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Generalized Neuron Based Secure Media Access Control Protocol for
Wireless Sensor Networks

Raghavendra V. Kulkarni, Senior Member, IEEE, Ganesh K. Venayagamoorthy, Senior Member, IEEE,
Abhishek V. Thakur and Sanjay K. Madria, Senior Member, IEEE

Abstract—Security plays a pivotal role in most applications of
wireless sensor networks. It is common to find inadequately se-
cure networks confined only to controlled environments. The issue
of security in wireless sensor networks is a hot research topic for
over a decade. This paper presents a compact generalized neuron
(GN) based medium access protocol that renders a CSMA/CD
network secure against denial-of-service attacks launched by
adversaries. The GN enhances the security by constantly mon-
itoring multiple parameters that reflect the possibility that an
attack is launched by an adversary. Particle swarm optimization,
a popular bio-inspired evolutionary-like optimization algorithm
is used for training the GN. The wireless sensor network is
simulated using Vanderbilt Prowler, a probabilistic wireless
network simulator. Simulation results show that the choice of
threshold suspicion parameter impacts on the tradeoff between
network effectiveness and lifetime.

I. INTRODUCTION

A wireless sensor network (WSN) is a network of dis-
tributed autonomous devices that monitor physical or environ-
mental conditions cooperatively [1], [2]. WSNs are used in va-
rieties of applications such as environmental monitoring, habi-
tat monitoring, prediction and detection of natural calamities,
medical monitoring and structural health monitoring. WSNs
consist of a large number of small, inexpensive, disposable and
autonomous sensor nodes (or motes) that are deployed in an ad
hoc manner for remote operations. Sensor nodes are severely
constrained in terms of data storage resources, computational
capabilities, communication bandwidth and power supply [3].
MICA2 is a popular commercially available sensor mote [4].

Communication tasks consume maximum power available
to sensor nodes, and in order to ensure a sustained long-term
sensing operation, communication tasks need to be exercised
frugally. Nodes may cease to function due to physical damage
or power failure; and surviving nodes may go in or out of
transmission radii of other nodes due to dynamic environment.
Resource constraints and dynamic topology pose technical
challenges in network discovery, network control and routing,
collaborative information processing, querying, and tasking
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[3]. Major research areas in WSNs include data aggregation,
energy aware routing, dynamic node scheduling, optimal node
deployment, self organization, security, node localization and
quality-of-service assurance.

This paper presents a secure medium access control (MAC)
protocol to enhance the security of a network of MICA2
sensor nodes by detecting (and counteracting to) the denial-
of-service (DoS) attacks launched by adversaries. Simulation
is carried out in Vanderbilt Prowler, a probabilistic wireless
network simulator. The key parameters that reflect the security
level are monitored by a compact generalized neuron (GN)
[5] on each node, which stops the MAC layer activities if
it detects a security breach. The GN is trained using particle
swarm optimization (PSO), a popular bio-inspired multidimen-
sional optimization algorithm [6]. A small number of trainable
weights and a low computational complexity of the GN makes
it suitable to be loaded on a sensor node. Besides, PSO-based
training assures accurate and quick convergence of the weights
to their final values.

The rest of this paper is organized as follows: A brief
overview of the recent research in security issues in ad hoc
and sensor networks is presented in section II. DoS attacks
and the countermeasures proposed by various researchers are
discussed in section III. The MICA2 mote and the Prowler
simulation environment are discussed in section IV. The
structure of a GN is explained in section V. The network
scenario implemented in order to demonstrate the secure MAC
is explained in section VI. Training of the GN through PSO
are discussed in section VII. The results obtained are discussed
in section VIII. And finally, concluding remarks are made in
section IX.

II. RELATED WORK

Wireless links are susceptible to eavesdropping, impersonat-
ing and message distorting. Poorly protected nodes that move
into hostile environments can be easily compromised. Autho-
rization of administration becomes difficult due to dynamic
topology. The scale of deployment of wireless sensor network
requires careful decision about trade-offs among various se-
curity measures. These issues are discussed and mechanisms
to achieve secure communication in sensor networks are
presented in [7]. Various security challenges in wireless sensor
networks are analyzed and key issues that need to be addresses
for achieving security are summarized in [8].

Secure routing is one of the main research areas in the recent
times. Types of routing attacks and their countermeasures are
presented in [9]. Secure routing in an ad hoc network is a
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daunting task because of some contradictions between the
nature of the network and the associated applications. In [10],
various routing protocols have been presented with a focus
on finding security vulnerabilities. In article [11], a survey of
secure ad hoc routing protocols for mobile wireless networks
is presented.

