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Abstract

We construct a heuristic model of calcium oscillations in pancreatic acinar cells. The model is
based on the two-state model of Sneyd et al. (Sneyd, J., A. LeBeau and D. Yule, 2000, Traveling
waves of calcium in pancreatic acinar cells: model construction and bifurcation analysis, Physica D,
in press) and is similar in spirit to the FitzHugh reduction of the Hodgkin-Huxley equations. The
simplified model successfully reproduces the oscillatory behavior and wave behaviour of the more
complex model. In particular, the simplified model provides an example of a simple, physiologically
relevant model that has a T-point and an associated spiral branch of homoclinic orbits.

1 Introduction

The mechanisms and patterns of cytosolic calcium (Ca2+) release are of great interest to both
experimentalists and theoreticians. Intracellular Ca2+ oscillations have been observed in a wide
variety of cell types, indicating that Ca2+ is an important biochemical signal. Two principal types
of Ca2+ oscillations have been characterized in a variety of cell types: baseline spikes and sinusoid
oscillations. The baseline spike is a repeated series of spikes in cytosolic calcium concentration.
Each spike consists of a sudden elevation in cytosolic Ca2+ level, followed by a rapid return to the
baseline concentration. The sinusoidal oscillation, on the other hand, is a sustained elevation of
Ca2+ concentration with high frequency, low amplitude oscillations about the elevated baseline.
The baseline spike is of particular interest because of its possible use as a biochemical signal
(Berridge and Galione, 1988; Rooney and Thomas, 1993). The amplitude of the baseline spike
is approximately constant at different agonist concentrations, but its frequency is variable and
sensitive even to extremely low agonist concentrations. The highly organized nature of the Ca2+

oscillation in time makes the baseline spike an easily detectable signal, even against a background
of stochastic variation in cytosolic Ca2+ concentration and leakage of calcium from cellular Ca2+

stores (Thomas et al., 1996).
Much of the interest in Ca2+ oscillations results not only from the temporal organization of the

Ca2+ signal but also from its spatial organization. Traveling waves of elevated Ca2+ concentration
have been observed in diverse cell types, including hepatocytes, pancreatic acinar cells, and oocytes,
in a variety of species (Brezprozvanny and Ehrlich, 1995; Nathanson et al., 1992; Parys et al., 1992;
Petersen et al., 1991; Thomas et al., 1996). Since Ca2+ diffuses only a few micrometers through the
cytosol, the presence of spatially organized waves indicates that the waves must be regenerative in
nature. The regenerative mechanism by which waves propagate involves the autocatalyic release
of calcium from the endoplasmic reticulum (ER) or sarcoplasmic reticulum (SR), a process often
called Ca2+-induced Ca2+ release, or CICR (Clapham, 1995). The two principal pathways of
CICR are through the ryanodine receptor or the inositol (1,4,5)-trisphosphate (IP3) receptor. In
the case of the IP3 receptor, which is found predominantly in nonmuscle cells, the receptor mediates
interaction between an agonist, such as a hormone or a neurotransmitter, and intracellular stores of
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Ca2+ such as the ER. When an extracellular agonist binds to the cellular surface, it can stimulate
the production of IP3. This is accomplished via a G-protein link from the surface receptor to the
protein phospholipase C, which cleaves phosphotidylinositol(4,5)-bisphosphate into diacylglycerol
and IP3. The IP3 which is released then diffuses through the cell cytoplasm and interacts with
IP3 receptors on the ER membrane, causing them to open and release Ca2+ from the membrane-
enclosed stores.

The behavior of the IP3 receptor itself is also affected by cytosolic Ca2+, with Ca2+ both
promoting and inhibiting Ca2+ release, but at different rates. The study of the IP3 receptor and
its role in Ca2+ release is thus an important step toward understanding calcium dynamics at the
cellular level.

LeBeau et al. (1999) present a model of the IP3 receptor based on the behavior of observed
Ca2+ oscillations in pancreatic acinar cells. The model reproduces differing types of Ca2+ oscil-
lations in response to different agonists, and also makes several predictions of receptor behavior,
predictions that were successfully tested. A variation on the model is presented by Sneyd et al.
(2000). Although it exhibits interesting and physiologically realistic behavior, the form of the
model equations makes analysis prohibitively difficult. It is thus very desirable to develop a model
which exhibits the same behavior, without such complex functional forms. We take a heuristic
approach to simplifying the model. In the spirit of the FitzHugh reduction of the Hodgkin-Huxley
equations, we reproduce the behavior of the model by using functional forms completely unrelated
to the physiology upon which the original model was based. We then demonstrate that the heuris-
tic simplification exhibits the same behavior as the physiologically based model of Ca2+ oscillations
in pancreatic acinar cells, and is thus a useful simplification.

