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ABSTRACT

The advancement of artificial intelligence and wearable computing

triggers the radical innovation of cognitive applications. In this

work, we propose VIMES, an augmented reality-based memory

assistance system that helps recall declarative memory, such as

whom the user meets and what they chat. Through a collaborative

method with 20 participants, we design VIMES, a system that runs

on smartglasses, takes the first-person audio and video as input,

and extracts personal profiles and event information to display on

the embedded display or a smartphone. We perform an extensive

evaluation with 50 participants to show the effectiveness of VIMES

for memory recall. VIMES outperforms (90% memory accuracy)

other traditional methods such as self-recall (34%) while offering

the best memory experience (Vividness, Coherence, and Visual

Perspective all score over 4/5). The user study results show that

most participants find VIMES useful (3.75/5) and easy to use (3.46/5).
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1 INTRODUCTION

Millions of people are affected by various forms of memory

problems [60]. Dementia covers various diseases characterized by a

cognitive decline that considerably affect people’s abilities and daily

life. It involves diverse symptoms, including short-term memory
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(a) Interface on smartglasses. (b) Interface on smartphone.

Figure 1: VIMES in action. The system automatically de-

tects the faces of people and extracts information from the

recorded interaction. Users can then visualize a summary of

their previous information on the smartglasses’ screen (a) or

on the phone (b).

loss, having difficulty recognizing relatives and friends, or becoming

unaware of the time and place [14]. Even healthy human beings

often forget essential information in their daily activities. There

is thus undoubtedly a need for memory aids, such as reminder

notes [4, 35], for dementia patients and healthy people alike.

With recent developments in wearable computing and multi-

media processing, wearable devices can provide real-time memory

assistance through automatic information retrieval from the em-

bedded sensors. People often forget everyday details and events,

and solutions based on summarizing techniques can considerably

improve memory recall [36]. Multiple empirical shreds of evidence

show the potential of wearable cameras as a viable solution to re-

mediate autobiographical memory impairment [2, 17, 20]. Several

works propose wearable cameras with recognition features such as

the face and objects, to improve users’ memory recall [17, 20]. The

rise of these ‘lifelogging’ wearables, such as smartglasses [23], can

impact the adoption, such as the rising concern of privacy [37, 45].

Moreover, individuals’ opinions about these wearable devices’ abil-

ity to collect data differ, depending on whether they are bystanders
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or users. Further understanding of the constraints and concerns is

necessary to design these devices. While these approaches have

brought exciting insights, they lack user involvement in the de-

sign of the device and further analysis of the possible privacy and

adoption challenges of these ‘lifelogging’ devices.

In this work, we present VIMES, a comprehensive wearable mem-

ory assistance system for helping users to remember daily-life facts

events (also known as also known as declarative memory). Remem-

bering acquaintances is a typical use case of declarative memory.

We consider the following scenario: A user meets a new person

for the first time. When meeting this person a second time, days or

weeks later, the user hardly recalls their names or other information

about them. Addressing this use-case is highly dependent on the

users’ own preferences regarding lifelogging and its applications.

Thus, we co-design VIMES with a panel of 20 participants to define

the requirements, functionalities, aesthetics, and interactions for a

wearable memory assistance system for daily use. Following the

insights of the co-design study, we develop VIMES as an augmented

reality (AR) system on smartglasses for supporting declarative mem-

ory in daily life. The proposed system extract information from

face-to-face conversation using face recognition, speech recogni-

tion, and natural language processing techniques, and concisely

displays them in augmented reality, as shown in Figure 1. We evalu-

ate the system from both technical specifications and memory recall

performance. Our results show that VIMES is efficient in informa-

tion retrieval (M=0.93) against other memory recall methods. The

adoption of the system features such as information recording (e.g.,

video) depends on the role of the participant (user or bystander). To

the best of our knowledge, this is the first comprehensive study that

encompasses the entire design process from the early co-design

study to the final user evaluation, going through the development

of an integrated system for memory assistance.

The contributions of this paper are as follows:

• We conduct a collaborative design study (20 participants) of

a wearable memory assistance system.

• We develop VIMES around the expectation and requirements

defined in the co-design study. VIMES is an AR-based wear-

able autobiographical memory assistance system that ex-

tracts personal profiles and event information from the user’s

visual and auditive point of view.

• We evaluate the system performance through an extensive

evaluation. VIMES operates with high performance within

the boundaries of a normal conversation (visual and audio

accuracy > 80%, response delay < 1s).

• We study user performance, as well as their acceptance, pri-

vacy, expected social conformity, and adoption intention [44]

of VIMES through a 50-participants study. VIMES achieves

better memory recall performance (93%) against traditional

methods (34%), and provides a better memory experience.

The reminder of this paper is organized as follows.We summarize

the most relevant studies related to memory aid in Section 2 before

describing our co-designmethodology and the system requirements

in Section 3. We describe the resulting architecture in Section 4. We

then present the system performance evaluation in Section 5 and

user evaluation 6. Finally, we discuss the implications of VIMES and

the results of our final evaluation in Section 7.

2 BACKGROUND AND RELATED WORK

In this section, we first review the state-of-art of memory aug-

mentation techniques and then discuss the wearable assistance

systems and the mechanisms used for wearable offloading.

2.1 Cues of Memory Recall

The details and events of everyday experience are often not re-

tained in memory, and solutions based on summarizing approaches

can improve the memory recall of individuals [36]. Visual lifelog-

ging [10, 16] captures real-life images through the camera embed-

ded in wearable devices to create a personal photo or video-based

memory prosthetics [33]. The goal of lifelogging is to support peo-

ple’s self-awareness and self-management for memory recall [47].

Current research study how to summarize such data and visualize it

to reflect on meaningful personal events [25, 34, 48]. SenseCam [21]

is one of the first feasible lifelogging cameras. A neck-work sensor-

enhanced camera records images and context passively. Several

studies have shown SenseCam’s benefits for supporting the recall

of episodic memories [6, 20, 50]. Other types of cues have been in-

vestigated to assist memory recall. Examples include geo-locational

cues [28], audio cues [9], such as ambient sound recording, or

emotions [27]. Although recording all-time may seem an excellent

approach to help users in their daily lives, the amount of result-

ing information can hinder their autobiographical memory perfor-

mance due to the lack of a summarizing system. In [61], authors

propose a storytelling system to relive users’ moments using sum-

marized stories created from photos. The system helps users to

remember previous events in a kinematic manner and offers better

performance than other state-of-the-art systems. We confirm these

findings in our co-design experiment, where most participants re-

quired these summarizing systems to cope with the information

recorded by the wearable devices.