In spite of a large number of secure protocols in literature,
it is unclear what properties should the protocols achieve, as
a formal analysis of these protocols is mostly lacking. Article
[12] is concerned with the problem of specifying and proving
correctness of a secure routing protocol. Varieties of secure
routing protocols have been presented in [13] and [14]. A
new secure routing protocol for mobile ad hoc networks based
on advanced on-demand distance vector (AODV) [15] called
AODV-SEC is presented in [16]. A secure routing protocol,
which enhances the security aspects of AODV with a very
negligible byte overhead is presented in [17]. A secure routing
mechanism based on trust is presented in [18].

Security is not confined to the realm of routing algorithms
alone. Researchers have proposed several methods of securing
the MAC layer against the attacks by adversaries. DoS attacks
and their countermeasures at the CSMA/CA MAC layer are
discussed in [19] and [20]. In both these articles, the current
security level in the network is assessed by monitoring three
critical parameters: collision rate, rate of arrival of Request-to-
Send (RTS) packets, and the average waiting time of a packet
in the MAC buffer. An abnormal rise in one or more of these
parameters is construed as an attack. While the work in [19]
uses the parameters in a deterministic way, the fuzzy logic
approach is used in [20] to estimate the security and to shut
down the MAC in case of a strong suspicion of an attack.

III. SECURITY AGAINST DOS ATTACKS

The work presented in [19] and [20] aim at detecting and
counteracting the DoS attacks launched by adversaries. The
DoS attacks are classified into three groups, namely, collision,
unfairness and exhaustion attacks. In collision attacks, the
attackers transmit packets regardless of the status of the
broadcast medium. The packets collide with data or control
packets from legitimate sensor nodes. In unfairness attacks,
adversaries transmit an unusually large number of packets if
the medium is free. This prevents the legitimate sensors from
transmitting their packets. In exhaustion attack, adversaries
transmit abnormally large number of RTS packets to normal
sensor nodes and exhaust them prematurely. A more detailed
description of the attacks is available in [20].

Articles [19] and [20] show that DoS attacks can be detected
if abnormally large variations occur in sensitive parameters
such as collision rate Rc (number of collisions observed by a
node per second), average waiting time Tw (waiting time of a
packet in MAC buffer before transmission), and RTS arrival
rate (RRTS) (number of RTS packets received successfully by
a node every second).

In [19], the probability that an attack has been perpetrated
is estimated using a decision function that involves two
parameters, which are determined using the steepest gradient

descent algorithm. On the other hand, in [20], fuzzy logic is
creatively used wherein the parameters Rc, RRTS and Tw are
fuzzified, and evaluated by a fuzzy inference engine, which
produces a binary output to trigger a mechanism to counteract
the attack. Both the above methods are reported to extend the
security and thus, lifetime of the sensor networks.

This study extends the idea of the secure-MAC discussed in
[20] to the MICA2 nodes that employ CSMA/CD protocol in
their MAC layer. The most important modification is the use
of a GN structure to monitor for a security breach. The best
values for the trainable parameters in the GN are determined
using the PSO algorithm. The GN has a compact structure,
and it uses less computational and storage resources available
to the sensor nodes. At the same time, PSO-based training
converges quickly and accurately to the best training param-
eters. Therefore, the approach proposed here has a twofold
advantage. The approach is illustrated in the block diagram
shown in Figure 1.

Each sensor node in the WSN proposed here has a pre-
trained GN running on its MAC layer. Critical parameters
collision rate (Rc), packet request rate (Rr) and average packet
waiting time (Tw) extracted from the simulator environment
are the inputs to the GN. The GN computes the level of
suspicion that denotes the probability that there is a security
breach. If this output is greater than a predefined threshold
level, then the node shuts itself down and saves energy,
which is its most crucial commodity. Security is distributed
throughout the network in the sense that each node has a
GN, and only the node which suspects a security breach shuts
itself down. It is quite likely that an attack affects only one
geographical area of the network, and therefore, only the nodes
in that area need to be shut down. The network of nodes that
use the proposed MAC layer has this ability.

