
S TAT I S T I C A L E X T R A C T I O N O F
M U LT I L I N G U A L N AT U R A L L A N G U A G E

PAT T E R N S F O R R D F P R E D I C AT E S :
A L G O R I T H M S A N D A P P L I C AT I O N S

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

DISSERTATION

zur Erlangung des akademischen Grades

Doctor rerum naturalium
(Dr. rer. nat.)

im Fachgebiet

Informatik

Vorgelegt

von M.Sc Daniel Gerber

geboren am 16.12.1985 in Bad Schlema, Deutschland

Die Annahme der Dissertation wurde empfohlen von:

1. Prof. Dr. Ing. habil. Klaus-Peter Fähnrich, Universität Leipzig
2. Prof. Dr. Axel Polleres, Wirtschaftsuniversität Wien

Die Verleihung des akademischen Grades erfolgt mit Bestehen der
Verteidigung am 06.07.2016 mit dem Gesamtprädikat magna cum laude

bibliographic data

title:
Statistical Extraction of Multilingual Natural Language Patterns for
RDF Predicates: Algorithms and Applications

author:
Daniel Gerber

statistical information:
143 pages, 29 Figures, 29 tables, 10 listings, 1 appendix, 157 literature
references

supervisors:
Prof. Dr. Ing. habil. Klaus-Peter Fähnrich
Dr. Axel-Cyrille Ngonga Ngomo

institution:
Universität Leipzig, Fakultät für Mathematik und Informatik

time frame:
January 2011 - Oktober 2015

A B S T R A C T

The Data Web has undergone a tremendous growth period. It cur-
rently consists of more then 3300 publicly available knowledge bases
describing millions of resources from various domains, such as life
sciences, government or geography, with over 89 billion facts. In the
same way, the Document Web grew to the state where approximately
4.55 billion websites exist, 300 million photos are uploaded on Face-
book as well as 3.5 billion Google searches are performed on aver-
age every day. However, there is a gap between the Document Web
and the Data Web, since for example knowledge bases available on
the Data Web are most commonly extracted from structured or semi-
structured sources, but the majority of information available on the
Web is contained in unstructured sources such as news articles, blog
post, photos, forum discussions, etc. As a result, data on the Data
Web not only misses a significant fragment of information but also
suffers from a lack of actuality since typical extraction methods are
time-consuming and can only be carried out periodically. Further-
more, provenance information is rarely taken into consideration and
therefore gets lost in the transformation process. In addition, users are
accustomed to entering keyword queries to satisfy their information
needs. With the availability of machine-readable knowledge bases, lay
users could be empowered to issue more specific questions and get
more precise answers.

In this thesis, we address the problem of Relation Extraction, one
of the key challenges pertaining to closing the gap between the Doc-
ument Web and the Data Web by four means. First, we present a
distant supervision approach that allows finding multilingual natu-
ral language representations of formal relations already contained in
the Data Web. We use these natural language representations to find
sentences on the Document Web that contain unseen instances of this
relation between two entities. Second, we address the problem of data
actuality by presenting a real-time data stream RDF extraction frame-
work and utilize this framework to extract RDF from RSS news feeds.
Third, we present a novel fact validation algorithm, based on natural
language representations, able to not only verify or falsify a given
triple, but also to find trustworthy sources for it on the Web and es-
timating a time scope in which the triple holds true. The features
used by this algorithm to determine if a website is indeed trustwor-
thy are used as provenance information and therewith help to create
metadata for facts in the Data Web. Finally, we present a question
answering system that uses the natural language representations to
map natural language question to formal SPARQL queries, allowing

iii

lay users to make use of the large amounts of data available on the
Data Web to satisfy their information need.

iv

Z U S A M M E N FA S S U N G

Das Data Web hat eine enorme Wachstumsphase erlebt. Es besteht ak-
tuell aus mehr als 3300 öffentlich zugänglichen Wissensbasen, die Mil-
lionen Ressourcen von unterschiedlichen Domänen, wie etwa Biowis-
senschaften, Verwaltung und Geografie, mit über 89 Milliarden Fak-
ten beschreiben. In gleicher Weise wuchs das Document Web zu dem
Zustand in dem ungefähr 4,55 Milliarden Webseiten existieren und
im Tagesdurchschnitt 300 Millionen Fotos auf Facebook hochgeladen
und 3,5 Milliarden Google Suchanfragen durchgeführt werden. Trotz-
dem existiert eine Diskrepanz zwischen dem Document Web und
dem Data Web, weil zum Beispiel im Data Web verfügbare Wissens-
basen im Regelfall nur von strukturierten beziehungsweise teilweise
strukturierten Datenquellen extrahiert worden sind. Allerdings befindet
sich der Großteil der Daten im Web in unstrukturierten Datenquellen,
wie etwa in Nachrichtenartikeln, Blogs, Fotos, Forendiskussionen, etc.
Als ein Resultat dieser Diskrepanz fehlt den Daten im Data Web nicht
nur der Großteil der verfügbaren Informationen, sondern lassen Ak-
tualität vermissen, da typische Extraktionsmethoden zeitaufwendig
sind und deshalb nur periodisch ausgeführt werden können. Des
Weiteren werden Provenienzinformationen nur selten berücksichtigt
und gehen damit im Transformationsprozess verloren. Außerdem sind
Nutzer an Schlüsselwort-Anfragen gewöhnt, um ihr Informations-
bedürfnis zu befriedigen. Mit der Verfügbarkeit von maschinenles-
baren Wissensbasen werden auch unerfahrene Nutzer in die Lage
versetzt, spezifischere Fragen zu stellen und genauere Antworten zu
erhalten.

In dieser Arbeit beschäftigen wir uns mit dem Problem der Re-
lationsextraktion, eine der wichtigsten Herausforderungen, um die
Lücke zwischen Document Web und Data Web zu schließen. Dazu
stellen wir vier Methoden vor. Erstens zeigen wir einen Distant Su-
pervision Ansatz, der es erlaubt multilinguale natürlichsprachliche
Repräsentationen von formalen Relationen zu ermitteln, die bereits
im Data Web enthalten sind. Wir nutzen diese natürlichsprachlichen
Repräsentationen, um Sätze im Document Web zu finden, die un-
bekannte Instanzen dieser Relation zwischen zwei Entitäten enthal-
ten. Zweitens beschäftigen wir uns mit dem Problem der Datenaktu-
alität, indem wir ein Echtzeit-RDF-Extraktionsframework für Daten-
ströme vorstellen und dieses Framework anwenden, um RDF aus
RSS Nachrichten-Feeds zu extrahieren. Drittens präsentieren wir ein
neuartiges Fact Validation Verfahren, basierend auf natürlichsprach-
lichen Repräsentationen formaler Relationen, das nicht nur in der
Lage ist, ein gegebenes Tripel zu verifizieren beziehungsweise zu
widerlegen, sondern auch vertrauenswürdige Quellen dafür im Web

v

findet und zusätzlich ein Zeitintervall bestimmt, in dem das Triple
wahr ist. Die Merkmale, die von diesem Algorithmus genutzt werden,
um zu bestimmen, ob eine Webseite vertrauenswürdig ist, werden
als Provenienzinformationen genutzt und helfen somit Metadaten für
Fakten im Data Web zu generieren. Zum Abschluss präsentieren wir
ein Question Answering System, das natürlichsprachliche Repräsen-
tationen nutzt, um natürlichsprachliche Fragen auf formale SPARQL-
Anfragen abzubilden und es damit unerfahrenen Nutzern ermöglicht,
die riesigen Datenvolumen im Data Web nutzbar zu machen um
deren Informationsbedürfnis zu befriedigen.

vi

P U B L I C AT I O N S

This thesis is based on the following publications and proceedings.
References to the appropriate publications are included at the respec-
tive chapters and sections.

awards and notable mentions

• Best Research Paper Award at ISWC 2014 for AGDISTIS - Graph-
Based Disambiguation of Named Entities using Linked Data.

• Best Student Paper Award at ESWC 2014 for Hybrid Acquisition
of Temporal Scopes for RDF Data.

• Spotlight Paper at ISWC 2012 for DeFacto - Deep Fact Validation.

journals , peer-reviewed

• Journal of Web Semantics: “DeFacto - Temporal and Multilingual
Deep Fact Validation” [Gerber et al., 2015]

conferences , peer-reviewed

• 18th International Conference on Knowledge Engineering and
Knowledge Management: “Extracting Multilingual Natural Lan-
guage Patterns for RDF Predicates” [Gerber and Ngonga Ngomo,
2012]

• 11th International Semantic Web Conference, 2012: “DeFacto -
Deep Fact Validation” [Lehmann et al., 2012b]

• 11th International Semantic Web Conference, 2012: “DEQA: Deep
Web Extraction for Question Answering” [Lehmann et al., 2012a]

• 20th World Wide Web Conference, 2012: “Template-based question
answering over RDF data” [Unger et al., 2012]

• 12th International Semantic Web Conference, 2013: “Real-time
RDF extraction from unstructured data streams” [Gerber et al., 2013]

• 4th Conference on Knowledge Engineering and Semantic Web,
2013: “TBSL Question Answering System Demo” [Höffner et al.,
2013]

vii

• 22nd World Wide Web Conference, 2013: “Sorry, I don’t speak
SPARQL — Translating SPARQL Queries into Natural Language”
[Ngonga Ngomo et al., 2013a,b]

• 8th International Conference on Language Resources and Eval-
uation: “N3 - A Collection of Datasets for Named Entity Recognition
and Disambiguation in the NLP Interchange Format” [Röder et al.,
2014]

• 11th Extended Semantic Web Conference, 2014: “Hybrid Acquisi-
tion of Temporal Scopes for RDF Data” [Rula et al., 2014]

• 13th International Semantic Web Conference, 2014: “AGDISTIS
- Agnostic Disambiguation of Named Entities Using Linked Open
Data” [Usbeck et al., 2014]

book chapters , peer-reviewed

• Chapter “From RDF to Natural Language and Back” in Towards
the Multilingual Semantic Web, 2014 [Gerber and Ngonga Ngomo,
2013]

workshops , peer-reviewed

• 1st Workshop on Web Scale Knowledge Extraction at Interna-
tional Semantic Web Conference, 2011: “Bootstrapping the Linked
Data Web” [Gerber and Ngonga Ngomo, 2011]

unpublished papers

• “Mapping text to ontology with DBpedia Lemon and BOA” [Lukovnikov
et al., 2014]

viii

A C K N O W L E D G M E N T S

I would like to thank all of my colleagues with whom I jointly wrote
the papers and articles that led to this work: Axel Ngonga, Sebas-
tian Hellmann, Lorenz Bühmann, Tomasso Soru, Jens Lehmann, Mo-
hamed Morsey, Christina Unger, Philipp Cimiano, Konrad Höffner,
Michael Röder, Ricardo Usbeck, Anisa Rula, Matteo Palmonari and
Denis Lukovnikov. Special thanks goes to my direct supervisor Dr.
Axel-Cyrille Ngonga Ngomo. He continuously supported me through
my Ph. D. work, gave advice and recommendations for further re-
search steps and improvements. I would like to thank Prof. Dr. Ing.
habil. Klaus-Peter Fähnrich for his scientific experience with the effi-
cient organization of the process of a Ph. D. thesis and Prof. Dr. Sören
Auer who helped me to get a scholarship, which made this thesis pos-
sible. This thesis was funded by the Medienstiftung der Sparkasse
Leipzig. I would like to thank Stephan Seeger for providing me with
that opportunity. Also, I would like to thank Michael Martin who su-
pervised my master thesis and guided my way to this dissertation. I
would like to thank my close friend Robert Remus who challenged
my ideas constantly and always provided valuable feedback. Finally
I would like to thank my family, Swen, Sylvana, David, Irene and
Rolf who have supported me in all respects over the period of this
dissertation and beyond.

Thank You.

ix

C O N T E N T S

i algorithms for the statistical extraction of mul-
tilingual natural language patterns 1

1 introduction 2

1.1 From the World Wide Web to the Semantic Web 2

1.2 Current Drawbacks of the Semantic Web 4

1.3 Chapter Overview 7

1.4 Author Contributions 8

2 preliminaries 9

2.1 Semantic Web 9

2.1.1 RDF, RDFS, OWL 10

2.1.2 SPARQL 13

2.1.3 DBpedia, YAGO(2) and Freebase 14

3 bootstrapping linked data 18

3.1 Introduction 19

3.2 Related Work 22

3.3 The BOA Framework 28

3.3.1 Corpus Extraction 28

3.3.2 Knowledge Acquisition 29

3.3.3 Pattern Search 29

3.3.4 Pattern Scoring 31

3.3.5 RDF Generation 34

3.3.6 Evaluation 34

3.4 Multilingual Extension of BOA 42

3.4.1 Overview 42

3.4.2 Pattern Extraction 42

3.4.3 Feature Extraction 45

3.4.4 Scoring Approach 47

3.4.5 RDF Generation 48

3.4.6 Evaluation 49

3.5 Conclusion 52

4 real-time rdf extraction from unstructured data

streams 54

4.1 Introduction 55

4.2 Overview 56

4.2.1 Data Acquisition 56

4.2.2 Deduplication 57

4.2.3 Pattern Search and Filtering 57

4.2.4 Pattern Refinement 58

4.2.5 Pattern Similarity and Clustering 60

4.2.6 Cluster Labeling and Merging 60

x

contents xi

4.2.7 Mapping to RDF and Publication on the Data
Web 61

4.2.8 Linking 63

4.3 Evaluation 63

4.3.1 URI Disambiguation 64

4.3.2 Pattern Clustering 65

4.3.3 RDF Extraction and Linking 66

4.3.4 Scalability 67

4.4 Related Work 68

4.5 Conclusion 71

ii applications of multilingual natural language

patterns 72

5 defacto - deep fact validation 73

5.1 Introduction 74

5.2 Related Work 77

5.3 Approach 80

5.4 DeFacto – Deep Fact Validation 85

5.4.1 BOA 85

5.4.2 Trustworthiness Analysis of Webpages 88

5.4.3 Features for Deep Fact Validation 90

5.4.4 Evaluation 91

5.5 DeFacto – Multilingual and Temporal Extension 96

5.5.1 Training BOA for DeFacto 96

5.5.2 Automatic Generation of Search Queries 97

5.5.3 BOA and NLP Techniques for Fact Confirma-
tion 97

5.5.4 Trustworthiness Analysis of Webpages 99

5.5.5 Features for Deep Fact Validation 100

5.5.6 Temporal Extension of DeFacto 100

5.5.7 FactBench - A Fact Validation Benchmark 103

5.5.8 Evaluation 107

5.6 Conclusion 117

6 template-based question answering over rdf data 118

6.1 Introduction 119

6.2 Overview 121

6.3 Evaluation and Discussion 122

6.4 Prototype 124

6.5 Related Work 124

6.6 Conclusion 125

7 mapping text to ontology with dbpedia lemon

and boa 127

7.1 Lexical Pattern Library and Seed Lexicon 127

7.2 Combining lemon seeds and BOA 129

7.2.1 Finding mapping extraction patterns 129

7.2.2 Extracting new lexical mappings 130

contents xii

7.3 Evaluation 131

7.4 Conclusion and future work 131

8 conclusion and future work 133

8.1 Summary 133

8.2 Future Work 136

iii appendix 138

a appendix 139

a.1 Template Based Question Answering 139

bibliography 141

L I S T O F F I G U R E S

Figure 1 The Semantic Web Stack after Tim Berners-Lee 10

Figure 2 Linking Open Data cloud diagram 2014, by Max
Schmachtenberg, Christian Bizer, Anja Jentzsch
and Richard Cyganiak. http://lod-cloud.net/ 11

Figure 3 Screenshot of the DBPedia graphical user in-
terface. 15

Figure 4 Screenshot of the YAGO(2) ontology browser. 16

Figure 5 Screenshot of the Freebase user interface de-
picting Tim Berners-Lee’s educational stages in
an n-ary relational format. 16

Figure 6 Web-view of the Google Knowledge Graph based
on Freebase data. 17

Figure 7 Usage of content languages for webpages. (W3Techs.com,
21 November 2013) 20

Figure 8 Overview of the BOA approach. 28

Figure 9 Distribution of parameters used to compute
the support of patterns in log-log scale. The y-
axis shows the number of patterns 33

Figure 10 Screenshot of the BOA frontend 35

Figure 11 Overview of the knowledge extraction on DB-
pedia 36

Figure 12 Overview of the BOA approach. Parts that changed
from the previous version are marked red. 43

Figure 13 Distribution of patterns per pattern mapping
in logarithmic scale. Each vertical line repre-
sents one pattern mapping. 44

Figure 14 Screenshot of the BOA pattern library Web in-
terface. 49

Figure 15 Learning curves of BOA’s neural networks. The
x-axis shows the number of input neurons and
the y-axis shows the achieved accuracy. 50

Figure 16 Overview of the generic time slice based stream
processing. 56

Figure 17 Runtimes for different components and cor-
pora (1% left, 10% right, 100% bottom) per it-
eration. 69

Figure 18 Number of patterns (log scale) and patterns
with |S ′θ| > 1 (Patterns+) for iterations and test
corpus. 70

xiii

Figure 19 Number of clusters (log scale) and clusters with
|C| > 1 (Cluster+) for iterations and test cor-
pus. 70

Figure 20 Overview of the DeFacto architecture. 81

Figure 21 Overview of the provenance schema which is
used to export the validation result of DeFacto
as RDF, given the input fact Albert Einstein,

award, Nobel Price in Physics. 83

Figure 22 Screenshot of the extended DeFacto Web inter-
face. 84

Figure 23 Distribution of year numbers in World Wide
Web. Shows approximate number of Google
search results. Outliers from left to right, 1931,
1972 and 2000. As comparison ’EU’ has about
2.280.000.000 and ’Obama’ 478.000.000 hits. 106

Figure 24 Overview of time points and time periods in
the FactBench train set. 108

Figure 25 Accuracy results for learned J48 mix classifier
on correct subset of the test set. The abbrevi-
ation ml indicates that multilingual (English,
French, German) search results and surface forms
were used, en is limited to English only. 111

Figure 26 A plot showing the proportion of correctly clas-
sified facts (y-axis) for the FactBench mix-correct-
test-set using the J48 classifier. The time inter-
vals (x-axis) are buckets of ten years, e.g. 1910

stands for all years from 1910 to 1919. Results
for the multilinguael and English-only setting
of DeFacto are shown. 115

Figure 27 Overview of the template based SPARQL query
generator. 121

Figure 28 Screenshot of prototype available at http://

autosparql-tbsl.dl-learner.org. 124

Figure 29 Overview of DBpedia lemon lexicon for word
“wife”. 128

L I S T O F TA B L E S

Table 1 Comparison of the WWW and the Semantic
Web. 4

Table 2 Overview of relevant OWL concepts 13

Table 3 Comparison of DBpedia, YAGO2 and Freebase 17

xiv

http://autosparql-tbsl.dl-learner.org
http://autosparql-tbsl.dl-learner.org

List of Tables xv

Table 4 Comparison of algorithms related to BOA ap-
proach. 27

Table 5 Example sentences for pattern search. 31

Table 6 Corpora statistics. (All figures in millions.) 37

Table 7 Evaluation results for top-1 pattern. 37

Table 8 Evaluation results for top-2 pattern. 38

Table 9 Overview of extraction statistics of first itera-
tion for en-wiki. 39

Table 10 Overview of extraction statistics of first itera-
tion for en-news. 39

Table 11 Top-2 natural language representations for six
most used relations in evaluation. “—” means
that no natural language representation was
found, patterns in brackets are next in line but
were not used for the evaluation because they
did not fulfill the threshold requirements. 40

Table 12 Triples extracted from evaluation data set not
present in DBpedia. 41

Table 13 Statistical overview of German and English sur-
face forms. 43

Table 14 Example sentences for pattern search. 45

Table 15 Results of the first iteration of the BOA frame-
work. 51

Table 16 Accuracy of RDF Extraction for subjects (S),
predicates (P) and objects (O) on 1% dataset
with varying cluster sizes Ei. 67

Table 17 Number of non-duplicate sentences in 1% of
the data extracted from 1457 RSS feeds within
a window of 10 time slices (2h each). The sec-
ond column shows the original number of sen-
tences without duplicate removal. 67

Table 18 Example for linking between RdfLiveNews and
DBpedia. 68

Table 19 Performance measures for several classifiers on
the fact confirmation task (AUC = area under
the ROC curve, RMSE = root mean squared er-
ror). 88

Table 20 Classification results for the different evalua-
tion sets. 95

Table 21 Proofs with language distribution used to train
fact classifier. 98

Table 22 Example list of patterns for relations publica-
tion (top) and marriage (bottom). 99

Table 23 Example list of temporal patterns extracted from
English, German and French Wikipedia. 99

Table 24 Overview of all correct facts of the training and
testing set (train/test). 104

Table 25 Classification results for FactBench test sets (C
= correctness, P = precision, R = recall, F1 = F1
Score, AUC = area under the curve, RMSE =
root mean squared error). 110

Table 26 Classification results for FactBench mix test set
on English language only. 112

Table 27 Overview of the time-period detection task for
the FactBench training set with respect to the
different normalization methods. ml (multilin-
gual) indicates the use of all three languages
(en,de,fr). 114

Table 28 Overview of the domain-normalization on the
FactBench test set. ml (multilingual) indicates
the use of all three languages (en,de,fr). C(S|E)

shows the number of correct start and end years,
P75 is the number of time-periods possible to
detect correctly and A is the accuracy on P75. 116

Table 29 This table shows precision and recall values
for each processed question (i.e. all questions
that do not require the YAGO or FOAF names-
pace). For questions with no precision and re-
call specified, no query was constructed. Ques-
tions printed in cells with red background were

not parsed, questions in white cells succeeded
and for questions in lightgray cells queries with
quality equal or close to the Gold query were
built, while questions in yellow cells fail due
to a query selection problem and questions in
orange cells fail due to some entity identifica-

tion problem. 140

L I S T I N G S

Listing 1 URI scheme after Berners-Lee et al. [2005] 10

Listing 2 Example SPARQL query. 14

Listing 3 RDF snippet used for pattern search 30

Listing 4 RDF snippet generated by BOA 34

Listing 5 SPARQL query template used for knowledge
acquisition. 36

Listing 6 RDF snippet used for pattern search 44

xvi

Listings xvii

Listing 7 RDF extracted by BOA. If not stated otherwise,
all instances and properties use the DBpedia
namespace. 51

Listing 8 Example RDF extraction of RdfLiveNews 62

Listing 9 Input data for Defacto. 85

Listing 10 Example of a fact in FactBench. 106

Part I

A L G O R I T H M S F O R T H E S TAT I S T I C A L
E X T R A C T I O N O F M U LT I L I N G U A L N AT U R A L

L A N G U A G E PAT T E R N S

The first part of this thesis gives an overview of the current
state of the Semantic Web. It highlights the drawbacks the
current Semantic Web has with respect to the World Wide
Web. These drawbacks simultaneously constitute the mo-
tivation of this thesis. This part is focused on algorithms
to extract natural language patterns from free text to elimi-
nate current problems such as actuality and completeness.
We present algorithms that use the data already available
on the Data Web to extract patterns for the English as well
as the German language. These multilingual patterns are
used to extract new knowledge and therewith expand the
Data Web.

1
I N T R O D U C T I O N

1.1 from the world wide web to the semantic web

Since its invention by Tim Berners-Lee and Robert Cailliau in 1991

and its publication to the general public later that year, the World
Wide Web (WWW) has changed the daily lives of billions of people.
Its introduction had an impact comparable to that of other inventions
like the steam engine, the car or transistors. It did not only change
our lives but also our mindset. The ways in which we communicate
and collaborate ever since, not only with other people but also with
machines, have changed dramatically. In the course of its history, the
Web has transformed from a text- and line-based interface for a hand-
ful of websites for high energy particle physicists into an ubiquitous
technology accompanying us everywhere and anytime in the form of
laptops, phones, watches, cars and even refrigerators. After its first
ten years of infancy and its survival of the dot-com bubble burst in
the late years of the last and early years of the new millennium, key
players such as Google, Amazon, Ebay and Yahoo! crystallized. Ac-
cording to Tim O’Reilly1, “The central principle behind the success
of the giants born in the Web 1.0 era who have survived to lead the
Web 2.0 era appears to be this, that they have embraced the power
of the web to harness collective intelligence . . . ”. This collective intel-
ligence can generally be seen as the aggregation of all contributions
made to the WWW from all its users. This intelligence, e.g. harnessed
by Google through applying PageRank to the user-generated hyper-
link structure of the Web or Amazon’s focus on costumer satisfaction
for example via recommendation systems based on past purchases,
is also what made the Web 2.0 so successful and growing exponen-
tially. With the introduction of RSS feeds as well as blogs the power
was moved away from the server and admin side to user’s desk-
tops. This movement drastically increased online collaboration and
therewith enabled the rise of user-generated content websites such
as Wikipedia, Flickr and Youtube. Unfortunately, with the growing
number of web startups and content on the web, mostly generated
by lay users, new problems arose. How could data be reused across
application, enterprise and community boundaries? How could users
find what they were searching for, or an even harder question to an-
swer, what they meant? At the heart of these issues lays the fact, that
the Web was, and still is, generated by humans for humans. Docu-
ments, and that is all what the Web at that time contained, are not

1 http://oreilly.com/pub/a/web2/archive/what-is-web-20.html

2

http://oreilly.com/pub/a/web2/archive/what-is-web-20.html

1.1 from the world wide web to the semantic web 3

automatically processable by machines. In this Web of Documents it
is not possible for software algorithms to distinguish between sites
focusing on Anne Hathaway the american actress or Anne Hathaway
the spouse of 18-year-old William Shakespeare without context. Since
data is kept in silos (of the respective application) it is not possible to
reuse them. For example the geo- and face-tagged photos of the last
family holiday loose their metadata after uploading them to Flickr,
because two different applications do not speak the same language.
To solve these fundamental problems, Berners-Lee et al. [2001] pub-
lished their vision of a semantic layer on top of the already existing
link infrastructure of the WWW, dubbed the Semantic Web. In this vi-
sion, communication, e.g. the negotiation of a doctors appointment,
will not need to be handled by humans talking to humans, but by soft-
ware agents talking to software agents. Even hardware items such as
stereos, telephones and laptops can have agents publishing and dis-
covering semantic services to, as exemplified by the vision, send a
turn down speaker volume request to all nearby devices while receiving
an incoming call. Sir Tim Berners-Lee formulated (the second part of)
his dream in Berners-Lee and Fischetti [1999] as follows:

“Machines become capable of analyzing all the data on
the Web - the content, links, and transactions between peo-
ple and computers. A ‘Semantic Web’, which should make
this possible, has yet to emerge, but when it does, the day-
to-day mechanisms of trade, bureaucracy, and our daily
lives will be handled by machines talking to machines,
leaving humans to provide the inspiration and intuition.
The intelligent ‘agents’ people have touted for ages will fi-
nally materialize. This machine-understandable Web will
come about through the implementation of a series of tech-
nical advancements and social agreements that are now
beginning.”

One of the key technical advancements to fulfill this ultimate future
is the Resource Description Framework (RDF, see Chapter 2), a W3C
standard which defines the RDF graph data model (as well as an ab-
stract syntax and semantics) that can be used to express arbitrary in-
formation in a machine-readable format to reuse data across applica-
tion, enterprise, and community boundaries. If this machine-readable
data is exposed to machines and combined with access to a set of in-
ference rules – i.e. to infer automatically that, if Berlin is a city in Ger-
many and Germany is located in Europe, then Berlin is also located
in Europe – would transform the Web of Documents into the Data
Web. The Semantic Web community was faced with a lot of criticism,
be it the question if the creation of web-scale ontologies is possible
or if databases (triple stores) will ever scale to billions of triples, even
Shadbolt et al. stated in 2006: “This simple idea, however, remains
largely unrealized.” Fortunately, this early criticism is no longer valid.

1.2 current drawbacks of the semantic web 4

WWW Semantic Web

Actuality 7

Editability 7

Usability 7

Queryability 7

Reasoning 7

Scalability 7

Design For humans Humans and machines

Integrability 7

Table 1: Comparison of the WWW and the Semantic Web.

Triple stores have successfully loaded and queried over 1 trillion RDF
triples2, the Linked Open Data Cloud3 has evolved from containing
12 datasets in 2007 to containing more then 3300 datasets and over
89 billion triples in 2015,4, governments all over the world started to
provide their data to the general public, Facebook’s Open Graph Pro-
tocol5 allows any webpage to be part of their social graph and Google
who introduced schema.org, a lightweight vocabulary to annotate web-
sites, reported that over 15% of all sites/pages now have embedded
schema.org vocabulary terms, which totals to 5 million sites and over
25 billion entity references6 etc.

1.2 current drawbacks of the semantic web

These achievements can be seen as a great success for the Semantic
Web, but there are still a number of problems residing within its cur-
rent state, which will be the motivation of this thesis:

completeness While the Web 2.0, or Web of Documents, was
and still is targeted towards humans, the Data Web aims at providing
knowledge both in human- and machine-readable form. The meth-
ods developed to populate the Data Web, e.g. DBpedia [Lehmann
et al., 2013] or LinkedGeoData [Auer et al., 2009; Stadler et al., 2012],
have relied on the extraction and transformation of data from struc-
tured or semi-structured data sources. The vast majority of data or
in other words collective intelligence, accumulated in blogs, forums,
Wikipedia articles, news sites and so on is not integrated into the

2 http://franz.com/about/press_room/trillion-triples.lhtml

3 http://lod-cloud.net/

4 Data provided by http://stats.lod2.eu/ retrieved 28.07.2015.
5 http://ogp.me

6 Data presented at ISWC 2013, http://videolectures.net/site/normal_dl/tag=

817824/iswc2013_guha_tunnel_01.pdf page 23

http://franz.com/about/press_room/trillion-triples.lhtml
http://lod-cloud.net/
http://stats.lod2.eu/
http://ogp.me
http://videolectures.net/site/normal_dl/tag=817824/iswc2013_guha_tunnel_01.pdf
http://videolectures.net/site/normal_dl/tag=817824/iswc2013_guha_tunnel_01.pdf

1.2 current drawbacks of the semantic web 5

Data Web. For example, the number of scanned books by Google is
estimated to be over 20 million7 and the number of medical articles in-
dexed by PubMed in 2013 is over 1.1 million8. Researchers, especially
in the Artificial Intelligence and Natural Language Processing com-
munity have been building machine-readable knowledge bases, such
as Cyc [Lenat, 1995] and WordNet [Fellbaum, 1998] for decades. With
this incredibly huge amount of available data and the steady increase
in computational power and storage, it becomes possible to build
web-scale knowledge base construction algorithms extracting knowl-
edge from unstructured data. The data produced by these algorithms
can be used in manifold ways. We could build smarter applications
than “Eugene Goostman”, the first chat bot able to pass a version of
the Turing Test9 or answer complex queries from life scientists who
want to query an integrated database of genom, protein and drug
data [Tsatsaronis et al., 2015]. Finally we could build better question
answering systems like Watson [Ferrucci et al., 2010] who support us
in everyday life and might be one day the software agents dreamt of
in the Semantic Web vision.

actuality As previously mentioned, the methods developed to
populate the Semantic Web rely on input from semi-structured and
structured knowledge sources. These sources usually do not provide
an API to their live data, but for the most time provide backups in
the form of database dumps. These dumps are generated in a peri-
odical manner, but, for that reason, fail to provide up-to-date data.
Also, these methods are not fully automated but have to be carried
out by academic personal on top of their actual research work. For
example the last four releases of DBpedia had a release cycle of about
10 months and the last LinkedGeoData release is already 10 months
old. For applications with strong timeliness requirements like deci-
sion support, where software agents help humans to decide on criti-
cal issues such as whether to buy stock or not or even how to plan
their drive through urban centers, out-of-date data of this magnitude
is unacceptable. For the vision of the Semantic Web to succeed, future
applications need to have access to up-to-date data as regular Web 2.0
applications have now.

provenance The future agents of the Semantic Web consume
data from many different sources. The agent from the example above
has to find doctors with a rating of excellent or very good. If the
service providing the ratings cannot be trusted then the results are
unusable. An important tool to measure trustworthiness and data
quality in the Data Web is provenance [Hartig, 2009]. A multitude

7 http://searchengineland.com/google-books-fair-use-177093

8 http://dan.corlan.net/cgi-bin/medline-trend?Q=

9 http://www.reading.ac.uk/news-and-events/releases/PR583836.aspx

http://searchengineland.com/google-books-fair-use-177093
http://dan.corlan.net/cgi-bin/medline-trend?Q=

1.2 current drawbacks of the semantic web 6

of standards have been proposed to express provenance information
in RDF. For example the Dublin Core Metadata Initiative (DCMI) re-
leased the DCMI Metadata Terms [DCMI Usage Board, 2006] and the
World Wide Web Consortium (W3C) released the provenance ontol-
ogy PROV-O [Belhajjame et al., 2012]. Still, only few knowledge bases
actually provide provenance information. For instance, less than 3%
of the more than 607.7 million RDF documents indexed by Sindice10

in June 2012 contained metadata such as creator, created, source, mod-
ified, contributor or provenance.11 This coverage increased to around
10% for the 708.26 million documents indexed by Sindice in Decem-
ber 2013, but is still far from optimal. The WikiData project, a collab-
oratively edited, machine-readable knowledge base operated by the
Wikimedia Foundation, also has only about 12% of their statements
pointing to sources outside of Wikipedia12. Despite the fact that these
numbers are growing, it is still far from generating (data, user or ser-
vice) trust levels reached by some Web 2.0 platforms, such as Ebay,
Reddit or Google (PageRank).

quality The size of the Semantic Web, i.e. the amount of triples
and different data sets available, has exceeded by any standards what
anybody could have imagined in the early days. Additionally, the log-
ical foundations of RDF and especially the description logic based
OWL (Web Ontology Language) make knowledge bases very sus-
ceptible to errors. The principle of explosion [Carnielli and Marcos,
2001], saying that every statement can be proven from a contradic-
tion, makes reasoning over inconsistent knowledge bases a demand-
ing task. Also, question answering systems would be of no use, if
they were correctly mapping natural language to a formal query lan-
guage and the underlying database contained errors. Recent research
has shown that for example a lot of RDF data not only contains
syntactical, but also a large number of semantical errors. From 2122

datasets, analyzed by Demter et al. [2012], 1185 datasets (56.1%) con-
tained errors. [Hogan et al., 2010] showed that in a random sample
of 55000 RDF documents (approximately 12.5 million triples) 14.3%
of all triples use undeclared properties, 8.1% use undeclared classes
and 1,329 members of disjoint classes can be found. Zaveri et al.
[2013] evaluated the quality of DBpedia and observed a 11.93% er-
ror rate through manual evaluation. A semi-automatic analysis re-
vealed 200,000 violations of property characteristics. To clean knowl-
edge bases already created from semi-structured sources and vali-
date the output of algorithms for the extraction of knowledge from
unstructured sources, fact validation algorithms, on a semantic level,
have to be researched in more detail.

10 http://www.sindice.com

11 Data retrieved on June 6, 2012.
12 Data retrieved from https://tools.wmflabs.org/wikidata-todo/stats.php on

26th June, 2014.

http://www.sindice.com
https://tools.wmflabs.org/wikidata-todo/stats.php

1.3 chapter overview 7

After only 25 first years of its existence, the Web has become the
biggest achievement mankind has ever made. As Hendler and Gol-
beck [2008] have shown, the power of the Web is enhanced through
the network effect produced as resources link to each other with the
value determined by Metcalfe’s law [Shapiro and Varian, 1998]. The
law states that the value of a network is proportional to the square
of the number of connected resources of the system. Therefore, the
goal of this thesis is to increase the number of correct and decrease
the number of incorrect triples in the Data Web, by harvesting the
collective knowledge accumulated by millions of users to further in-
crease the network effect, making the Semantic Web as successful as
the Web 2.0.

1.3 chapter overview

This thesis is divided into two parts. Part I introduces the Semantic
Web and its core technologies as well as underlying knowledge bases
utilized in this thesis. It secondly focuses on the first two aforemen-
tioned problems, Completeness and Actuality, by extracting multilin-
gual natural language patterns for formal relations and using them
to further extract new knowledge with the help of statistical and ma-
chine learning methods. We apply these methods to two different text
domains: firstly to general, encyclopedic knowledge and secondly to
newspapers covering a wide variety of news domains such as politics,
sports, business and travel etc. Additionally, we start to investigate
the effects of our methods in a Closed Relation Extraction setting in
Chapter 3, where we have a set of predefined relations for which we
want to extract new instances. Our approach can be used to bootstrap
the Data Web, since it uses its data to generate even more knowledge,
which is directly insertable into it. As a result of our method we pro-
vide a multilingual knowledge base of natural language representa-
tions for predicates found on the Data Web, a set of features that can
be used to distinguish high-quality from poor-quality patterns and
show that we can extract knowledge from text with high accuracy.
Then, we explore an Open Relation Extraction setting in Chapter 4,
where no predefined relations are given and have to be found in con-
tinuous text, grouped and linked to existing knowledge bases.

Part II of this thesis focuses on the application of the learned natu-
ral language to formal relations mapping in three different use cases.
Chapter 5 tackles the problems Provenance and Quality by using the
multilingual mappings to validate facts. Chapter 6 and 7 focus on the
ontology linking problem, i.e. finding what vocabulary element from
an OWL ontology is the target of referral, in a question answering
and dictionary population problem space.

1.4 author contributions 8

This thesis is, for consistency and redundancy reasons, generally
structured in a way that the main chapters (Chapters 3-5) are self con-
tained. This means that e.g. the related work as well as the evaluation
sections for the corresponding algorithms are included within the
chapters. Chapter 3 and Chapter 5 are build iteratively. This results
in a two-tier structure where first, the findings for a non multilingual
(English) version of the respective algorithms are presented. Based
on these findings and the gained insights, we extend the previously
presented methodology to support multiple languages in the second
tier.

This thesis concludes with Chapter 8 which contains a summary of
the presented algorithms for multilingual pattern extraction. Further-
more, it provides pointers to future work.

1.4 author contributions

Parts of this thesis have been joint work and have been previously
published in the papers named in the publication list above. The con-
tributions of this thesis’ author are clearly marked at the beginning of
every main chapter (Chapter 3-7). Wherever contributions of others
are involved, every effort is made to indicate this clearly.

2
P R E L I M I N A R I E S

In this chapter we first give a brief introduction to the idea, history
and vision of the Semantic Web. We then describe its core building
blocks such as URIs, RDF(S) and OWL. Furthermore, we will present
SPARQL, a formal language to query RDF datasets and its impor-
tance for this thesis. In the final section we give an overview of cur-
rent large-scale knowledge bases like DBpedia, YAGO and Freebase
and show their importance as invaluable resources, thereby provid-
ing background knowledge for the machine learning algorithms pre-
sented in Chapters 3, 4 and 5.

2.1 semantic web

With the introduction of the World Wide Web in 1989, with its orig-
inal goal to foster the exchange of scientific documents and its sub-
sequent rapid growth, arose a multitudinous amount of interlinked
documents within only a few years. Those documents, however, con-
tained a vast amount of information, which in general, could only
be understood by humans. The idea of the Semantic Web is not the
replacement, but the extension of the available network to empower
machines to not only present but also to process these information.
Tim Berners-Lee outlined this concept in Berners-Lee et al. [2001] as
follows:

“The Semantic Web is not a separate Web but an extension
of the current one, in which information is given well-
defined meaning, better enabling computers and people
to work in cooperation.”

This definition has been extended by the World Wide Web Consor-
tium (W3C), which plays a leading role in standardizing the applied
technologies:

“The Semantic Web provides a common framework that
allows data to be shared and reused across application, en-
terprise, and community boundaries. It is a collaborative
effort led by W3C with participation from a large number
of researchers and industrial partners.”

The technologies which emerged after the first presentation of the Se-
mantic Web, e.g. URIs, RDF, SPARQL and OWL, have been hierarchi-
cally organized in the so called Semantic Web Stack, shown in Figure 1.
These still evolving technologies are of major importance for fulfilling

9

2.1 semantic web 10

Figure 1: The Semantic Web Stack after Tim Berners-Lee

the vision imagined in [Berners-Lee et al., 2001] and therewith act as
a foundation for this thesis.

2.1.1 RDF, RDFS, OWL

uniform resource identifier Uniform Resource Identifiers
(URIs) build the foundation of the Semantic Web technology stack
and therewith form the link between RDF and the Web. With their
help, it is possible to unambiguously define and reference abstract
as well as concrete concepts on a global level. In contrast, this is not
possible with relational or XML based systems. In the context of iden-
tifying documents in the WWW with URIs, it is also called Uniform
Resource Locator (URL). URIs are constructed by the scheme defined
in Berners-Lee et al. [2005] and shown in Listing 1.

1 URI = scheme ":" hierarchy-part ["?" query] ["#" fragment]
2

3 hierarchy-part = "//" authority path-abempty
4 / path-absolute
5 / path-rootless
6 / path-empty

Listing 1: URI scheme after Berners-Lee et al. [2005]

The parts scheme and hierarchy-part always have to occur, whereas
the query and fragment parts are optional. Furthermore, the scheme
part determines the interpretation of the substring after the colon.
Typical in the WWW occurring schemes are http for the description
of web sites, mailto for email addresses or doi for description of dig-
ital objects. In the context of the Semantic Web, URIs are above all
used to define concepts like places, organizations or persons but also to

2.1 semantic web 11

Linked Datasets as of August 2014

Uniprot

Alexandria
Digital Library

Gazetteer

lobid
Organizations

chem2
bio2rdf

Multimedia
Lab University

Ghent

Open Data
Ecuador

Geo
Ecuador

Serendipity

UTPL
LOD

GovAgriBus
Denmark

DBpedia
live

URI
Burner

Linguistics

Social Networking

Life Sciences

Cross-Domain

Government

User-Generated Content

Publications

Geographic

Media

Identifiers

Eionet
RDF

lobid
Resources

Wiktionary
DBpedia

Viaf

Umthes

RKB
Explorer

Courseware

Opencyc

Olia

Gem.
Thesaurus

Audiovisuele
Archieven

Diseasome
FU-Berlin

Eurovoc
in

SKOS

DNB
GND

Cornetto

Bio2RDF
Pubmed

Bio2RDF
NDC

Bio2RDF
Mesh

IDS

Ontos
News
Portal

AEMET

ineverycrea

Linked
User

Feedback

Museos
Espania
GNOSS

Europeana

Nomenclator
Asturias

Red Uno
Internacional

GNOSS

Geo
Wordnet

Bio2RDF
HGNC

Ctic
Public

Dataset

Bio2RDF
Homologene

Bio2RDF
Affymetrix

Muninn
World War I

CKAN

Government
Web Integration

for
Linked
Data

Universidad
de Cuenca
Linkeddata

Freebase

Linklion

Ariadne

Organic
Edunet

Gene
Expression
Atlas RDF

Chembl
RDF

Biosamples
RDF

Identifiers
Org

Biomodels
RDF

Reactome
RDF

Disgenet

Semantic
Quran

IATI as
Linked Data

Dutch
Ships and

Sailors

Verrijktkoninkrijk

IServe

Arago-
dbpedia

Linked
TCGA

ABS
270a.info

RDF
License

Environmental
Applications

Reference
Thesaurus

Thist

JudaicaLink

BPR

OCD

Shoah
Victims
Names

Reload

Data for
Tourists in

Castilla y Leon

2001
Spanish
Census
to RDF

RKB
Explorer

Webscience

RKB
Explorer
Eprints
Harvest

NVS

EU Agencies
Bodies

EPO

Linked
NUTS

RKB
Explorer

Epsrc

Open
Mobile

Network

RKB
Explorer
Lisbon

RKB
Explorer

Italy

CE4R

Environment
Agency

Bathing Water
Quality

RKB
Explorer
Kaunas

Open
Data

Thesaurus

RKB
Explorer
Wordnet

RKB
Explorer

ECS

Austrian
Ski

Racers

Social-
semweb

Thesaurus

Data
Open
Ac Uk

RKB
Explorer

IEEE

RKB
Explorer

LAAS

RKB
Explorer

Wiki

RKB
Explorer

JISC

RKB
Explorer
Eprints

RKB
Explorer

Pisa

RKB
Explorer

Darmstadt

RKB
Explorer
unlocode

RKB
Explorer

Newcastle

RKB
Explorer

OS

RKB
Explorer

Curriculum

RKB
Explorer

Resex

RKB
Explorer

Roma

RKB
Explorer
Eurecom

RKB
Explorer

IBM

RKB
Explorer

NSF

RKB
Explorer

kisti

RKB
Explorer

DBLP

RKB
Explorer

ACM

RKB
Explorer
Citeseer

RKB
Explorer

Southampton

RKB
Explorer
Deepblue

RKB
Explorer
Deploy

RKB
Explorer

Risks

RKB
Explorer

ERA

RKB
Explorer

OAI

RKB
Explorer

FT

RKB
Explorer

Ulm

RKB
Explorer

Irit

RKB
Explorer
RAE2001

RKB
Explorer

Dotac

RKB
Explorer
Budapest

Swedish
Open Cultural

Heritage

Radatana

Courts
Thesaurus

German
Labor Law
Thesaurus

GovUK
Transport

Data

GovUK
Education

Data

Enakting
Mortality

Enakting
Energy

Enakting
Crime

Enakting
Population

Enakting
CO2Emission

Enakting
NHS

RKB
Explorer

Crime

RKB
Explorer
cordis

Govtrack

Geological
Survey of

Austria
Thesaurus

Geo
Linked
Data

Gesis
Thesoz

Bio2RDF
Pharmgkb

Bio2RDF
SabiorkBio2RDF

Ncbigene

Bio2RDF
Irefindex

Bio2RDF
Iproclass

Bio2RDF
GOA

Bio2RDF
Drugbank

Bio2RDF
CTD

Bio2RDF
Biomodels

Bio2RDF
DBSNP

Bio2RDF
Clinicaltrials

Bio2RDF
LSR

Bio2RDF
Orphanet

Bio2RDF
Wormbase

BIS
270a.info

DM2E

DBpedia
PT

DBpedia
ES

DBpedia
CS

DBnary

Alpino
RDF

YAGO

Pdev
Lemon

Lemonuby

Isocat

Ietflang

Core

KUPKB

Getty
AAT

Semantic
Web

Journal

OpenlinkSW
Dataspaces

MyOpenlink
Dataspaces

Jugem

Typepad

Aspire
Harper
Adams

NBN
Resolving

Worldcat

Bio2RDF

Bio2RDF
ECO

Taxon-
concept
Assets

Indymedia

GovUK
Societal

Wellbeing
Deprivation imd

Employment
Rank La 2010

GNU
Licenses

Greek
Wordnet

DBpedia

CIPFA

Yso.fi
Allars

Glottolog

StatusNet
Bonifaz

StatusNet
shnoulle

Revyu

StatusNet
Kathryl

Charging
Stations

Aspire
UCL

Tekord

Didactalia

Artenue
Vosmedios

GNOSS

Linked
Crunchbase

ESD
Standards

VIVO
University
of Florida

Bio2RDF
SGD

Resources

Product
Ontology

Datos
Bne.es

StatusNet
Mrblog

Bio2RDF
Dataset

EUNIS

GovUK
Housing
Market

LCSH

GovUK
Transparency
Impact ind.
Households

In temp.
Accom.

Uniprot
KB

StatusNet
Timttmy

Semantic
Web

Grundlagen

GovUK
Input ind.

Local Authority
Funding From
Government

Grant

StatusNet
Fcestrada

JITA

StatusNet
Somsants

StatusNet
Ilikefreedom

Drugbank
FU-Berlin

Semanlink

StatusNet
Dtdns

StatusNet
Status.net

DCS
Sheffield

Athelia
RFID

StatusNet
Tekk

Lista
Encabeza
Mientos
Materia

StatusNet
Fragdev

Morelab

DBTune
John Peel
Sessions

RDFize
last.fm

Open
Data

Euskadi

GovUK
Transparency

Input ind.
Local auth.
Funding f.

