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Two Adaptation Processes in Auditory Hair Cells Together Can
Provide an Active Amplifier

Andrej Vilfan and Thomas Duke
Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom

ABSTRACT The hair cells of the vertebrate inner ear convert mechanical stimuli to electrical signals. Two adaptation
mechanisms are known to modify the ionic current flowing through the transduction channels of the hair bundles: a rapid
process involves Ca21 ions binding to the channels; and a slower adaptation is associated with the movement of myosin
motors. We present a mathematical model of the hair cell which demonstrates that the combination of these two mechanisms
can produce ‘‘self-tuned critical oscillations’’, i.e., maintain the hair bundle at the threshold of an oscillatory instability. The
characteristic frequency depends on the geometry of the bundle and on the Ca21 dynamics, but is independent of channel
kinetics. Poised on the verge of vibrating, the hair bundle acts as an active amplifier. However, if the hair cell is sufficiently
perturbed, other dynamical regimes can occur. These include slow relaxation oscillations which resemble the hair bundle
motion observed in some experimental preparations.

INTRODUCTION

Hair cells of the inner ear detect mechanical stimuli by

deflections of the hair bundle, which open tension-gated

transduction channels in the cell membrane to admit cations

from the endolymph. The current is mostly composed of

potassium ions, but also includes a small quantity of calcium

ions (Lumpkin et al., 1997). Experiments in which hair

bundles are held at a fixed deflection, using a microneedle,

have revealed two adaptation processes that modify the

transduction current, causing it to decline with time (Howard

and Hudspeth, 1987, 1988; Wu et al., 1999; Holt and Corey,

2000; Holt et al., 2002). The first, which can occur on a sub-

millisecond timescale, is dependent on the concentration of

Ca21 in the endolymph. It is believed to be a consequence of

Ca21 entering the hair bundle and binding to the transduction

channels, making them more likely to close. The second,

which takes up to hundreds of milliseconds, is also dependent

on Ca21 concentration, and is thought to be caused by the

movement of adaptation motors attached to the transduction

channels, which adjusts the tension that gates them.

A number of experiments have demonstrated that hair

bundles can generate active oscillations, both in preparations

of dissected tissue (Benser et al., 1993; Crawford and

Fettiplace, 1985; Martin et al., 2000) and in vivo (Manley

et al., 2001). It has been shown on theoretical grounds that

the active oscillatory mechanism can provide an explanation

for the high sensitivity and sharp frequency selectivity of

auditory receptors (Choe et al., 1998; Camalet et al., 2000;

Eguiluz et al., 2000; Ospeck et al., 2001) if the system is

poised on the verge of spontaneous oscillation. This critical

point corresponds to a Hopf bifurcation of the active

dynamical system. It has been suggested that a feedback

mechanism operates to maintain the system at the critical

point where it is most sensitive, leading to the concept of

self-tuned critical oscillations. (Camalet et al., 2000).

The purpose of this article is to provide a coherent model

for the active amplifier in hair cells, based on the combined

action of the two known adaptation mechanisms. In our

model the interaction of Ca21 ions with the transduction

channels generates an oscillatory instability of the hair

bundle. Working on a slower timescale, the adaptation

motors act to tune this dynamical system to the critical point,

at which it just begins to oscillate. The two adaptation

mechanisms together constitute a dynamical system display-

ing a self-tuned Hopf bifurcation (Camalet et al., 2000).

Poised at the oscillatory instability, the hair bundle is

especially responsive to faint sounds.

Our model differs from two published models of hair-

bundle oscillations. Choe, Magnasco, and Hudspeth (1998)

have previously proposed that channel reclosure induced

by Ca21 ions can generate a Hopf instability. In their scheme

the oscillation frequency is controlled by the kinetics of

the transduction channel. In our model the frequency of

spontaneous oscillations is governed, instead, by the archi-

tecture of the bundle and by the rate at which the cal-

cium concentration equilibrates. This is more consistent

with the finding that the rate at which the transduction

channel switches is faster than the characteristic frequency,

especially in low-frequency hair cells (Corey and Hudspeth,

1983). Camalet et al. (2000) have suggested that the Hopf

instability is generated by motor proteins in the kinocilium,

and that regulation to the critical point is accomplished

by a feedback mechanism involving calcium. Their model

is thus the converse of that presented here, but shares

the underlying feature of self-tuned criticality. The current

model accords better with the observation that some hair

bundles lack a kinocilium and others do not change their
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behavior significantly when the kinocilium is interfered with

(Martin et al., 2003).

In addition to demonstrating that the two adaptation

processes can combine to provide an active amplifier, we

derive expressions that indicate how properties like the

characteristic frequency of critical oscillations, and the sen-

sitivity of response to sound waves, depend on param-

eters like the bundle height and the number of stereocilia.

We also investigate how the dynamics can be modified if

conditions are perturbed, and show that the bundle can

exhibit slow relaxation oscillations which differ in many as-

pects from critical oscillations, but resemble the active move-

ments recently observed in experiments on hair cells from

the frog sacculus (Martin and Hudspeth, 1999).

MODEL

Hair bundle

Hair bundles in different species, or from hair cells with

different characteristic frequencies within the same organ of

the internal ear of a particular animal, can vary in shape and

size, and also in the way that they are coupled to external

mechanical vibrations (Hudspeth, 1997). Generally, one can

distinguish between free-standing hair bundles (e.g. some

reptiles, mammalian inner hair cells) and those whose tips

are embedded in an accessory structure (e.g. other reptiles,

birds, amphibial saccular hair cells). In experiments on

dissected tissue, the accessory structure is usually removed.

In this article we will restrict our discussion to the simplest

situation of a free-standing hair bundle. A bundle that is

directly connected to the tectorial membrane could be

described in a similar fashion, but using modified expres-

sions for the stiffness, the friction and the coupling to the

external signal.

The hair bundle (see Fig. 1 A) is composed of N stereocilia

which slope up against each other, the longest of which has

length L. Typically, N and L are inversely related, with the

range N ¼ 20–300 (Holt and Corey, 2000) corresponding to

L ¼ 30–2 mm. Each stereocilium is joined to the next by an

elastic filament – the tip link – which connects to a tension-

gated transduction channel in the cell membrane (Corey and

Hudspeth, 1983; for a review see Markin and Hudspeth,

1995). The tension in the tip link can be adjusted by a group

of myosin motors, which are connected to the transduction

channel and move it along the actin filaments inside the

stereocilium (Hudspeth and Gillespie, 1994).

