
Towards Verifying Declarative Netlog Protocols with

Coq

Yuxin Deng, Stéphane Grumbach, Jean-François Monin

To cite this version:

Yuxin Deng, Stéphane Grumbach, Jean-François Monin. Towards Verifying Declarative Netlog
Protocols with Coq. [Intern report] 2010, pp.20. <inria-00506093>

HAL Id: inria-00506093

https://hal.inria.fr/inria-00506093

Submitted on 27 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CIRAD

https://core.ac.uk/display/52631334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00506093

Towards Verifying Declarative Netlog Protocols

with Coq

Yuxin Deng1, Stéphane Grumbach2, and Jean-François Monin3,4

1 Shanghai Jiao Tong University, China
2 LNRIA-LIAMA

3 Université de Grenoble 1
4 CNRS-LIAMA

Abstract. Declarative languages, such as recursive rule based languages,
have been proposed to program distributed applications over networks.
It has been shown that they simplify greatly the code, while still offer-
ing efficient distributed execution. In this paper, we show that moreover
they provide a promising approach to the verification of distributed pro-
tocols. We choose the Netlog language and use the Coq proof assistant.
We first formalize the distributed computation model based on message
passing with either synchronous or asynchronous behavior. We then see
how the declarative rules of the protocols can be simply encoded in Coq.
Finally, we develop the machine embedded on each node of the network
which evaluates the rules. This framework enables us to formally verify
distributed declarative protocols, as sketched on a concrete example, a
breadth-first search tree construction in a distributed network.

1 Introduction

Programming distributed algorithms, such as networking protocols for instance,
is a very complex task, which aims at solving global problems using local means,
and requires to handle the concurrency of the processes, the delays or even the
failure of the communication, as well as the limitations of both the hardware and
the communication channels. Most distributed systems rely on algorithms invok-
ing low level systems considerations. High-level abstractions have been proposed
to facilitate the programming, based on graph relabeling [24, 3], rule-based lan-
guages such as [20, 14], functional languages such as Flask [23], as well as algebras
for routing [13].

Rule-based languages provide a declarative programming framework which
improves greatly the programmer’s burden, with a code which is about two
orders of magnitude shorter than standard programming languages, and has
been shown to produce efficient algorithms in the case of various networking
protocols in particular, by using methods developed in the field of databases for
recursive languages à la Datalog [18].

In the present paper, we show that these declarative languages for distributed
programming provide a new approach to the verification of distributed programs,
which can naturally deal with global properties, e.g. topological properties of

2 Y. Deng, S. Grumbach & J.-F. Monin

a distributed data structure like a tree. To the best of our knowledge, such
properties are hard to prove or even to state with usual techniques relying on
labelled transition systems and temporal logics, since they essentially focus on
events and their ordering.

We choose to work with the Netlog language [14], a variant of Datalog re-
cently proposed for programming distributed algorithms. The Netlog language
relies on deductive rules of the form head ← body, which are installed on each
node of the distributed system. The rules allow to derive new facts of the form
“head”, if their body is satisfied locally on the node. The facts derived might
then be stored locally on the node or sent to other nodes in the network de-
pending upon the rule. Netlog admits a semantics which is formally defined
by distributed fixpoint, which interleaves local computation on the nodes and
communication between the nodes. On each node, a local round consists of a
computation phase followed by a communication phase. During the computa-
tion phase, the program updates the local data and produces messages to send.
During the communication phase, the router transmits the incoming messages
to the program, and routes the outgoing messages.

Our objective is to develop a framework to formally verify properties of
declarative distributed programs. As to formal verification, there are roughly
two kinds of approaches: model checking and theorem proving. Model checking
explores the state space of a system model exhaustively to see if a desirable
property is satisfied. It is largely automated and generates a counterexample if
the property doesn’t hold. The state explosion problem limits the potential of
model checkers for large systems. The basic idea of theorem proving is to trans-
late a system’s specification into a mathematical theory and then construct a
proof of a theorem by generating the intermediate proof steps. Theorem proving
can deal with large or even infinite state spaces by using proof principles such as
induction and co-induction. In this paper, we use Coq, which is a proof assistant,
that is an interactive theorem prover, in which high level proof search commands
construct formal proofs behind the scene, which are then mechanically verified.
Using a proof assistant seems more relevant than model checking here since the
manipulation of data plays a key role. We develop a Coq library necessary for
our purposes, including (i) the formalization of the distributed system; (ii) the
modeling of the embedded machine evaluating the Netlog programs; (iii) the
translation of the Netlog programs; as well as a formalization of graphs and
trees suitable to our needs (respectively for communication networks and our
case study).

Technically, we formalize a message passing model for distributed computa-
tion. To this effect, we introduce a general framework parameterized by a network
topology and an abstract type for data. We then formalize appropriate notions
for defining a global behavior in terms of local rounds, in a way such that syn-
chronous and asynchronous behaviors are obtained from the same ingredients.
This provides a transition relation between configurations (or global states), on
which general definitions can be applied, for example, the coinductive definition

Verifying Netlog Protocols with Coq 3

of a run and inductive or coinductive definitions of temporal logic operators and
associated proof principles.

In our Coq formalization, each body of a deductive rule is encoded in a
systematic way by a tuple parameterized by a configuration, a node Id and the
free variables of the body. In turn, each Netlog rule is formalized by an inductive
type which relates a configuration to a set of data representing updates to be
performed atomically at a given node, if the corresponding body is satisfied.

We test the proposed framework on a concrete protocol for constructing
spanning trees over connected graphs. It is a distributed version of the classical
breadth-first search algorithm (BFS) in a synchronous message passing model.
It thus proceeds in rounds, in which all nodes performs some local computation
and then exchange data with their neighbors before entering the next round. To
show its correctness, the crucial ingredient is to formally prove the validity of
the invariant that evolving from one round to another always produces a larger
tree rooted at the same node. The protocol is shown to be correct for any finite
connected graph.