2.2 Wearable Assistance

A large number of applications are emerging for wearable assis-

tance like emotion sensing [24] and gait recognition [52]. Many of

the applications focus on assisting the physically impaired. For ex-

ample, OpenGlass [57], Chroma [55] and Gear Face Recognition [7]

are designed to help visually impaired people. Bachlin et al. [3]

presents a wearable assistance application for the Parkinsons’ dis-

ease patients with the freezing of gait symptoms (a sudden and tran-

sient inability to move). As mentioned before, SenseCam [21] takes

images from a wearable digital camera based on lifelogging [50]. It

can help people to recall episodic memory by reviewing the images

of previous events. Though valuable, it does not provide real-time

memory assistance, and therefore cannot allow instant reminding

as VIMES does. Authors in [17] take one step further and works as

a real-time wearable assistant for cognitive decline. The contribu-

tions of these works focus on the design of the system architecture

that efficiently incorporates various cognitive engines like face

recognition, object recognition, and optical character recognition.

As mentioned earlier, emotions are an essential cue for memory

recall [27]. Modern wearables include electroencephalogram (EEG)
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sensors to record users’ mental activities such as emotions. Lifelog-

gin applications can also collaboratively collect multiple sources

of information from different sources, aggregate these different

types of data in cloud-based services, and provide users with richer

information about a particular logged event [1]. For example, IoT

sensors can collect temperature, humidity, and number of people

in a particular room, where the user is logging a particular event.

Ourwork focuses on inventing a novelmethod for helping people

retrieve cognitive information, such as personal profiles and event

information. Furthermore, our work places much emphasis on user

experience and intended adoption in addition to the technology.

3 CO-DESIGN STUDY

Collaborative design studies empower users to be part of the de-

sign process [26]. Related works on memory aid systems only focus

on system design (e.g., computer vision modules [7, 17], summa-

rization techniques [36, 61]). We adopt a co-design approach [46]

in which researchers, designers, and potential users share their

ideas and cooperate creatively to generate a new wearable memory

assistance system.

3.1 Participants

We recruited 20 participants (8 female, 12 male, age 18 to 24: 8, 25

to 34: 6, 35 to 44: 6) around the university campus. Profession demo-

graphics (9 computer science students, 2 post-doc civil engineers, 4

environmental engineers, 2 journalist, 2 office managers, 1 post-doc

electronic department) and technologies usage: smartphone (1 to

2 hours: 13.3%, 2 to 3 hours: 40%, 3 to 4 hours: 20%, more than

4 hours: 26.7%), and all participants work with computer (2 to 3

hours: 20%, 3 to 4 hours: 26.7%, more than 4 hours: 53.3%). Only

three participants wear smart-watches. We focus on young early

adopters of wearables, as according to [12], 31% of U.S. population

aged between 25-35 years use wearable accessories (2017).

We informed participants that data would be deidentified, and

all recorded data will be password-protected and deleted after the

study ends. Participants provided informed consent to participate

and be audio-recorded. We carried out the study following the local

IRB regulations. We rewarded participants with sweets and soft

drinks after the completion of the experiment.

3.2 Study Goal

We ask participants to design a wearable memory assistance system

collaboratively.

Design space. Description of the design space: ‘The system will

need to help users to remember daily life events such as meeting peo-

ple, buying groceries with straightforward interactions and minimal

interruptions. The system should be implementable in a wearable

device that users can wear.’

System capabilities. We analyze participants’ responses for dif-

ferent characteristics of the system: (i) aesthetics (location of the

wearable, size, weight), (ii) functionality (e.g., interface design), and

(iii) interaction with the device (e.g., input, feedback).

Event-cues. Details, information to remember about an event.

4

8

3

Event cues

Device aesthetics

emotions

10

touchscreen

voice

audio
visual

smart glasses
smart watch

Functionality

context based

personalization
key points

notification

haptic

button interface

others
contact lenses

body language
chest camera

biometrics

summarizing

companion devicce

Interactions

Figure 2: VIMES co-design space. Each circle corresponds to

the number of participants that propose the same key idea.

3.3 Protocol

A person with a software and design background helps partic-

ipants describe their ideas using schemes and photos of different

wearable devices, sensors, and locations where wearables can be

worn, to help participants during the co-design study. The study is

divided into five phases, during which we audio record the partici-

pants’ answers.

(1) Initial Interview (5minutes). Participants answer demographic

and general technology usage questions.

(2) One-to-one design (18 minutes): We describe the structure

of the project as follows: ‘We want to design a wearable memory

assistance system for autobiographical memory.’ We also describe to

participants the wearable capabilities and our design space.

(3) System design (20 minutes): In this part, we gather participants

in groups of three to four, where they discuss their design ideas

materialized in the previous part. During this phase, we show par-

ticipants different commercials and prototypes of wearable devices.

We describe different familiar places where these wearable devices

can be worn, the different capabilities.

(4) Event-Cues (15 minutes): In this phase, we ask each group of

participants what they would like to remember from a particular

scenario or encounter with other people. Participants propose dif-

ferent use case scenarios: meeting a new classmate on the first day

of a course; diary; note-taking application, which can be used for

taking class notes. For each proposed situation, we ask participants

what details are essential to remember.

(5) Final co-design (15 minutes): In this part, participants summa-

rize their ideas for each of the system capabilities.

3.4 Results

To analyze audio data from the custom design study, we itera-

tively develop a set of key ideas from the interview transcripts [19].

First, two independent researchers read the transcript and devel-

oped an initial set of key ideas. Then, both researchers meet in

person to discuss and consolidate the key-ideas from participants’

transcripts. The inter-coder reliability was 0.73 (Cohen’s Kappa).

Our goal is to have a breadth of common key-ideas, such as aes-

thetic designs, event-cues, interactions, and functionality. The two
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researchers agree on the top key ideas for the prototype design.

Figure 2 shows the resulting co-design space for the system capabil-

ities, device aesthetics, and event-cues that the system is required

to collect/retrieve. The farther the key ideas are from the center,

the more critical they were to the co-design study participants.

Scenarios. Participants propose several use-case scenarios where

the wearable memory assistance system can help them. P2 said: ‘The

device can be beneficial during work meetings or lectures as a notes

recorder, the system will also summarize the key points of the meeting.’

Other participants (P5, P7) suggested: ‘I would like to have a device

that can help me in my first day of class when I meet a lot of unknown

classmates, so it can help me remember names and other important

aspects such as hometown or age.’