IV. MICA2 MOTE AND THE PROWLER SIMULATION

ENVIRONMENT

MICA, A low-cost prototype field-node family was devel-
oped at University of California, Berkeley. MICA2, an en-
hanced version of this prototype is commercially manufactured
by Crossbow Technology, Inc. MICA2 includes an 8-bit, 4
MHz Atmel ATMEGA103 microcontroller, 128kB program
memory, 4KB RAM, and an RFM TR1000 radio chip capable

Fig. 1. GN based secure MAC protocol
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of providing 50 kbit/s transmission rate at 916.5 MHz. The
motes can also accommodate a set of interchangeable sensors
to measure varieties of physical parameters like temperature,
light and sound. MICA2 runs an embedded operating system
called TinyOS, designed to provide the necessary services in
spite of limited hardware resources. It contains a complete
network stack with bit-level error correction, medium access
layer, network messaging layer, and timing.

The MAC layer of MICA2 uses a simple CSMA/CD pro-
tocol: it waits for a random duration before trying to transmit
a packet and then waits for a random back-off interval if the
channel is found busy. It keeps trying until the transmission
can be performed. This simple approach is not as effective as
the more sophisticated protocols like IEEE 802.11 in terms
of collision avoidance, but it consumes less energy and the
communication overhead is much smaller.

Probabilistic wireless network simulator Prowler captures
the event-driven nature of TinyOS. The simulator can be set
to operate either in deterministic mode or in probabilistic
mode. The latter simulates the nondeterministic nature of
the communication channel and the low-level communication
protocol of the MICA2 motes [21]. Prowler can incorporate an
arbitrary number of stationary or mobile motes and it can be
easily embedded into optimization algorithms. The simulator
core runs on MATLAB, which provides a fast and easy way
to build applications. It has attractive visualization effects for
easy interpretation of debugging.

A. Radio propagation models

Prowler’s radio propagation model determines the strength
of a transmitted signal at a particular point of the space for
all transmitters in the system. It models the decay of signal
strength with distance. It also models the fading effect, the
time-varying nature of the signal strength, and other miscella-
neous transmission errors. Strength of the signal received at a
node at a distance d from a transmitter under ideal conditions
is given by (1).

Prec,ideal(d) = Ptransmit
1

1 + dγ
(1)

where Ptransmit is the power transmitted and γ is the decay
parameter, 2 ≤ γ ≤ 4. However, the power of signal the
node j receives from a node i in real environments is given
differs from the ideal value. Prowler uses two fading models.
In model 1 the signal is received if the signal strength is
greater than a user definable reception limit parameter. In
model 2, Raleigh fading model is used. Model 1 is simple
and fast, while Model 2 is more accurate. Prowler enables
the network designers to choose a radio model from the two
available models. Moreover, various environment parameters
can be appropriately chosen.

B. Simulation application

Prowler applications are event based. The interactions be-
tween MAC layer and the application take place through the
following aptly named events: Init Application, Packet sent,

Packet received, Collided Packet Recieved, Clock Tick, Ap-
plication Finished, and Application Stopped. The application
can trigger the actions Set Clock and Send Packet. In addition,
debug and visualization actions can be invoked. These actions
include Print Message, LED and Draw Line.

C. The MAC layer

Prowler’s MAC layer is modeled as a sequence of events.
When the application invokes the Send Packet event, the MAC
layer goes idle for a random Waiting Time after which it
senses if the broadcast channel is free. This is the basic
essence of CSMA. If channel is not free, the MAC layer
frequently checks if it is free. Before each check, it waits
for a Backoff Time. Both Waiting Time and Backoff Time can
be random, user defined a combination of the two. When the
channel is found free, the MAC layer transmits the constant
sized packet (960 bytes), for the Transmission Time, and
notifies the application through a Packet Sent report. When a
packet is received, the MAC layer reports it to the application
through a Packet Received or a Collided Packet Received
message as the case may be.

V. THE GENERALIZED NEURON

It is shown in the literature that multilayer perceptrons
(MLPs) are universal approximators of continuous functions
for the given input-output patterns [22]. The general struc-
ture of a typical MLP contains an aggregation function and
an activation function. A typical neuron uses summation or
multiplication as aggregation function and a hard-limiter, log
sigmoidal, radial basis, or linear activation function [23].
In applications in WSNs, memory constrains in the sensor
nodes call for neural networks that use a small number of
trainable parameters. GN is a neural network model that is
more compact and flexible than MLPs [24], [5]. The GN used
here uses both summation and multiplication as aggregation
functions, and both sigmoid and Gaussian activation functions.
Therefore, the GN has flexibility and resilience to the nonlin-
earities of real world problems. The compact structure of a
GN is shown in Figure 2.