The paper is organized as follows. In Section 2, we formalize the distributed
computational model. Section 3 is devoted to the presentation of Netlog pro-
grams, and their translation in Coq. Section 4 presents the Coq formalization
of the Netlog machine. Section 5 sketches the proofs of the correctness of the
tree protocol. Section 6 discusses some related work, and finally we conclude in
Section 7.

2 Distributed Computation Model

In this section we introduce a distributed computation model based on the mes-
sage passing mechanism and then formalize it in Coq. A brief overview of Coq is
delegated to Appendix A. The distributed computation model does not depend
on Netlog. We just assume that the state at nodes have a type local data which
can evolve using simple set-theoretic operations such as union. Apart from that,
the distributed computation model is quite standard. Note that it is suitable
both for synchronous and asynchronous execution.

An important design choice has to be made concerning the Coq representa-
tion of finite sets of Netlog facts. Here, only a mathematical representation is
needed and the simpler the better. There is no need to look for efficient repre-
sentations, such as balanced binary trees; simple lists are enough for this job.
Similarly, there is no reason to add programs for maintaining sorted lists or even
ensuring that elements are not duplicated. In this framework, the union is simply
represented by list concatenation, for instance. Representing finite sets by lists
without further ado is a suitable choice as long as the only predicate we consider
on lists is membership. In the sequel we use freely set-theoretic notation for list
operations, e.g. ∅ for nil and ∈ for In.

A distributed system relies on a communication network whose topology is
given by a directed connected graph G = (VG , G), where VG is the set of nodes, and

4 Y. Deng, S. Grumbach & J.-F. Monin

G denotes the set of communication links between nodes. For many applications,
we can also assume that the graph is symmetric, that is G(α, β)⇔ G(β, α).

Each node has a unique identifier, Id, taken from 1, 2, · · · , n, where n ≥ 2 is
the number of nodes, and distinct local ports for distinct links incident to it. The
control is fully distributed in the network, and there is no shared memory. In
this high-level computation model, we abstract away detailed factors like node
failures and lossy channels; if we were to formalize a more precise model, most
of the data structures defined below would have to be refined.

All the nodes have the same architecture and the same behavior. Each node
consists of three main components: (i) a router, handling the communication
with the network; (ii) an engine, executing the local programs; and (iii) a local
data store to maintain the information (data and programs) local to the node. It
contains in particular the fragment of G, which relates a node to its neighbors.

In the Coq formal model, the graph is defined by a relation edge between
nodes. This relation is itself defined by a function neighbors which provides the
list of neighbors of a given node.

Variable neighbors : nat -> list nat.

Definition edge n m := m ∈ neighbors n.

We assume a type local data for the set of facts stored on nodes as well
as on communication links. This type is endowed with at least a value repre-
senting the empty set of facts and a binary function returning the union of two
sets of facts. The union is used for describing incremental monotonic changes
(see local round and communication below). Non-monotonic changes such as
removing facts are dealt with using an additional set difference function.

We also define the type Bmsg for “big messages”, i.e. pairs (j, t) where j is
a node Id and t a set of data to be transmitted to j. The global state of the
system has the type configuration defined as follows.

Variable local_data: Set.

Variable empty_ld: local_data. (* notation ∅ld *)

Variable union_ld: local_data -> local_data -> local_data. (* ∪ld *)

Definition Bmsg := nat * local_data.

Record configuration: Set:= mk_configuration {
Cnode: nat -> local_data;

Cedge: ∀ src dst: nat, edge src dst -> local_data

}.

Given a configuration c and a node Id j, the data available at j in c is either
Cnode c j, or Cedge c e, where e is an edge from some node i to j (a more
complete expression would be Cedge c i j e, but i and j can be easily deduced
from the type of e; in what follows, we omit such implicit arguments, as is done
in the formal Coq development).

We distinguish between computation events, performed in a node, and com-
munication events, performed by nodes which cast their messages to their neigh-
bors. On one node, a computation phase followed by a communication phase is
called a local round of the distributed computation.

Verifying Netlog Protocols with Coq 5

An execution is a sequence of alternating global configurations and rounds
occurring on one node, in the case of an asynchronous system, or a sequence of
alternating global configurations and rounds occurring simultaneously on each
node, in the case of a synchronous system. In the latter case, the computation
phase runs in parallel on all nodes, immediately followed by a parallel execution
on all nodes of the corresponding communication phase.

A local round at node loc relates an actual configuration pre to a new con-
figuration mid and a list out of big messages from loc. Furthermore, incoming
edges are cleared. The new data d to be stored on loc is defined by a rela-
tion new stores given as a parameter, and we assume that d depends only on
the data available at loc in pre. Intuitively, the relation new stores expresses
that d consists of new facts derived from facts available at loc (see more de-
tails in Section 4). Similarly, out is defined by a relation new push and satisfies
similar requirements. Using relations rather than functions for new stores and
new push deserves a special discussion provided in Section 3.

Formally, a local round is defined in Coq using the following inference rule (by
convention, for such rules, free variables should be read as universally quantified
over the whole rule).

∃d, new stores pre loc d ∧ Cnode mid loc = Cnode pre loc ∪ld d

new push pre loc out

∀ src (e: edge src loc), Cedge mid e = ∅ld

local round loc pre mid out

For modeling asynchronous behaviors, we also need the notion of a trivial
local round at loc, where the local data does not change and moreover incoming
edges are not cleared either.

Cnode mid loc = Cnode pre loc

∀ src (e: edge src loc), Cedge mid e = Cedge pre e

no change at loc pre mid

A communication event at node loc specifies that the local data at loc does
not change and that facts from out are appended on edges according to their
destinations.

Cnode post loc = Cnode mid loc

∀ dst (e: edge loc dst), Cedge post e = find dst out ∪ld Cedge mid e

communication loc mid post out

The function find returns the fact in out whose destination is dst. Note that
none of the previous three definitions specifies completely the next configuration
in function of the previous one. They rather constrain a relation between two
consecutive configurations by specifying what should happen at a given loca-
tion. Combining these definitions in various ways allows us to define a complete
transition relation between two configurations, with either a synchronous or an
asynchronous behavior.

