Mysql. www.mysql.com.

[22] Neo4j. neo4j.org.

151

152 BIBLIOGRAPHY

[23] Oracle database semantic technologies. http://www.oracle.com.

[24] Oracle spatial and graph. http://www.oracle.com/technetwork/database/op-
tions/spatialandgraph.

[25] Orientdb. orientdb.com.

[26] Postgresql. www.postgresql.org.

[27] Social network interlligence benchmark. https://www.w3.org/wiki/Social-
_Network_Intelligence_BenchMark.

[28] Sparksee graph database. http://www.sparsity-technologies.com.

[29] Stardog. www.stardog.com.

[30] Trree engine. https://ontotext.com/trree.

[31] Virtuoso. http://virtuoso.openlinksw.com/.

[32] Jans Aasman. Allegro graph: Rdf triple database. Cidade: Oakland Franz
Incorporated, 2006.

[33] Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos, Samuel
Madden, et al. The design and implementation of modern column-oriented
database systems. Now, 2013.

[34] Daniel J Abadi, Adam Marcus, Samuel R Madden, and Kate Hollenbach.
Scalable semantic web data management using vertical partitioning. In Pro-
ceedings of the 33rd international conference on Very large data bases,
pages 411–422. VLDB Endowment, 2007.

[35] Riham Abdel Kader, Peter Boncz, Stefan Manegold, and Maurice
Van Keulen. Rox: run-time optimization of xqueries. In Proceedings of
the 2009 ACM SIGMOD International Conference on Management of data,
pages 615–626. ACM, 2009.

[36] R. Agrawal et al. Fast algorithms for mining association rules. In VLDB,
1994.

[37] Y.Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong. Analysis of topological
characteristics of huge online social networking services. In Proc. WWW,
2007.

[38] Sofia Alexaki, Vassilis Christophides, Gregory Karvounarakis, Dimitris
Plexousakis, and Karsten Tolle. The ics-forth rdfsuite: Managing volumi-
nous rdf description bases. In Proceedings of the Second International Con-
ference on Semantic Web-Volume 40, pages 1–13. CEUR-WS. org, 2001.

[39] Güneş Aluç, M Tamer Özsu, and Khuzaima Daudjee. Workload matters:
Why rdf databases need a new design. Proceedings of the VLDB Endowment,
7(10):837–840, 2014.

BIBLIOGRAPHY 153

[40] Andrés Aranda-Andújar, Francesca Bugiotti, Jesús Camacho-Rodríguez,
Dario Colazzo, François Goasdoué, Zoi Kaoudi, and Ioana Manolescu.
Amada: web data repositories in the amazon cloud. In Proceedings of the
21st ACM international conference on Information and knowledge manage-
ment, pages 2749–2751. ACM, 2012.

[41] M. Arenas et al. A principled approach to bridging the gap between graph
data and their schemas. In VLDB, 2014.

[42] Mario Arias, Javier D Fernández, Miguel A Martínez-Prieto, and Pablo de la
Fuente. An empirical study of real-world sparql queries. arXiv preprint
arXiv:1103.5043, 2011.

[43] Medha Atre, Jagannathan Srinivasan, and James A Hendler. Bitmat: A main
memory rdf triple store. Proc. of SSWS 2009, pages 33–48, 2009.

[44] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. DB-
pedia: A nucleus for a web of open data. Semantic Web Journal, pages
722–735, 2007.

[45] Liu Baolin and Hu Bo. Hprd: a high performance rdf database. In IFIP
International Conference on Network and Parallel Computing, pages 364–
374. Springer, 2007.

[46] A.L. Barabási, R. Albert, and H. Jeong. Scale-free characteristics of ran-
dom networks: the topology of the world-wide web. Physica A: Statistical
Mechanics and its Applications, 281(1-4):69–77, 2000.

[47] V. Batagelj and U. Brandes. Efficient generation of large random networks.
Physical Review E, 71(3):036113, 2005.

[48] David Beckett. The design and implementation of the redland rdf application
framework. Computer Networks, 39(5):577–588, 2002.

[49] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida. Characterizing user
behavior in online social networks. In Proc. SIGCOMM, 2009.

[50] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web.
Scientific american, 284(5):28–37, 2001.

[51] Mark Birbeck et al. Curie syntax 1.0, a syntax for expressing compact uris.
W3C Recommendations, (curie):1–7, 2007.

[52] Paul Biron, Ashok Malhotra, World Wide Web Consortium, et al. Xml
schema part 2: Datatypes. World Wide Web Consortium Recommendation
REC-xmlschema-2-20041028, 2004.

[53] Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan Peikov, Zdravko
Tashev, and Ruslan Velkov. Owlim: A family of scalable semantic reposito-
ries. Semantic Web, 2(1):33–42, 2011.

154 BIBLIOGRAPHY

[54] C BIZER. Linked data-the story so far. International Journal on Semantic
Web and Information Systems, 5(3):1–22, 2009.

[55] C. Bizer and A. Schultz. The berlin sparql benchmark. Int. J. Semantic Web
Inf. Syst, 5(2):1–24, 2009.

[56] Peter Bloem and Steven de Rooij. Finding network motifs in large
graphs using compression as a measure of relevance. arXiv preprint
arXiv:1701.02026, 2017.

[57] K. Boitmanis et al. Fast and simple approximation of the diameter and radius
of a graph. In Experimental Algorithms, pages 98–108. Springer, 2006.

[58] A. Bonato, J. Janssen, and P. Prałat. A geometric model for on-line social
networks. In Proc. Conf. on Online Social networks, 2010.

[59] Peter Boncz, Orri Erling, and Minh-Duc Pham. Advances in large-scale
rdf data management. In Linked Open Data–Creating Knowledge Out of
Interlinked Data, pages 21–44. Springer, 2014.

[60] Peter Boncz, Orri Erling, and Minh-Duc Pham. Experiences with virtu-
oso cluster rdf column store. In Linked Data Management, pages 239–259.
Chapman and Hall/CRC, 2014.

[61] Peter A Boncz, Martin L Kersten, and Stefan Manegold. Breaking the mem-
ory wall in monetdb. Communications of the ACM, 51(12):77–85, 2008.

[62] A. Bornea et al. Building an efficient RDF store over a relational database.
In SIGMOD, 2013.

[63] Mihaela A Bornea, Julian Dolby, Anastasios Kementsietsidis, Kavitha Srini-
vas, Patrick Dantressangle, Octavian Udrea, and Bishwaranjan Bhattachar-
jee. Building an efficient rdf store over a relational database. In Proceed-
ings of the 2013 ACM SIGMOD International Conference on Management
of Data, pages 121–132. ACM, 2013.

[64] Renata Borovica-Gajic, Stratos Idreos, Anastasia Ailamaki, Marcin
Zukowski, and Campbell Fraser. Smooth scan: Statistics-oblivious access
paths. In 2015 IEEE 31st International Conference on Data Engineering,
pages 315–326. IEEE, 2015.

[65] Dan Brickley, Ramanathan V Guha, and Brian McBride. Rdf vocabulary
description language 1.0: Rdf schema. w3c recommendation (2004). URL
http://www. w3. org/tr/2004/rec-rdf-schema-20040210, 2004.

[66] Andreas Brodt, Oliver Schiller, and Bernhard Mitschang. Efficient resource
attribute retrieval in rdf triple stores. In Proceedings of the 20th ACM in-
ternational conference on Information and knowledge management, pages
1445–1454. ACM, 2011.

BIBLIOGRAPHY 155

[67] Jeen Broekstra and Arjohn Kampman. Serql: a second generation rdf query
language. In Proc. SWAD-Europe Workshop on Semantic Web Storage and
Retrieval, pages 13–14, 2003.

[68] Jeen Broekstra, Arjohn Kampman, and Frank Van Harmelen. Sesame: A
generic architecture for storing and querying rdf and rdf schema. In Interna-
tional semantic web conference, pages 54–68. Springer, 2002.