A GN uses both Σ (sum) and Π (product) aggregation
functions. The weighted vector of inputs �X is summed up
by aggregation function Σ1. Output of this unit is processed
by an activation function f1. Similarly, weighted inputs are
multiplied by aggregation function Π. Output of this unit
is processed by a different activation function f2. Weighted

Fig. 2. Structure of a generalized neuron
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outputs of these two units are summed up. Two different sets
of activation and aggregation functions endow the GN with the
flexibility that is not possible in the MLPs having the same
number of trainable parameters.

The Σ section of the GN is associated with summation of
weighted inputs, and it uses the sigmoidal activation function.
Its output is given by (2),

OΣ = f1(s net) =
1

1 + exp(−λs × s net)
(2)

where
s net =

∑
WΣiXi + XoΣ (3)

Here, WΣ are input weights, XoΣ is bias weight of Σ section
and λs is the gain factor of Σ section. The Π section of the
GN is associated with multiplication of weighted inputs. It
uses the Gaussian activation function given by (4).

OΠ = f2(pi net) = exp(−λp × pi net2) (4)

where
pi net =

∏
WΠiXi × XoΠ (5)

Here, WΠ are input weights, XoΠ is bias weight of Π
section and λp is the gain factor of Π section. The output
is obtained as in (6)

OGN = OΠ × (1 − W ) + (OΣ × W ) (6)

A GN has multiple inputs but only one output. If multiple
outputs are desired, then as many GNs will have to be used.
A GN having n inputs has (2n + 1) weights and two biases,
a total of (2n + 3) trainable parameters. Either or both gain
factors λs and λp can be taken as trainable parameters as well,
in which case, their total number increases accordingly. Other
activation functions like sine, cosine, or hyperbolic tangent can
also be used. Because weighted outputs of Σ and Π sections
of the proposed GN are added, this type of GN is called the
summation type GN. Weighted outputs of Σ and Π sections
can be multiplied to construct a multiplication type GN.

VI. THE SCENARIO FOR THE GN-BASED SECURE MAC
PROTOCOL

In order to demonstrate the secure MAC layer protocol
proposed in this work, a test WSN scenario is implemented
as shown in the screen shot in Figure 3.

The mission space is a two-dimensional plane having its ori-
gin at the lower left corner. The deployment scenario involves
17 sensor nodes having unique IDs from 1 through 17. Nodes 1
through 16 are placed in a 4×4 square grid. Distance between
two consecutive nodes in a column, or a row is three units.
Node 17 is placed away from the rest, at coordinates (20,20).
This node can be moved to any place in the scenario. Each of
the nodes one through 16 attempts to transmit a packet at every
0.25 seconds with a probability P . However, because random
Waiting Time and Backoff Time, all nodes do not transmit
simultaneously. If two nodes transmit simultaneously, their

Fig. 3. The test scenario for GN-MAC secure protocol against DoS attacks

neighbors get collided packets. The number of request packets
a node receives in a minute is measured as the request rate Rr.
Each node that needs a data packet from another node sends
a request packet with a probability of P = 0.1. The recipient
node responds to the request by sending a data packet. Node
17 never receives a packet because it is too far away from
others to receive a sufficiently strong signal. Average time for
which a packet waits in the node buffer before it is transmitted
is measured as the average waiting time Tw. Average number
of collisions in a minute is measured as the collision rate Rc.
These parameters can be determined from the event responses
obtained from the Prowler environment.

To begin with, all nodes are endowed with batteries that
have random power levels between 500 and 1000 units. All
the nodes numbered one through 16 transmit with a unit power
level. The simulation shows successful packet transmissions
and collisions.

Node 17 turns into an adversary and launches a DoS attack
when it is placed close to other nodes. The three types of DoS
attacks are simulated in this work. In normal case, because it
is away from other nodes, node 17’s MAC will always find
the channel to be free. It transmits packets with probability of
unity and power level of eight units. This transmission will
collide with the packets on the broadcast medium, causing a
substantial rise in the number of collisions. This attack is a
collision attack, which results in an unusual rise in the collision
rate Rc. In an unfairness attack, node 17 sends repeated request
packets to a particular node, node 1 in this simulation. Node 1
repeatedly sends sensor data packets in repones to requests by
node 17, and exhausts its energy reservoir. This results in an
unusual rise in Rr. In an unfairness attack, node 17 transmits
persistently, but at the same power level as the other nodes
transmit (power level of 1 unit in this simulation). This forces
other nodes in the vicinity to remain silent for unusually long
periods, causing an unusual rise in Tw.
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The GN senses the rise in critical parameters Rc, Rr and
Tw and produces the output that shuts down the node. The
values of the critical parameters in presence and absence of
different types of attack are recorded in 50 trial runs and their
mean and standard deviation is computed. Table I shows the
values of the critical parameters in absence and presence of
the three types of attacks.