To set up a coordinate system, we consider first a free-

standing bundle. Within a stereocilium, we label the location

at which the stereocilium touches its shorter neighborO. The

position of the channel (and the attached motors) relative to

O is denoted by l0 1 xM, where l0 is the length of a tip link at
rest and xM its extension under tension. When the tip of the

bundle is deflected through a lateral displacement X, each
stereocilium pivots at its base and adjacent stereocilia are

sheared by a displacement gX. The geometric factor g may

be written as g � b/L, where b � 1 mm is the distance

between the roots of neighboring stereocilia (Howard et al.,

1988; Howard and Hudspeth, 1988). We label the new

location at which the stereocilium touches its shorter

neighbor O9. The position of the channel relative to O9 is
denoted by l0 1 x. It follows that

gX ¼ x � xM: (1)

The movement of the bundle is countered by an elastic

restoring force, which has two contributions. First, the

deformation of the stereocilia at their base provides an

effective bundle stiffness KSP¼ kN/L2, where k is the pivotal

stiffness of a stereocilium. The measured value k � 1.5 3
10�16 Nm/rad (Crawford and Fettiplace, 1985; Hudspeth

et al., 2000) indicates that KSP varies from 0.01 pN/nm for

tall bundles to 10 pN/nm for short ones. The second

contribution, which scales in the same way with bundle size

and is of similar magnitude, comes from the tension TTL in

the tip links. Movement of the bundle is also resisted by the

viscous drag of the surrounding fluid which leads to a friction

coefficient z ; hL for tall bundles, where h is the viscosity

of the endolymph. Thus, when an external force F is applied

to the tip of the bundle, its equation of motion is

z _XX ¼ �NgTTLðx;CÞ � KSPX1F; (2)

(throughout the article we use the convention _XXðtÞ[ dX=dt).

FIGURE 1 (A) Schematic representation of a hair bundle. (B) Three-state
model of the transduction channel. Note that Ca21 binds to the channel when

it is already in a closed state. The presence of Ca21 therefore does not

directly cause channel reclosure, but it does stabilize the closed state and

delay reopening.
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Here, we have written TTL ¼ TTL(x, C), anticipating that the

tension in the tip links depends on the local intracellular

Ca21 concentration C, as well as varying with the position x.
For future reference, we note that the mechanical relaxation

time of the hair bundle, tmech ¼ z/KSP, varies from a few

microseconds to tens of milliseconds.

Transduction channel

The mechanically gated transduction channel is the central

component of the model, since we postulate that hair bundle

oscillations are driven by the force that is generated as the

channels change conformation stochastically, as first sug-

gested by (Hudspeth and Howard, 1988). It is generally

assumed that transmembrane channel proteins can exist in

a number of discrete states, some of which are closed and

some open. As indicated in Fig. 1 B, we additionally suppose
that the channel protein incorporates a lever arm which

amplifies the small structural changes that occur when the

channel switches state, and thereby appreciably modifies the

tension in the adjoining tip link (Martin et al., 2000). If pi is
the probability that the channel is in state i, and di is the

position of the lever arm in that state, then the average

tension may be written TTL ¼ +
i
KTLðx � diÞpi:Here, KTL is

the elastic constant of the tip link (or possibly that of a more

compliant element in series with it (Kachar et al., 2000)),

whose value obtained from micromechanical measurements

is KTL � 0.5 pN/nm (Martin et al., 2000). In the steady state

the probabilities pi ¼ wi=ð+
j
wjÞ are given by the Boltzmann

factors wi} exp½�ð½KTLðx � diÞ2 � G0
i Þ=kBT�; where G0

i is

the free energy of state i. Measurements of the transduction

current as a function of bundle displacements in the frog’s

sacculus are well fitted with a three-state model of the

channel (Corey and Hudspeth, 1983), with two closed states

(i¼ C1, C2) and one open state (i¼ O). The fit indicates that
the lever-arm movement is;5 times greater for the transition

C1 ! C2 than for the transition C2 ! O, whereas more

recent data (Martin et al., 2000) suggests that the total

movement is ;8 nm. We therefore assign the lever arm

displacements dC1 ¼ 0 nm, dC2 ¼ 7 nm and dO ¼ 8.5 nm.

The free energies G0
i depend on the local Ca

21 concentration

C within the stereocilia (Howard and Hudspeth, 1988),

which is strongly influenced by the entry of Ca21 ions

through the channel (Lumpkin and Hudspeth, 1995). A

higher Ca21 concentration favors closure of the channel,

thereby providing a negative feedback. We model this

dependence empirically, according to experimental obser-

vations (Corey and Hudspeth, 1983), as an effective shift in

the channel gating point proportional to the logarithm of the

Ca21 concentration

piðx;CÞ ¼ piðx � xsðCÞÞ; xsðCÞ ¼ D ln
C

C0

; (3)

where the constant D has an empirical value of;4 nm in the

bullfrog’s sacculus (Corey and Hudspeth, 1983) and C0 is

the Ca21 concentration in the free-standing bundle. One

possible interpretation of this functional form, indicated in

Fig. 1 B, is that Ca21 binds to state C2, causing it to switch to

state C1 and thereby stabilizing the closed state. We

emphasize that our model does not rely on the channel

having three states. A two-state channel (eliminating state

C2) would give substantially similar results.

An important aspect of our model is that we assume that

the channel kinetics are rapid compared to the bundle

oscillations and the calcium dynamics. The evidence for this

assumption comes, for instance, from saccular hair cells that

detect frequencies up to 150 Hz and have channel opening

times around 100 ms (Corey and Hudspeth, 1983). We can

therefore consider the different channel states to be thermally

equilibrated with one another, and chemically equilibrated

with the Ca21 ions. Then we can split the tip link tension TTL
into two components: KTLx, the passive elastic force that the
tip link would contribute in the absence of the transduction

channel; and f, the active contribution arising from the

channel switching states, also called gating force:

TTLðx;CÞ ¼ KTLx1 f ðx � xsðCÞÞ; (4)

where f ðx;CÞ ¼ �+
i
KTLdipiðx;CÞ: A relationship between

the gating force and the channel opening probability, which

holds in any model with a single open state, reads

f ðx;CÞ[ kBTð@ðln pOðx;CÞÞ=@xÞ � KTLdO (van Netten

and Kros, 2000).