[69] Jeen Broekstra, Arjohn Kampman, and Frank Van Harmelen. Sesame: An
architecture for storing and querying rdf data and schema information. Spin-
ning the Semantic Web: Bringing the World Wide Web to Its Full Potential,
197, 2003.

[70] D. Burdick et al. Mafia: A maximal frequent itemset algorithm for transac-
tional databases. In ICDE, 2001.

[71] S. Campinas et al. Introducing RDF graph summary with application to
assisted SPARQL formulation. In DEXA Workshops, 2012.

[72] Stephane Campinas, Thomas E Perry, Diego Ceccarelli, Renaud Delbru,
and Giovanni Tummarello. Introducing rdf graph summary with applica-
tion to assisted sparql formulation. In 2012 23rd International Workshop on
Database and Expert Systems Applications, pages 261–266. IEEE, 2012.

[73] Jeremy J Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy
Seaborne, and Kevin Wilkinson. Jena: implementing the semantic web rec-
ommendations. In Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters, pages 74–83. ACM, 2004.

[74] Jeremy J Carroll and Graham Klyne. Resource description framework
({RDF}): Concepts and abstract syntax. 2004.

[75] Rick Cattell. Scalable sql and nosql data stores. Acm Sigmod Record,
39(4):12–27, 2011.

[76] Eugene Inseok Chong, Souripriya Das, George Eadon, and Jagannathan
Srinivasan. An efficient sql-based rdf querying scheme. In Proceedings
of the 31st international conference on Very large data bases, pages 1216–
1227. VLDB Endowment, 2005.

[77] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law
distributions in empirical data. SIAM review, 51(4):661–703, 2009.

[78] D Connolly, F Harmelen, I Horrocks, DL McGuinnes, PF Patel-Schneider,
and L Andrea Stein. Daml+ oil reference description. march 2001. Technical
report, W3C Note 18 December 2001. http://www. w3. org/TR/2001/NOTE-
daml+ oil-reference-20011218, 2009.

[79] World Wide Web Consortium et al. Owl 2 web ontology language document
overview. 2012.

156 BIBLIOGRAPHY

[80] George P Copeland and Setrag N Khoshafian. A decomposition storage
model. In ACM SIGMOD Record, volume 14, pages 268–279. ACM, 1985.

[81] LP Danh, DT Minh, P Minh Duc, PA Boncz, E Thomas, F Michael, et al.
Linked stream data processing: Facts and figures. 2012.

[82] I. de Sola Pool and M. Kochen. Contacts and influence. Elsevier, 1978.

[83] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[84] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kaku-
lapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Pe-
ter Vosshall, and Werner Vogels. Dynamo: amazon’s highly available key-
value store. ACM SIGOPS operating systems review, 41(6):205–220, 2007.

[85] Christos Doulkeridis and Kjetil Nørvåg. A survey of large-scale analyti-
cal query processing in mapreduce. The VLDB Journal?The International
Journal on Very Large Data Bases, 23(3):355–380, 2014.

[86] S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea. Apples and oranges:
a comparison of rdf benchmarks and real rdf datasets. In SIGMOD, pages
145–156. ACM, 2011.

[87] Orri Erling. Virtuoso, a hybrid RDBMS/graph column store. IEEE Data
Eng. Bull, 2012.

[88] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gu-
bichev, Arnau Prat, Minh-Duc Pham, and Peter Boncz. The ldbc social net-
work benchmark: interactive workload. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, pages 619–
630. ACM, 2015.

[89] Orri Erling and Ivan Mikhailov. Integrating open sources and relational data
with sparql. The Semantic Web: Research and Applications, pages 838–842,
2008.

[90] Orri Erling and Ivan Mikhailov. Towards web scale rdf. Proc. SSWS, 2008.

[91] Orri Erling and Ivan Mikhailov. Virtuoso: Rdf support in a native rdbms. In
Semantic Web Information Management, pages 501–519. Springer, 2010.

[92] David C Faye, Olivier Curé, and Guillaume Blin. A survey of rdf storage
approaches. Arima Journal, 15:11–35, 2012.

[93] George HL Fletcher and Peter W Beck. Scalable indexing of rdf graphs for
efficient join processing. In Proceedings of the 18th ACM conference on
Information and knowledge management, pages 1513–1516. ACM, 2009.

[94] I. Foudalis, K. Jain, C. Papadimitriou, and M. Sideri. Modeling social net-
works through user background and behavior. Algorithms and Models for
the Web Graph, pages 85–102, 2011.

BIBLIOGRAPHY 157

[95] Luis Galarraga, Katja Hose, and Ralf Schenkel. Partout: a distributed en-
gine for efficient rdf processing. In Proceedings of the 23rd International
Conference on World Wide Web, pages 267–268. ACM, 2014.

[96] Mario Arias Gallego, Javier D Fernández, Miguel A Martínez-Prieto, and
Pablo de la Fuente. An empirical study of real-world sparql queries. In
1st International Workshop on Usage Analysis and the Web of Data (USE-
WOD2011) at the 20th International World Wide Web Conference (WWW
2011), Hydebarabad, India, 2011.

[97] Aurona Gerber, Alta Van der Merwe, and Andries Barnard. A functional
semantic web architecture. In European Semantic Web Conference, pages
273–287. Springer, 2008.

[98] K. Gouda and M Zaki. Efficiently mining maximal frequent itemsets. In
ICDM, 2001.

[99] Andrey Gubichev and Thomas Neumann. Exploiting the query structure for
efficient join ordering in sparql queries. In EDBT, volume 14, pages 439–
450, 2014.

[100] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl knowledge base
systems. Web Semantics: Science, Services and Agents on the World Wide
Web, 3(2-3):158–182, 2005.

[101] Sairam Gurajada, Stephan Seufert, Iris Miliaraki, and Martin Theobald.
Triad: a distributed shared-nothing rdf engine based on asynchronous mes-
sage passing. In Proceedings of the 2014 ACM SIGMOD international con-
ference on Management of data, pages 289–300. ACM, 2014.

[102] Stephen Harris and Nicholas Gibbins. 3store: Efficient bulk rdf storage.
In The First International Workshop on Practical and Scalable Semantic
Systems, 2003.

[103] Stephen Harris and Nigel Shadbolt. Sparql query processing with conven-
tional relational database systems. In International Conference on Web In-
formation Systems Engineering, pages 235–244. Springer, 2005.

[104] Steve Harris, Nick Lamb, and Nigel Shadbolt. 4store: The design and im-
plementation of a clustered rdf store. In The 5th International Workshop on
Scalable Semantic Web Knowledge Base Systems (SSWS2009), page 81.

[105] Steve Harris, Nick Lamb, and Nigel Shadbolt. 4store: The design and imple-
mentation of a clustered rdf store. In 5th International Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS2009), pages 94–109, 2009.

[106] Steve Harris, Andy Seaborne, and Eric Prudhommeaux. Sparql 1.1 query
language. W3C recommendation, 21(10), 2013.

158 BIBLIOGRAPHY

[107] Andreas Harth and Stefan Decker. Optimized index structures for query-
ing rdf from the web. In Web Congress, 2005. LA-WEB 2005. Third Latin
American, pages 10–pp. IEEE, 2005.

[108] Andreas Harth, Jürgen Umbrich, Aidan Hogan, and Stefan Decker. Yars2:
a federated repository for querying graph structured data from the web. In
Proceedings of the 6th international The semantic web and 2nd Asian con-
ference on Asian semantic web conference, pages 211–224. Springer-Verlag,
2007.

[109] Oktie Hassanzadeh, Anastasios Kementsietsidis, and Yannis Velegrakis.
Data management issues on the semantic web. In 2012 IEEE 28th Inter-
national Conference on Data Engineering, pages 1204–1206. IEEE, 2012.