6 Y. Deng, S. Grumbach & J.-F. Monin

loc: nat; mid: configuration; out: list Bmsg

local round loc pre mid out

∀ loc’, loc 6= loc’→ no change at loc’ pre mid

communication loc mid post out

∀ loc’, loc 6= loc’→ communication loc’ mid post ∅

async round pre post

An asynchronous round between two configurations pre and post is given by
a node Id loc, an intermediate configuration mid and a list of big messages out
such that there is a local round relating pre, mid and out on loc while no change
occurs on loc’ different from loc, and a communication relates mid and out to
post on loc while nothing is communicated on loc’ different from loc.

mid: configuration; out: list Bmsg

∀ loc, ∃ out, local round loc pre mid out ∧ communication loc mid post out

sync round pre post

A synchronous round between two configurations pre and post is given by an
intermediate configuration mid such that for all node Id loc, there exists a list
of big messages out such that there is a local round relating pre, mid and out

on loc and a communication relating mid and out to post on loc.
Now, given an arbitrary trans relation, which can be of the form sync round,

or async round, or even of some alternative form, we can coinductively define a
run starting from a configuration. We have two cases: either there is a transition
from configuration pre to configuration post, then any run from post yields
a run from pre; or, in the opposite case, we have an empty run from pre.
Altogether, a run from pre is either a finite sequence of transitions ended up
with a configuration where no transition is available, or an infinite sequence of
transitions, where consecutive configurations are related using trans.

CoInductive run: configuration -> Set :=

| Rtrans: ∀ pre post, trans pre post -> run post -> run pre

| Rterm: ∀ pre, (∀ post, ¬ trans pre post) -> run pre.

In order to prove properties on run, we define some temporal logic operators.
In the examples considered below we need a very simple version of always, which
is parameterized by a property P of configurations. In a more general setting,
the parameter would be a property of runs.

P pre alw run P r

alw run P (Rtrans pre post s r)

P pre

alw run P (Rterm pre h)

It is well known that a property which holds initially and is invariant is always
satisfied on a run. This fact is easily proved in the very general setting provided
by Coq.

Definition invariant_round (P: configuration -> Prop) :=

∀ pre post, trans pre post -> P pre -> P post.

Lemma invar_always:

∀ (P: configuration -> Prop), invariant_round P ->

∀ ini (r: run ini), P ini -> alw_run P r.

Verifying Netlog Protocols with Coq 7

3 Declarative Netlog Protocols

We next introduce the Netlog language through simple protocols for construction
of routes and trees. Only the main constructs are presented. A more thorough
presentation of the language can be found in [14]. Netlog relies on datalog-
like recursive rules, of the form head ← body, which allow to derive the fact
“head” whenever the“body” is satisfied. In contrast with other approaches to
concurrency, the focus is not, primarily, on observing some output, but on the
high-level data (i.e. datalog facts) contained in nodes. Imagine, for example, a
program for constructing routing tables. Such tables are intended to be used by
other protocols and reasoning on their contents is more direct than considering
events.

The rules of a program are applied in parallel, and the results are computed
by iterating the rules over the local instance of the node, using facts either stored
on the node or pushed by a neighbor. This is formally defined in Coq by the
predicate inFact, where prj is any projection from local data to some list X.

x ∈ prj(Cnode cnf loc)

inFact prj cnf loc x

e: edge neighbor loc x ∈ prj(Cedge cnf e)

inFact prj cnf loc x

The following rules, for instance, define routes, stored in a relation Route(Src,
Hop, Dst), from the graph E, which from each source node, Src, and for each
destination, Dst, gives the next hop, Hop, on the path to that destination.

Simple routes

l Route(x, y, y) ← E(@x, y). (1)

l Route(x, y, z) ← E(@x, y); Route(y, u, z). (2)

This program has the following effect, when applied on a node, say α. If there is
a fact E(α, β), then Route(α, β, β) can be derived by Rule (1), and if there are
facts E(α, β) and Route(β, γ, δ), then Route(α, β, δ) can be derived by Rule (2).
The symbol “@” in the literal E(@x, y) in the body of the rules forces the variable
x to be instantiated by the node Id, or, in other words, forces the rule to run on
node x.

The Netlog programs are installed on each node, where they run concurrently.
The facts deduced from rules can be stored on the node, on which the rules run,
or sent to other nodes. The symbol l in the head of the rules means that the
result has to be both stored on the local datastore (↓), and sent to neighbor
nodes (↑).

The language also contains negation; a node can judge if a fact or its negation
is true based on its knowledge from the local data store. Aggregation functions
can also be used in the head of rules to aggregate over all values satisfying the
body of the rule. In the next example, the function min will be used for instance.
Let us consider next, the construction of a BFS tree for synchronous systems.

The following program relies on three relation symbols: E, onST , and ST ; E
represents the edge relation; and at any stage of the computation, onST (α) (re-
spectively ST (α, β)) hold iff the node α (respectively the edge (α, β)) is already
on the intended tree.

8 Y. Deng, S. Grumbach & J.-F. Monin

Synchronous Rooted BFS Tree

l onST (x) ← @x = 0. (3)

l onST (y)
↓ ST (min(x), y)

o

← E(x, @y); onST (x);¬onST (y). (4)

Rule (3) runs on the unique node, say ρ, which satisfies the relation ρ = 0. It
derives a fact OnST (ρ), which is stored on ρ and sent to its neighbors. Rule (4)
runs on the nodes (@y) at the border of the already computed tree. It chooses
one parent (the one with minimal Id) to join the tree. Two facts are derived,
which are both locally stored. The fact onST (y) is pushed to all neighbors. Each
fact E(x, y) is assumed to be initially stored on node y. As no new fact E(x, y)
can be derived from rules (3) and (4), the consistency of E with the physical
edge relation holds forever.

This algorithm aims at constructing a suitable distributed relation ST . More
precisely, our objective will be to prove that the relation ST actually defines a
(BFS) tree. First we define the actual local data needed in the BFS protocol.
The types unary and binary represent respectively sets (encoded by lists) of
unary or binary facts.