Calcium dynamics

The dynamics of the calcium concentration in a stereocilium

is influenced by a number of processes. As well as the influx

of Ca21 through the transduction channel, there is an outflux

due to calcium pumps. The ions also diffuse freely, or in

association with mobile buffers, and can additionally bind

to fixed buffers. A detailed model of this dynamics was

developed by (Lumpkin and Hudspeth, 1998), but for our

purposes it suffices to use a simplified linearized model in

which the Ca21 concentration on the inner side of the

channel obeys the equation

_CC ¼ �l½C� CB � CMpOðx;CÞ�: (5)

Here CB is the steady-state concentration which would

occur if the channel were blocked, originating from diffu-

sion from other parts of the cell; CM is the maximal addi-

tional contribution from influx through an open transduction

channel, and is of order 10 mM. The relaxation rate of

calcium concentration fluctuations, l, is an important

parameter in our model. We expect the relaxation time tchem
¼ 1/l to be of the order of milliseconds, corresponding to the

measured fast adaptation time (Ricci and Fettiplace, 1997).

Note that the slow Ca21 kinetics (along with fast channel

switching) is a key difference between our model and that of

Choe et al. (1998), where the converse situation is assumed.

The slow Ca21 dynamics might seem at odds with the fact
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that the binding sites on the channel are reached by the

incoming ions very quickly. But in our model, the channel is

in state C2 when Ca21 binds, i.e., it is closed (Fig. 1 B). It
therefore typically senses a concentration which is de-

termined by diffusion within a larger volume, and which also

depends on the interaction of Ca21with fixed andmobile buf-

fers. Because a Ca21 ion binds to one of the buffers in\1 ms
(Lumpkin and Hudspeth, 1998), the concentration of free

Ca21 equilibrates with that bound to the buffers within a few

microseconds of channel closure O ! C2. The timescale of

Ca21 relaxation is therefore determined by buffering,

diffusion to distant parts of the stereocilium and the activity

of Ca21 pumps. Indeed, the influence of buffers on the fast

adaptation process has been observed experimentally (Ricci

and Fettiplace, 1997).

Adaptation motors

Experiments in which a vertebrate hair bundle is suddenly

displaced (Howard and Hudspeth, 1987; Wu et al., 1999)

show a slow adaptation of the channel current, on the scale of

tens of milliseconds. The transduction channel is attached to

the actin cortex within a stereocilium by a number of myosin

1C (formerly Ib) motors. There is strong evidence that these

molecular motors mediate slow adapatation (Assad and

Corey, 1992; Gillespie and Corey, 1997; Holt et al., 2002),

presumably by maintaining the proper tension in the tip link

(Hudspeth and Gillespie, 1994). For simplicity, we assume

that the motors have a linear force-velocity relation, so that

_xxM ¼ yM 1� TTL

nMFM

� �
; (6)

where nM is the number of motors bound to the actin, FM is

the stall force of an individual motor and vM is its zero-load

velocity. We take values typical for a motor protein, FM � 1

pN and vM � 0.3 mm/s and suppose that there are NM � 20

motors per channel (experimental data suggest NM #130

(Gillespie and Hudspeth, 1993)).

Calcium has been shown to influence the action of the

adaptation motor (Hacohen et al., 1989; Ricci et al., 1998),

possibly by increasing its rate of detachment from actin. The

number of bound motors is therefore not constant, but obeys

the dynamical equation

_nnM ¼ vM½�nMgðCÞ1 ðNM � nMÞ�: (7)

where vM � 200 s�1 is the myosin binding rate and g(C) is
a function describing the dependence of the detachment rate

on the Ca21 concentration.

RESULTS AND DISCUSSION

Linear stability analysis

To examine the dynamical stability of the hair bundle in the

absence of a driving force, F ¼ 0, we make use of the fact

that the adaptation motors operate on a slower timescale than

both the mechanical relaxation of the bundle and the

relaxation of the calcium concentration. We can therefore

neglect their motion for now, and suppose that xM is fixed.

This leaves two coupled first-order differential equations of

motion: Eq. 5 (supplemented with Eq. 3) for the rate of

change of Ca21 concentration; and by combining Eqs. 1, 2,

and 4, the following equation for the motion of the

transduction channels:

_xx ¼ � 1

z
Ng2½KTLx1 f ðx � xsðCÞÞ�1KSPðx � xMÞ
� �

: (8)

The system has one or more fixed points, given by _xx ¼ 0

and _CC ¼ 0; whose stability can be determined from the

Jacobian matrix

J ¼
@ _xx
@x

@ _CC
@x

@ _xx
@C

@ _CC
@C

 !
; (9)

which has trace and determinant

Tr J ¼ � 1

z
KB 1Ng

2
f 9

� �� lð11mÞ; (10)

det J ¼ l

z
KBð11mÞ1Ng

2
f 9

� �
; (11)

(throughout the article we use the convention f 9ðxÞ[ @f =@x;
p9OðxÞ[ @pO=@x and x9s [ @xs=@C). Here, KB ¼ KSP 1
Ng2KTL is the combined passive elasticity of the bundle due

FIGURE 2 Velocity as a function of displacement x for a fixed location of

the motors xM. If the Ca
21 concentration is held constant, _xx (x, C ¼ const)

typically has a region of negative slope (solid lines, for three different

hypothetical values of C). For a certain range of values of C, the system can

then have three fixed points. But if the Ca21 concentration is allowed to

adjust, the curve _xx (x, C ¼ C(x)), where C(x) is the steady-state solution of

Eq. 5, rises monotonically with x (dotted line). There is then a single fixed

point. The channel parameters are G0
C1 ¼ 0;G0

C2 ¼ 60zJ;G0
O ¼ 70zJ;

dC1 ¼ 0nm; dC2 ¼ 7nm; dO ¼ 8:5nm and D ¼ 4 nm. With these channel

parameters KTLd
2
O � 9kBT (in a simplified two-state channel model

neglecting the stereociliary stiffness KSP the condition for the occurrence

of a negative slope is KTLd
2
O[4kBT ).
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to the stereocilia and the tip links; and m ¼ CMx9sp9O is

a dimensionless combination of variables which has a value

close to unity for the choice of channel parameters specified

above (for CB ¼ 0 it can also be expressed as m ¼ D( f 1
KTLdO)/kBT ). A fixed point is stable if both eigenvalues of J,
evaluated at the fixed point, have a negative real part. This is

equivalent (Strogatz, 1994) to the two conditions: det J[0,

and Tr J \ 0. The number of fixed points is most readily

appreciated by considering the form of Eq. 8 for the velocity

as a function of displacement x (see Fig. 2). Two distinct

situations can arise depending on the strength of the calcium

feedback:

i. Consider first the case of weak feedback, so that the

Ca21 concentration C in the stereocilia is approximately

constant. Typically _xx(x,C¼const) varies nonmonotoni-

cally with x. This is a consequence of a region of

effective negative elasticity, caused by the redistribution

of the transduction channel states when the bundle is

moved (Howard and Hudspeth, 1987; Martin et al.,

2000). At large displacements – both positive and

negative – the tension TTL in the tip links is determined

by their passive elasticity. But at intermediate displace-

ments, the occupancy of the closed state C1 declines

rapidly with increasing x; the resulting force f, caused by

the swing of the lever arm, is negative and reduces the

tension in the tip links so that TTL decreases with

increasing x. This effect has been termed ‘‘gating

compliance’’ by (Howard and Hudspeth, 1987). As

indicated in Fig. 2, there will then be either one or three

fixed points. According to the index theorem (Strogatz

1994, Sect. 6.8) out of 2n 1 1 fixed points, n will be

saddle points. Therefore, if the system has three fixed

points, the central fixed point is a saddle point and the

other two may be either stable or unstable. The number

of fixed points depends on the values of the channel

parameters, but also on the motor position xM. Their
stability depends additionally on the values of the

dynamical model parameters (z and l). A typical

example of the location and nature of the fixed points,

as a function of themotor position xM, is shown in Fig. 3A;
in this particular case, the bundle displays a region of

bistability.We shall return to this situation later, to discuss

the dynamical behavior of the hair bundle in recent in vitro

experiments.

ii. When the calcium feedback is operational, to

determine the fixed points it is appropriate to consider

the curve _xx(x,C¼ C(x)), where C(x) is the steady-state

Ca21 concentration at fixed x, given by _CC ¼ 0 in Eq. 5. If

FIGURE 3 Fixed points of the displacement x as a function of the location
of the adaptation motors xM. Trajectories in the plane (x, C) are indicated

schematically below. (A) The situation with a weak Ca21 feedback. The

system displays a variety of dynamical regimes, including a region of

bistability. (B) With strong Ca21 feedback there is a single fixed point,

which becomes unstable (and encircled by a stable limit cycle) for an

intermediate range of values of xM. We expect the hair cells to use this

regime in vivo.

FIGURE 4 Displacement x as a function of the location of the adaptation

motors xM, for the proposed in vivo situation corresponding to Fig. 3 B.

Between the two bifurcation points, x oscillates between a minimum and

a maximum value shown by the two curves. The motor-mediated self-tuning

mechanism (see text) maintains the system at a working point close to the

first Hopf bifurcation. This result was obtained from a stochastic simulation

with full channel kinetics, but in the absence of external (thermal) noise. The

upper and lower lines show the average maximum and minimum values of

the displacement during one period of oscillation. Note that even in the

quiescent phase the amplitude is nonzero, due to channel noise. The noisy

motion in the quiescent phase has a very different spectrum from the

oscillating phase, however.
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the feedback is sufficiently strong, _xx varies monotonically

with x (Fig. 2); the readjustment of the channel states

caused by the binding of Ca21 ions provides a positive

contribution to the active force f, eliminating the region of

negative elasticity. The condition for this to occur is that

det J[0 along the curve C(x), or

m[ � Ng
2

KB

f 9� 1: (12)

In this case, there is a single fixed point (Fig. 3 B), which
may be either stable (if Tr J\0) or unstable (if Tr J[0). In

the latter situation, the bundle undergoes limit-cycle oscilla-

tions. Significantly, the stability depends on the location of

the motors xM, in addition to the values of the other model

parameters. Typically the critical point at which Tr J¼ 0 is a

supercritical Hopf bifurcation, which means that the system

is continuously controllable, passing smoothly from the

quiescent to the vibrating state as indicated in Fig. 4. Thus

by moving along the stereocilia, the motors can determine

whether the bundle stays still, or with what amplitude

it oscillates spontaneously.

Frequency of limit-cycle oscillations

We propose that the regime of strong calcium feedback, in

which the bundle can oscillate spontaneously, is the regime

that is relevant for auditory hair cells in normal physiological

conditions. The control parameter that determines the

stability of the bundle is e ¼ 1
2
Tr J and the Hopf bifurcation

occurs at e¼ 0. It is worth emphasizing that within the scope

of a noninertial model with two variables (x and C), in order

for the bundle to oscillate spontaneously, it is essential that

either the bundle displays a region of negative elasticity at

constant Ca21 concentration, or that there is a positive

feedback in the Ca21 dynamics. The second option would

imply that an increase in the intracellular Ca21 concentration

would enhance the Ca21 inflow, which contradicts the

present experimental evidence. Our model only allows for

the first option and from Eq. 10 it can be seen that the critical

condition e ¼ 0 requires that KB 1 Ng2f 9 \ 0, i.e., the

passive bundle stiffness must be more than compensated by

the gating compliance. Negative elasticity has been mea-

sured in hair cells of the bullfrog sacculus (Martin et al.,

2000), and has been interpreted as being due to gating

compliance (Howard and Hudspeth, 1987) as discussed

above.

For small, positive values of e, the bundle executes small-

amplitude limit-cycle oscillations of frequencyvC ¼ ffiffiffiffiffiffiffiffiffi
det J

p
:

From Eq. 11 it follows that the characteristic frequency of

the hair bundle scales as

vC ;

ffiffiffiffiffiffiffiffiffi
l
KB

z

r
}

ffiffiffiffiffiffiffiffi
l
N

L
3

r
: (13)

Note that the period of oscillation TC is approximately

given by the geometric mean of the two relaxation times,

TC ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tmechtchem

p
: Little is known about the variability of

the calcium relaxation rate l. If it is constant from cell to cell,

the characteristic frequency is determined only by the bundle

geometry. For the range of bundle sizes found e.g. in the

chick’s cochlea (L ¼ 1.5–5.5 mm, N ¼ 300–50 (Tilney and

Saunders, 1983)), the frequency of the shortest bundles

would then be ;17 times greater than the frequency of the

tallest bundles. This is somewhat lower than the measured

frequency range (;50 Hz–5 kHz, (Manley et al., 1991)). We

note, however, that to ensure the existence of an oscillatory

instability for all hair cells, e ¼ 0 from Eq. 10 must be

fulfilled for each cell. In addition, a strong mismatch between

tmech and tchem would seriously limit the range of amplitudes

for which active amplification can be maintained. This

suggests that l may vary with the geometry of the cell;

ideally it would scale as l ; KB/z, i.e., tchem ; tmech. Such

variation could be achieved by a differential level of

expression of calcium pumps or different buffer concen-

trations. In this case, the range would be enhanced to cover

frequencies differing by a factor of 200. In what follows, we

shall assume that this scaling (which is equivalent to l;vC)

holds. Note that in contrast to the model proposed by Choe,

Magnasco, and Hudspeth (1998) no variation of transduction

channel kinetics is necessary to achieve a broad range of

characteristic frequencies. Instead a simultaneous variation

of the hair-bundle geometry and the Ca21 relaxation rate is

required.