Gvmnt. Grant

MSC

Lexinfo

StatusNet
Equestriarp

Asn.us

GovUK
Societal

Wellbeing
Deprivation Imd
Health Rank la

2010

StatusNet
Macno

Oceandrilling
Borehole

Aspire
Qmul

GovUK
Impact

Indicators
Planning

Applications
Granted

Loius

Datahub.io

StatusNet
Maymay

Prospects
and

Trends
GNOSS

GovUK
Transparency

Impact Indicators
Energy Efficiency

new Builds

DBpedia
EU

Bio2RDF
Taxon

StatusNet
Tschlotfeldt

Jamendo
DBTune

Aspire
NTU

GovUK
Societal

Wellbeing
Deprivation Imd

Health Score
2010

Lotico
GNOSS

Uniprot
Metadata

Linked
Eurostat

Aspire
Sussex

Lexvo

Linked
Geo
Data

StatusNet
Spip

SORS

GovUK
Homeless-

ness
Accept. per

1000

TWC
IEEEvis

Aspire
Brunel

PlanetData
Project

Wiki

StatusNet
Freelish

Statistics
data.gov.uk

StatusNet
Mulestable

Enipedia

UK
Legislation

API

Linked
MDB

StatusNet
Qth

Sider
FU-Berlin

DBpedia
DE

GovUK
Households

Social lettings
General Needs

Lettings Prp
Number

Bedrooms

Agrovoc
Skos

My
Experiment

Proyecto
Apadrina

GovUK
Imd Crime
Rank 2010

SISVU

GovUK
Societal

Wellbeing
Deprivation Imd
Housing Rank la

2010

StatusNet
Uni

Siegen

Opendata
Scotland Simd

Education
Rank

StatusNet
Kaimi

GovUK
Households

Accommodated
per 1000

StatusNet
Planetlibre

DBpedia
EL

Sztaki
LOD

DBpedia
Lite

Drug
Interaction
Knowledge

Base
StatusNet

Qdnx

Amsterdam
Museum

AS EDN LOD

RDF
Ohloh

DBTune
artists
last.fm

Aspire
Uclan

Hellenic
Fire Brigade

Bibsonomy

Nottingham
Trent

Resource
Lists

Opendata
Scotland Simd
Income Rank

Randomness
Guide

London

Opendata
Scotland

Simd Health
Rank

Southampton
ECS Eprints

FRB
270a.info

StatusNet
Sebseb01

StatusNet
Bka

ESD
Toolkit

Hellenic
Police

StatusNet
Ced117

Open
Energy

Info Wiki

StatusNet
Lydiastench

Open
Data
RISP

Taxon-
concept

Occurences

Bio2RDF
SGD

UIS
270a.info

NYTimes
Linked Open

Data

Aspire
Keele

GovUK
Households
Projections
Population

W3C

Opendata
Scotland

Simd Housing
Rank

ZDB

StatusNet
1w6

StatusNet
Alexandre

Franke

Dewey
Decimal

Classification

StatusNet
Status

StatusNet
doomicile

Currency
Designators

StatusNet
Hiico

Linked
Edgar

GovUK
Households

2008

DOI

StatusNet
Pandaid

Brazilian
Politicians

NHS
Jargon

Theses.fr

Linked
Life
Data

Semantic Web
DogFood

UMBEL

Openly
Local

StatusNet
Ssweeny

Linked
Food

Interactive
Maps

GNOSS

OECD
270a.info

Sudoc.fr

Green
Competitive-

ness
GNOSS

StatusNet
Integralblue

WOLD

Linked
Stock
Index

Apache

KDATA

Linked
Open
Piracy

GovUK
Societal

Wellbeing
Deprv. Imd
Empl. Rank

La 2010

BBC
Music

StatusNet
Quitter

StatusNet
Scoffoni

Open
Election

Data
Project

Reference
data.gov.uk

StatusNet
Jonkman

Project
Gutenberg
FU-BerlinDBTropes

StatusNet
Spraci

Libris

ECB
270a.info

StatusNet
Thelovebug

Icane

Greek
Administrative

Geography

Bio2RDF
OMIM

StatusNet
Orangeseeds

National
Diet Library

WEB NDL
Authorities

Uniprot
Taxonomy

DBpedia
NL

L3S
DBLP

FAO
Geopolitical

Ontology

GovUK
Impact

Indicators
Housing Starts

Deutsche
Biographie

StatusNet
ldnfai

StatusNet
Keuser

StatusNet
Russwurm

GovUK Societal
Wellbeing

Deprivation Imd
Crime Rank 2010

GovUK
Imd Income

Rank La
2010

StatusNet
Datenfahrt

StatusNet
Imirhil

Southampton
ac.uk

LOD2
Project

Wiki

DBpedia
KO

Dailymed
FU-Berlin

WALS

DBpedia
IT

StatusNet
Recit

Livejournal

StatusNet
Exdc

Elviajero

Aves3D

Open
Calais

Zaragoza
Turruta

Aspire
Manchester

Wordnet
(VU)

GovUK
Transparency

Impact Indicators
Neighbourhood

Plans

StatusNet
David

Haberthuer

B3Kat

Pub
Bielefeld

Prefix.cc

NALT

Vulnera-
pedia

GovUK
Impact

Indicators
Affordable

Housing Starts

GovUK
Wellbeing lsoa

Happy
Yesterday

Mean

Flickr
Wrappr

Yso.fi
YSA

Open
Library

Aspire
Plymouth

StatusNet
Johndrink

Water

StatusNet
Gomertronic

Tags2con
Delicious

StatusNet
tl1n

StatusNet
Progval

Testee

World
Factbook
FU-Berlin

DBpedia
JA

StatusNet
Cooleysekula

Product
DB

IMF
270a.info

StatusNet
Postblue

StatusNet
Skilledtests

Nextweb
GNOSS

Eurostat
FU-Berlin

GovUK
Households

Social Lettings
General Needs

Lettings Prp
Household

Composition

StatusNet
Fcac

DWS
Group

Opendata
Scotland

Graph
Simd Rank

DNB

Clean
Energy
Data

Reegle

Opendata
Scotland Simd
Employment

Rank

Chronicling
America

GovUK
Societal

Wellbeing
Deprivation

Imd Rank 2010

StatusNet
Belfalas

Aspire
MMU

StatusNet
Legadolibre

Bluk
BNB

StatusNet
Lebsanft

GADM
Geovocab

GovUK
Imd Score

2010

Semantic
XBRL

UK
Postcodes

Geo
Names

EEARod
Aspire

Roehampton

BFS
270a.info

Camera
Deputati
Linked
Data

Bio2RDF
GeneID

GovUK
Transparency

Impact Indicators
Planning

Applications
Granted

StatusNet
Sweetie

Belle

O'Reilly

GNI

City
Lichfield

GovUK
Imd

Rank 2010

Bible
Ontology

Idref.fr

StatusNet
Atari

Frosch

Dev8d

Nobel
Prizes

StatusNet
Soucy

Archiveshub
Linked
Data

Linked
Railway

Data
Project

FAO
270a.info

GovUK
Wellbeing

Worthwhile
Mean

Bibbase

Semantic-
web.org

British
Museum

Collection

GovUK
Dev Local
Authority
Services

Code
Haus

Lingvoj

Ordnance
Survey
Linked
Data

Wordpress

Eurostat
RDF

StatusNet
Kenzoid

GEMET

GovUK
Societal

Wellbeing
Deprv. imd
Score '10

Mis
Museos
GNOSS

GovUK
Households
Projections

total
Houseolds

StatusNet
20100

EEA

Ciard
Ring

Opendata
Scotland Graph

Education
Pupils by

School and
Datazone

VIVO
Indiana

University

Pokepedia

Transparency
270a.info

StatusNet
Glou

GovUK
Homelessness

Households
Accommodated

Temporary
Housing Types

STW
Thesaurus

for
Economics

Debian
Package
Tracking
System

DBTune
Magnatune

NUTS
Geo-
vocab

GovUK
Societal

Wellbeing
Deprivation Imd
Income Rank La

2010

BBC
Wildlife
Finder

StatusNet
Mystatus

Miguiad
Eviajes
GNOSS

Acorn
Sat

Data
Bnf.fr

GovUK
imd env.

rank 2010

StatusNet
Opensimchat

Open
Food
Facts

GovUK
Societal

Wellbeing
Deprivation Imd

Education Rank La
2010

LOD
ACBDLS

FOAF-
Profiles

StatusNet
Samnoble

GovUK
Transparency

Impact Indicators
Affordable

Housing Starts

StatusNet
CoreyavisEnel

Shops

DBpedia
FR

StatusNet
Rainbowdash

StatusNet
Mamalibre

Princeton
Library

Findingaids

WWW
Foundation

Bio2RDF
OMIM

Resources

Opendata
Scotland Simd

Geographic
Access Rank

Gutenberg

StatusNet
Otbm

ODCL
SOA

StatusNet
Ourcoffs

Colinda

Web
Nmasuno
Traveler

StatusNet
Hackerposse

LOV

Garnica
Plywood

GovUK
wellb. happy

yesterday
std. dev.

StatusNet
Ludost

BBC
Program-

mes

GovUK
Societal

Wellbeing
Deprivation Imd

Environment
Rank 2010

Bio2RDF
Taxonomy

Worldbank
270a.info

OSM

DBTune
Music-
brainz

Linked
Mark
Mail

StatusNet
Deuxpi

GovUK
Transparency

Impact
Indicators

Housing Starts

Bizkai
Sense

GovUK
impact

indicators energy
efficiency new

builds

StatusNet
Morphtown

GovUK
Transparency

Input indicators
Local authorities

Working w. tr.
Families

ISO 639
Oasis

Aspire
Portsmouth

Zaragoza
Datos

Abiertos
Opendata
Scotland

Simd
Crime Rank

Berlios

StatusNet
piana

GovUK
Net Add.
Dwellings

Bootsnall

StatusNet
chromic

Geospecies

linkedct

Wordnet
(W3C)

StatusNet
thornton2

StatusNet
mkuttner

StatusNet
linuxwrangling

Eurostat
Linked
Data

GovUK
societal

wellbeing
deprv. imd

rank '07

GovUK
societal

wellbeing
deprv. imd
rank la '10

Linked
Open Data

of
Ecology

StatusNet
chickenkiller

StatusNet
gegeweb

Deusto
Tech

StatusNet
schiessle

GovUK
transparency

impact
indicators
tr. families

Taxon
concept

GovUK
service

expenditure

GovUK
societal

wellbeing
deprivation imd

employment
score 2010

Figure 2: Linking Open Data cloud diagram 2014, by Max Schmachtenberg,
Christian Bizer, Anja Jentzsch and Richard Cyganiak. http://lod-
cloud.net/

define relationships between those concepts, e.g. person-was-born-in-
city, globally and unambiguously. To ensure that those URIs remain
unchanged, Berners-Lee [1998] and Sauermann and Cyganiak [2008]
introduced general rules for stable URI generation.

resource description framework The Resource Description
Framework (RDF) is a collection of standards [Klyne and Carroll,
2004; Hayes and McBride, 2004; Manola and Miller, 2004; Brickley
and Guha, 2004; Beckett, 2004; Grant and Beckett, 2004] which were
initially released as W3C recommendation in version 1.0 in 2004 and
have recently been updated to version 1.1 [Lanthaler et al., 2014]. RDF
is thereby a language to express information or assertions about re-
sources (which get identified by URIs) respectively. These assertions,
typically called triple in the RDF data model, consist of the following
three components:

subject

The subject is the resource over which an assertion is made.
Only URIs and anonymous nodes1 are allowed at this position.

predicate

A predicate is typically understood as an attribute of the re-
source to describe (a datatype property in OWL), or a binary re-
lation, which links this resource to another one (an object prop-

1 A anonymous node, also call blank node, is only unambiguous in a local context. It is
typically used to group assertions.

2.1 semantic web 12

erty in OWL). At the predicate column of a triple only URIs are
valid.

object

An object stands either for an attribute value or the second ar-
gument, another resource, of the binary relation. Valid objects
are URIs and blank nodes, but also strings. These strings, also
called literals, can be typed or untyped. A typed literal gets as-
signed a datatype which defines how it is interpreted. Untyped
literals do not have this datatype but may be annotated with
an optional language definition, which defines the literal’s lan-
guage.

If a set of triples are combined a directed graph emerges in which
the edges between subject and object correspond to the triple’s predi-
cate. These graphs can be serialized in different formats. Data transfer
has typically been carried out in the RDF/XML format [Beckett, 2004,
2014] but since this format is hard to read for human users and may
contain a large amount of boilerplate syntax other formats such as
Turtle [Beckett and Berners-Lee, 2008] and N-Triples [Carothers and
Seaborne, 2014] were introduced. In this thesis, as long as not stated
otherwise, the Turtle syntax is used.

resource description framework schema The Resource
Description Framework Schema, short RDFS [Guha and Brickley, 2004],
was developed as a semantic extension to RDF and also published as
a Recommendation in 2004 by the W3C. It has recently been updated to
version 1.1 [Guha and Brickley, 2014]. Although it is possible in RDF
to link resources to other resources with the help of predicates, it is
not possible to make further assertions over those predicates or to re-
late them to other predicates. In RDFS it is now possible to define the
domain and range of a given predicate. Furthermore, predicates can
be ordered in hierarchies. Likewise it is possible to structure a class –
hence a set of resources with equal properties – in hierarchies. Since
RDFS is written in RDF, all valid RDFS documents are also valid RDF
documents.

web ontology language Since RDFS is categorized as a light-
weight ontology language [Hitzler et al., 2008] and therewith makes
it impossible to model certain assertions, the Web Ontology Lan-
guage, OWL [Bechhofer et al., 2004], was introduced. OWL builds
upon RDFS and was as well publicized by W3C as a Recommendation
in 2004 and is available in its second version since 2009 [Motik et al.,
2008]. With OWL it is now possible among other things to model com-
plex concept definitions and cardinality restrictions. Though these
constructs may lead to a decreased runtime or even undecidability.
For those reasons, OWL was separated into the following three sub-

2.1 semantic web 13

Concept Description

owl:Object-
Property

Is a class of predicates which links instances to in-
stances.

owl:Datatype-
Property

Is a class of predicates which links instances to
typed as well as untyped literals.

owl:sameAs Is a predicate which links instances to instances and
therewith defines that both URIs reference the same
thing, i.e. both instances have the same identity.

Table 2: Overview of relevant OWL concepts

languages with different levels of expressiveness and complexity re-
spectively. Table 2 presents OWL concepts which were used in this
thesis.

owl lite is a proper sublanguage of OWL DL. It is decidable and
only uses a part of the OWL vocabulary.

owl dl is a proper sublanguage OWL Full. It was designed to retain
computation completeness and decidability and it includes the
complete OWL vocabulary. The decidability in this connection
is preserved by the introduction of restrictions.

owl full contains the complete OWL vocabulary and is therewith
the most expressive sublanguage, which is the reason why OWL
Full is undecidable.

2.1.2 SPARQL

SPARQL, the SPARQL Protocol and Query Language is a collection of
W3C Recommendations [Prud’ hommeaux and Seaborne, 2008; Clark
et al., 2008; Beckett and Broekstra, 2008]. The goal of these recommen-
dations is to provide a consistent query language for local and remote
RDF databases, hereafter referred to as triple stores. The collection con-
sists of the SPARQL query language itself, the SPARQL protocol to
query (remote) triple stores and the SPARQL query results XML for-
mat for binding the results of a query. The query language builds
upon SQL syntax and is based on basic graph patterns which can be
combined to complex group graph patterns. A basic graph pattern con-
sists thereby of a triple pattern, where subject, predicate and/or ob-
ject can be replaced by a variable and an optional filter condition.
An example SPARQL query is given in Listing 2. This query returns
all pairs of organizations (?s, ?o) which are connected through predi-
cates ?property and have at least one English label. SPARQL is heav-
ily used in this thesis to extract training data from DBpedia and other
triples stores.

2.1 semantic web 14

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3 PREFIX dbpo: <http://dbpedia.org/ontology/>
4 SELECT ?s ?sLabel ?prop ?o ?oLabel ?domain ?range
5 FROM <http://dbpedia.org>
6 WHERE {
7 ?s rdf:type dbpo:Organization .
8 ?o rdf:type dbpo:Organization .
9 ?s rdfs:label ?sLabel .

10 ?o rdfs:label ?oLabel .
11 ?s ?property ?o .
12 FILTER (langMatches(lang(?sLabel),’en’) && langMatches(lang(?oLabel),’en’)) .
13 }

Listing 2: Example SPARQL query.

Since the original collection of SPARQL Recommendations did not
include any specifications on how to alter an existing RDF knowledge
base SPARQL 1.1 [Seaborne and Harris, 2013] was introduced. With
SPARQL 1.1 it is furthermore possible to execute a single SPARQL
query in a federated way, i.e. one query is sent to multiple (remote)
SPARQL endpoints and the results will be merged.

2.1.3 DBpedia, YAGO(2) and Freebase

In recent years, a multitude of large-scale, machine-readable knowl-
edge bases have emerged. Due to its great success and wide cover-
age in different domains Wikipedia has become the cornerstone to
many of these knowledge bases, or to their underlying relation extrac-
tion algorithms respectively. These kinds of knowledge bases started
with Cyc [Lenat, 1995] and WordNet [Fellbaum, 1998] and have now
reached a new level with DBpedia, YAGO and even commercial appli-
cations such as Wolfram Alpha or Freebase. The following three para-
graphs, depicted in Table 3, present three knowledge bases, which
are of key importance to this thesis.

dbpedia The goal of the DBpedia project is to create and publish
a machine readable version of Wikipedia freely available for every-
one. It therefore utilizes a crowd-sourced approach to map the semi-
structured information found in Wikipedia infoboxes2, authored by
millions of editors from the Wikipedia community to a formal ontol-
ogy. DBpedia, depicted in Figure 3, contains 1.86 billion pieces of in-
formation about geographie, people, companies, films, music, genes,
drugs, books and scientific publications etc. DBpedia has evolved sig-
nificantly from its initial publication [Lehmann et al., 2009] to its most
recent state [Lehmann et al., 2013]. It now uses a manually crafted on-
tology with 320 classes and 1650 properties, compared to the initial
ontology with 170 classes and 720 properties to semantically anno-
tate the 13.7 million total entities from 111 languages compared to
30 languages and 2.6 million entities in the earlier version. It also in-
cludes a live synchronization module which is triggered whenever

2 Infoboxes are typically found in the top right corner of an article.

2.1 semantic web 15

a Wikipedia article changes, providing an always up-to-date knowl-
edge base. Additionally, it contains 27 million links to 30 external
data sources, making it the central interlinking hub in the Linked
Open Data Cloud (see Figure 2).

Figure 3: Screenshot of the DBPedia graphical user interface.

yago(2) YAGO was originally introduced by Suchanek et al. [2007,
2008]. YAGO aims at extracting knowledge from Wikipedia and unify
it with WordNet using a combination of rule-based and heuristic
methods. The YAGO ontology browser is depicted in Figure 4. The
original version contained about 1 million entities and 5 million facts
with a manually evaluated accuracy of 95%. In contrast to DBpedia,
YAGO does not use a handcrafted ontology but exploits Wikipedia
categories to deliver type information for entities, which results in
more specific type information, e.g. yago:HostCitiesOfTheSummerOlympicGames.
YAGO2, presented by Hoffart et al. [2013], adds a spatial and tempo-
ral dimension to entities, facts and events. The authors also intro-
duced a new representational model, coined SPOTL tuples (Subject +
Predicate + Object + Time + Location) and further extended these to
SPOTLX tuples, where X corresponds to a list of keywords extracted
from the facts conteXt. The following is an example of the SPOTL(X)
query language used to query this model:

?p directed ?m after [1970] matches (+cowboys +mexico)

YAGO2 is built automatically from the English Wikipedia articles3,
GeoNames and WordNet and currently contains about 124 million
facts for 2.6 million entities.

3 Only English articles are considered as entities, but multilingual labels are provided.

2.1 semantic web 16

Figure 4: Screenshot of the YAGO(2) ontology browser.

freebase Freebase is a large-scale graph database. It was origi-
nally developed by Metaweb Technologies, Inc. and was acquired by
Google in 2010

4. It is “a community-curated database of well-known
people, places, and things” (http://freebase.com, 2014). It currently
contains about 2.64 billion facts for 44.15 million entities, which de-
rive not only from Wikipedia but also from other data sources such
as MusicBrainz5. In contrast to DBpedia and YAGO(2), where users
have to change Wikipedia articles in order to change the respective
output, Freebase offers a rich public interface through which users
can contribute directly to the underlying knowledge base. Also, Free-
base uses n-ary relations, depicted in Figure 5, to store data in their
graph database. This allows Freebase, similar to YAGO2 and to a
lower extend DBpedia6, to scope their facts temporally and spatially.
Additionally Freebase provides a JSON based query language called
Metaweb Query Language (MQL)7. In 2012 Google has incorporated
the Freebase dataset8, also called Knowledge Graph, into their search
engine results as shown in Figure 6.

Figure 5: Screenshot of the Freebase user interface depicting Tim Berners-
Lee’s educational stages in an n-ary relational format.

4 http://googleblog.blogspot.de/2010/07/deeper-understanding-with-
metaweb.html

5 https://musicbrainz.org/

6 RDF reification can be used to model facts about facts, but this entails significantly
larger database sizes and query execution times.

7 http://mql.freebaseapps.com/index.html

8 http://googleblog.blogspot.de/2012/05/introducing-knowledge-graph-things-not.

html

http://freebase.com
https://musicbrainz.org/
http://mql.freebaseapps.com/index.html
http://googleblog.blogspot.de/2012/05/introducing-knowledge-graph-things-not.html
http://googleblog.blogspot.de/2012/05/introducing-knowledge-graph-things-not.html

2.1 semantic web 17

Figure 6: Web-view of the Google Knowledge Graph based on Freebase
data.

DBpedia YAGO2 Freebase

Classes 320 365,372 25,514

Properties 1,650 104 37,161

Instances 13.7M 2.6M 44.2M

Facts 1.86B 124M 2.6B

Languages 111 en 47

User-editable No No Yes

Releases 13 2 weekly

Storage RDF SPOTL(X) Graph (n-ary)

Query Language SPARQL SPOTL(X) MQL

License CC BY-SA 3.0 CC BY 3.0 CC BY 2.5

Table 3: Comparison of DBpedia, YAGO2 and Freebase

3
B O O T S T R A P P I N G L I N K E D D ATA

Most knowledge sources on the Data Web were extracted from struc-
tured or semi-structured data. Thus, they encompass solely a small
fraction of the information available on the document-oriented Web.
In this chapter, we present BOA, an iterative bootstrapping strategy
for extracting RDF from unstructured data. The idea behind BOA is This chapter is

mainly based on
Gerber and Ngonga
Ngomo [2011, 2012,
2013].

to use the Data Web as background knowledge for the extraction of
natural language patterns that represent predicates found on the Data
Web. These patterns are used to extract instance knowledge from nat-
ural language text. This knowledge is finally fed back into the Data
Web, therewith closing the loop. The approach followed by BOA is
quasi independent of the language in which the corpus is written.
To show the language independence, we begin by proposing an ap-
proach for English, the most dominant Web language, and extend the
BOA approach on the thereby gained knowledge to support multi-
lingual relation extraction. We evaluate our English approach on two
data sets using DBpedia as background knowledge. To demonstrate
the multilingual approach we apply it to four different corpora and
two different languages using DBpedia as background knowledge.
Our results show in both evaluation scenarios that we can extract
several thousand new facts in one iteration with very high accuracy.
Moreover, we provide the first multilingual repository of natural lan-
guage representations of predicates found on the Data Web.

18

3.1 introduction 19

3.1 introduction

While the document-oriented Web aimed at providing information
targeted towards humans, the Linked Data Web (short: Data Web)
aims to provide knowledge in both human- and machine-readable
form. Several approaches have been developed to populate the Data
Web. Most of these approaches, like DBpedia [Lehmann et al., 2013] or
LinkedGeoData [Auer et al., 2009; Stadler et al., 2012], rely on trans-
forming semi-structured and structured data available on the Web
into RDF. The results of the utilization of these approaches can be
seen in the significant growth of the Linked Data Cloud (see Figure 2)
from 12 knowledge bases to 295 knowledge bases and a total of more
than 30 billion triples [Auer et al., 2011] in about four years [Heath
and Bizer, 2011]. While these approaches provide a viable mean to ex-
pose semi-structured and structured data on the Data Web, they suf-
fer of one fatal drawback: They can only be applied to 15-20% [Blum-
berg and Atre, 2003; Gaag et al., 2009] of the information on the Web,
as the rest of the information in the document-oriented Web is only
available in unstructured form. Consequently, the data in the Linked
Data Web suffers from a lack of coverage and actuality that has been
eradicated from the Web by Web 2.0 and crowdsourcing approaches.

In the first part of this chapter, we present an approach that can
bootstrap the knowledge available on the Data Web by harvesting
triples from unstructured data. Our approach, dubbed BOA1 (Boot-
strapping the Data Web), starts with the triples available on the Data
Web. Then, it extracts natural language patterns that express the pred-
icates found in the triples already available on the Data Web. By using
a combination of these patterns and Named Entity Recognition, our
approach can identify the labels of instances that stand in the rela-
tion expressed by any given predicate. The resulting novel instance
knowledge can be finally fed back into the Data Web and can be
reused for extracting even more patterns and triples as well as cor-
recting existing knowledge. Our approach is completely agnostic of
the knowledge base upon which it is deployed. It can thus be used
on the whole Data Web. In addition, it can be used to extract natural
language representations of predicates from virtually any language
following a subject - predicate - object sentence structure if provided
with a Named Entity Recognition service.

Our main contributions are:

1. We present an approach for bootstrapping the Data Web. Our
approach uses knowledge from the Data Web to extract even
more knowledge that can be inserted directly into the Data Web.

1 http://boa.aksw.org

http://boa.aksw.org

3.1 introduction 20

2. We provide a knowledge base of natural language representa-
tions of predicates found on the Data Web (especially in DBpe-
dia).

3. We present an evaluation of the quality of the natural language
patterns extracted automatically by our approach and show that
we can extract knowledge from text with a precision of up to
99%.

In the second part of this chapter, we extend on the above-mentioned
BOA framework. As previously mentioned, the BOA approach is
quasi language independent. To prove this claim we extended the
BOA framework for multilangual support and evaluated its perfor-
mance. An important argument for this extension is the language
distribution of content in the World Wide Web. As can be seen in Fig-
ure 7 English is with 55.5% still the most dominant content language
on the web. But a historical analysis shows that this value dropped by
2.2% from January 2011 to January 2014. This finding also shows that
almost 45% of the Web are written in a non-English language and
therewith present an enormous opportunity for multilingual relation
extraction.

Table 2

English 55.5 %

Russian 6.1 %

German 5.9 %

Japanese 4.9 %

Spanish 4.5 %

French 3.9 %

Chinese 3.8 %

Portuguese 2.3 %

Other 13.1 %

English
Russian
German

Japanese
Spanish
French

Chinese
Portuguese

Other

0 % 10 % 20 % 30 % 40 % 50 % 60 %
13.1 %

2.3 %
3.8 %
3.9 %
4.5 %
4.9 %
5.9 %
6.1 %

55.5 %

Table 1

Train Train (ml) Test Test (ml) Test (en)

award 74 98.6666666666667 75 100 72 96

birth 69 92 69 92 66 88

death 73 97.3333333333333 72 96 68 90.6666666666667

foundation 63 84 52 69.3333333333333 59 78.6666666666667

leader 72 96 73 97.3333333333333 66 88

team 70 93.3333333333333 67 89.3333333333333 64 85.3333333333333

publication 73 97.3333333333333 69 92 65 86.6666666666667

spouse 72 96 71 94.6666666666667 68 90.6666666666667

starring 70 93.3333333333333 58 77.3333333333333 61 81.3333333333333

subsidiary 63 84 63 84 60 80

60

65

70

75

80

85

90

95

100

aw
ar

d

bir
th

de
at

h

fo
un

da
tio

n

lea
de

r

te
am

pu
bli

ca
tio

n

sp
ou

se

sta
rri

ng

su
bs

idi
ar

y

Test (ml)
Test (en)

Table 3

Multi-Lingual English

< 1890 & 30 & 0 & 0.0 < 1890 & 27 & 3 & 0.1

1900 & 13 & 0 & 0.0 1900 & 13 & 0 & 0.0

1910 & 14 & 0 & 0.0 1910 & 14 & 0 & 0.0

1920 & 16 & 1 & 0.0 1920 & 16 & 1 & 0.0

1930 & 13 & 2 & 0.1 1930 & 12 & 3 & 0.1

1940 & 16 & 0 & 0.0 1940 & 14 & 2 & 0.1

1950 & 26 & 1 & 0.0 1950 & 24 & 3 & 0.1

1960 & 34 & 5 & 0.2 1960 & 33 & 6 & 0.2

1970 & 64 & 9 & 0.3 1970 & 61 & 12 & 0.3

1980 & 70 & 11 & 0.3 1980 & 68 & 13 & 0.4

1990 & 96 & 17 & 0.5 1990 & 95 & 18 & 0.5

2000 & 242 & 33 & 1.0 2000 & 236 & 38 & 1.0

2010 & 35 & 2 & 0.1 2010 & 36 & 1 & 0.0

0

0.5

1

< 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Multi-Lingual
English

Table 3-1

Multi-Lingual English

< 1890 & 41 & 20 & 0.672 < 1890 & 34 & 27 & 0.557

1900 & 15 & 5 & 0.750 1900 & 14 & 6 & 0.700

1910 & 20 & 11 & 0.645 1910 & 17 & 14 & 0.548

1920 & 21 & 12 & 0.636 1920 & 20 & 14 & 0.588

1930 & 20 & 9 & 0.690 1930 & 14 & 15 & 0.483

1940 & 21 & 4 & 0.840 1940 & 15 & 10 & 0.600

1950 & 32 & 11 & 0.744 1950 & 32 & 11 & 0.744

1960 & 46 & 28 & 0.622 1960 & 40 & 34 & 0.541

1970 & 92 & 44 & 0.676 1970 & 78 & 58 & 0.574

1980 & 93 & 54 & 0.633 1980 & 83 & 64 & 0.565

1990 & 136 & 79 & 0.633 1990 & 115 & 100 & 0.535

2000 & 342 & 181 & 0.654 2000 & 280 & 242 & 0.536

2010 & 44 & 18 & 0.710 2010 & 40 & 22 & 0.645

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

< 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Multi-Lingual
English

Table 3-1-1
Jahr correct wrong total modified

wald
Multi-
Lingual

Jahr correct wrong total modified
wald

English

< 1890 29 1 30 0.0946 0.967 < 1890 27 3 30 0.1188 0.900
1900 13 0 13 0.1164 1.000 1900 13 0 13 0.1164 1.000
1910 14 0 14 0.1098 1.000 1910 14 0 14 0.1098 1.000
1920 17 0 17 0.0937 1.000 1920 16 1 17 0.1490 0.941
1930 15 0 15 0.1038 1.000 1930 12 3 15 0.1983 0.800
1940 16 0 16 0.0985 1.000 1940 14 2 16 0.1752 0.875
1950 25 1 26 0.1066 0.962 1950 24 3 27 0.1292 0.889
1960 37 2 39 0.0863 0.949 1960 33 6 39 0.1162 0.846
1970 69 4 73 0.0596 0.945 1970 61 12 73 0.0861 0.836
1980 76 5 81 0.0582 0.938 1980 68 13 81 0.0810 0.840
1990 106 7 113 0.0482 0.938 1990 95 18 113 0.0682 0.841
2000 256 19 275 0.0309 0.931 2000 236 38 274 0.0412 0.861
2010 35 2 37 0.0903 0.946 2010 36 1 37 0.0790 0.973

0.75

0.82

0.89

0.96

1.03

1.1

< 18901900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Multi-Lingual English

Figure 7: Usage of content languages for webpages. (W3Techs.com, 21

November 2013)

Again, the goal of the BOA framework is to allow extracting struc-
tured data as RDF from unstructured data. Unlike many approaches
(e.g. Carlson et al. [2010]) which start with their own ontologies and
background knowledge as seeds, BOA makes use of the vast amount
of multilingual knowledge available on the Data Web to retrieve high-
confidence natural language patterns that express the predicates avail-
able in the Data Web in multiple languages. The recognition of high-
confidence patterns is carried out using supervised machine learning
trained on a small set of manually annotated patterns. Based on these
patterns, BOA can extract new instance knowledge (i.e. both new en-
tities and relations between these new entities) from the Human Web

3.1 introduction 21

with high accuracy. This extension is still completely agnostic of the
knowledge base upon which it is deployed and can be used on the
whole Data Web. One of the byproducts of the BOA framework is a
set of multilingual natural language patterns constituting a valuable
resource for tools, that require the conversion of natural language
into structured data, (e.g. semantic information retrieval [Shekarpour
et al., 2011], question answering frameworks [Unger et al., 2012] and
fact validation [Gerber et al., 2015]). A demo of the framework can be
found at http://boa.aksw.org and the code of the project is hosted
at http://boa.googlecode.com.

The main contributions to this extension are as follows:

1. We extend the approach implemented by the BOA framework
and apply it to corpora written in English and German.

2. We provide a multilingual library of natural language repre-
sentations of predicates found on the Data Web (especially in
DBpedia).

3. We present a set of features that can be used to distinguish
high-quality from poor natural language patterns for Data Web
predicates.

4. We evaluate our machine-learning approach and the BOA frame-
work on four text datasets against DBpedia and show that we
can achieve a high-accuracy extraction in both languages.

The rest of this chapter is structured as follows: In Section 3.2, we
give an overview of previous work that is related to our approach.
Thereafter, in Section 3.3, we present our bootstrapping framework
and several insights that led to the approach currently implemented
therein. In Section 3.3.6 we evaluate our approach on two different
English data sets and show its robustness and accuracy as well as dis-
cuss our results. We present our extended bootstrapping framework
and in particular the improvements needed to support multilingual
fact extraction in Section 3.4. The evaluation of the multilingual ap-
proach on four different datasets in English and German and the dis-
cussion of the results is presented in Section 3.4.6. Finally, we discuss
our results and conclude.

author contributions The author of this thesis has been the
lead author of the relevant publications [Gerber and Ngonga Ngomo,
2011, 2012, 2013] as well as the main developer of the English and
Multilingual version of BOA. He has developed the corpora extrac-
tion module, the background knowledge module, the pattern search,
filtering and feature extraction, the RDF generation module and was
responsible for the generation and analysis of the evaluation data.

http://boa.aksw.org
http://boa.googlecode.com

3.2 related work 22

3.2 related work

BOA is related to a large number of disciplines due to the different ar-
eas of knowledge from which it borrows methods. Like Information
Extraction approaches, BOA aims at detecting entities in text. Three
main categories of natural language processing (NLP) tools play a
central role during the extraction of information from text: Keyphrase
Extraction (KE) algorithms aim to detect multi-word units that cap-
ture the essence of a document [Matsuo and Ishizuka, 2004; Kim et al.,
2010]. Named Entity Recognition (NER) approaches try to discover
instances of predefined classes of entities [Ratinov and Roth, 2009;
Finkel and Manning, 2010]. The third and most closely related re-
search discipline is Relation Extraction (RE). A detailed overview of
all hereafter mentioned RE systems can be found in Table 4. RE ap-
proaches are used among other things to discover relations between
entities detected using NER [Mintz et al., 2009; Yan et al., 2009] or
Part-Of-Speech tagging. One of the first RE systems was introduced
by Hearst [1992]. This system focused on extracting un-ary relations,
in particular the hyponym (is-a) relation, from free text. The system
produced a set of lexical patterns, such as “such NP as {NP}* {(or |
and)} NP”, which can be used to extract facts like “hyponym(’author’,
’Herrick’)” or “hyponym(’author’, ’Shakespeare’)” from text like “...
works by such authors as Herrick, Goldsmith, and Shakespeare”. This
work also introduced a procedure for the discovery of new patterns,
which greatly influenced future RE systems. DIPRE (Dual Iterative
Pattern Relation Extraction), introduced by Brin [1999], utilized this
procedure for the extraction of binary book/author-relation pairs from
HTML documents with the help of lexical patterns. Snowball, pre-
sented by Agichtein and Gravano [2000], extended the lexical pat-
terns to also exploit named-entity tags and probability values to ex-
tract company/headquarter-relation pairs, which resulted in more pre-
cise, semantic patterns, e.g.: ORGANIZATION ’(0.42) s(0.42) headquar-
ters(0.42) in(0.12) LOCATION. Like DIPRE and the approach presented
by Hearst [1992], Snowball also needed manually generated back-
ground knowledge for the extraction process. KnowItAll [Etzioni et al.,
2004], was the first system trying to use the Web as background
knowledge corpora, but focused mainly on un-ary relations and re-
lied on a large number of search engine queries and webpage down-
loads. DARE (Domain Adaptive Relation Extraction based on Seeds),
presented by Xu et al. [2007], is the first approach extracting n-ary
relation patterns with the help of dependency trees. While this ap-
proach is able to overcome linguistic representations, e.g. subject-verb-
object, it is neither suitable for the bootstrapping of the Semantic
Web since relations are typically expressed in binary form, nor for
web-scale knowledge extraction, because of the high computational
costs of dependency parsing. While these approaches are suitable for

3.2 related work 23

the extraction of facts from NL, the use of the Data Web as source
for background knowledge for fact extraction is still in its infancy.
Suchanek et al. [2009] presented an approach which used YAGO as
background knowledge and combined pattern selection, entity dis-
ambiguation, and consistency checking in a unified method based
on reasoning. The system’s unified approach is elegant and leeds to
high precision extractions but it needs 16 hours to parse and extract
a corpus of 3440 HTML documents, making its web-scale application
impossible. Mintz et al. [2009] introduced the term “distant super-
vision” to describe this paradigm but developed an approach that
led to extractors with low precision (approx. 67.6%). The most pre-
cise approaches for IE rely on supervised machine learning [Nguyen
and Kan, 2007; Zhou and Su, 2002; Curran and Clark, 2003; Finkel
et al., 2005]. Thus, they can only extract a small fraction of the knowl-
edge on the Web due to the scarcity of large training datasets. In
addition to the work done by the NLP community, several frame-
works have been developed with the explicit purpose of bridging
the gap between NLP and the Data Web by extracting RDF and
RDFa out of NL [Huynh et al., 2005; Adrian et al., 2010]. Services
such as Alchemy2, OpenCalais3, Extractiv4, FOX [Ngonga Ngomo
et al., 2011a] and Spotlight [Mendes et al., 2011] allow to extract en-
tities and relations from text. Yet, they do not rely on the Data Web
as training data and are thus restricted with respect to the number
of relations they can detect. The problem of extracting knowledge
from the Web at large scale, which is most closely related to this
approach, has been the object of recent research, especially in the
projects ReadTheWeb and PROSPERA. The aim of the ReadTheWeb
project5 [Carlson et al., 2010] is to create the never ending language
learner NELL that can read webpages. To achieve this goal, NELL is
fed with the ClueWeb09

6 data set cyclically. The input data for NELL
consisted of an initial ontology that contained hundreds of categories
and relations, as well as a small number of manually generated in-
stances for each category and relation. In each iteration, NELL uses
the available instance knowledge to retrieve new instances of existing
categories and relations between known instances by using pattern
harvesting. The approach followed by PROSPERA [Nakashole et al.,
2011] is similar to that of NELL but relies on the iterative harvest-
ing of n-grams-itemset patterns. These patterns allow to generalize
NL patterns found in text without introducing more noise into the
patterns during the generalization process. In addition, PROSPERA
uses reasoning to discard statements that are logically inconsistent
with the available knowledge. In a more recent work, Krause et al.

2 http://www.alchemyapi.com

3 http://www.opencalais.org

4 http://extractiv.com

5 http://rtw.ml.cmu.edu

6 http://lemurproject.org/clueweb09

http://www.alchemyapi.com
http://www.opencalais.org
http://extractiv.com
http://rtw.ml.cmu.edu
http://lemurproject.org/clueweb09

3.2 related work 24

[2012] presented an approach based on a high-performance depen-
dency parser7 to extract n-ary relations in web-scale based on Free-
base background knowledge.

basic english version Our approach goes beyond the state of
the art in two key aspects. First, it is the first approach that uses the
Data Web as background knowledge for the large-scale extraction of
RDF from natural language, therewith making this knowledge effort-
lessly integrable into the Data Web. ReadTheWeb and PROSPERA
rely on their own ontology for this purpose. Thus, their results can-
not be linked directly into the Data Web. The approach presented by
Mintz et al. [2009] does not generate RDF. In addition, our experi-
ments show that our approach can extract a large number of state-
ments (like PROSPERA and Mintz et al. [2009]) with a high preci-
sion (like ReadTheWeb). For example, 98% of the 2657 statements ex-
tracted by BOA on organizations in one iteration were not available in
the underlying data source. We minimize the effect of semantic drift
by adopting a conservative approach with respect to the patterns that
are used to generate RDF from text.

multilingual version The multilingual version of BOA extends
the basic English version in the following ways: First, to the best of
our knowledge, it is the first approach to extract multilingual patterns
and apply these patterns to extract new knowledge from English and
German text. We provide the resulting pattern library to the research
community. Since BOA uniquely generates RDF, its output can be
used to populate a multilingual knowledge base that can be read-
ily made available for querying via SPARQL, integrating and linking.
Second, we show that we can significantly improve recall achieved by
BOA through the generation and application of surface forms in the
pattern search process. Third, we present a set of features which can
be used to distinguish between good and bad patterns. Finally, our
experiments show that BOA can extract a large number of statements
(like PROSPERA and Mintz et al. [2009]) with a high precision (like
ReadTheWeb). For example, 78,944 of the 80,773 statements extracted
from the English and 22883 of the 23681 statements extracted from
the German Wikipedia were not available in DBpedia.

7 http://mdparser.sb.dfki.de/

http://mdparser.sb.dfki.de/

3.2 related work 25

Sy
st

em
Ty

pe
Pa

tt
er

n
Ty

pe
Ba

ck
gr

ou
nd

K
no

w
le

dg
e

C
or

po
ra

R
ea

so
ni

ng
R

el
at

io
ns

A
ri

ty
Ye

ar
La

ng
ua

ge

H
ea

rs
t

[H
ea

rs
t,

1
9
9
2
]

C
lo

se
d

Le
xi

ca
l

–
A

m
er

ic
an

A
ca

de
m

ic
En

cy
cl

op
ed

ia
7

hy
po

ny
m

2
1
9
9
2

en

D
IP

R
E

[B
ri

n,
1
9
9
9
]

C
lo

se
d

Le
xi

ca
l

M
an

ua
l

St
an

fo
rd

W
eb

Ba
se

7
au

th
or

2
1
9
9
8

en

Sn
ow

ba
ll

[A
gi

ch
te

in
an

d
G

ra
va

no
,

2
0
0
0
]

C
lo

se
d

Le
xi

ca
l,

Se
m

an
ti

c
Se

m
i-

A
ut

om
at

ic
N

or
th

A
m

er
ic

an
N

ew
s

Te
xt

C
or

pu
s

7
he

ad
qu

ar
te

r
2

2
0
0
0

en

K
no

w
It

A
ll

[E
tz

io
ni

et
al

.,
2
0
0
4
]

C
lo

se
d

Le
xi

ca
l,

Sy
nt

ac
ti

c
–

W
W

W
(s

ea
rc

h
en

gi
ne

qu
er

y)
7

hy
po

ny
m

1
2
0
0
5

en

D
A

R
E

[X
u

et
al

.,
2
0
0
7
]

C
lo

se
d

Le
xi

ca
l,

Se
m

an
ti

c
M

an
ua

l
M

U
C

6
,N

ob
el

Pr
iz

e
C

or
po

ra
7

aw
ar

d
m

an
-

ag
em

en
t

n
2
0
0
7

en

3.2 related work 26

Sy
st

em
Ty

pe
Pa

tt
er

n
Ty

pe
Ba

ck
gr

ou
nd

K
no

w
le

dg
e

C
or

po
ra

R
ea

so
ni

ng
R

el
at

io
ns

A
ri

ty
Ye

ar
La

ng
ua

ge

Te
xt

R
un

ne
r

Ba
nk

o
et

al
.

[2
0
0
7
]

O
pe

n
Le

xi
ca

l
–

(P
en

n
Tr

ee
ba

nk
)

9
M

W
eb

si
te

s
7

–
2

2
0
0
7

en

SO
FI

E
[S

uc
ha

ne
k

et
al

.,
2
0
0
9

]

C
lo

se
d

Lo
gi

ca
l

R
ul

es
YA

G
O

W
ik

ip
ed

ia
ge

ne
ra

l
2

2
0
0
9

en

[M
in

tz
et

al
.,

2
0
0
9
]

C
lo

se
d

Le
xi

ca
l,

Sy
nt

ac
ti

c,
Se

m
an

ti
c

Fr
ee

ba
se

W
ik

ip
ed

ia
7

Fr
ee

ba
se

To
p

1
0
2

2
2
0
0
9

en

N
EL

L
[C

ar
l-

so
n

et
al

.,
2
0
1
0
]

C
lo

se
d

Le
xi

ca
l,

Sy
nt

ac
ti

c,
Se

m
an

ti
c

M
an

ua
l

C
lu

eW
eb

0
9

hy
po

ny
m

(,
ge

ne
ra

l)
1

2
0
1
0

en

W
O

E
[W

u
an

d
W

el
d,

2
0
1
0
]

O
pe

n
Sy

nt
ac

ti
c,

Se
m

an
ti

c
W

ik
ip

ed
ia

W
W

,W
SJ

,
W

ik
ip

ed
ia

Sa
m

pl
e

7
–

2
2
0
1
0

en

R
eV

er
b

[F
ad

er
et

al
.,

2
0
1
1

]
O

pe
n

Le
xi

ca
l,

Sy
nt

ac
ti

c
–

C
lu

eW
eb

0
9

7
–

2
2
0
1
1

en

3.2 related work 27

Sy
st

em
Ty

pe
Pa

tt
er

n
Ty

pe
Ba

ck
gr

ou
nd

K
no

w
le

dg
e

C
or

po
ra

R
ea

so
ni

ng
R

el
at

io
ns

A
ri

ty
Ye

ar
La

ng
ua

ge

BO
A

[G
er

be
r

an
d

N
go

ng
a

N
go

m
o,

2
0
1
1
]

C
lo

se
d

Le
xi

ca
l,

Sy
nt

ac
ti

c
D

Bp
ed

ia
W

ik
ip

ed
ia

,N
ew

s
7

ge
ne

ra
l

2
2
0
1
1

de

PR
O

SP
ER

A
[N

ak
as

ho
le

et
al

.,
2
0
1
1

]

C
lo

se
d

Le
xi

ca
l

(n
-g

ra
m

it
em

se
ts

)
N

EL
L

C
lu

eW
eb

0
9

sp
or

ts
,

ac
ad

em
ic

2
2
0
1
1

en

[K
ra

us
e

et
al

.,
2
0
1
2
]

C
lo

se
d

Se
m

an
ti

c
Fr

ee
ba

se
W

W
W

(s
ea

rc
h

en
gi

ne
qu

er
y)

7
m

ar
ri

ag
e

n
2
0
1
2

en

R
df

Li
ve

N
ew

s
[G

er
be

r
et

al
.,

2
0
1
3
]

O
pe

n
Le

xi
ca

l,
Sy

nt
ac

ti
c

D
Bp

ed
ia

R
SS

Fe
ed

s
7

–
2

2
0
1
3

en

Ta
bl

e
4

:C
om

pa
ri

so
n

of
al

go
ri

th
m

s
re

la
te

d
to

BO
A

ap
pr

oa
ch

.

3.3 the boa framework 28

3.3 the boa framework

In this section we present the BOA framework for extracting natu-
ral language representations of relations found on the Data Web. Our
workflow is implemented as outlined in Figure 8. We first gather data
from the Web by using the corpus extraction module. Alternatively,
existing cleaned corpora can be loaded into BOA’s corpus repository.
Given a set of predicates whose representations are to be learned, the
instance knowledge available on the Data Web is harvested. Then, for
each predicate, our pattern extraction module searches for prototypi-
cal natural language patterns, that are specific for this predicate. The
patterns are subsequently filtered, scored and finally used for extract-
ing RDF statements from natural language text. These statements can
then be allocated to the input knowledge base and the process can be
restarted. In the following, we present each of the modules of BOA in
more detail. In addition, we exemplify their use and their output by
using the example of learning patterns from Wikipedia and DBpedia.

Corpora

Background
Knowledge

Patterns

SPARQL

Search

Filtering

Pattern
Scoring

RDF
Generation

Use in next
iteration

Corpus Extraction Module

Crawler

Cleaner

Indexer

Web

Data
Web

Figure 8: Overview of the BOA approach.

3.3.1 Corpus Extraction

The corpus extraction component of BOA consists of three main mod-
ules: A crawler, a cleaner and an indexer. The role of the crawler mod-
ule is to retrieve raw text data from the document-oriented Web. The
seed pages for this process are determined by querying the Web with
the labels of instances that are linked by the predicates whose natural
language representations are to be learned. Once presented with a
set of seed pages, our crawler can be configured to follow the links in
the seed pages up to a certain depth and until a given corpus size is
reached. Note that the crawler gets rid of the markup contained in the
webpage text. In addition, it allows to integrate corpus-specific pre-
processing components so as to enable it to extract raw text. For exam-
ple, when extracting a corpus from a Wikipedia dump, we used the

3.3 the boa framework 29

tool WP2TXT presented by Yoichiro [2006] to transform the Wikipedia
data from XML to UTF-8 encoded text. The raw text extracted from
all pages is merged to a corpus that is sent to the cleaner module.

The cleaner module implements the functionality that is necessary to
remove noise from the text retrieved by the crawler. It begins by split-
ting its input into sentences by using the Sentence Boundary Disam-
biguation provided by the stanford NLP core toolkit8. Subsequently,
all sentences go through a data cleaning process with 24 UTF-8 com-
patible filters, introduced by Biemann et al. [2007]. For example, sen-
tences with too many spaces in relation to length, with uncommon
symbols like | [] « » and sentences with more than eight capital
words in a row are discarded. The cleaned corpus is finally sent to
the indexer module.

The indexer module allows for the time-efficient search of instance
labels and of patterns in our corpus. In BOA, this functionality is
implemented by the Lucene indexer9, which we configured by using
the defaults provided by the engine. The corpus extraction process
for Wikipedia led to a corpus of 7.6GB that consisted of 44.7 million
sentences.

3.3.2 Knowledge Acquisition

Due to the mere size of the Data Web, extracting natural language
representations for all relations found on it would require substantial
hardware resources. While our approach is generic enough to be de-
ployed on any knowledge base and on any predicate found on the
Data Web, its current implementation demands the input of

• a class C that serves as the rdfs:domain or as the rdfs:range of
the predicates whose representations are to be learned and of

• a knowledge base that serves as background knowledge.

Once C is given, we retrieve all statements that have entities of rdf:type
C as their subject or objects. By these means, we retrieve all predicates
that link such entities to other and ensure that we only retrieve pred-
icates that have been instantiated in the knowledge base of interest.
This set of instances is the background knowledge upon which we
deploy our pattern extraction approach.

3.3.3 Pattern Search

The pattern search is carried out independently for each predicate.
Let p ∈ P be a predicate whose natural language representations are
to be detected, where P is the set of all predicates. In addition, let

8 http://nlp.stanford.edu/software/tokenizer.shtml

9 http://lucene.apache.org/java/docs/index.html

http://nlp.stanford.edu/software/tokenizer.shtml
http://lucene.apache.org/java/docs/index.html

3.3 the boa framework 30

K be the knowledge base that is used as background knowledge. We
use the symbol “∈” between triples and knowledge bases to signify
that a triple can be found in a knowledge base. The starting point for
the pattern search for p is the set of pairs I(p) = {(s,o) : (s p o) ∈ K}

that instantiate p. In the following, we use λ(x) to signify the label of
any resource x and µ(x) to signify x’s URI. The pattern search process
begins with the even distribution of the set I(p) across pattern search
threads. Each of these threads then retrieves all sentences which con-
tain the pairs of labels (λ(s), λ(o)) assigned to it from the input corpus.
An example of such sentences for the DBpedia relation :subsidiary

is shown in Listing 3. If a thread finds a sentence σ that contains both
λ(s) and λ(o), it deletes all tokens that are not found between λ(s)
and λ(o) in σ. The labels are then replaced with the placeholders D
for λ(s) and R for λ(o). We call the resulting string a natural language
representation of p and denote it with θ. Each θ extracted is used to
create a new instance of a BOA pattern.

Definition 1 (BOA Pattern) A BOA pattern is a pair P = (µ(p), θ),
where µ(p) is p’s URI and θ is a natural language representation of p.

Definition 2 (BOA Pattern Mapping) A BOA pattern mapping is a func-
tion M such that M(p) = S , where S is the set of natural language repre-
sentations for p.

1 http://dbpedia.org/resource/Google
2 http://dbpedia.org/ontology/subsidiary
3 http://dbpedia.org/resource/YouTube .
4 http://dbpedia.org/resource/Google rdfs:label ‘‘Google’’@en .
5 http://dbpedia.org/resource/YouTube rdfs:label ‘‘Youtube’’@en .

Listing 3: RDF snippet used for pattern search

For example, consider the RDF snippet from Listing 3 derived from
DBpedia. Querying the index of the Wikipedia corpus for sentences
which contain both entity labels returns the sentences depicted in
Table 5 amongst others. We can replace “Google” with D, because it
is the subject of the :subsidiary triple, as well as replace “Youtube”
with R because it is the object of the same triple. These substitutions
lead to the BOA patterns (:subsidiary, “D’s acquisition of R”) and
(:subsidiary, “R, a division of D”). For the sake of brevity and in the
case of unambiguity, we also call θ “pattern”.