Record bfs_data : Set := mk_bfs_data {
onST : unary;

E : binary;

ST : binary}.

Rules are encoded in Coq according to a systematic method which should be
clear from the BFS example. To be more precise, we present here a specification
of the expected semantics of Netlog rules, as relations between a configuration,
a location and incremental changes of data, consistently with what is expected
in a local round (see Section 2). A translation or an interpretation of Netlog
rules described using an abstract syntax (deep embedding) is left to further
work: this is important but less difficult and urgent than discovering the precise
shape needed for the semantics of rules – something that came into light in the
process of doing proofs. The technical details are somewhat involved and cannot
be provided here due to space limitation.

Push rules follow always the same scheme which can be abstracted as follows.
Assuming an update u related to a configuration pre and location loc by a
relation R given as parameter, the list of Bmsg broadcasted from loc is made of
all pairs (dst, u) such that dst is a neighbor of loc, as formalized by:

R pre loc u

push R pre loc (map (fun dst => (dst, u)) (neighbors loc))

A common situation is when a fact has to be both stored and broadcasted, as
happens with Rules (3) and (4) of the BFS example. R is then obtained from
the corresponding store rule.

Verifying Netlog Protocols with Coq 9

Rule (3) leads to two definitions in Coq, for both the store (↓) and the push
(↑) consequences. The stored part is coded as follows:

ST upd = ∅
E upd = ∅
loc = 0→ onST upd = {loc} loc 6= 0→ onST upd = ∅

compute phase store onST initial pre loc upd

The push part is then coded by:

Definition compute_phase_push_onST_initial :=

push compute_phase_store_onST_initial

For Rule (4), we first introduce the inductive definition corresponding to its
body E(x,@y); onST (x);¬onST (y) as follows:

in E cnf loc (x,y) in onST cnf loc x ¬in onST cnf loc y

tree body cnf loc x y

Here, in E is a specialization of inFact to E, and similarly for in onST (see the
beginning of Section 3). In other words, in E cnf loc (x, y) holds iff a fact E
(x, y) is available in configuration cnf at node loc. We then introduce three
definitions corresponding to the two derived facts, together with the two modes
store and push for the first one.
↓ OnST (y)← E(x, @y); onST (x);¬onST (y) is coded by:

ST upd = ∅
E upd = ∅
∀ y, y ∈ onST upd↔ ((∃ x, tree body pre loc x y) ∧ y = loc)

compute phase store onST tree pre loc upd

↑ OnST (y)← E(x, @y); onST (x);¬onST (y) is coded by:

Definition compute_phase_push_onST_tree :=

push compute_phase_store_onST_tree

↓ ST (min(x), y)← E(x, @y); onST (x);¬onST (y) is coded by:

onST upd = ∅
E upd = ∅
let P d := tree body pre loc x loc in
∀ x, P x→ ∀ m, is min pre m P→ ST upd = {(m, loc)} ∀ x,¬P x→ ST upd = ∅

compute phase store ST tree pre loc upd

Here is min pre m P means that m is a smallest element x satisfying P x, but it
does not ensure the existence of such an x.

One may wonder why we use relations everywhere instead of functions: rela-
tions are more general but less handy than functions especially in proofs. This
matter of fact is indeed driven by the relational nature of datalog, on which
Netlog is based: facts may be derived or not according to the body of rules and

10 Y. Deng, S. Grumbach & J.-F. Monin

available facts. Moreover, the sequential composition of functions with relations
provides relations, hence even when trying to use functions in previous attempts,
e.g. for new stores and new push in local round, eventually turned out to be
not general enough.

4 The Netlog Machine in Coq

Recall that in our computation model each node has an embedded Netlog ma-
chine, which implements a precise semantics formally specified in Appendix B.
Our Coq formalization of the Netlog machine defines a specialization of the
distributed computation model given in Section 2. This model is expressed in
terms of two abstract relations, new stores and new push. The present section
explains their definitions, according to the model given in the previous section.

We have seen in Section 3 how Netlog rules are represented in Coq in some
examples. For store rules the type is configuration -> nat -> local data

-> Prop and for push rules configuration -> nat -> list Bmsg -> Prop.
In order to manipulate them explicitly in a general setting, we assume two types
store rule name and push rule name, as well as an appropriate semantics for
each rule.

Variable store_rule_name push_rule_name : Set.

Variable store_sem_of : store_rule_name ->

configuration -> nat -> local_data -> Prop.

Variable push_sem_of : push_rule_name ->

configuration -> nat -> list Bmsg -> Prop.

Then, from a configuration pre and a given list of store rule name, the
future local data to be stored at node loc is defined by:

stores of list pre loc ∅ ∅ld

store sem of r pre loc updr

stores of list pre loc l updl

stores of list pre loc (r::l) (updr ∪ld updl)

The list of Bmsg to be sent from loc in configuration pre is defined similarly by
a predicate called push of list. A local round is defined by just applying the
previous definitions to a list srl of store rule names and a list prl of push rule
names, where each element of store rule name occurs exactly once; similarly
for push rule name. Here is the formal definition.

Variable srl : list store_rule_name.

Variable prl : list push_rule_name.

Definition new_stores_mach :=

fun cnf loc d => stores_of_list cnf loc srl d.

Definition new_push_mach :=

fun cnf loc l => push_of_list cnf loc prl l.

Definition local_round_mach := local_round new_stores_mach new_push_mach.

Verifying Netlog Protocols with Coq 11

For instance, for BFS, we provide the following rule names and semantics
(again, we omit the definition for push rule names, which are similar).

Inductive bfs_store_rule_name : Set :=

store_onST_initial | store_onST_tree | store_ST_tree.

Definition bfs_store_sem_of (r : bfs_store_rule_name) :=

match r with

| store_onST_initial => compute_phase_store_onST_initial

| store_onST_tree => compute_phase_store_onST_tree

| store_ST_tree => compute_phase_store_ST_tree

end.

Definition bfs_store_rule_order :=

store_onST_tree :: store_ST_tree :: store_onST_initial :: nil.