Device-aesthetics: smartglasses. Participants have some con-

cerns about the aesthetic of the device and prefer a more fashionable

wearable, which is also discreet, (Figure 2). The most recalled wear-

able to use as assistive memory was the smartglasses, and also, the

most commented solution to visualize the retrieved information

was augmented reality (AR). Several participants note an interesting

aspect of the wearable device, as P15 (shoes) said: ‘I want something

I wear and do not need to think of putting on every day.’

Event-cues: visual and audio. Figure 2 depicts the main interac-

tion methods that participants prefer. Following the device decision,

40% of the participants decide that visual information can help them

remember more information about a particular event. Some other

interesting participants’ opinions (P4, P17) comment: ‘I would like

a system that can tell me the body language of a person such as ges-

ticulation.’ P5: ‘In some situations, I would like a device that can track

my biometrical data such as heart-rate so that I can remember my

feelings at that moment.’ Several participants (P1, P5, P16) like the

idea of audio as a more private approach to record events.

Interactions: voice and companion device. Participants decide

that voice is a seamless approach to interact with the device, see

Figure 2. Participants (P9, P10) highlight that they might be em-

barrassed by using these voice interactions in public. The main

concern with all the interaction methods is the ability to turn the

device on-and-off according to their preferences. Participants (P15,

P13) choose haptic feedback as a reminder notification technique

for future events. Users can interact with VIMES using voice com-

mands, and a companion device such as a smartphone (to access

and configure the profile database).

Functionality: summarizing and context-based. Participants

(P11, P2) prefer a system that changes its interactions and recording

modes according to the user’s surroundings, such as conversation

topic, location, see Figure 2. P2: ‘I would like the system to recognize

the context automatically and start collecting the event’s information.’

P13: ‘I would like the system to recognize the conversation and garner

information according to my privacy preferences.’ P8: ‘Looking for

information in all the collected data can be cumbersome, so I would

like to have a system that can provide me the key-points of the events.’

A fire-and-forget usage model will be the default mode to provide

accurate and richer information to help users daily.

Additional comments. The user interface was also part of the

discussions related to the functionalities and interaction. Accord-

ing to the participants, AR is the best interface approach to show

information and display the retrieved data about an event or a

person. Our proposed system uses AR and smartglasses to enable

users to retain more information and interact with the environ-

ment more effectively [22]. Participants are very concerned with

the collecting capabilities of the device in private conversations or

events. P7: ‘Although I would like to have a contact lens device to

help in my daily life, I believe the use can be toxic, as it can record

all-time.’ However, they would appreciate for the system to be part

of a larger life-planning solution. P8: ‘I would like the system not

only to monitor my surroundings but to get useful information from

my online calendar, email, and other online services to provide me

with more personalized and accurate information.’ Participants agree

that a full-day battery or auto rechargeable one (e.g., user’s move-

ment) would be a welcome addition. Other factors were discussed as

side-effects of the design choices, such as interacting with records,

e.g., P7: ‘Timeline and scrolling can be cumbersome when there is a

lot of recorded daily information.’ As mentioned earlier, emotions

are an essential cue for memory recall [27]. Several participants

suggest the idea of recording emotions with VIMES. Modern wear-

ables include electroencephalogram (EEG) sensors that can be used

to record users’ mental activities such as emotions. Lifelogging

applications can also collaboratively collect multiple sources of

information from different sources, and aggregate them.

Privacy by default. Any system relying on the embedded smart-

glasses camera captures a wide variety of privacy-sensitive infor-

mation. Such information may be violated by a third party, depend-

ing on where the data is stored and processed. Therefore, privacy

preservation must be at the core of the design of the system.

Responsive. The system shall recognize people and return relevant

information with a short response delay. Besides, display latency is

significantly constrained in mobile AR environments, and should

be kept below 20ms for avoiding alignment problems [5].

We focus the prototype of VIMES to audiences with a technology

background and some AR experience, as they will be first adopters

to use the system. Future developments of the system will focus on

audiences that necessary require these memory assistance systems

such as dementia patients.

4 SYSTEM ARCHITECTURE

Figure 3 illustrates the system architecture of VIMES, that con-

sists of three modules: visual module, acoustic, and a profile data-

base. We follow: ‘the meeting a new person’ scenario, as use-case

example for the VIMES prototype.

4.1 Recognition Module

The visual module is responsible for detecting faces from images

and identifying people using their facial features. In practice, the

visual module on the smartglass will detect faces in the camera

interface, extract the face features of detected faces, and pass the

feature-vector (of each face) to the offloading runtime manager. The

face processing pipeline is as follows: (i) face detection using feature

points [49]. (ii) face recognition, a query including the received facial

feature points (feature-vector), is sent to the companion device’s

database to retrieve relevant information based on feature matching.
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Figure 3: The system architecture of VIMES. Left: Google

Glass side. Right: smartphone side.

4.2 Audio Module

The visual module works in conjunction with the audio module,

which includes: (i) speech recognition, VIMES leverages the Google

Glass’ speech recognition API [8] to convert speech to text; and

(ii) language processing extracts useful information from the rec-

ognized speech (defined in the profile database). We use OpenNLP

for this module, which presents a 90% accuracy [51] to extract real-

world information such as persons, locations, and products from

unstructured text. The output of speech recognition is passed in

text-form to the companion device for further language processing

according to the system’s profile database configuration.

4.3 Profile Database

The profile database defines how the information will be stored

and what information is useful to users daily. The profile database

is stored in the companion device as it provides a more feasible

interface to manage profiles. The current system uses templates

for each type of event that users might find useful to recall. In

the ‘meeting a new person use case,’ the profile database would

store facial feature points as a primary key for the visual module;

personal names, affiliations, and information of previous meetings

such as locations and summary of conversations from the audio

module. The profile data, such as facial features, are stored locally

in the smartphone in an encrypted database. We encourage users

to use privacy-protective settings during the template creation,

such as not enabling by default camera or audio recording (privacy

by default). VIMES also emphasizes the minimization of sharing

sensitive data such as collected facial features to outside entities,

and processes/stores all sensitive information on the companion

device in the encrypted profile database (privacy by design).

4.4 Offloading Tasks

We implement a static offloading system between Google Glass

and the companion device. The offloading runtime consists of a

proxy/server and a manager (see Figure 3). The proxy/server han-

dles the control and data transfer for offloaded tasks. The manager

instruments the offloading of face feature points and garnered text

from the speech recognition module. We offload the recognition

and audio module to the companion device. The devices are paired

with Bluetooth as it consumes less energy than WiFi [42] and allow

both devices to access the Internet. Our experiments demonstrate

that Bluetooth latency is acceptable in our use case.