The search for BOA patterns is completed with a large number of
duplicates and requires post-processing. In addition to the storage of
the patterns M(p) for each p, the post-processing includes the com-
putation of the number f(P, s,o) of occurrences of P for each element
(s,o) of I(p) and the ID of the sentences in which P was found. Based
on this data, we can also compute

• the total number of occurrences of a BOA pattern P, dubbed
f(P);

3.3 the boa framework 31

Sentence with λ(s) before λ(o) Sentence with λ(o) before λ(s)

“Google’s acquisition of Youtube
comes as online video is really
starting to hit its stride.”

“Youtube, a division of Google,
is exploring a new way to get
more high-quality clips on its
site: financing amateur video
creators.”

Table 5: Example sentences for pattern search.

• the number of sentences that led to θ and that contained λ(s)
and λ(o) with (s,o) ∈ I(p), which we denote l(s,o, θ, p) and

• I(p, θ) is the subset of I(p) which contains only pairs (s,o) that
led to θ.

We denote the set of predicates such that the pattern θ ∈ M(p) by
M(θ). Note that pattern mappings for different predicates can contain
the same pattern.

3.3.4 Pattern Scoring

The pattern scoring process is carried out in parallel and consists of
two steps: selection and score computation. The aim of the selection
step is to retrieve patterns that abide by a set of conditions that make
them fit for RDF extraction. We begin by dismissing patterns which
are too long or short (we only consider patterns between three and
ten tokens) and patterns which only consist of stop words (we used
a list of 41 stop words including “(”, “,” etc.). In addition we discard
all patterns starting with “and” or “, and” since they denote the con-
junction of sentences, which leads to ambiguous references when no
co-reference analysis or phrase structure analysis is applied. This can
be easily seen in the following example: “Davies‘ son John played
first-class cricket for Tasmania and was thrice Mayor of Hobart .” This
sentence would lead to “D and was thrice Mayor of R” being a pattern
for the :capital predicate, which is clearly wrong. Note that we did
not apply any co-reference or phrase structure analysis techniques for
performance reasons. The last filter we applied removes all patterns
which appear less than three times between labels of the same pair
of entities. Note that the statistics used for the pattern scoring step
encompass all patterns. The scores are yet only computed for those
patterns that abide by the restrictions specified above.

The second part is the actual score calculation. The score function
integrated in BOA relies on the following set of observations:

1. A good pattern θ for p is used across several elements of I(p).
This characteristic is modeled by computing the support of the
pattern.

3.3 the boa framework 32

2. A good pattern θ for p allows to map D (resp. R) to entities
whose rdf:type is the rdfs:domain (resp. rdfs:range) of p. We
call this characteristic typicity.

3. A good pattern θ is used exclusively to express p, i.e, it occurs
in a small number of pattern mappings. We call this last charac-
teristic specificity.

We first express these three characteristics of a good pattern formally.
Subsequently, we derive our formula for the score of a pattern.

support We calculate the support s(θ, p) of the pattern θ for the
predicate p as follows:

s(θ, p) = log
(

max
(s,o)∈I(p)

l(s,o, θ, p)
)

log(|I(p, θ)|). (1)

Since both components of the support are Poisson-distributed (see
Figure 9), we use the logarithm to reduce the boosting of very popular
patterns.

typicity A pattern θ is considered to display a high typicity with
respect to a predicate p if it connects only entity labels which match
the range and domain restrictions of p. Let d resp. r be functions
that map each p to the highest super-class (except owl:Thing) of its
rdfs:domain resp. rdfs:range in the provided ontology. Furthermore,
let δ(θ,σ) resp. ρ(θ,σ) be functions which map the class of the named
entity used to substitute D resp. R in the pattern θ for the given
sentence σ. Finally, let the function ζ(x,y) be a function that returns
1 if x = y and else 0. We define the typicity of θ as

t(θ, p) =
∑
σ∈S

(
ζ(d(p), δ(θ,σ)) + ζ(r(p), ρ(θ,σ))

2|S|

)
· log(|S|+ 1), (2)

where S is the set of sentences used to evaluate the typicity of θ. Note
that the first term of the typicity is simply the precision of the pat-
tern. We multiply this factor with the logarithm of (|S|+1) to prevent
overly promoting patterns which have a low recall, i.e. patterns that
return only a small number of sentences. Also note, that the detection
of δ(θ,σ) resp. ρ(θ,σ) is a demanding task, which we solved so far by
using a trained NER tagger.

specificity A pattern θ is considered to be specific when it oc-
curs in a small number of pattern mappings, i.e, when it expresses
exclusively p. We adapted the idea of inverse document frequency
(idf) as known from Information Retrieval to capture this characteris-
tic. The specificity i(θ) of θ is thus given by the following expression:

i(θ) = log
(

|P|

|M(θ)|

)
, (3)

3.3 the boa framework 33

where P is the set of all predicates. All three equations can now be
combined to the global score c(θ, p) used by BOA as shown in Equa-
tion 4:

c(θ, p) = s(θ, p)t(θ, p)i(θ). (4)

We define the normed score cn(θ, p) as the score divided by the local
maximum over all patterns belonging to the same pattern mapping
to normalize the scores to the interval [0, 1]:

cn(θ, p) =
c(θ)

max
θ ′∈M(p)

c(θ ′)
. (5)

(a) Distribution of max
(s,o)∈I(p)

l(s,o, θ, p).

(b) Distribution of |I(p, θ)|.

Figure 9: Distribution of parameters used to compute the support of patterns
in log-log scale. The y-axis shows the number of patterns

3.3 the boa framework 34

3.3.5 RDF Generation

The RDF generation is a very delicate process as each iteration gener-
ates the input for the subsequent RDF generation. In previous works,
semantic drift has been shown to be one of the key problems of this
process [Carlson et al., 2010; Nakashole et al., 2011]. In order to main-
tain high precision and to avoid semantic drift within the BOA frame-
work, we solely select the top-n patterns θ for each predicate p ac-
cording to cn(θ, p) for generating RDF. In addition, we filter out those
patterns θ which display a normed score below a given threshold as
well as a f((µ(p), θ)) below a second threshold. As our evaluation
shows, this approach is sufficient to avoid selecting noisy patterns.
All patterns which abide by these two conditions are used to retrieve
sentences that can be used for RDF generation.

The RDF generation per se is carried out as follows: For each pat-
tern θ and each predicate p, we first use the index to retrieve sentences
that contain θ stripped from the placeholders “D” and “R”. These sen-
tences are subsequently processed by a NER tool that is able to detect
entities that are of the rdfs:domain and rdfs:range of p. Thereafter,
the first named entities on the left and right of θ which abide by the
domain and range restrictions of p are selected as labels for the sub-
ject and object of p. Each of the extracted labels is then fed into an
URI retrieval service that aims to retrieve the entity e in K whose
label is most similar to the label extracted by BOA. If such an e is
found, then we use λ(e) in K as URI for the label detected by BOA.
Else, we create a new BOA URI.

Once we have computed the URIs, we are finally able to generate
RDF triples. The labels retrieved by our URI retrieval approach are
attached to the URI by using rdfs:label. In addition, note that we
are even able to add rdf:type statements to our knowledge base by
utilizing the domain and range restrictions of p. An excerpt of novel
statements (with respect to DBpedia) extracted automatically by BOA
using Wikipedia and DBpedia can be found in Listing 4. The results of
our extraction can be explored via the dashboard shown in Figure 10.

1 http://dbpedia.org/resource/Abdullah_Ahmad_Badawi
2 rdfs:label ‘‘Abdullah Ahmad Badawi’’@en ;
3 rdf:type http://dbpedia.org/ontology/Person .
4

5 http://dbpedia.org/resource/Malaysia
6 rdfs:label ‘‘Malaysia’’@en ;
7 rdf:type http://dbpedia.org/ontology/PopulatedPlace ;
8 http://dbpedia.org/ontology/leaderName http://dbpedia.org/resource/

Abdullah_Ahmad_Badawi .

Listing 4: RDF snippet generated by BOA

3.3.6 Evaluation

Our evaluation was driven by two main questions:

3.3 the boa framework 35

Figure 10: Screenshot of the BOA frontend

• Q1: Can we use knowledge found on the Data Web to bootstrap the
Data Web, i.e. can we find knowledge not yet available on the Data
Web?

• Q2: Can we retrieve this knowledge with a high precision, i.e, does the
score calculation retrieve the right patterns for each predicate?

To answer these questions, we evaluated our approach on two dif-
ferent data sets and used DBpedia as source for background knowl-
edge. Note that we only considered the classes Person, Location and
Organisation as seed classes for the extraction due to the restrictions
of the NER framework we utilized.

3.3.6.1 Experimental Setup

corpora We used two corpora, which differ in topic, size and
writing style. The first corpus, dubbed en-news, was described by Bie-
mann et al. [2007]. It was crawled from news sites in English that were
published between the years 2005 and 2010. The corpus contains be-
tween 32 million to 50 million unique and cleaned sentences for each
year (256.1 million sentences overall). The second corpus, dubbed en-
wiki, was derived from the English Wikipedia dump of March 2011

without history or discussions entries. The dump was transformed by
the WP2TXT tool from XML to UTF-8-encoded text. In contradistinc-
tion to en-news we did not remove duplicate sentences from en-wiki as
it did not contain as many duplicates as en-news. Overall, the en-wiki
corpus contains 44.7 million sentences. An overview of the corpora
can be found in Table 6.

background knowledge We used DBpedia as source for back-
ground knowledge. Listing 5 shows an example of the queries used
to retrieve properties and instances that are relevant for the classes
Organisation, Place and Person from DBpedia (see Figure 11). Over-
all, the knowledge acquisition process led to 283 different relations

3.3 the boa framework 36

ranging from 1 to 471920 triples, with an average of 4639 triples per
relation. Note that the evaluation was carried out independently for
each of the six possible combinations of seed classes and corpora.

parameters We limited the number of sentences returned by Lucene
for the pattern search to 25000. We also excluded all patterns P =

(µ(p), θ) with f(P) < 20. We used up to 500 sentences to calculate the
typicity of the patterns (see Equation 2). For the selection of sentences
for the RDF generation, we only used the top-1 and top-2 patterns for
each predicate. The evaluation of the accuracy of each pattern was
carried out manually by two evaluators on 100 statements that were
selected randomly. The inter-annotator agreement was computed by
using Cohen’s Kappa. Since the precision of the entity extraction al-
gorithm is out of scope of this evaluation, we considered a triple as
correct if the sentence it was generated from, contained the right la-
bels for named entities that matched the rdf:type of the domain and
range of p. Furthermore, sentences which contained references to cor-
rect entities (e.g. pronouns) but not the entity labels themselves were
considered to be false positives.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3 PREFIX dbpo: <http://dbpedia.org/ontology/>
4 SELECT ?s ?sLabel ?prop ?o ?oLabel ?domain ?range
5 WHERE {
6 ?s rdf:type dbpo:[Organisation|Person|Place] .
7 ?s rdfs:label ?sLabel .
8 ?o rdfs:label ?oLabel .
9 [?o ?prop ?s|?s ?prop ?o] .

10 FILTER (lang(?sLabel) = en && lang(?oLabel) = en) .
11 ?prop rdfs:range ?range .
12 ?prop rdfs:domain ?domain .
13 }

Listing 5: SPARQL query template used for knowledge acquisition.

of facts

birthPlace 471920

deathPlace 96628

formerTeam 75100

occupation 55213

almaMater 40302

writer 37437

award 28563

musicalArtist 28074

musicalBand 28074

riverMouth 22831

3 %3 %3 %
3 %

4 %

5 %

6 %

8 %

11 %

53 %

birthPlace
deathPlace
formerTeam
occupation
almaMater
writer
award
musicalArtist
musicalBand
riverMouth

Table 2

Place Person Organisation

is subject 72820 551693 64239

is object 327430 158697 137990

Nu
m

be
r o

f t
rip

le
s

Place Person Organisation

137990

158697

327430

64239

551693

72820

is subject
is object

(a) Distribution of triples used for pat-
tern search.

of facts

birthPlace 471920

deathPlace 96628

formerTeam 75100

occupation 55213

almaMater 40302

writer 37437

award 28563

musicalArtist 28074

musicalBand 28074

riverMouth 22831

3 %3 %3 %
3 %

4 %

5 %

6 %

8 %

11 %

53 %

birthPlace
deathPlace
formerTeam
occupation
almaMater
writer
award
musicalArtist
musicalBand
riverMouth

Table 2

Place Person Organisation

is subject 72820 551693 64239

is object 327430 158697 137990

Nu
m

be
r o

f t
rip

le
s

Place Person Organisation

137990

158697

327430

64239

551693

72820

is subject
is object

(b) Distribution of triples for 10 most fre-
quent predicates.

Figure 11: Overview of the knowledge extraction on DBpedia

3.3.6.2 Results and Discussion

The results of our evaluation are shown in Tables 7 and 8. We reached
an average inter-annotator agreement of 0.9175. Our approach per-

3.3 the boa framework 37

Name wiki news

Language English English

Topic General knowledge Newspaper articles

Number of lines 44.7 256.1

Number of words 1032.1 5068.7

Number of characters 5689 30289.7

Number of unique words 5.9 26.3

Table 6: Corpora statistics. (All figures in millions.)

formed consistently best on predicates related to organizations and
worst on those related to locations. When using the en-wiki as corpus,
our worst precision was 90.5% on locations when using the top pat-
tern. This value improved to 93% when using the top-2 patterns. Our
overall best precision of 99% clearly answers question Q2 positively.
Our good performance on en-wiki is due to the encyclopedic character
of this dataset. Overall, en-wiki contained a (in relation to its size) rel-
atively larger number of sentences that expressed the relations found
in DBpedia. Consequently, we could rely on a relatively larger num-
ber of good exemplary sentences and compute more accurate scores.

en-wiki en-news

LOC PER ORG LOC PER ORG

Rater 1 88% 97% 99% 61% 73% 91%

Rater 2 93% 97% 99% 62% 74% 91%

Intersection 84% 96% 99% 59% 73% 91%

Average 90.5% 97% 99% 61.5% 73.5% 91%

κ 0.68 0.66 1 0.94 0.97 1

Table 7: Evaluation results for top-1 pattern.

The en-news corpus was less reliable in this respect. It contained less
information (and consequently more noise) than en-wiki and thus led
to worse statistics and patterns. This characteristic of the data set was
especially noticeable for predicates of the Location class, as locations
are very generic and can thus occur in a large number of contexts that
do not express the predicate p used as input. Consequently, we solely
reached precisions between 57% and 61.5% for Location on the en-
news corpus. On the class Organisation, we still reached precisions
of up to 93%.

Note that the patterns extracted from en-wiki are by no means
bound to en-wiki for the extraction of triples. Thus, we can apply the

3.3 the boa framework 38

en-wiki en-news

LOC PER ORG LOC PER ORG

Rater 1 94% 96% 96% 57% 67% 92%

Rater 2 92% 96% 95% 57% 68% 94%

Intersection 94% 96% 95% 57% 67% 92%

Average 93% 96% 95.5% 57% 67.5% 93%

κ 0.9 1 0.88 1 0.98 1

Table 8: Evaluation results for top-2 pattern.

patterns retrieved using en-wiki on any corpus. Consequently, the pre-
cision scores achieved on en-wiki reflect best the overall capabilities of
our extraction approach. For example, when applying the top en-wiki
pattern for predicates from each of the three classes Person, Location
and Organisation with the Google index and only considering the
top-20 pages returned, we achieved a precision of 95% of the :spouse,
95% of the :capital and 100% on the :subsidiary predicates. Exam-
ples of natural language representations extracted by BOA are shown
in Table 11.

We measured how much new correct knowledge we were able to
generate by counting the number of statements that we generated that
could not be found in DBpedia and multiplying it with the precision
of our approach. Tables 9 and 10 show that we extracted more than
13,000 new correct facts in one iteration, therewith answering also Q1
with a clear “yes”. Examples of these new facts are shown in Table 12.
As our evaluation shows, our approach is particularly well suited for
extracting knowledge on organizations. For example, 98% of the facts
considered in our evaluation and extracted by using news data could
not be found in DBpedia. When using Wikipedia as text data, 99% of
the statements that were evaluated on the organization data were not
available in DBpedia. When assuming an even distribution of correct
facts and of their inclusion in DBpedia, this implies that 2494 of the
2567 statements on organizations extracted from Wikipedia by using
DBpedia are not to be found in DBpedia. Note that one iteration on all
predicates linked to organizations on the en-news corpus lasts about
15 minutes, therewith showing that our approach is fully suitable for
the large-scale extraction of new knowledge from the Web.

A direct comparison of our approach with those presented by Carl-
son et al. [2010]; Nakashole et al. [2011]; Mintz et al. [2009] cannot be
carried out due to the fact that we operate on different background
knowledge and on different text corpora. Nevertheless, our evalua-
tion on en-wiki shows that although we do not use a reasoner, we
extract patterns with a precision equal or superior to those extracted
by PROSPERA [Nakashole et al., 2011] with a reasoner. The precision

3.3 the boa framework 39

LOC PER ORG

Extracted Triples in DBpedia 1465 8817 2567

Triples contained in DBpedia 138 183 48

Evaluated triples 100 100 100

Number in DBpedia 8 1 1

Precision (average) 90.5% 97% 99%

New true statements 1200 8375 2494

Pattern mappings 62 72 59

Patterns 1045 612 241

Table 9: Overview of extraction statistics of first iteration for en-wiki.

LOC PER ORG

Triples extracted 488 903 916

Triples contained in DBpedia 52 44 7

Evaluated triples 100 100 100

Precision (average) 61.5% 73.5% 91%

New true statements 268 631 827

Pattern mappings 49 70 55

Patterns 3832 7294 1077

Table 10: Overview of extraction statistics of first iteration for en-news.

achieved by PROSPERA without a reasoner lies significantly below
that of BOA. The same holds for the approach presented by Mintz
et al. [2009]. In addition, we extract more correct statements in our
first iteration than any of the previous approaches even when using
a corpus that is more than 650 times smaller than ClueWeb09, there-
with hinting towards a higher recall.

3.3 the boa framework 40

en-wiki en-news

birthPlace (Person/PopulatedPlace)

D was born in R D has been named in the R

— (D, the mayor of R) D, MP for R

foundationPerson (Organisation/Person)

R, co-founder of D R, the co-founder of D

R, founder of D R, founder of the D

subsidiary (Organisation/Organisation)

R, a subsidiary of D R, a division of D

— (R, a division of D) D‘s acquisition of R

riverMouth (River/BodyOfWater)

D, which flows to R — (D empties into the R)

D, a tributary of the R — (D, which joins the R)

leaderName (PopulatedPlace/Person)

D ‘s Prime Minister R D‘s Prime Minister R

R, the Prime Minister of D D for talks with President R

capital (PopulatedPlace/City)

R, the capital of D R, the capital of D

R, capital of D R, capital of D

Table 11: Top-2 natural language representations for six most used relations
in evaluation. “—” means that no natural language representation
was found, patterns in brackets are next in line but were not used
for the evaluation because they did not fulfill the threshold require-
ments.

3.3 the boa framework 41

wiki-loc

Westlake High School tenant Chaparral Stadium

Boston College tenant Higgins Hall

Konzerthaus Berlin architect Karl Friedrich Schinkel

Villa Foscari architect Andrea Palladio

wiki-per

Elvin Jones birthPlace Pontiac, Michigan

Ernest Reyer birthPlace Marseilles

Henri Curiel deathPlace Paris

Carrero Blanco deathPlace Madrid

wiki-org

Time Warner subsidiary DC Comics

Interscope Records subsidiary Star Trak Entertainment

Heavy Brigade notableCommander James Yorke Scarlett

Federal Department of
the West

notableCommander John C. Fremont

news-loc

Badakhshan capital Faizabad

Quetta capital Baluchistan

Bulgaria leaderName Boyko Borisov

Japan leaderName Taro Aso

news-per

Leyla Rodriguez Stahl spouse Abel Pacheco

Sehba Musharraf spouse Pervez Musharraf

Kelly Osbourne father Ozzy Osbourne

Svetlana Alliluyeva father Josef Stalin

news-org

College of Cardinals dean Cardinal Joseph Ratzinger

Yale University School
of Architecture

dean Robert A.M. Stern

Aldi foundationPerson Theo Albrecht

World Wrestling Enter-
tainment

foundationPerson Vince McMahon

Table 12: Triples extracted from evaluation data set not present in DBpedia.

3.4 multilingual extension of boa 42

3.4 multilingual extension of boa

In this section, we present the multilingual extension to the BOA
framework. We begin by giving an overview of the architecture it
implements. Thereafter, we give a deeper presentation of its core com-
ponents. We begin by explicating the pattern extraction process. Then,
we focus especially on the features we extract while searching for ad-
equate patterns. We present our use of neural networks for learning
a score function. Finally we show how the scored patterns are used
to generate RDF.

3.4.1 Overview

The idea behind the BOA architecture was to provide an architecture
that allows extracting structured data from the Human Web itera-
tively. An overview of the workflow implemented by BOA is given in
Figure 12. The input for the BOA framework consists of a set of knowl-
edge bases, a text corpus (mostly extracted from the Web) and (op-
tionally) a Wikipedia dump10. When provided by a Wikipedia dump,
the framework begins by generating surface forms for all entities in
the source knowledge base. The surface forms used by BOA are gen-
erated by using an extension of the method proposed by Mendes
et al. [2011]. For each predicate p found in the input knowledge
sources, BOA carries out a sentence-level statistical analysis of the
co-occurrence of pairs of labels of resources that are linked via p. In-
stead of using a hard-coded evaluation function like in previous work,
BOA then uses a supervised machine-learning approach to compute
the score of patterns for each combination of corpus and knowledge
bases. In a final step, our framework uses the best-scoring patterns for
each relation to generate RDF data. This data and the already avail-
able background knowledge can now be used for a further iteration
of the approach. In the following, we describe the core steps of BOA
in more detail. Throughout this description, we will use the example
of generating new knowledge for the dbpedia:architect relation.

3.4.2 Pattern Extraction

Let K be the knowledge base that is used as background knowledge.
The first and optional step of the pattern extraction is the computa-
tion of surface forms Sr for the subject and objects of a relation p
for which patterns are to be extracted. To extract surface forms for re- See Table 13 for a

statistical overview
of the surface forms
for resources found
in DBpedia.

sources r ∈ K, we use Wikipedia’s redirect and disambiguation pages
as described by Mendes et al. [2011]. The main drawback of this ap-
proach is that it is not tailored towards the extraction of datatype
properties. Consequently, if the object of a relation is a datatype (i.e.

10 http://wikipedia.c3sl.ufpr.br/

http://wikipedia.c3sl.ufpr.br/

3.4 multilingual extension of boa 43

Corpora

Background
Knowledge

Patterns

SPARQL

Search
& Filter

Filtering Feature
Extraction

RDF
Generation

Corpus Extraction Module

Crawler

Cleaner

Indexer

Surface
Forms

Machine
Learning

Web

Data
Web

Figure 12: Overview of the BOA approach. Parts that changed from the pre-
vious version are marked red.

German English

Number of URIs 1,280,859 3,496,082

Number of all surface forms 2,124,084 8,252,275

Maximum of surface forms per resource 132 981

Average of surface forms per resource 1.658 2.360

Table 13: Statistical overview of German and English surface forms.

not a resource), we use data generation modules that allow parsing
the datatype at hand and generating possible surface forms for it. For
example, when provided with the date “11/12/2012”, BOA generates
strings such as “11th Dec 2012”, “11th December 2012” and “Dec 11,
2012”. By using surface forms, we achieve a significantly higher recall
than without as shown in Figure 13. It is important to note that the
use of Wikipedia dumps does not limit our framework as they exist
in more than 90 languages. In addition, BOA can also run without
being given surface forms.

The pattern search is carried out independently for each predicate.
Let p ∈ P be a predicate whose natural language representations are
to be detected, where P is the set of all predicates. We use the sym-
bol “∈” between triples and knowledge bases to signify that a triple
can be found in a knowledge base. The starting point for the pattern
search for p is the set of pairs I(p) = {(s,o) : (s p o) ∈ K} that in-
stantiate p. In the following, we use λ(x) to signify the set of labels
of any resource x and µ(x) to signify x’s URI. The pattern search
process begins with the even distribution of the set I(p) across pat-
tern search threads. Each of these threads then retrieves all sentences
which contain both labels of all combination of (λ(s), λ(o)) from the
input corpus. If a sentence σ containing both labels ls ∈ λ(s) and
lo ∈ λ(o) is found, it deletes all tokens that are not found between

3.4 multilingual extension of boa 44

de-wiki-non-
surface

de-wiki-
surface

en-wiki-non-
surface

en-wiki-
surface

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
2 1 1 1
2 1 1 1
2 1 1 1
3 1 1 1
4 2 1 1
4 2 2 1
6 2 2 1
32 2 2 1
34 2 2 1
52 2 2 1

2 2 1
2 2 2
3 2 2
3 2 2
3 2 2
4 2 2
4 2 2
4 2 2
4 2 2
6 3 2
6 3 2
7 3 3
9 3 3
9 4 3
9 4 3
10 4 3
10 4 3
12 4 4
14 4 4
19 4 4
20 5 4
21 5 4
22 5 4
25 6 4
36 7 4
79 7 4
93 7 4
128 8 4
128 8 5

8 5
9 5
10 5
11 5
12 5
13 6
13 6
13 6
13 6
13 7
14 7
14 8
16 9
20 9
25 9
26 9
27 10
29 10
38 11
53 12
67 12
69 12
332 13

13
14
15
16
17
17
20
21
21
23
23
23
24
24
25
26
27
29
31
32
35
39
39
40
40
50
50
56
57
61
62
67
69
70
70
72
79
84
85
91
102
108
112
124
128
147
155
194
210
213
216
233
267
313
851
1835
2395

10

100

1000

10000

de-wiki-non-surface de-wiki-surface en-wiki-non-surface en-wiki-surface

Figure 13: Distribution of patterns per pattern mapping in logarithmic scale.
Each vertical line represents one pattern mapping.

ls and lo in σ. The labels are then replaced with the placeholders D
for ls and R for lo. We call the resulting string a natural language rep-
resentation (NLR) of p and denote it with θ. Each θ extracted is used
to create a new instance of a BOA pattern.

Definition 3 (BOA Pattern) A BOA pattern is a triple P = (µ(p), θ, lang),
where µ(p) is p’s URI, θ is a natural language representation of p and lang
is the language of the NLR.

Definition 4 (BOA Pattern Mapping) A BOA pattern mapping is a func-
tion M such that M(p) = S , where S is the set of natural language repre-
sentations for p.

1 dbr:Empire_State_Building dbo:architect dbr:Shreve,_Lamb_and_Harmon
2

3 dbr:Empire_State_Building rdfs:label "Empire State Building"@en
4 dbr:Shreve,_Lamb_and_Harmon rdfs:label "Shreve, Lamb and Harmon"@en
5

6 dbr:Empire_State_Building rdfs:label "Empire State Building"@de
7 dbr:Shreve,_Lamb_and_Harmon rdfs:label "Shreve, Lamb und Harmon"@de

Listing 6: RDF snippet used for pattern search

For example, consider the RDF snippet from Listing 6 derived from
DBpedia. Querying the index of an underlying corpus for sentences
which contain both entity labels in the same language returns the
sentences depicted in Table 14 amongst others. We can replace “Em-
pire State Building” with D, because it is a label of the subject of
the :architect triple, as well as replace “Shreve, Lamb and Harmon”
and “William F. Lamb” (a surface form of lr) with R because it is
one label of the object of the same triple. The same holds true for
the German example. These substitutions lead to the BOA patterns
(:architect, “D was designed by R”, en), (:architect, “R also designed

3.4 multilingual extension of boa 45

the D”, en), (:architect, “D galt als Hauptarchitekt des R”, de) and
(:architect, “R , designed und errichtet von D”, de). For the sake of
brevity and in the case of unambiguity, we also call θ “pattern”. Pat-

Sentence with λ(s) before λ(o) Sentence with λ(o) before λ(s)

“. . . Shreve, Lamb and Harmon
also designed the Empire State
Building .”

“The Empire State Building
was designed by William F.
Lamb . . . ”

“. . . William F. Lamb galt als
Hauptarchitekt des Empire State
Building .”

“. . . Empire State Building , de-
signed und errichtet von Shreve,
Lamb und Harmon . . . ”

Table 14: Example sentences for pattern search.

terns are only considered for storage and further computation if they
withstand a first filtering process. For example, they must contain
more than one non-stop-word, have a token count between certain
thresholds and may not begin with “and” or “, and”. As in the previ-
ous, English only, version of BOA we compute the number f(P, s,o)
of occurrences of P for each element (s,o) of I(p) and the ID of the
sentences in which P was found. Based on this data, we can, as pre-
viously shown (see Section 3.3.3) compute the total number of occur-
rences of a BOA pattern, the number of sentences that led to θ and
I(p, θ). Again, we apply a second filtering process, where patterns
which do not abide a threshold for |I(p, θ)|, max(l(s,o, θ, p)) and f(P)
are removed. Two patterns (µ(x), θx) and (µ(y), θy) are considered
to be distinct if θx 6= θy. Note that pattern mappings for different
predicates can contain the same pattern.

3.4.3 Feature Extraction

The feature extraction is applied on all patterns which overcome both
filtering processes. The pattern mappings are evenly distributed to
feature extraction threads. Each thread then computes the features for
all patterns of the given pattern mappings. Note that although BOA is
designed to work independently from the language of the underlying
corpus, it can be tailored towards a given language. For example the
ReVerb and IICM feature exploit knowledge that is specific for the
English language.

support The support features s1(θ, p) and s2(θ, p) of the pattern θ
for the predicate p capture how often a pattern occurs between
the elements of I(p). Especially s1(θ, p) stands for the number of
distinct pairs the pattern has been learned from, while s2(θ, p)
is the maximum number of occurrences of the same pattern

3.4 multilingual extension of boa 46

between the elements of a single element of I(p). The support
features s1(θ, p) and s2(θ, p) are formally defined as follows:

s1(θ, p) = log(|I(p, θ)|) (6)

s2(θ, p) = log
(

max
(s,o)∈I(p)

l(s,o, θ, p)
)

. (7)

We use the logarithm to reduce the boosting of very popular
patterns.

specificity The specificity of a pattern p is equal to the definition
of the specificity given in Equation 3.

typicity We define the typicity features of θ similar to the typicity
feature from Equation 2. Instead of calculating a combined score
for both, through p, connected entities, we split them into 3

individual features:

t1(θ,p) =
∑
σ∈S

δ(d(p),domain(θ,σ))
|S|

(8)

t2(θ,p) =
∑
σ∈S

δ(r(p), range(θ,σ))
|S|

(9)

t3(θ,p) = log(|S|+ 1) (10)

The detection of domain(θ,σ) resp. range(θ,σ) is, as in the
previous version, carried out by a trained NER tagger.

iicm The Intrinsic Information Content Metric (IICM) captures the
semantic relatedness between a pattern’s NLR and the property
it expresses. This similarity measure has been introduced by
Seco et al. [2004] and is based in the Jiang-Conrath similarity
measure [Jiang and Conrath, 1997]. The advantage of this mea-
sure is that it is purely based on the hierarchical structure of
words inside an ontology like WordNet [Fellbaum, 1998; Miller,
1995], thus avoiding heavyweight corpus statistics. We apply
this measure to each BOA pattern mapping independently. First
we retrieve all synsets for each token of the pattern mappings
associated rdfs:label from WordNet. For the pattern mapping
M(dbpedia-owl:architect) this is “architect” and “designer”.
If no such synsets are found we use the tokens of the rdfs:label of
M(p). We then apply the IICM measure pairwise to these tokens
and the tokens derived from one M(p) assigned pattern’s NLR.
The IICM score for one pattern is then the maximum value of
all pairs’ similarity scores.

reverb ReVerb has been introduced by Fader et al. [2011] and dis-
tinguishes good from bad relation phrases by two simple con-
straints. The first constraint is of syntactical nature and is a part-
of-speed-based regular expression, where a token sequence is

3.4 multilingual extension of boa 47

considered to be a good instance of a relation if it contains a
verb. The second constraint is based on the assumption that a
valid relation phrase should take many distinct arguments in
a large corpus, therewith avoiding the selection of overly spe-
cific relation phrases. Since the input of ReVerb is a POS-tagged
sentence, but a pattern is only a substring of a sentence, we
use all sentences we found the pattern in (see Section 3.4.2) as
ReVerbs input. For all of ReVerb’s extracted relations of a par-
ticular sentence we check if it matches the pattern in question
and use ReVerb’s trained logistic regression classifier to assign
a confidence score to this extraction. Note that BOA focuses on
the relation between two given resources and discards all other
extractions, since those are not mappable to the background
knowledge. Finally, we calculate a pattern’s ReVerb feature as
the average of all scored extractions.

tf-idf The Tf-Idf features are an adaption of the tf-idf score used
in information retrieval and text mining. The intention behind
this feature, as in information retrieval, is to distinguish rele-
vant from irrelevant patterns for a given pattern mapping M(p).
In the BOA case a document is considered to be all tokens of
all patterns (without stop-words and the placeholders “D” and
“R”) of one pattern mapping. In other words, the total number
of documents is equal to the number of pattern mappings with
patterns. We then calculate the features idf(p) and tf(p) for each
token of the patterns NLR as follows:

idf(p) =
∑
t∈T(p)

log(
|M(p)|

df(t) + 1
) + 1 (11)

tf(p) =
∑
t∈T(p)

√
f(t) (12)

Where df(t) is the document frequency of t, f(t) the term fre-
quency of t and T(p) the set of tokens for a pattern p.

3.4.4 Scoring Approach

Given the number of features that characterize the input data, devis-
ing a simple scoring function transforms into a very demanding task.
In this work, we address the problem of computing a score for each
BOA pattern by using feedforward neural networks. The input layer
of our network consists of as many neurons as features for patterns
while the output neuron consists of exactly one neuron whose activa-
tion was used as score. We employed the sigmoid function as transfer
function. For each data set, we trained the neural network by using
manually annotated patterns (200 in our experiments). The patterns
were extracted from the set of all patterns generated by BOA by first

3.4 multilingual extension of boa 48

randomly sampling the same number of patterns for each predicate
(seven in our experiments) and then selecting a subset of these pat-
terns for annotation.

3.4.5 RDF Generation

The generation of RDF out of the knowledge acquired by BOA is the
final step of the extraction process. When using BOA iteratively, the
output of each RDF generation would provide parts of the input for
the subsequent extraction process. In previous work, semantic drift
has been shown to be one of the key problems of such iterative ap-
proaches [Carlson et al., 2010; Nakashole et al., 2011]. In order to
maintain a high precision and to avoid semantic drift within the BOA
framework, we solely select the top-n percent of all scored patterns
for generating RDF. As our evaluation shows, this approach is suffi-
cient to avoid selecting noisy patterns. All patterns which abide by
these two conditions are used to retrieve sentences that can be used
for RDF generation.

The RDF generation per se is carried out as follows: For each pat-
tern θ and each predicate p, we first use the index to retrieve sen-
tences that contain θ stripped from the placeholders “D” and “R”.
These sentences are subsequently processed by a NER tool that is
able to detect entities that are of the rdfs:domain and rdfs:range of
p. Thereafter, the first named entities within a limited distance on the
left and right of θ which abide by the domain and range restrictions
of p are selected as labels for subject and object of p. Each of the ex-
tracted labels is then fed into the URI retrieval and disambiguation
service implemented by the FOX framework11. If this service returns
a URI, then we use it for the label detected by BOA. Else, we create a
new BOA URI.

Once we have computed URIs, we are able to generate RDF triples.
The labels found in the text corpus are attached to the URI by using
rdfs:label. In addition, note that we are even able to add rdf:type

statements to our knowledge base by utilizing the domain and range
restrictions of p. Note as well that it is possible, even desirable that
one triple is found by multiple patterns. We use this information to
calculate a confidence score s(t) for each triple t that we extract:

s(t) =
1

1+ e
−

[
n∑
i=1
s(pi(t))

]
n+1

where
∑
s(pi(t)) is the sum of the score given by the neural network

of all patterns that found the triple t and n the number of all patterns.
This function is derived from the sigmoid function which outputs val-
ues ranging from 0 to 1 inclusively. We modified the function to boost

11 A demo of the framework is available at http://fox.aksw.org.

http://fox.aksw.org

3.4 multilingual extension of boa 49

patterns which are learned by more than one pattern. The triple score
is the sum of the patterns’ scores which found the triple multiplied
by the number of triples. With the help of this score, we can avoid se-
mantic drift in further iterations by solely selecting the top n percent
of the triples to use as background knowledge in the next iteration.
By applying our approach, we were able to extract triples such as
dbr:Washington_Monument dbo:architect dbr:Robert_Mills, which
is not in DBpedia but explicitly stated in Wikipedia. The results of our
extraction can be explored via the dashboard shown in Figure 14.

Figure 14: Screenshot of the BOA pattern library Web interface.

3.4.6 Evaluation

The aim of BOA’s evaluation was three-fold. First, we aimed at testing
whether BOA can be really applied to different languages. To achieve
this goal, we applied BOA to German and English. Our second goal
was to determine the accuracy of BOA’s extraction. For this purpose,
we sampled 100 triples from the data extracted by BOA from each cor-
pus and had two annotators measuring the precision of these samples
manually. Finally, we wanted to compute the amount of (new) knowl-
edge that can be extracted by BOA. For this purpose, we compute the
number of new triples that we were able to extract.

3.4.6.1 Experimental Setup

We excluded temporal properties from the evaluation as BOA does
net yet distinguish between different time expressions and conjuga-
tions. We evaluated our approach on 4 corpora written in German
and English. The first two corpora, en-wiki resp. de-wiki, were ex-

3.4 multilingual extension of boa 50

tracted from the English resp. German Wikipedia dumps and con-
tained 58 million resp. 24.6 million sentences. The other two corpora
(en-news resp. de-news) were extracted from English resp. German
news corpora and were significantly larger, containing, 241.3M resp.
112.8M sentences.

3.4.6.2 Score Function

We began the evaluation by annotating 200 patterns per corpus by
hand. Each training data set was annotated independently by the au-
thors, who agreed on the annotations in approximately 90% of the
cases. The annotations upon which the authors disagreed were re-
solved by both authors. High-quality patterns were assigned a score
of 1, else they were assigned a 0. We then trained four different neu-
ral networks (one for each dataset) to distinguish between the high-
precision and poor patterns. In our experiments, we varied the size
of the hidden layer between one and three times the size of the in-
put layer. In addition, we varied the error rate to which they were
trained. The maximal number of training epochs was set to 10000.
The accuracy of the networks was measured by using a 10-fold cross-
validation. Patterns scored above 0.5 were considered to be good pat-
terns, while all others were considered to be poor. The best neural
network was set to be the smallest network that reaches the maximal
accuracy. The resulting learning curves are shown in Figure 15. It is
easy to see that networks trained to achieve an error rate of maximally
5% performed best in our experiments.

Figure 15: Learning curves of BOA’s neural networks. The x-axis shows the
number of input neurons and the y-axis shows the achieved ac-
curacy.

3.4 multilingual extension of boa 51

3.4.6.3 Multilinguality

Enabling BOA to process languages other than English requires solely
the alteration of the NER tools and POS parsers. As the results on Ger-
man show, languages with a wide range of morpho-syntactical vari-
ations demand the analysis of considerably larger corpora to enable
the detection of meaningful patterns. For example, while we trained
the neural network by using the same number of patterns, we were
not able to detect any triples with a score above 0.5 when using the
German Wikipedia and DBpedia. Yet, when using a larger German
news corpus data set, we were able to detect new patterns with an
acceptable precision (see subsequent section).

3.4.6.4 Accuracy

We measured the precision of the extraction carried out by BOA as
well as the number of new triples that we were able to extract in one
iteration. We achieve a precision superior to 90% overall on the En-
glish data sets. This value is comparable to that achieved by the pre-
vious versions of BOA [Gerber and Ngonga Ngomo, 2011]. Yet, the
addition of surface forms for the extraction yields the advantage of
achieving a considerably higher recall both with respect to the num-
ber of patterns extracted as well as with respect to the total number
of triples extracted. For example, when using the English Wikipedia,
we can extract approximately more than twice the amount of triples.
The same holds for the number of patterns and pattern mappings as
shown in Figure 13.

en-wiki de-wiki en-news de-news

Nr. of pattern mappings 125 44 66 19

Number of patterns 9551 586 7366 109

Number of new triples 78944 2283 10138 883

Number of known triples 1829 798 655 42

Number of found triples 80773 3081 10793 925

Precision Top-100 92% 70% 91% 74%

Table 15: Results of the first iteration of the BOA framework.

An excerpt of the new knowledge extracted by BOA is shown in
Listing 7. Note that the triple Iomega subsidiary ExcelStor_Technology

is wrong. Although Iomega planned to buy ExcelStor, the deal was
never concluded. Our approach finds the right patterns in the sen-
tences describing the temptative deal and thus extract this triple.

1 Chinese spokenIn Malaysia .
2 Chinese spokenIn China .
3 Italian spokenIn Italy .

3.5 conclusion 52

4 Greek spokenIn United_States .
5

6 ESV_Blau-Rot_Bonn ground Bonn
7 TG_Würzburg ground Würzburg
8

9 Weitnau administrativeDistrict boa:Oberallgäu .
10 Memmingerberg administrativeDistrict boa:Unterallgäu .
11 Borsdorf administrativeDistrict Leipzig .
12 Wirsberg administrativeDistrict Kulmbach .
13

14 IBM subsidiary boa:Softek_Storage_Solutions .
15 Cerberus_Capital_Management subsidiary boa:Chrysler_Holdings_LLC .
16 Kaspersky_Lab subsidiary boa:Spamtest_Project .
17 Intel_Corporation subsidiary McAfee .
18 Iomega subsidiary ExcelStor_Technology
19

20 Pierre-Joseph-Olivier_Chauveau party Conservative_Party_of_Quebec .
21 Robert_Stanfield party Progressive_Conservative_Party .
22 Adélard_Godbout party Quebec_Liberal_Party .
23

24 American_Airlines hubAirport Logan_International_Airport .
25 Frontier_Airlines hubAirport Akron-Canton_Regional_Airport .
26 El_Al hubAirport Los_Angeles_International_Airport
27

28 Neil_Warnock managerClub Sheffield_United_F.C. .
29 boa:Akira_Ogi managerClub Orix_Buffaloes .
30 Richard_Money managerClub Walsall .
31

32 Walter_Albrecht_Becker birthPlace Hamburg .
33 Sophie_Ludovike_Reichenbach birthPlace Ludwigsburg .
34 Hans_Dreier birthPlace Bremen .

Listing 7: RDF extracted by BOA. If not stated otherwise, all instances and
properties use the DBpedia namespace.

3.5 conclusion

In this chapter, we presented BOA, an approach for bootstrapping
the Data Web. Our approach is based on using instance data for pred-
icates found on the Data Web to retrieve natural language representa-
tions for these predicates. Based on these representations, we extract
sentences from natural language text that contain both named entities
and patterns. These sentences are then used to extract (in particular
novel) knowledge from the document-oriented Web and to integrate
this knowledge into the Data Web. In Section 3.3 we presented the
first implementation of the proposed approach for the English lan-
guage. Our evaluation shows that when combining knowledge from
DBpedia with text from Wikipedia, we achieve precision scores be-
yond 90% and retrieve more than 12,000 facts that (13,000 with en-
news) were not previously found in DBpedia within one iteration. In
Section 3.4 of this chapter, we presented the multilingual extension
of BOA. We gave a detailed description of the improved components
of the framework and applied it to English and German corpora. We
showed that in all cases, we extract large amounts of RDF triples from
the data at hand. Our extraction strategy was to only integrate RDF
triples that were generated by at least two patterns, which enabled
us to achieve a high precision on all data sets. The precision of Ger-
man was lower than that on English because of the rich morphology
and syntax of the German language as well as the scarcity of German

3.5 conclusion 53

training data. Overall, the new version of BOA achieves a significantly
higher recall by two means. First, we used surface forms to retrieve
entities. In addition, we devised an approach to extract triples from
datatype properties.

4
R E A L - T I M E R D F E X T R A C T I O N F R O M
U N S T R U C T U R E D D ATA S T R E A M S

The vision behind the Data Web is to extend the current document-
oriented Web with machine-readable facts and structured data, thus
creating a representation of general knowledge. However, most of the
Data Web is limited to being a large compendium of encyclopedic
knowledge describing entities. A huge challenge, the timely and mas- This chapter is

mainly based on
Gerber et al. [2013]
and Röder et al.
[2014].

sive extraction of RDF facts from unstructured data, has remained
open so far. The availability of such knowledge on the Data Web
would provide significant benefits to manifold applications including
news retrieval, sentiment analysis and business intelligence. In this
chapter, we address the problem of the actuality of the Data Web by
presenting an approach that allows extracting RDF triples from un-
structured data streams. We employ statistical methods in combina-
tion with deduplication, disambiguation and unsupervised as well as
supervised machine learning techniques to create a knowledge base
that reflects the content of the input streams. We evaluate a sample
of the RDF we generate against a large corpus of news streams and
show that we achieve a precision of more than 85%.

54

4.1 introduction 55

4.1 introduction

Implementing the original vision behind the Semantic Web requires
the provision of a Data Web which delivers timely data at all times.
The foundational example presented by Berners-Lee et al. [2001]’s
seminal paper on the Semantic Web describes a software agent which
is tasked to find medical doctors with a rating of excellent or very
good within 20 miles of a given location at a given point in time. This
requires having timely information on which doctors can be found
within 20 miles of a particular location at any given time as well
as having explicit data on the rating of said medical doctors. Even
stronger timeliness requirements apply in decision support, where
software agents help humans to decide on critical issues such as
whether to buy stock or not or even how to plan their drive through
urban centers. Furthermore, knowledge bases in the Linked Open
Data (LOD) cloud would be unable to answer queries such as “Give
me all last week’s news from the New York Times pertaining to the
director of a company”. Although the current LOD cloud has tremen-
dously grown over the last years [Auer et al., 2011], it delivers mostly
encyclopedic information (such as albums, places, kings, etc.) and
fails to provide up-to-date information that would allow addressing
the information needs described in the examples above.

The idea which underlies our work is thus to alleviate this current
drawback of the Data Web by developing an approach that allows
extracting RDF from unstructured (i.e. textual) data streams in a fash-
ion similar to the live versions of the DBpedia1 and LinkedGeoData2

datasets. The main difference is yet that instead of relying exclusively
on structured data like LinkedGeoData or on semi-structured data
like DBpedia, we rely mostly on unstructured, textual data to gener-
ate RDF. By these means, we are able to unlock some of the potential
of the Document Web, of which up to 85% is unstructured [Gaag et al.,
2009]. To achieve this goal, our approach, dubbed RdfLiveNews, as-
sumes that it is given unstructured data streams as input. These are
deduplicated and then used as basis to extract patterns for relations
between known resources. The patterns are then clustered to labeled
relations which are finally used as basis for generating RDF triples.
We evaluate our approach against a sample of the RDF triples we
extracted from RSS feeds and show that we achieve a very high pre-
cision.

The remainder of this chapter is structured as follows: We first give
an overview of our approach and give detailed insights in the differ-
ent steps from unstructured data streams to RDF. Then, we evaluate
our approach in several settings. We then contrast our approach with
the state of the art and finally conclude.

1 http://live.dbpedia.org/sparql

2 http://live.linkedgeodata.org/sparql

http://live.dbpedia.org/sparql
http://live.linkedgeodata.org/sparql

4.2 overview 56

author contributions The author of this thesis was the lead
author of Gerber et al. [2013] as well as the main developer of the
RdfLiveNews extraction framework. He developed the data acquisi-
tion module, the pattern search, filtering, refinement and clustering
and was responsible for the generation and analysis of the evaluation
data. The deduplication, cluster labeling and merging as well as the
RDF generation tasks were carried out by the co-authors of Gerber
et al. [2013].

4.2 overview

We implemented the general architecture of our approach dubbed
RdfLiveNews according to the pipeline depicted in Figure 16. First,
we gather textual data from data streams by using RSS feeds of news
articles. Our approach can yet be employed on any unstructured data
published as stream. Since input streams from the Web can be highly
redundant (i.e. convey the same information), we then deduplicate
the set of streams gathered by our approach. Subsequently, we apply
a pattern search to find lexical patterns for relations expressed in the
text. After a refinement step with background knowledge, we finally
cluster the extracted patterns according to their semantic similarity
and transform this information into RDF.

Web

Search

Filtering
Sentence

Index

Data Acquisition

Deduplication

Patterns

Refinement

Cluster- &
Labeling

RDF Generation

Figure 16: Overview of the generic time slice based stream processing.

4.2.1 Data Acquisition

Formally, our approach aims to process the output of unstructured
data sources Si by continuously gathering the data streams Di that
they generate. Each data stream consists of atomic elements dij (in our
case sentences). Let Di[t,t+d] be the portion of Di that was emitted
by Si between the times t and t + d. The data gathering begins by
iteratively gathering the elements of the streams Di[t,t+d]. from all

4.2 overview 57

available sources Si for a period of time d, which we call the time slice
duration. For example, this could mean crawling a set of RSS feeds for
a duration of two hours. We callDi[t,t+d] a slice ofDi. We will assume
that we begin this process at t = 0, thus leading to slicesDi[k.d,(k+1).d]
with k ∈ N. The data gathered from all sources during a time slice
duration is called a time slice. We apply sentence splitting on all slices
to generate their elements.

4.2.2 Deduplication

The aim of the deduplication step is to remove very similar elements
from slices before the RDF extraction. This removal accounts for some
Web data streams simply repeating the content of one of several other
streams. Our deduplication approach is based on measuring the simi-
larity of single elements si and sj found in unstructured streams. Ele-
ments of streams are considered to be different iff qgrams(si, sj) < θ,
where θ ∈ [0, 1] is a similarity threshold and qgrams(si, sj) mea-
sures the similarity of two strings by computing the Jaccard simi-
larity of the trigrams they contain. Given that the number of stream
items to deduplicate can be very large, we implemented the follow-
ing two-step approach: For each slice Di[k.d,(k+1)d], we first dedupli-
cate the elements sij within Di[k.d,(k+1)d]. This results in a duplicate-
free data stream ∆i[k.d,(k+1)d] = {dij : (dij ∈ Di[k.d,(k+1)d])∧ (∀sik ∈
Di[k.d,(k+1)d] ∃d

i
j ∈ ∆i[k.d,(k+1)d] qgrams(s

i
k,dij) > θ) ∧ (∀dij,dik ∈

∆i[k.d,(k+1)d] qgrams(d
i
k,dij) < θ)}. The elements of ∆i[k.d,(k+1)d] are

then compared to all other elements of the w previous deduplicated
streams ∆i[(k−1).d,kd] to ∆i[(k−w).d,(k−w+1)d], where w is the size of
the deduplication window. Only ∆i[k.d,(k+1)d] is used for further pro-
cessing. To ensure the scalability of the deduplication step, we are
using deduplication algorithms implemented in the LIMES frame-
work [Ngonga Ngomo, 2012]. Table 17 gives an overview of the num-
ber of unique data stream items in our dataset when using different
deduplication thresholds.