In practice, suppose that we need to exploit an assumption

bsr : bfs_synchronous_round cnf_pre cnf_post

First we specialize bsr to a suitable location x. Then expanding and destructing
the definitions given in the current section yields an environment containing:

upd0, upd1, upd2 : bfs_data

Hupd0 : compute_phase_store_onST_tree pre loc upd0

Hupd1 : compute_phase_store_ST_tree pre loc upd1

Hupd2 : compute_phase_store_onST_initial pre loc upd2

eCnode : Cnode post loc = Cnode pre loc ∪ld upd0 ∪ld upd1 ∪ld upd2 ∪ld ∅ld

We are then in position to reason by cases on the facts contained in Cnode post

loc, using knowledge specified by the representation of Netlog rules on the corre-
sponding updates upd0, upd1, upd2 or on the facts previously in Cnode pre loc.

5 Verification of a Tree Protocol

The correctness proof of the BFS protocol is based on its consistency with a
centralized version of the protocol. Given a tree made of node Id’s lloc and
edges larc, we define the arcs to be added by considering the neighbors of nodes
in lloc which are not in lloc. We get new lloc lloc and new larc lloc by
simple functional programs.

Our main theorem states that a synchronous round in the distributed syn-
chronous version corresponds to the computation performed by new larc. It is
actually not enough to consider only ST facts, since onST plays a prominent role
in the construction of new facts. Our invariant for the distributed BFS proto-
col is strengthened by correct onST cnf lc which states that in configuration
cnf, the facts onST available on any node are consistent with lc.

Definition correct_onST cnf lc := ∀ loc y, in_onST cnf loc y -> y ∈ lc.

Then we prove the following propagation properties.

12 Y. Deng, S. Grumbach & J.-F. Monin

Lemma invar_In_0_lc : ∀ lc, 0 ∈ lc -> 0 ∈ (new_lloc lc ++ lc).

Lemma propag_correct_onST :

∀ pre post, bfs_synchronous_round pre post ->

∀ lc, 0 ∈ lc -> correct_onST pre lc ->

correct_onST post (new_lloc lc ++ lc).

Lemma propag_consistent_with :

∀ pre post, bfs_synchronous_round pre post ->

∀ lc la, 0 ∈ lc -> correct_onST pre lc ->

consistent_with (global_ST pre) la ->

consistent_with (global_ST post) (new_larc lc ++ la).

Here, global ST represents the union of all ST facts on the network. The most
difficult part is to prove Lemma propag correct onST, which requires a careful
use of correct onST pre lc simultaneously on several neighboring locations.
It follows that the conjunction of the propagated properties is an invariant.

Definition invar cnf lc la :=

consistent_with (global_ST cnf) la ∧ correct_onST cnf lc ∧ 0 ∈ lc.

Theorem consistent_with_invariant :

∀ pre post, bfs_synchronous_round pre post ->

∀ lc la, invar pre lc la ->

invar post (new_lloc lc ++ lc) (new_larc lc ++ la).

Then proving properties on the distributed algorithm for BFS boils down
to prove them on the centralized version provided by (new larc, new larc),
i.e traditional technology about functional programs. For example we have the
following theorem, where tree mult lloc larc holds if the list of nodes lloc
and the list of arcs larc constitute a tree, which can be inductively defined in
the usual way.

Theorem invariant_new_lloc_larc :

∀ lloc larc, tree_mult lloc larc ->

tree_mult (new_lloc lloc ++ lloc) (new_larc lloc ++ larc).

Combining consistent with invariant and invariant new lloc larc yields
that after a synchronous round, the set of facts ST in the network still represents
a tree if it was already a tree before this round. That is, is mtree (global inST

cnf) holds for any configuration cnf in a run.

Lemma invariant_inST_is_mtree :

invariant_round

(synchronous_round_mach bfs_store_rule_order bfs_push_rule_order)

(fun cnf => is_mtree (global_inST cnf)).

We check that initially the ST (reduced to the root) is a tree, then by applying
a general result given in distr comp on invariant properties, we get that in any
synchronous run starting from the initial configuration, ST is always a tree.

Theorem always_inST_is_mtree :

∀ cnfi, is_initial_bfs cnfi ->

∀ (r : bfs_run cnfi), alw_run (fun c => is_mtree (global_inST c)) r.

Verifying Netlog Protocols with Coq 13

Besides this global property, one may (and should) wonder whether ST(x,y)
facts are located on relevant nodes, i.e. child nodes y in our case, so that this
information could be used by a higher layer protocol for transmitting data to-
wards the root. This is actually a simple consequence of Rules (3) and (4), since
they ensure that ST(x,y) can only be stored on y. This is easy to formalize in
our framework.

6 Related work

Declarative languages have been first used in the context of networks for sensor
networks. TinyDB [22] and Cougar [10] offer the possibility to write distributed
queries in SQL. More interestingly, recursive query languages have been used to
express communication network algorithms such as routing protocols [20] and
declarative overlays [19]. Distributed query languages thus provide new means to
express complex network problems such as node discovery [2], route finding, path
maintenance with quality of service [5], topology discovery, including physical
topology [4], secure networking [1], or adaptive MANET routing [17].

Using formal techniques for verifying communication protocols is far from
being a new idea. “Formal Description techniques” were developed by telecom-
munication laboratories from the beginning of the 1980s in order to specify and
verify protocols to be standardized at ITU and ISO. Three languages came out.
Two of them, Estelle and SDL, are based on asynchronous communicating au-
tomata, while LOTOS is a process algebra based on CCS and CSP extended with
algebraic data types [27]. Other approaches include input/output automata [21],
or Unity and TLA, which combine temporal logic and transition-based specifi-
cation [7, 15]. A common feature to these approaches is their focus on control, in
particular how to deal with behaviors in a distributed framework. Typical issues
include non-determinism, deadlock freedom, stuttering, fairness, distributed con-
sensus and, more recently, mobility. Data is generally considered as an abstract
object not really related to the behavior. This is relevant for many low-level
protocols, such as transport protocols. However, this does not suit the needs
of applications which aim at building up a distributed global information, such
as topological information on the network (in a physical or virtual sense), as
in routing tables, for example. To our knowledge, such problems have not been
attacked by means of the above mentioned approaches. An explanation may be
that the pieces of data involved in distributed computations are embedded in
different components of the global configuration, and the previous formalisms
make it difficult to isolate them or to consider them as a whole in reasoning. A
clear feature of the current paper, compared with those previous approaches, is
the emphasis on manipulating data in formal reasoning, which also drove us to
use Coq as the verification tool. Beyond formal verification of distributed pro-
tocols, Coq has been successfully applied to ensure reliability of hardware and
software systems in various fields, such as multiplier circuits [26], concurrent
communication protocols [12], self-stabilizing population protocols [11], devices
for broadband protocols [25], and compilers [16] to name a few.