[110] Ivan Herman. Sparql is a recommendation. W3C Semantic Web Activity
News, 2008.

[111] Katja Hose and Ralf Schenkel. Warp: Workload-aware replication and parti-
tioning for rdf. In Data Engineering Workshops (ICDEW), 2013 IEEE 29th
International Conference on, pages 1–6. IEEE, 2013.

[112] Jiewen Huang, Daniel J Abadi, and Kun Ren. Scalable sparql querying of
large rdf graphs. Proceedings of the VLDB Endowment, 4(11):1123–1134,
2011.

[113] Mohammad Husain, James McGlothlin, Mohammad M Masud, Latifur
Khan, and Bhavani M Thuraisingham. Heuristics-based query processing
for large rdf graphs using cloud computing. IEEE Transactions on Knowl-
edge and Data Engineering, 23(9):1312–1327, 2011.

[114] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Database cracking.
In Conference on Innovative Data Systems Research (CIDR), pages 68–78,
Asilomar, California, 2007.

[115] Stratos Idreos, Martin L Kersten, Stefan Manegold, et al. Database cracking.
In CIDR, volume 7, pages 68–78, 2007.

[116] Milena G Ivanova, Martin L Kersten, Niels J Nes, and Romulo AP
Gonçalves. An architecture for recycling intermediates in a column-store.
ACM Transactions on Database Systems (TODS), 35(4):24, 2010.

[117] Maciej Janik and Krys Kochut. Brahms: a workbench rdf store and high
performance memory system for semantic association discovery. In Interna-
tional Semantic Web Conference, pages 431–445. Springer, 2005.

[118] George Karypis and Vipin Kumar. Analysis of multilevel graph partition-
ing. In Proceedings of the 1995 ACM/IEEE conference on Supercomputing,
page 29. ACM, 1995.

[119] Atanas Kiryakov. Owlim: balancing between scalable repository and light-
weight reasoner. Proc. of WWW2006, Edinburgh, Scotland, 2006.

BIBLIOGRAPHY 159

[120] Atanas Kiryakov, Damyan Ognyanov, and Dimitar Manov. Owlim–a prag-
matic semantic repository for owl. In Web Information Systems Engineering–
WISE 2005 Workshops, pages 182–192. Springer, 2005.

[121] Dave Kolas, Ian Emmons, and Mike Dean. Efficient linked-list rdf indexing
in parliament. SSWS, 9:17–32, 2009.

[122] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or
a news media? In Proc. WWW, 2010.

[123] Günter Ladwig and Andreas Harth. Cumulusrdf: linked data management
on nested key-value stores. In The 7th International Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS 2011), volume 30, 2011.

[124] Jonathan K Lawder and Peter JH King. Using space-filling curves for multi-
dimensional indexing. In British National Conference on Databases, pages
20–35. Springer, 2000.

[125] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kem-
per, and Thomas Neumann. How good are query optimizers, really? Pro-
ceedings of the VLDB Endowment, 9(3):204–215, 2015.

[126] J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos. Realistic, math-
ematically tractable graph generation and evolution, using kronecker multi-
plication. PKDD, 2005.

[127] Jure Leskovec, Lars Backstrom, and Jon Kleinberg. Meme-tracking and the
dynamics of the news cycle. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
497–506. ACM, 2009.

[128] J. Levandoski and M. Mokbel. RDF data-centric storage. In ICWS, 2009.

[129] Yuefeng Li et al. Mining ontology for automatically acquiring web user
information needs. KDE, 2006.

[130] Li Ma, Zhong Su, Yue Pan, Li Zhang, and Tao Liu. Rstar: An rdf storage
and query system for enterprise resource management. In Proceedings of
the thirteenth ACM international conference on Information and knowledge
management, pages 484–491. ACM, 2004.

[131] Frank Manola, Eric Miller, Brian McBride, et al. Rdf primer. W3C recom-
mendation, 10(1-107):6, 2004.

[132] Miguel A Martínez-Prieto, Javier D Fernández, and Rodrigo Cánovas. Com-
pression of rdf dictionaries. In Proceedings of the 27th Annual ACM Sym-
posium on Applied Computing, pages 340–347. ACM, 2012.

[133] Larry Masinter, Tim Berners-Lee, and Roy T Fielding. Uniform resource
identifier (uri): Generic syntax. 2005.

160 BIBLIOGRAPHY

[134] Akiyoshi Matono and Isao Kojima. Paragraph tables: A storage scheme
based on RDF document structure. In DEXA, pages 231–247. Springer,
2012.

[135] Brian McBride. Jena: Implementing the rdf model and syntax specification.
In Proceedings of the Second International Conference on Semantic Web-
Volume 40, pages 23–28. CEUR-WS. org, 2001.

[136] Brian McBride. Jena: A semantic web toolkit. IEEE Internet computing,
6(6):55–59, 2002.

[137] Brian McBride. The resource description framework (rdf) and its vocabu-
lary description language rdfs. In Handbook on ontologies, pages 51–65.
Springer, 2004.

[138] JAMES McGlothlin and L Khan. Rdfjoin: A scalable data model for persis-
tence and efficient querying of rdf datasets. Database, 2009.

[139] James P McGlothlin and Latifur R Khan. Rdfkb: efficient support for rdf
inference queries and knowledge management. In Proceedings of the 2009
International Database Engineering & Applications Symposium, pages 259–
266. ACM, 2009.

[140] Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology
language overview. W3C recommendation, 10(10):2004, 2004.

[141] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of
a feather: Homophily in social networks. Annual review of sociology,
27(1):415–444, 2001.

[142] Alistair Miles and Sean Bechhofer. Skos simple knowledge organization
system reference. 2009.

[143] S. Milgram. The small world problem. Psychology today, 2(1):60–67, 1967.

[144] A. Mislove, M. Marcon, K.P. Gummadi, P. Druschel, and B. Bhattacharjee.
Measurement and analysis of online social networks. In Proc. SIGCOMM,
2007.

[145] Gianfranco E Modoni, Marco Sacco, and Walter Terkaj. A survey of rdf
store solutions. In Engineering, Technology and Innovation (ICE), 2014 In-
ternational ICE Conference on, pages 1–7. IEEE, 2014.

[146] Guido Moerkotte and Thomas Neumann. Analysis of two existing and one
new dynamic programming algorithm for the generation of optimal bushy
join trees without cross products. In Proceedings of the 32nd international
conference on Very large data bases, pages 930–941. VLDB Endowment,
2006.

BIBLIOGRAPHY 161

[147] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille
Ngonga Ngomo. Dbpedia sparql benchmark–performance assessment
with real queries on real data. The Semantic Web–ISWC 2011, pages
454–469, 2011.

[148] Sivaramakrishnan Narayanan, Tahsin Kurc, and Joel Saltz. Dbowl: Towards
extensional queries on a billion statements using relational databases.

[149] T. Neumann and G. Moerkotte. Characteristic sets: Accurate cardinality es-
timation for RDF queries with multiple joins. In ICDE, 2011.

[150] Thomas Neumann and Gerhard Weikum. Rdf-3x: a risc-style engine for rdf.
Proceedings of the VLDB Endowment, 1(1):647–659, 2008.

[151] Thomas Neumann and Gerhard Weikum. The rdf-3x engine for scalable
management of rdf data. The VLDB Journal?The International Journal on
Very Large Data Bases, 19(1):91–113, 2010.

[152] R. Neumayer et al. When simple is (more than) good enough: Effective
semantic search with (almost) no semantics. In Advances in Information
Retrieval. Springer, 2012.

[153] M Tamer Özsu. A survey of rdf data management systems. Frontiers of
Computer Science, 3(10):418–432, 2016.

[154] L. Page et al. The pagerank citation ranking: Bringing order to the web.
Technical report, Stanford, 1999.