Critical oscillations

It has been proposed on general theoretical grounds that the

frequency selectivity of hair bundles, as well as their

sensitivity to weak signals, is conferred by their proximity

to a dynamical instability (Camalet et al., 2000; Eguiluz et al.,

2000). Poised on the verge of oscillating at a characteristic

frequency vC, a hair bundle is especially responsive to

periodic disturbances at that frequency. To ensure robust

operation, a control system is required which maintains the

hair bundle close to the critical point at which it just begins to

vibrate. The general concept of a self-tuned Hopf bifurcation

was therefore introduced (Camalet et al., 2000), whereby an

appropriate feedback mechanism automatically tunes the

system to the vicinity of the critical point. For the moment,

we will assume that this mechanism works effectively, so

that each hair cell is poised at a working point very close to

its critical point, as indicated in Fig. 4.

In the vicinity of the bifurcation the limit cycle can be

described by expanding the equations of motion about the

fixed point as a power series, keeping terms up to third order.

It is convenient to introduce a complex variable

Z ¼ Dx1aDC; (14)
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where Dx and DC measure the difference of x and C from

their respective values at the critical point. With the choice

a ¼ J22 � e1 ivC

J12
; (15)

where J12 ¼ lCMp9O and J22 ¼ �l(1 1 m) (Eq. 9), the

equations of motion can be written as

Z_ ¼ ðe1 ivCÞZ1Q1BjZj2Z1 C; (16)

where Q represents all quadratic terms and C all remaining

cubic terms. The expression for the coefficient B is given in

the Appendix; for typical parameters, ReB is negative, in

which case the bifurcation is supercritical and therefore

continuously controllable. To leading order, the amplitude of

the variable Z is then given by A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�e=ReBp
; while all

other terms cause only perturbations to the trajectory

(Wiggins, 1990). The solution for spontaneous critical

oscillations therefore reads

DxðtÞ ¼ ImðaZ�ðtÞÞ
Ima

; DCðtÞ ¼ ImZðtÞ
Ima

; ZðtÞ ¼ AeivCt;

(17)

and the oscillation amplitude of Dx is ðjaj=ImaÞA:

Critical response to sound waves

Sound waves or other vibrations entering the inner ear cause

flow in the fluid surrounding the hair bundles. If the

(unperturbed) fluid motion at the height of the bundle tip has

amplitude A and frequency v, the force exerted on the bundle
tip in Eq. 2 is F ¼ Avzflow cos(vt). Here, zflow ; hL is the

friction coefficient of a stationary bundle in a flowing fluid.

Note that zflow is not precisely equal to z, which is the friction
coefficient of the bundle moving in a stationary flow,

because the latter also includes a contribution from shear

flow between the stereocilia. This contribution scales as;hL
3 Ng2 and is negligible for tall bundles but might become

significant for short thick bundles. To preserve generality we

write zflow/z ¼ n, where n is a constant of order unity which

might vary with bundle geometry.

The external force leads to an additional driving term on

the right hand side of Eq. 16, given by

F ¼ 1

2
Avgne

ivt
: (18)

For sound frequencies close to the characteristic frequency

of the bundle, v � vC, and amplitudes larger than the

thermal noise, the response of the system is

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jF j

�ReB
3

r
eivt; (19)

where we have assumed that the bundle is poised precisely at

the Hopf bifurcation, e ¼ 0.

Using the estimate ReB;�vC=d
2
O (see Appendix) we

obtain

Dx;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gnAd

2

O

3

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nAd

2

Ob=L
3

q
: (20)

This is the strongly compressive response characteristic of

a Hopf resonance (Camalet et al., 2000; Eguiluz et al., 2000).

Displacements of the transduction channel which produce

a resolvable response, Dx ¼ 1–10 nm, typically correspond

to wave amplitudes A ¼ 1–1000 nm in the fluid.

For weak stimuli, it is important to take the effects of noise

into consideration. The buffeting of the hair bundle by the

Brownian motion in the surrounding fluid will render the

spontaneous critical oscillations noisy. In this regime, signals

that yield a response that is smaller than the spontaneous

motion can nevertheless be detected, owing to phase locking

of the noisy oscillations (Camalet et al., 2000). The ability to

detect phase locking in neural signals despite no increase in

the firing rate has been experimentally confirmed in a number

of species (Narins and Wagner, 1989). In the Appendix we

provide an argument for the threshold of detection which

suggests that for high frequency bundles containing many

stereocilia, the smallest wave amplitude that can be detected

may be as small as A � 0.1 nm.

Self-tuning mechanism

To achieve the combination of frequency selectivity, amp-

lification of weak signals and wide dynamic range, the

system has to be tuned to the close proximity of the Hopf

bifurcation (Tr J ¼ 0 in Eq. 10). We propose that this is

accomplished by a feedback control mechanism which is

mediated by the adaptation motors. The basic requirement

is that when the hair bundle is still, the force exerted by

the motors gradually increases so that they advance up the

stereocilia (increasing xM), pushing the system into the

unstable regime (see Fig. 4); but when the bundle is

FIGURE 5 Self-tuned critical oscillations. In the absence of a stimulus,

the bundle performs noisy oscillations with a small amplitude. A strong

external stimulus elicits a response that can detune the system for some time.

Parameters values: N ¼ 50, KTL ¼ 0.5 pN/nm, KSP ¼ 0.15 pN/nm, z ¼ zflow
¼ 0.65 pN ms/nm, g ¼ 0.14 and A ¼ 40 nm (the values of other parameters

are listed in the last section of the Appendix).

Active Amplification by Hair Cells 197

Biophysical Journal 85(1) 191–203



oscillating, the motor force gradually declines, so that the

motors slip back down the stereocilia, returning the system to

the quiescent state. It would appear that some type of high-

pass or band-pass filter, which can detect whether or not the

bundle is oscillating, must form an integral part of the

feedback mechanism that controls the motors.

