445 research outputs found

    Oscillations and traveling waves of calcium: a simplified model

    Get PDF
    We construct a heuristic model of calcium oscillations in pancreatic acinar cells. The model is based on the two-state model of Sneyd et al. (Sneyd, J., A. LeBeau and D. Yule, 2000, Traveling waves of calcium in pancreatic acinar cells: model construction and bifurcation analysis, Physica D, in press) and is similar in spirit to the FitzHugh reduction of the Hodgkin-Huxley equations. The simpliÂŻed model successfully reproduces the oscillatory behavior and wave behaviour of the more complex model. In particular, the simpliÂŻed model provides an example of a simple, physiologically relevant model that has a T-point and an associated spiral branch of homoclinic orbits

    Model evaluation for glycolytic oscillations in yeast biotransformations of xenobiotics

    Get PDF
    Anaerobic glycolysis in yeast perturbed by the reduction of xenobiotic ketones is studied numerically in two models which possess the same topology but different levels of complexity. By comparing both models' predictions for concentrations and fluxes as well as steady or oscillatory temporal behavior we answer the question what phenomena require what kind of minimum model abstraction. While mean concentrations and fluxes are predicted in agreement by both models we observe different domains of oscillatory behavior in parameter space. Generic properties of the glycolytic response to ketones are discussed

    Two adaptation processes in auditory hair cells together can provide an active amplifier

    Get PDF
    The hair cells of the vertebrate inner ear convert mechanical stimuli to electrical signals. Two adaptation mechanisms are known to modify the ionic current flowing through the transduction channels of the hair bundles: a rapid process involves calcium ions binding to the channels; and a slower adaptation is associated with the movement of myosin motors. We present a mathematical model of the hair cell which demonstrates that the combination of these two mechanisms can produce `self-tuned critical oscillations', i.e. maintain the hair bundle at the threshold of an oscillatory instability. The characteristic frequency depends on the geometry of the bundle and on the calcium dynamics, but is independent of channel kinetics. Poised on the verge of vibrating, the hair bundle acts as an active amplifier. However, if the hair cell is sufficiently perturbed, other dynamical regimes can occur. These include slow relaxation oscillations which resemble the hair bundle motion observed in some experimental preparations.Comment: 13 pages, 6 figures,REVTeX 4, To appear in Biophysical Journa

    A bifurcation analysis of two coupled calcium oscillators

    Full text link
    In many cell types, asynchronous or synchronous oscillations in the concentration of intracellular free calcium occur in adjacent cells that are coupled by gap junctions. Such oscillations are believed to underlie oscillatory intercellular calcium waves in some cell types, and thus it is important to understand how they occur and are modified by intercellular coupling. Using a previous model of intracellular calcium oscillations in pancreatic acinar cells, this article explores the effects of coupling two cells with a simple linear diffusion term. Depending on the concentration of a signal molecule, inositol (1,4,5)-trisphosphate, coupling two identical cells by diffusion can give rise to synchronized in-phase oscillations, as well as different-amplitude in-phase oscillations and same-amplitude antiphase oscillations. Coupling two nonidentical cells leads to more complex behaviors such as cascades of period doubling and multiply periodic solutions. This study is a first step towards understanding the role and significance of the diffusion of calcium through gap junctions in the coordination of oscillatory calcium waves in a variety of cell types. © 2001 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70869/2/CHAOEH-11-1-237-1.pd

    Endogenous driving and synchronization in cardiac and uterine virtual tissues: bifurcations and local coupling

    Get PDF
    Cardiac and uterine muscle cells and tissue can be either autorhythmic or excitable. These behaviours exchange stability at bifurcations produced by changes in parameters, which if spatially localized can produce an ectopic pacemaking focus. The effects of these parameters on cell dynamics have been identified and quantified using continuation algorithms and by numerical solutions of virtual cells. The ability of a compact pacemaker to drive the surrounding excitable tissues depends on both the size of the pacemaker and the strength of electrotonic coupling between cells within, between, and outside the pacemaking region. We investigate an ectopic pacemaker surrounded by normal excitable tissue. Cell–cell coupling is simulated by the diffusion coefficient for voltage. For uniformly coupled tissues, the behaviour of the hybrid tissue can take one of the three forms: (i) the surrounding tissue electrotonically suppresses the pacemaker; (ii) depressed rate oscillatory activity in the pacemaker but no propagation; and (iii) pacemaker driving propagations into the excitable region. However, real tissues are heterogeneous with spatial changes in cell–cell coupling. In the gravid uterus during early pregnancy, cells are weakly coupled, with the cell–cell coupling increasing during late pregnancy, allowing synchronous contractions during labour. These effects are investigated for a caricature uterine tissue by allowing both excitability and diffusion coefficient to vary stochastically with space, and for cardiac tissues by spatial gradients in the diffusion coefficient
    • …
    corecore