4.2.3 Pattern Search and Filtering

In order to find patterns we first apply Named Entity Recognition
(NER) and Part of Speech (POS) tagging on the deduplicated sen-
tences. RdfLiveNews can use two different ways to extract patterns
from annotated text. The POS tag method uses NNP and NNPS3

tagged tokens to identify a relation’s subject and object, whereas the
Named Entity Tag method relies on Person, Location, Organization and
Miscellaneous tagged tokens. In an intermediate step all consecutive
POS and NER tags are merged. An unrefined RdfLiveNews pattern p

3 All POS tags can be found in the Penn Treebank Tagset.

4.2 overview 58

is now defined as a pair p = (θ, S⊆), where θ is the natural language
representation (NLR) of p and S⊆ = {(si,oi) : i ∈N; 1 6 i 6 n} is the
support set of θ, a set of the subject and object pairs. For example the
sentence:

David/NNP hired/VBD John/NNP ,/,
former/JJ manager/NN of/IN ABC/NNP ./.

would result in the patterns:

p1 = ([hired], {(David, John)}) and
p2 = ([, former manager of], {(John, ABC)}).

After the initial pattern acquisition step, we filter all patterns to
improve their quality. We discarded all patterns that did not match
these criteria: The pattern should (1) contain at least a verb or a noun,
(2) contain at least one salient word (i.e. a word that is not a stop
word), (3) not contain more than one non-alpha-numerical character
(except ", ’ ‘") and (4) be shorter than 50 characters. Since the resulting
list still contains patterns of low quality, we first sort it by the number
of elements of the support set Sθ and solely select the top 1% for
pattern refinement to ensure high quality.

4.2.4 Pattern Refinement

The goal of this step is to find a suitable rdfs:range and rdfs:domain as
well as to disambiguate the support set of a given pattern. To achieve
this goal we first try to find an URI for the subjects and objects in
the support set of p by matching the pairs to entries in a knowledge
base. With the help of those URIs we can query the knowledge base
for the classes (rdf:type) of the given resources and compute a com-
mon rdfs:domain for the subjects of p and rdfs:range for the objects
respectively. A refined RdfLiveNews pattern pr is now defined as a
quadruple pr = (θ, S⊆′, δ, ρ), where θ is the natural language repre-
sentation, S⊆′ the disambiguated support set, δ the rdfs:domain and ρ
the rdfs:range of pr.

To find the URIs of each subject-object pair (s,o) ∈ S⊆ we first
try to complete the entity name. This step is necessary and beneficial
because entities usually get only written once in full per article. For
example the newly elected president of the United States of America
might be referenced as “President Barack Obama” in the first sen-
tence of a news entry and subsequently be referred to as “Obama”.
In order to find the subjects’ or objects’ full name, we first select all
named entities e ∈ Ea of the article the pair (s,o) was found in. We
then use the longest matching substring between s (or o) and all ele-
ments of Ea as the name of s or o respectively. Additionally we can
filter the elements of Ea to contain only certain NER types. Once the

4.2 overview 59

complete names of the entities are found, we can use them to gener-
ate a list of URI candidates Curi. This list is generated with the help
of a query for the given entity name on a list of surface forms (e.g.
“U.S.” or “USA” for the United States of America), which was compiled
by analyzing the redirect and disambiguation links from Wikipedia as
presented by Mendes et al. [2011]. Each URI candidate c ∈ Curi is
now evaluated on four different features and the combined score of
those features is used to rank the candidates and choose the most
probable URI for an entity. The first feature is the Apriori-score a(c)
of the URI candidate c, which is calculated beforehand for all URIs
in the knowledge base by analyzing the number of inbound links of
c by the following formula: a(c) = log(inbound(c) + 1). The second
and third features are based on the context information found in the
Wikipedia article of c and the news article text (s,o) was found in.
For the global context-score cg we apply a co-occurrence analysis of
the entities Ea found in the news article and the entities Ew found in
the Wikipedia article of c. The global context-score is now computed
as cg(Ea,Ew) = |Ea ∩ Ew| / |Ea ∪ Ew|. The local context-score cl is the
number of mentions of the second element of the pair (s,o), o in the
case of s and vice versa, in Ew. The last feature to determine a URI
for an entity is the maximum string similarity sts between s (or o)
and the elements of the list of surface forms of c. We used the qgram
distance4 as the string similarity metric. We normalize all non-[0, 1]
features (cg, cl,a) by applying a minimum-maximum normalization
of the corresponding scores for Curi and multiply it with a weight
parameter which leads to the overall URI score:

c(s,o,uri) =

αa

amax
+
βcg

cgmax
+
γcl
clmax

+ δsts

4

If the URI’s score is above a certain threshold λ ∈ [0, 1] we use it as
the URI for s, otherwise we create a new URI. Once we have com-
puted the URIs for all pairs (s,o) ∈ S⊆ we determine the most likely
domain and range for pr. This is done by analyzing the rdf:type state-
ments returned for each subject or object in S⊆ from a background
knowledge base. Since the DBpedia ontology is designed in such a
way, that classes do only have one super-class, we can easily analyze
its hierarchy. We implemented two different determination strategies
for analyzing the class hierarchy. The first strategy, dubbed “most
general”, selects the highest class in the hierarchy for each subject (or
object) and uses the most occurring class as domain or range of pr. The
second strategy, dubbed “most specific”, works similar to the “most
general” strategy with the difference that it uses the most descriptive
class to select the domain and range of pr.

4 http://sourceforge.net/projects/simmetrics/

http://sourceforge.net/projects/simmetrics/

4.2 overview 60

4.2.5 Pattern Similarity and Clustering

In order to cluster patterns according to their meaning, we created a
set of similarity measures. A similarity measure takes two patterns p1
and p2 as input and outputs the similarity value s(p1,p2) ∈ [0, 1]. As
a baseline we implemented a qgram measure, which calculates the
string similarity between all non stop words of two patterns. Since
this baseline measure fails to return a high similarity for semantically
related, but not textually similar patterns like “’s attorney ,” and “’s
lawyer ,” we also implemented a Wordnet measure. As a first step the
Wordnet similarity measure filters out the stop words of p1 and p2
and applies the Stanford lemmatizer on the remaining tokens. Subse-
quently, for all token combinations of p1 and p2, we apply a Wordnet
Similarity metric (Path [Pedersen et al., 2004], Lin [Lin, 1998] and
Wu & Palmer [Wu and Palmer, 1994]) and select the maximum of
all comparisons as the similarity value s(p1,p2). As a final similarity
measure we created a Wordnet and string similarity measure with
the help of a linear combination from the aforementioned metrics. In
this step we also utilize the domain and range of pr. If this feature is
activated, a similarity value between two patterns p1 and p2 can only
be above 0, iff {δp1 , ρp1} \ {δp2 , ρp2} = ∅.

The result of the similarity computation can be regarded as a sim-
ilarity graph G = (V ,E,ω), where the vertices are patterns and the
weight ω(p1,p2) of the edge between two patterns is the similarity
of these patterns. Consequently, unsupervised machine learning and
in particular graph clustering is a viable way of finding groups of
patterns that convey similar meaning. We opted for using the Border-
Flow clustering algorithm [Ngonga Ngomo and Schumacher, 2009] as
it is parameter-free and has already been used successfully in diverse
applications including clustering protein-protein interaction data and
queries for SPARQL benchmark creation [Morsey et al., 2011]. For
each node v ∈ V , the algorithm begins with an initial cluster X con-
taining only v. Then, it expands X iteratively by adding nodes from
the direct neighborhood of X to X until X is node-maximal with re-
spect to the border flow ratio described in [Morsey et al., 2011]. The
same procedure is repeated for all nodes. As different nodes can lead
to the same cluster, identical clusters (i.e. clusters containing exactly
the same nodes) that resulted from different nodes are subsequently
collapsed to one cluster. The set of collapsed clusters and the map-
ping between each cluster and the nodes that led to it are returned as
result.

4.2.6 Cluster Labeling and Merging

Based on the clusters C obtained through the clustering algorithm,
this step selects descriptive labels for each cluster ci ∈ C, which can

4.2 overview 61

afterwards be used to merge the clusters. In the current version, we
apply a straightforward majority voting algorithm, i.e. for each clus-
ter ci, we select the most frequent natural language representation θ
(stop words removed) occurring in the patterns of ci. Finally, we use
the representative label of the clusters to merge them using a string
similarity and WordNet based similarity measure. This merging pro-
cedure can be applied repeatedly to further reduce the number of
clusters, but taking into account that those similarity measures are
not transitive, we are currently only running it once, as we are more
focused on accuracy.

4.2.7 Mapping to RDF and Publication on the Data Web

To close the circle of the round-trip pipeline of RdfLiveNews, the
following prerequisite steps are required to re-publish the extraction
results in a sensible way:

1. The facts and properties contained in the internal data structure
of our tool have to be mapped to OWL.

2. Besides the extracted factual information several other aspects
and meta data are interesting as well, such as extraction and
publication data and provenance links to the text the facts were
extracted from.

3. URIs need to be minted to provide the extracted triples as linked
data.

mapping to owl Each cluster ci ∈ C represents an owl:ObjectProperty
propci . The rdfs:domain and rdfs:range of propci is determined by a
majority voting algorithm with respect to δ and ρ of all pr ∈ C. The
skos:prefLabel5 of propci is the label determined by the cluster label-
ing step and all other NLRs of the patterns in ci get associated with
propci as skos:altLabels. For each subject-object pair in S⊆

′ we produce
a triple by using propci as predicate and by assigning learned entity
types from DBpedia or owl:Thing.

provenance tracking with nif Besides converting the ex-
tracted facts from the text, we are using the current draft of the NLP
Interchange Format (NIF) Core ontology 6 to serialize the following
information in RDF: the sentence the triple was extracted from, the
extraction date of the triple, the link to the source URL of the data
stream item and the publication date of the item on the stream. Fur-
thermore, NIF allows us to link each element of the extracted triple
to its origin in the text for further reference and querying.

5 http://www.w3.org/2004/02/skos/

6 http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#

http://www.w3.org/2004/02/skos/
http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#

4.2 overview 62

NIF is an RDF/OWL based format to achieve interoperability be-
tween language tools, annotations and resources. NIF offers several
URI schemes to create URIs for strings, which can then be used as
subjects for annotation. We employ the NIF URI scheme, which is
grounded on URI fragment identifiers for text (RFC 5147

7). NIF was
previously used by NERD [Rizzo et al., 2012] to link entities to text.
For our use case, we extended NIF in two ways: (1) we added the
ability to represent extracted triples via the ITS 2.0 / RDF Ontology8.
itsrdf:taPropRef is an owl:AnnotationProperty that links the NIF String
URI to the owl:ObjectProperty by RdfLiveNews. The three links from
the NIF String URIs (str1, str2, str3) to the extracted triple (s, p, o)
itself make it well traceable and queryable: str1 7→ s, str2 7→ p, str3 7→
o, s 7→ p 7→ o . An example of NIF RDF serialization is shown in List-
ing 8. (2) Although Rizzo et al. [2012] already suggested the minting
of new URIs, a concrete method for doing so was not yet researched.
In RdfLiveNews we use the source URL of the data stream item to
re-publish the facts for individual sentences as linked data. We strip
the scheme component (http://) of the source URL. Then, we percent
encode the ultimate part of the path and the query component9 and
add the md5 encoded sentence to produce the following URI:

http://rdflivenews.aksw.org/extraction/ + example.com:8042/over/ +

urlencode(there?name=ferret) + / + md5(‘sentence‘)

1 @base <http://rdflivenews.aksw.org/extraction/www.necn.com/07/04/12/Scientists-
discover-new-subatomic-partic/landing.html%3FblockID%3D735470%26feedID%3D4213
/8a1e5928f6815c99b9d2ce613cf24198#>.

2 ## prefixes: please use http://prefix.cc, e.g. http://prefix.cc/rlno
3 ## extracted property + result of linking
4 rlno:directorOf a owl:ObjectProperty ;
5 skos:prefLabel "director of" , skos:altLabel ", director of " ;
6 owl:equivalentProperty dbp:director .
7 ## extracted facts:
8 rlnr:Rolf_Heuer a dbo:Person ;
9 rdfs:label "Rolf Heuer"@en ;

10 rlno:directorOf dbpedia:CERN .
11 dbpedia:CERN a owl:Thing ;
12 rdfs:label "CERN"@en .
13 ## provenance tracking with NIF:
14 <char=0,10> itsrdf:taClassRef dbo:Person ;
15 itsrdf:taIdentRef rlnr:Rolf_Heuer .
16 <char=14,18> itsrdf:taIdentRef dbpedia:CERN .
17 <char=11,24> nif:anchorOf ", director of"^^xsd:string ;
18 itsrdf:taPropRef rlno:directorOf .
19 ## detailed NIF output with context, indices and anchorOf
20 <char=0,> a nif:String, nif:Context, nif:RFC5147String ;
21 nif:isString "Rolf Heuer , director of CERN , said the newly discovered particle

is a boson , but he stopped just shy of claiming outright that it is the
Higgs boson itself - an extremely fine distinction." ;

22 nif:sourceUrl <http://www.necn.com/07/04/12/Scientists-discover-new-subatomic-
partic/landing.html?blockID=735470&feedID=4213>;

23 ## extraction date:
24 dcterms:created "2013-05-09T18:27:08+02:00"^^xsd:dateTime .
25 ## publishing date:
26 <http://www.necn.com/07/04/12/Scientists-discover-new-subatomic-partic/landing.

html?blockID=735470&feedID=4213>
27 dcterms:created "2012-08-15T14:48:47+02:00"^^xsd:dateTime .
28 <char=0,10> a nif:String, nif:RFC5147String ;
29 nif:referenceContext <char=0,>; nif:anchorOf "Rolf Heuer" ;
30 nif:beginIndex "0"^^xsd:long ; nif:endIndex "10"^^xsd:long ;

7 http://tools.ietf.org/html/rfc5147

8 http://www.w3.org/2005/11/its/rdf#

9 http://tools.ietf.org/html/rfc3986#section-3

http://tools.ietf.org/html/rfc5147
http://www.w3.org/2005/11/its/rdf#
http://tools.ietf.org/html/rfc3986#section-3

4.3 evaluation 63

Listing 8: Example RDF extraction of RdfLiveNews

Republication of RDF. The extracted triples are hosted on: http://
rdflivenews.aksw.org. The data for individual sentences is crawlable
via the file system of the Apache2 web server. We assume that source
URLs only occur once in a stream when the document is published
and the files will not be overwritten. Furthermore, the extracted prop-
erties and entities are available as linked data at

http://rdflivenews.aksw.org/{ontology|resource}/$name

and they can be queried via SPARQL at http://rdflivenews.aksw.

org/sparql.

4.2.8 Linking

The approach described above generates a set of properties with sev-
eral labels. In our effort to integrate this data source into the Linked
Open Data Cloud, we use the deduplication approach proposed in
Section 4.2.2 to link our set of properties to existing knowledge bases
(e.g. DBpedia). To achieve this goal, we consider the set of properties
we generated as set of source instances S while the properties of the
knowledge base to which we link are considered to be a set of target
T . Two properties s ∈ S and t ∈ T are linked iff trigrams(s, t) > θp,
where θp ∈ [0, 1] is the property similarity threshold.

4.3 evaluation

The aim of our evaluation was to answer four questions. First, we
aimed at testing how well RdfLiveNews is able to disambiguate found
entities. Our second goal was to determine if the proposed similarity
measures can be used to cluster patterns with respect to their seman-
tic similarity. Third, we wanted to evaluate the quality of the RDF
extraction and linking. Finally, we wanted to measure if all computa-
tional heavy tasks can be applied in real-time, meaning the processing
of one iteration takes less time than its compilation.

For this evaluation we used a list of 1457 RSS feeds as compiled by
Goldhahn et al. [2012]. This list includes all major worldwide newspa-
pers and a wide range of topics, e.g. World, U.S., Business, Science etc.
We crawled this list for 76 hours, which resulted in a corpus, dubbed
100% of 38 time slices of 2 hours and 11.7 million sentences. The av-
erage number of sentences per feed entry is approximately 26.5 and
there are 3445 articles on average per time slice. Additionally, we cre-
ated two subsets of this corpus by randomly selecting 1% and 10% of
the contained sentences. All evaluations were carried out on a Mac-
Book Pro with a quad-core Intel Core i7 (2GHz), a solid state drive
and 16 GB of RAM.

http://rdflivenews.aksw.org
http://rdflivenews.aksw.org
http://rdflivenews.aksw.org/sparql
http://rdflivenews.aksw.org/sparql

4.3 evaluation 64

4.3.1 URI Disambiguation

To evaluate the URI disambiguation we created a gold standard man-
ually. We took the 1% corpus, applied deduplication with a window
size of 40 (contains all time slices) and a threshold of 1 (identical sen-
tences), which resulted in a set of 69884 unique sentences. On those
sentences we performed the pattern extraction with part of speech
tagging as well as filtering. In total we found 16886 patterns and se-
lected the Top 1%, which have been found by 1729 entity pairs. For
473 of those entity pairs we manually selected a URI for subject and
object. This resulted in an almost equally distributed gold standard
with 456 DBpedia and 478 RdfLiveNews URIs. We implemented a
hill climbing approach with random initialization to optimize the pa-
rameters (see Section 4.2.4). The precision of our approach is the ratio
between correctly found URIs for subject and object to the number
of URIs above the threshold λ as shown in Equation 13. The recall,
shown in Equation 14, is determined by the ratio between the num-
ber of correct subject and object URIs and the total number of sub-
jects and objects in the gold standard. The F1 measure is determined
as usual by: F1 = 2 · P·RP+R . We optimized our approach for precision
since we can compensate a lower recall and could achieve a precision
of 85.01% where the recall is 40.69% and the resulting F1 is 55.03%.
The parameters obtained through the hill-climbing search indicate
that the Apriori-score is the most influential parameter (1.0), followed
by string-similarity (0.78), local-context (0.6), global context (0.45) and
a URI score threshold of 0.61. If we optimize for F1, we were able
to achieve a F1 measure of 66.49% with a precision of 67.03% and a
recall of 65.95%.

For 487 out of the 934 URI in the gold standard no confident enough
URI could be found. The largest number of problems occurred for
DBpedia URIs which could not be determined in 305 cases, in com-
parison to 182 URIs for newly created resources. Additionally, for
30 resources RdfLiveNews created new URIs where DBpedia URIs
should be used and in 0 cases a DBpedia URI was used where a new
resource should be created. The reasons for those mistakes are tag-
ging errors, erroneous spellings and missing context information. For
example Wikipedia has 97 disambiguations for “John Smith” which
cannot be disambiguated without prior knowledge.

We used AIDA [Hoffart et al., 2011] to compare our results with a
state-of-the-art NED algorithm. We configured AIDA with the Cock-
tailparty setup, which defines the recommended configuration op-
tions of AIDA. AIDA achieved an accuracy of 0.57, i.e. 57% of the
identifiable entities were correctly disambiguated. The corpus described
above provides a difficult challenge due to the small disambiguation
contexts and is limited to graphs evolving from two named entities
per text. AIDA tries to build dense sub-graphs in a greedy manner

4.3 evaluation 65

in order to perform correct disambiguation. This algorithm would
profit from a bigger number of entities per text. The drawback is
AIDA needs 2 minutes to disambiguate 25 sentences. Overall, AIDA
performs well on arbitrary entities.

P =
|suric |+ |ouric |

|suri|+ |ouri|
(13) R =

|suric |+ |ouric |

2 · |GS|
(14)

4.3.2 Pattern Clustering

To evaluate the similarity generation as well as the clustering algo-
rithm we relied on the measures Sensitivity, Positive Predictive Value
(PPV) and Accuracy. We used the adaptation of those measures as
presented by Brohée and van Helden [2006] to measure the match
between a set of pattern mappings10 from the gold standard and a
clustering result. The gold standard was created by clustering the
patterns as presented in the previous section manually. This resulted
in a list of 25 clusters with more than 1 pattern and 54 clusters with
1 pattern. Since clusters with a size of 1 would skew our evaluation
into unjustified good results, we excluded them from this evaluation.

Sensitivity. With respect to the clustering gold standard, we define
sensitivity as the fraction of patterns of pattern mapping i which are
found in cluster j. In Sni,j = Ti,j/Ni, Ni is the number of patterns
belonging to pattern mapping i. We also calculate a pattern mapping-
wise sensitivity Snpmi

as the maximal fraction of patterns of pattern
mapping i assigned to the same cluster. Snpmi

= maxmj=1Sni,j reflects
the coverage of pattern mapping i by its best-matching cluster. To
characterize the general sensitivity of a clustering result, we compute
a clustering-wise sensitivity as the weighted average of Snpmi

over
all pattern mappings:

Sn =

∑n
i=1NiSnpmi∑n

i=1Ni
. (15)

Positive Predictive Value. The positive predictive value is the pro-
portion of members of cluster j which belong to pattern mapping i,
relative to the total number of members of this cluster assigned to all
pattern mappings.

PPVi,j = Ti,j/

n∑
i=1

Ti,j = Ti,j/T.j (16)

T.j is the sum of column j. We also calculate a cluster-wise positive
predictive value PPVclj , which represents the maximal fraction of
patterns of cluster j found in the same annotated pattern mapping.
PPVclj = maxni=1PPVi,j reflects the reliability of cluster j predicting

10 A pattern mapping maps NLRs to RDF properties.

4.3 evaluation 66

that a pattern belongs to its best-matching pattern mapping. To char-
acterize the general PPV of a clustering result as a whole, we compute
a clustering-wise PPV as the weighted average of PPVclj over all clus-
ters:

PPV =

∑m
j=1 T.jPPVclj∑m

j=1 T.j
. (17)

Accuracy. The geometric accuracy (Acc) indicates the tradeoff be-
tween sensitivity and positive predictive value. It is obtained by com-
puting the geometrical mean of the Sn and the PPV :Acc =

√
Sn · PPV .

We evaluated the three similarity measures with respect to the un-
derlying WordNet similarity metric (see Section 4.2.5). Furthermore
we varied the clustering similarity threshold between 0.1 and 1 with
a 0.1 step size. In case of the qgram and WordNet similarity met-
ric we performed a grid search on the WordNet and qgram parame-
ter in [0, 1] with a step size of 0.05. We achieved the best configura-
tion with the qgram and WordNet similarity metric with an accuracy
of 82.45%, a sensitivity of 71.17% and a positive predictive value of
95.51%. The best WordNet metric is Lin, the clustering threshold 0.3
and the qgram parameter is with 0.45 significantly less influential
than the WordNet parameter with 0.75. As reference value, the plain
WordNet similarity metric achieved an accuracy of 78.86% and the
qgram similarity metric an accuracy of 69.1% in their best configura-
tion.

4.3.3 RDF Extraction and Linking

To assess the quality of the RDF data extracted by RdfLiveNews, we
sampled the output of our approach and evaluated it manually. We
generated five different evaluation sets. Each set may only contain
triples with properties of clusters having at least i = 1 . . . 5 patterns.
We selected 100 triples (if available) randomly for each test set. As
the results in Table 16 show, we achieve high accuracy on subject and
object disambiguation. As expected, the precision of our approach
grows with the threshold for the minimal size of clusters. This is sim-
ply due to smaller clusters having a higher probability of containing
outliers and thus noise.

The results of the linking with DBpedia (see Table 18) showed the
mismatch between the relations that occur in news and the relations
designed to model encyclopedic knowledge. While some relations
such as dbo:director are used commonly in news streams and in
the Linked Data Cloud, relations with a more volatile character such
as rlno:attorney, which appear frequently in news text, are not men-
tioned in DBpedia.

4.3 evaluation 67

Ei 1 2 3 4 5

SAcc 0.81 0.88 0.86 0.857 0.804

PAcc 0.86 0.89 0.90 0.935 1.00

OAcc 0.93 0.91 0.90 0.948 0.941

TotalAcc 0.86 0.892 0.885 0.911 0.906

|Ei| 100 100 100 77 51

|P| ∈ |Ei| 28 22 12 6 1

Table 16: Accuracy of RDF Extraction for subjects (S), predicates (P) and
objects (O) on 1% dataset with varying cluster sizes Ei.

Time Slice No deduplication θ = 1.0 θ = 0.95 θ = 0.9

1 2997 2764 2764 2759

5 3047 2335 2334 2327

10 3113 2033 2040 2022

15 2927 1873 1868 1866

20 3134 1967 1966 1949

25 3065 1936 1932 1924

30 3046 1941 1940 1933

Table 17: Number of non-duplicate sentences in 1% of the data extracted
from 1457 RSS feeds within a window of 10 time slices (2h each).
The second column shows the original number of sentences with-
out duplicate removal.

4.3.4 Scalability

In order to perform real-time RDF extraction, the processing of the
proposed pipeline needs to take up less time than its acquisition re-
quires. This is also required for a growing list of RSS feeds. Therefore,
we analyzed the execution time for each module in each iteration and
compared these values between the three test corpora. An early ap-
proximation of this evaluation implied that the pipeline indeed was
not fast enough, which led to the parallelization of the pattern refine-
ment and similarity generation. The results of this evaluation can be
seen in Figure 17. With an average time slice processing time of about
20 minutes for the 100% corpus (2.2 minutes for 10% and 30s for 1%),
our approach is clearly fit to handle up to 1500 RSS and more. The
spike in the first iteration is a result of the fact that RSS feeds contain
the last n previous entries, which leads to a disproportional large first
time slice. The most time consuming modules are the deduplication,
tagging and cluster merging. To tackle these bottlenecks we can for
example parallelize sentence tagging and the deduplication.

4.4 related work 68

RdfLiveNews-URI DBpedia-URI Sample of cluster

rlno:directorOf dbo:director [manager], [, director of],
[, the director of]

rlno:spokesperson dbo:spokesperson [, a spokeswoman for],
[spokesperson],
[, a spokesman for]

rlno:attorney — [’s attorney ,], [’s lawyer ,],
[attorney]

Table 18: Example for linking between RdfLiveNews and DBpedia.

The results of the growth evaluation for patterns until iteration 30

can be seen in Figure 18. The number of patterns grows with the fac-
tor of 3 from 1% to 10% and 10% to 100% corpora. Also, the number
of patterns found by more than one subject-object pair increases ap-
proximately by factor 2. Additionally we observed a linear growth for
all patterns (also for patterns with |S ′θ| > 1) and 100% showing the
highest growth rate with a factor 2.5 over 10% and 4.8 over 10%.

The results of the growth evaluation for clusters can be seen in Fig-
ure 19. The evaluation shows that the number of clusters increases by
a factor of 2.5 from 1% to 10% and 10% to 100%. Moreover, approxi-
mately 25% of all clusters have more than 1 pattern and the number
of clusters grows linear for 1% and 10% but for the 100% corpus it
seems to converge to 800. The same holds true for clusters with more
then one pattern, as they stop to grow at around 225 clusters.

4.4 related work

While Semantic Web applications rely on formal, machine under-
standable languages such as RDF and OWL, enabling powerful fea-
tures such as reasoning and expressive querying, humans use Natu-
ral Language (NL) to express semantics. This gap between the two
different languages has been filled by Information Extraction (IE) ap-
proaches, developed by the Natural Language Processing (NLP) re-
search community [Sarawagi, 2008], whose goal is to find desired
pieces of information, such as concepts (hierarchy of terms which
are used to point to shared definitions), entities (name, numeric ex-
pression, date) and facts in natural language texts and print them in
a form that is suitable for automatic querying and processing. Ever
since the advent of the Linked Open Data initiative11, IE is also an
important key enabler for the Semantic Web. For example, LODi-
fier ([Augenstein et al., 2012; Exner and Nugues, 2012]) combines
deep semantic analysis with Named Entity Recognition, word-sense

11 http://linkeddata.org/

http://linkeddata.org/

4.4 related work 69

Iteration Deduplication Tagging Search Filtering Refinement Similarity Clustering Labeling Merging Extraction Mapping Other

0 3013 30213 668 1150 14144 3157 71 5 44 151 1 5052 52617
1 8075 18393 125 154 7604 217 15 2 33 264 0 34882
2 2010 15869 96 123 8066 202 53 1 34 403 0 26857
3 2108 15235 80 97 6038 106 22 2 18 310 0 24016
4 2616 14417 59 72 5966 202 24 2 36 597 0 23991
5 3287 12926 74 92 6246 106 23 1 34 839 0 296 23628
6 3006 12446 92 110 5475 43 20 2 22 992 0 22208
7 3445 12598 82 99 7205 88 19 2 36 1363 0 24937
8 3915 13308 49 65 6979 68 22 2 26 864 0 25298
9 2777 12039 51 64 8010 100 15 2 28 1086 0 24172
10 3144 11889 82 98 8498 112 15 3 27 1710 0 310 25578
11 2859 13249 86 102 7121 382 17 3 37 1599 0 25455
12 2875 12608 49 63 7668 149 17 2 36 1417 0 24884
13 2753 11849 58 71 7700 111 12 2 23 1636 0 24215
14 2821 12591 65 81 8363 327 14 2 35 1682 0 25981
15 2945 12273 64 77 10318 356 20 4 66 2105 0 521 28228
16 2879 12359 72 88 9015 134 18 3 33 2611 0 27212
17 3740 12222 49 60 9645 139 15 2 43 1886 0 27801
18 2665 13454 64 82 10319 249 19 4 55 2706 0 29617
19 3028 12149 72 87 9794 93 19 3 40 2663 0 27948
20 2818 12823 102 117 10358 109 22 4 40 3133 0 354 29526
21 3004 16623 48 66 9169 123 22 3 39 1791 0 30888
22 2898 13201 60 78 9330 92 19 4 44 2208 0 27934
23 3086 12614 59 74 11827 142 24 2 42 2669 0 30539
24 2898 13757 87 104 12803 270 21 2 52 3117 0 33111
25 2975 12704 93 111 12335 194 25 2 51 3564 0 425 32054
26 3609 12486 43 61 10398 160 31 2 56 2451 0 29297
27 2849 13338 75 97 11404 144 25 2 53 3083 0 31070
28 2827 11838 78 95 11343 95 26 2 53 3266 0 29623
29 3030 10591 70 85 10119 105 24 2 51 3747 0 27824
30 2791 13006 49 66 11515 196 30 3 60 2546 0 344 30262

29.0837631578947

Iteration Deduplication Tagging Search Filtering Refinement Similarity Clustering Labeling Merging Extraction Mapping Other
0 22955 189545 2030 2542 60322 6158 150 5 354 3361 3 10888 287425
1 23606 61255 575 686 37152 1099 120 6 234 6035 0 7656 130768
2 27099 42759 485 583 31454 600 114 7 207 8457 0 9853 111765
3 31773 33194 290 347 27582 458 94 4 128 8724 0 9587 102594
4 36943 22602 255 291 22356 523 112 5 131 9975 0 10769 93193
5 44701 23351 280 308 21881 386 114 5 132 11747 0 1093 102905
6 41802 20345 335 371 27131 535 149 6 166 15959 0 16986 106799
7 52404 19786 240 270 24605 397 148 5 134 12593 0 13390 110582
8 40390 17872 195 219 22554 476 159 7 165 13020 0 13765 95057
9 40229 19302 271 305 26094 576 155 5 181 14709 0 15626 101827
10 46805 18693 144 176 23040 557 193 4 205 11086 0 1074 100903
11 38380 20395 174 206 25776 532 223 4 203 14075 0 14885 99968
12 37742 21337 192 229 25689 654 256 3 224 16956 0 17860 103282
13 38333 19172 180 209 24615 519 240 4 298 17809 0 18740 101379
14 40045 20594 204 236 29899 553 227 3 248 20697 0 21615 112706
15 51441 18714 131 163 23350 471 250 3 238 12370 0 1018 107131
16 33858 18213 134 163 21936 466 272 2 909 14296 0 15776 90249
17 36208 19968 147 175 24598 387 269 2 2088 17047 0 19728 100889
18 38551 18376 230 260 23906 436 301 3 2627 19816 0 23237 104506
19 39922 22691 101 133 25281 587 336 3 3966 13271 0 17810 106291
20 34616 17697 132 162 24797 716 358 3 5427 15432 0 1371 99340
21 36357 19956 170 205 28361 3349 446 3 11473 17709 0 30006 118029
22 39436 19486 208 239 26296 2180 373 3 15447 20660 0 36930 124328
23 40480 19654 190 225 28017 2215 398 2 16425 23649 0 40889 131255
24 47742 19735 139 172 28813 4684 421 3 24996 16137 0 41868 142842
25 34804 19061 166 199 27358 3312 454 2 26983 18861 0 4133 131200
26 37056 18080 197 232 29992 6365 522 3 31229 21082 0 53265 144758
27 38671 17915 151 185 29723 5421 498 2 35378 24028 0 60242 151972
28 38279 23177 149 179 30586 7955 532 3 41614 18437 0 60914 160911
29 33701 16552 124 158 30342 4659 522 3 47178 21034 0 69019 154273
30 34381 19536 158 192 29675 9236 594 3 57209 23815 0 10183 174799

136.971315789474

Iteration Deduplication Tagging Search Filtering Refinement Similarity Clustering Labeling Merging Extraction Mapping Other
0 132504 876610 6107 8846 443874 206654 2550 15 75311 23926 1 224173 1776398
1 179066 37225 234 323 65845 60028 2832 12 88856 29463 0 463884
2 225861 36388 211 286 64233 59088 2297 12 104358 36112 0 528846
3 279337 28155 185 269 62458 49225 2780 8 125559 44468 0 592444
4 359322 25589 170 228 69740 80731 3147 6 150499 54435 0 743867
5 457418 33452 305 479 83442 86985 3714 7 162692 65148 0 91490 893642
6 444627 42036 291 372 77428 103483 4446 6 172755 80422 0 925866
7 489591 29206 236 296 72748 74549 4906 4 196954 94373 0 962863
8 551765 29329 316 1218 77266 63206 5309 5 202029 110471 0 1040914
9 608706 47172 462 625 97132 121264 6110 5 221399 130423 0 1233298
10 530480 54246 544 645 104275 170717 6575 4 235323 141768 0 178485 1244577
11 547290 70054 495 621 95382 127710 6263 4 255673 124902 0 1228394
12 505472 36441 399 534 92054 163906 6893 5 283720 140576 0 1230000
13 488626 39319 424 517 99743 223427 7500 5 311846 158693 0 1330100
14 500281 58342 493 657 83734 92256 8227 6 326670 142798 0 1213464
15 605182 34865 282 370 71406 102149 8458 5 329428 96079 0 111264 1248224
16 410451 25690 232 295 73524 85789 9265 8 345129 115317 0 1065700
17 455233 31403 341 414 82535 134003 9424 7 361278 131614 0 1206252
18 480043 35468 339 421 81633 78545 9815 7 366768 151057 0 1204096
19 523120 100299 337 402 70795 38583 9274 6 364300 117661 0 1224777
20 475732 36489 342 440 74917 64261 9591 7 386621 138457 0 74641 1186857
21 498675 48204 503 602 91148 136977 10532 8 409944 157741 0 1354334
22 538807 42565 514 608 93656 95265 11573 7 423426 181800 0 1388221
23 553678 51508 489 597 100950 110482 7633 6 433756 174697 0 1433796
24 500971 36569 438 1133 92079 87478 9243 7 449303 194561 0 1371782
25 521383 44998 552 653 94158 63026 11625 7 451574 221469 0 75863 1409445
26 546578 54710 497 589 84959 81663 11976 7 463344 203746 0 1448069
27 482271 30814 345 461 80919 42288 13562 7 475390 225213 0 1351270
28 520882 30925 330 411 87533 56576 13464 6 459318 240395 0 1409840
29 530199 35585 535 663 96738 83614 14032 7 462783 266089 0 1490245
30 748367 55254 548 1387 84275 50216 14690 328 475075 289745 0 67169 1719885

1191.01129032258

M
illi

se
co

nd
s

0

300000

600000

900000

1200000

1500000

1800000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Deduplication Tagging Refinement Merging RDF Extraction Other

M
illi

se
co

nd
s

0

50000

100000

150000

200000

250000

300000

0 5 10 15 20 25 30

M
illi

se
co

nd
s

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20 25 30

Figure 17: Runtimes for different components and corpora (1% left, 10%
right, 100% bottom) per iteration.

disambiguation and controlled Semantic Web vocabularies. FOX [Ngonga
Ngomo et al., 2011b] uses ensemble learning to improve the F-score
of IE tools. The BOA framework [Gerber and Ngonga Ngomo, 2011]
uses structured data as background knowledge for the extraction of
natural language patterns, which are subsequently employed to ex-
tract additional RDF data from natural language text. Nakashole and
Weikum [2012] propose a simple model for fact extraction in real-
time, taking into account the vexing challenges that timely fact ex-
traction on frequently updated data entails. A specific application for
the news domain is described by Stern and Sagot [2012], wherein a
knowledge base of entities for the French news agency AFP is popu-
lated.

State-of-the-art open-IE systems such as ReVerb automatically iden-
tify and extract relationships from text, relying on (in the case of Re-
Verb) simple syntactic constraints expressed by verbs [Fader et al.,
2011]. Davidov and Rappoport [2008] present a novel pattern clus-
ters method for nominal relationship classification using an unsuper-
vised learning environment, which makes the system domain and
language-independent. Ruiz-Casado et al. [2007] show how lexical
patterns and semantic relationships can be learned from concepts in
Wikipedia.

4.4 related work 70

Iteratio
n

#Patttern @1% #Pattern @ 10% #Pattern @ 100% #|Pattern| > 1 @ 1% #| Pattern | > 1 @ 10% #| Pattern | > 1 @ 100%

0
5
10
15
20
25
30

1467 12452 70761 33 636 5280

4573 22176 80657 178 1487 6419

7167 25939 91320 504 2472 8004

9370 29670 102439 1110 4057 9629

11210 32651 111140 1850 5499 10921

12988 36370 123629 2711 6909 13050

14580 39671 132993 3516 8188 14399

0 5 10 15 20 25 30

Patterns @ 1% Patterns @ 10% Patterns @ 100%
Patterns₊ @ 1% Patterns₊ @ 10% Patterns₊ @ 100%

Iteration #Patttern
@1%

#Pattern @
10%

#Pattern @
100%

#|Pattern| > 1
@ 1%

#| Pattern | >
1 @ 10%

#| Pattern | >
1 @ 100%

0
5
10
15
20
25
30

1467 12452 8,488070893 70761 5,682701574 33 0,0224948875 636 0,0510761323 5280 0,074617374
4573 22176 4,8493330418 80657 3,6371302309 178 0,0389241198 1487 0,0670544733 6419 0,0795839171
7167 25939 3,6192270127 91320 3,5205674853 504 0,0703223106 2472 0,0953005127 8004 0,0876478318
9370 29670 3,166488794 102439 3,4526120661 1110 0,1184631804 4057 0,1367374452 9629 0,0939974033
11210 32651 2,9126672614 111140 3,4038773698 1850 0,1650312221 5499 0,1684175064 10921 0,0982634515
12988 36370 2,8002771789 123629 3,3992026395 2711 0,2087311364 6909 0,1899642563 13050 0,1055577575
14580 39671 2,7209190672 132993 3,3523984775 3516 0,2411522634 8188 0,2063976204 14399 0,1082688563

1

10

10³

10²

10⁴

10⁵

10⁶

0 5 10 15 20 25 30
Cluster @ 1% Cluster @ 10% Cluster @ 100%
Cluster₊ @ 1% Cluster₊ @ 10% Cluster₊ @ 100%

1

10

10³

10²

Figure 18: Number of patterns (log scale) and patterns with |S ′θ| > 1

(Patterns+) for iterations and test corpus.

Iteratio
n

#Patttern @1% #Pattern @ 10% #Pattern @ 100% #|Pattern| > 1 @ 1% #| Pattern | > 1 @ 10% #| Pattern | > 1 @ 100%

0
5
10
15
20
25
30

1467 12452 70761 33 636 5280

4573 22176 80657 178 1487 6419

7167 25939 91320 504 2472 8004

9370 29670 102439 1110 4057 9629

11210 32651 111140 1850 5499 10921

12988 36370 123629 2711 6909 13050

14580 39671 132993 3516 8188 14399

0 5 10 15 20 25 30

Patterns @ 1% Patterns @ 10% Patterns @ 100%
Patterns₊ @ 1% Patterns₊ @ 10% Patterns₊ @ 100%

Iteration #Patttern
@1%

#Pattern @
10%

#Pattern @
100%

#|Pattern| > 1
@ 1%

#| Pattern | >
1 @ 10%

#| Pattern | >
1 @ 100%

0
5
10
15
20
25
30

1467 12452 8,488070893 70761 5,682701574 33 0,0224948875 636 0,0510761323 5280 0,074617374
4573 22176 4,8493330418 80657 3,6371302309 178 0,0389241198 1487 0,0670544733 6419 0,0795839171
7167 25939 3,6192270127 91320 3,5205674853 504 0,0703223106 2472 0,0953005127 8004 0,0876478318
9370 29670 3,166488794 102439 3,4526120661 1110 0,1184631804 4057 0,1367374452 9629 0,0939974033
11210 32651 2,9126672614 111140 3,4038773698 1850 0,1650312221 5499 0,1684175064 10921 0,0982634515
12988 36370 2,8002771789 123629 3,3992026395 2711 0,2087311364 6909 0,1899642563 13050 0,1055577575
14580 39671 2,7209190672 132993 3,3523984775 3516 0,2411522634 8188 0,2063976204 14399 0,1082688563

1

10

10³

10²

10⁴

10⁵

10⁶

0 5 10 15 20 25 30
Cluster @ 1% Cluster @ 10% Cluster @ 100%
Cluster₊ @ 1% Cluster₊ @ 10% Cluster₊ @ 100%

1

10

10³

10²

Figure 19: Number of clusters (log scale) and clusters with |C| > 1 (Cluster+)
for iterations and test corpus.

4.5 conclusion 71

4.5 conclusion

In this chapter, we introduced RdfLiveNews, a framework for the ex-
traction of RDF from unstructured data streams. We presented the
components of the RdfLiveNews framework and evaluated its disam-
biguation, clustering, linking and scalability capabilities as well as its
extraction quality. We are able to disambiguate resources with a pre-
cision of 85%, cluster patterns with an accuracy of 82.5% and extract
RDF with a total accuracy of around 90% and handle two hour time
slices with around 300.000 sentences within 20 minutes on a small
server.

Part II

A P P L I C AT I O N S O F M U LT I L I N G U A L N AT U R A L
L A N G U A G E PAT T E R N S

The second part of this thesis focuses on applications uti-
lizing the multilingual natural language patterns gener-
ated by BOA and RdfLiveNews. This part therefore pro-
vides solutions for the quality and provenance problems
of the current state of the Semantic Web. We first intro-
duce DeFacto, a system which is able to verify or falsify
a RDF triple. DeFacto does not only search for textual oc-
currences of parts of the statement, but also seeks to find
webpages which contain the actual statement phrased in
natural language. We then prove that our approach can be
applied to multiple languages (English, French and Ger-
man). Furthermore, we introduce a method to temporally
scope facts. Finally, we demonstrate that these patterns
can be used successfully in an ontology linking problem
area in a question answering and a dictionary population
task.

5
D E FA C T O - D E E P FA C T VA L I D AT I O N

One of the main tasks when creating and maintaining knowledge
bases is to validate facts and provide sources for them in order to en-
sure correctness and traceability of the provided knowledge. So far,
this task is often addressed by human curators in a three-step pro-
cess: issuing appropriate keyword queries for the statement to check
using standard search engines, retrieving potentially relevant docu-
ments and screening those documents for relevant content. And yet, This chapter is

mainly based on
Lehmann et al.
[2012b] and Gerber
et al. [2015].

the drawbacks of this process are manifold. Most importantly, it is
very time-consuming as the experts have to carry out several search
processes and must often read several documents. In this chapter, we
present DeFacto (Deep Fact Validation) – an algorithm able to validate
facts by finding trustworthy sources for them on the Web. DeFacto
aims at providing an effective way of validating facts by supplying
the user with relevant excerpts of webpages as well as useful addi-
tional information including a confidence score for the correctness
of the input fact. The first version of DeFacto, which is presented in
Section 5.3, focuses, like the initial version of the BOA Framework, on
the most dominant Web language, English. We evaluate our approach
on 60 relations found on the Data Web covering a multitude of do-
mains, e.g. biology, music, politics and movies. The extended version
of DeFacto achieves the goal of automatically validating input facts by
collecting and combining evidence from webpages written in several
languages. In addition, it provides support for facts with a temporal
scope, i.e. it can estimate in which time frame a fact was valid. Given
that the automatic evaluation of facts has not been paid much atten-
tion to so far, generic benchmarks for evaluating these frameworks
were not available so far. We thus also present a generic evaluation
framework for fact checking and make it publicly available.

73

5.1 introduction 74

5.1 introduction

The past decades have been marked by a change from an industrial
society to an information and knowledge society. This change is par-
ticularly due to the uptake of the World Wide Web. Creating and
managing knowledge successfully has been a key to success in vari-
ous communities worldwide. Therefore, the quality of knowledge is
of high importance. One aspect of knowledge quality is provenance.
In particular, the sources for facts should be well documented, since
this provides several benefits such as a better detection of errors, deci-
sions based on the trustworthiness of sources etc. While provenance
is an important aspect of data quality [Hartig, 2009], currently only
few knowledge bases actually provide provenance information. For
instance, less than 3% of the more than 607.7 million RDF documents
indexed by Sindice1 in June 2012 contain metadata such as creator,
created, source, modified, contributor, or provenance.2 This coverage
increased to around 10% for the 708.26 million documents indexed
by Sindice in December 2013, but is still far from optimal.

This lack of provenance information makes the validation of the
facts in such knowledge bases utterly tedious. In addition, it impedes
the adoption of such data in business applications as the data is not
trusted [Hartig, 2009]. Our main contribution is the provision of a
fact validation approach and tool which can make use of one of the
largest sources of information: the Web.

In the first part of this chapter we present the DeFacto system
(Deep Fact Validation) which implements algorithms for validating
RDF triples by finding confirming sources for it on the web. It takes
a statement as input (e.g. that shown in Listing 9) and then seeks
evidence for the validity of that statement by searching for textual
information on the Web. In contrast to conventional search engines, it
does not only search for textual occurrences of parts of the statement,
but also tries to find webpages which contain the actual statement
phrased in natural language. It provides the user with a confidence
score for the input statement as well as a set of excerpts of relevant
webpages, which allows the user to manually judge the presented
evidence.

DeFacto has two major use cases:

1. Given an existing true statement, it can be used to find prove-
nance information for it. For instance, the WikiData project3

aims at creating a collection of facts, in which sources should
be provided for each fact. DeFacto helps to achieve this task.

1 http://www.sindice.com

2 Data retrieved on June 6, 2012.
3 http://meta.wikimedia.org/wiki/Wikidata

http://www.sindice.com
http://meta.wikimedia.org/wiki/Wikidata

5.1 introduction 75

2. It can check whether a statement is likely to be true, provide
the user with a confidence score in whether the statement is
true, and evidence for the score assigned to the statement.

Our main contributions are thus as follows:

1. an approach that allows checking whether a webpage confirms
a fact, i.e. an RDF triple,

2. an adaptation of existing approaches for determining indicators
for trustworthiness of a webpage,

3. an automated approach to enhance knowledge bases with RDF
provenance data at triple level as well as

4. a running prototype of DeFacto, the first system able to provide
useful confidence values for an input RDF triple given the Web
as background text corpus.

In the second part of this chapter we present the multilingual and
temporal extension of the DeFacto system. Again, our system imple-
ments algorithms for validating RDF triples by finding confirming
sources for them on the Web.4 It takes a fact as input (e.g. the one
shown in Listing 10) and then tries to find evidence for the validity
of that statement by searching for textual information on the Web. To
this end, our approach combines two strategies by searching for tex-
tual occurrences of parts of the statements on the one hand as well as
trying to find webpages which contain the input statement expressed
in natural language on the other hand. DeFacto was conceived to ex-
ploit the multilingualism of the Web, as almost half of the content of
the Web is written in a language other than English5 (see Figure 7).

To this end, our approach abstracts from a specific language and
can combine evidence from multiple languages – currently English,
German and French. The output of our approach is a confidence
score for the input statement as well as a set of excerpts of relevant
webpages, which allows the user to manually judge the presented
evidence. Apart from the general confidence score, DeFacto also pro-
vides support for detecting the temporal scope of facts, i.e. it esti-
mates in which timeframe a fact is or was valid.

The multilingual and temporal extension of DeFacto has three ma-
jor use cases. The first and second use case are similar to the use
cases described for the baseline DeFacto system, namely to generate
provenance data, confidence scores and textual evidence. DeFactos
final use case is:

3. Given a fact, DeFacto can determine and present evidence for
the time interval within which the said fact is to be considered
valid.

4 Please note that we use fact as a synonym for a RDF triple.
5 45% non-English webpages according to http://w3techs.com/technologies/

overview/content_language/all.

http://w3techs.com/technologies/overview/content_language/all
http://w3techs.com/technologies/overview/content_language/all

5.1 introduction 76

Our main contributions are thus as follows:

• an extension of the baseline approach, allowing to check whether
a webpage, written in a supported language, confirms a fact, i.e.
an RDF triple,

• a generalization approach of multilingual and natural language
patterns for formal relation in the BOA Framework,

• discuss an adaptation of existing approaches for determining
indicators for trustworthiness of a webpage in different lan-
guages,

• we present an automated approach to enhance knowledge bases
with RDF provenance data at triple level,

• a temporal extension detecting the temporal scope of facts based
on text understanding via pattern and frequency analysis.

• a multilingual lexical pattern library for detecting time periods
in text,

• an extensive study of the effects of the novel multilingual sup-
port in DeFacto, e.g. through the integration of search queries
and temporal patterns in several languages.

• a freely available and full-fledged benchmark for fact validation
which includes temporal scopes as well as

• an extended prototype of DeFacto.

The rest of this chapter is structured as follows: We start in Sec-
tion 5.2 by summarizing related work. Section 5.3 describes our base-
line approach and the system infrastructure. The next section de-
scribes how we extended the BOA framework to enable it to detect
facts contained in textual descriptions on webpages. In Section 5.4.2,
we describe how we include the trustworthiness of webpages into the
DeFacto analysis. Section 5.4.3 combines the results from the previous
chapters and describes the mathematical features we use to compute
the confidence for a particular input fact. We use those features to
train different classifiers in Section 5.4.4 and describe our evaluation
results.