It has long been known that the hair cells of some

vertebrates have, in their cell membranes, a system of

potassium channels (BK) and voltage-gated calcium chan-

nels that display a resonant response to oscillating input

currents (Hudspeth and Lewis, 1988). It has been suggested

that their purpose is to sharpen the tuning of the signal passed

to the auditory nerve (Crawford and Fettiplace, 1980). It has

alternatively been postulated that this system may itself

generate self-sustained Hopf oscillations (Ospeck et al.,

2001) and could be the basis of active bundle movement. We

put forward a further possibility: One role of this system of

channels is to detect bundle oscillations and to control the

adaptation motors via a flux of calcium ions into the hair

bundle (in fact, it is more likely that the motors are regulated

by Ca21-controlled secondary messengers diffusing into the

hair bundle, rather than by Ca21 directly, but this would not

qualitatively alter the following argument).

We model the filtering characteristic of the electrical

oscillator by a Lorentzian transmission function

VðvÞ ¼ V0 1 IinputðvÞRF

v
2

F

v
2

F � v
2 1 ivvF=Q

; (21)

where V is the receptor potential, RF is a channel resistance

and Iinput } pO is the transduction current. The mechanism

operates best if the filter frequency vF equals the

characteristic frequency vC of hair-bundle oscillations, but

this matching has to be encoded genetically or achieved by

some mechanism beyond the scope of our model. With the

value Q � 10 measured experimentally in the bullfrog’s

sacculus (Hudspeth and Lewis, 1988), the filter distinguishes

sufficiently well between the oscillating component of the

transduction current and the underlying background level.

The voltage-gated calcium channels then provide a Ca21 flux

varying (for example) exponentially with the membrane

potential, which in turn determines the offset concentration

in the stereocilia CB, which appears in Eq. 5. We model it

with the following differential equation

_CCB ¼ ICa
1

11 expð�qðV � VCaÞ=kBTÞ � lBCB; (22)

where the parameters q and VCa describe the voltage

sensitivity of the KCa channels, ICa is a measure of these

channels’ contribution to the Ca21 flux in the region close to

FIGURE 6 Slow relaxation oscillator regime. (A)

The solid line shows the tension-displacement relation

for a channel, the dashed lines the contribution to

tension from the passive bundle stiffness (which

depends on the position of adaptation motors). In

a quasistationary state these two must be equal. For

a given position of the adaptation motors, there can be

two stable solutions. The motors then move the system

from one fixed point to the other. (B) Relaxation

oscillations have a lower frequency than and a different

shape from the critical oscillations. To achieve this

regime the Ca21 concentration outside the bundle was

reduced and the self-tuning mechanism was replaced

by a constant Ca21 flow from the cell body.
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the transduction channel, and lB is the relaxation rate of the

Ca21 current. For the operation of tuning mechanism it is

essential that lB � vC. The contribution of CB is insig-

nificant when the bundle is quiescent, but grows rapidly if

the bundle starts to oscillate.

The Ca21 flowing into the bundle from the cell body

regulates the oscillations in two ways. First, it reduces the

control parameter of the bifurcation directly, Eq. 10. Second,

Ca21 ions binding to the myosin motors enhance their rate

of detachment, via the function g(C) in Eq. 7, thereby reg-

ulating the total force that the team of motors produces. Here

we take g(C) } C3; the precise functional form is not very

important.

As shown in Fig. 5, this feedback control mechanism can

successfully tune the system to the immediate vicinity of the

Hopf bifurcation. In the absence of a sound stimulus,

a bundle executes noisy, self-tuned critical oscillations of

low amplitude. If a strong stimulus is then applied, the

bundle displays the characteristic response given by Eq. 20.

The significant flow of Ca21 into the cell elicited by this

response detunes the system, so that when the stimulus is cut,

the bundle falls still. Gradually, however, the motor-

mediated self-tuning mechanism returns the system to its

working point, where critical oscillations just set in, and

where the hair bundle’s sensitivity is maximal.

The hypothesis that the self-tuning mechanism is based on

the detection of oscillations in the transduction current could

be tested experimentally by disabling the electrical oscil-

lations in the cell body. This could be done by voltage

clamping the cell or by specifically blocking, for example,

the voltage-gated calcium channels. This would disable the

self-tuning mechanism and therefore augment the bundle

oscillations. On the other hand, if the electrical resonance is

involved in the generation of oscillations, disabling it should

eliminate the spontaneous bundle activity.

Slow relaxation oscillations

The self-tuning mechanism described above is sufficiently

robust to adjust the hair bundle to the critical point despite

the natural variation of conditions that is likely to occur in

vivo. Many experimental preparations, however, involve

significant perturbation from natural conditions, and this

may shift the system into a different dynamical regime. In the

following, we consider a particular type of dynamical be-

havior that can arise when the calcium feedback is weak. In

this situation, as previously discussed in Fig. 3 A, the

interaction of the transduction channels with the calcium flux

can produce a bistable system. If the position xM of the

adaptation motors is fixed, the hair bundle will settle at one

or other of the stable positions. However, this state of affairs

is upset by the slow calcium feedback acting on the motors

(Eq. 7). Suppose, for example, that the bundle is at the fixed

point with the higher value of x, for which there is a high

probability that the transduction channels are open. The

Ca21 ions entering through the channel bind to the motors,

causing a fraction of them to detach, and the diminishing

force exerted by the motors causes the tension in the tip links

TTL to fall. As indicated in Fig. 6 A, the fixed point vanishes

at a critical value of TTL, and the system then abruptly jumps

to the other fixed point. At this lower value of x, the channels
are mostly closed. The resulting drop in calcium concentra-

tion augments the number of bound motors, increasing the

tension in the tip links until the lower fixed point becomes

unstable, whereupon the hair bundle jumps back to its initial

position.

The consequence of this dynamics is a slow relaxation

oscillation (Strogatz 1994, Sect. 7.5) of the bundle deflection

X, which has a nonsinusoidal form: each abrupt jump in

position is followed by an interval of slow motion, as shown

in Fig. 6 B. Martin, Mehta, and Hudspeth (2000) have

observed oscillations of this type in their preparations of

dissected tissue. They attributed the dynamical behavior to

precisely the motor-mediated mechanism that we discuss

here, and speculated that these oscillations form the basis of

mechanical amplification of auditory stimuli. According to

our model however, the relaxation oscillations differ in many

respects from the Hopf oscillations which provide active

amplification. They are considerably slower; their frequency

is strongly amplitude dependent; and the frequency does not

significantly depend on the viscous relaxation time of the

bundle, but is principally governed by the motors’ sensitivity

to changing calcium levels. In our model, relaxation

oscillations are an accidental consequence of the self-tuning

mechanism when the system is too far from normal operating

conditions.