What is particularly interesting is that our simplification is a simple model of an excitable
system that has a form different to that of the usual FitzHugh-Nagumo model of excitability. Such
unusual excitable systems have been observed previously in models of calcium oscillations, and
thus the model presented here will, we hope, provide a convenient way of studying such systems.

2 Models of calcium oscillations

Several approaches have been taken to modeling IP3-mediated calcium dynamics. The various
approaches differ considerably in the assumptions regarding the physiological mechanism of Ca2+

release. One of the earliest physiological schemes assumed the existence of two distinct Ca2+ stores
in the cell, and is therefore known as the two pool model. In the two pool model, one of the stores
(“pools”) of calcium is assumed to be sensitive to Ca2+, and the other to IP3 (Kuba and Takeshita,
1981; Goldbeter et al., 1990; Goldbeter, 1996). Recent work has shown that the model applies
equally well to a single pool mediated by both Ca2+ and IP3 (Dupont and Goldbeter, 1993, 1994).
While the two pool model is based on assumptions regarding whole-cell physiology, several other
approaches utilize a more detailed model of the IP3 receptor. The model of DeYoung and Keizer
(1992) assumes that the IP3 receptor is composed of three independent subunits, each of which
has a binding site for IP3, an activating binding site for Ca2+, and an inactivating binding site for
Ca2+, giving a total of eight possible states for each subunit. A simplified model is constructed by
assuming that binding at the IP3 and activating Ca2+ binding sites is fast compared to the binding
of calcium to the inactivating Ca2+ site (DeYoung and Keizer, 1992; Keizer and DeYoung, 1994;
Li and Rinzel, Tang et al., 1996). A third, heuristic approach has also been taken to modeling
the IP3 receptor (Atri et al., 1993). A detailed discussion and comparison of the models of Ca2+

release can be found in Keener and Sneyd (1998).

More recent experimental work, particularly on the modulation and kinetics of the IP3 receptor,
have shown all these above models to be incorrect in detail, thus stimulating the construction of
further models, one of the most recent being due to LeBeau et al. (1999).
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Figure 1: Schematic diagram of the simplified receptor model, showing the possible states of the
IP3 receptor, and the transitions between them.

2.1 The two-state receptor model

Modeling the IP3 receptor is further complicated by the sensitivity of the receptor mechanism to
the type of agonist used to stimulate Ca2+ oscillations. LeBeau et al. (1999) present a model which
mimics the different types of oscillations induced by acetylcholine (ACh) or cholecystokinin (CCK)
in pancreatic acinar cells and make several successfully tested predictions. The model assumes that
the IP3 receptor has open, shut, and inactivated states, denoted S, O, and I. A six state model
is derived based on the proposal that each state has two variants, with high and low IP3 affinity,
and that Ca2+ mediates the interconversion of these variants, denoted S and S̃, and so on for the
other states (Hajnóczky and Thomas, 1997; Cardy et al., 1997). By assuming that interconversion
between high and low IP3 affinity variants is fast compared to the opening, shutting, or inactivation
of the receptor, the authors formulate the three state model. By further assuming that opening of
the receptor is fast compared to inactivation and recovery from inactivation, the model is further
reduced to the two-state model. Although Sneyd et al. (2000) give a detailed derivation of the
model equations, we repeat part of that derivation for the sake of clarity.

The binding diagram of the three-state model is given in Fig. 1; X denotes a shut state of the
receptor, Y an open state, and Z an inactivated state. The functions φ that control the movement
between the receptor states are themselves derived from a more general six-state model, and take
the form

φ1(c) =
k1R1 + r2c

R1 + c
, (1)

φ−1(c) =
(k−1 + r−2)R3

c+R3
, (2)

φ2(c) =
k2R3 + r4c

R3 + c
, (3)

φ3(c) =
k3R5 + r6c

R5 + c
, (4)

where all the ks, Rs and rs are constants. Letting x denote the proportion of receptors in state X,
and similarly for y and z, then gives

dx

dt
= φ−1(c)y − pφ1(c)x+ φ3(c)z, (5)
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dy

dt
= pφ1(c)x− φ−1(c)y − φ2(c)y, (6)

z = 1− x− y, (7)

where p is the concentration of IP3. Note that IP3 is involved only in the transition from the shut
state to the open state.

