207 research outputs found

    Detecting anomalous energy consumption in android applications

    Get PDF
    The use of powerful mobile devices, like smartphones, tablets and laptops, are changing the way programmers develop software. While in the past the primary goal to optimize software was the run time optimization, nowadays there is a growing awareness of the need to reduce energy consumption. This paper presents a technique and a tool to detect anomalous energy consumption in Android applications, and to relate it directly with the source code of the application. We propose a dynamically calibrated model for energy consumption for the Android ecosystem, and that supports different devices. The model is then used as an API to monitor the application execution: first, we instrument the application source code so that we can relate energy consumption to the application source code; second, we use a statistical approach, based on fault-localization techniques, to localize abnormal energy consumption in the source code

    Amulet: An Energy-Efficient, Multi-Application Wearable Platform

    Get PDF
    Wearable technology enables a range of exciting new applications in health, commerce, and beyond. For many important applications, wearables must have battery life measured in weeks or months, not hours and days as in most current devices. Our vision of wearable platforms aims for long battery life but with the flexibility and security to support multiple applications. To achieve long battery life with a workload comprising apps from multiple developers, these platforms must have robust mechanisms for app isolation and developer tools for optimizing resource usage.\r\n\r\nWe introduce the Amulet Platform for constrained wearable devices, which includes an ultra-low-power hardware architecture and a companion software framework, including a highly efficient event-driven programming model, low-power operating system, and developer tools for profiling ultra-low-power applications at compile time. We present the design and evaluation of our prototype Amulet hardware and software, and show how the framework enables developers to write energy-efficient applications. Our prototype has battery lifetime lasting weeks or even months, depending on the application, and our interactive resource-profiling tool predicts battery lifetime within 6-10% of the measured lifetime

    VIMES : A Wearable Memory Assistance System for Automatic Information Retrieval

    Get PDF
    The advancement of artificial intelligence and wearable computing triggers the radical innovation of cognitive applications. In this work, we propose VIMES, an augmented reality-based memory assistance system that helps recall declarative memory, such as whom the user meets and what they chat. Through a collaborative method with 20 participants, we design VIMES, a system that runs on smartglasses, takes the first-person audio and video as input, and extracts personal profiles and event information to display on the embedded display or a smartphone. We perform an extensive evaluation with 50 participants to show the effectiveness of VIMES for memory recall. VIMES outperforms (90% memory accuracy) other traditional methods such as self-recall (34%) while offering the best memory experience (Vividness, Coherence, and Visual Perspective all score over 4/5). The user study results show that most participants find VIMES useful (3.75/5) and easy to use (3.46/5).Peer reviewe

    Mobile Health Technologies

    Get PDF
    Mobile Health Technologies, also known as mHealth technologies, have emerged, amongst healthcare providers, as the ultimate Technologies-of-Choice for the 21st century in delivering not only transformative change in healthcare delivery, but also critical health information to different communities of practice in integrated healthcare information systems. mHealth technologies nurture seamless platforms and pragmatic tools for managing pertinent health information across the continuum of different healthcare providers. mHealth technologies commonly utilize mobile medical devices, monitoring and wireless devices, and/or telemedicine in healthcare delivery and health research. Today, mHealth technologies provide opportunities to record and monitor conditions of patients with chronic diseases such as asthma, Chronic Obstructive Pulmonary Diseases (COPD) and diabetes mellitus. The intent of this book is to enlighten readers about the theories and applications of mHealth technologies in the healthcare domain

    Listen to your Body: Designing for Type 2 Diabetes Management

    Get PDF
    This study informed the design of several components of a digital application to support education and strategies for the management of type 2 diabetes. This tool allows individuals to track food intake, activities, and blood glucose readings, creating visual representations of the relationship among individual's actions, choices, and their body’s response. The study helped identify the needs of those with diabetes and their healthcare providers through expert interviews. Scenarios and Requirements were used to generate key components for a prototype digital application. A usability study was conducted with healthcare providers to evaluate content and design, with results informing recommendations for the next iteration to be tested with those living with diabetes. This study revealed the value of designing for information need. Further studies could include user testing with individuals with type 2 diabetes to collect their perceptions and needs in the context of using a digital interface and self-care strategies