4.5 System Implementation

We implement VIMES for Google Glass [15] using the Glass

Development Kit (GDK). We chose Google Glass as, despite being

computationally limited by nowaday’s standards, it presents all the

sensors and APIs required for our system implementation within a

compact form-factor. Besides, in recent years, smartglasses man-

ufacturers have shifted from improving hardware to relying on

a companion device for running applications1. As such, our pro-

totype system represents a good approximation of more modern

systems. We use existing libraries such as OpenCV4Android [38],

OpenNLP [39], and SQLite [40]. Our experimental device is Google

Glass 2.0 Explorer Edition. The device runs Android 5.0 and is

equipped with a 1.2GHz dual-core CPU, a 1GB RAM, and a front

camera with its resolution of 1920x1080 pixels. We use a Nexus 4

(Qualcomm APQ8064 Snapdragon S4 Pro Quad-core 1.5 GHz Krait

CPU, 2GB RAM) as the companion device. Figure 1 represents the

interface on the Google Glass and the companion device.

5 SYSTEM PERFORMANCE

In this section, we evaluate the performance of our system ac-

cording to response delay, profile retrieval performance, energy

consumption, and the accuracy of recognition and audio modules.

5.1 Experimental Protocol

We evaluate VIMES on the setup described in Section 4.5. All ex-

periments are performed on Google Glass with a companion Nexus

4 smartphone.

We evaluate the following metrics:

• Response delay: the duration between the apparition of a face

in the camera frame and the presentation of the corresponding

personal information on the display if the profile is already in

the system, or the creation of a new profile for a stranger.

• Profile retrieval performance: the performance to retrieve profiles

information among 100 random generated profiles.

• Energy consumption: energy consumed for each device (smart-

glasses, smartphone) and with/without offloading.

• Recognition module accuracy: the face recognition algorithm

accuracy in normal sunlight environments. As the distance and

view angles could affect the accuracy of this module, a tester

using VIMES is placed at various angles and distances from the

target. We classify visual module failures into two categories:

(i) Detection failure; the system does not detect the face in the

camera frame. (ii) Recognition failure; the system detects the

face but does not recognize the person in the profile database.

• Audio module accuracy: the percentage of successful recognition

(i.e., the module correctly transcribes what the user is saying).

The accuracy can vary with different people and different levels

of noise. We use prerecorded audio for simulating the user’s

voice, which varies from 50dB to 70dB2, while the simulated

noise varies from 20dB to 60dB. We generate an audio file with

random noise using a random audio noise generator3.

1Vuzix Companion App - https://www.vuzix.com/appstore/app/reflekt-remote
2https://www.alpinehearingprotection.co.uk/5-sound-levels-in-decibels/
3https://www.random.org/audio-noise/
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Figure 4: Average response delay and standard error of the

mean) for different scenarios. VIMES benefits greatly from

offloading to a companion device (3 to 4 times improve-

ment). VIMES identifies and retrieves profiles in a matter of

seconds, which is sufficient for typical human interaction.

We run the experiments 10 times for each metrics and present

the average results along with a statistical analysis when applicable.

5.2 Results

Response delay.We evaluate the response delay for a single profile

retrieval and creation. Figure 4a illustrates the response delay in

both scenarios, with and without offloading. If the user wants to add

a stranger to the profile database, both modules (visual and acoustic)

must be activated, so the response delay is longer. One-way repeated

measures ANOVA (F (1, 36) = 16.5,p < .001,adjusted − r2 = 0.95)

shows that the offloading technique has a significant effect on the

response delay. The response delay is minimized (M = 0.45 s, 95% :

CI [0.39, 0.52]) when the tasks recognition and language processing

are performed on the companion device.

Profile retrieval performance. Figure 4b depicts the profile re-

trieval performance for multiple faces in the camera frame. The

database’s new profiles correspond to profiles that are not yet

stored in the profile database. One-way repeated measures ANOVA

(F (2, 57) = 276.5,p < .001,adjusted − r2 = 0.99) shows a statis-

tically significant effect of the number of profiles stored and the

status (new/stored) of the profile. The time to retrieve stored pro-

files (M = 1.39 s, 95% : CI [1.14, 1.63]) is significantly shorter

than in cases the profile is new and requires to be created (M =

1.80 s, 95% : CI [1.48, 2.12]). Similarly, the time to retrieve profiles

increases when the number of profiles to retrieve increases.

Energy consumption. Besides faster execution times, another

benefit of computation offloading comes from the energy consump-

tion reduction of Google Glass. Figure 5 displays over 40% energy

savings on Google Glass with computation offloading. The system,

including Google Glass and the smartphone, can work together

for over 90 minutes. The battery of Google Glass is drained within

45 minutes when running the recognition and audio modules on-

device; the 90-min battery life with offloading thus represents a

significant improvement and corresponds to the typical battery life

of Google Glass with the camera on.

Visual accuracy. Figure 6a depicts the visual module accuracy

according to the angle and distance between the user and the indi-

vidual to recognize. The total visual accuracy declines along with

both the distance and angle. The recognition accuracy (face de-

tected but not recognized) is more sensitive to the distance. Within
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Figure 5: Energy consumption. With offloading, the smart-

glasses can be used for 90 minutes, as compared to 45 min-

utes without offloading.
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Figure 6: System accuracy. Visual accuracy decreases over

2m distance and 30◦. Audio accuracy is high as long as user

voice is 10dB higher than the noise. These values correspond

to the requirements for a comfortable conversation.

a two meters range, the visual accuracy of our module is above 90%.

The performance then drops significantly (60%). When the individ-

ual to retrieve the profile is over 2 meters away from the user, the

recognition accuracy significantly decreases as the face resolution

falls with the distance. The angle also affects face recognition over

20◦ to 30◦. The system recognizes faces with a high accuracy when

they are within the typical field of view of the smartglasses, at

conversational distance, which corresponds to our use-case.

Audio accuracy. Figure 6b shows how the audio accuracy drops

when the noise level is close to the user’s voice. The audio accuracy

is 80% when the user’s voice level is 60dB, and the noise level is

50dB. In order to keep high audio accuracy, the user should try to

maintain the voice level at least 10dB higher than the surrounding

noise, which is socially expected in a normal conversation.

6 USER EVALUATION
After evaluating the system performance, we proceed to measure

the users’ performance and their subjective perception of VIMES.

6.1 Participants and Apparatus

To understand users’ memory recall performance, memory experi-

ence, awareness, and intended adoption, we recruit 50 participants.