The output of GN is used as a measure of suspicion of an
attack. When the suspicion of an attack exceeds a predefined
threshold suspicion level STh, the MAC and physical layer of
the node is switched off.

VII. TRAINING OF THE GN USING PSO

Training of an MLP involves adjusting its parameters it-
eratively in such a way that the mean-square-error between
the desired and actual outputs for all training patterns is
equal to or lesser than a preset tolerance. Backporpagation
algorithm (BPA) is a popular training algorithm for MLPs
[23]. Particle swarm optimization (PSO) has been used as a
training algorithm for neural networks, and it is shown to be
more accurate and computationally efficient than BPA [25].
This is the motivation for the use of PSO to train the GN in
this study.

PSO is a population based parallel search algorithm that
models social behavior of birds within a flock [6]. PSO
consists of a population (or a swarm) of particles, each of
which represents a potential solution. Particles are initially
assigned random positions and velocities. The direction of
position change is influenced by both particle’s experience and
the knowledge a particle acquires from the flock. Each particle
is evaluated using a fitness function which indicates how close
the particle is to the global solution. It is desired to maximize
the fitness as the PSO iterations progress. Several versions of
PSO have been proposed [26].

Each particle has a memory where it stores the knowledge
of position pid, which is defined position at which the particle
had maximum fitness. Besides, the best of pid of all particles,
called pgd, is stored too. At each iteration k, PSO adds velocity
vid to the position xid of each dimension in a particle and
steers the particle towards its pid and pgd using (7) and (8).
This paper uses the global best (gbest) version of PSO.

vid(k + 1) = w · vid(k) + c1 · rand1 · (pid − xid)
+c2 · rand2 · (pgd − xid) (7)

xid(k + 1) = xid(k) + vid(k + 1) (8)

TABLE I
CRITICAL PARAMETERS IN ABSENCE AND PRESENCE OF AN ATTACK

AVERAGED OVER 50 TRIAL RUNS

Rc Rr Tw

Normalcy 3.2 (1.13) 23.5 (11.72) 1223 (988)
Collision Attack 19.3 (2.01) 29.7 (10.3) 10211 (1324)
Exhaustion Attack 4.5 (1.2) 42.3 (27.2) 1868 (1158)
Unfairness Attack 7.9 (3.3) 32.4 (9.3) 1791 (329)

The umbers shown in brackets represent standard deviation.

Fig. 4. Pseudocode for PSO

Maximum values chosen for position xid and velocity vid

of a particle are 100 and 2 respectively. Inertia weight w is
reduced linearly in every iteration from 0.9 in the beginning
to 0.4 at the end. Cognition and social acceleration constants
c1 and c2 are chosen as 2 as done generally. Pseudocode for
the PSO based training algorithm is given in Figure 4.

The GN used for this task has three inputs X1, X2 and X3

which are the parameters Rc, Rr and Tw and respectively. The
GN uses just 9 trainable parameters ( the number of inputs n =
3). The GN is trained to compute the attack suspicion factor,
which refers to how strongly the GN suspects that an attack is
launched. Numerous experiments are conducted to generate a
training pattern set containing 50 patterns. The patterns range
from the normal scenario without an attack (where suspicion
is zero) to the most vicious attack (unit suspicion factor). The
first training set has inputs equal to the average values of Rc,
Rr and Tw under no attack, and the 50th pattern has inputs
equal to the average values of the same parameters at the most
vicious attack (all attacks launched simultaneously). The value
of a parameter Xi, where i=1, 2 or 3, in the jth training pattern
is obtained as in (9). The value of the outputs in each of the
50 training patterns is shown in Figure 5. The GN is trained
to approximate this input-output relation.

Xj
i = Xmin

i + (j − 1) × Xmax
i − Xmin

i

50
(9)
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VIII. SIMULATION RESULTS AND DISCUSSIONS

PSO algorithm having 30 particles is executed for 2000
iterations in the training phase. The GN achieves good learning
of the problem. The training target suspicion factor, and the
suspicion factor that the GN came up with after it learnt the
problem are depicted in Figure 5.

The training pattern set containing 50 patterns is applied
during the PSO based training. Figure 6 depicts the reduction
of training error as the training iterations progress. Average
training error of 2.176×10−4 is achieved in 50 training trials.
After the training is complete, the final values of trainable
parameters are loaded on the GNs on each of the nodes of the
sensor network for real-time use.