    Experience Prototyping for Automotive Applications

    Get PDF
    In recent years, we started to define our life through experiences we make instead of objectswe buy. To attend a concert of our favorite musician may be more important for us thanowning an expensive stereo system. Similarly, we define interactive systems not only by thequality of the display or its usability, but rather by the experiences we can make when usingthe device. A cell phone is primarily built for making calls and receiving text messages,but on an emotional level it might provide a way to be close to our loved ones, even thoughthey are far away sometimes. When designing interactive technology, we do not only haveto answer the question how people use our systems, but also why they use them. Thus,we need to concentrate on experiences, feelings and emotions arising during interaction.Experience Design is an approach focusing on the story that a product communicates beforeimplementing the system. In an interdisciplinary team of psychologists, industrial designers, product developers andspecialists in human-computer interaction, we applied an Experience Design process to theautomotive domain. A major challenge for car manufacturers is the preservation of theseexperiences throughout the development process. When implementing interactive systemsengineers rely on technical requirements and a set of constraints (e.g., safety) oftentimescontradicting aspects of the designed experience. To resolve this conflict, Experience Prototypingis an important tool translating experience stories to an actual interactive product. With this thesis I investigate the Experience Design process focusing on Experience Prototyping.Within the automotive context, I report on three case studies implementing threekinds of interactive systems, forming and following our approach. I implemented (1) anelectric vehicle information system called Heartbeat, communicating the state of the electricdrive and the batteries to the driver in an unobtrusive and ensuring way. I integrated Heartbeatinto the dashboard of a car mock-up with respect to safety and space requirements butat the same time holding on to the story in order to achieve a consistent experience. With (2)the Periscope I implemented a mobile navigation device enhancing the social and relatednessexperiences of the passengers in the car. I built and evaluated several experience prototypesin different stages of the design process and showed that they transported the designed experiencethroughout the implementation of the system. Focusing on (3) the experience offreehand gestures, GestShare explored this interaction style for in-car and car-to-car socialexperiences. We designed and implemented a gestural prototypes for small but effectivesocial interactions between drivers and evaluated the system in the lab and and in-situ study. The contributions of this thesis are (1) a definition of Experience Prototyping in the automotivedomain resulting from a literature review and my own work, showing the importanceand feasibility of Experience Prototyping for Experience Design. I (2) contribute three casestudies and describe the details of several prototypes as milestones on the way from a anexperience story to an interactive system. I (3) derive best practices for Experience Prototypingconcerning their characteristics such as fidelity, resolution and interactivity as well asthe evaluation in the lab an in situ in different stages of the process.Wir definieren unser Leben zunehmend durch Dinge, die wir erleben und weniger durchProdukte, die wir kaufen. Ein Konzert unseres