[155] Zhengxiang Pan and Jeff Heflin. Dldb: Extending relational databases to
support semantic web queries. In In PSSS, 2003.

[156] Nikolaos Papailiou, Ioannis Konstantinou, Dimitrios Tsoumakos, and Nec-
tarios Koziris. H2rdf: adaptive query processing on rdf data in the cloud. In
Proceedings of the 21st International Conference on World Wide Web, pages
397–400. ACM, 2012.

[157] Linnea Passing. Recognizing, naming and exploring structure in RDF data.
Master’s thesis, Technische Universität München, 2014.

[158] Minh-Duc Pham and Peter Boncz. Exploiting emergent schemas to make rdf
systems more efficient. In International Semantic Web Conference, pages
463–479. Springer, 2016.

[159] Minh-Duc Pham, Peter Boncz, and Orri Erling. S3g2: A scalable structure-
correlated social graph generator. In Technology Conference on Performance
Evaluation and Benchmarking, pages 156–172. Springer, 2012.

[160] Minh-Duc Pham, Linnea Passing, Orri Erling, and Peter Boncz. Deriving
an emergent relational schema from rdf data. In Proceedings of the 24th
International Conference on World Wide Web, pages 864–874. ACM, 2015.

162 BIBLIOGRAPHY

[161] Eric PrudHommeaux, Andy Seaborne, et al. Sparql query language for rdf.
W3C recommendation, 15, 2008.

[162] Roshan Punnoose, Adina Crainiceanu, and David Rapp. Rya: a scalable rdf
triple store for the clouds. In Proceedings of the 1st International Workshop
on Cloud Intelligence, page 4. ACM, 2012.

[163] Raghu Ramakrishnan and Johannes Gehrke. Database management systems.
McGraw-Hill, 2003.

[164] Alberto Reggiori, Dirk-Willem van Gulik, and Zavisa Bjelogrlic. Indexing
and retrieving semantic web resources: the rdfstore model. In SWAD-Europe
Workshop on Semantic Web Storage and Retrieval, pages 13–14, 2003.

[165] Jorma Rissanen. Modeling by shortest data description. Automatica,
14(5):465–471, 1978.

[166] Kurt Rohloff and Richard E Schantz. High-performance, massively scal-
able distributed systems using the mapreduce software framework: the shard
triple-store. In Programming support innovations for emerging distributed
applications, page 4. ACM, 2010.

[167] Sherif Sakr and Ghazi Al-Naymat. Relational processing of rdf queries: a
survey. ACM SIGMOD Record, 38(4):23–28, 2010.

[168] Gerard Salton and Michael J McGill. Introduction to modern information
retrieval. 1983.

[169] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. Sp2bench: A sparql
performance benchmark. In Data Engineering, 2009. ICDE’09. IEEE 25th
International Conference on, pages 222–233. IEEE, 2009.

[170] Lefteris Sidirourgos, Romulo Goncalves, Martin Kersten, Niels Nes, and
Stefan Manegold. Column-store support for rdf data management: not all
swans are white. Proceedings of the VLDB Endowment, 1(2):1553–1563,
2008.

[171] Michael Sintek and Malte Kiesel. Rdfbroker: A signature-based high-
performance rdf store. In European Semantic Web Conference, pages 363–
377. Springer, 2006.

[172] Raffael Stein and Valentin Zacharias. Rdf on cloud number nine. In 4th
Workshop on New Forms of Reasoning for the Semantic Web: Scalable and
Dynamic, pages 11–23, 2010.

[173] M. Stillger, G. Lohman, V. Markl, and M. Kandil. Leo-db2’s learning opti-
mizer. In Proc. VLDB, 2001.

[174] Mike Stonebraker, Daniel J Abadi, Adam Batkin, Xuedong Chen, Mitch
Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Eliz-
abeth O’Neil, et al. C-store: a column-oriented dbms. In Proceedings of

BIBLIOGRAPHY 163

the 31st international conference on Very large data bases, pages 553–564.
VLDB Endowment, 2005.

[175] Thanh Tran, GUNTER Ladwig, and Sebastian Rudolph. Istore: efficient rdf
data management using structure indexes for general graph structured data.
Institute AIFB, Karlsruhe Institute of Technology, 2009.

[176] P. Treeratpituk and J. Callan. Automatically labeling hierarchical clusters.
In DGSNA, 2006.

[177] Petros Tsialiamanis, Lefteris Sidirourgos, Irini Fundulaki, Vassilis
Christophides, and Peter Boncz. Heuristics-based query optimisation
for sparql. In Proceedings of the 15th International Conference on
Extending Database Technology, pages 324–335. ACM, 2012.

[178] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. The
anatomy of the facebook social graph. arXiv preprint arXiv:1111.4503,
2011.

[179] J Ullman and J Widom. Database systems: The complete book, 2008.

[180] P. Venetis et al. Recovering semantics of tables on the web. In VLDB, 2011.

[181] Y. Wang et al. Flextable: using a dynamic relation model to store RDF data.
In DASFAA, 2010.

[182] D.J. Watts and S.H. Strogatz. Collective dynamics of “small-world” net-
works. Nature, 393(6684):440–442, 1998.

[183] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. Hexastore: sextu-
ple indexing for semantic web data management. Proceedings of the VLDB
Endowment, 1(1):1008–1019, 2008.

[184] K. Wilkinson. Jena property table implementation. Technical report, HP
Labs, 2006.

[185] Kevin Wilkinson, Craig Sayers, Harumi Kuno, and Dave Reynolds. Efficient
rdf storage and retrieval in jena2. In Proceedings of the First International
Conference on Semantic Web and Databases, pages 120–139. CEUR-WS.
org, 2003.

[186] C. Wilson, B. Boe, A. Sala, K.P.N. Puttaswamy, and B.Y. Zhao. User inter-
actions in social networks and their implications. In Proc. European Confer-
ence on Computer Systems, 2009.

[187] David Wood, Paul Gearon, and Tom Adams. Kowari: A platform for seman-
tic web storage and analysis. In XTech 2005 Conference, pages 05–0402,
2005.

164 BIBLIOGRAPHY

[188] Buwen Wu, Hai Jin, and Pingpeng Yuan. Scalable saprql querying process-
ing on large rdf data in cloud computing environment. In Proceedings of the
2012 international conference on Pervasive Computing and the Networked
World, pages 631–646. Springer-Verlag, 2012.

[189] Xiaofei Zhang, Lei Chen, Yongxin Tong, and Min Wang. Eagre: Towards
scalable i/o efficient sparql query evaluation on the cloud. In Data engi-
neering (ICDE), 2013 ieee 29th international conference on, pages 565–576.
IEEE, 2013.

[190] Xiaofei Zhang, Lei Chen, and Min Wang. Towards efficient join processing
over large rdf graph using mapreduce. In SSDBM, pages 250–259. Springer,
2012.

[191] Ying Zhang, Pham Minh Duc, Oscar Corcho, and Jean-Paul Calbimonte.
Srbench: a streaming rdf/sparql benchmark. In International Semantic Web
Conference, pages 641–657. Springer, 2012.

[192] Marcin Zukowski, Peter A Boncz, et al. Vectorwise: Beyond column stores.
2012.

[193] Marcin Zukowski, Peter A Boncz, Niels Nes, and Sándor Héman.
Monetdb/x100-a dbms in the cpu cache. IEEE Data Eng. Bull., 28(2):17–22,
2005.