It is known that the IP3 receptor consists of four subunits. If we make the simplifying assump-
tion that these four subunits are identical and independent, then the open probability, P , of the
receptor, is given by

P = y4. (8)

Finally, we assume that opening of the receptor by IP3 binding is a fast process compared to
receptor inactivation and recovery from inactivation. This is a standard assumption used in many
models (Atri et al., 1993; Li and Rinzel, 1994; Keizer and DeYoung, 1994; Sneyd et al., 1995; Tang
et al., 1996) and appears to agree well with experimental data. This gives

pφ1x = φ−1y. (9)

Thus, letting h = x+y, and recalling the conservation law (7) which now takes the form h+z = 1,
we get

dh

dt
= φ3(1− h)−

(
φ1φ2p

φ1p+ φ−1

)
h. (10)

The open probability of the receptor is now given by

P =
(

phφ1

φ1p+ φ−1

)4

. (11)

We shall call this model the two state receptor model.

2.2 The whole-cell model

The two-state model of the IP3 receptor can be incorporated into a model for intracellular Ca2+

dynamics by assuming that Ca2+ can enter the cell via two pathways; through the IP3 receptor
(with flux denoted by Jreceptor), or through a generic leak from outside the cell or from the ER
(Jleak), and is removed from the cytoplasm by Ca2+ ATPase pumps (Jpump). Thus, conservation
of Ca2+ gives

dc

dt
= Jreceptor − Jpump + Jleak. (12)

In choosing functional forms for Jpump and Jleak we follow previous models (reviewed in Sneyd et
al., 1995) and assume that Jleak is just a specified constant, while the Ca2+ ATPases work in a
cooperative manner, with a Hill coefficient of 2, and thus

Jpump =
Vpc

2

K2
p + c2

, (13)

for some constants Vp and Kp. The flux through the receptor is given by the open probability
multiplied by some scaling factor, and thus

Jreceptor = kf

(
phφ1

φ1p+ φ−1

)4

, (14)

for some constant kf .



B. Singer and J. Sneyd, Calcium Oscillations 83

1.0

0.8

0.6

0.4

0.2

0.0

c
1.00.80.60.40.20.0

h
1

2

Figure 2: Nullclines of the two–state model. Curve 1: dh
dt = 0. Curve 2: dc

dt = 0.

Note that this simplified whole-cell model now consists of only two differential equations, one
for c, and one for h:

dh

dt
= φ3(1− h)−

(
φ1φ2p

φ1p+ φ−1

)
h, (15)

dc

dt
= kf

(
phφ1

φ1p+ φ−1

)4

− Vpc
2

K2
p + c2

+ Jleak, (16)

where the functions φ are given above.

2.3 Nullclines of the two-state model

The functions found in the two-state model are all derived from the kinetics of the IP3 receptor, and
take the rational forms dictated by the physiology. This complicated formulation makes analysis
very difficult, and so a qualitative approximation of the model’s behavior in a simpler form is
desirable. Employing a method of simplification in the spirit of the FitzHugh-Nagumo reduction
of the Hodgkin-Huxley equations, we look to the nullclines of the two-state model as the basis
of the model’s behavior. Much of the behavior of the two-state model can be traced back to the
characteristic shape of its nullclines (Fig. 2). The nullcline dh

dt = 0 takes on an exponentially
decaying shape, while the nullcline dc

dt = 0 rises sharply and then slowly decreases. Note that the
nullclines are very nearly identical in the region .1 < c < .5. The similar behavior of the nullclines
in this region makes their points of intersection extremely sensitive to changes in the value of p. As
p increases, the nullclines intersect first at one point, then intersect at one point and are tangent
in a second, then intersect at three points. After an interval of three intersections, the nullclines
return to intersecting at only a single point. Since each of the intersection points of the nullclines
gives a steady state, this behavior is clearly seen in a bifurcation diagram of the two-state model
as an S-shaped curve of steady states.

Oscillations and waves in the two-state model have been discussed in detail by LeBeau et
al. (1999) and by Sneyd et al. (2000), and we shall not repeat their arguments here. Suffice
it to say that the model oscillations agree very well with experimental observations, and that
a bifurcation analysis demonstrates the existence of a branch of stable isolated traveling waves,
traveling at physiologically accurate speeds. This branch of traveling waves terminates at a T-point
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(Glendinning and Sparrow, 1986), and an associated spiral of homoclinic bifurcations. It is our
goal here to show that a simplified version of this model can be constructed, retaining the principal
features of the model’s behaviour.

3 Heuristic simplification of the two-state model

Although the two-state model exhibits interesting behavior when studied numerically, its functional
forms are too complex for analytical study. It is therefore desirable to formulate a simpler model
which exhibits the same behavior. Since the two-state model is already highly simplified from a
physiological point of view, any further simplifications must be made using a heuristic approach.
This simplification is in the spirit of the FitzHugh-Nagumo equations, which are based on the
equations of Hodgkin and Huxley for describing the action potentials of the squid giant axon.
The Hodgkin-Huxley equations are a landmark model in the history of excitable systems. They
are based on a detailed understanding of the physiological behavior of the squid giant axon, and
are soundly supported by experiment (Hodgkin and Huxley, 1952; Rinzel, 1990). They are also
extremely complex and difficult to study, especially given the computational facilities available
at the time of their conception. FitzHugh (1960, 1961, 1969) formulated a simplification of the
Hodgkin–Huxley equations which qualitatively retains much of the same behavior as the original,
complex model. Our approach to simplifying the two-state model will be similar, and relies upon
a qualitative reproduction of the model’s nullclines in functional forms unrelated to the original
model equations.