In Section 5.5 we start with a description of the overall approach
in a nutshell and exemplify the provenance output generated by De-
Facto. We display how we extended the BOA framework in order to
generalize lexical patterns and build multilingual search queries in
Section 5.5.1. In Section 5.5.4, we describe how we calculate and in-
clude the trustworthiness of webpages into the multilingual and tem-
poral DeFacto analysis. Section 5.5.5 combines the results from the
previous chapters and describes the mathematical features we use to
compute the confidence for a particular input fact. Subsequently, we

5.2 related work 77

describe the temporal extension of DeFacto in Section 5.5.6 and pro-
vide an overview of the FactBench benchmark in Section 5.5.7. We
present a discussion of the evaluation results in Section 5.5.8.

Finally, we conclude in Section 5.6.

author contributions The author of this thesis was the main
developer of the DeFacto fact validation framework. In particular, he
was responsible for training the BOA framework for this task, extend-
ing the BOA architecture to support multiple languages as well as
pattern generalization, the implementation of the machine learning
modules for fact and proof scoring, the generation of the FactBench
benchmark, the temporal scoping of input facts and the evaluation of
the proposed algorithms. The implementation of the first as well as
the extended GUI, the RDF provenance NIF output, the Named En-
tity Disambiguation and the implementation of the statistical triple
evidence feature were carried out by the co-authors of Lehmann et al.
[2012b]; Gerber et al. [2015].

5.2 related work

The work presented in this chapter is related to five main areas of re-
search: fact finding as known from NLP, the representation of prove-
nance information in the Data Web, temporal analysis, relation extrac-
tion and named entity disambiguation (also called entity linking).

fact finding Fact finding is a relatively new research area which
focuses on computing which subset of a given set of statements can
be trusted [Pasternack and Roth, 2013]. Several approaches have been
developed to achieve this goal. Nakamura et al. [2007] developed a
prototype for enhancing the search results provided by a search en-
gine based on trustworthiness analysis for those results. To this end,
they conducted a survey in order to determine the frequency at which
the users access search engines and how much they trust the content
and ranking of search results. They defined several criteria for trust-
worthiness calculation of search results returned by the search engine,
such as topic majority. We adapted their approach for DeFacto and in-
cluded it as one of the features for our machine learning techniques.
Another fact-finding approach is that presented by [Yin et al., 2007].
Here, the idea is to create a 3-partite network of webpages, facts and
objects and apply a propagation algorithm to compute weights for
facts as well as webpages. These weights can then be used to deter-
mine the degree to which a fact contained in a set of webpages can
be trusted. Pasternack and Roth [2011a,b] present a generalized ap-
proach for computing the trustworthiness of webpages. To achieve
this goal, the authors rely on a graph-based model similar to hubs
and authorities [Kleinberg, 1999]. This model allows computing the

5.2 related work 78

trustworthiness of facts and webpages by generating a k-partite net-
work of pages and facts and propagating trustworthiness information
across it. The approach returns a score for the trustworthiness of each
fact. Moreover, the generalized fact-finding model that they present
allows expressing other fact-finding algorithms such as TruthFinder
[Yin et al., 2007], AccuVote [Dong et al., 2009] and 3-Estimates [Gal-
land et al., 2010] within the same framework. The use of trustworthi-
ness and uncertainty information on RDF data has been the subject
of recent research (see e.g. [Hartig, 2008; Meiser et al., 2011]). Our
approach differs from previous work on fact finding approaches as it
focuses on validating the trustworthiness of RDF triples and not that
of facts expressed in natural language. In addition, it can deal with
the broad spectrum of relations found on the Data Web.

provenance The problem of data provenance is an issue of cen-
tral importance for the uptake of the Data Web. While data extracted
by the means of tools such as Hazy6 and KnowItAll7 can be easily
mapped to primary provenance information, most knowledge sources
were extracted from non-textual source and are more difficult to link
with provenance information. Hartig and Zhao [2010] describe a frame-
work for provenance tracking. This framework provides the vocab-
ulary required for representing and accessing provenance informa-
tion on the Web. It keeps track of metadata including who created
a Web entity (e.g. a webpage) and how the entity was modified. Re-
cently, a W3C working group has been formed and released a set of
specifications on sharing and representing provenance information.8

Dividino et al. [2011] introduced an approach for managing several
provenance dimensions, e.g. source and timestamp. In their approach,
they describe an extension to the RDF called RDF+ which can work
efficiently with provenance data. They also provide a method for en-
abling SPARQL query processors in a manner such that a specific
SPARQL query can request meta knowledge without being modified.
Theoharis et al. [2011] argue that the implicit provenance data con-
tained in a SPARQL query result can be used to acquire annotations
for several dimensions of data quality. They present the concept of
abstract provenance models as known from databases and how it can
be extended to suit the Data Web as well. Their model requires the
existence of provenance data in the underlying semantic data source.
DeFacto uses the W3C provenance group standard for representing
provenance information. Yet, unlike previous work, it directly tries
to find provenance information by searching for confirming facts in
trustworthy webpages.

6 http://hazy.cs.wisc.edu/hazy/

7 http://www.cs.washington.edu/research/knowitall/

8 http://www.w3.org/2011/prov/wiki/

http://hazy.cs.wisc.edu/hazy/
http://www.cs.washington.edu/research/knowitall/
http://www.w3.org/2011/prov/wiki/

5.2 related work 79

temporal analysis Storing and managing the temporal valid-
ity of facts is a tedious task that has not yet been studied widely in
literature. First works from the Semantic Web community in this di-
rection include Temporal RDF [Gutierrez et al., 2005], which allows
representing time intervals within which a relation is valid. Extract-
ing such information from structured data is a tedious endeavor for
which only a small number of solutions exist. For example, Talukdar
et al. [2012b] present an approach for scoping temporal facts which
relies on formal constraints between predicates. In particular, they
make use of the alignment, containment, succession and mutual ex-
clusion of predicates. Acquiring the constraints that hold between
given predicates is studied by [Talukdar et al., 2012a]. Another ap-
proach that aims at extracting temporal information is Timely YAGO
[Wang et al., 2010], which focuses on extracting temporally scoped
facts from Wikipedia infoboxes. PRAVDA [Wang et al., 2011] relies on
constrained label propagation to extract temporal information. Here,
an objective function which models inclusion constraints and factual
information is optimized to determine an assignment of fact to time
slots. To the best of our knowledge, none of the previous approaches
has dealt with coupling the validity of a fact with its time scope.

relation extraction The verbalization of formal relations is
an essential component of DeFacto as it allows searching for RDF
triples in unstructured data sources. This verbalization task is strongly
related to the area of relation extraction, which aims at detecting for-
mal relations and entity mentions in unstructured data sources. Some
early work on relation extraction based on pattern extraction relied
on supervised machine learning (see e.g. [Grishman and Yangarber,
1998]). Yet, such approaches demand large amounts of training data,
making them difficult to adapt to new relations. The subsequent gen-
eration of approaches to RE aimed at bootstrapping patterns based
on a small number of input patterns and instances. For example, Brin
[1999] present the Dual Iterative Pattern Relation Expansion (DIPRE)
and applies it to the detection of relations between authors and titles
of books. This approach relies on a small set of seed patterns to maxi-
mize the precision of the patterns for a given relation while simultane-
ously minimizing their error rate. Snowball [Agichtein and Gravano,
2000] extends DIPRE by a new approach to the generation of seed tu-
ples. Other approaches intend to either collect redundancy informa-
tion (see e.g. [Yan et al., 2009]) in an unsupervised manner or to use
linguistic analysis [Nguyen et al., 2007] to harvest generic patterns for
relations. The newest approaches to relation extraction make use of
ontologies as seed knowledge. While several approaches (including
NELL [Carlson et al., 2010] and PROSPERA [Nakashole et al., 2011])
employ their own ontologies, frameworks such as BOA [Gerber and
Ngonga Ngomo, 2012], LODifier [Augenstein et al., 2012] and the sys-

5.3 approach 80

tem presented by Krause et al. [2012] reuse information available on
the Linked Data Web as training data to discover natural language
patterns that express formal relations and reuse those to extract RDF
from unstructured data sources.

named entity disambiguation NED is most often an a-priori
task to RE. In the last years, approaches began relying on RDF data as
underlying knowledge bases. DBpedia Spotlight [Mendes et al., 2011]
is a Named Entity Recognition and Disambiguation combining ap-
proach based on DBpedia [Auer et al., 2008]. This approach is able
to work on all classes of Named Entities present in the knowledge
base also enabling the user to specify coverage and error tolerance
during the annotation task. Based on measures like prominence, topi-
cal relevance, contextual ambiguity and disambiguation confidence,
DBpedia Spotlight achieves a disambiguation accuracy of 81% on
their Wikipedia corpus. AIDA [Hoffart et al., 2011], considered to be
the state-of-the-art algorithm for Named Entity Disambiguation, is
based on the YAGO9 knowledge base. This approach uses dense sub-
graphs to identify coherent mentions. Moreover, AIDA makes use of
contextual similarity, prominence information and context windows.
AGDISTIS [Usbeck et al., 2014] is a novel knowledge-base agnostic
NED approach which combines an authority-based graph algorithm
and different label expansion strategies and string similarity mea-
sures. Based on this combination, the approach can efficiently detect
the correct URIs for a given set of named entities within an input text.
The results indicate that AGDISTIS is able to outperform the state-of-
the-art approaches by up to 16% F-measure.

5.3 approach

The following section describes the basic system architecture for the
DeFacto approach. Since both the baseline DeFacto and the extended
DeFacto system architecture are mostly identical, we combine their
descriptions and highlight each difference.

input and output The DeFacto system consists of the compo-
nents depicted in Figure 20. The system supports two types of inputs: The baseline version

did only accept RDF
triples as input.

RDF triples and textual data. If provided with a fact represented as an
RDF triple, DeFacto returns a confidence value for this fact as well as
possible evidence for it. In the case of textual data, e.g. from an input
form, DeFacto uses AGDISTIS to disambiguate the entities and gath-
ers surface forms (see Section 5.5.1) for each resource.10 The evidence
consists of a set of webpages, textual excerpts from those pages and
meta-information on the pages. The text excerpts and the associated

9 http://www.mpi-inf.mpg.de/yago-naga/yago/

10 Note the disambiguation of the property URI of the fact is out of scope of this section.

http://www.mpi-inf.mpg.de/yago-naga/yago/

5.3 approach 81

meta information enable the user to quickly get an overview of possi-
ble credible sources for the input statement. Instead of having to use
search engines, browsing several webpages and looking for relevant
pieces of information, the user can thus more efficiently review the
presented information. Moreover, the system uses techniques which
are adapted specifically for fact validation instead of only having to
rely on generic information retrieval techniques of search engines.

Albert Einstein

award

Nobel Prize

BOA Pattern
Library

Search Engine

"Nobel Prize" "was awarded to" "Albert Einstein"

Trust-
worthiness

Proof
Scoring

TRUE

FALSE

Temporal/Fact
Confirmation

Index

1921 RDF-Provenance

Figure 20: Overview of the DeFacto architecture.

retrieving webpages The first step of the DeFacto fact valida-
tion process is to retrieve webpages which are relevant for the given
task. The retrieval is carried out by issuing several queries to a regu-
lar search engine. These queries are computed by verbalizing the fact
using multilingual natural language patterns extracted by the BOA Note that the

baseline version did
not feature
multilingualism nor
temporal analysis.

framework11 [Gerber and Ngonga Ngomo, 2011, 2012]. Section 5.5.2
describes how the search engine queries are constructed. As a next
step, the highest ranked webpages for each query are retrieved. Those
webpages are candidates for being sources for the input fact. Both
the search engine queries as well as the retrieval of webpages are
executed in parallel to keep the response time for users within a rea-
sonable limit. Note that usually this does not put a high load on
particular web servers as webpages are usually derived from several
domains.

evaluating webpages Once all webpages have been retrieved,
they undergo several further processing steps. First, plain text is ex-
tracted from each webpage by removing most HTML markup. We
can then apply our fact confirmation approach on this text, which
is described in detail in Section 5.4.1 for the baseline version and in
Section 5.5.3 for the multilingual extension. In essence, the algorithm
decides whether the webpage contains a natural language formula-
tion of the input fact. This step distinguishes DeFacto from informa-
tion retrieval methods. If no webpage confirms a fact according to
DeFacto, then the system falls back on lightweight NLP techniques

11 http://boa.aksw.org

http://boa.aksw.org

5.3 approach 82

and computes whether the webpage does at least provide useful ev-
idence. In addition to fact confirmation, the system computes differ-
ent indicators for the trustworthiness of a webpage (see Section 5.4.2
and 5.5.4). These indicators are of central importance because a single
trustworthy webpage confirming a fact may be a more useful source
than several webpages with low trustworthiness. The fact confirma-
tion and the trustworthiness indicators of the most relevant webpages
are presented to the user.

confidence measurement In addition to finding and display-
ing useful sources, DeFacto also outputs a general confidence value
for the input fact. This confidence value ranges between 0% and 100%
and serves as an indicator for the user: Higher values indicate that
the found sources appear to confirm the fact and can be trusted. Low
values mean that not much evidence for the fact could be found on
the Web and that the webpages that do confirm the fact (if such ex-
ist) only display low trustworthiness. The confidence measurement
is based on machine learning techniques and explained in detail in
Sections 5.4.3 and 5.5.5. Naturally, DeFacto is a (semi-)automatic ap-
proach: We do assume that users will not blindly trust the system,
but additionally analyze the provided evidence.

rdf provenance output

Besides a visual representation of the fact and its most relevant web-
pages, it is also possible to export this information as RDF, which
enables a Linked Data style access or the management in a SPARQL
endpoint. We reuse several existing vocabularies for modeling the
provenance of the DeFacto output (see 21), especially the PROV On-
tology [Belhajjame et al., 2012], which provides a set of classes, prop-
erties, and restrictions that can be used to represent and interchange
provenance information generated in different systems and under dif-
ferent contexts, and the NLP Interchange Format (NIF) [Hellmann
et al., 2013], which is an RDF/OWL-based format that is meant to The first version of

DeFacto did not
incorporate the NIF
vocabulary.

achieve interoperability between Natural Language Processing (NLP)
tools, language resources and annotations. A RDF dump of the gen-
erated evidences for the correct facts of FactBench (see Section 5.5.7)
can be downloaded from the project home page12.

using the lod cloud as background knowledge : As de-
scribed above, DeFacto relies primarily on natural language from sev-
eral webpages as input. However, in some cases, confirming facts for
an input statement can be found in openly available knowledge bases.
Due to the fast growth of the LOD cloud, we expect this source to
become increasingly important in the future. In order to use this ad-
ditional evidence, DeFacto provides a preliminary component which

12 http://aksw.org/Projects/DeFacto

http://aksw.org/Projects/DeFacto

5.3 approach 83

Evidence_1

Proof_1 Proof_2

dbr:Albert_
Einstein

dbo:award

dbr:Nobel
_Prize_in_

Physics

Webpage_1 Webpage_2

prov:Entity

DeFacto

prov:Software
Agent

DeFactoRun_1

prov:Activiy

Text_1 Text_2

2012-12-10T01:30:00

2012-12-10T01:30:30

InputFact

Albert Einstein was awarded the Nobel Prize ...

en

0.95238

0.929

1921

1921

dbo:startYear

dbo:endYear

rdf:type rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

prov:started
AtTime prov:ended

AtTime

prov:wasAssociated
With rdf:subject

rdf:object

rdf:predicate

nif:referenceContext
nif:referenceContext

prov:hadPrimarySourceprov:hadPrimarySource

rdf:type

prov:wasGeneratedBy

nif:referenceContext

generatedForFact

rdf:type

rdf:type

evidenceScore

proofScore

dc:language

hasContext

hasProofhasProof

nif:Structure

Figure 21: Overview of the provenance schema which is used to export the
validation result of DeFacto as RDF, given the input fact Albert
Einstein, award, Nobel Price in Physics.

searches for similar statements in the LOD cloud. To achieve this goal,
the system first finds similar resources to the subject and object of the
input triple, which is currently done via the http://sameas.org ser-
vice. In a second step, it retrieves all triples which use the detected
similar subject and object resources by dereferencing the correspond-
ing Linked Data URIs. Finally, the labels of subject, predicate and
object of all triples are retrieved. Those are then compared via string
similarity techniques to the input triple. Currently, the average tri-
gram similarity of subject, predicate and object of the triple is used.
In this article, we focus on re-using textual evidence and plan to carry
out a more detailed evaluation of the LOD as background knowledge
in future work.

http://sameas.org

5.3 approach 84

Figure 22: Screenshot of the extended DeFacto Web interface.

defacto web demo

A prototype implementing the above steps is available at http://

defacto.aksw.org. A screenshot of the user interface is depicted in The prototype is an
extension of the
prototype presented
by Lehmann et al.
[2012b].

Figure 22. It shows relevant webpages, text excerpts and four differ-
ent rankings per page. In this case many possible sources for the state-
ment were found, which is why DeFacto displays a high confidence
score. Note that since the current version of DeFacto implements a
temporal fact scoping module, we also display the year, e.g. 1921, in
which the fact is or was true. The generated provenance output can
also be saved directly as RDF. The source code of both the DeFacto
algorithms and user interface are openly available.13

It should be noted that we decided not to check for negative evi-
dence of facts in DeFacto, since a) we considered this to be too error-
prone and b) negative statements are much less frequent on the Web.

13 https://github.com/AKSW/DeFacto

http://defacto.aksw.org
http://defacto.aksw.org
https://github.com/AKSW/DeFacto

5.4 defacto – deep fact validation 85

5.4 defacto – deep fact validation

This section describes the DeFacto baseline system as presented by Leh-
mann et al. [2012b]. In particular we present the integration of the
BOA framework and its training for the fact validation use case as
well as the features used for fact validation and trustworthiness anal-
ysis of webpages. These features can be considered as the core of the
baseline version and the extended multilingual and temporal exten-
sion. Finally we introdice a method to automatically create test sets,
containing both true and false RDF triples, which we use to train and
evaluate the DeFacto machine learning components.

1 dbpedia-res:Jamaica_Inn_%28film%29 dbpedia-owl:director
2 dbpedia-res:Alfred_Hitchcock .

Listing 9: Input data for Defacto.

5.4.1 BOA

The idea behind BOA is twofold: first, it is meant to be a framework
that allows extracting structured data from the Human Web by using
Linked Data as background knowledge. Second, it provides a library
of natural language patterns that allows to bridge the gap between
structured and unstructured data. The input for the BOA framework
consists of a set of knowledge bases, a text corpus (mostly extracted
from the Web) and (optionally) a Wikipedia dump14. When provided
with a Wikipedia dump, the framework begins by generating surface
forms for all entities in the source knowledge base. The surface forms
used by BOA are generated by using an extension of the method pro-
posed in Mendes et al. [2011]. For each predicate p found in the input
knowledge sources, BOA carries out a sentence-level statistical analy-
sis of the co-occurrence of label pairs for resources that are linked via
p. BOA then uses a supervised machine-learning approach to com-
pute a score and rank patterns for each combination of corpus and
knowledge bases. These patterns allow generating a natural language
representation of the RDF triple that is to be checked.

5.4.1.1 Training BOA for DeFacto

In order to provide a high quality fact confirmation component, we
trained BOA specifically for this task. We began by selecting the top
60 most frequently used object properties from the DBpedia [Morsey
et al., 2012; Lehmann et al., 2009] ontology using the DBpedia Live
endpoint15. This query retrieves 7,750,362 triples and covers 78% of
the 9,993,333 triples in DBpedia with owl:ObjectPropertys from the DB-

14 http://dumps.wikimedia.org/

15 http://live.dbpedia.org/sparql

http://dumps.wikimedia.org/
http://live.dbpedia.org/sparql

5.4 defacto – deep fact validation 86

pedia namespace.16 Currently, we focus on object properties. The ade-
quate support of datatype properties requires an extension of the pre-
sented methods, which is planned in future work. For each of those
properties, we selected the top 10 BOA patterns (if available) sorted
according to the number of triples a pattern has been learned from.
This resulted in a list of 488 patterns which were evaluated by all four
authors. During this process, each pattern was labeled by two persons
independently. We judged a pattern as positive if it was not generic
(e.g. “D ‘s " D”) or specific enough (e.g. “D in the Italian region D”
) and could be used to express the relation in natural text. The first
group achieved a moderate Cohen’s-Kappa value of 0.477 and the sec-
ond group scored a good value of 0.626. Every conflict was resolved
by having the annotators agree on a single annotation. The resulting
annotations were used for a 10-fold cross-validation training of BOA’s
neural network. We achieved the maximum F-score of 0.732 with an
error threshold of 0.01 and a hidden layer size of 51 neurons.

5.4.1.2 Automatic Generation of Search Queries

The found BOA patterns are used for issuing queries to the search
engine (see Figure 20). Each search query contains the quoted label of
the subject of the input triple, a quoted and cleaned BOA pattern (we
remove punctuation characters which are not indexed by the search
engine) and the quoted label of the object of the input triple. We use
a fixed number of the best-scored BOA patterns whose score was
beyond a score threshold and retrieve the first n websites from a
web search engine. For our example from Listing 9, an examplary
query sent to the search engine is “Jamaican Inn” AND “written and

directed by” AND “Alfred Hitchcock”. We then crawl each website
and try to extract possible proofs of the input triple, i.e. excerpts of
these webpages which may confirm it. For the sake of brevity, we use
proof and possible proof interchangeably.

5.4.1.3 BOA and NLP Techniques for Fact Confirmation

To find proofs of a given input triple t = (s,p,o) we make use of the
surface forms introduced by Mendes et al. [2011]. We select all sur-
face forms for the subject s and object o of the input triple and search
for all occurrences of each combination of those labels in a website
w. If we find an occurrence with a token distance dist(lab(s), lab(o))
(where lab(x) is the label of x) smaller then a given threshold we call
this occurrence a proof of the input triple. To remove noise from the
found proofs we apply a set of normalizations by using regular ex-
pression filters which for example remove characters between brack-
ets and non alpha-numeric characters. Note that this normalization

16 Properties like wikiPageExternalLink, wikiPageRedirects, wikiPageDisambiguates
and thumbnail have been excluded.

5.4 defacto – deep fact validation 87

improves the grouping of proofs by their occurrence. After extracting
all proofs pri ∈ P∇(w) of a webpage w, we score each proof using a
linear regression classifier. We trained a classifier with the following
input features for scoring a proof:

boa pattern : This is a boolean feature which is 1 if a BOA pattern
is contained in the normalized proof phrase.

boa score : If BOA patterns are found in the normalized proof phrase,
then the score of the highest score across the set of found pat-
terns is written in this feature. Else, this feature is set to 0.

token distance : This is the distance dist(lab(s), lab(o)) between
the two entity labels which found the proof. We limit this dis-
tance to a maximum of 20 tokens.

wordnet expansion : We expand both the tokens of the normal-
ized proof phrase as well as all of the tokens of the BOA pattern
with synsets from Wordnet. Subsequently we apply the Jaccard-
Similarity on the generated expansions. This is basically a fuzzy
match between the BOA pattern and the proof phrase.

total occurrence : This feature contains the total number of oc-
currences of each normalized proof phrase over the set of all
normalized proof phrases.

page title : We apply the maximum of the trigram similarity mea-
sure between the page title and the subject and object labels.
This feature is useful, because the title indicates the topic of
the entire webpage. When a title matches, then higher token
distances may still indicate a high probability that a fact is con-
firmed.

end of sentence : A boolean value if the potential proof contains
a “.”, “!” or a “?”. When subject and object are in different sen-
tences, their relation is more likely to be weaker.

phrase : The words between the subject and object, which are en-
coded as binary values, i.e. a feature is created for each word
and its value is set to 1 if the word occurs and 0 otherwise.

property : The property as a word vector.

To train our classifiers, we randomly sampled 527 proofs and anno-
tated them manually. Those proofs were extracted with DeFacto by
applying it on the training set described in Section 5.4.4.1. The results
are shown in Table 19. We ran popular classifiers, which are able to
work with numeric data and create confidence values. The ability to
generate confidence values for proofs is useful as feedback for users

5.4 defacto – deep fact validation 88

P R F1 AUC RMSE

Logistic Regression 0.769 0.769 0.769 0.811 0.4653

Naïve Bayes 0.655 0.624 0.564 0.763 0.5665

SVM 0.824 0.822 0.822 0.823 0.4223

RBFNetwork 0.735 0.717 0.718 0.718 0.485

Table 19: Performance measures for several classifiers on the fact confirma-
tion task (AUC = area under the ROC curve, RMSE = root mean
squared error).

and it also serves as input for the core classifiers described in Sec-
tion 5.4.4. Based on the obtained results, we selected support vector
machines as classifier. We also performed preliminary work on fine-
tuning the parameters of the above algorithms, which, however, did
not lead to significantly different results. The reported measurements
were, therefore, done with default values of the mentioned algorithms
in the Weka machine learning toolkit17 version 3.6.6.

5.4.2 Trustworthiness Analysis of Webpages

To identify the trustworthiness of a webpage we first need to deter-
mine its similarity to the input triple. This is determined by how
many topics belonging to the query are contained in a search result
retrieved by the web search. We extended the approach introduced
by Nakamura et al. [2007] by querying Wikipedia with the subject
and object label of the triple in question separately to find the topic
terms for the triple. Please note that through the availability of mul-
tilingual labels for many resources in the LOD cloud, we are able
to extract topic terms in multiple languages. A frequency analysis
is applied on all returned documents and all terms above a certain
threshold that are not contained in a self-compiled stop word list are
considered to be topic terms for a triple. Let s and o be the URIs for
the subject and object of the triple in question, τ be a potential topic
term extracted from a Wikipedia page and let t = (s,p,o) be the input
triple. We compare the values of the following two formulas:

prob(τ|t) =
|topic(τ,docs(t))|

|docs(t)|
(18)

prob(t|intitle(docs(t), s∨ o)) =
|topic(τ, intitle(docs(t), s)∪ intitle(docs(t),o))|

|intitle(docs(t), s)∪ intitle(docs(t),o)|
(19)

17 http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/

5.4 defacto – deep fact validation 89

where docs(t) is the set of all web documents retrieved for t (see
Section 5.4.1), intitle(docs(t), x) the set of web documents which
have the label of the URI x in their page title. topic(τ,docs(t)) is
a function returning the set of documents which contain τ in the
page body. We consider τ to be a topic term for the input triple if
prob(τ|τ(docs(t), s)∨τ(docs(t),o)) > prob(τ|t). Let Tt = {τ1, τ2, . . . , τn}
be the set of all topic terms extracted for an input triple. DeFacto then
calculates the trustworthiness of a webpage as follows:

topic majority on the web This represents the number of
webpages that have similar topics to the webpage in question. Let
Tw be the set of topic terms appearing on the current webpage w.
The Topic Majority on the Web for a webpage w is then calculated as:

tmweb(w) =

∣∣∣∣∣
n⋃
i=1

topic(τi,d(X))

∣∣∣∣∣− 1. (20)

where τ1 is the most occurring topic term in the webpage w. Note
that we subtract 1 to prevent counting w.

topic majority in search results It is used to calculate the
similarity of a given webpage for all webpages found for a given
triple. Let wk be the webpage to be evaluated, v(wk) be the feature
vector of webpage wk where v(wk)i is 1 if τi is a topic term of web-
page wk and 0 otherwise, ‖v‖ be the norm of v and θ a similarity
threshold. We calculate the Topic Majority for the search results as
follows:

tmsr(w) =

∣∣∣∣{wi|wi ∈ d(X), v(wk)× v(wi)
‖v(wk)‖ ‖v(wi)‖

> θ

}∣∣∣∣ . (21)

topic coverage This measures the ratio between all topic terms
for t and all topic terms occurring in w:

tc(w) =
|Tt ∩Tw|

|Tt|
. (22)

pagerank : The Pagerank18 of a webpage is a measure for the rel-
ative importance of a webpage compared to all others, i.e. higher
pageranks mean that a webpage is more popular. There is a positive
correlation between popularity of a webpage and its trustworthiness
as those pages are more likely to be reviewed by more people or
may have undergone stricter quality assurance before their publica-
tion. While a high pagerank alone is certainly not a sufficient indi-
cator for trustworthiness, we use it in combination with the above
criteria in DeFacto.

18 http://en.wikipedia.org/wiki/Pagerank

http://en.wikipedia.org/wiki/Pagerank

5.4 defacto – deep fact validation 90

5.4.3 Features for Deep Fact Validation

In order to obtain an estimate of the confidence that there is suffi-
cient evidence to consider the input triple to be true, we decided to
train a supervised machine learning algorithm. Similar to the above
presented classifier for fact confirmation, this classifier also requires
computing a set of relevant features for the given task. In the follow-
ing, we describe those features and why we selected them.

First, we extend the score of single proofs to a score of webpages
as follows: When interpreting the score of a proof as the probability
that a proof actually confirms the input fact, then we can compute
the probability that at least one of the proofs confirms the fact. This
leads to the following stochastic formula19, which allows us to obtain
an overall score for proofs scw on a webpage w:

scw(w) = 1−
∏

pr∈prw(w)

(1− fc(pr)) . (23)

In this formula, fc (fact confirmation) is the classifier trained in
Section 5.4.1.3, which takes a proof pr as input and returns a value
between 0 and 1. prw is a function taking a webpage as input and
returning all possible proofs contained in it.

combination of trustworthiness and textual evidence

In general, the trustworthiness of a webpage and the textual evidence
we find in it are orthogonal features. Naturally, webpages with high
trustworthiness and a high score for its proofs should increase our
confidence in the input fact. Therefore, it makes sense to combine
trustworthiness and textual evidence as features for the underlying
machine learning algorithm. We do this by multiplying both criteria
and then using their sum and maximum as two different features:

Ffsum(t) =
∑

w∈s(t)

(f(w) · scw(w)) (24)

Ffmax(t) = max
w∈s(t)

(f(w) · scw(w)) (25)

In this formula f can be instantiated by all four trustworthiness
measures: topic majority on the the web (tmweb), topic majority in
search results (tmsr), topic coverage (tc) and pagerank (pr). s is a
function taking a triple t as argument, executing the search queries
explained in Section 5.4.1.2 and returning a set of webpages. Using
the formula, we obtain 8 different features for our classifier, which
combine textual evidence and different trustworthiness measures.

19 To be exact, it is the complementary even to the case that none of the proofs do
actually confirm a fact.

5.4 defacto – deep fact validation 91

other features In addition to the above described combinations
of trustworthiness and fact confirmation, we also defined other fea-
tures:

1. The total number of proofs found.

2. The total number of proofs found above a relevance threshold
of 0.5. In some cases, a high number of proofs with low scores
is generated, so the number of high scoring proofs may be a
relevant feature for learning algorithms.

3. The total evidence score: This is the probability that at least one
of the proofs is correct, which is defined analogously to scw
above:

1−
∏

pr∈prt(t)

(1− fc(pr)) . (26)

where prt(t) is a function returning all proofs found for t from
all webpages.

4. The total evidence score above a relevance threshold of 0.5. This
is an adaption of the above formula, which considers only proofs
with a confidence higher than 0.5.

5. Total hit count: Search engines usually estimate the number of
search results for an input query. The total hit count is the sum
of the estimated number of search results for each query send
by DeFacto for a given input triple.

6. A domain and range verification: If the subject of the input
triple is not an instance of the domain of the property of the
input triple, this violates the underlying schema, which should
result in a lower confidence in the correctness of the triple. This
feature is 0 if both domain and range are violated, 0.5 if exactly
one of them is violated and 1 if there is no domain or range
violation. At the moment, we are only checking whether the
instance is asserted to be an instance of a class (or one of its
subclasses) and do not use reasoning for performance reasons.

5.4.4 Evaluation

Our main objective in the evaluation was to find out whether De-
Facto can effectively distinguish between true and false input facts.
In the following, we describe how we trained DeFacto using DBpe-
dia, introduce the experiments we used and discuss the results of our
experiments.

5.4 defacto – deep fact validation 92

5.4.4.1 Training DeFacto

As mentioned in Section 5.4.1, we focus our experiments on the top
60 most frequently used properties in DBpedia. The system can easily
be extended to cover more properties by extending the training set of
BOA to those properties. Note that DeFacto itself is also not limited to
DBpedia, i.e. while all of its components are trained on DBpedia, the
algorithms can be applied to arbitrary URIs. A performance evalua-
tion on other knowledge bases is subject to future work, but it should
be noted that most parts of DeFacto – except the LOD background
feature described in Section 5.3 and the schema checking feature in
Section 5.4.3 work only with the retrieved labels of URIs and, there-
fore, do not depend on DBpedia.

For training a supervised machine learning approach, positive and
negative examples are required. Those were generated as follows:

positive examples : In general, we use facts contained in DB-
pedia as positive examples. For each of the properties we consider
(see Section 5.4.1), we generated positive examples by randomly se-
lecting triples containing the property. We collected 600 statements
in this manner and verified them by checking manually whether it
was indeed a true fact. It turned out that some of the obtained triples
were modeled incorrectly, e.g. obviously violated domain and range
restrictions or could not be confirmed by an intensive search on the
web within ten minutes. Overall, 473 out of 600 checked triples could
be used as positive examples.

negative examples : The generation of negative examples is more
involved than the generation of positive examples. In order to effec-
tively train DeFacto, we considered it essential that many of the nega-
tive examples are similar to true statements. In particular, most state-
ments should be meaningful triples. For this reason, we derived the
negative examples from positive examples by modifying them while
still following domain and range restrictions. Assume the input triple
(s,p,o) in a knowledge base K is given and let dom and ran be func-
tions returning the domain and range of a property20. We used the
following methods to generate the negative example sets dubbed sub-
ject, object, subject-object, property, random, 20%mix (in that order):

1. A triple (s ′,p,o) is generated where s ′ is an instance of dom(p),
the triple (s ′,p,o) is not contained in K and s ′ is randomly
selected from all resources which satisfy the previous require-
ments.

2. A triple (s,p,o ′) is generated analogously by taking ran(p) into
account.

20 Technically, we used the most specific class, which was explicitly stated to be domain
and range of a property, respectively.

5.4 defacto – deep fact validation 93

3. A triple (s ′,p,o ′) is generated analogously by taking both dom(p)

and ran(p) into account.

4. A triple (s,p ′,o) is generated in which p ′ is randomly selected
from our previously defined list of 60 properties and (s,p ′,o) is
not contained in K.

5. A triple (s ′,p ′,o ′) is generated where s ′ and o ′ are randomly
selected resources, p ′ is a randomly selected property from our
defined list of 60 properties and (s ′,p ′,o ′) is not contained in
K.

6. 20% of each of the above created negative training sets were
randomly selected to create a heterogenous test set.

Note that all parts of the example generation procedure can also take
implicit knowledge into account, e.g. by simply extending our ap-
proach to use SPARQL 1.1 entailment21. In case of DBpedia Live we
did not use any entailment for performance reasons and because it
would not alter the results in that specific case.

Obviously, it is possible that our procedure for generating negative
examples also generates true statements which just happen not to be
contained in DBpedia. Similar to the analysis of the positive examples,
we checked a sample of the negative examples on whether they are
indeed false statements. This was the case for all examples in the
sample. Overall, we obtained an automatically created and manually
cleaned training set, which we made publicly available22.

5.4.4.2 Experimental Setup

In a first step, we computed all feature vectors, described in Sec-
tion 5.4.3 for the training set. DeFacto relies heavily on web requests,
which are not deterministic (i.e. the same search engine query does
not always return the same result). To achieve deterministic behavior
and to increase the performance as well as reduce load on the servers,
all web requests are cached. The DeFacto runtime for an input triple
was on average slightly below 5 seconds per input triple23 when using
caches.

We stored the features in the arff file format and employed the
Weka machine learning toolkit24 for training different classifiers. In
particular, we were interested in classifiers which can handle numeric
values and output confidence values. Naturally, confidence values for
facts such as, e.g. 95%, are more useful for end users than just a binary
response on whether DeFacto considers the input triple to be true,

21 http://www.w3.org/TR/sparql11-entailment/

22 http://aksw.org/projects/DeFacto

23 The performance is roughly equal on server machines and notebooks, since the web
requests dominate.

24 http://www.cs.waikato.ac.nz/ml/weka/

http://www.w3.org/TR/sparql11-entailment/
http://aksw.org/projects/DeFacto
http://www.cs.waikato.ac.nz/ml/weka/

5.4 defacto – deep fact validation 94

since they allow a more fine-grained assessment. Again, we selected
popular machine-learning algorithms satisfying those requirements.

We performed 10-fold cross-validations for our experiments. In
each experiment, we used our created positive examples, but varied
the negative example sets described above to see how changes influ-
ence the overall behavior of DeFacto.

Subject

P R F1 AUC RMSE

Logistic Regression 0.799 0.753 0.743 0.83 0.4151

Naïve Bayes 0.739 0.606 0.542 0.64 0.6255

SVM 0.811 0.788 0.784 0.788 0.4609

J48 0.835 0.827 0.826 0.819 0.3719

RBF Network 0.743 0.631 0.583 0.652 0.469

Object

P R F1 AUC RMSE

Logistic Regression 0.881 0.86 0.859 0.844 0.3454

Naïve Bayes 0.795 0.662 0.619 0.741 0.5815

SVM 0.884 0.867 0.865 0.866 0.3409

J48 0.869 0.862 0.861 0.908 0.3194

RBF Network 0.784 0.683 0.652 0.75 0.4421

Subject-Object

P R F1 AUC RMSE

Logistic Regression 0.871 0.85 0.848 0.86 0.3495

Naïve Bayes 0.813 0.735 0.717 0.785 0.5151

SVM 0.88 0.863 0.861 0.855 0.3434

J48 0.884 0.871 0.87 0.901 0.3197

RBF Network 0.745 0.687 0.667 0.728 0.4401

Property

P R F1 AUC RMSE

Logistic Regression 0.822 0.818 0.818 0.838 0.3792

Naïve Bayes 0.697 0.582 0.511 0.76 0.6431

SVM 0.819 0.816 0.816 0.825 0.3813

J48 0.834 0.832 0.832 0.828 0.3753

RBF Network 0.72 0.697 0.688 0.731 0.4545

Random

P R F1 AUC RMSE

Logistic Regression 0.855 0.854 0.854 0.908 0.3417

5.4 defacto – deep fact validation 95

Naïve Bayes 0.735 0.606 0.544 0.853 0.5565

SVM 0.855 0.854 0.854 0.906 0.3462

J48 0.876 0.876 0.876 0.904 0.3226

RBF Network 0.746 0.743 0.742 0.819 0.4156

Mix

P R F1 AUC RMSE

Logistic Regression 0.665 0.645 0.634 0.785 0.4516

Naïve Bayes 0.719 0.6 0.538 0.658 0.6267

SVM 0.734 0.729 0.728 0.768 0.4524

J48 0.8 0.79 0.788 0.782 0.405

RBF Network 0.698 0.61 0.561 0.652 0.4788

Table 20: Classification results for the different evaluation sets.

5.4.4.3 Results and Discussion

The results of our experiments are shown in Table 20. Three algo-
rithms – J48, logistic regression and support vector machines – show
promising results. Given the challenging tasks, F-measures up to 78.8%
for the combined negative example set appear to be very positive in-
dicators that DeFacto can be used to effectively distinguish between
true and false statements, which was our primary evaluation objec-
tive. In general, DeFacto also appears to be stable against the various
negative example sets. In particular, the algorithms with overall pos-
itive results also seem less affected by the different variations. When
observing single runs of DeFacto manually, it turned out that our
method of generating positive examples is particularly challenging
for DeFacto: For many of the facts in DBpedia only few sources ex-
ist on the Web. While it is widely acknowledged that the amount
of unstructured textual information on the Web by far surpasses the
available structured data, we found out that a significant amount of
statements in DBpedia is difficult to track back to reliable external
sources on the Web even with an exhaustive manual search. There
are many reasons for this, for instance many facts are particularly
relevant for a specific country, such as “Person x studied at Univer-
sity y.”, where x is a son of a local politician and y is a country with
only limited internet access compared to first world countries. For
this reason, BOA patterns could only be detected directly in 29 of the
527 proofs of positive examples. This number increased to 195 out
of 527 when we employed the WordNet expansion described in Sec-
tion 5.4.1.3. In general, DeFacto performs better when the subject and
object of the input triple are popular on the Web, i.e. there are several
webpages describing them. In this aspect, we believe our training set
is indeed challenging upon manual observation.

5.5 defacto – multilingual and temporal extension 96

5.5 defacto – multilingual and temporal extension

One observation of the DeFacto baseline evaluation was that for some
facts the recall of found webpages containing the fact was very low.
This was due to the fact that most facts are language or country
specific respectively. For example, consider the sports domain with
particular sports such as american football in the USA and soccer
and Germany. Both sports have high publicity values/recall in the
national press but soccer fails to achieve high recall in the US and
american football in Germany. To validate facts about German soc-
cer players and clubs it is therefore necessary to use German natural
language patterns for relations like playsForClub. Furthermore, an
intelligent fact validation approach can not disregard the temporal
scope of facts. For example, the fact <Franz Beckenbauer> <plays

for club> <New York Cosmos> has been true from 1977 to 1980 but
is no longer valid now.
In this section we present the extension of the DeFacto baseline ver-
sion which is able to handle multilingual texts and temporally scope
facts. We begin by illustrating the changes applied to the BOA frame-
work, present new features for fact validation and trustworthiness
analysis for webpages as well as a method to temporally scope facts
in their time period or time point in which they hold true. Finally we
introduce FactBench, a multilingual and temporally scoped bench-
mark, and use it to evaluate this extension.

5.5.1 Training BOA for DeFacto

In order to provide a high quality fact confirmation component, we
trained BOA specifically for this task. We began by selecting the rela-
tions used in FactBench (see Section 5.5.7) and queried the instance
knowledge from DBpedia 3.9 [Lehmann et al., 2013, 2009]. Since first
experiments showed that relying on the localized version of DBpedia
would result in poor recall, we translated the English background
knowledge to German and French respectively. This is carried out by
replacing English rdfs:labels with localized ones if such exist. If no
target language label exists we rely on the English label as backup.
We then ran BOA on the July 2013 dumps of the corresponding
Wikipedias. Since search engine queries are expensive we ordered
the generated patterns by their support set size, the subject and object
pairs the patterns were found from, and used the top-n patterns for
each relation to formulate search engine queries. We chose not to train
BOA’s machine learning module, since this would have resulted in
high-precision but low-recall patterns. Additionally, we implemented
a pattern generalization approach to better cope with similar but low-
recall patterns.

5.5 defacto – multilingual and temporal extension 97

lexical pattern generalization for defacto A drawback
of the previous version of the BOA framework was that it could not
detect similar patterns. For example consider the following two En-
glish patterns: “?R ’s Indian subsidiary ?D” and “?R ’s UK subsidiary
, ?D”. Both patterns are NLRs for the dbo:subsidiary relation but might
fail to score high confidence scores because of their individual low
number of occurrences. Generalizing these patterns into “?R ’s NE
subsidiary ?D” can therefore help boost pattern scores for low re-
call patterns. We generalize patterns individually for each language
based on manually crafted regular expressions and Part-of-speech
tags provided by a language-specific tagger. In the current version of
DeFacto, we generalize personal pronouns, named entities, date/year
occurrences and forms of “be” as well as numerical values.

5.5.2 Automatic Generation of Search Queries

The found BOA patterns are used for issuing queries to the search
engine (see Figure 20). Each search query contains the quoted label
(forces an exact match from the search engine) of the subject of the
input triple, a quoted and cleaned BOA pattern (i.e. without punctu-
ation) and the quoted label of the object of the input triple. Note that
we can fully localize the search query in most cases since there are
multilingual labels for many resources available on the LOD cloud.
We use the top-k best-scored BOA patterns and retrieve the first n
webpages from a Web search engine. For our example from Listing 10,
an exemplary query sent to the search engine is “Albert Einstein”

AND “was awarded the” AND “Nobel Prize in Physics”. We then crawl
each webpage, remove HTML markup and try to extract possible proofs
for the input triple, i.e. excerpts of these webpages which may con-
firm it. For the sake of brevity, we use proof and possible proof inter-
changeably.

5.5.3 BOA and NLP Techniques for Fact Confirmation

The extension of DeFacto uses the same approach for fact confirma-
tion as the one presented for the baseline system in Section 5.4.1.3.
Again we search for all combinations of co-ocurrences of two surface
forms. Note that we now search for co-occurrences for all configured
languages. We then perform a noise removal and normalization step
and score each proof using a support vector machine. We trained the
classifier with the previously introduced features (see Section 5.4.1.3)
and the following additional or updated features:

string similarity For the top-n BOA patterns of the given rela-
tion we determine the maximum string similarity between the
normalized pattern and the proof phrase. As string similarity

5.5 defacto – multilingual and temporal extension 98

en20% en100% de20% de100% fr20% fr100%

True 12414 79921 4419 29292 5724 36383

False 11705 17436 5488 8263 5231 7721

Total 24119 97357 9907 37555 10955 44104

Table 21: Proofs with language distribution used to train fact classifier.

we use Levenshtein, Smith-Waterman as well as the QGram Sim-
ilarity25.

wordnet expansion : We expand both the tokens of the normal-
ized proof phrase as well as all of the tokens of the BOA pattern
with synsets from Wordnet. Subsequently we apply the Jaccard-
Similarity on the generated expansions. This is basically a fuzzy
match between the BOA pattern and the proof phrase. Due to
the language specificity of Wordnet to English, we will use Ba-
belNet [Navigli and Ponzetto, 2012] in future iterations.

syntax : We also calculate a number of numeric features for the
proof phrases: the number of non-alpha-numeric and upper-
case characters, the number of commas, digits and characters
and the average token length.

property : The property as a word vector.

language : The language of the webpage.

To train our classifier, we ran DeFacto on the mix train set (see Sec-
tion 5.5.7) and extracted all proof phrases. We randomly sampled 20%
of the 178337 proofs, trained the classifier on 66.6% and evaluated
the learned model on the 33.3% unseen proofs. Both the train and
the test set contained an equal amount of instances of both classes. A
detailed overview of the proofs used to learn the fact classifier can be
seen in 21. As expected, there is a skew towards proofs extracted in
English (2.4 for English to German, 2.2 for English to French). This
is not surprising, since English is the dominant language on the Web
(see Figure 7). We chose an SVM as classifier since it is known to
be able to handle large sets of features26 and is able to work with
numeric data and create confidence values. The ability to generate
confidence values for proofs is useful as feedback for users and it
also serves as input for the core classifiers described in Section 5.5.5.
We achieved an F1 score of 74.1%. We also performed preliminary
work on fine-tuning the parameters of the above algorithms, which,
however, did not lead to significantly different results. Therefore, the

25 http://sourceforge.net/projects/simmetrics/

26 Note that the majority of the features are word vectors.

http://sourceforge.net/projects/simmetrics/

5.5 defacto – multilingual and temporal extension 99

English German French

R ’s novel “ D R in seinem Roman “ D D ” est un roman R

R ’s book “ D R in seinem Buch “ D R dans son roman “ D

R , author of “ D R in seinem Werk “ D R intitulé “ D

R married D D seiner Frau R R épouse D

R , his wife D D seiner Ehefrau R R , veuve D

D ’s marriage to R R und seiner Gattin D D , la femme de R

Table 22: Example list of patterns for relations publication (top) and marriage
(bottom).

[0-9]{4}\\s*(/|-|--|-)\\s*[0-9]{4}

[Ff]rom [0-9]{4} until [0-9]{4}

[bB]etween (the years) [0-9]{4} and [0-9]{4}

[0-9]{4} bis einschließlich [0-9]{4}

[zZ]wischen (den Jahren) [0-9]{4} und [0-9]{4}

[dD]urant la période [0-9]{4} - [0-9]{4}

[eE]ntre les années [0-9]{4} et [0-9]{4}

Table 23: Example list of temporal patterns extracted from English, German
and French Wikipedia.

reported measurements were carried out with default values of the
mentioned algorithms in the Weka machine learning toolkit27 version
3.6.6.

5.5.4 Trustworthiness Analysis of Webpages

The analysis of a webpage’s trustworthiness for the extended multilin-
gual version of DeFacto is similar to the one presented in Section 5.4.2.
Whereas for the baseline version only English words could be topic
terms, words from all languages can be topic terms in the multilin-
gual version. Since many English entries from Wikipedia have corre-
sponding articles in different languages, we can extract topic terms
for a multitude of input languages. Also note that through the avail-
ability of multilingual labels for many resources in the LOD cloud,
we can extract surface forms of resources in all available languages.
Due to timely restrictions we chose to exclude the pagerank feature
from the extended version of DeFacto.

27 http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/

5.5 defacto – multilingual and temporal extension 100

5.5.5 Features for Deep Fact Validation

Similar as for the fact confirmation features presented in Section 5.5.3
the DeFacto extension heavily relies on the features of the baseline
system as shown in Section 5.4.3. Again, we start by extending the
score of single proofs to a score of webpages as shown in Equation 23.
We then combine the trustworthiness measures and the textual evi- The pagerank

measure is not used
anymore.

dence as previously shown in Equation 24 and 25. In addition to the
combinations of trustworthiness and fact confirmation described in
Section 5.4.3 as well as the six additional features, we also defined
the feature:

7. Statistical triple evidence: Usually certain classes have a higher
probability to cooccur as type of subject and object in a given
triple, e.g. there might be a higher probability that instances
of dbo:Person and dbo:Film are related via triples than for in-
stance dbo:Insect and dbo:Film. This observation also holds
for the cooccurence of classes and properties, both for the types
in subject and object position. This kind of semantic relatedness
allows for computing a score for the statistical evidence STE of
a triple t = (s,p,o) by

STE(t) = max
cs∈cls(s)
os∈cls(o)

(PMI(cs, co) + PMI(cs,p) + PMI(p, co))

(27)

where cls denotes the types of the resource and PMI denotes
the Pointwise Mutual Information, which is a measure of asso-
ciation and defined by

PMI(a,b) = log
(
N · occ(a,b)

occ(a) · occ(b)

)
(28)

using occ(e) as number of occurrences of a given entity e in a
specific position of a triple and N as the total number of triples
in the knowledge base.

5.5.6 Temporal Extension of DeFacto

A major drawback of the previous version of DeFacto was the miss-
ing support of temporal validation. There was no way to check if a
triple, e.g. <Tom_Cruise> <spouse> <Katie_Holmes>, is still true or if
it only has been valid in the past. To overcome this drawback we in-
troduce a temporal extension of DeFacto which is able to handle facts
that happened on a particular date (time points) and facts which span
a longer duration (time periods). The granularity of both time points
and time periods is years. In this section we describe the two sources

5.5 defacto – multilingual and temporal extension 101

for determining the correct time point/period: a) statistics, e.g. the
(normalized) frequencies of years in proof phrases; and b) the combi-
nation of statistics and text understanding, by finding lexical patterns
expressing temporal information in free text.