53% are male, 47% female, with ages ranging from 19 to 31 (M =

24, SD = 3.07). The participants are students invited from business

(20%), science (30%), and engineering (50%) schools at our University.

All participants noted that they have little prior experience of using

smartglasses like Google Glass. There was no overlap between the

evaluation group and the co-design study group.
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The experiment was carried out in accordance with the local

IRB regulations. We informed the participants that the data will be

password-protected and deleted after the study ends, and partici-

pants provided informed consent. They were rewarded with sweets

and soft drinks after completion of the experiment.

6.2 Experimental Protocol

We evaluate the memory retrieval performance of our proposed

system against two traditional memory recall methods as follows:

Self-recall. Individuals retrieve information without aid. Users

retrieve the information only using their own memory capabilities.

Visual-cues. Individuals are helped with visual cues (i.e., faces of

persons) to help them retrieve the asked information.

VIMES. Individuals will use our system to retrieve the information.

In this user study, we focus on the following metrics

• Memory performance. We conduct a memory test to quantita-

tively evaluate (recall performance score, RPS) how the system

can provide memory recall to users. We evaluate the described

recall methods. We ask participants to recall the time, location,

name, background, and opinion of the other three students mea-

sure their binary recall performance (0: fail, 1: success).

• Memory experience. We ask participants their memory experi-

ence [31]: vividness, coherence, accessibility, and visual perspec-

tive using a 5-point scale (Answer: 1.lowest - 5.highest).

• Technology Acceptance. We follow the technology acceptance

model (TAM), which includes two criteria: perceived usefulness

(PU), and perceived ease of use (PEOU)We follow a 5-point scale

to quantitatively measure the two criteria (Answer: 1.strongly

disagree - 5.strongly agree).

• Individual awareness and intended adoption. We first evaluate

participants’ privacy concerns using the Internet User’s Infor-

mation Privacy Concerns (IUIPC) [32]. The IUIPC focus on the

collection, awareness, and control of data. We then analyze the

different perceptions of awareness and intended adoption from

both the user and the bystander. Participants answer questions

using a 5-point scale (Answer: 1.very unlikely - 5.very likely).

To evaluate participants’ memory performance, we design a two-

stage experiment. First, users meet and discuss with three unknown

students. In a second meeting, we ask them to recall information

about their encounter. Time hinders memory recall [58, 59]. To

provide a conservative comparison, we run this test only one day

after the first meeting.

First meeting. Each participant has a meeting with the same three

unknown students. Together, the participant and the students in-

troduce themselves and discuss the following topic: Can alternative

energy effectively replace fossil fuels? for ten minutes. We choose

this topic as to keep participants engaged in the discussion. The

participant wears the VIMES device during the meeting. With this

discussion approach we aim to evaluate the personal information

retrieval performance and how much information participants can

remember from other students’ point of views about the topic.

One day later, we ask each participant to recall information about

the three students, including the time and location, the students’

names and background, and their opinions. We distribute the coun-

terbalanced questions for each memory recall method. Therefore,
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Figure 7: Distribution of recall performance score (RPS).

VIMES improves the RPS by 30 to 100%.

Table 1: Users’ Rating of Memory Experience.

Memory Experi-

ence (# items)

Self Recall

mean (SD)

Visual Cues

mean(SD)

VIMES

mean(SD)

Vividness (3) 3.1 (0.74) 3.4 (0.58) 4 (0.67)

Coherence (4) 2.7 (0.48) 2.9 (0.52) 4.1 (0.57)

Accessibility (3) 2.9 (0.74) 3.1 (0.76) 3.8 (0.63)

Visual Perspective (3) 3 (0.67) 3.6 (0.469) 4.1 (0.57)

we do not ask the same question twice using two different memory

recall methods. We counterbalance the memory recall methods .

We conclude with a survey to evaluate the users’ subjective per-

ception of the system, including their memory experience, the TAM

questionnaire, and their awareness and intended adoption.

6.3 Results

Memory Recall Performance (percentage). Figure 7 depicts the

distribution of RPS of all participants. One-way repeated measures

ANOVA F (2, 98) = 74.78,p < .001, adjusted − r2 = 0.9416) shows

that the memory retrieval method has a significant effect on mem-

ory recall performance. The use of VIMES for retrieving information

shows an improvement (M = 0.93, 95% : CI [0.92, 0.95]), compared

to self-retrieval (M = 0.30, 95% : CI [0.28, 0.32]) or visual-cues

(M = 0.39, 95% : CI [0.36, 0.4]). As other works stated [28, 59],

wearable cameras improve users’ autobiographical memory recall.

Memory Experience. Table 1 shows participants’ average rank-

ing on the factors of memory experience. When using the visual

method or VIMES, the average score of the system is four, while the

average manual review score is three. For VIMES, one-way repeated

measures ANOVA indicates a statistically significant difference for:

Vividness, F (2, 98) = 25.11,p < .001,adjusted − r2 = 0.26; Coher-

ence, F (2, 98) = 18.85,p < .001,adjusted − r2 = 0.19; Accessibility,

F (2, 98) = 34.84,p < .001,adjusted − r2 = 0.31; Visual perspective,

F (2, 98) = 41.75,p < .001,adjusted − r2 = 0.35. All the participants

report that they can better recall the meeting’s events with the

assistance of the system.

User Survey. In our TAM survey, participants rate high the per-

ceived usefulness of the device (M = 3.75, 95% : CI [2.83, 4.66]) and

the perceived ease of use (M = 3.46, 95% : CI [2.60, 4.33]). Partici-

pants also left many comments during the experiment. Most noted

that operating VIMES is a unique, refreshing, and user-friendly
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experience. Many participants show interest in seeing such an ap-

plication in the market in the future. Example of specific comments

include P23: ‘I like the idea, and it would be beneficial to me because

I often forget the names of the students in my class.’ P27: ‘I usually

take photos or record voices as a reminder but have never tried to

combine these two ways. This idea provides a convenient way which

could be quite useful.’ P42: ‘Interesting experiment but sometimes

the Glass can be intrusive. I would worry about my privacy if I need

to wear it for a long time.’ Overall, most users are satisfied with

the application, and they highlight the convenience and potential

usefulness of the system.

Individual awareness and intended adoption. Participants are

very concerned about privacy in their online behavior. However,

most of them admit they use services if the benefits are higher than

the privacy threats. To analyze the IUIPC, we first perform Principal

Component Analysis (PCA) to verify each scale’s dimensionality.