SIKS Dissertation Series

2011 01 Botond Cseke (RUN), Variational Algorithms for Bayesian Inference in Latent
Gaussian Models

02 Nick Tinnemeier (UU), Organizing Agent Organizations. Syntax and Opera-
tional Semantics of an Organization-Oriented Programming Language

03 Jan Martijn van der Werf (TUE), Compositional Design and Verification of
Component-Based Information Systems

04 Hado van Hasselt (UU), Insights in Reinforcement Learning; Formal analysis
and empirical evaluation of temporal-difference

05 Bas van der Raadt (VU), Enterprise Architecture Coming of Age - Increasing
the Performance of an Emerging Discipline.

06 Yiwen Wang (TUE), Semantically-Enhanced Recommendations in Cultural
Heritage

07 Yujia Cao (UT), Multimodal Information Presentation for High Load Human
Computer Interaction

08 Nieske Vergunst (UU), BDI-based Generation of Robust Task-Oriented Dia-
logues

09 Tim de Jong (OU), Contextualised Mobile Media for Learning
10 Bart Bogaert (UvT), Cloud Content Contention
11 Dhaval Vyas (UT), Designing for Awareness: An Experience-focused HCI Per-

spective
12 Carmen Bratosin (TUE), Grid Architecture for Distributed Process Mining
13 Xiaoyu Mao (UvT), Airport under Control. Multiagent Scheduling for Airport

Ground Handling
14 Milan Lovric (EUR), Behavioral Finance and Agent-Based Artificial Markets
15 Marijn Koolen (UvA), The Meaning of Structure: the Value of Link Evidence

for Information Retrieval
16 Maarten Schadd (UM), Selective Search in Games of Different Complexity
17 Jiyin He (UVA), Exploring Topic Structure: Coherence, Diversity and Related-

ness
18 Mark Ponsen (UM), Strategic Decision-Making in complex games
19 Ellen Rusman (OU), The Mind’s Eye on Personal Profiles
20 Qing Gu (VU), Guiding service-oriented software engineering - A view-based

approach
21 Linda Terlouw (TUD), Modularization and Specification of Service-Oriented

Systems
22 Junte Zhang (UVA), System Evaluation of Archival Description and Access
23 Wouter Weerkamp (UVA), Finding People and their Utterances in Social Media
24 Herwin van Welbergen (UT), Behavior Generation for Interpersonal Coordina-

tion with Virtual Humans On Specifying, Scheduling and Realizing Multimodal
Virtual Human Behavior

165

166 BIBLIOGRAPHY

25 Syed Waqar ul Qounain Jaffry (VU), Analysis and Validation of Models for
Trust Dynamics

26 Matthijs Aart Pontier (VU), Virtual Agents for Human Communication - Emo-
tion Regulation and Involvement-Distance Trade-Offs in Embodied Conversa-
tional Agents and Robots

27 Aniel Bhulai (VU), Dynamic website optimization through autonomous man-
agement of design patterns

28 Rianne Kaptein (UVA), Effective Focused Retrieval by Exploiting Query Con-
text and Document Structure

29 Faisal Kamiran (TUE), Discrimination-aware Classification
30 Egon van den Broek (UT), Affective Signal Processing (ASP): Unraveling the

mystery of emotions
31 Ludo Waltman (EUR), Computational and Game-Theoretic Approaches for

Modeling Bounded Rationality
32 Nees-Jan van Eck (EUR), Methodological Advances in Bibliometric Mapping

of Science
33 Tom van der Weide (UU), Arguing to Motivate Decisions
34 Paolo Turrini (UU), Strategic Reasoning in Interdependence: Logical and Game-

theoretical Investigations
35 Maaike Harbers (UU), Explaining Agent Behavior in Virtual Training
36 Erik van der Spek (UU), Experiments in serious game design: a cognitive ap-

proach
37 Adriana Burlutiu (RUN), Machine Learning for Pairwise Data, Applications for

Preference Learning and Supervised Network Inference
38 Nyree Lemmens (UM), Bee-inspired Distributed Optimization
39 Joost Westra (UU), Organizing Adaptation using Agents in Serious Games
40 Viktor Clerc (VU), Architectural Knowledge Management in Global Software

Development
41 Luan Ibraimi (UT), Cryptographically Enforced Distributed Data Access Con-

trol
42 Michal Sindlar (UU), Explaining Behavior through Mental State Attribution
43 Henk van der Schuur (UU), Process Improvement through Software Operation

Knowledge
44 Boris Reuderink (UT), Robust Brain-Computer Interfaces
45 Herman Stehouwer (UvT), Statistical Language Models for Alternative Se-

quence Selection
46 Beibei Hu (TUD), Towards Contextualized Information Delivery: A Rule-based

Architecture for the Domain of Mobile Police Work
47 Azizi Bin Ab Aziz (VU), Exploring Computational Models for Intelligent Sup-

port of Persons with Depression
48 Mark Ter Maat (UT), Response Selection and Turn-taking for a Sensitive Arti-

ficial Listening Agent
49 Andreea Niculescu (UT), Conversational interfaces for task-oriented spoken di-

alogues: design aspects influencing interaction quality

2012 01 Terry Kakeeto (UvT), Relationship Marketing for SMEs in Uganda
02 Muhammad Umair (VU), Adaptivity, emotion, and Rationality in Human and

Ambient Agent Models
03 Adam Vanya (VU), Supporting Architecture Evolution by Mining Software

Repositories
04 Jurriaan Souer (UU), Development of Content Management System-based Web

Applications
05 Marijn Plomp (UU), Maturing Interorganisational Information Systems

BIBLIOGRAPHY 167

06 Wolfgang Reinhardt (OU), Awareness Support for Knowledge Workers in Re-
search Networks

07 Rianne van Lambalgen (VU), When the Going Gets Tough: Exploring Agent-
based Models of Human Performance under Demanding Conditions

08 Gerben de Vries (UVA), Kernel Methods for Vessel Trajectories
09 Ricardo Neisse (UT), Trust and Privacy Management Support for Context-

Aware Service Platforms
10 David Smits (TUE), Towards a Generic Distributed Adaptive Hypermedia En-

vironment
11 J.C.B. Rantham Prabhakara (TUE), Process Mining in the Large: Preprocessing,

Discovery, and Diagnostics
12 Kees van der Sluijs (TUE), Model Driven Design and Data Integration in Se-

mantic Web Information Systems
13 Suleman Shahid (UvT), Fun and Face: Exploring non-verbal expressions of

emotion during playful interactions
14 Evgeny Knutov (TUE), Generic Adaptation Framework for Unifying Adaptive

Web-based Systems
15 Natalie van der Wal (VU), Social Agents. Agent-Based Modelling of Integrated

Internal and Social Dynamics of Cognitive and Affective Processes.
16 Fiemke Both (VU), Helping people by understanding them - Ambient Agents

supporting task execution and depression treatment
17 Amal Elgammal (UvT), Towards a Comprehensive Framework for Business

Process Compliance
18 Eltjo Poort (VU), Improving Solution Architecting Practices
19 Helen Schonenberg (TUE), What’s Next? Operational Support for Business Pro-

cess Execution
20 Ali Bahramisharif (RUN), Covert Visual Spatial Attention, a Robust Paradigm

for Brain-Computer Interfacing
21 Roberto Cornacchia (TUD), Querying Sparse Matrices for Information Retrieval
22 Thijs Vis (UvT), Intelligence, politie en veiligheidsdienst: verenigbare groothe-

den?
23 Christian Muehl (UT), Toward Affective Brain-Computer Interfaces: Exploring

the Neurophysiology of Affect during Human Media Interaction
24 Laurens van der Werff (UT), Evaluation of Noisy Transcripts for Spoken Docu-

ment Retrieval
25 Silja Eckartz (UT), Managing the Business Case Development in Inter-

Organizational IT Projects: A Methodology and its Application
26 Emile de Maat (UVA), Making Sense of Legal Text
27 Hayrettin Gurkok (UT), Mind the Sheep! User Experience Evaluation & Brain-

Computer Interface Games
28 Nancy Pascall (UvT), Engendering Technology Empowering Women
29 Almer Tigelaar (UT), Peer-to-Peer Information Retrieval
30 Alina Pommeranz (TUD), Designing Human-Centered Systems for Reflective

Decision Making
31 Emily Bagarukayo (RUN), A Learning by Construction Approach for Higher