Lieblingsmusikers zu besuchen kann dabeiwichtiger sein, als eine teure Stereoanlage zu besitzen. Auch interaktive Systeme bewertenwir nicht mehr nur nach der Qualität des Displays oder der Benutzerfreundlichkeit, sondernauch nach Erlebnissen, die durch die Benutzung möglich werden. Das Smartphone wurdehauptsächlich zum Telefonieren und Schreiben von Nachrichten entwickelt. Auf einer emotionalenEbene bietet es uns aber auch eine Möglichkeit, wichtigen Personen sehr nah zusein, auch wenn sie manchmal weit weg sind. Bei der Entwicklung interaktiver Systememüssen wir uns daher nicht nur fragen wie, sondern auch warum diese benutzt werden. Erlebnisse,Gefühle und Emotionen, die während der Interaktion entstehen, spielen dabei einewichtige Rolle. Experience Design ist eine Disziplin, die sich auf Geschichten konzentriert,die ein Produkt erzählt, bevor es tatsächlich implementiert wird. In einem interdisziplinären Team aus Psychologen, Industrie-Designern, Produktentwicklernund Spezialisten der Mensch-Maschine-Interaktion wurde ein Prozess zur Erlebnis-Gestaltung im automobilen Kontext angewandt. Die Beibehaltung von Erlebnissen über dengesamten Entwicklungsprozess hinweg ist eine große Herausforderung für Automobilhersteller.Ingenieure hängen bei der Implementierung interaktiver Systeme von technischen,sicherheitsrelevanten und ergonomischen Anforderungen ab, die oftmals dem gestaltetenErlebnis widersprechen. Die Bereitstellung von Erlebnis-Prototypen ermöglicht die Übersetzungvon Geschichten in interaktive Produkte und wirkt daher diesem Konflikt entgegen. Im Rahmen dieser Dissertation untersuche ich den Prozess zur Erlebnis-Gestaltung hinsichtlichder Bedeutung von Erlebnis-Prototypen. Ich berichte von drei Fallbeispielen im automobilenBereich, die die Gestaltung und Implementierung verschiedener interaktiver Systemenumfassen. (1) Ein Informationssystem für Elektrofahrzeuge, der Heartbeat, macht den Zustanddes elektrischen Antriebs und den Ladestand der Batterien für den Fahrer visuell undhaptisch erlebbar. Nach der Implementierung mehrerer Prototypen wurde Heartbeat unterBerücksichtigung verschiedener technischer und sicherheitsrelevanter Anforderungen in dieArmaturen eines Fahrzeugmodells integriert, ohne dass dabei das gestaltete Erlebnis verlorengegangen ist. (2) Das Periscope ist ein mobiles Navigationsgerät, das den Insassensoziale Erlebnisse ermöglicht und das Verbundenheitsgefühl stärkt. Durch die Implementierungmehrere Erlebnis-Prototypen und deren Evaluation in verschiedenen Phasen des Entwicklungsprozesseskonnten die gestalteten Erlebnisse konsistent erhalten werden. (3) ImProjekt GestShare wurde das Potential der Interaktion durch Freiraumgesten im Fahrzeuguntersucht. Dabei standen ein Verbundenheitserlebnis des Fahrers und soziale Interaktionenmit Fahrern anderer Fahrzeuge im Fokus. Es wurden mehrere Prototypen implementiert undauch in einer Verkehrssituation evaluiert. Die wichtigsten Beiträge dieser Dissertation sind (1) eine intensive Betrachtung und Anwendungvon Erlebnis-Prototypen im Auto und deren Relevanz bei der Erlebnis-Gestaltung,beruhend auf einer Literaturauswertung und der eigenen Erfahrung innerhalb des Projekts; (2) drei Fallstudien und eine detaillierte Beschreibung mehrere Prototypen in verschiedenenPhasen des Prozesses und (3) Empfehlungen zu Vorgehensweisen bei der Erstellung vonErlebnis-Prototypen hinsichtlich der Eigenschaften wie Nähe zum finalen Produkt, Anzahlder implementierten Details und Interaktivität sowie zur Evaluation im Labor und in tatsächlichenVerkehrssituationen in verschiedenen Phasen des Entwicklungsprozesses