The IUIPC PCA shows the four original components predicted the

total variance: collection (α = 0.877), control (α = 0.76), awareness

(α = 0.8), and error (α = 0.68). 80% of participants prefer a discreet

device as users, but, as bystanders, the opinions are distributed

along the 5-point scale. Most participants are very comfortable (33%)

or neither comfortable nor uncomfortable (40%) asking VIMES users

to delete the recorded information. More than 90% of participants

believe that VIMES users should ask for permission to record.

7 DISCUSSION AND FUTUREWORK

Technical Performance. VIMES presents a high performance in

the scope of face-to-face and small-group conversations. It detects

and recognizes faces with high accuracy, up to 2 meters, and 30◦.

The audio accuracy is over 80% for voices 10dB higher than the

noise. For up to three individuals in the user’s field of view, VIMES

extracts or creates profiles in less than three seconds, which is

acceptable in day-to-day interactions.

User Acceptance and Intended Adoption. Most participants

agreed that the wearable device should be discrete, fashionable,

and essential. Smartglasses fit these requirements. VIMES’ sum-

marizing capabilities are very welcome to deal with the myriad of

information garnered and highlight the key aspects of an event.

VIMES improves users’ autobiographical memory with high us-

ability. One of the main adoption barriers of VIMES is the privacy

issues that arise when someone else is using it.

Hardware Limitations. Our prototype relies on Google Glass, a

2013 piece of hardware. However, most recent smartglasses only

perform sensing and display while a companion smartphone runs

the applications. As such, our prototype system is representative

of more recent smartglasses’ operation. Besides, it ensures that our

algorithms run on every available piece of hardware. With only

90 minutes, Battery life is another issue. The camera is one of the

most energy-hungry components of smartglasses. Recent smart-

glasses present more energy-efficient cameras and larger batteries.

Context detection (e.g., audio [41], video [62]) to activate sensors

automatically can also significantly improve the battery life.

Software Limitations. Interacting with larger groups of people is a

challenge in the current implementation. The association of voice

and face in multiple-persons environments is a challenging prob-

lem [13]. Besides, the recognition of multiple faces in images is

still a challenging topic that limits the speed to recognize multi-

ple faces [18]. Larger groups also increase the physical distance

between participants, over 2m/30◦. Recent smartglasses feature

cameras with higher resolution and field of view, thus circumvent-

ing the problem. Our prototype system relies on a single hard-coded

topic. Topic modeling [11] would allow us to extract information

from the conversation according to the context. Our current sum-

marization of egocentric video using templates distant from more

flexible summarization techniques in-the-wild such as [43].

Privacy is a common concern among participants. Our privacy by

design approach requires VIMES to keep all sensitive information

on-device. Homomorphic encryption would present an additional

security layer to prevent an eventual attacker from obtaining infor-

mation from a compromised device. The device-to-device commu-

nication protocol should also follow security and privacy standards

to protect the transmitted information between the smart glasses

and companion devices. For privacy awareness and preservation,

we should follow novel notification methods to inform bystanders

about the monitoring of VIMES [30], input interfaces such as ges-

tures [29, 54] to opt-in/opt-out consent, and privacy protection

techniques when bystanders opt-out [53].

Social Acceptance. Besides privacy, smartglasses and AR are sub-

ject to social acceptance issues. Interaction methods are often dis-

ruptive, whether gestural or vocal [56]. By relying heavily on face

recognition and the companion device in VIMES, we limit the user

interaction cost considerably. Non-users may also feel uncomfort-

able or offended by users relying on an external system to remember

facts about them. However, with the democratization of smart-

glasses and AR, we expect such concerns to fade away.

8 CONCLUSION

In this work, we designed, implemented, and evaluated a wear-

able AR system to help recall a memory of facts and events. Partici-

pants in our collaborative design study think that smartglasses are

the best peripheral for autobiographical memory aid. The proposed

system follows participants’ functionality requests such as a good

battery (task offloading doubles the battery life), summarization

techniques, and a companion device to provide further interactions.

We perform several experiments to evaluate the system both in

terms of performance and user perception. VIMES generates and

retrieves personal profiles with an average accuracy of over 90% in

practical scenarios, and users find VIMES not only useful but also

easy to use. The user study also highlights the future challenges the

adoption of such a system will encounter. With the development of

smartglasses hardware and iterative improvements in our system,

we believe it offers excellent potential for improving memory recall

in daily activities.

9 ACKNOWLEDGEMENTS-PLACEHOLDER

This research has been supported in part by project 16214817 from

the Research Grants Council of Hong Kong,and the 5GEAR and FIT

projects from Academy of Finland.

Poster Session F2: Media Interpretation & Mobile Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

3198



REFERENCES
[1] Mousa Ahmadi, Cristian Borcea, and Quentin Jones. 2019. Collaborative lifelog-

ging through the integration of machine and human computation. In Proceedings
of the 24th International Conference on Intelligent User Interfaces: Companion.
23ś24.

[2] Mélissa C Allé, Liliann Manning, Jevita Potheegadoo, Romain Coutelle, Jean-
Marie Danion, and Fabrice Berna. 2017. Wearable cameras are useful tools to
investigate and remediate autobiographical memory impairment: A systematic
PRISMA review. Neuropsychology review 27, 1 (2017), 81ś99.

[3] Marc Bächlin, Meir Plotnik, Daniel Roggen, Inbal Maidan, Jeffrey M Hausdorff,
Nir Giladi, and Gerhard Tröster. 2010. Wearable assistant for Parkinson’s disease
patients with the freezing of gait symptom. Information Technology in Biomedicine,
IEEE Transactions on 14, 2 (2010), 436ś446.

[4] Michelle S Bourgeois. 1993. Effects of memory aids on the dyadic conversations
of individuals with dementia. Journal of Applied Behavior Analysis 26, 1 (1993),
77ś87.

[5] Tristan Braud, Farshid Hassani Bijarbooneh, Dimitris Chatzopoulos, and Pan
Hui. 2017. Future networking challenges: The case of mobile augmented reality.
In 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 1796ś1807.

[6] Georgina Browne, Emma Berry, Narinder Kapur, Steve Hodges, Gavin Smyth,
Peter Watson, and Ken Wood. 2011. SenseCam improves memory for recent
events and quality of life in a patient with memory retrieval difficulties. Memory
19, 7 (2011), 713ś722.