The choice of the threshold suspicion factor STh strongly
influences the network behavior. Different nodes can have
different values of STh depending on where in the network
the nodes are located. If the GN on a node produces an
output (suspicion factor) equal to or greater than the STh ,
the node’s physical layer is turned off. After a time of 30
seconds, the node’s physical layer is turned on again, and
the sensor would return to its normal working state under the
watchful monitoring of the GN. This saves the energy the node
would have spent in collisions or transmissions in response to
adversary’s malicious requests.

In this simulation study, 50 trial runs are conducted, for
each of the four values of the threshold suspicion factor.
The average network lifetime before the first node death and
the number of packets the node transmits successfully are
recorded. In each trial run, all nodes are assigned equal initial
energy, represented by a variable. This variable is decremented
after each packet is transmitted, regardless of whether or not
the packet succeeds in reaching its destination. Simulation is
carried out until the variable reaches zero, which represents the
node death due to exhaustion of energy. In addition, packets
that reach their destination without collision are counted. This
gives the number of successful transmissions. A summary of
the results is presented in Table II.

Fig. 5. Results of GN training for secure MAC

Fig. 6. Reduction of training error during GN training

The case with STh > 1 represents a passive GN (the GN
never produces STh > 1). Here, the node is not shut down
even in case of an attack. This corresponds to a large number
of collisions and retransmissions, which result in a short
network life and a small number of successful packets. The
results show a strong presence of false triggers the threshold
suspicion factor of 0.4. The GN suspects an attack even if there
isn’t any. Though this gives an impression that the network
life is higher at a low value of STh, it is not. Due to false
triggering, the node frequently shuts down itself which can be
inferred from a low number of successful transmissions. At
this value of STh, the network is not very effective though it
lives reasonably long. On the contrary, at STh = 0.8 number
of false triggers is zero. Here, the node shuts down only when
it strongly suspects a real attack. Due to this, the number of
successful transmissions is higher. This situation represents n a
tradeoff between network’s effectiveness and its lifetime. The
results with STh = 0.6 show a mix of false and true triggers.
This is where the multicriteria decision making comes into
play. The choice of the best value of STh depends on how
long the network is expected to live and how effective it is
expected to be.

IX. CONCLUSIONS AND FUTURE WORK

This paper discusses the use of a GN to watch for DoS
attacks in wireless sensor networks that uses CSMA/CD
protocol. Prowler, a probabilistic wireless network simulator
is used to simulate a GN based secure MAC layer for a
network of MICA2 motes. Each node in the network hosts a
pre-trained compact GN which watches the crucial parameters
collision rate Rc, packet request rate Rr and packet waiting
time Tw, and computes a measure of suspicion. In a DoS
attack, these parameters vary in such a way that the suspicion
factor increases in value. If the suspicion factor exceeds a
preset threshold level, the node’s physical layer is switched off.
This results in saving of power that would have been wasted in
retransmission of collided packets. The results show that the
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TABLE II
A SUMMARY OF RESULTS OF 50 TRIAL RUNS EACH AT DIFFERENT SETTINGS OF THE THRESHOLD SUSPICION FACTOR

Threshold suspi-
cion factor STh

Number of
false triggers

Number of true
triggers

Network life
in minutes

Number of packets
transmitted successfully

0.4 31 19 16.46 702
0.6 14 36 12.78 1091
0.8 0 50 8.61 1738
> 1* 0 0 5.09 547

*This represents the case in which the GN does not intervene in the MAC.

choice of the threshold suspicion factor facilitates a tradeoff
between the network throughput and the network life-time.
The PSO-trained GN is not expensive in terms of storage and
computational time. The proposed scheme provides distributed
security against the collision attacks because only the node
which suspects an attack shuts itself. Simulation results show
that the power saving due to shutting down the attacked nodes
results in reduction in power wastage, which in turn extends
the network life.

This study can be extended in several directions. If there is
a surge of activities in normal conditions without any attacks,
a GN on a node can trigger a false alarm causing the node
to shut down. Such false triggering can prove to reduce the
effectiveness of the network. An investigation on constant
online training of the GN is one direction in which the work
can be extended. Investigation remains to be carried out on the
extent to which the network life is extended under different
types of attacks. This needs an energy model to be built into
the proposed simulation, which is a possible extension of the
study. Testing a real MICA2 network rather than a simulated
one is the most obvious necessity, which will establish the real
time applicability of the proposed method.
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