14 Y. Deng, S. Grumbach & J.-F. Monin

Closely related to our work is [28], where a declarative network verifier (DNV)
was presented which maps specifications written in the Network Datalog query
language into logical axioms which can be used in theorem provers like PVS
to validate protocol correctness. The reasoning based on DNV is for Datalog
specifications of (eventually distributed) algorithms, but not for distributed ver-
sions of Datalog such as the one provided by Netlog. In other words, it only
considers the highly abstract centralized behaviour of a network. In contrast,
our development in this paper is to reason about the distributed behaviour of
individual nodes which together yield some expected global behaviour of the
whole network. Therefore, we need to involve deep subtleties on message passing
and derivation of local facts, which are all absent in [28].

7 Conclusion

We developed a Coq library for verifying declarative protocols expressed in a
rule-based language. This library includes the formalization of the distributed
computation environment with the communication network, where both the syn-
chronous and the asynchronous models of communication are formalized in very
similar ways. The library also includes the embedded machine which evaluates
the Netlog programs on each node. The Netlog programs are translated into
straightforward Coq definitions. As a preliminary result we proved a topological
property of a distributed data structure – a tree – constructed by a simple but
subtle program. To our knowledge, such properties are difficult to handle in other
approaches to the verification of distributed programs. From this experiment, we
are in position to define a deep embedding for systematically deriving Coq en-
codings from the abstract syntax of Netlog rules, as well as dedicated tactics for
handling tedious steps specific to Netlog, and then plan to further verify declar-
ative protocols for routing, election, naming, and other fundamental distributed
problems.

References

1. M. Abadi and B. T. Loo. Towards a declarative language and system for secure
networking. In Proc. NETB’07, pages 1–6. USENIX Association, 2007.

2. G. Alonso, E. Kranakis, C. Sawchuk, R. Wattenhofer, and P. Widmayer. Proba-
bilistic protocols for node discovery in ad hoc multi-channel broadcast networks.
In Proc. ADHOC-NOW’03, 2003.

3. M. Bauderon, Y. Métivier, M. Mosbah, and A. Sellami. Graph relabelling systems:
a tool for encoding, proving, studying and visualizing - distributed algorithms.
ENTCS, 51, 2001.

4. Y. Bejerano, Y. Breitbart, M. N. Garofalakis, and R. Rastogi. Physical topology
discovery for large multi-subnet networks. In Proc. INFOCOM’03, 2003.

5. Y. Bejerano, Y. Breitbart, A. Orda, R. Rastogi, and A. Sprintson. Algorithms for
computing qos paths with restoration. IEEE/ACM Trans. Netw., 13(3), 2005.

6. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. Springer Verlag, 2004.

Verifying Netlog Protocols with Coq 15

7. K. M. Chandy. Parallel program design: a foundation. Addison-Wesley Longman
Publishing Co., Inc., 1988.

8. Coq. The coq proof assistant reference manual. http://coq.inria.fr/V8.1pl3/

refman/index.html.
9. Coq. The Coq user contributions. http://coq.inria.fr/contribs-eng.html.

10. A. J. Demers, J. Gehrke, R. Rajaraman, A. Trigoni, and Y. Yao. The cougar
project: a work-in-progress report. SIGMOD Record, 32(4):53–59, 2003.

11. Y. Deng and J.-F. Monin. Verifying self-stabilizing population protocols with coq.
In Proc. TASE’09, pages 201–208. IEEE Computer Society, 2009.

12. E. Giménez. A Calculus of Infinite Constructions and its application to the verifi-
cation of communicating systems. PhD thesis, ENS Lyon, 1996.

13. T. G. Griffin and J. L. Sobrinho. Metarouting. In Proc. ACM SIGCOMM’05,
2005.

14. S. Grumbach and F. Wang. Netlog, a rule-based language for distributed program-
ming. In Proc. PADL’10, volume 5937 of LNCS, pages 88–103, 2010.

15. L. Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst.,
16(3):872–923, 1994.

16. X. Leroy. Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In Proc. POPL’06, pages 42–54. ACM, 2006.

17. C. Liu, Y. Mao, M. Oprea, P. Basu, and B. T. Loo. A declarative perspective on
adaptive manet routing. In Proc. PRESTO ’08, pages 63–68. ACM, 2008.

18. B. T. Loo, T. Condie, M. N. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,
R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative networking: language,
execution and optimization. In Proc. ACM SIGMOD’06, 2006.

19. B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica.
Implementing declarative overlays. In Proc. SOSP’05, 2005.

20. B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative routing:
extensible routing with declarative queries. In Proc. ACM SIGCOMM ’05, 2005.

21. N. A. Lynch and M. R. Tuttle. An introduction to input/output automata. CWI
Quarterly, 2:219–246, 1989.

22. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb: an acquisi-
tional query processing system for sensor networks. ACM Trans. Database Syst.,
30(1), 2005.

23. G. Mainland, G. Morrisett, and M. Welsh. Flask: staged functional programming
for sensor networks. In Proc. ICFP’08, 2008.

24. Y. Métivier and E. Sopena. Graph relabelling systems: A general overview. Com-
puters and Artificial Intelligence, 16(2), 1997.

25. J.-F. Monin. Proving a real time algorithm for ATM in Coq. In Types for Proofs
and Programs, volume 1512 of LNCS, pages 277–293. Springer, 1998.

