286 research outputs found

    How to Specify and How to Prove Correctness of Secure Routing Protocols for MANET

    Get PDF
    Secure routing protocols for mobile ad hoc networks have been developed recently, yet, it has been unclear what are the properties they achieve, as a formal analysis of these protocols is mostly lacking. In this paper, we are concerned with this problem, how to specify and how to prove the correctness of a secure routing protocol. We provide a definition of what a protocol is expected to achieve independently of its functionality, as well as communication and adversary models. This way, we enable formal reasoning on the correctness of secure routing protocols. We demonstrate this by analyzing two protocols from the literature

    Formal Modeling and Analysis of Leader Election in MANETs

    Get PDF
    The modeling and analysis of mobile ad hoc networks MANETs pose non-trivial challenges to formal methods. Time, geometry, communication delays and failures, mobility, and uni- and bidirectionality can interact in unforeseen ways that are hard to model and analyze by automatic formal methods. In this work we use rewriting logic and Real-Time Maude to address this challenge. We propose a composable formal framework for MANET protocols and their mobility models that can take into account such complex interactions. We illustrate our framework by analyzing a well-studied leader election protocol for MANETs in the presence of both mobility and uni- and bidirectional links.NSF Grant CNS 13-19109AFOSR Grant FA8750-11-2-0084Ope

    Emergence in the security of protocols for mobile ad-hoc networks

    Get PDF
    This thesis is concerned with the study of secure wireless routing protocols, which have been deployed for the purpose of exchanging information in an adhoc networking enviromnent. A discrete event simulator is developed, utilising an adaptive systems modelling approach and emergence that aims to assess networking protocols in the presence of adversarial behaviour. The model is used in conjunction with the characteristics that routing protocols have and also a number of cryptographic primitives that can be deployed in order to safeguard the information being exchanged. It is shown that both adversarial behaviour, as well as protocol descriptions can be described in a way that allows for them to be treated as input on the machine level. Within the system, the output generated selects the fittest protocol design capable of withstanding one or more particular type of attacks. As a result, a number of new and improved protocol specifications are presented and benchmarked against conventional metrics, such as throughput, latency and delivery criteria. From this process, an architecture for designing wireless routing protocols based on a number of security criteria is presented, whereupon the decision of using particular characteristics in a specification has been passed onto the machine level

    Generalized Neuron Based Secure Media Access Control Protocol for Wireless Sensor Networks

    Get PDF
    Security plays a pivotal role in most applications of wireless sensor networks. It is common to find inadequately secure networks confined only to controlled environments. The issue of security in wireless sensor networks is a hot research topic for over a decade. This paper presents a compact generalized neuron (GN) based medium access protocol that renders a CSMA/CD network secure against denial-of-service attacks launched by adversaries. The GN enhances the security by constantly monitoring multiple parameters that reflect the possibility that an attack is launched by an adversary. Particle swarm optimization, a popular bio-inspired evolutionary-like optimization algorithm is used for training the GN. The wireless sensor network is simulated using Vanderbilt Prowler, a probabilistic wireless network simulator. Simulation results show that the choice of threshold suspicion parameter impacts on the tradeoff between network effectiveness and lifetime

    Eighth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark, October 22-24, 2007

    Get PDF
    This booklet contains the proceedings of the Eighth Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, October 22-24, 2007. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop0

    Enabling individually entrusted routing security for open and decentralized community networks

    Get PDF
    Routing in open and decentralized networks relies on cooperation. However, the participation of unknown nodes and node administrators pursuing heterogeneous trust and security goals is a challenge. Community-mesh networks are good examples of such environments due to their open structure, decentralized management, and ownership. As a result, existing community networks are vulnerable to various attacks and are seriously challenged by the obligation to find consensus on the trustability of participants within an increasing user size and diversity. We propose a practical and novel solution enabling a secured but decentralized trust management. This work presents the design and analysis of securely-entrusted multi-topology routing (SEMTOR), a set of routing-protocol mechanisms that enable the cryptographically secured negotiation and establishment of concurrent and individually trusted routing topologies for infrastructure-less networks without relying on any central management. The proposed mechanisms have been implemented, tested, and evaluated for their correctness and performance to exclude non-trusted nodes from the network. Respective safety and liveness properties that are guaranteed by our protocol have been identified and proven with formal reasoning. Benchmarking results, based on our implementation as part of the BMX7 routing protocol and tested on real and minimal (OpenWRT, 10 Euro) routers, qualify the behaviour, performance, and scalability of our approach, supporting networks with hundreds of nodes despite the use of strong asymmetric cryptography.Peer ReviewedPostprint (author's final draft

    Towards Verifying Declarative Netlog Protocols with Coq

    Get PDF
    Declarative languages, such as recursive rule based languages, have been proposed to program distributed applications over networks.It has been shown that they simplify greatly the code, while still offering efficient distributed execution. In this paper, we show that moreover they provide a promising approach to the verification of distributed protocols. We choose the Netlog language and use the Coq proof assistant. We first formalize the distributed computation model based on message passing with either synchronous or asynchronous behavior. We then see how the declarative rules of the protocols can be simply encoded in Coq. Finally, we develop the machine embedded on each node of the network which evaluates the rules. This framework enables us to formally verify distributed declarative protocols, as sketched on a concrete example, a breadth-first search tree construction in a distributed network

    Effects of Data Replication on Data Exfiltration in Mobile Ad hoc Networks Utilizing Reactive Protocols

    Get PDF
    A swarm of autonomous UAVs can provide a significant amount of ISR data where current UAV assets may not be feasible or practical. As such, the availability of the data the resides in the swarm is a topic that will benefit from further investigation. This thesis examines the impact of le replication and swarm characteristics such as node mobility, swarm size, and churn rate on data availability utilizing reactive protocols. This document examines the most prominent factors affecting the networking of nodes in a MANET. Factors include network routing protocols and peer-to-peer le protocols. It compares and contrasts several open source network simulator environments. Experiment implementation is documented, covering design considerations, assumptions, and software implementation, as well as detailing constant, response and variable factors. Collected data is presented and the results show that in swarms of sizes of 30, 45, and 60 nodes, le replication improves data availability until network saturation is reached, with the most significant benefit gained after only one copy is made. Mobility, churn rate, and swarm density all influence the replication impact
    • …
    corecore