    Mobile Applications for the Promotion and Support of Healthy Nutrition and Physical Activity Habits: A Systematic Review, Extraction of Features and Taxonomy Proposal

    Get PDF
    Background: Mobile applications can be used for the monitoring of lifestyles and physical activity. It can be installed in commodity mobile devices, which are currently used by different types of people in their daily activities worlwide. Objective: This paper reviews and categorizes the mobile applications related to diet, nutrition, health, physical activity and education, showing the analysis of 73 mobile applications available on Google Play Store with the extraction of the different features. Methods: The mobile applications were analyzed in relation to each proposed category and their features, starting with the definition of the search keywords used in the Google Play Store. Each mobile application was installed on a smartphone, and validated whether it was researched in scientific studies. Finally, all mobile applications and features were categorized. Results: These mobile applications were clustered into four groups, including diet and nutrition, health, physical activity and education. The features of mobile applications were also categorized into six groups, including diet, anthropometric parameters, social, physical activity, medical parameters and vital parameters. The most available features of the mobile applications are weight, height, age, gender, goals, calories needed calculation, diet diary, food database with calories, calories burned and calorie intake. Conclusion: With this review, it was concluded that most mobile applications available in the market are related to diet, and they are important for different types of people. A promising idea for future work is to evaluate the acceptance by young people of such mobile applications.This work is funded by FCT/MEC through national funds and when applicable co-funded by FEDER – PT2020 partnership agreement under the project UID/EEA/50008/2019

    Energy efficient adaptation engines for android applications

    Get PDF
    Context The energy consumption of mobile devices is increasing due to the improvement in their components (e.g., better processors, larger screens). Although the hardware consumes the energy, the software is responsible for managing hardware resources such as the camera software and its functionality, and therefore, affects the energy consumption. Energy consumption not only depends on the installed code, but also on the execution context (environment, devices status) and how the user interacts with the application. Objective In order to reduce the energy consumption based on user behavior, it is necessary to dynamically adapt the application. However, the adaptation mechanism also consumes a certain amount of energy in itself, which may lead to an important increase in the energy expenditure of the application in comparison with the benefits of the adaptation. Therefore, this footprint must be measured and compared with the benefit obtained. Method In this paper, we (1) determine the benefits, in terms of energy consumption, of dynamically adapting mobile applications, based on user behavior; and (2) advocate the most energy-efficient adaptation mechanism. We provide four different implementations of a proposed adaptation model and measure their energy consumption. Results The proposed adaptation engines do not increase the energy consumption when compared to the benefits of the adaptation, which can reduce the energy consumption by up to 20%. Conclusion The adaptation engines proposed in this paper can decrease the energy consumption of the mobile devices based on user behavior. The overhead introduced by the adaptation engines is negligible in comparison with the benefits obtained by the adaptation.Junta de Andalucía MAGIC P12-TIC1814Ministerio de Economía y Competitividad TIN2015-64841-RMinisterio de Ciencia, Innovación y Universidades TIN2017-90644-REDTMinisterio de Ciencia, Innovación y Universidades RTI2018-099213-B-I00Universidad de Málaga LEIA UMA18-FEDERJA-15

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights

    Get PDF
    The microbial fuel cell (MFC) technology relies on energy storage and harvesting circuitry to deliver stable power outputs. This increases costs, and for wider deployment into society, these should be kept minimal. The present study reports how a MFC system was developed to continuously power public toilet lighting, with for the first time no energy storage nor harvesting circuitry. Two different stacks, one consisting of 15 and the other 18 membrane-less MFC modules, were operated for 6 days and fuelled by the urine of festival goers at the 2019 Glastonbury Music Festival. The 15-module stack was directly connected to 2 spotlights each comprising 6 LEDs. The 18-module stack was connected to 2 identical LED spotlights but going through 2 LED electronic controller/drivers. Twenty hours after inoculation the stacks were able to directly power the bespoke lighting system. The electrical energy produced by the 15-module stack evolved with usage from ≈280 mW (≈2.650 V at ≈105 mA) at the beginning to ≈860 mW (≈2.750 V at ≈300 mA) by the end of the festival. The electrical energy produced by the LED-driven 18-module stack increased from ≈490 mW at the beginning to ≈680 mW toward the end of the festival. During this period, illumination was above the legal standards for outdoor public areas, with the 15-module stack reaching a maximum of ≈89 Lx at 220 cm. These results demonstrate for the first time that the MFC technology can be deployed as a direct energy source in decentralised area (e.g. refugee camps)
    corecore