26. C. Paulin-Mohring. Circuits as streams in coq: Verification of a sequential multi-
plier. In Proc. TYPES’96, volume 1158 of LNCS, pages 216–230. Springer, 1996.

27. K. J. Turner. Using Formal Description Techniques: An Introduction to Estelle,
Lotos, and SDL. John Wiley & Sons, Inc., 1993.

28. A. Wang, P. Basu, B. T. Loo, and O. Sokolsky. Declarative network verification. In
PADL ’09: Proceedings of the 11th International Symposium on Practical Aspects
of Declarative Languages, pages 61–75, Berlin, Heidelberg, 2009. Springer-Verlag.

A Formal Verification with Coq

Coq is one of the most popular proof assistants for formal verification. It is based
on a constructive type theoretic setting, called the Calculus of (co-)Inductive

16 Y. Deng, S. Grumbach & J.-F. Monin

Constructions (CIC), which can be summarized both as a polymorphic typed
lambda-calculus enriched with universes, inductive and co-inductive types and
a language for describing mathematical definitions and proofs [8, 6]. These two
aspects are actually related thanks to the well-known Curry-Howard-De Bruijn
isomorphism, which maps propositions to types and proofs to functional objects
or strongly normalizing programs.

Let us illustrate some concepts and the syntax of Coq by a few examples. One
of the most commonly used data structure is list. Let A be a type, a list whose
elements are of type A can be inductively defined, with the usual constructors
nil and cons:

Inductive list : Type :=

| nil : list

| cons : A -> list -> list.

Total recursive functional programs can be defined for lists. For example, the
In predicate defined below checks if a occurs in the list l.

Fixpoint In (a:A) (l:list) {struct l} : Prop :=

match l with

| nil => False

| b :: m => b = a \/ In a m

end.

In order to ensure termination, a structurally decreasing argument is specified
by struct l. Here we meet the realm of propositions Prop. A predicate over
natural numbers for instance has type nat -> Prop. Given such a predicate
P, a proof p0 of P 0 and a proof step of forall n, P n -> P (S n), we can
construct a proof of P n for all natural numbers n, using the following functional
(primitive recursive) program:

Fixpoint natind (n:nat) {struct n}: P n := match n return (P n) with

| 0 => p0

| S q => step q (natind q)

end.

The type of natind is forall n, P n, that is a dependent type, since the
type of the result depends on the value of the argument; step, seen as a function
from numbers n and proofs of P n and returning a proof of P (S n), has a
slightly more complex dependent type. In the match construct itself, the type
of the result depends on the branch – it could be P 0 or P (S q) for some
q. Abstracting P, p0 and step in natind yields a proof of the usual induction
principle over natural numbers. As a function, it illustrates some important
features of the type theory of Coq: polymorphism, inductive and dependent
types.

Other constructs used in this paper, such as records, are special cases of
inductive types (i.e with only one constructor; fields are just projections). When
defining inductive types, dependent types can also be used for constructors. It is

Verifying Netlog Protocols with Coq 17

especially convenient for formalizing algebraic structures (a carrier, operations
and algebraic laws) and we use them extensively in the sequel. For example,
graphs can be defined below, with two fields: Vert for vertices and Edge for
edges.

Record Graph : Type := mkGraph {

Vert : Type; (* vertices *)

Edge : Vert -> Vert -> Prop (* edges *)

}.

Like functions, relations are widely used mathematical concepts in formal
verification. As an example, let R be a binary relation over natural numbers. Its
transitive closure can be defined as follows.

Inductive TC (R: nat->nat->Prop): nat -> nat -> Prop :=

| TC0 : forall x y, R x y -> TC R x y

| TCrec : forall x y z, R x z -> TC R z y -> TC R x y.

Some frequently used types such as nat and list are available in the standard
library of Coq; by importing relevant packages, we can directly use the operations
(e.g. In seen above) associated with lists. However, many other types are not
in the library, and in this case they need to be defined from scratch. We have
seen Graph for graphs above. We next consider trees which will be used to reason
about algorithms for constructing spanning trees on connected graphs. We define
abstract trees inductively as follows (from now on, we use the notation ∀ instead
of forall in order to save space; types of variables which can be easily inferred
from the context are not explicitly given):

Variable Carrier : Set.

Inductive tree : list Carrier -> list (Carrier * Carrier) -> Prop :=

| root : ∀ x: Carrier, tree (x :: nil) nil

| leaf : ∀ lv le, tree lv le ->

∀ x y: Carrier, In x lv -> ¬ In y lv ->

tree (y :: lv) ((x,y) :: le).

A tree is built upon a set of vertices (represented by a list lv) and a set of
edges (represented by a list le of pairs) by:

– the tree reduced to its root and no edge;
– from a tree upon lv and le, adding a new pendant vertex y and edge (x, y)

such that x ∈ lv, y 6∈ lv, we obtain a tree upon lv extended with y and le

extended with (x, y).

Altogether, the features of Coq allow us to formalize mathematical theories
in a typed and precise but still very general setting. Coq offers an environment
where users can state mathematical definitions using types, concrete objects,
functions over them, and then interactively prove theorems. Obvious proof steps
are automated, but clever ones, e.g. inductive arguments or intermediate sub-
goals, require user interactions.

18 Y. Deng, S. Grumbach & J.-F. Monin

B The embedded Netlog machine

Netlog programs are running on the nodes of the network. They produce facts to
store as well as facts to be sent to other nodes. They are evaluated by a machine
which implements a precise semantics [14], which has been defined by fixpoints
in a way which is classical for rule-based languages such as Datalog. We present
the semantics of a subset of the Netlog language of interest in this paper. The
language is restricted to a subset of the language constructs, and moreover, the
rules are applied only once at each round, unlike in [14] where a local fixpoint is
computed at each local round.

We assume that all variables range over the sort (N,≤), of the natural num-
bers. Given a finite set V of variables, a valuation over V is a mapping from V
to N. Let V(V ar(r)) be the set of valuations σ over V ar(r), the set of variables
of a rule r.