5.5.6.1 Temporal Pattern Extraction

Our temporal pattern extraction method takes a set of corpora as in-
put. Each corpus is split and indexed on sentence level. After that,
we perform index lookups for all sentences which contain at least
one of all possible combinations of two years between 1900 and 2013.
We apply a context window around the year match in the sentence
which ensures that all text excerpts contain at least three (if possi-
ble) tokens before, between and after the two year occurrences. Fur-
thermore, we replaced the year occurrences with placeholders and
created a frequency distribution for all matching patterns. We then
manually relaxed the patterns by generating regular expression ver-
sions and added further ones by examining the occurrences of the
years in the DeFacto training set.

Specifically in our experiment, we used the Wikipedia dumps (gen-
erated in July 2013) as text corpora for the pattern search. After split-
ting the articles in sentences, the English index contained 64.7M sen-
tences whereas the German with 27.6M and the French with 17.0M
sentences are significantly smaller. An excerpt of the used patterns
can be seen in Table 23 and the complete list of all patterns can be
downloaded from the project homepage.

5.5.6.2 Year Frequency

We apply two different year extraction mechanisms for facts with as-
sociated time points and time periods. In the first case we create a
frequency distribution for tokens which match the regular expres-
sion “[1-2][0-9]{3}”. To this end, we take all complex proof phrases
extracted from DeFacto for a given triple and create a context win-
dow (of variable length) to the left and right of the surface form of
the fact’s subject and object. All tokens from all context windows for
all complex proofs are combined to compute the year frequency for
an input fact. In the case of an associated time period we first try to
find year pairs. To find those year pairs we extract a list of multilin-
gual temporal regular expression patterns (see Subsection 5.5.6.1). We
apply these patterns to the context of all complex proofs and create a
frequency distribution for the start and end year of a given time pe-
riod. We then choose the most frequent years from both distributions
as start- or endpoint of the given fact. In case the temporal patterns do
not return any year pairs, we apply a frequency analysis as explained
for time points and select the first two years as start or end.

5.5 defacto – multilingual and temporal extension 102

5.5.6.3 Normalizing Frequencies of Years

The extraction of time information is strongly influenced by the grow-
ing amount of digital content over time. This leads to more recent
dates being more likely to be found on the Web, as shown in Fig-
ure 23, than less recent ones. Within DeFacto, we thus implemented
two different approaches for normalizing the frequency of years by
their popularity on the Web. Each approach defined a popularity func-
tion pop, which takes a year as input and returns a number represent-
ing its popularity. Values below 1 indicate that the year has less than
average popularity, where values above 1 indicate an above average
popularity. When collecting evidence in DeFacto, we can then divide
the frequency of all years found by their popularity value to obtain
a distribution, which takes popularity into account. When two years
are equally often associated to a particular event, this means DeFacto
will assign a higher probability to the year with lower pop-value.

global normalization Using the data from Figure 23, we have
an estimate of the frequency of years, or more specifically a set Y of
4-digit-numbers, on the Web. Assuming that wf (Web frequency) is
a function taking a year as input and returning its frequency on the
Web, we can define the popularity function as follows:

popglobal(x) =

√
wf(x)

1
|Y|

∑
y∈Y wf(y)

(29)

This function divides the frequency of a year on the Web by the
average frequency of all years in Y on the Web. The square root is
used to soften the effect of the normalization.

domain-specific normalization A second option to compute
the popularity value of a year is to use the training set and actual evi-
dence obtained by DeFacto. In Section 5.5.2, we described how search
queries are generated and text excerpts (proofs) are extracted from
the resulting webpages. Let pf (proof frequency) be a function taking
a year as input and returning its frequencies in all proofs generated
when running DeFacto over a training set. Furthermore, let tf (train-
ing set frequency) be the frequency of correct years in the training
set.

Intuitively, we can expect years frequently in the training set to also
frequently occur in the generated proofs. Therefore, we first divide pf
by tf and then apply an analogous approach to the global normaliza-
tion introduced above:

popdomain(x) =

√√√√√ pf(x)
tf(x)

1
|Y|

∑
y∈Y

pf(y)
tf(y)

(30)

5.5 defacto – multilingual and temporal extension 103

The fictional example below shows the results of our approach
when using only three years as input:

1990 2000 2010

pf 30 30 100

tf 5 3 3

popdomain 0.36 0.61 2.03

In this example, 2000 is more popular than 1990, since it has the
same frequency in proofs, but a lower frequency in the training set.
2010 is more popular than 2000, since it has a higher frequency in
proofs, but the same frequency in the training set.

5.5.7 FactBench - A Fact Validation Benchmark

FactBench is a multilingual benchmark for the evaluation of fact vali-
dation algorithms. All facts in FactBench are scoped with a timespan
in which they were true, enabling the validation of temporal relation
extraction algorithms. FactBench currently supports English, German
and French. The current release V1 is freely available (MIT License)
at http://github.com/AKSW/FactBench. FactBench consists of a set of
RDF models. Each of the 1500 models contains a singular fact and the
time period in which it holds true. In addition, the FactBench suite
contains the SPARQL and MQL queries used to query Freebase28 and
DBpedia, a list of surface forms for English, French and German as
well as the number of incoming and outgoing links for the English
wikipedia pages. FactBench provides data for 10 relations. The data
was automatically extracted from DBpedia and Freebase. A detailed
description on what facts the benchmark contains is shown in Fig-
ure 24. The granularity of FactBench’s time information is year. This
means that a timespan is an interval of two years, e.g. 2008 - 2012. A
time point is considered as a timespan with the same start and end
year, e.g. 2008 - 2008.

FactBench is divided in a training and a testing set (of facts). This
strict separation avoids the overfitting of machine learning algorithms
to the training set, by providing unseen test instances.

28 Since there are no incremental releases from Freebase we include the crawled train-
ing data.

http://github.com/AKSW/FactBench

5.5 defacto – multilingual and temporal extension 104

R
el

at
io

n
|S

ub
je

ct
s|

|O
bj

ec
ts
|

Ty
pe

Ye
ar
m
in

Ye
ar
m
a
x

Ye
ar
a
v
g

So
ur

ce
C

om
m

en
t

bi
rt

h
7
5
/7

5
6
7
/6

5
po

in
t

1
1
6
6
/1

6
5
0

1
9
8
9
/1

9
8
7

1
9
2
5
/1

9
3
5

D
Bp

ed
ia

bi
rt

h
pl

ac
e

(c
it

y)
an

d
da

te
of

pe
rs

on
s

de
at

h
7
5
/7

5
5
4
/4

8
po

in
t

1
2
7
0
/1

6
7
7

2
0
1
3
/2

0
1
2

1
9
4
4
/1

9
5
2

D
Bp

ed
ia

de
at

h
pl

ac
e

(c
it

y)
an

d
da

te
of

pe
rs

on
s

te
am

5
0
/5

2
2
4
/2

7
po

in
t

2
0
0
1
/2

0
0
1

2
0
1
2
/2

0
1
2

2
0
0
7
/2

0
0
7

D
Bp

ed
ia

N
BA

pl
ay

er
s

fo
r

a
N

BA
te

am
(a

ft
er

2
0
0
0
)

aw
ar

d
7
5
/7

5
5
/5

po
in

t
1
9
0
1
/1

9
0
1

2
0
0
7
/2

0
0
7

1
9
4
6
/1

9
5
2

Fr
ee

ba
se

w
in

ne
rs

of
no

be
lp

ri
ze

s
fo

un
da

ti
on

7
5
/7

5
5
9
/6

2
po

in
t

1
8
6
5
/1

9
3
5

2
0
0
6
/2

0
0
8

1
9
8
8
/1

9
9
0

Fr
ee

ba
se

fo
un

da
ti

on
pl

ac
e

an
d

ti
m

e
of

so
ft

w
ar

e
co

m
pa

ni
es

pu
bl

ic
at

io
n

7
5
/7

5
7
5
/7

3
po

in
t

1
8
1
8
/1

9
1
8

2
0
0
6
/2

0
0
6

1
9
6
9
/1

9
8
0

Fr
ee

ba
se

au
th

or
s

of
sc

ie
nc

e
fic

ti
on

bo
ok

s
(o

ne
bo

ok
/a

ut
ho

r)
sp

ou
se

7
4
/7

4
7
4
/7

4
po

in
t

2
0
0
3
/2

0
0
3

2
0
1
3
/2

0
1
3

2
0
0
7
/2

0
0
7

Fr
ee

ba
se

m
ar

ri
ag

es
be

tw
ee

n
ac

to
rs

(a
f-

te
r

2
0
1
3
/0

1
/0

1
)

st
ar

ri
ng

2
2
/2

1
7
4
/7

4
pe

ri
od

1
9
5
4
/1

9
6
4

2
0
0
9
/2

0
0
9

1
9
9
2
/1

9
9
3

D
Bp

ed
ia

ac
to

rs
st

ar
ri

ng
in

a
m

ov
ie

le
ad

er
7
5
/7

5
3
6
/4

3
pe

ri
od

1
8
4
0
/1

8
1
5

2
0
1
3
/2

0
1
2

1
9
7
3
/1

9
7
2

D
Bp

ed
ia

pr
im

e
m

in
is

te
rs

of
co

un
tr

ie
s

su
bs

id
ia

ry
5
4
/5

0
7
5
/7

5
pe

ri
od

1
9
9
3
/1

9
6
9

2
0
0
7
/2

0
0
7

2
0
0
3
/2

0
0
2

Fr
ee

ba
se

co
m

pa
ny

ac
qu

is
it

io
ns

Ta
bl

e
2

4
:O

ve
rv

ie
w

of
al

l
co

rr
ec

t
fa

ct
s

of
th

e
tr

ai
ni

ng
an

d
te

st
in

g
se

t
(t

ra
in

/t
es

t)
.

5.5 defacto – multilingual and temporal extension 105

5.5.7.1 Expression of Temporal Information in RDF Knowledge Bases

There are several methods to model temporal information in the Data
Web. According to Rula et al. [2012], we can distinguish the following
main categories:

• Document-centric, e.g. time points are connected to documents
via the last modified HTTP header.

• Fact-centric, e.g. temporal information refers to facts. This can
be divided into sentence-centric and relationship-centric per-
spectives. In the sentence-centric perspective, the temporal va-
lidity of one or more statements is defined by annotating the
facets. In the relationship-centric perspective, n-ary relations are
used to encapsulate temporal information.

Popular knowledge bases show a variety of different modeling
choices for temporal information: DBpedia uses a class dbo:TimePeriod
and attaches various properties to it, e.g. dbo:activeYearsEndDate is
used to associate an xsd:date to mark the end of some activity. Free-
base is fact-centric, more specifically relationship centric, and uses
n-ary relations. YAGO is sentence-centric and uses reification to at-
tach temporal restrictions to statements. Furthermore, there exists a
variety of ontologies and standards related to representing tempo-
ral information, e.g. the OWL time ontology29, XML Schema Date
Datatypes30, ISO standard 8601

31, Dublin Core time interval encod-
ing32 and Linked Timelines [Correndo et al., 2010]. For FactBench, we
adopt a temporal representation similar to the one used in DBpedia,
although other options appear to be equally appropriate. Listing 10

shows an example fact.

5.5.7.2 Data Generation

The data generation of the FactBench benchmark has three objectives.
First, we try to cover as many different domains as possible. The
benchmark includes, amongst others, relations from the persons (mar-
riage), places (birth, death) and organizations domain (subsidiary). In
addition, it also contains relations which would usually fall into the
miscellaneous domain, e.g. award or publication. Also the data is de-
rived from multiple sources, e.g. DBpedia and Freebase. Second, we
intended to not only cover relations for a fixed point in time (e.g. a
person’s birth date) but to also include relations which appear over a
longer period of time (e.g. the marriage between two people). Lastly,
we also tried to cover relations which appeared before the informa-
tion age (before 1980). An overview of the most frequently occurring

29 http://www.w3.org/TR/owl-time/

30 www.w3.org/TR/xmlschema-2/

31 http://en.wikipedia.org/wiki/ISO_8601#Time_intervals

32 http://dublincore.org/documents/dcmi-period/

http://www.w3.org/TR/owl-time/
www.w3.org/TR/xmlschema-2/
http://en.wikipedia.org/wiki/ISO_8601#Time_intervals
http://dublincore.org/documents/dcmi-period/

5.5 defacto – multilingual and temporal extension 106

7.5E+09

1.5E+10

2.25E+10

3E+10

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

Occurrences

Year Occurrences
1000 3610000000
1001 361000000
1002 140000000
1003 163000000
1004 167000000
1005 131000000
1006 118000000
1007 118000000
1008 114000000
1009 98300000
1010 217000000
1011 162000000
1012 150000000
1013 96100000
1014 92000000
1015 148000000

1016 109000000

1017 125000000

1018 132000000

1019 87300000

1020 184000000

1021 134000000

1022 122000000

1023 87400000

1024 2730000000

1025 111000000

1026 79300000

1027 109000000

1028 79600000

1029 115000000

1030 150000000

1031 79100000

1032 76200000

1033 88300000

1034 102000000

1035 95200000
1036 104000000
1037 73900000
1038 102000000
1039 73800000
1040 129000000
1041 77300000
1042 98600000
1043 81600000
1044 106000000
1045 112000000
1046 71800000
1047 80400000
1048 72300000
1049 74500000
1050 313000000
1051 110000000
1052 101000000
1053 99300000
1054 102000000
1055 111000000
1056 78200000
1057 80000000
1058 69700000
1059 68900000
1060 106000000
1061 105000000
1062 84100000
1063 82400000
1064 79600000
1065 101000000
1066 91100000
1067 131000000
1068 86800000
1069 72800000
1070 126000000
1071 102000000
1072 71000000
1073 81300000
1074 80800000
1075 110000000
1076 69200000
1077 82900000
1078 68000000
1079 93000000
1080 307000000
1081 74200000
1082 80100000
1083 69600000
1084 67500000
1085 73000000
1086 78400000
1087 92100000
1088 115000000
1089 67300000
1090 92600000
1091 68700000
1092 840000000
1093 117000000
1094 92900000
1095 103000000
1096 92400000
1097 65100000
1098 103000000
1099 118000000
1100 520000000
1101 113000000
1102 130000000
1103 83800000
1104 84900000
1105 120000000
1106 78900000
1107 112000000
1108 91800000
1109 114000000
1110 109000000
1111 220000000
1112 128000000
1113 108000000
1114 73800000
1115 78000000Zahl / über/unterrepreäsentation
1116 108000000
1117 101000000
1118 87700000
1119 102000000
1120 152000000
1121 77400000
1122 115000000
1123 105000000
1124 99400000
1125 131000000
1126 82300000
1127 78500000
1128 70700000
1129 71800000
1130 91900000
1131 72300000
1132 79600000
1133 70200000
1134 69000000
1135 71100000
1136 70500000
1137 91500000
1138 64600000
1139 77600000
1140 93700000
1141 71300000
1142 93700000
1143 90300000
1144 74300000
1145 68500000
1146 72300000
1147 73400000
1148 75000000
1149 92000000
1150 199000000
1151 70300000
1152 82300000
1153 64800000
1154 92800000
1155 135000000
1156 98800000

1157 62200000

1158 86800000

1159 71800000

1160 86000000

1161 66200000

1162 62700000

1163 74800000

1164 63300000

1165 63500000

1166 64100000

1167 61700000

1168 62100000

1169 84400000

1170 118000000

1171 65200000

1172 84300000

1173 60000000

1174 85100000

1175 75800000

1176 95600000

1177 63400000

1178 71000000

1179 70000000

1180 132000000

1181 65800000

1182 94600000

1183 84700000

1184 63700000

1185 66700000

1186 59800000

1187 83900000

1188 107000000

1189 85400000

1190 117000000

1191 62100000

1192 60200000

1193 82900000

1194 61100000

1195 68400000

1196 84600000

1197 59700000

1198 74700000

1199 94900000

1200 1390000000

1201 108000000

1202 83200000

1203 77200000

1204 113000000

1205 115000000

1206 83600000

1207 110000000

1208 78500000

1209 75000000

1210 152000000

1211 82200000

1212 134000000

1213 72400000

1214 68100000

1215 110000000

1216 81700000

1217 76600000

1218 77400000

1219 66400000

1220 97100000

1221 104000000

1222 104000000

1223 75000000

1224 70100000

1225 74300000

1226 63400000

1227 89000000

1228 91300000

1229 73500000

1230 126000000

1231 94500000

1232 77100000

1233 63400000

1234 168000000

1235 92400000

1236 61800000

1237 67200000

1238 84900000

1239 60400000

1240 82100000

1241 62700000

1242 90100000

1243 81800000

1244 69300000

1245 90200000

1246 68700000

1247 79900000

1248 65400000

1249 84800000

1250 173000000

1251 68200000

1252 61900000

1253 80100000

1254 61900000

1255 63500000

1256 86400000

1257 66500000

1258 58100000

1259 57700000

1260 175000000

1261 60900000

1262 57900000

1263 79500000

1264 80600000

1265 60000000

1266 66600000

1267 65400000

1268 57100000

1269 58600000

1270 82600000

1271 80000000

1272 68800000

1273 55300000

1274 58600000

1275 91900000

1276 66400000

1277 55500000

1278 55900000

1279 58000000

1280 470000000

1281 68200000

1282 55800000

1283 76500000

1284 58000000

1285 59200000

1286 78600000

1287 55700000

1288 90000000

1289 55500000

1290 79400000

1291 80300000

1292 64400000

1293 75900000

1294 75800000

1295 59600000

1296 62800000

1297 53200000

1298 60500000

1299 103000000

1300 519000000

1301 93800000

1302 71600000

1303 104000000

1304 68900000

1305 102000000

1306 66900000

1307 97200000

1308 65500000

1309 65800000

1310 1050000000

1311 91000000

1312 63100000

1313 79400000

1314 103000000

1315 63900000

1316 82000000

1317 58500000

1318 81700000

1319 80100000

1320 137000000

1321 72600000

1322 66700000

1323 83500000

1324 68300000

1325 64600000

1326 80500000

1327 55000000

1328 79900000

1329 55400000

1330 77800000

1331 84500000

1332 58400000

1333 89100000

1334 55800000

1335 68200000

1336 81700000

1337 137000000

1338 69500000

1339 56400000

1340 104000000

1341 81700000

1342 79400000

1343 54400000

1344 94600000

1345 85500000

1346 57600000

1347 76100000

1348 55800000

1349 79500000

1350 131000000

1351 65600000

1352 56300000

1353 53700000

1354 54400000

1355 58400000

1356 68400000

1357 59700000

1358 76400000

1359 78200000

1360 119000000

1361 79000000

1362 75900000

1363 53700000

1364 55800000

1365 90900000

1366 87100000

1367 75900000

1368 64400000

1369 55200000

1370 66700000

1371 78000000

1372 54700000

1373 72400000

1374 60100000

1375 59600000

1376 64100000

1377 54600000

1378 65000000

1379 73500000

1380 124000000

1381 78700000

1382 54000000

1383 53100000

1384 55000000

1385 57900000

1386 84600000

1387 84600000

1388 96500000

1389 105000000

1390 154000000

1391 144000000

1392 184000000

1393 71600000

1394 92700000

1395 56700000

1396 52300000

1397 51700000

1398 54200000

1399 78000000

1400 365000000

1401 78700000

1402 84800000

1403 80500000

1404 89400000

1405 61500000

1406 66800000

1407 65800000

1408 86600000

1409 63700000

1410 109000000

1411 61100000

1412 57000000

1413 75700000

1414 90200000

1415 87900000

1416 56200000

1417 56900000

1418 65300000

1419 74900000

1420 111000000

1421 87700000

1422 71500000

1423 58900000

1424 64600000

1425 69600000

1426 83500000

1427 69000000

1428 74600000

1429 74900000

1430 96700000

1431 71300000

1432 138000000

1433 78200000

1434 155000000

1435 104000000

1436 57400000

1437 56600000

1438 65000000

1439 64000000

1440 140000000

1441 80000000

1442 50600000

1443 69600000

1444 62700000

1445 77300000

1446 49300000

1447 68400000

1448 50100000

1449 60700000

1450 107000000

1451 62000000

1452 61900000

1453 85300000

1454 58100000

1455 54400000

1456 63000000

1457 49100000

1458 70800000

1459 69300000

1460 97400000

1461 77500000

1462 56600000

1463 48800000

1464 50700000

1465 71600000

1466 50000000

1467 67300000

1468 49700000

1469 67600000

1470 117000000

1471 61200000

1472 51200000

1473 57600000

1474 67400000

1475 65000000

1476 50900000

1477 69000000

1478 62300000

1479 47800000

1480 116000000

1481 70900000

1482 56700000

1483 60200000

1484 51500000

1485 53700000

1486 48000000

1487 52800000

1488 76600000

1489 54900000

1490 82100000

1491 48600000

1492 76200000

1493 49700000

1494 58200000

1495 77000000

1496 71500000

1497 49200000

1498 58400000

1499 103000000

1500 1150000000

1501 112000000

1502 83000000

1503 76600000

1504 56900000

1505 59000000

1506 63400000

1507 53700000

1508 53300000

1509 53300000

1510 102000000

1511 56400000

1512 62500000

1513 74200000

1514 50700000

1515 75700000

1516 63600000

1517 59800000

1518 75800000

1519 74100000

1520 125000000

1521 57900000

1522 60900000

1523 70800000

1524 62600000

1525 89000000

1526 61900000

1527 69700000

1528 51900000

1529 49900000

1530 101000000

1531 71200000

1532 50500000

1533 59100000

1534 57700000

1535 88400000

1536 149000000

1537 69600000

1538 69700000

1539 68300000

1540 98300000

1541 52200000

1542 69900000

1543 56300000

1544 101000000

1545 81300000

1546 70000000

1547 56100000

1548 58400000

1549 50300000

1550 96500000

1551 60200000

1552 668000000

1553 48600000

1554 71300000

1555 63200000

1556 50200000

1557 55900000

1558 59200000

1559 71500000

1560 73900000

1561 70600000

1562 47100000

1563 55700000

1564 50600000

1565 74900000

1566 57300000

1567 47500000

1568 52100000

1569 67200000

1570 61000000

1571 76800000

1572 50800000

1573 67600000

1574 46400000

1575 103000000

1576 68300000

1577 74300000

1578 47000000

1579 55200000

1580 77900000

1581 57200000

1582 57000000

1583 46400000

1584 72600000

1585 50000000

1586 64200000

1587 56400000

1588 72200000

1589 46100000

1590 66000000

1591 68700000

1592 48100000

1593 45800000

1594 611000000

1595 51700000

1596 50800000

1597 53300000

1598 64800000

1599 93500000

1600 1920000000

1601 85100000

1602 80300000

1603 54500000

1604 63600000

1605 68200000

1606 77700000

1607 67200000

1608 55700000

1609 74200000

1610 68400000

1611 81500000

1612 53000000

1613 57200000

1614 70800000

1615 54600000

1616 62700000

1617 50800000

1618 51500000

1619 48900000

1620 90600000

1621 53800000

1622 69000000

1623 48800000

1624 50700000

1625 65200000

1626 50000000

1627 53500000

1628 70400000

1629 64400000

1630 90600000

1631 49100000

1632 85200000

1633 51200000

1634 47600000

1635 51500000

1636 57400000

1637 47800000

1638 59000000

1639 64700000

1640 98900000

1641 59300000

1642 56300000

1643 46000000

1644 59700000

1645 49900000

1646 45600000

1647 52900000

1648 69300000

1649 48700000

1650 122000000

1651 72000000

1652 46600000

1653 48300000

1654 47800000

1655 49700000

1656 68100000

1657 44500000

1658 45800000

1659 54100000

1660 64600000

1661 64900000

1662 54700000

1663 46200000

1664 73300000

1665 52100000

1666 74600000

1667 69300000

1668 46200000

1669 602000000

1670 57200000

1671 48400000

1672 49100000

1673 63900000

1674 47300000

1675 59900000

1676 49900000

1677 52400000

1678 66700000

1679 61800000

1680 173000000

1681 72400000

1682 52400000

1683 47800000

1684 47500000

1685 50800000

1686 46300000

1687 52000000

1688 189000000

1689 46600000

1690 74800000

1691 53900000

1692 65600000

1693 60600000

1694 63200000

1695 58000000

1696 49200000

1697 51300000

1698 68900000

1699 58100000

1700 349000000

1701 72600000

1702 75600000

1703 53100000

1704 94400000

1705 61600000

1706 60500000

1707 58500000

1708 57400000

1709 50700000

1710 89700000

1711 53800000

1712 63800000

1713 69700000

1714 49900000

1715 75400000

1716 71300000

1717 54900000

1718 70500000

1719 57700000

1720 95800000

1721 60900000

1722 60700000

1723 67200000

1724 56300000

1725 57600000

1726 68200000

1727 78500000

1728 60500000

1729 65700000

1730 89400000

1731 68100000

1732 51300000

1733 48800000

1734 49500000

1735 50400000

1736 48000000

1737 65800000

1738 55000000

1739 54700000

1740 91300000

1741 70600000

1742 56400000

1743 65600000

1744 55700000

1745 50800000

1746 47500000

1747 67800000

1748 47400000

1749 48600000

1750 162000000

1751 51900000

1752 56900000

1753 47400000

1754 54700000

1755 66800000

1756 56300000

1757 65600000

1758 58300000

1759 67100000

1760 94900000

1761 50600000

1762 67100000

1763 55500000

1764 51000000

1765 70100000

1766 57600000

1767 67500000

1768 48600000

1769 48000000

1770 92000000

1771 71100000

1772 50100000

1773 47900000

1774 49300000

1775 73300000

1776 84100000

1777 75200000

1778 56400000

1779 54900000

1780 107000000

1781 72600000

1782 51000000

1783 73500000

1784 72900000

1785 60500000

1786 57200000

1787 51700000

1788 64800000

1789 84200000

1790 105000000

1791 62100000

1792 55300000

1793 60200000

1794 61000000

1795 58000000

1796 56300000

1797 72200000

1798 55900000

1799 797000000

1800 672000000

1801 81500000

1802 85900000

1803 84600000

1804 86200000

1805 734000000

1806 84800000

1807 77500000

1808 59700000

1809 68900000

1810 72000000

1811 98000000

1812 86400000

1813 83400000

1814 59500000

1815 96000000

1816 66700000

1817 70300000

1818 99200000

1819 84300000

1820 88000000

1821 108000000

1822 88600000

1823 65200000

1824 63600000

1825 65400000

1826 82900000

1827 67700000

1828 71700000

1829 58700000

1830 121000000

1831 69700000

1832 91000000

1833 63900000

1834 88300000

1835 91800000

1836 91400000

1837 90100000

1838 85400000

1839 61400000

1840 105000000

1841 93300000

1842 66700000

1843 87900000

1844 91500000

1845 93800000

1846 754000000

1847 61300000

1848 112000000

1849 95600000

1850 183000000

1851 105000000

1852 76000000

1853 65000000

1854 97100000

1855 82200000

1856 83300000

1857 96400000

1858 82300000

1859 103000000

1860 119000000

1861 127000000

1862 87400000

1863 88600000

1864 112000000

1865 81600000

1866 84200000

1867 73200000

1868 85000000

1869 73100000

1870 1110000000

1871 116000000

1872 83000000

1873 76900000

1874 111000000

1875 87200000

1876 93400000

1877 96800000

1878 77600000

1879 76900000

1880 190000000

1881 133000000

1882 116000000

1883 117000000

1884 81400000

1885 110000000

1886 85500000

1887 94500000

1888 143000000

1889 137000000

1890 238000000

1891 130000000

1892 126000000

1893 105000000

1894 89900000

1895 142000000

1896 118000000

1897 116000000

1898 148000000

1899 141000000

1900 381000000 1,26932611384817060,0
1901 179000000 0,59635006398641097,184580281013569
1902 176000000 0,586355370176582867,58376366038189
1903 197000000 0,656318226845379715,708658580521195
1904 130000000 0,43310339842588520,09247027741083
1905 217000000 0,722949518910900416,682838957607782
1906 137000000 0,456424350648817310,65509787438453
1907 192000000 0,639660403828999518,20499579680557
1908 145000000 0,483076867475025616,926384051879428
1909 190000000 0,63299727462244742,4963372162843758
1910 195000000 0,649655097638827612,177254713582322
1911 234000000 0,7795861171665937,346943677194668
1912 167000000 0,556371288747098416,987270325447337
1913 213000000 0,70962326049779629,985348865137503
1914 172000000 0,573029111763478618,387654617509305
1915 218000000 0,726281083514176433,365677915215564
1916 174000000 0,579692240970030721,18842320163324
1917 186000000 0,619671016209343219,483607541731715
1918 180000000 0,5996816285896870,0
1919 235000000 0,78291768176986915,236219526840398
1920 937000000 3,12167603326964838,402305752371802
1921 411000000 1,369273051946451817,10904287258316
1922 512000000 1,70576107687733179,457667827548937
1923 687000000 2,288784882450638525,6940074456587
1924 413000000 1,3759361811530042,8312117209078895
1925 688000000 2,29211644705391447,062807733877746
1926 687000000 2,28878488245063850,0
1927 694000000 2,3121058346735710,0
1928 524000000 1,745739852116644312,481686081421879
1929 695000000 2,31543739927684716,926384051879428
1930 633000000 2,108880393873732414,450342260117688
1931 423000000 1,40925182718576443,40963131980305
1932 2410000000 8,0290706938952534,221448300708538
1933 711000000 2,36874243292926375,010070510731013
1934 429000000 1,429241214805420511,121892638405185
1935 554000000 1,84568679021492541,0350666506544974
1936 449000000 1,49587250687094130,0
1937 710000000 2,365410868325987313,942956647051759
1938 547000000 1,82236583799199314,749129338297105
1939 462000000 1,53918284671352987,062807733877746
1940 761000000 2,53532066309306548,158760658100155
1941 560000000 1,86567617783458167,062807733877746
1942 562000000 1,87233930704113363,5922901405067846
1943 710000000 2,365410868325987312,54257235498979
1944 807000000 2,68857263484376311,203074336495735
1945 846000000 2,81850365437152877,9761018373964205
1946 744000000 2,47868406483737275,723309715383691
1947 460000000 1,53251971750697785,0738561306593
1948 483000000 1,60914570338232675,763900564428965
1949 487000000 1,62247196179543098,341419478803891
1950 951000000 3,16831793771551313,882070373483847
1951 471000000 1,56916692814301433,531403866938873
1952 770000000 2,565304744522549615,09979584484208
1953 776000000 2,5852941321422064,627356791161282
1954 613000000 2,04224910180821169,528701813378166
1955 502000000 1,672445430844571311,203074336495735
1956 505000000 1,68244012465439949,741803770865857
1957 502000000 1,672445430844571310,01579200192146
1958 509000000 1,69576638306750363,9576077819142546
1959 633000000 2,10888039387373243,8967215083463427
1960 981000000 3,26826487581379387,793443016692685
1961 846000000 2,81850365437152877,184580281013569
1962 535000000 1,782387062752680610,16800768584124
1963 658000000 2,19216950895563356,50265401705296
1964 878000000 2,9251137216763621,704815659901525
1965 904000000 3,0117344013615395,0796548233800545
1966 889000000 2,96176093231239835,3376966494535845
1967 904000000 3,0117344013615394,93178815900084
1968 938000000 3,1250075978729247,76299987990873
1969 959000000 3,19497045454172126,697490092470277
1970 1160000000 3,86461493980020482,137784716384452
1971 957000000 3,1883073253351693,40963131980305
1972 4380000000 14,5922529623490493,111965093471038
1973 995000000 3,31490678025965838,615407709859493
1974 983000000 3,2749280050203465,190554821664464
1975 1020000000 3,39819589534155942,0498378767863574
1976 1040000000 3,464827187407082,470243099040985
1977 1010000000 3,3648802493087999,22427044553861
1978 815000000 2,71522515166997153,5009607301549175
1979 1080000000 3,59808977153812172,3542692446259155
1980 1340000000 4,4642965683898923,599055282014331
1981 1090000000 3,63140541757088232,5398274116900272
1982 869000000 2,89512964024687762,4876391772032456
1983 881000000 2,935108415486193,176233937792722
1984 1180000000 3,93124623186572552,648552900204155
1985 1220000000 4,0645088159967676,900444337696649
1986 1230000000 4,0978244620295283,1660862255314037
1987 1240000000 4,1311401080622883,3487450462351385
1988 1300000000 4,331033984258853,4908130178935988
1989 884000000 2,9451031092960181,7570038943883064
1990 1570000000 5,230556427143382,0430727352788116
1991 1420000000 4,7308217366519751,4206797165846041
1992 976000000 3,2516070527974144,059084904527441
1993 1500000000 4,9973469049140583,1374338614994453
1994 1620000000 5,3971346573071821,955523845181161
1995 1790000000 5,9635006398641092,9747293657465383
1996 1890000000 6,2966571001917132,839223072693141
1997 2020000000 6,7297604986175984,306320075985021
1998 2060000000 6,8630230827486392,4908021005054746
1999 2570000000 8,562121030419421,6663611713323176
2000 5160000000 17,1908733529043582,995604659541251
2001 2470000000 8,2289645700918152,1790876855884154
2002 3180000000 10,5943754384178036,022205967444348
2003 3620000000 12,060263863859262,0666540856765425
2004 4240000000 14,1258339178904041,3055149820840581
2005 3670000000 12,226842094023061,63813069361286
2006 6390000000 21,2886978149338871,552599975981746
2007 8020000000 26,719148118273831,6542332172451062
2008 9800000000 32,6493331121051753,5144910131700087
2009 11620000000 38,712780690067572,797187038619939
2010 14320000000 47,708005118912873,1562127757636342
2011 13440000000 44,776228268029964,98847537921924
2012 22010000000 73,327736918105615,60993527494689
2013 25270000000 84,1886375247854934,52251711300588

10¹⁰

10²⁰

10³⁰

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1000100810161024103210401048105610641072108010881096 1104 1112 1120

1E+10

2E+10

3E+10

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Occurrences

1931 1972 2000

Figure 23: Distribution of year numbers in World Wide Web. Shows approx-
imate number of Google search results. Outliers from left to right,
1931, 1972 and 2000. As comparison ’EU’ has about 2.280.000.000

and ’Obama’ 478.000.000 hits.

time points and time periods of the FactBench train set can be seen
in Figure 24.

1 @prefix fbase: <http://rdf.freebase.com/ns/> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3 @prefix dbo: <http://dbpedia.org/ontology/> .
4 @prefix dbr: <http://dbpedia.org/resource/> .
5 @prefix frdbr: <http://fr.dbpedia.org/resource/> .
6 @prefix dedbr: <http://de.dbpedia.org/resource/> .
7 @prefix owl: <http://www.w3.org/2002/07/owl#> .
8 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
9 @prefix skos: <http://www.w3.org/2004/02/skos/core#> .

10

11 fbase:m.0dt39
12 rdfs:label "Nobel Prize in Physics"@en,
13 "Prix Nobel de physique"@fr,
14 "Nobelpreis für Physik"@de ;
15 skos:altLabel "Nobel Physics Prize"@en ,
16 "Nobel laureates in physics"@fr ,
17 "Physik-Nobelpreis"@de ...
18 owl:sameAs frdbr:Prix_Nobel_de_physique ,
19 dedbr:Nobelpreis_für_Physik ,
20 dbr:Nobel_Prize_in_Physics ;
21

22 fbase:m.0jcx__24
23 dbo:startYear "1921"^^xsd:gYear ;
24 dbo:endYear "1921"^^xsd:gYear .
25 dbo:award fbase:m.0dt39 ;
26

27 fbase:m.0jcx
28 dbo:recievedAward fbase:m.0jcx__24 ;
29 rdfs:label "Albert Einstein"@fr ,
30 "Albert Einstein"@en ,
31 "Albert Einstein"@de ;
32 skos:altLabel "A. Einstein"@fr ,
33 "Einstein, Albert"@de ,
34 "Albert Einstin"@en ...
35 owl:sameAs dbr:Albert_Einstein ,
36 frdbr:Albert_Einstein ,
37 dedbr:Albert_Einstein ;

Listing 10: Example of a fact in FactBench.

positive examples In general, we use facts contained in DBpe-
dia and Freebase as positive examples. Since for most relations there
is far more data available than necessary we had to select a subset.
For each of the properties we consider, we generated positive exam-

5.5 defacto – multilingual and temporal extension 107

ples by issuing a SPARQL or MQL query and selecting the top 150

results. Note that the results in Freebase (MQL) are ordered by an in-
ternal relevance score33. The results for the DBpedia SPARQL queries
were ordered by the number of inbound-links of a given resources’
Wikipedia page. We collected a total of 1500 correct statements (750

in test and train set). Each relation has 150 correct facts distributed
equally in the test and train set.

negative examples The generation of negative examples fol-
lows the same idea as presented in Section 5.4.4.1 for the DeFacto
baseline version since we still consider it essential that many of the
negative examples are similar to true statements. In particular, most
statements should be meaningful triples. Assume that the input triple
t = (s,p,o) and the corresponding time period tp = (from, to) in a
knowledge base K is given and let S be the set of all subjects, O the set
of all objects of the given property p and P the set of all properties.
For FactBench we generate the basic five training/test sets, domain,
range, domain-range, property and random, as previously presented and
generate the additional and updated training/test sets date and mix
as follows:

date A triple (s,p,o)(from ′, to ′) is generated. For time points from ′

is a random year drawn from a gaussian distribution (µ = from

and σ2 = 5), from ′ = to ′, from ′ 6= from and 0 < from ′ 6 2013.
For timespans from ′ is a random year drawn from a gaussian
distribution (µ = from and σ2 = 2), the duration d ′ is gener-
ated by drawing a random number from a gaussian distribution
(µ = to− from and σ2 = 5), to ′ = from ′ + d ′, 0 < d ′ 6 2013,
from 6= from ′, to 6= to ′, from 6 2013 and to 6 2013.

mix 1/6 of each of the above created negative training sets were ran-
domly selected to create a heterogenous test set. Note that this
set contains 780 negative examples.

5.5.8 Evaluation

The aim of our evaluation was three-fold. We wanted to quantify how
well/much a) DeFacto can distinguish between correct and wrong
facts; b) DeFacto is able to find correct time points or time periods
for a given fact and if the year frequency distribution (1900 vs. 2013)
does influence the accuracy; and c) the use of multilingual patterns
boost the results of DeFacto with respect to fact validation and date
detection. In the following, we describe how we set up our evaluation
system, present the experiments we devised and discuss our findings.

33 http://wiki.freebase.com/wiki/Search_Cookbook

http://wiki.freebase.com/wiki/Search_Cookbook

5.5 defacto – multilingual and temporal extension 108

1900!
1910!
1920!
1930!
1940!
1950!
1960!
1970!
1980!
1990!
2000!
2010!0!

5!

10!

15!

20!

25!

30!

35!

1900!1910!1920!1930!1940!1950!1960!1970!1980!1990!2000!2010!

Occurrences!

30-35!
25-30!
20-25!
15-20!
10-15!
5-10!
0-5!

Figure 24: Overview of time points and time periods in the FactBench train
set.

5.5.8.1 Experimental Setup

In a first step, we computed all feature vectors, described in Sec-
tion 5.5.5 for the training and test sets. DeFacto relies heavily on
web requests, which are not deterministic (i.e. the same search engine
query does not always return the same result). To achieve determin-
istic behavior and to increase the performance as well as reduce load
on the servers, all web requests were cached. The DeFacto runtime
for an input triple was on average slightly below four seconds per
input triple34 when using caches.

We stored the features in the ARFF file format and employed the
WEKA machine learning toolkit35 for training different classifiers. In
particular, we were interested in classifiers which can handle numeric
values and output confidence values. Naturally, confidence values for
facts such as, e.g. 95%, are more useful for end users than just a
binary response on whether DeFacto considers the input triple to be
true, since they allow a more fine-grained assessment. We selected
popular machine-learning algorithms satisfying those requirements.

As mentioned in Section 5.5.1, we focused our experiments on the
10 relations from FactBench. The system can be extended easily to
cover more properties by extending the training set of BOA to those
properties. Note that DeFacto itself is also not limited to DBpedia or
Freebase, i.e. while all of its components are trained on these datasets,
the algorithms can be applied to arbitrary URIs and knowledge bases.

34 The performance is roughly equal on server machines and notebooks, since the web
requests dominate.

35 http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/

5.5 defacto – multilingual and temporal extension 109

5.5.8.2 Fact Scoring

For this evaluation task we used each FactBench training set to build
an independent classifier. We then used the classifier on the corre-
sponding test set to evaluate the built model on unseen data. The
task’s results can be seen in Table 25. The J48 algorithm, an implemen-
tation of the C4.5 decision tree – shows the most promising results.
Given the challenging tasks, F-measures up to 84.9% for the mix test
set appear to be very positive indicators that DeFacto can be used to
effectively distinguish between true and false statements, which was
our primary evaluation objective. In general, DeFacto also appears
to be stable against the various negative test sets given the F1 values
ranging from 89.7% to 91% for the domain, range, domainrange and ran-
dom test set. In particular, the algorithms with overall positive results
also seem less affected by the different variations. On the property test
set, in our opinion the hardest task, we achieved an F1 score of 68.7%.
Due to the results achieved, we use J48 as the main classifier in De-
Facto and, more specifically, its results on the mix sets as this covers
a wide range of scenarios. We observe that the learned classifier has
an error rate of 3% for correct facts, but fails to classify 55.3% of the
false test instances as incorrect.

We also performed an evaluation to measure the performance of
the classifier for each of the relations in FactBench. The results of
the evaluation are shown in Figure 25. We used the precision of the
main classifier (J48 on the mix models) on the correct subset for this
figure.36 The average precision for all relations is 89.2%. The worst
precision for an individual relation, i.e 69%, is achieved on the foun-
dation relation, which is by far the least frequent relation on the Web
with respect to search engine results.

Domain

C P R F1 AUC RMSE

J48 89.7% 0.898 0.897 0.897 0.904 0.295

SimpleLogistic 89.0% 0.890 0.890 0.890 0.949 0.298

NaiveBayes 81.2% 0.837 0.812 0.808 0.930 0.415

SMO 85.4% 0.861 0.854 0.853 0.854 0.382

Range

C P R F1 AUC RMSE

J48 90.9% 0.909 0.909 0.909 0.954 0.271

SimpleLogistic 88.0% 0.880 0.880 0.880 0.946 0.301

NaiveBayes 83.3% 0.852 0.833 0.830 0.933 0.387

36 We are using the correct subset, since some negative examples are generated by
replacing properties as described in Section 5.5.7.2. For those, it would not be clear,
which property they refer to.

5.5 defacto – multilingual and temporal extension 110

SMO 83.3% 0.852 0.833 0.830 0.833 0.409

DomainRange

C P R F1 AUC RMSE

J48 91.0% 0.910 0.910 0.910 0.953 0.270

SimpleLogistic 88.9% 0.889 0.889 0.889 0.950 0.296

NaiveBayes 84.5% 0.861 0.845 0.843 0.935 0.380

SMO 83.6% 0.853 0.836 0.834 0.836 0.405

Property

C P R F1 AUC RMSE

J48 70.8% 0.786 0.708 0.687 0.742 0.427

SimpleLogistic 64.9% 0.653 0.649 0.646 0.726 0.460

NaiveBayes 61.3% 0.620 0.613 0.608 0.698 0.488

SMO 64.6% 0.673 0.646 0.632 0.646 0.595

Random

C P R F1 AUC RMSE

J48 90.9% 0.910 0.909 0.909 0.933 0.283

SimpleLogistic 87.8% 0.879 0.878 0.878 0.954 0.293

NaiveBayes 84.1% 0.851 0.841 0.839 0.942 0.375

SMO 84.3% 0.864 0.843 0.841 0.843 0.396

Mix

C P R F1 AUC RMSE

J48 84.9% 0.850 0.849 0.849 0.868 0.358

SimpleLogistic 80.2% 0.810 0.802 0.799 0.880 0.371

NaiveBayes 78.7% 0.789 0.787 0.787 0.867 0.411

SMO 76.9% 0.817 0.769 0.756 0.754 0.480

Table 25: Classification results for FactBench test sets (C = correctness, P =
precision, R = recall, F1 = F1 Score, AUC = area under the curve,
RMSE = root mean squared error).

5.5.8.3 Date Scoring

To estimate time scopes, we first needed to determine appropriate
parameters for this challenging task. To this end, we varied the con-
text size from 25, 50, 100 and 150 characters to the left and right
of the proofs subject and object occurrence. Additionally, we also
varied the used languages which is discussed in more detail in Sec-
tion 5.5.8.4. The final parameter in this evaluation was the normaliza-
tion approach. As introduced in Section 5.5.6, we used the occurrence
(number of occurrences of years in the context for all proofs of a fact),

5.5 defacto – multilingual and temporal extension 111

Table 2

English 55.5 %

Russian 6.1 %

German 5.9 %

Japanese 4.9 %

Spanish 4.5 %

French 3.9 %

Chinese 3.8 %

Portuguese 2.3 %

Other 13.1 %

English
Russian
German

Japanese
Spanish
French

Chinese
Portuguese

Other

0 % 10 % 20 % 30 % 40 % 50 % 60 %
13.1 %

2.3 %
3.8 %
3.9 %
4.5 %
4.9 %
5.9 %
6.1 %

55.5 %

Table 1

Train Train (ml) Test Test (ml) Test (en)

award 74 98.6666666666667 75 100 72 96

birth 69 92 69 92 66 88

death 73 97.3333333333333 72 96 68 90.6666666666667

foundation 63 84 52 69.3333333333333 59 78.6666666666667

leader 72 96 73 97.3333333333333 66 88

team 70 93.3333333333333 67 89.3333333333333 64 85.3333333333333

publication 73 97.3333333333333 69 92 65 86.6666666666667

spouse 72 96 71 94.6666666666667 68 90.6666666666667

starring 70 93.3333333333333 58 77.3333333333333 61 81.3333333333333

subsidiary 63 84 63 84 60 80

Ac
cu

ra
cy

60

65

70

75

80

85

90

95

100

aw
ar

d

bir
th

de
at

h

fo
un

da
tio

n

lea
de

r

te
am

pu
bli

ca
tio

n

sp
ou

se

sta
rri

ng

su
bs

idi
ar

y

Test (ml)
Test (en)

Table 3

Multi-Lingual English

< 1890 & 30 & 0 & 0.0 < 1890 & 27 & 3 & 0.1

1900 & 13 & 0 & 0.0 1900 & 13 & 0 & 0.0

1910 & 14 & 0 & 0.0 1910 & 14 & 0 & 0.0

1920 & 16 & 1 & 0.0 1920 & 16 & 1 & 0.0

1930 & 13 & 2 & 0.1 1930 & 12 & 3 & 0.1

1940 & 16 & 0 & 0.0 1940 & 14 & 2 & 0.1

1950 & 26 & 1 & 0.0 1950 & 24 & 3 & 0.1

1960 & 34 & 5 & 0.2 1960 & 33 & 6 & 0.2

1970 & 64 & 9 & 0.3 1970 & 61 & 12 & 0.3

1980 & 70 & 11 & 0.3 1980 & 68 & 13 & 0.4

1990 & 96 & 17 & 0.5 1990 & 95 & 18 & 0.5

2000 & 242 & 33 & 1.0 2000 & 236 & 38 & 1.0

2010 & 35 & 2 & 0.1 2010 & 36 & 1 & 0.0

0

0.5

1

< 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Multi-Lingual
English

Table 3-1

Multi-Lingual English

< 1890 & 41 & 20 & 0.672 < 1890 & 34 & 27 & 0.557

1900 & 15 & 5 & 0.750 1900 & 14 & 6 & 0.700

1910 & 20 & 11 & 0.645 1910 & 17 & 14 & 0.548

1920 & 21 & 12 & 0.636 1920 & 20 & 14 & 0.588

1930 & 20 & 9 & 0.690 1930 & 14 & 15 & 0.483

1940 & 21 & 4 & 0.840 1940 & 15 & 10 & 0.600

1950 & 32 & 11 & 0.744 1950 & 32 & 11 & 0.744

1960 & 46 & 28 & 0.622 1960 & 40 & 34 & 0.541

1970 & 92 & 44 & 0.676 1970 & 78 & 58 & 0.574

1980 & 93 & 54 & 0.633 1980 & 83 & 64 & 0.565

1990 & 136 & 79 & 0.633 1990 & 115 & 100 & 0.535

2000 & 342 & 181 & 0.654 2000 & 280 & 242 & 0.536

2010 & 44 & 18 & 0.710 2010 & 40 & 22 & 0.645

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

< 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Multi-Lingual
English

Table 3-1-1
Jahr correct wrong total modified

wald
Multi-
Lingual

Jahr correct wrong total modified
wald

English

< 1890 29 1 30 0.0946 0.967 < 1890 27 3 30 0.1188 0.900
1900 13 0 13 0.1164 1.000 1900 13 0 13 0.1164 1.000
1910 14 0 14 0.1098 1.000 1910 14 0 14 0.1098 1.000
1920 17 0 17 0.0937 1.000 1920 16 1 17 0.1490 0.941
1930 15 0 15 0.1038 1.000 1930 12 3 15 0.1983 0.800
1940 16 0 16 0.0985 1.000 1940 14 2 16 0.1752 0.875
1950 25 1 26 0.1066 0.962 1950 24 3 27 0.1292 0.889
1960 37 2 39 0.0863 0.949 1960 33 6 39 0.1162 0.846
1970 69 4 73 0.0596 0.945 1970 61 12 73 0.0861 0.836
1980 76 5 81 0.0582 0.938 1980 68 13 81 0.0810 0.840
1990 106 7 113 0.0482 0.938 1990 95 18 113 0.0682 0.841
2000 256 19 275 0.0309 0.931 2000 236 38 274 0.0412 0.861
2010 35 2 37 0.0903 0.946 2010 36 1 37 0.0790 0.973

0.75

0.82

0.89

0.96

1.03

1.1

< 18901900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Multi-Lingual English

Figure 25: Accuracy results for learned J48 mix classifier on correct subset
of the test set. The abbreviation ml indicates that multilingual
(English, French, German) search results and surface forms were
used, en is limited to English only.

the domain and range approach. We performed a grid search for the
given parameters on the correct train set. As performance measures
we choose precision37 P (shown in Equation 31), recall R (shown in
Equation 32) and F-measure, defined as F1 = 2 ∗ P∗RP+R .

P =
|relevant years∩ retrieved years|

|retrieved years|
(31)

R =
|relevant years∩ retrieved years|

|relevant years|
(32)

If for example, for a single fact the correct time period is 2008 (a
time point), the F1 score is either 0 or 1. However, if the correct time
period is 2011 – 2013 and the retrieved results are 2010 – 2013, we
would achieve a precision P = 3

4 (three of the four retrieved years
are correct) and a recall R = 1 (all of the relevant years were found),
resulting in an F1 score of 67 .