Order Cognitive Skills Improvement, Building Capacity and Infrastructure
32 Wietske Visser (TUD), Qualitative multi-criteria preference representation and

reasoning
33 Rory Sie (OUN), Coalitions in Cooperation Networks (COCOON)
34 Pavol Jancura (RUN), Evolutionary analysis in PPI networks and applications
35 Evert Haasdijk (VU), Never Too Old To Learn – On-line Evolution of Con-

trollers in Swarm- and Modular Robotics
36 Denis Ssebugwawo (RUN), Analysis and Evaluation of Collaborative Modeling

Processes

168 BIBLIOGRAPHY

37 Agnes Nakakawa (RUN), A Collaboration Process for Enterprise Architecture
Creation

38 Selmar Smit (VU), Parameter Tuning and Scientific Testing in Evolutionary Al-
gorithms

39 Hassan Fatemi (UT), Risk-aware design of value and coordination networks
40 Agus Gunawan (UvT), Information Access for SMEs in Indonesia
41 Sebastian Kelle (OU), Game Design Patterns for Learning
42 Dominique Verpoorten (OU), Reflection Amplifiers in self-regulated Learning
43 Withdrawn
44 Anna Tordai (VU), On Combining Alignment Techniques
45 Benedikt Kratz (UvT), A Model and Language for Business-aware Transactions
46 Simon Carter (UVA), Exploration and Exploitation of Multilingual Data for Sta-

tistical Machine Translation
47 Manos Tsagkias (UVA), Mining Social Media: Tracking Content and Predicting

Behavior
48 Jorn Bakker (TUE), Handling Abrupt Changes in Evolving Time-series Data
49 Michael Kaisers (UM), Learning against Learning - Evolutionary dynamics of

reinforcement learning algorithms in strategic interactions
50 Steven van Kervel (TUD), Ontologogy driven Enterprise Information Systems

Engineering
51 Jeroen de Jong (TUD), Heuristics in Dynamic Sceduling; a practical framework

with a case study in elevator dispatching

2013 01 Viorel Milea (EUR), News Analytics for Financial Decision Support
02 Erietta Liarou (CWI), MonetDB/DataCell: Leveraging the Column-store

Database Technology for Efficient and Scalable Stream Processing
03 Szymon Klarman (VU), Reasoning with Contexts in Description Logics
04 Chetan Yadati (TUD), Coordinating autonomous planning and scheduling
05 Dulce Pumareja (UT), Groupware Requirements Evolutions Patterns
06 Romulo Goncalves (CWI), The Data Cyclotron: Juggling Data and Queries for

a Data Warehouse Audience
07 Giel van Lankveld (UvT), Quantifying Individual Player Differences
08 Robbert-Jan Merk (VU), Making enemies: cognitive modeling for opponent

agents in fighter pilot simulators
09 Fabio Gori (RUN), Metagenomic Data Analysis: Computational Methods and

Applications
10 Jeewanie Jayasinghe Arachchige (UvT), A Unified Modeling Framework for

Service Design.
11 Evangelos Pournaras (TUD), Multi-level Reconfigurable Self-organization in

Overlay Services
12 Marian Razavian (VU), Knowledge-driven Migration to Services
13 Mohammad Safiri (UT), Service Tailoring: User-centric creation of integrated

IT-based homecare services to support independent living of elderly
14 Jafar Tanha (UVA), Ensemble Approaches to Semi-Supervised Learning Learn-

ing
15 Daniel Hennes (UM), Multiagent Learning - Dynamic Games and Applications
16 Eric Kok (UU), Exploring the practical benefits of argumentation in multi-agent

deliberation
17 Koen Kok (VU), The PowerMatcher: Smart Coordination for the Smart Elec-

tricity Grid
18 Jeroen Janssens (UvT), Outlier Selection and One-Class Classification
19 Renze Steenhuizen (TUD), Coordinated Multi-Agent Planning and Scheduling
20 Katja Hofmann (UvA), Fast and Reliable Online Learning to Rank for Informa-

tion Retrieval

BIBLIOGRAPHY 169

21 Sander Wubben (UvT), Text-to-text generation by monolingual machine trans-
lation

22 Tom Claassen (RUN), Causal Discovery and Logic
23 Patricio de Alencar Silva (UvT), Value Activity Monitoring
24 Haitham Bou Ammar (UM), Automated Transfer in Reinforcement Learning
25 Agnieszka Anna Latoszek-Berendsen (UM), Intention-based Decision Support.

A new way of representing and implementing clinical guidelines in a Decision
Support System

26 Alireza Zarghami (UT), Architectural Support for Dynamic Homecare Service
Provisioning

27 Mohammad Huq (UT), Inference-based Framework Managing Data Provenance
28 Frans van der Sluis (UT), When Complexity becomes Interesting: An Inquiry

into the Information eXperience
29 Iwan de Kok (UT), Listening Heads
30 Joyce Nakatumba (TUE), Resource-Aware Business Process Management:

Analysis and Support
31 Dinh Khoa Nguyen (UvT), Blueprint Model and Language for Engineering

Cloud Applications
32 Kamakshi Rajagopal (OUN), Networking For Learning; The role of Networking

in a Lifelong Learner’s Professional Development
33 Qi Gao (TUD), User Modeling and Personalization in the Microblogging Sphere
34 Kien Tjin-Kam-Jet (UT), Distributed Deep Web Search
35 Abdallah El Ali (UvA), Minimal Mobile Human Computer Interaction
36 Than Lam Hoang (TUe), Pattern Mining in Data Streams
37 Dirk Börner (OUN), Ambient Learning Displays
38 Eelco den Heijer (VU), Autonomous Evolutionary Art
39 Joop de Jong (TUD), A Method for Enterprise Ontology based Design of Enter-

prise Information Systems
40 Pim Nijssen (UM), Monte-Carlo Tree Search for Multi-Player Games
41 Jochem Liem (UVA), Supporting the Conceptual Modelling of Dynamic Sys-

tems: A Knowledge Engineering Perspective on Qualitative Reasoning
42 Léon Planken (TUD), Algorithms for Simple Temporal Reasoning
43 Marc Bron (UVA), Exploration and Contextualization through Interaction and

Concepts

2014 01 Nicola Barile (UU), Studies in Learning Monotone Models from Data
02 Fiona Tuliyano (RUN), Combining System Dynamics with a Domain Modeling

Method
03 Sergio Raul Duarte Torres (UT), Information Retrieval for Children: Search Be-

havior and Solutions
04 Hanna Jochmann-Mannak (UT), Websites for children: search strategies and in-

terface design - Three studies on children’s search performance and evaluation
05 Jurriaan van Reijsen (UU), Knowledge Perspectives on Advancing Dynamic Ca-

pability
06 Damian Tamburri (VU), Supporting Networked Software Development
07 Arya Adriansyah (TUE), Aligning Observed and Modeled Behavior
08 Samur Araujo (TUD), Data Integration over Distributed and Heterogeneous

Data Endpoints
09 Philip Jackson (UvT), Toward Human-Level Artificial Intelligence: Representa-

tion and Computation of Meaning in Natural Language
10 Ivan Salvador Razo Zapata (VU), Service Value Networks
11 Janneke van der Zwaan (TUD), An Empathic Virtual Buddy for Social Support

170 BIBLIOGRAPHY

12 Willem van Willigen (VU), Look Ma, No Hands: Aspects of Autonomous Ve-
hicle Control

13 Arlette van Wissen (VU), Agent-Based Support for Behavior Change: Models
and Applications in Health and Safety Domains

14 Yangyang Shi (TUD), Language Models With Meta-information
15 Natalya Mogles (VU), Agent-Based Analysis and Support of Human Function-

ing in Complex Socio-Technical Systems: Applications in Safety and Healthcare
16 Krystyna Milian (VU), Supporting trial recruitment and design by automatically

interpreting eligibility criteria
17 Kathrin Dentler (VU), Computing healthcare quality indicators automatically:

Secondary Use of Patient Data and Semantic Interoperability
18 Mattijs Ghijsen (UVA), Methods and Models for the Design and Study of Dy-

namic Agent Organizations
19 Vinicius Ramos (TUE), Adaptive Hypermedia Courses: Qualitative and Quan-

titative Evaluation and Tool Support
20 Mena Habib (UT), Named Entity Extraction and Disambiguation for Informal

Text: The Missing Link
21 Kassidy Clark (TUD), Negotiation and Monitoring in Open Environments
22 Marieke Peeters (UU), Personalized Educational Games - Developing agent-

supported scenario-based training
23 Eleftherios Sidirourgos (UvA/CWI), Space Efficient Indexes for the Big Data

Era
24 Davide Ceolin (VU), Trusting Semi-structured Web Data
25 Martijn Lappenschaar (RUN), New network models for the analysis of disease

interaction
26 Tim Baarslag (TUD), What to Bid and When to Stop
27 Rui Jorge Almeida (EUR), Conditional Density Models Integrating Fuzzy and

Probabilistic Representations of Uncertainty
28 Anna Chmielowiec (VU), Decentralized k-Clique Matching
29 Jaap Kabbedijk (UU), Variability in Multi-Tenant Enterprise Software
30 Peter de Cock (UvT), Anticipating Criminal Behaviour
31 Leo van Moergestel (UU), Agent Technology in Agile Multiparallel Manufac-

turing and Product Support
32 Naser Ayat (UvA), On Entity Resolution in Probabilistic Data
33 Tesfa Tegegne (RUN), Service Discovery in eHealth
34 Christina Manteli (VU), The Effect of Governance in Global Software Develop-

ment: Analyzing Transactive Memory Systems.
35 Joost van Ooijen (UU), Cognitive Agents in Virtual Worlds: A Middleware De-

sign Approach
36 Joos Buijs (TUE), Flexible Evolutionary Algorithms for Mining Structured Pro-

cess Models
37 Maral Dadvar (UT), Experts and Machines United Against Cyberbullying
38 Danny Plass-Oude Bos (UT), Making brain-computer interfaces better: improv-

ing usability through post-processing.
39 Jasmina Maric (UvT), Web Communities, Immigration, and Social Capital
40 Walter Omona (RUN), A Framework for Knowledge Management Using ICT in

Higher Education
41 Frederic Hogenboom (EUR), Automated Detection of Financial Events in News

Text
42 Carsten Eijckhof (CWI/TUD), Contextual Multidimensional Relevance Models
43 Kevin Vlaanderen (UU), Supporting Process Improvement using Method Incre-

ments
44 Paulien Meesters (UvT), Intelligent Blauw. Met als ondertitel: Intelligence-

gestuurde politiezorg in gebiedsgebonden eenheden.

BIBLIOGRAPHY 171

45 Birgit Schmitz (OUN), Mobile Games for Learning: A Pattern-Based Approach
46 Ke Tao (TUD), Social Web Data Analytics: Relevance, Redundancy, Diversity
47 Shangsong Liang (UVA), Fusion and Diversification in Information Retrieval

2015 01 Niels Netten (UvA), Machine Learning for Relevance of Information in Crisis
Response

02 Faiza Bukhsh (UvT), Smart auditing: Innovative Compliance Checking in Cus-
toms Controls

03 Twan van Laarhoven (RUN), Machine learning for network data
04 Howard Spoelstra (OUN), Collaborations in Open Learning Environments
05 Christoph Bösch (UT), Cryptographically Enforced Search Pattern Hiding
06 Farideh Heidari (TUD), Business Process Quality Computation - Computing

Non-Functional Requirements to Improve Business Processes
07 Maria-Hendrike Peetz (UvA), Time-Aware Online Reputation Analysis
08 Jie Jiang (TUD), Organizational Compliance: An agent-based model for design-

ing and evaluating organizational interactions
09 Randy Klaassen (UT), HCI Perspectives on Behavior Change Support Systems
10 Henry Hermans (OUN), OpenU: design of an integrated system to support life-

long learning
11 Yongming Luo (TUE), Designing algorithms for big graph datasets: A study of

computing bisimulation and joins
12 Julie M. Birkholz (VU), Modi Operandi of Social Network Dynamics: The Ef-

fect of Context on Scientific Collaboration Networks
13 Giuseppe Procaccianti (VU), Energy-Efficient Software
14 Bart van Straalen (UT), A cognitive approach to modeling bad news conversa-

tions
15 Klaas Andries de Graaf (VU), Ontology-based Software Architecture Documen-

tation
16 Changyun Wei (UT), Cognitive Coordination for Cooperative Multi-Robot

Teamwork
17 André van Cleeff (UT), Physical and Digital Security Mechanisms: Properties,

Combinations and Trade-offs
18 Holger Pirk (CWI), Waste Not, Want Not! - Managing Relational Data in Asym-

metric Memories
19 Bernardo Tabuenca (OUN), Ubiquitous Technology for Lifelong Learners
20 Lois Vanhée (UU), Using Culture and Values to Support Flexible Coordination
21 Sibren Fetter (OUN), Using Peer-Support to Expand and Stabilize Online Learn-

ing
22 Zhemin Zhu (UT), Co-occurrence Rate Networks
23 Luit Gazendam (VU), Cataloguer Support in Cultural Heritage
24 Richard Berendsen (UVA), Finding People, Papers, and Posts: Vertical Search

Algorithms and Evaluation
25 Steven Woudenberg (UU), Bayesian Tools for Early Disease Detection
26 Alexander Hogenboom (EUR), Sentiment Analysis of Text Guided by Semantics

and Structure
27 Sándor Héman (CWI), Updating compressed colomn stores
28 Janet Bagorogoza (TiU), Knowledge Management and High Performance; The

Uganda Financial Institutions Model for HPO
29 Hendrik Baier (UM), Monte-Carlo Tree Search Enhancements for One-Player

and Two-Player Domains
30 Kiavash Bahreini (OU), Real-time Multimodal Emotion Recognition in E-

Learning
31 Yakup Koç (TUD), On the robustness of Power Grids
32 Jerome Gard (UL), Corporate Venture Management in SMEs

172 BIBLIOGRAPHY

33 Frederik Schadd (TUD), Ontology Mapping with Auxiliary Resources
34 Victor de Graaf (UT), Gesocial Recommender Systems
35 Jungxao Xu (TUD), Affective Body Language of Humanoid Robots: Perception

and Effects in Human Robot Interaction
2016 01 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and Machines

02 Michiel Christiaan Meulendijk (UU), Optimizing medication reviews through
decision support: prescribing a better pill to swallow

03 Maya Sappelli (RUN), Knowledge Work in Context: User Centered Knowledge
Worker Support

04 Laurens Rietveld (VU), Publishing and Consuming Linked Data
05 Evgeny Sherkhonov (UVA), Expanded Acyclic Queries: Containment and an

Application in Explaining Missing Answers
06 Michel Wilson (TUD), Robust scheduling in an uncertain environment
07 Jeroen de Man (VU), Measuring and modeling negative emotions for virtual

training
08 Matje van de Camp (TiU), A Link to the Past: Constructing Historical Social

Networks from Unstructured Data
09 Archana Nottamkandath (VU), Trusting Crowdsourced Information on Cultural

Artefacts
10 George Karafotias (VUA), Parameter Control for Evolutionary Algorithms
11 Anne Schuth (UVA), Search Engines that Learn from Their Users
12 Max Knobbout (UU), Logics for Modelling and Verifying Normative Multi-