[7] Laurindo de Sousa Britto Neto, Vanessa Regina Margareth Lima Maike, Fer-
nando Luiz Koch, Maria Cecília Calani Baranauskas, Anderson de Rezende Rocha,
and Siome Klein Goldenstein. 2015. A Wearable Face Recognition System Built
into a Smartwatch and the Blind and Low Vision Users. Springer International
Publishing, Cham, 515ś528. https://doi.org/10.1007/978-3-319-29133-8_25

[8] Google Developers. 2015. https://developers.google.com/glass/develop/ gdk/
voice.

[9] Lina Dib, Daniela Petrelli, and Steve Whittaker. 2010. Sonic souvenirs: exploring
the paradoxes of recorded sound for family remembering. In Proceedings of the
2010 ACM conference on Computer supported cooperative work. ACM, 391ś400.

[10] Aiden R Doherty and Alan F Smeaton. 2008. Combining face detection and
novelty to identify important events in a visual lifelog. In Computer and Infor-
mation Technology Workshops, 2008. CIT Workshops 2008. IEEE 8th International
Conference on. IEEE, 348ś353.

[11] Mortaza Doulaty, Oscar Saz, and Thomas Hain. 2015. Unsupervised domain
discovery using latent dirichlet allocation for acoustic modelling in speech recog-
nition. arXiv preprint arXiv:1509.02412 (2015).

[12] eMarketer. 2017. Wearable user penetration rate in the United
States, in 2017, by age. https://www.statista.com/statistics/739398/
us-wearable-penetration-by-age/. [Online; accessed 4-February-2019].

[13] Ariel Ephrat, Inbar Mosseri, Oran Lang, Tali Dekel, Kevin Wilson, Avinatan
Hassidim, William T Freeman, and Michael Rubinstein. 2018. Looking to listen
at the cocktail party: A speaker-independent audio-visual model for speech
separation. arXiv preprint arXiv:1804.03619 (2018).

[14] Mohammad Ghafouri, Shohreh Amini, Kamel Khalili, and Bassel E Sawaya. 2006.
HIV-1 associated dementia: symptoms and causes. Retrovirology 3, 1 (2006), 28.

[15] Google Glass. 2015. https://developers.google.com/glass.
[16] Cathal Gurrin, Alan F. Smeaton, and Aiden R. Doherty. 2014. LifeLogging:

Personal Big Data. Foundations and Trends in Information Retrieval 8, 1 (2014),
1ś125. https://doi.org/10.1561/1500000033

[17] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai,
and Mahadev Satyanarayanan. 2014. Towards wearable cognitive assistance.
In Proceedings of the 12th annual international conference on Mobile systems,
applications, and services. ACM, 68ś81.

[18] Catrina M Hacker, Emily X Meschke, and Irving Biederman. 2019. A face in a
(temporal) crowd. Vision research 157 (2019), 55ś60.

[19] Elmar Hashimov. 2015. Qualitative Data Analysis: A Methods Sourcebook and
The Coding Manual for Qualitative Researchers: Matthew B. Miles, A. Michael
Huberman, and Johnny Saldaña. Thousand Oaks, CA: SAGE, 2014. 381 pp. Johnny
Saldaña. Thousand Oaks, CA: SAGE, 2013. 303 pp.

[20] Steve Hodges, Emma Berry, and Ken Wood. 2011. SenseCam: A wearable camera
that stimulates and rehabilitates autobiographical memory. Memory 19, 7 (2011),
685ś696.

[21] Steve Hodges, Lyndsay Williams, Emma Berry, Shahram Izadi, James Srinivasan,
Alex Butler, Gavin Smyth, Narinder Kapur, and Ken Wood. 2006. SenseCam: A
retrospective memory aid. In UbiComp 2006: Ubiquitous Computing. Springer,
177ś193.

[22] Lei Hou and Xiangyu Wang. 2013. A study on the benefits of augmented reality
in retaining working memory in assembly tasks: A focus on differences in gender.
Automation in Construction 32 (2013), 38ś45.

[23] Zhanpeng Huang, Weikai Li, and Pan Hui. 2015. Ubii: Towards Seamless Inter-
action between Digital and Physical Worlds. In Proceedings of the 23rd Annual
ACM Conference on Multimedia Conference. ACM, 341ś350.

[24] Sinh Huynh, Rajesh Krishna Balan, and Youngki Lee. 2015. Demo: Towards
Recognition of Rich Non-Negative Emotions Using Daily Wearable Devices. In
Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems.
ACM, 471ś472.

[25] Ellen Isaacs, Artie Konrad, Alan Walendowski, Thomas Lennig, Victoria Hollis,
and Steve Whittaker. 2013. Echoes from the past: how technology mediated
reflection improves well-being. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 1071ś1080.

[26] Katherine Isbister, Kaho Abe, and Michael Karlesky. 2017. Interdependent Wear-
ables (for Play): A Strong Concept for Design.. In CHI. 465ś471.

[27] Shiqi Jiang, Zhenjiang Li, Pengfei Zhou, and Mo Li. 2019. Memento: An emotion-
driven lifelogging system with wearables. ACM Transactions on Sensor Networks
(TOSN) 15, 1 (2019), 1ś23.

[28] Vaiva Kalnikaite, Abigail Sellen, Steve Whittaker, and David Kirk. 2010. Now let
me see where i was: understanding how lifelogs mediate memory. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2045ś
2054.

[29] Marion Koelle, Swamy Ananthanarayan, Simon Czupalla, Wilko Heuten, and
Susanne Boll. 2018. Your smart glasses’ camera bothers me! exploring opt-in
and opt-out gestures for privacy mediation. In Proceedings of the 10th Nordic
Conference on Human-Computer Interaction. 473ś481.

[30] Marion Koelle, Katrin Wolf, and Susanne Boll. 2018. Beyond LED status lights-
design requirements of privacy notices for body-worn cameras. In Proceedings
of the Twelfth International Conference on Tangible, Embedded, and Embodied
Interaction. 177ś187.

[31] Martina Luchetti and Angelina R Sutin. 2016. Measuring the phenomenology of
autobiographical memory: A short form of the Memory Experiences Question-
naire. Memory 24, 5 (2016), 592ś602.

[32] Naresh K Malhotra, Sung S Kim, and James Agarwal. 2004. Internet users’
information privacy concerns (IUIPC): The construct, the scale, and a causal
model. Information systems research 15, 4 (2004), 336ś355.

[33] Steve Mann. 1997. Wearable computing: A first step toward personal imaging.
Computer 30, 2 (1997), 25ś32.

[34] Daniel McDuff, Amy Karlson, Ashish Kapoor, Asta Roseway, and Mary Czerwin-
ski. 2012. AffectAura: an intelligent system for emotional memory. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 849ś858.