In the light of our analysis, various interpretations of the

experiment of Martin, Mehta and, Hudspeth (2000) are

possible. It may be that in saccular hair cells, which are

designed to detect low frequency vibrations, slow motor-

mediated relaxation oscillators are sufficient to provide

a rudimentary amplification of signals. Another possibility is

that the observed oscillations can be adjusted to the vicinity

of a Hopf bifurcation by some mechanism that we have not

considered here, e.g. by alternating the bundle stiffness. A

third possibility to bear in mind is that the conditions in

preparations of dissected tissue are not precisely the same as

those in vivo, and thus the hair bundles may not be operating

in the dynamical regime that is physiologically relevant.

Careful adjustment might permit the channel adaptation and

the motor-mediated self-tuning mechanism to work together

as we propose they do in auditory hair cells, in which case

more rapid, critical Hopf oscillations might be observed.

CONCLUSION

Our phenomenological model illustrates that the two

adaptation processes which have been documented in hair

cells can, together, generate a self-tuned Hopf bifurcation.

The feedback mechanism that accomplishes the self-tuning
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requires, in addition, a system to detect bundle oscillations.

We have shown that this can be accomplished by the

resonant response of the BK and voltage-gated Ca21

channels which has been established experimentally in

lower vertebrates. The spontaneous frequency vC of a hair

cell is specified principally by the architecture of its hair

bundle. To ensure robust operation of a hair cell, we expect

that both the calcium relaxation rate l, and the resonant

frequency of the electrical oscillator are quite closely

matched to the spontaneous oscillation frequency vC. The

self-tuning mechanism can reliably keep the hair bundle

poised on the verge of oscillating in vivo. But the

perturbations in conditions which can occur in some

experimental preparations may lead to quite different

dynamical regimes. Thus, although recent experiments on

hair cells of the bullfrog sacculus show promising signs of

active amplification (Martin and Hudspeth, 1999, 2001;

Martin et al., 2000, 2001), they may well not yet have

revealed the full potential of auditory hair cells to detect faint

sounds.

APPENDIX

Series expansion

In this section we derive an analytical expression for the third-order

coefficient B in the complex equation of motion (Eq. 16). The Taylor

expansion of Z_ up to third order, with the use of a new variable j ¼ Dx �
Dxs(C) can be derived from the equations of motion (Eqs. 5 and 8) and the

definition of Z (Eq. 14):

Z_ ¼ ½Linear terms in Dx; DC� � Ng
2

z
f 9j1

1

2
f 99j21

1

6
f 999j3

� �

1alCM p9Oj1
1

2
p99Oj

21
1

6
pO999j

3

� �
: (23)

Expanding j as a Taylor series inDx andDC, expressing the latter in terms of

Z using Eq. 17

j¼ ða1x9s ÞZ��ð�aa1x9s ÞZ
a� �aa

� 1

2
x99s

ðZ �Z�Þ2
ða� �aaÞ2

� 1

6
x999s

ðZ�Z�Þ3
ða� �aaÞ3 1OðZ3Þ (24)

and collecting the real part of the terms containing Z2 Z� yields

ReB¼� Ng
2

16zðImaÞ2 �x99s f 991 ja1x9s j2f 999
	 


� lCM

16ðImaÞ2 x999s p9O� x99s ð2Rea13x9s Þp99Oð

1x9s ja1x9s j2p999O Þ: (25)

Inserting a ¼ x9sð�lð11mÞ1ivCÞ=ðlmÞ from Eq. 15 gives

ReB¼� ðlmÞ2
16ðvx9s Þ2

Ng
2

z
�x99s f 991ðx9s Þ2 11

v
2

ðlmÞ2
� �

f 999

� ��

1lCM x999s p9O� x99s x9s ð1� 2=mÞp99O1
�

ðx9s Þ3 11
v

2

ðlmÞ2
� �

p999O

��
; (26)

TABLE 1 Parameter values used in the simulation

Tip-link stiffness KTL 0.5 pN/nm Martin et al. (2000)

Channel states dC2 7 nm

dO 8.5 nm Martin et al. (2000)

Channel state energies G0
C2 60 zJ

G0
O 70 zJ

Ca21 dependent gating point shift D 4 nm Corey and Hudspeth (1983)

Switching time tch 50 ms Corey and Hudspeth (1983)

Distance between stereociliary roots b 1 mm Howard et al. (1988)

Bundle height L 7 mm Howard et al. (1988)

Geometric factor g 0.14 (Howard et al. (1988)

Pivotal stiffness of a stereocilium k 1.5 3 10�16 Nm/rad Hudspeth et al. (2000)

Number of stereocilia N 50 Martin et al. (2000)

Viscous friction z 0.65 pN ms/nm

Ca21 relaxation rate l 100 s�1

Channel contribution to the Ca21 concentration CM 7 mM Lumpkin and Hudspeth (1998)

Number of adaptation motors per channel NM 20

Motor association rate vM 200 s�1

Motor speed vM 0.3 mm/s

Motor stall force FM 1 pN

Maximum transduction current IInput/N 500 pA van Netten and Kros (2000)

Filter resistance RF 35 mV/nA

Filter Q-factor Q 10 Hudspeth and Lewis (1988)

Filter frequency vF 2p 3 50 s�1

Membrane potential V0 �70 mV

Ca21 channels gating point VCa �65 mV

Ca21 channels gating charge q q/kBT ¼ 0.2 mV�1

Time constant of the slow feedback lB 1 s�1

Ca21 gain due to slow feedback ICa21 10 mM/s
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and using the specific form of Dxs, given by Eq. 3, we finally obtain

ReB ¼ � ðlmÞ2
16v

2

Ng
2

z

f 99

D
1 11

v
2

ðlmÞ2
� �

f 999

� ��

1
lCM

C

2p9O
D

� ð1� 2=mÞp99O
�

1D 11
v

2

ðlmÞ2
� �

p999O

��
: (27)

If we assume a matching between the Ca21 relaxation rate and the

characteristic bundle frequency, l;KB=z;vC; the position x of the

bifurcation becomes independent of the characteristic frequency and so do

the terms pO, f and all their derivatives, evaluated at the bifurcation. The

third-order coefficient then scales as

ReB ; � vC

d
2

O

: (28)

The parameters we use in our simulation give the value ReB ¼ �6:7vC=d
2
O.