Agent Systems
13 Nana Baah Gyan (VU), The Web, Speech Technologies and Rural Development

in West Africa - An ICT4D Approach
14 Ravi Khadka (UU), Revisiting Legacy Software System Modernization
15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical Aspects, Al-

gorithms and Experiments
16 Guangliang Li (UVA), Socially Intelligent Autonomous Agents that Learn from

Human Reward
17 Berend Weel (VU), Towards Embodied Evolution of Robot Organisms
18 Albert Meroño Peñuela (VU), Refining Statistical Data on the Web
19 Julia Efremova (Tu/e), Mining Social Structures from Genealogical Data
20 Daan Odijk (UVA), Context & Semantics in News & Web Search
21 Alejandro Moreno Célleri (UT), From Traditional to Interactive Playspaces: Au-

tomatic Analysis of Player Behavior in the Interactive Tag Playground
22 Grace Lewis (VU), Software Architecture Strategies for Cyber-Foraging Sys-

tems
23 Fei Cai (UVA), Query Auto Completion in Information Retrieval
24 Brend Wanders (UT), Repurposing and Probabilistic Integration of Data; An

Iterative and data model independent approach
25 Julia Kiseleva (TU/e), Using Contextual Information to Understand Searching

and Browsing Behavior
26 Dilhan Thilakarathne (VU), In or Out of Control: Exploring Computational

Models to Study the Role of Human Awareness and Control in Behavioural
Choices, with Applications in Aviation and Energy Management Domains

27 Wen Li (TUD), Understanding Geo-spatial Information on Social Media
28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation - A study

on epidemic prediction and control
29 Nicolas Höning (TUD), Peak reduction in decentralised electricity systems -

Markets and prices for flexible planning
30 Ruud Mattheij (UvT), The Eyes Have It

BIBLIOGRAPHY 173

31 Mohammad Khelghati (UT), Deep web content monitoring
32 Eelco Vriezekolk (UT), Assessing Telecommunication Service Availability

Risks for Crisis Organisations
33 Peter Bloem (UVA), Single Sample Statistics, exercises in learning from just

one example
34 Dennis Schunselaar (TUE), Configurable Process Trees: Elicitation, Analysis,

and Enactment
35 Zhaochun Ren (UVA), Monitoring Social Media: Summarization, Classification

and Recommendation
36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal interaction

behavior optimized for robot-specific morphologies
37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual and computa-

tional inquiry
38 Andrea Minuto (UT), Materials that Matter - Smart Materials meet Art & Inter-

action Design
39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and Interpersonal

Style Selection for an Artificial Suspect
40 Christian Detweiler (TUD), Accounting for Values in Design
41 Thomas King (TUD), Governing Governance: A Formal Framework for

Analysing Institutional Design and Enactment Governance
42 Spyros Martzoukos (UVA), Combinatorial and Compositional Aspects of Bilin-

gual Aligned Corpora
43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-Management:

From Theory to Practice
44 Thibault Sellam (UVA), Automatic Assistants for Database Exploration
45 Bram van de Laar (UT), Experiencing Brain-Computer Interface Control
46 Jorge Gallego Perez (UT), Robots to Make you Happy
47 Christina Weber (UL), Real-time foresight - Preparedness for dynamic innova-

tion networks
48 Tanja Buttler (TUD), Collecting Lessons Learned
49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A Game-

Theoretic Analysis
50 Yan Wang (UVT), The Bridge of Dreams: Towards a Method for Operational

Performance Alignment in IT-enabled Service Supply Chains

2017 01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime
02 Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian Net-

works using Argumentation
03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Approach

with Autonomous Products and Reconfigurable Manufacturing Machines
04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store
05 Mahdieh Shadi (UVA), Collaboration Behavior
06 Damir Vandic (EUR), Intelligent Information Systems for Web Product Search
07 Roel Bertens (UU), Insight in Information: from Abstract to Anomaly
08 Rob Konijn (VU) , Detecting Interesting Differences:Data Mining in Health In-

surance Data using Outlier Detection and Subgroup Discovery
09 Dong Nguyen (UT), Text as Social and Cultural Data: A Computational Per-

spective on Variation in Text
10 Robby van Delden (UT), (Steering) Interactive Play Behavior
11 Florian Kunneman (RUN), Modelling patterns of time and emotion in Twitter

#anticipointment
12 Sander Leemans (TUE), Robust Process Mining with Guarantees

174 BIBLIOGRAPHY

13 Gijs Huisman (UT), Social Touch Technology - Extending the reach of social
touch through haptic technology

14 Shoshannah Tekofsky (UvT), You Are Who You Play You Are: Modelling
Player Traits from Video Game Behavior

15 Peter Berck (RUN), Memory-Based Text Correction
16 Aleksandr Chuklin (UVA), Understanding and Modeling Users of Modern

Search Engines
17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution
18 Ridho Reinanda (UVA), Entity Associations for Search
19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vectors in Infor-

mation Retrieval
20 Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge Shar-

ing: The Role of Perceived Benefits, Costs and Visibility
21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and Serious Gam-

ing (A Play on Worlds)
22 Sara Magliacane (VU), Logics for causal inference under uncertainty
23 David Graus (UVA), Entities of Interest — Discovery in Digital Traces
24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learning
25 Veruska Zamborlini (VU), Knowledge Representation for Clinical Guidelines,

with applications to Multimorbidity Analysis and Literature Search
26 Merel Jung (UT), Socially intelligent robots that understand and respond to hu-

man touch
27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of Social

Robots: People’s Preferences, Perceptions and Behaviors
28 John Klein (VU), Architecture Practices for Complex Contexts
29 Adel Alhuraibi (UvT), From IT-BusinessStrategic Alignment to Performance: A

Moderated Mediation Model of Social Innovation, and Enterprise Governance
of IT"

30 Wilma Latuny (UvT), The Power of Facial Expressions
31 Ben Ruijl (UL), Advances in computational methods for QFT calculations
32 Thaer Samar (RUN), Access to and Retrievability of Content in Web Archives
33 Brigit van Loggem (OU), Towards a Design Rationale for Software Documen-

tation: A Model of Computer-Mediated Activity
34 Maren Scheffel (OU), The Evaluation Framework for Learning Analytics
35 Martine de Vos (VU), Interpreting natural science spreadsheets
36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation from High-

throughput Imaging
37 Alejandro Montes Garcia (TUE), WiBAF: A Within Browser Adaptation Frame-

work that Enables Control over Privacy
38 Alex Kayal (TUD), Normative Social Applications
39 Sara Ahmadi (RUN), Exploiting properties of the human auditory system and

compressive sensing methods to increase noise robustness in ASR
40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Exploration of Hu-

man Control in Relation to Emotions, Desires and Social Support For applica-
tions in human-aware support systems

41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Exploration of Mental
Processes and a Smart Environment to Provide Support for a Healthy Lifestyle

42 Elena Sokolova (RUN), Causal discovery from mixed and missing data with
applications on ADHD datasets

43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval
44 Garm Lucassen (UU), Understanding User Stories - Computational Linguistics

in Agile Requirements Engineering
45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement

BIBLIOGRAPHY 175

46 Jan Schneider (OU), Sensor-based Learning Support
47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration
48 Angel Suarez (OU), Collaborative inquiry-based learning

2018 01 Han van der Aa (VUA), Comparing and Aligning Process Representations
02 Felix Mannhardt (TUE), Multi-perspective Process Mining
03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge Modeling,

Model-Driven Development of Context-Aware Applications, and Behavior Pre-
diction

04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis Teams in
Data-Centric Engineering Tasks

05 Hugo Huurdeman (UVA), Supporting the Complex Dynamics of the Informa-
tion Seeking Process

06 Dan Ionita (UT), Model-Driven Information Security Risk Assessment of
Socio-Technical Systems

07 Jieting Luo (UU), A formal account of opportunism in multi-agent systems
08 Rick Smetsers (RUN), Advances in Model Learning for Software Systems
09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations

176 BIBLIOGRAPHY