[35] A McPherson, FG Furniss, C Sdogati, F Cesaroni, B Tartaglini, and J Lindesay.
2001. Effects of individualized memory aids on the conversation of persons with
severe dementia: a pilot study. Aging & Mental Health 5, 3 (2001), 289ś294.

[36] Pranav Misra, Alyssa Marconi, Matthew Peterson, and Gabriel Kreiman. 2018.
Minimal memory for details in real life events. Scientific reports 8, 1 (2018), 1ś11.

[37] Vivian Genaro Motti and Kelly Caine. 2015. Users’ privacy concerns about wear-
ables. In International Conference on Financial Cryptography and Data Security.
Springer, 231ś244.

[38] OpenCV4Android. 2016. http://opencv.org/platforms/android.html.
[39] Apache OpenNLP. 2010. https://opennlp.apache.org.
[40] Mike Owens and Grant Allen. 2010. The Definitive Guide to SQLite. Springer.
[41] Giambattista Parascandolo, Heikki Huttunen, and Tuomas Virtanen. 2016. Recur-

rent neural networks for polyphonic sound event detection in real life recordings.
In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 6440ś6444.

[42] Trevor Pering, Yuvraj Agarwal, Rajesh Gupta, and Roy Want. 2006. Coolspots:
reducing the power consumption of wireless mobile devices with multiple radio
interfaces. In Proceedings of the 4th international conference on Mobile systems,
applications and services. ACM, 220ś232.

[43] Anuj Rathore, Pravin Nagar, Chetan Arora, and CV Jawahar. 2019. Generating
1 Minute Summaries of Day Long Egocentric Videos. In Proceedings of the 27th
ACM International Conference on Multimedia. 2305ś2313.

[44] Philipp A Rauschnabel, Alexander Brem, and Bjoern S Ivens. 2015. Who will
buy smart glasses? Empirical results of two pre-market-entry studies on the role
of personality in individual awareness and intended adoption of Google Glass
wearables. Computers in Human Behavior 49 (2015), 635ś647.

[45] Philipp A Rauschnabel and Young K Ro. 2016. Augmented reality smart glasses:
An investigation of technology acceptance drivers. International Journal of
Technology Marketing 11, 2 (2016), 123ś148.

[46] Elizabeth B-N Sanders and Pieter Jan Stappers. 2008. Co-creation and the new
landscapes of design. Co-design 4, 1 (2008), 5ś18.

[47] Corina Sas, Scott Challioner, Christopher Clarke, Ross Wilson, Alina Coman,
Sarah Clinch, Mike Harding, and Nigel Davies. 2015. Self-defining memory cues:
creative expression and emotional meaning. In Proceedings of the 33rd Annual
ACM Conference Extended Abstracts on Human Factors in Computing Systems.
ACM, 2013ś2018.

[48] Corina Sas, Tomasz Fratczak, Matthew Rees, Hans Gellersen, Vaiva Kalnikaite,
Alina Coman, and Kristina Höök. 2013. AffectCam: arousal-augmented sensecam
for richer recall of episodic memories. In CHI’13 Extended Abstracts on Human
Factors in Computing Systems. ACM, 1041ś1046.

[49] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A
unified embedding for face recognition and clustering. In Proceedings of the IEEE

Poster Session F2: Media Interpretation & Mobile Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

3199



conference on computer vision and pattern recognition. 815ś823.
[50] Abigail J Sellen, Andrew Fogg, Mike Aitken, Steve Hodges, Carsten Rother, and

Ken Wood. 2007. Do life-logging technologies support memory for the past?: an
experimental study using sensecam. In Proceedings of the SIGCHI conference on
Human factors in computing systems. ACM, 81ś90.

[51] Khaled Shaalan. 2014. A survey of arabic named entity recognition and classifi-
cation. Computational Linguistics 40, 2 (2014), 469ś510.

[52] Yiran Shen, Chengwen Luo, Weitao Xu, and Wen Hu. 2015. Poster: An Online
Approach for Gait Recognition on Smart Glasses. In Proceedings of the 13th ACM
Conference on Embedded Networked Sensor Systems. ACM, 389ś390.

[53] Zhiqi Shen, Shaojing Fan, Yongkang Wong, Tian-Tsong Ng, and Mohan Kankan-
halli. 2019. Human-imperceptible Privacy Protection Against Machines. In Pro-
ceedings of the 27th ACM International Conference on Multimedia. 1119ś1128.

[54] Jiayu Shu, Rui Zheng, and Pan Hui. 2016. Cardea: Context-Aware Visual Privacy
Protection from Pervasive Cameras. eprint arXiv:1610.00889 (Oct 2016), 1ś10.

[55] Enrico Tanuwidjaja, Derek Huynh, Kirsten Koa, Calvin Nguyen, Churen Shao,
Patrick Torbett, Colleen Emmenegger, and Nadir Weibel. 2014. Chroma: A
wearable augmented-reality solution for color blindness. In Proceedings of the
2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing.
ACM, 799ś810.

[56] Ying-Chao Tung, Chun-Yen Hsu, Han-Yu Wang, Silvia Chyou, Jhe-Wei Lin, Pei-
Jung Wu, Andries Valstar, and Mike Y Chen. 2015. User-defined game input for
smart glasses in public space. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems. 3327ś3336.

[57] Dapper Vision. 2014. http://www.openshades.com.
[58] Willem A Wagenaar. 1986. My memory: A study of autobiographical memory

over six years. Cognitive psychology 18, 2 (1986), 225ś252.
[59] Emma Woodberry, Georgina Browne, Steve Hodges, Peter Watson, Narinder

Kapur, and Ken Woodberry. 2015. The use of a wearable camera improves
autobiographical memory in patients with Alzheimer’s disease. Memory 23, 3
(2015), 340ś349.

[60] WHO World Health Organization. 2017. Dementia. http://www.who.int/
news-room/fact-sheets/detail/dementia. [Online; accessed 15-October-2018].

[61] Y. Wu, X. Shen, T. Mei, X. Tian, N. Yu, and Y. Rui. 2016. Monet: A System for
Reliving Your Memories by Theme-Based Photo Storytelling. IEEE Transactions
on Multimedia 18, 11 (Nov 2016), 2206ś2216. https://doi.org/10.1109/TMM.2016.
2614185

[62] Yingying Zhu, Nandita M Nayak, and Amit K Roy-Chowdhury. 2013. Context-
aware modeling and recognition of activities in video. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2491ś2498.

Poster Session F2: Media Interpretation & Mobile Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

3200