The final results for the train set are shown in Table 27. Please note
that it is out of scope of this chapter to decide whether a given prop-
erty requires a time period or a time point. As expected, facts with
time points show a higher F1 measure as facts with time periods.
Calculating the average F1 score for the individual relations leads to
F1 = 70.2% for time points and F1 = 65.8%F1 for relations associated
with time periods. The relations performing well on fact scoring also

37 Finding no year candidate for a given fact only influences the recall.

5.5 defacto – multilingual and temporal extension 112

appear to be better suited for year scoping, e.g. the award relation.
In general, the training results show that the domain normalization
performs best and the optimal context size varies for each relation.
We now applied the learned parameters for each relation on the Fact-
Bench correct test subset. The results are shown in Table 28. The aver-
age F1 score decreases by 2.5% to 67.7% for time points and 4.6% to
61.2% for time period relations compared to the train set. Since it is
not possible to determine a correct time point or time period for all
facts (the context does not always include the correct year(s)) we also
calculated DeFacto’s accuracy. We define the accuracy acc for a time
period tp as follows:

acc(tp) =

1 if tpfrom is correct∧ tpto is correct

0 otherwise.
(33)

The average accuracy for time point (from and to are equal) rela-
tions is 76%. Since for time periods we have to match both start and
end year, which aggravates this task significantly, we achieved an ac-
curacy of 44% on this dataset. Finally, we wanted to see if DeFacto’s
performance is influenced by how recent a fact is. We grouped the
time intervals in buckets of 10 years and plotted the proportion of
correctly classified facts within this interval. We did this for the mul-
tilingual as well as the English-only setting of DeFacto. The results are
shown in Figure 26. In general, all values are between 80% and 100%
for the English version and between 93% and 100% for the multilin-
gual version. While there is some variation, no obvious correlation
can be observed, i.e. DeFacto appears to be able to handle recent and
older facts. In this figure, it is interesting to note that the multilingual
setting appears to be more stable and perform better. We performed
a paired t-test using all 750 facts and obtained that the improvement
of the multilingual setting is statistically very significant.

C P R F1 AUC RMSE

J48 83.4% 0.834 0.834 0.834 0.877 0.361

SimpleLogistic 80.6% 0.811 0.806 0.804 0.884 0.368

NaiveBayes 78.1% 0.788 0.781 0.782 0.872 0.428

SMO 78.6% 0.816 0.786 0.777 0.773 0.463

Table 26: Classification results for FactBench mix test set on English lan-
guage only.

5.5 defacto – multilingual and temporal extension 113

oc
cu

rr
en

ce
gl

ob
al

do
m

ai
n

Se
t

C
P

R
F

P
7
5

A
C

P
R

F
P 7
5

A
C

P
R

F
P 7
5

A

aw
ar

d e
n

2
5

1
0
0

9
8
.7

99
.3

7
4

1
0
0

2
5

9
8
.6

9
7
.3

9
8

7
4

9
8

.6
1
0
0

1
0
0

9
8
.7

99
.3

7
4

1
0
0

aw
ar

d m
l

2
5

1
0
0

9
8
.7

99
.3

7
4

1
0
0

2
5

1
0
0

9
8
.7

99
.3

7
4

1
0
0

2
5

1
0
0

9
8
.7

99
.3

7
4

1
0
0

bi
rt

h e
n

2
5

8
3
.3

8
0

8
1
.6

6
9

8
7

5
0

9
1

.7
8
8

89
.8

7
0

9
4

.3
5
0

7
6
.4

7
3
.3

7
4
.8

7
0

7
8

.6

bi
rt

h m
l

5
0

9
3
.2

9
2

9
2
.6

7
3

9
4

.5
2
5

9
4
.6

9
3
.3

94
7
3

9
5

.9
2
5

8
9
.2

8
8

8
8
.6

7
3

9
0

.4

de
at

h e
n

5
0

7
4
.3

7
3
.3

7
3
.8

6
9

7
9

.7
2
5

6
1
.1

5
8
.7

5
9
.9

6
8

6
4

.7
2
5

8
0
.6

7
7
.3

78
.9

6
8

8
5

.3

de
at

h m
l

2
5

7
7
.3

7
7
.3

7
7
.3

7
5

7
7

.3
2
5

6
6
.7

6
6
.7

6
6
.7

7
5

6
6

.7
2
5

8
4

8
4

84
7
5

8
4

fo
un

da
ti

on
e
n

1
5
0

1
4
.1

1
2

1
2
.9

2
8

3
2

.1
1
5
0

1
7
.2

1
4
.7

1
5
.8

2
8

3
9

.3
1
5
0

2
5

2
1
.3

23
2
8

5
7

.1

fo
un

da
ti

on
m
l

2
5

1
6
.4

1
3
.3

1
4
.7

2
3

4
3

.5
1
5
0

2
1
.7

2
0

2
0
.8

4
1

3
6

.6
1
5
0

2
6
.1

2
4

25
4
1

4
3

.9

pu
bl

ic
at

io
n e
n

1
0
0

5
8
.3

5
6

5
7
.1

6
3

6
6

.7
1
5
0

6
0
.3

5
8
.7

59
.5

6
7

6
5

.7
1
0
0

5
1
.4

4
9
.3

5
0
.3

6
3

5
8

.7

pu
bl

ic
at

io
n m

l
2
5

7
0
.8

6
8

6
9
.4

6
8

7
5

1
5
0

7
4

.7
7
4
.7

74
.7

7
2

7
7

.8
5
0

6
0

6
0

6
0

7
0

6
4
.3

st
ar

ri
ng
e
n

2
5

6
4
.4

3
8
.7

4
8
.3

3
5

8
2

.9
5
0

6
7
.9

4
8

56
.3

4
0

9
0

1
0
0

5
9
.3

4
6
.7

5
2
.2

4
6

7
6

.1

st
ar

ri
ng
m
l

2
5

5
9
.6

4
5
.3

5
1
.5

4
4

7
7

.3
5
0

5
8
.1

4
8

5
2
.6

4
8

7
5

1
0
0

6
2

.7
5
6

59
.2

5
7

7
3

.7

su
bs

id
ia

ry
e
n

1
0
0

6
3
.5

4
4

5
2

4
5

7
3

.3
5
0

6
3

3
8
.7

4
7
.9

3
9

7
4

.4
1
5
0

6
4
.8

4
6
.7

54
.3

4
6

7
6

.1

su
bs

id
ia

ry
m
l

2
5

7
0
.8

4
5
.3

55
.3

4
3

7
9

.1
2
5

6
8
.8

4
4

5
3
.7

4
3

7
6

.7
2
5

7
0
.8

4
5
.3

55
.3

4
3

7
9

.1

5.5 defacto – multilingual and temporal extension 114

oc
cu

rr
en

ce
gl

ob
al

do
m

ai
n

Se
t

C
P

R
F

P
7
5

A
C

P
R

F
P 7
5

A
C

P
R

F
P 7
5

A

sp
ou

se
e
n

1
0
0

6
7
.5

6
8

6
7
.7

5
3

5
0

.9
2
5

7
5
.5

6
4
.4

6
9
.5

3
7

7
8

.4
2
5

7
7
.1

6
5
.2

70
.6

3
7

7
8

.4

sp
ou

se
m
l

2
5

6
9
.6

6
6
.5

6
8

4
9

5
9

.2
2
5

7
0
.8

6
5
.6

6
8
.1

4
9

5
5

.1
2
5

7
5
.2

6
7
.2

71
4
9

6
1

.2

nb
at

ea
m
e
n

1
0
0

5
4
.2

4
7
.4

5
0
.6

4
4

3
4

.1
1
0
0

5
7
.8

4
7

5
1
.9

4
4

3
4

.1
1
5
0

5
9
.1

4
8
.4

53
.2

5
3

2
8

.3

nb
at

ea
m
m
l

5
0

6
0
.2

5
8
.1

5
9
.1

5
8

2
5

.9
1
0
0

6
2
.1

5
5
.4

5
8
.6

6
3

2
3

.8
2
5

6
5
.2

5
8
.7

61
.8

5
3

3
2

.1

le
ad

er
e
n

1
0
0

4
2
.6

6
5
.1

5
1
.5

5
5

4
1

.8
1
0
0

4
2
.6

6
3
.1

5
0
.9

5
5

4
1

.8
1
0
0

4
6
.7

6
4
.4

54
.1

5
5

4
3

.6

le
ad

er
m
l

1
0
0

5
3
.6

7
5
.4

6
2
.6

7
2

4
4

.4
1
0
0

5
3
.3

7
5
.6

6
2
.5

7
2

4
4

.4
1
0
0

5
5
.9

7
6
.7

64
.7

7
2

4
5

.8

ti
m

ep
oi

nt
e
n

2
5

6
1

4
8

53
.7

2
7
7

7
8

2
5

6
0
.2

4
7
.3

5
3

2
7
7

7
6

.9
1
0
0

5
7
.8

5
0

5
3
.6

3
1
7

7
1

ti
m

ep
oi

nt
m
l

2
5

6
5
.9

5
6
.7

60
.9

3
2
6

7
8

.2
2
5

6
4
.1

5
5
.1

5
9
.3

3
2
6

7
6

.1
1
5
0

6
1
.6

5
8
.2

5
9
.9

3
7
3

7
0

.2

ti
m

ep
er

io
d e
n

1
0
0

5
4
.7

6
0
.2

5
7
.3

1
5
2

4
2

.8
1
0
0

5
4
.9

6
0
.3

5
7
.4

1
5
2

4
2

.8
1
0
0

5
8
.7

6
0
.6

59
.7

1
5
2

4
4

.7

ti
m

ep
er

io
d m

l
1
0
0

5
9

6
7
.2

6
2
.8

1
9
8

3
8

.9
1
0
0

5
9
.4

6
7
.5

6
3
.2

1
9
8

3
9

.4
1
0
0

6
3

6
9

65
.9

1
9
8

4
0

.9

al
l e
n

5
0

6
1
.3

5
6
.2

5
8
.6

4
9
6

7
2

2
5

6
4

5
4

5
8
.6

4
6
0

7
5

.4
1
0
0

6
2
.7

5
8
.1

60
.3

5
4
3

6
7

.6

al
l m
l

2
5

6
7
.1

6
3
.2

6
5
.1

5
6
8

7
0

.1
2
5

6
6
.3

6
2
.4

6
4
.3

5
6
8

6
8

.7
1
0
0

6
6
.1

6
5
.2

65
.7

6
3
5

6
5

.4

Ta
bl

e
2

7
:O

ve
rv

ie
w

of
th

e
ti

m
e-

pe
ri

od
de

te
ct

io
n

ta
sk

fo
r

th
e

Fa
ct

Be
nc

h
tr

ai
ni

ng
se

t
w

it
h

re
sp

ec
t

to
th

e
di

ff
er

en
t

no
r-

m
al

iz
at

io
n

m
et

ho
ds

.m
l

(m
ul

ti
lin

gu
al

)
in

di
ca

te
s

th
e

us
e

of
al

lt
hr

ee
la

ng
ua

ge
s

(e
n,

de
,fr

).

5.5 defacto – multilingual and temporal extension 115

Table 2

English 55.5 %

Russian 6.1 %

German 5.9 %

Japanese 4.9 %

Spanish 4.5 %

French 3.9 %

Chinese 3.8 %

Portuguese 2.3 %

Other 13.1 %

English
Russian
German

Japanese
Spanish
French

Chinese
Portuguese

Other

0 % 10 % 20 % 30 % 40 % 50 % 60 %
13.1 %

2.3 %
3.8 %
3.9 %
4.5 %
4.9 %
5.9 %
6.1 %

55.5 %

Table 1

Train Train (ml) Test Test (ml) Test (en)

award 74 98.6666666666667 75 100 72 96

birth 69 92 69 92 66 88

death 73 97.3333333333333 72 96 68 90.6666666666667

foundation 63 84 52 69.3333333333333 59 78.6666666666667

leader 72 96 73 97.3333333333333 66 88

team 70 93.3333333333333 67 89.3333333333333 64 85.3333333333333

publication 73 97.3333333333333 69 92 65 86.6666666666667

spouse 72 96 71 94.6666666666667 68 90.6666666666667

starring 70 93.3333333333333 58 77.3333333333333 61 81.3333333333333

subsidiary 63 84 63 84 60 80

Ac
cu

ra
cy

60

65

70

75

80

85

90

95

100

aw
ar

d

bir
th

de
at

h

fo
un

da
tio

n

lea
de

r

te
am

pu
bli

ca
tio

n

sp
ou

se

sta
rri

ng

su
bs

idi
ar

y

Test (ml)
Test (en)

Table 3

Multi-Lingual English

< 1890 & 30 & 0 & 0.0 < 1890 & 27 & 3 & 0.1

1900 & 13 & 0 & 0.0 1900 & 13 & 0 & 0.0

1910 & 14 & 0 & 0.0 1910 & 14 & 0 & 0.0

1920 & 16 & 1 & 0.0 1920 & 16 & 1 & 0.0

1930 & 13 & 2 & 0.1 1930 & 12 & 3 & 0.1

1940 & 16 & 0 & 0.0 1940 & 14 & 2 & 0.1

1950 & 26 & 1 & 0.0 1950 & 24 & 3 & 0.1

1960 & 34 & 5 & 0.2 1960 & 33 & 6 & 0.2

1970 & 64 & 9 & 0.3 1970 & 61 & 12 & 0.3

1980 & 70 & 11 & 0.3 1980 & 68 & 13 & 0.4

1990 & 96 & 17 & 0.5 1990 & 95 & 18 & 0.5

2000 & 242 & 33 & 1.0 2000 & 236 & 38 & 1.0

2010 & 35 & 2 & 0.1 2010 & 36 & 1 & 0.0

0

0.5

1

< 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Multi-Lingual
English

Table 3-1

Multi-Lingual English

< 1890 & 41 & 20 & 0.672 < 1890 & 34 & 27 & 0.557

1900 & 15 & 5 & 0.750 1900 & 14 & 6 & 0.700

1910 & 20 & 11 & 0.645 1910 & 17 & 14 & 0.548

1920 & 21 & 12 & 0.636 1920 & 20 & 14 & 0.588

1930 & 20 & 9 & 0.690 1930 & 14 & 15 & 0.483

1940 & 21 & 4 & 0.840 1940 & 15 & 10 & 0.600

1950 & 32 & 11 & 0.744 1950 & 32 & 11 & 0.744

1960 & 46 & 28 & 0.622 1960 & 40 & 34 & 0.541

1970 & 92 & 44 & 0.676 1970 & 78 & 58 & 0.574

1980 & 93 & 54 & 0.633 1980 & 83 & 64 & 0.565

1990 & 136 & 79 & 0.633 1990 & 115 & 100 & 0.535

2000 & 342 & 181 & 0.654 2000 & 280 & 242 & 0.536

2010 & 44 & 18 & 0.710 2010 & 40 & 22 & 0.645

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

< 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Multi-Lingual
English

Table 3-1-1
Jahr correct wrong total modified

wald
Multi-
Lingual

Jahr correct wrong total modified
wald

English

< 1890 29 1 30 0.0946 0.967 < 1890 27 3 30 0.1188 0.900
1900 13 0 13 0.1164 1.000 1900 13 0 13 0.1164 1.000
1910 14 0 14 0.1098 1.000 1910 14 0 14 0.1098 1.000
1920 17 0 17 0.0937 1.000 1920 16 1 17 0.1490 0.941
1930 15 0 15 0.1038 1.000 1930 12 3 15 0.1983 0.800
1940 16 0 16 0.0985 1.000 1940 14 2 16 0.1752 0.875
1950 25 1 26 0.1066 0.962 1950 24 3 27 0.1292 0.889
1960 37 2 39 0.0863 0.949 1960 33 6 39 0.1162 0.846
1970 69 4 73 0.0596 0.945 1970 61 12 73 0.0861 0.836
1980 76 5 81 0.0582 0.938 1980 68 13 81 0.0810 0.840
1990 106 7 113 0.0482 0.938 1990 95 18 113 0.0682 0.841
2000 256 19 275 0.0309 0.931 2000 236 38 274 0.0412 0.861
2010 35 2 37 0.0903 0.946 2010 36 1 37 0.0790 0.973

Ac
cu

ra
cy

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

< 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Multi-Lingual
English

Figure 26: A plot showing the proportion of correctly classified facts (y-axis)
for the FactBench mix-correct-test-set using the J48 classifier. The
time intervals (x-axis) are buckets of ten years, e.g. 1910 stands
for all years from 1910 to 1919. Results for the multilinguael and
English-only setting of DeFacto are shown.

5.5.8.4 Effect of Multilingual Patterns

The last question we wanted to answer in this evaluation is how much
the use of the multilingual patterns boosts the evidence scoring as
well as the date scoping. For the fact scoring we trained different
classifiers on the mix training set. We only used English patterns and
surface forms to extract the feature vectors. As the results in Table 26

on the test set show, J48 is again the highest scoring classifier, but
is outperformed by the multilingual version shown in Table 25 by
1.5% F1 score. The detailed analysis for the different relations in Fig-
ure 25 indicates a superiority of the multilingual approach. We also
performed the grid search as presented in Section 5.5.8.3 for English
patterns and surface forms only. As shown in Table 27 the multilin-
gual date scoping approach outperforms the English one significantly
on the training set. The multilingual version achieved an average 4.3%
on the time point and a 6.5% better F1 measure on time period rela-
tions. The difference is similar on the test set, where the difference is
6.5% for time points and 6.9% for time period relations.

Finally, as shown in Figure 26, the English version performs equally
well on recent dates, but performs worse for less recent dates, which
is another indicator that the use of a multilingual approach is prefer-
able to an English-only setting.

5.5 defacto – multilingual and temporal extension 116

Setcontextlanguage P R F MRR CS CE P75 Acc

award100en 93.3 93.3 93.3 100 70 - 75 93.3

award25ml 93.3 93.3 93.3 100 70 - 75 93.3

birth50en 77.8 74.7 76.2 81.6 56 - 69 81.2

birth25ml 93.2 92 92.6 93.3 69 - 73 94.5

death25en 72 72 72 84.5 54 - 69 78.3

death25ml 81.3 81.3 81.3 87.1 61 - 74 82.4

foundation150en 22.2 18.7 20.3 66.1 14 - 20 70

foundation150ml 20.3 18.7 19.4 48.1 14 - 33 42.4

publication150en 62 58.7 60.3 77.8 44 - 68 64.7

publication150ml 67.6 66.7 67.1 75.5 50 - 74 67.6

starring50en 57.1 48 52.2 87.1 36 - 44 81.8

starring100ml 61.4 57.3 59.3 73.6 43 - 60 71.7

subsidiary150en 60.7 49.3 54.4 79.3 37 - 53 69.8

subsidiary25ml 70.2 53.3 60.6 87.5 40 - 50 80

spouse25en 69.2 59 63.6 - 34 35 34 76.5

spouse25ml 73.7 61.4 67 - 36 36 42 59.5

team150en 52.7 42.7 47.2 - 25 16 51 23.5

team25ml 59.9 49.6 54.3 - 28 16 45 26.7

leader100en 46.3 60.8 52.5 - 29 29 56 44.6

leader100ml 55 71.5 62.2 - 38 37 72 45.8

timepoint25en 62 52 56.6 85.8 273 273 356 76.7

timepoint25ml 66.9 60.6 63.6 87.1 318 318 404 78.7

timeperiod100en 55.7 55.6 55.7 - 92 82 159 41.5

timeperiod100ml 59.6 60.1 59.8 - 102 91 195 38.5

all100en 58.2 54.4 56.2 - 375 365 563 62

all100ml 61.5 59.6 60.5 - 414 403 634 61

Table 28: Overview of the domain-normalization on the FactBench test set.
ml (multilingual) indicates the use of all three languages (en,de,fr).
C(S|E) shows the number of correct start and end years, P75 is the
number of time-periods possible to detect correctly and A is the
accuracy on P75.

5.6 conclusion 117

5.6 conclusion

In this chapter, we presented DeFacto, an approach for checking the
validity of RDF triples using the Web as corpus. We introduced the
DeFacto baseline version in Section 5.4. DeFacto uses English natu-
ral language patterns of formal relations for the translation of input
triples into natural language to query the Web for evidence. The pre-
sented approach is able to combine textual evidence of facts with
the trustworthiness of websites in which the fact occurs. We evalu-
ated our approach for 60 properties and showed that our approach
achieves an average F1 measure (J48 for all 6 datasets) of 0.843 on
DBpedia.
In Section 5.5, we presented the extension of the DeFacto baseline,
a multilingual and temporal approach for checking the validity of
RDF triples using the Web as corpus. In more detail, we explicated
how multilingual natural language patterns for formal relations can
be used for fact validation. In addition, we presented an extension for
detecting the temporal scope of RDF triples with the help of pattern
and frequency analysis. We support the endeavor of creating better
fact validation algorithms (and to that end also better relation ex-
traction systems) by providing the full-fledged benchmark FactBench.
This benchmark consists of one training and several test sets for fact
validation as well as temporal scope detection. We showed that our
approach achieves an F1 measure of 84.9% on the most realistic fact
validation test set (FactBench mix) on DBpedia as well as Freebase
data. The temporal extension shows a promising average F1 measure
of 70.2% for time point and 65.8% for time period relations. The use of
multilingual patterns increased the fact validation F1 by 1.5%. More-
over, it raised the F1 for the date scoping task of up to 6.9%. It is also
important that our approach can now be used on non-English knowl-
edge bases.

6
T E M P L AT E - B A S E D Q U E S T I O N A N S W E R I N G O V E R
R D F D ATA

As an increasing amount of RDF data is published as Linked Data,
intuitive ways of accessing this data become more and more impor-
tant. Question answering approaches have been proposed as a good
compromise between intuitiveness and expressivity. Most question This chapter is

mainly based on
Unger et al. [2012]
and Höffner et al.
[2013].

answering systems translate questions into triples which are matched
against the RDF data to retrieve an answer, typically relying on some
similarity metric. However, in many cases, triples do not represent
a faithful representation of the semantic structure of the natural lan-
guage question, with the result that more expressive queries cannot
be answered. To circumvent this problem, we present a novel ap-
proach that relies on a parse of the question to produce a SPARQL
template that directly mirrors the internal structure of the question.
This template is then instantiated using statistical entity identification
and predicate detection. We show that this approach is competitive
and discuss cases of questions that can be answered with our ap-
proach but not with competing approaches.

118

6.1 introduction 119

6.1 introduction

As more and more RDF data is published as Linked Data, develop-
ing intuitive ways of accessing this data becomes increasingly impor-
tant. One of the main challenges is the development of interfaces that
exploit the expressiveness of the underlying data model and query
language, while hiding their complexity. As a good compromise be-
tween intuitiveness and expressivity, question answering approaches
allow users to express arbitrarily1 complex information needs in nat-
ural language without requiring them to be aware of the underlying
schema, vocabulary or query language. Several question answering
systems for RDF data have been proposed in the past, for example,
Aqualog [Lopez and Motta, 2004; V. Lopez and Pasin, 2007], Power-
Aqua [V. Lopez and Motta, 2009], NLP-Reduce [E. Kaufmann, 2007],
FREyA [Damljanovic et al., 2010] and Pythia Unger and Cimiano
[2011]. Many of these systems map a natural language question to
a triple-based representation. For example, consider the simple ques-
tion Who wrote The Neverending Story?. PowerAqua2 would map this
question to the triple representation

〈[person,organization], wrote, Neverending Story〉.

Then, by applying similarity metrics and search heuristics, it would
retrieve matching subgraphs from the RDF repository. For the above
query, the following triples would be retrieved from DBpedia, from
which the answer “Michael Ende” can be derived:

〈Writer, IS_A, Person〉
〈Writer, author, The_Neverending_Story〉

While this approach works very well in cases where the meaning
of the query can be captured easily, it has a number of drawbacks,
as in many cases the original semantic structure of the question can
not be faithfully captured using triples. For instance, consider the
questions 1a and 2a below. PowerAqua would produce the triple rep-
resentations in 1b and 2b, respectively. The goal, however, would be
SPARQL queries3 like 1c and 2c, respectively.

1. a) Which cities have more than three universities?

b) 〈[cities], more than, universities three〉
c) SELECT ?y WHERE {

?x rdf:type onto:University .

?x onto:city ?y .
}

HAVING (COUNT(?x) > 3)

1 At least as complex as can be represented in the query language.
2 Accessed via the online demo at http://poweraqua.open.ac.uk:8080/

poweraqualinked/jsp/index.jsp.
3 Assuming a DBpedia namespace with onto as prefix
<http://dbpedia.org/ontology/>.

http://poweraqua.open.ac.uk:8080/poweraqualinked/jsp/index.jsp
http://poweraqua.open.ac.uk:8080/poweraqualinked/jsp/index.jsp

6.1 introduction 120

2. a) Who produced the most films?

b) 〈[person,organization], produced, most films〉

c) SELECT ?y WHERE {
?x rdf:type onto:Film .

?x onto:producer ?y .
}

ORDER BY DESC(COUNT(?x)) OFFSET 0 LIMIT 1

Such SPARQL queries are difficult to construct on the basis of the
above mentioned triple representations, as aggregation and filter con-
structs arising from the use of specific quantifiers are not faithfully
captured. What would be needed instead is a representation of the
information need that is much closer to the semantic structure of the
original question. Thus, we propose a novel approach to question
answering over RDF data that relies on a parse of the question to pro-
duce a SPARQL template that directly mirrors the internal structure
of the question and that, in a second step, is instantiated by mapping
the occurring natural language expressions to the domain vocabulary.
For example, a template produced for Question 2a would be:

3. SELECT ?x WHERE {
?x ?p ?y .

?y rdf:type ?c .
}

ORDER BY DESC(COUNT(?y)) LIMIT 1 OFFSET 0

In this template, c stands proxy for the URI of a class matching the
input keyword films and p stands proxy for a property matching the
input keyword produced. In a next step, c has to be instantiated by a
matching class, in the case of using DBpedia onto:Film, and p has to
be instantiated with a matching property, in this case onto:producer.
For instantiation, we exploit an index as well as the BOA pattern
library (see Chapter 3) that links properties with natural language
predicates.

We show that this approach is competitive and discuss specific
cases of questions that can be precisely answered with our approach
but not with competing approaches. Thus, the main contribution of
this paper is a domain-independent question answering approach
that first converts natural language questions into queries that faith-
fully capture the semantic structure of the question and then identi-
fies domain-specific entities combining NLP methods and statistical
information.

In the following section we present an overview of the system’s ar-
chitecture. In Section 6.3 we report our evaluation results, exemplify
the impact of the usage of the BOA Pattern Library and point to an
online interface of the prototype in Section 6.4. In Section 6.5 we com-
pare our approach to existing question answering systems on RDF
data, before concluding in Section 6.6.

6.2 overview 121

Natural
Language
Question

Semantic
Representaion

SPARQL
Query

Templates

Templates
with URI slots

Ranked SPARQL
Queries

Answer

LOD

Entity identification

Entity and Query Ranking

Query
Selection

Resources
and Classes

SPARQL
Endpoint

Type Checking
and Prominence

BOA Pattern
Library

Properties

Tagged
Question

Domain Independent
Lexicon

Domain Dependent
Lexicon

Parsing

Corpora?

!
Loading

State

Process

Uses

Figure 27: Overview of the template based SPARQL query generator.

author contributions The author of this thesis was a co-author
of Unger et al. [2012]; Lehmann et al. [2012a]; Höffner et al. [2013]
and carried out the extension of the BOA architecture to also support
OWL datatype properties as well as trained the BOA framework for
the properties contained in the QALD benchmark.

6.2 overview

Figure 27 gives an overview of our approach. The input question, for-
mulated by the user in natural language, is first processed by a POS
tagger. On the basis of the POS tags, lexical entries are created us-
ing a set of heuristics. These lexical entries, together with pre-defined
domain-independent lexical entries, are used for parsing, leading to a
semantic representation of the natural language query, which is then
converted into a SPARQL query template.

The query templates contain slots, which are missing elements of
the query that have to be filled with URIs. In order to fill them, our ap-
proach first generates natural language expressions for possible slot
fillers from the user question using WordNet expansion. In a next
step, sophisticated entity identification approaches are used to ob-
tain URIs for those natural language expressions. While the detection
of resources and classes can be reduced to a retrieval task based on
string similarities, the detection of predicates from natural language
is a difficult task. This is mostly due to the large number of expres-
sions that can be used to denote the same predicate. For example, the
expressions X, the creator of Y and Y is a book by X are difficult to match
by using synset expansion but they both imply that X is the author
of Y. To address this problem, we make use of the pattern library ex-
tracted by the BOA framework as presented in Chapter 3 in addition
to string matching to detect properties.

6.3 evaluation and discussion 122

This yields a range of different query candidates as potential trans-
lations of the input question. It is therefore important to rank those
query candidates. To do this, we combine string similarity values,
prominence values and schema conformance checks into a score value.
The highest ranked queries are then tested against the underlying
triple store and the best answer is returned to the user.

6.3 evaluation and discussion

The evaluation is based on the QALD4 benchmark on DBpedia5 [Leh-
mann et al., 2009]. It comprises two sets of 50 questions over DBpedia,
annotated with SPARQL queries and answers. Each question is eval-
uated w.r.t. precision and recall defined as follows:

Recall =
number of correct resources returned by system

number of resources in gold standard answer
(34)

Precision =
number of correct resources returned by system

number of resources returned by system
(35)

Before we turn to the evaluation results, one important preliminary
remark: The reported results are based on natural language questions
tagged with ideal part-of-speech information. The reason is that ques-
tions often lead to POS tagging errors. For example, in Which films did
Leonardo di Caprio star in, the infinitive verb form star is tagged as a
noun by the Stanford POS tagger as well as the Apache OpenNPL6

POS tagger, which leads to a parse failure. The same holds for a range
of infinitives such as play, border, die, cross and start. In order to sep-
arate such external errors from errors internal to our approach, we
manually corrected erroneous POS tags in seven questions, that oth-
erwise would not have been parsed. This is only a temporal solution,
of course; the next step is to train a POS tagger model on a corpus
containing a sufficient amount of questions.

evaluation results Of the 50 training questions provided by
the QALD benchmark, 11 questions rely on namespaces which we
did not incorporate for predicate detection: FOAF7 and YAGO8. Espe-
cially the latter poses a challenge, as YAGO categories tend to be very
specific and complex (e.g. FemaleHeadsOfGovernment and HostCitiesOfTheSummerOlympicGames).
We did not consider these questions, thus only 39 questions are pro-
cessed by our approach. Of these 39 questions, 5 questions cannot be

4 http://www.sc.cit-ec.uni-bielefeld.de/qald

5 http://dbpedia.org

6 http://incubator.apache.org/opennlp/

7 http://www.foaf-project.org/

8 http://www.mpi-inf.mpg.de/yago-naga/yago/

http://www.sc.cit-ec.uni-bielefeld.de/qald
http://dbpedia.org
http://incubator.apache.org/opennlp/
http://www.foaf-project.org/
http://www.mpi-inf.mpg.de/yago-naga/yago/

6.3 evaluation and discussion 123

parsed due to unknown syntactic constructions or uncovered domain-
independent expressions. This mainly concerns the noun phrase con-
junction as well as and ordinals (the 5th, the first). These construc-
tions will be added in the future; the only reason they were not im-
plemented yet is that they require significant additional effort when
specifying their compositional semantics.

Of the remaining 34 questions, 19 are answered exactly as required
by the benchmark (i.e. with precision and recall 1.0) and another two
are answered almost correctly (with precision and recall > 0.8). Fig-
ure 29 (see Appendix) lists the results of each of the 39 processed
questions.

The mean of all precision scores is therefore 0.61 and the mean of
all recall scores is 0.63, leading to an F-measure9 of 0.62. These results
are comparable with those of systems such as FREyA and Power-
Aqua. The key advantage of our system is that the semantic structure
of the natural language input is faithfully captured, thus complex
questions containing quantifiers, comparatives and superlatives pose
no problem, unlike in PowerAqua. Moreover, our system does not
need any user feedback, as FREyA does.

property detection The utilization of the BOA Pattern Library,
as compared to simple string similarity measures, had a huge im-
pact on the overall performance of our approach. Of the 21 questions
which were answered (almost) correctly by our system, four ques-
tions:

1. Who was Tom Hanks married to?

2. Which people were born in Heraklion?

3. Which books were written by Danielle Steel?

4. Who wrote the book The pillars of the Earth?

could not have been answered without the use of the library. This
leads to a significant performance improvement of 19%. In detail,
with help of the BOA Pattern Library we are able close the gap be-
tween different word classes/phrases, e.g. “born in” (VP) and “birth
place” (NP) or “married to” (VP) and “spouse” (NP), mapping to the
same relation. This mapping would not have been possible with for
example a Wordnet expansion. Another advantage of the proposed
approach is, that it is able to incorporate statistical information into
the property detection. For example, it is possible to map “wrote”
to dbo:author instead of dbo:writer, since dbo:author occurs statistically
more frequently with books and dbo:writer with screenplays.

9 (2× precision× recall)/(precision + recall)

6.4 prototype 124

Figure 28: Screenshot of prototype available at http://autosparql-tbsl.

dl-learner.org.

6.4 prototype

A prototype for the described algorithm was implemented and de-
ployed, see Figure 28. It is a freely accessible web application, which
allows users to enter natural language questions. The answers are
shown in a tabular view if appropriate. The view allows users to en-
rich the generated answers by displaying further appropriate prop-
erty values for the returned resources. Interesting queries can be
saved and reused by other users.

For the prototype, we used DBpedia as underlying knowledge base.
To be able to use the mentioned techniques, some components were
created offline: Separate indices were created for resources, properties
and classes by querying for the labels of those elements in the used
DBpedia triple store. Additionally, a BOA index was created for prop-
erties, since it vastly improves the mapping of properties in natural
language queries compared to using a text index. The same approach
can be applied to other knowledge bases and we plan to evaluate this
in future work.

6.5 related work

Several approaches have been developed for the purpose of question
answering.

PowerAqua is a question answering system over Linked Data that
is not tailored towards a particular ontology; in particular, it does not
make any assumptions about the vocabulary or structure of datasets.
The main focus of the system is to combine and merge data from dif-
ferent sources, focusing on scalability, and using iterative algorithms,
filtering and ranking heuristics to limit the search space. PowerAqua
is therefore very strong on large, heterogeneous datasets, although
it does struggle on complex mappings such as the aforementioned
YAGO categories. For a detailed explanation of the system’s architec-
ture and an evaluation see, e.g. Lopez et al. [2010, 2011]. The major

http://autosparql-tbsl.dl-learner.org
http://autosparql-tbsl.dl-learner.org

6.6 conclusion 125

shortcoming of PowerAqua is its limited linguistic coverage. In partic-
ular, PowerAqua fails on questions containing the most (such as ques-
tion 31), and more than (such as question 12), which pose no problem
for a system with a deeper linguistic analysis of the input question.

Pythia [Unger and Cimiano, 2011] is such a system. It relies on a
deep linguistic analysis (on which the approach based in this paper
is based) and can therefore handle linguistically complex questions,
in particular questions containing determiners such as the most and
more than. Pythia’s major drawback is that it requires a lexicon, which
up to this moment has to be created manually. It therefore fails to
scale to very large datasets.

The approach proposed in this paper tries to combine both a deep
linguistic analysis with the flexibility of approaches focusing on match-
ing natural language questions to RDF triples. The triple structure is
derived from the semantic structure of the question.

Another possibility to determine the triple structure is by explo-
ration of the dataset, as in the question answering system FREyA
[Damljanovic et al., 2010, 2011]. However, FREyA partly relies on the
user’s help in selecting the entity that is most appropriate as match
for some natural language expression. The drawback of such an ap-
proach is that the naive end-user is often not informed about the
modeling and vocabulary of the data and thus is not able to help.

Further approaches related to question answering over Linked Data
include, e.g. Treo [Freitas et al., 2011], which combines entity search,
semantic relatedness and spreading activation for exploring RDF data,
and Ontolook [Li et al., 2007], which focuses on relation-based search.
In addition to question answering, keyword-based approaches have
been gaining momentum over the past years. This led to semantic
search engines, such as Swoogle [Ding et al., 2004], Watson [d’Aquin
et al., 2008], Sigma [Tummarello et al., 2010] and Sindice [Tummarello
et al., 2007], which aim at indexing RDF across the Web and making it
available for entity search. The approaches described by Shekarpour
et al. [2011] and Tran et al. [2010] extend upon the paradigm of simple
entity search and try to generate interpretations of keyword queries
which exploit the semantics available on the Linked Data Web. Espe-
cially, Tran et al. [2010] implement a graph exploration approach to
detect subgraphs of the input knowledge base that can be used to
compute an answer to the user’s query. On the other hand, Shekar-
pour et al. [2011] use schema knowledge to infer SPARQL queries
that represent possible interpretations of the user-given keywords.

6.6 conclusion

We presented a novel approach to question answering over Linked
Data that relies on a deep linguistic analysis yielding a SPARQL tem-
plate with slots that need to be filled with URIs. In order to fill those

6.6 conclusion 126

slots, possible entities were identified using string similarity as well
as natural language patterns extracted from structured data and text
documents. The remaining query candidates were then ranked and,
on the basis of scores attached to the entities, one of them was se-
lected as final result.

One of the strengths of this approach is that the generated SPARQL
templates capture the semantic structure of the natural language in-
put. Therefore questions containing quantifiers like the most and more
than, comparatives like higher than and superlatives like the highest do
not pose a problem – in contrast to most other question answering
systems that map natural language input to purely triple-based rep-
resentations.

7
M A P P I N G T E X T T O O N T O L O G Y W I T H D B P E D I A
L E M O N A N D B O A

With the huge amount of knowledge available as Linked Data, there
is a growing need to make this data accessible for humans in an easy
and intuitive way, preferably by means of natural language. One of This chapter is

mainly based on
Lukovnikov et al.
[2014].

the main challenges in the development of NLP systems over Linked
Data is to determine the exact meaning of a natural language ex-
pression. More specifically, there is the problem of entity linking –
finding the named entity a mention in a text refers to – as well as
the more challenging problem of ontology linking – finding what
vocabulary element from an OWL ontology is the target of referral.
This work focuses on the second problem. We automatically extend
lexical mappings for an OWL ontology from a high-quality seed lex-
icon. To achieve this goal our approach uses an existing library of
natural language patterns of formal relations to extract new lexical
mappings. In Section 7.1, we describe the background, i.e. the exist-
ing high-quality seed lexicon and the utilized pattern library. Then,
we provide insides on how we find, extract and score newly found
lexical mappings. Finally, we present preliminary evaluation results,
conclude and propose future steps to improve the approach described
here.

author contributions The author of this thesis was a co-author
of Lukovnikov et al. [2014] and carried out the training of the BOA
framework for the properties contained in the FactBench benchmark
used in the evaluation of the proposed approach.

7.1 lexical pattern library and seed lexicon

As pattern library we use the BOA pattern library, generated by the
BOA framework [Gerber and Ngonga Ngomo, 2011, 2012] as pre-
sented extensively in Chapter 3, as source for lexical patterns. As seed
lexicon we use lemon1 [Unger et al., 2013], a vocabulary for extending
an ontology with lexical information describing (among other things)
how the elements of the ontology are verbalized in natural language.
This information is represented as RDF data, thus making the lexical
information a part of the respective ontology and the Linked Data
Cloud. The English lemon lexicon for DBpedia 3.82 was constructed

1 Lemon is an abbreviation for LExicon Model for ONtologies. More information on
lemon can be found at http://lemon-model.net/.

2 http://lemon-model.net/lexica/dbpedia_en/

127

http://lemon-model.net/
http://lemon-model.net/lexica/dbpedia_en/

7.1 lexical pattern library and seed lexicon 128

manually. The first version covers about 98% of the ontology classes
and 20% of the properties. An example of DBpedia lexicon can be
seen in Figure 29.

Figure 29: Overview of DBpedia lemon lexicon for word “wife”.

Whereas entity linking is a straightforward problem in NLP as sys-
tems like AIDA [Hoffart et al., 2011] and AGDISTIS [Usbeck et al.,
2014] show, ontology linking poses more challenges. A baseline ap-
proach for ontology linking is using text similarity of a given token
with the label of an ontology element to estimate the probability that
a word is referring to this ontology element. However, a drawback
of this method is, that it is not able to deal with synonyms. For
example, the word “spouse” can easily be matched to the property
dbpedia-owl:spouse, since the label of the property is “spouse”. But
“wife”, “husband” and “married to” also refer to this property but
textual similarity-based approaches often fail to find those links.

A more sophisticated approach for ontology linking is using a lex-
icalization dictionary, such as the DBpedia lemon lexicon. With the
help of such a lexicon, it is simpler (polysemous words excluded) to
generate mappings from surface forms to ontology elements. How-
ever, there are several issues hindering the widespread usage of the
first version of the DBpedia lexicon for ontology linking:

7.2 combining lemon seeds and boa 129

1. it only covers 20% of the properties available in DBpedia,

2. the manual generation of this lexicon is very expensive,

3. it does not cover properties that are not in the DBpedia OWL on-
tology but can be found in DBpedia (especially OWL properties
in the http://dbpedia.org/property/ namespace) and

4. there are no statistics about ontology verbalization, which can
be helpful to improve ontology linking.

7.2 combining lemon seeds and boa

BOA patterns can be used to automatically expand the coverage of
the DBpedia-lemon lexicon to verbalize more DBpedia OWL proper-
ties. Additionally, the patterns can be used to generate a lexicon for
ontology elements found on DBpedia (and BOA patterns) that are
not in the DBpedia ontology. Furthermore we can leverage the sta-
tistical information associated with BOA patterns to add statistical
information to lexicon elements. The input of our approach is a set
of BOA patterns as well as the DBpedia lemon lexicon. We then use
the lexicon entries to find mapping extraction patterns which will
subsequently be used to extract new lexical information.

7.2.1 Finding mapping extraction patterns

Consider the lemon lexicon for DBpedia as a set L of pairs of map-
pings from text to DBpedia ontology properties. For example, l =

(word,uri) ∈ L, where word is an entry of the lexicon and uri is the
URI of a given property, could look as follows:

l = (wife, spouse).

Consider the BOA patterns as a set of patterns P, where each pat-
tern p maps a natural language text to a RDF property. For example,
p = (uri, θ, lang), where uri is the URI of the property, θ is its natural Note that lang is

always “en”
(English) in our
experiments.

language representation and lang is the language of the NLR, could
be instantiated like this:

p = (spouse,“R is the wife of D“, en)

We iterate over all mappings l ∈ L and for each l, we search P to
find all patterns matching the mapping l, giving us Pl.
The matching function currently used is simply checking whether
the surface form of the mapping (“wife”) occurs in the BOA pattern
string (“R is the wife of D”) and whether the property provided by
the mapping is the same as the property of the BOA pattern.
For each BOA pattern in Pl, we extract the meta-pattern by substitut-
ing the matched surface form l in the pattern by a property variable X.

7.2 combining lemon seeds and boa 130

Then, if not already present, each meta-pattern is added to the set of
meta-patterns MP. If the meta-pattern is already in MP, we update
its support. An example meta-pattern that could be extracted from
the above example lexicalization of the dbo:spouse property is:

R is the X of D.

7.2.2 Extracting new lexical mappings

In this phase, we want to extract new lexical mappings and score
existing ones. Here, we take MP and P and search for new elements
for L.

To this end, for every BOA pattern p ∈ P we find the match-
ing meta-patterns using simple pattern matching with regular ex-
pressions. From the possibly applicable meta-patterns, the best meta-
pattern is selected and used to extract the lexical mapping. If the
mapping is already present in L, we update the scores, otherwise the
mapping is added to L. The selection of the best meta-pattern from
all meta-patterns applicable to BOA patterns is done by choosing the
most surface form-specific meta-pattern. We define the most specific
pattern to be the pattern producing the shortest surface form in the
lexical mapping.

As an example illustrating the generation of new mappings in this
phase, consider the BOA pattern:

p = (spouse,“R is the consort of D“, en)

and the meta-pattern extracted from the example of the previous sub-
section:

mp1 = (spouse,“R is the X of D“, en)

However, another (more general) meta-pattern could have been ex-
tracted in the first phase:

mp2 = (spouse,“R X D“, en)

Both meta-patterns could match the BOA pattern, but the first one is
more specific because it produces a shorter surface form (“consort”)
than the second meta-pattern would produce (“is the consort of”).
Therefore, the first meta-pattern is applied to the BOA pattern to pro-
duce the mapping:

l1 = (consort, spouse).

Notice that the second (more general) meta-pattern would produce
the mapping

“is the consort of”→ dbo:spouse l2 = (is the consort of, spouse),

which is worse than the mapping produced by the more specific meta-
pattern, if not wrong for the purposes of lexicon construction.

7.3 evaluation 131

7.3 evaluation

The methodology described above was tested using a sample dataset
containing BOA patterns of 10 properties (spouse, award, team, au-
thor, subsidiary, starring, deathPlace, birthPlace, leaderName and foun-
dationPlace). Only 7 of the 10 properties in the sample BOA dataset
had verbalizations in the DBpedia lexicon. In total, the lexicon con-
tains 17 relevant verbalizations. Below, the preliminary evaluation re-
sults of the prototype implementation are described.

Applied to the given data, our method found 119 meta-patterns
and 5,274 lexical mappings in one iteration. This initial set of found
lexical mappings contains a lot of noisy mappings. A fraction of the
noisy mappings could still be useful in NLP applications (for example
”goalkeeper”→ dbo:team), but it would be wrong to include them in
the lexicon. In the future, we will implement a filtering strategy to
discard noisy mappings.

We performed a preliminary evaluation of the method by looking
at how many of the verbalizations present in the DBpedia lexicon
were found by our method. We used the sample BOA dataset with
10 properties which give us 17 mappings from the DBpedia lexicon,
as discussed in the first paragraph of this section. With stemming
on the surface forms to counter minor variations (verb conjugations,
multiplicity), 8 of the 17 mappings were also found by our method.
Thus, we can state that the recall of the prototype implementation
applied to BOA patterns of 10 properties is 47%.

7.4 conclusion and future work

The proposed method is an interesting use case of BOA patterns. The
mappings extracted from the manual DBpedia lexicon can already
be useful for NLP purposes. The approach for automatic generation
of new mappings can extend the coverage of these kinds of lexicons.
The proposed method for automatic extraction of mappings can be
extended to an approach for automatic lexicon generation.

Adding the scores derived from BOA and our method improves
the usability of the extended lexical mappings for NLP purposes. For
example, the commonness score of a mapping indicates how often
the surface form is used to refer to the given ontology element, with
respect to other ontology elements that can be referred to by the same
surface form.

Preliminary evaluation of the proposed method using a sample
BOA pattern dataset indicates acceptable recall. However, it should
be noted that the preliminary evaluation was done on a small dataset.
The method should perform better on bigger datasets.

Here, the prototype implementation and its preliminary evaluation
are presented. Future work includes improving the scoring system for

7.4 conclusion and future work 132

better estimation of the relevance of (meta-)patterns and mappings
and improvement of the specificity criterium for meta-pattern selec-
tion in the second phase. Using POS tags in the pattern matching
process should reduce the number of generated noisy mappings dra-
matically. The ultimate goal is a method for automated expansion of
ontology lexica.

8
C O N C L U S I O N A N D F U T U R E W O R K

The goal of the algorithms and applications presented within this
thesis was to provide solutions towards closing the gap between the
Semantic Web and the Web 2.0. We identified four main drawbacks of
the Semantic Web: completeness, actuality, provenance and quality (see
Section 1.2). The algorithms shown in the first part of this thesis fo-
cused on the completeness and actuality problems, whereas the appli-
cations depicted in the second part – building on top of the proposed
algorithms – dealt with provenance and quality issues. In the follow-
ing paragraphs, which also correspond to this thesis’ structure, we
will summarize the proposed algorithms and applications and high-
light the impact on bridging the aforementioned gap between Web
2.0 and the Semantic Web.

8.1 summary

boa - bootstrapping linked data To tackle the problem of
completeness, i.e. that most data available on the Data Web was ex-
tracted from semi- or structured knowledge sources, we implemented
a relation extraction algorithm to be able to also extract knowledge
from unstructured sources. Relation extraction is an enormously dif-
ficult task, since it typically builds upon a machine learning pipeline
where the erroneous output of a module in the pipeline being able to
significantly deteriorate the performance of the next module within
that pipeline and so on. We built our algorithms on top of state-of-the-
art algorithms for Sentence Boundary Disambiguation, Named Entity
Recognition, Part-of-Speech Tagging, Named Entity Disambiguation
and others. The task gets even more complex due to the prerequi-
site of being able to process data at web-scale. To solve these re-
quirements, we proposed the BOA framework, an iterative distant
supervision algorithm, where we use instance data already available
on the Data Web to generate new instance and schema knowledge.
This knowledge can be fed back into the Data Web and be used as
background knowledge in subsequent runs of the framework. BOA
generates a mapping between formal relations found on the Data
Web and their natural language representation found in the Docu-
ment Web by extracting sentences from natural language text that
contain both named entities and patterns. After the implementation
and evaluation we continuously improved our approach to cover a
broader range of languages (English, German, French), updated the
pattern scoring algorithms and the Named Entity Disambiguations

133

8.1 summary 134

techniques, incorporated surface forms for named entities and finally
implemented a multilingual pattern generalization approach in order
to further increase precision and recall. Note that our approach can
thus be used on most languages whose grammar adheres roughly
to the subject - predicate - object sentence structure. The potential of
the approach presented herein is immense, as it could promote the
Data Web to the lingua franca for a large number of applications in-
cluding machine translation, named entity recognition and question
answering.

rdflivenews So far, up-to-date data has, with exceptions like
DBpedia Live, been mostly neglected by the Semantic Web research
community. RDF on the Data Web has mostly been extracted from
database dumps, which typically are weeks or even months old (see
Section 1.2). With RdfLiveNews, we presented a framework for the ex-
traction of RDF from unstructured data streams on web scale. In our
experimental setting we used newspaper RSS feeds as data streams
and sentences as data stream elements. We performed an Open Rela-
tion Extraction task on those sentences and extracted patterns repre-
senting relations between entities. Then, these patterns were grouped
and could be refined with the help of the information already avail-
able on the Data Web (finding a suitable rdfs:range and rdfs:domain
with different strategies). We implemented and evaluated multiple
similarity functions for the clustering and have been able to link clus-
ters, or the properties within these clusters respectively, to properties
available on the Data Web. We were able to disambiguate resources
with a precision of 85%, cluster patterns with an accuracy of 82.5%
and extract RDF with a total accuracy of around 90%. Additionally,
RdfLiveNews can handle two hour time slices with around 300.000

sentences within 20 minutes on a small server.

defacto The number of knowledge bases on the Data Web and
the triples contained therein are continuously rising. One of the main
tasks of curators and maintainers of these knowledge bases is to
(in)validate facts and provide sources for them in order to ensure
correctness and traceability of the provided knowledge. With an es-
timated number of 89 billion triples on the Data Web, this task can-
not be carried out by humans alone. To support human curators in
this task we presented DeFacto, an approach for checking the valid-
ity of RDF triples using the Web as corpus. The DeFacto baseline
uses English natural language representations generated by the BOA
framework to create and execute search engine queries. These queries
return websites containing both entities of the given triple and the re-
lation in natural language. We extract all of those phrases and apply
a two-step machine learning task, in which we first test if the given
phrase validates the input fact and then aggregate all phrases, com-

8.1 summary 135

bined with the trustworthiness of the websites they are contained in,
to a total evidence score. The evaluation of DeFacto for 60 properties
found on the Data Web lead to a promising F1 measure of 0.843. De-
spite English being the dominant language on the Web (see Figure 7),
a large part of information is only available in some languages. In
order to also extract these highly localized information, we extended
the baseline version of DeFacto to recognize German and French nat-
ural language representations as well. Additionally, a large number
of facts is only valid for a certain time span. For example, the fact that
Albert Einstein was the spouse of Mileva Marić, does not hold true to-
day but only for the time span between 1903 and 1919. The extended
version of DeFacto implements three strategies to determine the time
scope of a given fact. We support the endeavor of creating better fact
validation algorithms (and to that end also better relation extraction
systems) by providing the full-fledged and timely scoped FactBench
benchmark. We showed that our approach achieves an F1 measure
of 84.9% on the most realistic fact validation test set (FactBench mix)
on DBpedia as well as Freebase data. The temporal scoping module
shows a promising average F1 measure of 70.2% for time point and
65.8% for time period relations. Finally, we were able to show that
multilingual fact validation increased the overall and significantly in-
creased the date scoping performance with respect to the English only
version.

template-based question answering To enable lay users to
tap into the wealth of data becoming available on the Data Web every
day, developing intuitive ways for accessing this data becomes in-
creasingly important. Natural language question answering systems
can be considered as a compromise between intuitiveness and expres-
sivity since these approaches are able to exploit the expressiveness of
the underlying data model and query language, while hiding their
complexity from the user. Therefore we presented a novel approach
to question answering over Linked Data that relies on a deep linguis-
tic analysis yielding a SPARQL template with slots that need to be
filled with URIs. This captures the semantic structure of the natural
language input and allows to deal with quantifiers (the most, more
than) comparatives (higher than) and superlatives (the highest) easily.
We have exploited the BOA pattern library to fill the property slots of
the SPARQL templates with URIs from the Data Web. This was espe-
cially useful if string or WordNet similarity metrics could not provide
the correct mapping (e.g. was married to and spouse). The utilization
of the BOA pattern library lead to a significant increase of the overall
performance of the QA-System by 19% F1 measure.