Let an instance I be a finite interpretation of the relations of some schema S,
which contains E, as well as some other relation symbols, such as Route, ST , etc.
depending upon the programs. The satisfaction of the literals in the body of rule
r by instance I and valuation σ is defined in a classical way, except for the univer-
sal literal, where: (I, σ) |= ¬R(t1, . . . ,−, . . . , tn) iff R(σ(t1), . . . , C, . . . , σ(tn)) /∈
I, for any constant C. Assume the body of r, bodyr, is L1; . . . ;Lℓ. We have
(I, σ) |= bodyr iff (I, σ) |= Li, for each i ∈ [1, ℓ].

The valuation of the head, headr, of rule r can now be defined. The aggre-
gation functions, which can only occur in the head of rules, require some care.
Let V ar✟✟Agg(headr) be the set of simple variables in the head, which are not
arguments of aggregation functions. Let τ ∈ V(V ar✟✟Agg(headr)). We extend τ to
V(V ar(r)) with respect to interpretation I, as:

[τ]I,r = {σ|σ ∈ V(V ar(r)), σ(x) = τ(x), for all x ∈ dom(τ), and (I, σ) |= bodyr}.

In the sequel, we assume that [τ]I,r 6= ∅. We define τ(headr) as follows. First,
if headr contains only simple variables and is of the form: R(x1, . . . , xn), then
τ(headr) = R(τ(x1), . . . , τ(xn)). More generally, if it is of the form:

R(x1, . . . , xn, agg(y1), . . . , agg(ym))

where agg denotes an aggregate function on multi-sets, and {{ }} denotes multi-
set, then
τ(headr) = R(τ(x1), . . . , τ(xn), agg{{σ(y1)|σ ∈ [τ]I,r}}, . . . ,

agg{{σ(ym)|σ ∈ [τ]I,r}}).
We can now define the set of positive consequences of a program P over an

instance I, ∆+

P (I), as well as the set of consumed facts, ∆−
P (I).

∆+

P (I) = {τ(headr)|r ∈ P, τ ∈ V(V ar✟✟Agg(headr)), [τ]I,r 6= ∅}.

∆−
P (I) = {R(σ(t1), . . . , σ(tn))|r ∈ P, (I, σ) |= bodyr, !R(t1, . . . , tn) in bodyr}.

It is not hard to see that ∆−
P (I) ⊆ I.

Verifying Netlog Protocols with Coq 19

Let us now distinguish between P↓ the subset of store rules, and P↑ of push
rules in P . Note that store-and-push rules belong to both sets.

We describe the behavior of a Netlog program on one node, say α. At each
local round, it takes as input the local data on α and the data pushed by neigh-
bor nodes to α, (local round) and produces updated local data, and data to be
pushed to each of its neighbor (communication). The node also forwards mes-
sages, that are not used in the local computation. Its interaction with the rest of
the network is defined by the communication function: Rα(ℓ), which maps each
local round ℓ to the set of incoming messages on node α at local round ℓ.

Note that at each local round, the router sorts the incoming messages into
two sets Lα(ℓ), of received facts, and Fα(ℓ), of messages to forward to other
nodes depending upon their destination: Lα(ℓ) contains the facts extracted from
messages received from other nodes, with destination α, “nbg” (the neighbor of
the sender), or “all” (the message is broadcasted to all nodes). Fα(ℓ) contains
the messages received from other nodes, with a destination different from α or
destination “all”, which will be forwarded further to other nodes.

Fα(0) = ∅;
Fα(ℓ) =

˘

(dest, fact) | (dest, fact) ∈ Rα(ℓ); dest /∈ {α, nbg}
¯

;

Lα(ℓ) =
˘

fact | (dest, fact) ∈ Rα(ℓ); dest ∈ {α, nbg, all}
¯

.

The computation relies on two operators, associated to program P , (i) for

the data to store locally, Ψ↓
P , and (ii) for the data to push to other nodes, Ψ↑

P .
They take as input the local instance I, and the received facts L.

– Ψ↓
P (I, L) = ∆+

P↓(I∪L)∪ (I\∆−
P (I∪L)) defines the store operator, producing

facts to store.

– Ψ↑
P defines the push operator, producing messages to push:

Ψ↑
P (I ∪ L) =

(dest, fact)

∣

∣

∣

∣

∣

∣

∣

∣

fact ∈ ∆+

P↑(I ∪ L); and
if fact contains an address term @β
or @all, then resp. dest = β or all;

otherwise dest = nbg.

When a local round ℓ starts, the node α has a local instance Iα(ℓ), and has
received facts Lα(ℓ), and messages to forward Fα(ℓ). It then starts its compu-

tation, and produces a new local instance Iα(ℓ + 1) = Ψ↓
P (Iα(ℓ),Lα(ℓ)), and

a set of messages to push Pα(ℓ) = Ψ↑
P (Iα(ℓ),Lα(ℓ)), which is then sorted by

destination.

Let us now consider the communication between nodes. The messages to
push are accumulated in Pα(ℓ). Their routes will be computed according to the
knowledge node α has of the Route relation.

In the case of synchronous systems without failure, there is an explicit cor-
respondence between the incoming and outgoing sets of messages.

Proposition 1. [14] For synchronous systems without failure, we have for l ≥
0:

20 Y. Deng, S. Grumbach & J.-F. Monin

Rα(0) = ∅,

Rα(ℓ + 1) =

(dest, fact)

∣

∣

∣

∣

∣

∣

∣

∣

∃β s.t. E(β, α) ∈ Iβ(ℓ);
(dest, fact) ∈ Pβ(ℓ); and
if dest /∈ {α, nil, all} then
Route(β, α, dest) ∈ Iβ(ℓ)

.

In the case of asynchronous systems, the function Rα depends upon the
distributed system, and in general might differ between two executions. The
semantics is thus defined up to the system of communication function Rα for
each node α.

The semantics is defined as the local data store obtained on each node of the
network, when no communication occurs anymore in the network. The termina-
tion is thus only implicit and globally defined. Clearly, programs can very well
not terminate.