Noise

To determine the level of the smallest stimulus that a hair bundle can detect,

stochastic fluctuations of the bundle must be taken into account. There are

several sources of noise in the system. The most important is the Brownian

force that the surrounding fluid exerts on the bundle. The noise resulting

from the stochastic opening and closing of channels is less significant, as can

be seen by considering a simplified two-state channel model. We denote the

lever-arm shift between the two states by d, the average dwell times as t0 and

t1 and the probability of finding the channel in state 1 by p1. Then the

expectation value of the number of channels in state 1 is hn1i ¼ Np1; and the

variance is hDn21i ¼ Np1ð1� p1Þ: The fluctuation in the total force from all

channels is hDF2i ¼ ðKTLdÞ2hDn21i: The noise has the spectral density of

a dichotomous process

SðvÞ ¼ z

g
2 kBTN

1

pð11 ðvtCÞ2Þ
: (29)

It has the characteristic of a Brownian noise with an effective tempera-

ture kBTN ¼ ðg2=zÞðKTLdÞ2Np1ð1� p1ÞtC � kBTvCtC; where tC ¼
ðt�1

0 1 t�1
1 Þ�1: The second approximation is based on the estimates kBT

; KTLdO
2 (from the condition for the negative stiffness) and vC ; Ng2KTL/z

(Eq. 13 with l;vC). Since the channel switching time is shorter than the

period of the oscillations, vCtC � 1, it follows that the channel noise is

negligible compared to the thermal noise. The same can be shown for the

influence of stochastic channel opening on the Ca21 concentration inside the

stereocilia.

Taking the Brownian force exerted by the fluid into account, the equation of

motion for the complex variable Z becomes

Z_ ¼ ðe1 ivCÞZ1BjZj2Z1F 1
g
2

z
FNðtÞ; (30)

where FN(t) represents white noise with the autocorrelation function

hFNðtÞFNðt9Þi ¼ ½2zkBT=g2�dðt � t9Þ: Writing Z9 ¼ Ze�ivt (and taking the

stimulus frequency to be equal to the characteristic frequency), this equation

can be transformed to

z

g
2 Z_ 9 ¼ � @

@Z9
UðZ9Þ1FNðtÞe�ivt

; (31)

UðZ9Þ ¼ z

g
2 � e

2
jZ9j2 � ReB

4
jZ9j4 � jFjZ9

� �
: (32)

It can be further simplified if we replace the ‘‘rotating’’ noise FN(t)e
�ivt

(which reflects the fact that the noise only acts on the spatial coordinate and

not on the Ca21 concentration) with an averaged, homogeneous noise term.

The averaged noise then has the temperature ½T and Eq. 32 becomes

a Langevin equation for a particle of friction coefficient z/g2, moving in

a potential U(Z9). The equilibrium solution is the Boltzmann distribution

PðZ9Þ} expð�UðZ9Þ=ð1=2ÞkBTÞ: For a bundle that is tuned to the critical

point (e ¼ 0), the mean-square fluctuation amplitude in the absence of

a stimulus (F ¼ 0) is

hZ2i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTg

2

pzð�ReBÞ

s
;

d
2

Offiffiffiffi
N

p (33)

(in the second step we used the estimates ReB;�v/dO
2 (Eq. 28) and kBT;

KTLdO
2, the condition for negative stiffness). Using the numerical parameter

values we obtain

hZ2i � 0:13
d
2

Offiffiffiffi
N

p : (34)

Weak stimuli which evoke a response that is smaller than the stochastic

fluctuations of the bundle, nevertheless cause phase locking of the

spontaneous bundle oscillations (Camalet et al., 2000; Martin and Hudspeth,

2001). The brain might detect such signals through periodicity in the spike

train elicited by individual hair cells, or via the synchronicity of spikes from

neighboring hair cells, whose characteristic frequencies differ only slightly.

In either case, the quantity of interest is the Fourier component of bundle

oscillations at the sound frequency. With a finite stimulus force F, the
Fourier component is

hZe�ivti ¼
ffiffiffiffi
2

p

r
jF jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ReBkBTg2
=z

q ; An
ffiffiffiffi
N

p b

L
: (35)

We assume that signals can be detected provided that the signal-to-noise

ratio, hZe�ivti= ffiffiffiffiffiffiffiffiffiffihZ2ip
; exceeds a certain threshold value r. The smallest

detectable amplitude of fluid motion then scales as

Amin ;
rdO

n

L

b
N

�3=4
(36)

or with our numerical parameter values

Amin � 1:0
rdO

n

L

b
N

�3=4
: (37)

Taking r � 0.2, L/b � 3, n � 1, and N � 200 gives Amin � 0.1 nm for high

frequency bundles containing many stereocilia.

Simulation of self-tuned critical oscillations

The model parameters and their values, used in the simulation, are listed in

Table 1. The channels were simulated as described in the main text, using

a three-state model with parameters G0
C1 ¼ 0;G0

C2 ¼ 60zJ, G0
O ¼ 70zJ;

dC1 ¼ 0 nm, dC2 ¼ 7 nm, dO ¼ 8.5 nm and D ¼ 4 nm. The transition rate

between the states C1 and C2 and between C2 and O was modeled as

ri�!j ¼ t�1
ch expððG0

i � GjÞ=2kBT Þ, with the free energy in each state

Fi ¼ 1=2KTLðx � xsðCÞ � diÞ21G0
i :

The resonant filter was simulated using the differential equation corre-

sponding to the filter characteristics given by Eq. 21

V̈ ¼ �v
2

FðV � V0Þ � vF

Q
_VV1 ðnO=N � p

0

OÞIInputRFv
2

F; (38)
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where nO is the number of open transduction channels and the parameters

RF ¼ 35 mV/nA, IInput ¼ 0.5 nA, Q ¼ 10, V0 ¼ �70 mV, pO
0 ¼ 0.15 and

vF ¼ 2p 3 50 s�1.

The calcium contribution from the cell body was modeled according to

Eq. (22) with ICa ¼ 10 mM/s, lB ¼ 1 s�1, VCa ¼ �65 mV, q/kBT ¼ 0.2

mV�1.

The adaptation motors were modeled with stochastic attachment at a fixed

rate vM ¼ 200 s�1 and detachment at a Ca21-dependent rate g(C)vM, with

g(C) ¼ (0.1 mM�3)3C3.

All differential equations were solved using the Euler method. The time

step was 1 ms.
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