8.2 future work 136

8.2 future work

There is a long way to go for the Semantic Web to be as successful as
the Web 2.0 currently is. The algorithms and applications presented
within this thesis help to bridge this gap significantly. They can be
extended in manyfold ways to bring the Semantic Web even closer to
the vision postulated by its inventor.

boa - bootstrapping linked data In future work, we will
aim at applying our approach to Asian languages whose grammar
differ completely from that of the language we processed so far. Pre-
liminary work on the Korean language showed very promising re-
sults. In addition, we will consider the use of crowd-sourcing to im-
prove our scoring approach. Furthermore, we can deploy our ap-
proach on larger data sets such as ClueWeb09/12

1 to discover even
more facts and to extract more confident patterns. Finally, we will
integrate the temporal scoping module of the DeFacto framework to
take temporal markers into consideration so as to be able to process
predicates such as dbpedia:formerTeam or dbpedia:
formerBandMember.

rdflivenews For future versions of RdfLiveNews we plan to go
beyond text streams and apply our work to audio and video streams.
We will extend our approach to support additional languages and
to also cover datatype properties. For example, from the sentence
“. . . , Google said Motorola Mobility contributed revenue of US$ 1.25

billion for the second quarter” the triple dbpedia:Motorola_Mobility
rlno:revenue 1.250.000.000 can be extracted. Furthermore, we could ex-
tract the triple dbpedia:Google rlno:says “Motorola Mobility contributed
revenue of US$ 1.25 billion for the second quarter” which would lead to a
worldwide machine readable library of quotes from persons or orga-
nizations respectively. Additionally, we plan to integrate DeFacto to
be able to verify/falsify the extracted triple from other news sources
and enrich it with additional provenance information. Finally, we will
extend our approach with temporal logics to explicate the temporal
scope of the triples included in our knowledge base.

defacto Our approach can be extended in manifold ways. First,
we could run the experiments on a Web crawl such as ClueWeb09/
ClueWeb12 or CommonCrawl.2 This would drastically increase re-
call, since we could execute all combinations of subject/object surface
forms and patterns as well as precision, since we could also query for
exact matches like “Albert Einstein was awarded the Nobel Prize

in Physics” as opposed to querying for fragments (see Section 5.5.2).

1 http://lemurproject.org/clueweb12

2 http://commoncrawl.org/

http://lemurproject.org/clueweb12
http://commoncrawl.org/

8.2 future work 137

Second, we could work on efficient disambiguation of (parts of) the
webpage’s text before extracting proof phrases. This would be useful
for, e.g. differentiating between Winston Churchill, the American nov-
elist, and Winston Churchill, the British prime minister. Furthermore,
we could extend our approach to support data type properties or try
to search for negative evidence for facts, therewith allowing users to
have a richer view of the data on the Web through DeFacto. Finally,
we could extend the user interface (see Figure 22) to improve clas-
sifier performance by incorporating a feedback loop allowing users
to vote on overall results, as well as proofs found on webpages. This
feedback can then be fed into our overall machine learning pipeline
and improve DeFacto on subsequent runs.

template-based question answering One of the strengths
of this approach is that the generated SPARQL templates capture the
semantic structure of the natural language input. However, in some
cases the semantic structure of the question and the triple structure
of the query do not coincide. Thus, faithfully capturing the semantic
structure of the input question sometimes leads to too rigid templates.
We are currently exploring two approaches to solve this problem. The
first one concentrates on more flexible processing. On the one hand,
we are considering a preprocessing step that can detect complex (es-
pecially YAGO) categories before parsing the natural language ques-
tion. On the other hand, we are investigating the relaxation of tem-
plates, in such a way that the triple structure is not completely fixed
but is discovered through exploration of the RDF data.

The second approach concerns incorporating a more flexible fall-
back strategy in case no successful SPARQL query is found. In partic-
ular, we are working on combining our approach with active learning
methods as described by Lehmann and Bühmann [2011]. Ultimately,
our goal is to provide robust question answering for large scale het-
erogeneous knowledge bases. Our vision is that this robustness can
help to make the usage of question answering systems a standard task
in everyday life in a similar but more powerful way as web search.

Henry Ford, the famous American industrialist and founder of the
Ford Motor Company, is said to have once said:

“If I had asked people what they wanted, they would have
said faster horses.”

If we alter this quote to fit the problems postulated in Section 1.2, then
Tim Berners-Lee could have said something along the lines of: “If I had
asked people what they wanted, they would have said more intelligent text
search.”. So if the Semantic Web research community is able to solve
the problems highlighted in this thesis, the Semantic Web might very
well be the next automobile.

Part III

A P P E N D I X

A
A P P E N D I X

a.1 template based question answering

id question precision recall

2 Who has been the 5th president of the
United States of America

4 Who was Tom Hanks married to 1.0 1.0

5 Which people were born in Heraklion 0.91 1.0

7 Which companies work in the aerospace in-
dustry as well as on nuclear reactor technol-
ogy

8 Which people have as their given name
Jimmy

9 Who developed the video game World of
Warcraft

1.0 1.0

10 Who was the wife of president Lincoln 1.0 1.0

12 Which caves have more than 3 entrances 1.0 1.0

13 Which cities have more than 2000000 inhab-
itants

0.04 0.26

14 Who owns Aldi

16 Give me all soccer clubs in the Premier
League

0.5 0.86

17 In which programming language is GIMP
written

1.0 1.0

18 What languages are spoken in Estonia 1.0 0.14

20 Which country does the Airedale Terrier
come from

1.0 1.0

21 What is the highest mountain 1.0 1.0

24 Which organizations were founded in 1950 0.0 0.0

25 Which genre does DBpedia belong to 1.0 1.0

26 When was DBpedia released 1.0 1.0

27 Who created English Wikipedia 1.0 1.0

28 Which companies are located in California
USA

0.8 0.76

139

A.1 template based question answering 140

30 How many films did Leonardo DiCaprio
star in

1.0 1.0

31 Who produced the most films 1.0 1.0

32 Is Christian Bale starring in Batman Begins 1.0 1.0

33 Which music albums contain the song Last
Christmas

34 Give me all films produced by Hal Roach 1.0 1.0

35 Give me all actors starring in Batman Begins 1.0 0.86

36 Give me all movies with Tom Cruise 0.08 0.75

37 List all episodes of the first season of the
HBO television series The Sopranos

38 Which books were written by Danielle Steel 1.0 1.0

39 Who wrote the book The pillars of the Earth 0.5 1.0

40 Which mountains are higher than the
Nanga Parbat

0.0 0.0

41 When was Capcom founded 1.0 1.0

42 Which software has been published by
Mean Hamster Software

1.0 1.0

43 Is there a video game called Battle Chess 0.0 0.0

44 Which software has been developed by or-
ganizations founded in California

45 Which country has the most official lan-
guages

0.0 0.0

47 Is Natalie Portman an actress 1.0 1.0

48 Who produced films starring Natalie Port-
man

1.0 1.0

49 In which films did Julia Roberts as well as
Richard Gere play

Table 29: This table shows precision and recall values for each processed
question (i.e. all questions that do not require the YAGO or
FOAF namespace). For questions with no precision and re-
call specified, no query was constructed. Questions printed
in cells with red background were not parsed, questions in

white cells succeeded and for questions in lightgray cells
queries with quality equal or close to the Gold query were built,
while questions in yellow cells fail due to a query selection prob-

lem and questions in orange cells fail due to some entity identifi-
cation problem.

B I B L I O G R A P H Y

Adrian, B., Hees, J., Herman, I., Sintek, M., and Dengel, A. (2010).
Epiphany: Adaptable RDFa Generation Linking the Web of Docu-
ments to the Web of Data. In EKAW, pages 178–192. (Cited on
page 23.)

Agichtein, E. and Gravano, L. (2000). Snowball: Extracting Relations
from Large Plain-Text Collections. In In ACM DL, pages 85–94.
(Cited on pages 22, 25, and 79.)

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives,
Z. (2008). DBpedia: A Nucleus for a Web of Open Data. In Proceed-
ings of the 6th International Semantic Web Conference (ISWC), volume
4825 of Lecture Notes in Computer Science, pages 722–735. Springer.
(Cited on page 80.)

Auer, S., Lehmann, J., and Hellmann, S. (2009). LinkedGeoData -
Adding a Spatial Dimension to the Web of Data. In Proceedings of
8th International Semantic Web Conference. (Cited on pages 4 and 19.)

Auer, S., Lehmann, J., and Ngomo, A.-C. N. (2011). Introduction to
Linked Data and Its Lifecycle on the Web. In Reasoning Web, pages
1–75. (Cited on pages 19 and 55.)

Augenstein, I., Padó, S., and Rudolph, S. (2012). LODifier: Generating
Linked Data from Unstructured Text. In ESWC, volume 7295, pages
210–224. (Cited on pages 68 and 79.)

Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., and Etzioni,
O. (2007). Open Information Extraction from the Web. In Inter-
national Joint Conferences on Artificial Intelligence, pages 2670–2676.
(Cited on page 26.)

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness,
D. L., Patel-Schneider, P. F., and Stein, L. A. (2004). OWL Web On-
tology Language Reference. W3C Recommendation. Last access on
Dez 2008 at: http://www.w3.org/TR/owl-ref/. (Cited on page 12.)

Beckett, D. (10. Februar 2004). RDF/XML Syntax Specification (Re-
vised). W3C Recommendation. (Cited on pages 11 and 12.)

Beckett, D. (24. Februar 2014). RDF 1.1 XML Syntax. W3C Recom-
mendation. (Cited on page 12.)

Beckett, D. and Berners-Lee, T. (2008). Turtle - Terse RDF Triple Lan-
guage. W3C Team Submission. (Cited on page 12.)

141

bibliography 142

Beckett, D. and Broekstra, J. (2008). SPARQL Query Results XML
Format. W3C Recommendation. (Cited on page 13.)

Belhajjame, K., Cheney, J., Corsar, D., Garijo, D., Soiland-Reyes, S.,
Zednik, S., and Zhao, J. (2012). PROV-O: The PROV Ontology. Tech-
nical report. (Cited on pages 6 and 82.)

Berners-Lee, T. (1998). Cool URIs don’t change. (Cited on page 11.)

Berners-Lee, T., Fielding, R., and Masinter, L. (2005). RFC 3986, Uni-
form Resource Identifier (URI): Generic Syntax. Request For Com-
ments (RFC). (Cited on pages xvi and 10.)

Berners-Lee, T. and Fischetti, M. (1999). Weaving the web: The origi-
nal design and ultimate destiny of the world wide web by its inventor.
Harper, San Francisco. (Cited on page 3.)

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The Semantic Web.
Scientific American, 284(5):34–43. (Cited on pages 3, 9, 10, and 55.)

Biemann, C., Heyer, G., Quasthoff, U., and Richter, M. (2007). The
Leipzig Corpora Collection – Monolingual Corpora of Standard
Size. In Proceedings of the 4th Conference on Corpus Linguistics (CL).
(Cited on pages 29 and 35.)

Blumberg, R. and Atre, S. (2003). The problem with unstructured
data. DM Review, 13(February 2003):42–49. (Cited on page 19.)

Brickley, D. and Guha, R. (10. Februar 2004). RDF Vocabulary Descrip-
tion Language 1.0: RDF Schema. W3C Recommendation. (Cited on
page 11.)

Brin, S. (1999). Extracting Patterns and Relations from the World Wide
Web. In WebDB, pages 172–183. (Cited on pages 22, 25, and 79.)

Brohée, S. and van Helden, J. (2006). Evaluation of clustering algo-
rithms for protein-protein interaction networks. BMC Bioinformatics.
(Cited on page 65.)

Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Jr., E. R. H., and
Mitchell, T. M. (2010). Toward an Architecture for Never-Ending
Language Learning. In AAAI. (Cited on pages 20, 23, 26, 34, 38, 48,
and 79.)

Carnielli, W. A. and Marcos, J. (2001). Ex contradictione non sequitur
quodlibet. In Proceedings of the II Annual Conference on Reasoning
and Logic, held in Bucharest, RO, July 2000, pages 89–109. (Cited on
page 6.)

Carothers, G. and Seaborne, A. (2014). RDF 1.1 N-Triples. W3C recom-
mendation, W3C. http://www.w3.org/TR/2014/REC-n-triples-
20140225/. (Cited on page 12.)

bibliography 143

Clark, K. G., Feigenbaum, L., and Torres, E. (2008). SPARQL Protocol
for RDF. W3C Recommendation. (Cited on page 13.)

Correndo, G., Salvadores, M., Millard, I., and Shadbolt, N. (2010).
Linked Timelines: Temporal Representation and Management in
Linked Data. In COLD, volume 665. (Cited on page 105.)

Curran, J. R. and Clark, S. (2003). Language independent NER using
a maximum entropy tagger. In Proceedings of the seventh conference
on Natural language learning at HLT-NAACL 2003 - Volume 4, pages
164–167, Morristown, NJ, USA. Association for Computational Lin-
guistics. (Cited on page 23.)

Damljanovic, D., Agatonovic, M., and Cunningham, H. (2010). Nat-
ural Language Interfaces to Ontologies: Combining Syntactic Anal-
ysis and Ontology-based Lookup through the User Interaction. In
Proceedings of the 7th Extended Semantic Web Conference (ESWC 2010),
Heraklion, Greece, May 31-June 3, 2010. Springer. (Cited on pages 119

and 125.)

Damljanovic, D., Agatonovic, M., and Cunningham, H. (2011).
FREyA: An interactive way of querying Linked Data using natural
language. In Proceedings of the 1st Workshop on Question Answering
over Linked Data (QALD-1), ESWC 2011. (Cited on page 125.)

d’Aquin, M., Motta, E., Sabou, M., Angeletou, S., Gridinoc, L., Lopez,
V., and Guidi, D. (2008). Toward a New Generation of Semantic
Web Applications. Intelligent Systems, IEEE, 23(3):20–28. (Cited on
page 125.)

Davidov, D. and Rappoport, A. (2008). Classification of Semantic Re-
lationships between Nominals Using Pattern Clusters. ACL. (Cited
on page 69.)

DCMI Usage Board (2006). DCMI Metadata Terms. DCMI recom-
mendation, Dublin Core Metadata Initiative. Published online on
December 18th, 2006 at http://dublincore.org/documents/2006/
12/18/dcmi-terms/. (Cited on page 6.)

Demter, J., Auer, S., Martin, M., and Lehmann, J. (2012). LODStats –
An Extensible Framework for High-performance Dataset Analytics.
Lecture Notes in Computer Science (LNCS) 7603. Springer. (Cited
on page 6.)

Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R. S., Peng, Y., Reddivari,
P., Doshi, V., and Sachs, J. (2004). Swoogle: a search and metadata
engine for the Semantic Web. In Grossman, D. A., Gravano, L.,
Zhai, C., Herzog, O., and Evans, D. A., editors, CIKM, pages 652–
659. ACM. (Cited on page 125.)

http://dublincore.org/documents/2006/12/18/dcmi-terms/
http://dublincore.org/documents/2006/12/18/dcmi-terms/

bibliography 144

Dividino, R., Sizov, S., Staab, S., and Schueler, B. (2011). Querying
for Provenance, Trust, Uncertainty and other Meta Knowledge in
RDF. Web Semantics: Science, Services and Agents on the World Wide
Web. (Cited on page 78.)

Dong, X. L., Berti-Equille, L., and Srivastava, D. (2009). Truth Discov-
ery and Copying Detection in a Dynamic World. PVLDB, 2:562–573.
(Cited on page 78.)

E. Kaufmann, A. Bernstein, L. F. (2007). NLP-Reduce: A "naive" but
domain-independent natural language interface for querying on-
tologies. In Proceedings of the 4th European Semantic Web Conference
(ESWC 2007), Innsbruck, Austria. (Cited on page 119.)

Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A., Shaked,
T., Soderland, S., Weld, D. S., and Yates, A. (2004). Web-scale Infor-
mation Extraction in KnowItAll. In Proceedings of World Wide Web
Conference 2004. (Cited on pages 22 and 25.)

Exner, P. and Nugues, P. (2012). Entity extraction: From unstructured
text to DBpedia RDF triples. In Rizzo, G., Mendes, P., Charton,
E., Hellmann, S., and Kalyanpur, A., editors, Web of Linked Entities
Workshop (WoLE 2012). (Cited on page 68.)

Fader, A., Soderland, S., and Etzioni, O. (2011). Identifying Relations
for Open Information Extraction. In In Proceedings Conference on
Empirical Methods in Natural Language Processing, pages 1535–1545.
(Cited on pages 26, 46, and 69.)

Fellbaum, C., editor (1998). Wordnet, an Electronic Lexical Database.
MIT Press. (Cited on pages 5, 14, and 46.)

Ferrucci, D. A., Brown, E. W., Chu-Carroll, J., Fan, J., Gondek, D.,
Kalyanpur, A., Lally, A., Murdock, J. W., Nyberg, E., Prager, J. M.,
Schlaefer, N., and Welty, C. A. (2010). Building Watson: An
Overview of the DeepQA Project. AI Magazine, 31(3):59–79. (Cited
on page 5.)

Finkel, J. R., Grenager, T., and Manning, C. (2005). Incorporating
non-local information into information extraction systems by Gibbs
sampling. In ACL, ACL ’05, pages 363–370. (Cited on page 23.)

Finkel, J. R. and Manning, C. D. (2010). Hierarchical joint learning:
improving joint parsing and named entity recognition with non-
jointly labeled data. In ACL ’10, pages 720–728. (Cited on page 22.)

Freitas, A., de Oliveira, J., O’Riain, S., Curry, E., and da Silva, J. P.
(2011). Querying Linked Data using Semantic Relatedness: A Vo-
cabulary Independent Approach. In Proceedings of the 16th Interna-
tional Conference on Applications of Natural Language to Information
Systems (NLDB). (Cited on page 125.)

bibliography 145

Gaag, A., Kohn, A., and Lindemann, U. (2009). Function-based so-
lution retrieval and semantic search in mechanical engineering. In
IDEC ’09, pages 147–158. (Cited on pages 19 and 55.)

Galland, A., Abiteboul, S., Marian, A., and Senellart, P. (2010). Cor-
roborating information from disagreeing views. In WSDM, pages
131–140. ACM. (Cited on page 78.)

Gerber, D., Esteves, D., Lehmann, J., Bühmann, L., Usbeck, R.,
Ngonga Ngomo, A.-C., and Speck, R. (2015). DeFacto - Tempo-
ral and Multilingual Deep Fact Validation. Journal of Web Semantics.
(Cited on pages vii, 21, 73, and 77.)

Gerber, D., Hellmann, S., Bühmann, L., Soru, T., and Ngomo, A.-C. N.
(2013). Real-time RDF extraction from unstructured data streams.
In Proceedings of ISWC. (Cited on pages vii, 27, 54, and 56.)

Gerber, D. and Ngonga Ngomo, A. (2012). Extracting Multilingual
Natural Language Patterns for RDF Predicates. In EKAW, Lec-
ture Notes in Computer Science, pages 87–96. Springer. (Cited on
pages vii, 18, 21, 79, 81, and 127.)

Gerber, D. and Ngonga Ngomo, A. (2013). From RDF to Natural Lan-
guage and Back. Springer. (Cited on pages viii, 18, and 21.)

Gerber, D. and Ngonga Ngomo, A.-C. (2011). Bootstrapping the
Linked Data Web. In 1st Workshop on Web Scale Knowledge Extraction
@ ISWC. (Cited on pages viii, 18, 21, 27, 51, 69, 81, and 127.)

Goldhahn, D., Eckart, T., and Quasthoff, U. (2012). Building Large
Monolingual Dictionaries at the Leipzig Corpora Collection: From
100 to 200 Languages. In LREC. (Cited on page 63.)

Grant, J. and Beckett, D. (10. Februar 2004). RDF Test Cases. W3C
Recommendation. (Cited on page 11.)

Grishman, R. and Yangarber, R. (1998). Nyu: Description of the Pro-
teus/Pet system as used for MUC-7 ST. In MUC-7. Morgan Kauf-
mann. (Cited on page 79.)

Guha, R. and Brickley, D. (2004). RDF Vocabulary Descrip-
tion Language 1.0: RDF Schema. W3C recommendation, W3C.
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/. (Cited
on page 12.)

Guha, R. and Brickley, D. (2014). RDF Schema 1.1. W3C recom-
mendation, W3C. http://www.w3.org/TR/2014/REC-rdf-schema-
20140225/. (Cited on page 12.)

Gutierrez, C., Hurtado, C., and Vaisman, A. (2005). Temporal RDF. In
The Semantic Web: Research and Applications, pages 93–107. Springer.
(Cited on page 79.)

bibliography 146

Hartig, O. (2008). Trustworthiness of Data on the Web. In Proceedings
of the STI Berlin & CSW PhD Workshop. (Cited on page 78.)

Hartig, O. (2009). Provenance Information in the Web of Data. In
Proceedings of Linked Data on the Web Workshop at World Wide Web
Conference. (Cited on pages 5 and 74.)

Hartig, O. and Zhao, J. (2010). Publishing and Consuming Prove-
nance Metadata on the Web of Linked Data. In IPAW, pages 78–90.
(Cited on page 78.)

Hayes, P. and McBride, B. (10. Februar 2004). RDF Semantics. (Cited
on page 11.)

Hearst, M. A. (1992). Automatic Acquisition of Hyponyms from
Large Text Corpora. In In Proceedings of the 14th International Confer-
ence on Computational Linguistics, pages 539–545. (Cited on pages 22

and 25.)

Heath, T. and Bizer, C. (2011). Linked Data: Evolving the Web into a
Global Data Space. (Cited on page 19.)

Hellmann, S., Lehmann, J., Auer, S., and Brümmer, M. (2013). Inte-
grating NLP using Linked Data. In 12th International Semantic Web
Conference. (Cited on page 82.)

Hendler, J. and Golbeck, J. (2008). Metcalfe’s law, Web 2.0, and the
Semantic Web. Web Semantics: Science, Services and Agents on the
World Wide Web, 6(1):14–20. (Cited on page 7.)

Hitzler, P., Krötzsch, M., Rudolph, S., and Sure, Y. (2008). Semantic
Web, Grundlagen. Springer. (Cited on page 12.)

Hoffart, J., Suchanek, F. M., Berberich, K., and Weikum, G. (2013).
YAGO2: A Spatially and Temporally Enhanced Knowledge Base
from Wikipedia. In Rossi, F., editor, IJCAI. IJCAI/AAAI. (Cited on
page 15.)

Hoffart, J., Yosef, M. A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol,
M., Taneva, B., Thater, S., and Weikum, G. (2011). Robust Disam-
biguation of Named Entities in Text. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP
’11, pages 782–792. (Cited on pages 64, 80, and 128.)

Höffner, K., Unger, C., Bühmann, L., Lehmann, J., Ngomo, A.-C. N.,
Gerber, D., and Cimiano, P. (2013). TBSL Question Answering Sys-
tem Demo. In Proceedings of the 4th Conference on Knowledge Engi-
neering and Semantic Web. (Cited on pages vii, 118, and 121.)

Hogan, A., Harth, A., Passant, A., Decker, S., and Polleres, A. (2010).
Weaving the Pedantic Web. In Linked Data on the Web Workshop

bibliography 147

(LDOW2010) at WWW’2010, volume 628, pages 30–34. CEUR Work-
shop Proceedings. (Cited on page 6.)

Huynh, D., Mazzocchi, S., and Karger, D. R. (2005). Piggy Bank: Expe-
rience the Semantic Web Inside Your Web Browser. In ISWC, pages
413–430. (Cited on page 23.)

Jiang, J. J. and Conrath, D. W. (1997). Semantic Similarity Based on
Corpus Statistics and Lexical Taxonomy. In International Confer-
ence Research on Computational Linguistics, pages 9008+. (Cited on
page 46.)

Kim, S. N., Medelyan, O., Kan, M.-Y., and Baldwin, T. (2010).
SemEval-2010 task 5: Automatic keyphrase extraction from scien-
tific articles. In SemEval ’10, pages 21–26. (Cited on page 22.)

Kleinberg, J. M. (1999). Hubs, authorities, and communities. ACM
Comput. Surv. (Cited on page 77.)

Klyne, G. and Carroll, J. J. (10. Februar 2004). Resource Description
Framework (RDF): Concepts and Abstract Syntax. W3C Recom-
mendation. (Cited on page 11.)

Krause, S., Li, H., Uszkoreit, H., and Xu, F. (2012). Large-Scale Learn-
ing of Relation-Extraction Rules with Distant Supervision from the
Web. In International Semantic Web Conference, volume 7649 of Lec-
ture Notes in Computer Science, pages 263–278. (Cited on pages 23,
27, and 80.)

Lanthaler, M., Cyganiak, R., and Wood, D. (2014). RDF
1.1 Concepts and Abstract Syntax. W3C recommenda-
tion, W3C. http://www.w3.org/TR/2014/REC-rdf11-concepts-
20140225/. (Cited on page 11.)

Lehmann, J., Bizer, C., Kobilarov, G., Auer, S., Becker, C., Cyganiak,
R., and Hellmann, S. (2009). DBpedia - A Crystallization Point for
the Web of Data. Journal of Web Semantics, 7(3):154–165. (Cited on
pages 14, 85, 96, and 122.)

Lehmann, J. and Bühmann, L. (2011). AutoSPARQL: Let Users Query
Your Knowledge Base. In Proceedings of ESWC 2011, volume 6643 of
Lecture Notes in Computer Science, pages 63–79. (Cited on page 137.)

Lehmann, J., Furche, T., Grasso, G., Ngonga Ngomo, A.-C., Schallhart,
C., Sellers, A., Unger, C., Bühmann, L., Gerber, D., Höffner, K., Liu,
D., and Auer, S. (2012a). DEQA: Deep Web Extraction for Question
Answering. In Proceedings of ISWC. (Cited on pages vii and 121.)

Lehmann, J., Gerber, D., Morsey, M., and Ngonga Ngomo, A.-C.
(2012b). DeFacto - Deep Fact Validation. In ISWC. (Cited on
pages vii, 73, 77, 84, and 85.)

bibliography 148

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D.,
Mendes, P. N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S.,
and Bizer, C. (2013). DBpedia - A Large-scale, Multilingual Knowl-
edge Base Extracted from Wikipedia. Semantic Web Journal. Under
review. (Cited on pages 4, 14, 19, and 96.)

Lenat, D. (1995). CYC: A Large-Scale Investment in Knowledge In-
frastructure. Communications of the ACM, 38(11):33–38. (Cited on
pages 5 and 14.)

Li, Y., Wang, Y., and Huang, X. (2007). A Relation-Based Search En-
gine in Semantic Web. IEEE Trans. Knowl. Data Eng., 19(2):273–282.
(Cited on page 125.)

Lin, D. (1998). An Information-Theoretic Definition of Similarity. In
Shavlik, J. W. and Shavlik, J. W., editors, ICML, pages 296–304. Mor-
gan Kaufmann. (Cited on page 60.)

Lopez, V., Fernandez, M., Motta, E., and Stieler, N. (In Press (2011)).
PowerAqua: Supporting Users in Querying and Exploring the Se-
mantic Web. Semantic Web Journal. (Cited on page 124.)

Lopez, V. and Motta, E. (2004). Ontology Driven question answer-
ing in AquaLog. In Proceedings of the 9th International Conference on
Applications of Natural Language to Information Systems (NLDB 2004),
Manchester, England. (Cited on page 119.)

Lopez, V., Nikolov, A., Sabou, M., Uren, V., and Motta, E. (2010). Scal-
ing up Question-Answering to Linked Data. In Proceedings of Knowl-
edge Engineering and Knowledge Management by the Masses (EKAW-
2010), Lisboa, Portugal. (Cited on page 124.)

Lukovnikov, D., Hellmann, S., Gerber, D., and Unger, C. (2014). Map-
ping text to ontology with DBpedia Lemon and BOA. (Cited on
pages viii and 127.)

Manola, F. and Miller, E. (10. Februar 2004). RDF Primer. W3C Rec-
ommendation. (Cited on page 11.)

Matsuo, Y. and Ishizuka, M. (2004). Keyword Extraction From A
Single Document Using Word Co-Occurrence Statistical Informa-
tion. International Journal on Artificial Intelligence Tools, 13(1):157–169.
(Cited on page 22.)

Meiser, T., Dylla, M., and Theobald, M. (2011). Interactive Reasoning
in Uncertain RDF Knowledge Bases. In Berendt, B., de Vries, A.,
Fan, W., and Macdonald, C., editors, CIKM’11, pages 2557–2560.
(Cited on page 78.)

Mendes, P. N., Jakob, M., Garcia-Silva, A., and Bizer, C. (2011). DB-
pedia Spotlight: Shedding Light on the Web of Documents. In

bibliography 149

I-SEMANTICS, ACM International Conference Proceeding Series,
pages 1–8. ACM. (Cited on pages 23, 42, 59, 80, 85, and 86.)

Miller, A. (1995). Wordnet: A lexical database for English. Communi-
cations of the ACM, 38(11):39–41. (Cited on page 46.)

Mintz, M., Bills, S., Snow, R., and Jurafsky, D. (2009). Distant su-
pervision for relation extraction without labeled data. ACL, pages
1003–1011. (Cited on pages 22, 23, 24, 26, 38, and 39.)

Morsey, M., Lehmann, J., Auer, S., and Ngonga Ngomo, A.-C. (2011).
DBpedia SPARQL Benchmark - Performance Assessment with Real
Queries on Real Data. In International Semantic Web Conference (1),
pages 454–469. (Cited on page 60.)

Morsey, M., Lehmann, J., Auer, S., Stadler, C., and Hellmann, S.
(2012). DBpedia and the Live Extraction of Structured Data from
Wikipedia. Electronic Library and Information Systems, page 27.
(Cited on page 85.)

Motik, B., Patel-Schneider, P. F., and Parsia, B. (2. Dezember 2008).
OWL 2 Web Ontology Language: Structural Specification and
Functional-Style Syntax. W3C Recommendation. (Cited on
page 12.)

Nakamura, S., Konishi, S., Jatowt, A., Ohshima, H., Kondo, H.,
Tezuka, T., Oyama, S., and Tanaka, K. (2007). Trustworthiness Anal-
ysis of Web Search Results. In Research and Advanced Technology
for Digital Libraries, volume 4675, pages 38–49. (Cited on pages 77

and 88.)

Nakashole, N., Theobald, M., and Weikum, G. (2011). Scalable knowl-
edge harvesting with high precision and high recall. In Proceedings
of the fourth ACM international conference on Web search and data min-
ing, WSDM ’11, pages 227–236, New York, NY, USA. ACM. (Cited
on pages 23, 27, 34, 38, 48, and 79.)

Nakashole, N. and Weikum, G. (2012). Real-time population of knowl-
edge bases: opportunities and challenges. In Proceedings of AKBC-
WEKEX. (Cited on page 69.)

Navigli, R. and Ponzetto, S. P. (2012). BabelNet: The automatic con-
struction, evaluation and application of a wide-coverage multilin-
gual semantic network. Artificial Intelligence, pages 217–250. (Cited
on page 98.)

Ngonga Ngomo, A.-C. (2012). On Link Discovery using a Hybrid
Approach. J. Data Semantics, 1(4):203–217. (Cited on page 57.)

Ngonga Ngomo, A.-C., Bühmann, L., Unger, C., Lehmann, J., and
Gerber., D. (2013a). Sorry, I don’t speak SPARQL — Translating

bibliography 150

SPARQL Queries into Natural Language. In Proceedings of WWW.
(Cited on page viii.)

Ngonga Ngomo, A.-C., Bühmann, L., Unger, C., Lehmann, J., and
Gerber, D. (2013b). SPARQL2NL - Verbalizing SPARQL queries. In
Proc. of WWW 2013 Demos. (Cited on page viii.)

Ngonga Ngomo, A.-C., Heino, N., Lyko, K., Speck, R., and
Kaltenböck, M. (2011a). Scms - semantifying content management
systems. In ISWC 2011. (Cited on page 23.)

Ngonga Ngomo, A.-C., Heino, N., Lyko, K., Speck, R., and
Kaltenböck, M. (2011b). SCMS - Semantifying Content Manage-
ment Systems. In ISWC. (Cited on page 69.)

Ngonga Ngomo, A.-C. and Schumacher, F. (2009). BorderFlow: A Lo-
cal Graph Clustering Algorithm for Natural Language Processing.
In CICLing, pages 547–558. (Cited on page 60.)

Nguyen, D. P. T., Matsuo, Y., and Ishizuka, M. (2007). Relation Ex-
traction from Wikipedia using Subtree Mining. In AAAI, pages
1414–1420. (Cited on page 79.)

Nguyen, T. and Kan, M.-Y. (2007). Keyphrase Extraction in Scientific
Publications. pages 317–326. (Cited on page 23.)

Pasternack, J. and Roth, D. (2011a). Generalized fact-finding. In
WWW ’11, pages 99–100. (Cited on page 77.)

Pasternack, J. and Roth, D. (2011b). Making Better Informed Trust
Decisions with Generalized Fact-Finding. In IJCAI, pages 2324–
2329. (Cited on page 77.)

Pasternack, J. and Roth, D. (2013). Latent Credibility Analysis. In
Proceedings of the 22Nd International Conference on World Wide Web,
WWW ’13, pages 1009–1020. (Cited on page 77.)

Pedersen, T., Patwardhan, S., and Michelizzi, J. (2004). WordNet:
: Similarity - Measuring the Relatedness of Concepts. In AAAI.
(Cited on page 60.)

Prud’ hommeaux, E. and Seaborne, A. (2008). SPARQL query lan-
guage for RDF. W3C Recommendation. (Cited on page 13.)

Ratinov, L. and Roth, D. (2009). Design challenges and misconcep-
tions in named entity recognition. In CONLL, pages 147–155. (Cited
on page 22.)

Rizzo, G., Troncy, R., Hellmann, S., and Bruemmer, M. (2012). NERD
meets NIF: Lifting NLP extraction results to the Linked Data Cloud.
In LDOW, 5th Workshop on Linked Data on the Web, April 16, 2012,
Lyon, France, Lyon, FRANCE. (Cited on page 62.)

bibliography 151

Röder, M., Usbeck, R., Hellmann, S., Gerber, D., and Both, A. (2014).
N3 - A Collection of Datasets for Named Entity Recognition and
Disambiguation in the NLP Interchange Format. In Submitted to
The 9th edition of the Language Resources and Evaluation Conference,
26-31 May, Reykjavik, Iceland. (Cited on pages viii and 54.)

Ruiz-Casado, M., Alfonseca, E., and Castells, P. (2007). Automatising
the learning of lexical patterns: An application to the enrichment
of WordNet by extracting semantic relationships from Wikipedia.
(Cited on page 69.)

Rula, A., Palmonari, M., Harth, A., Stadtmüller, S., and Maurino, A.
(2012). On the Diversity and Availability of Temporal Information
in Linked Open Data. In The 11th International Semantic Web Confer-
ence (ISWC2012). (Cited on page 105.)

Rula, A., Palmonari, M., Ngonga Ngomo, A., Gerber, D., Lehmann, J.,
and Bühmann, L. (2014). Hybrid Acquisition of Temporal Scopes
for RDF Data. In In Proceedings of the 11th Extended Semantic Web
Conference. (Cited on page viii.)

Sarawagi, S. (2008). Information Extraction. Found. Trends databases.
(Cited on page 68.)

Sauermann, L. and Cyganiak, R. (2008). Cool URIs for the Semantic
Web. W3C Interest Group Note, W3C. (Cited on page 11.)

Seaborne, A. and Harris, S. (2013). SPARQL 1.1 Query Language.
W3C recommendation, W3C. http://www.w3.org/TR/2013/REC-
sparql11-query-20130321/. (Cited on page 14.)

Seco, N., Veale, T., and Hayes, J. (2004). An Intrinsic Information
Content Metric for Semantic Similarity in WordNet. Proceedings of
European Conference on Artificial Intelligence, pages 1089–1090. (Cited
on page 46.)

Shadbolt, N., Berners-Lee, T., and Hall, W. (2006). The Semantic Web
Revisited. IEEE Intelligent Systems, 21(3):96–101. (Cited on page 3.)

Shapiro, C. and Varian, H. R. (1998). Information rules: a strategic guide
to the network economy. Harvard Business School Press, Boston, MA,
USA. (Cited on page 7.)

Shekarpour, S., Auer, S., Ngonga Ngomo, A.-C., Gerber, D., Hellmann,
S., and Stadler, C. (2011). Keyword-driven SPARQL Query Genera-
tion Leveraging Background Knowledge. In International Conference
on Web Intelligence. (Cited on pages 21 and 125.)

Stadler, C., Lehmann, J., Höffner, K., and Auer, S. (2012). LinkedGeo-
Data: A Core for a Web of Spatial Open Data. Semantic Web Journal,
3:333–354. (Cited on pages 4 and 19.)

bibliography 152

Stern, R. and Sagot, B. (2012). Population of a knowledge base for
news metadata from unstructured text and web data. In Proceedings
of the AKBC-WEKEX. (Cited on page 69.)

Suchanek, F. M., Kasneci, G., and Weikum, G. (2007). YAGO: A
Core of Semantic Knowledge Unifying WordNet and Wikipedia.
In WWW, New York, NY, USA. ACM Press. (Cited on page 15.)

Suchanek, F. M., Kasneci, G., and Weikum, G. (2008). YAGO: A Large
Ontology from Wikipedia and WordNet. Web Semantics: Science,
Services and Agents on the World Wide Web, 6(3):203–217. (Cited on
page 15.)

Suchanek, F. M., Sozio, M., and Weikum, G. (2009). SOFIE: A Self-
Organizing Framework for Information Extraction. In International
World Wide Web conference. (Cited on pages 23 and 26.)

Talukdar, P. P., Wijaya, D., and Mitchell, T. (2012a). Acquiring Tempo-
ral Constraints between Relations. In Proceedings of the Conference on
Information and Knowledge Management (CIKM 2012), Hawaii, USA.
Association for Computing Machinery. (Cited on page 79.)

Talukdar, P. P., Wijaya, D., and Mitchell, T. (2012b). Coupled Temporal
Scoping of Relational Facts. In Proceedings of the Fifth ACM Interna-
tional Conference on Web Search and Data Mining (WSDM), Seattle,
Washington, USA. Association for Computing Machinery. (Cited
on page 79.)

Theoharis, Y., Fundulaki, I., Karvounarakis, G., and Christophides, V.
(2011). On Provenance of Queries on Semantic Web Data. IEEE
Internet Computing, 15:31–39. (Cited on page 78.)

Tran, T., Mathäß, T., and Haase, P. (2010). Usability of Keyword-
Driven Schema-Agnostic Search. In Aroyo, L., Antoniou, G., Hyvö-
nen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., and Tudorache,
T., editors, ESWC (2), volume 6089 of Lecture Notes in Computer Sci-
ence, pages 349–364. Springer. (Cited on page 125.)

Tsatsaronis, G., Balikas, G., Malakasiotis, P., Partalas, I., Zschunke,
M., Alvers, M. R., Weissenborn, D., Krithara, A., Petridis, S., Poly-
chronopoulos, D., Almirantis, Y., Pavlopoulos, J., Baskiotis, N., Gal-
linari, P., Artières, T., Ngonga, A., Heino, N., Gaussier, É., Barrio-
Alvers, L., Schroeder, M., Androutsopoulos, I., and Paliouras, G.
(2015). An overview of the BIOASQ large-scale biomedical seman-
tic indexing and question answering competition. BMC Bioinformat-
ics, 16:138. (Cited on page 5.)

Tummarello, G., Cyganiak, R., Catasta, M., Danielczyk, S., Delbru,
R., and Decker, S. (2010). Sig.ma: Live views on the Web of Data.
Journal of Web Semantics, 8(4):355–364. (Cited on page 125.)

bibliography 153

Tummarello, G., Delbru, R., and Oren, E. (2007). Sindice.com: Weav-
ing the Open Linked Data. pages 552–565. (Cited on page 125.)

Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.-C., Ger-
ber, D., and Cimiano, P. (2012). Template-based question answer-
ing over RDF data. In Proceedings of the 21st international conference
on World Wide Web, pages 639–648. (Cited on pages vii, 21, 118,
and 121.)

Unger, C. and Cimiano, P. (2011). Pythia: Compositional meaning con-
struction for ontology-based question answering on the Semantic
Web. In Proceedings of the 16th International Conference on Applica-
tions of Natural Language to Information Systems (NLDB 2011). (Cited
on pages 119 and 125.)

Unger, C., Mccrae, J., Walter, S., Winter, S., and Cimiano, P. (2013). A
lemon lexicon for DBpedia. In Proceedings of 1st International Work-
shop on NLP and DBpedia, October 21-25, Sydney, Australia, volume
1064 of NLP & DBpedia 2013, Sydney, Australia. CEUR Workshop
Proceedings. (Cited on page 127.)

Usbeck, R., Ngonga Ngomo, A.-C., Röder, M., , Gerber, D., Athaide
Coelho, S., Auer, S., and Both, A. (2014). AGDISTIS - Agnostic
Disambiguation of Named Entities Using Linked Open Data. In In
Proceedings of the 13th International Semantic Web Conference. (Cited
on pages viii, 80, and 128.)

V. Lopez, V. Uren, E. M. and Pasin, M. (2007). AquaLog: An ontology-
driven question answering system for organizational semantic in-
tranets. Journal of Web Semantics, 5(2):72–105. (Cited on page 119.)

V. Lopez, M. Sabou, V. U. and Motta, E. (2009). Cross-Ontology Ques-
tion Answering on the Semantic Web – an initial evaluation. In Pro-
ceedings of the Knowledge Capture Conference, 2009, California. (Cited
on page 119.)

Wang, Y., Yang, B., Qu, L., Spaniol, M., and Weikum, G. (2011). Har-
vesting Facts from Textual Web Sources by Constrained Label Prop-
agation. In Proceedings of the 20th ACM Conference on Information and
Knowledge Management (CIKM), Glasgow, Scotland, UK, October 24-28,
2011, pages 837–846. (Cited on page 79.)

Wang, Y., Zhu, M., Qu, L., Spaniol, M., and Weikum, G. (2010). Timely
YAGO: harvesting, querying, and visualizing temporal knowledge
from Wikipedia. In EDBT, volume 426 of ACM International Confer-
ence Proceeding Series, pages 697–700. ACM. (Cited on page 79.)

Wu, F. and Weld, D. S. (2010). Open Information Extraction Using
Wikipedia. In ACL, pages 118–127. The Association for Computer
Linguistics. (Cited on page 26.)

bibliography 154

Wu, Z. and Palmer, M. S. (1994). Verb Semantics and Lexical Selection.
In Pustejovsky, J., editor, ACL, pages 133–138. Morgan Kaufmann
Publishers / ACL. (Cited on page 60.)

Xu, F., Uszkoreit, H., and Li, H. (2007). A Seed-driven Bottom-up
Machine Learning Framework for Extracting Relations of Various
Complexity. In ACL. (Cited on pages 22 and 25.)

Yan, Y., Okazaki, N., Matsuo, Y., Yang, Z., and Ishizuka, M. (2009). Un-
supervised relation extraction by mining Wikipedia texts using in-
formation from the web. In ACL, ACL ’09, pages 1021–1029. (Cited
on pages 22 and 79.)

Yin, X., Han, J., and Yu, P. S. (2007). Truth discovery with multiple
conflicting information providers on the web. In KDD ’07, pages
1048–1052. (Cited on pages 77 and 78.)

Yoichiro, H. (2006). Method for using Wikipedia as Japanese Cor-
pus. Doshisha studies in language and culture, 9(2):373–403. (Cited on
page 29.)

Zaveri, A., Kontokostas, D., Sherif, M. A., Bühmann, L., Morsey, M.,
Auer, S., and Lehmann, J. (2013). User-driven quality evaluation of
DBpedia. In Sabou, M., Blomqvist, E., Noia, T. D., Sack, H., and
Pellegrini, T., editors, I-SEMANTICS, pages 97–104. ACM. (Cited
on page 6.)

Zhou, G. and Su, J. (2002). Named entity recognition using an HMM-
based chunk tagger. In ACL ’02, pages 473–480. (Cited on page 23.)

D E C L A R AT I O N

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne
unzulässige fremde Hilfe angefertigt zu haben. Ich habe keine an-
deren als die angeführten Quellen und Hilfsmittel benutzt und sämt-
liche Textstellen, die wörtlich oder sinngemäß aus veröffentlichten
oder unveröffentlichten Schriften entnommen wurden, und alle Anga-
ben, die auf mündlichen Auskünften beruhen, als solche kenntlich
gemacht. Ebenfalls sind alle von anderen Personen bereitgestellten
Materialen oder erbrachten Dienstleistungen als solche gekennzeich-
net.

Universität Leipzig, Oktober 2015

Daniel Gerber

	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Algorithms for the Statistical Extraction of Multilingual Natural Language Patterns
	1 Introduction
	1.1 From the World Wide Web to the Semantic Web
	1.2 Current Drawbacks of the Semantic Web
	1.3 Chapter Overview
	1.4 Author Contributions

	2 Preliminaries
	2.1 Semantic Web
	2.1.1 RDF, RDFS, OWL
	2.1.2 SPARQL
	2.1.3 DBpedia, YAGO(2) and Freebase

	3 Bootstrapping Linked Data
	3.1 Introduction
	3.2 Related Work
	3.3 The BOA Framework
	3.3.1 Corpus Extraction
	3.3.2 Knowledge Acquisition
	3.3.3 Pattern Search
	3.3.4 Pattern Scoring
	3.3.5 RDF Generation
	3.3.6 Evaluation

	3.4 Multilingual Extension of BOA
	3.4.1 Overview
	3.4.2 Pattern Extraction
	3.4.3 Feature Extraction
	3.4.4 Scoring Approach
	3.4.5 RDF Generation
	3.4.6 Evaluation

	3.5 Conclusion

	4 Real-time RDF extraction from unstructured data streams
	4.1 Introduction
	4.2 Overview
	4.2.1 Data Acquisition
	4.2.2 Deduplication
	4.2.3 Pattern Search and Filtering
	4.2.4 Pattern Refinement
	4.2.5 Pattern Similarity and Clustering
	4.2.6 Cluster Labeling and Merging
	4.2.7 Mapping to RDF and Publication on the Data Web
	4.2.8 Linking

	4.3 Evaluation
	4.3.1 URI Disambiguation
	4.3.2 Pattern Clustering
	4.3.3 RDF Extraction and Linking
	4.3.4 Scalability

	4.4 Related Work
	4.5 Conclusion

	Applications of Multilingual Natural Language Patterns
	5 Defacto - Deep Fact Validation
	5.1 Introduction
	5.2 Related Work
	5.3 Approach
	5.4 DeFacto – Deep Fact Validation
	5.4.1 BOA
	5.4.2 Trustworthiness Analysis of Webpages
	5.4.3 Features for Deep Fact Validation
	5.4.4 Evaluation

	5.5 DeFacto – Multilingual and Temporal Extension
	5.5.1 Training BOA for DeFacto
	5.5.2 Automatic Generation of Search Queries
	5.5.3 BOA and NLP Techniques for Fact Confirmation
	5.5.4 Trustworthiness Analysis of Webpages
	5.5.5 Features for Deep Fact Validation
	5.5.6 Temporal Extension of DeFacto
	5.5.7 FactBench - A Fact Validation Benchmark
	5.5.8 Evaluation

	5.6 Conclusion

	6 Template-based question answering over RDF data
	6.1 Introduction
	6.2 Overview
	6.3 Evaluation and Discussion
	6.4 Prototype
	6.5 Related Work
	6.6 Conclusion

	7 Mapping text to ontology with DBpedia Lemon and BOA
	7.1 Lexical Pattern Library and Seed Lexicon
	7.2 Combining lemon seeds and BOA
	7.2.1 Finding mapping extraction patterns
	7.2.2 Extracting new lexical mappings

	7.3 Evaluation
	7.4 Conclusion and future work

	8 Conclusion and Future Work
	8.1 Summary
	8.2 Future Work

	Appendix
	A Appendix
	A.1 Template Based Question Answering

	Bibliography
	Declaration