3.1 Model equations

The primary information that the nullclines give us in any model is the position of the model’s
steady states for a given set of parameters. In the case of the two-state model, we have the goal
of reproducing the S-shaped curve of steady states. To do so, the nullclines must intersect in one,
two, or three points as the primary bifurcation parameter is varied. Furthermore, the global shapes
of the nullclines should remain qualitatively unchanged.

The first step in simplifying the two-state model is to replace the nullcline dh
dt = 0 with a

straight line, giving the equation
dh

dt
= −c+ (gh+ p), (17)

where p is the intercept of the nullcline, and acts as a primary bifurcation parameter. Replacing
the nullcline of the two-state model with a straight line has an important ramification for the shape
of the nullcline dc

dt = 0. In the original model, the two nullclines had a very similar curvature near
their points of intersection. In order to keep the two nullclines nearly matching each other, a more
sharply curved shape is necessary for the simplified nullcline than is found in the original model.
This leads to the formulation

dc

dt
= h− [en1+n2c(n3c

2 + n4c+ n5) +N0], (18)

where all parameters are constants given in Table 1. Note that, although we use the same variable,
c and h, as in the full two-state model, they may no longer be given such a direct physiological
interpretation. However, it is not too inaccurate still to think of c as a calcium concentration in
some simplified model, and to treat h as an activation variable.

The nullclines now have the same qualitative behavior as the nullclines of the two-state model,
which can be seen if we imagine the linear nullcline being swept across the nullcline dc

dt = 0 (Fig. 3).
At low values of p, the nullclines intercept at a single point. As p is raised, they have one point of
intersection and one tangent point, and then pass through a region with three points of intersection.
As p continues to increase, the nullclines pass out of the region with three points of intersection,
have a tangent point for a single value of p, and then return to one point of intersection.
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n1 = 1.732 n2 = 3.466
n3 = −0.882 n4 = −0.252
n5 = 0.132 N0 = −0.7467
g = −0.335

Table 1: Parameters of the simplified model
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Figure 3: Nullclines for the heuristic simplification of the two-state model. Curve 1: dh
dt = 0. Curve

2: dc
dt = 0.
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Figure 4: Bifurcation diagram of the simplified two-state model, showing the maximum and mini-
mum of the periodic orbit as a function of a. HB — Hopf bifurcation; HC — homoclinic bifurcation.
A broken line denotes instability.

3.2 Results

The simplified nullclines successfully reproduced the oscillations and steady state behavior of the
original two-state model (Fig. 4). The curve of steady states has a clear S shape, with two limit
points, as a result of the behavior of the nullclines as p is varied. For low values of p, the model has
a single steady state. As p is increased, however, two branches of periodic orbits arise. The period
of these orbits is very high near the homoclinic bifurcation, but decreases as the branches approach
their termini in Hopf bifurcations. Bifurcations and orbits were tracked using the XPP/AUTO
softwave package. We tracked period 1000 orbits as an approximation of homoclinic orbits. These
results were found to be identical to those from orbits with period 2000, indicating that the orbits
being tracked are very close to the homoclinic orbit.

3.3 Traveling waves

The primary focus of the two-state model is on producing traveling wave behavior which is physi-
ologically realistic. In order to model this behavior in our simplified model, we simply substitute
our model equations into the traveling wave ODEs for the two-state model. This gives us

c′ = d, (19)

d′ = sd− h+ en1+n2c(n3c
2 + n4c+ n5) +N0, (20)

sh′ = −c+ (gh+ p) (21)

where a prime denotes differentiation with respect to ξ = x+ st. In this model, as in the two-state
model, s acts as a secondary bifurcation parameter.

The bifurcations of principal interest are illustrated in Fig. 5, which shows the looped curve
of Hopf bifurcations (labelled HB) in the s, p plane, as well as three branches of homoclinic orbits
(labelled A, B, and C). The homoclinic branches B and C are very close together at higher values
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Figure 5: Two-parameter bifurcation diagram of the traveling wave equations for the heuristic
simplification of the two-state model. HB denotes the curve of Hopf bifurcations, and HC denotes
the branches of homoclinic bifurcations. Labeled point corresponds to homoclinic orbit in Fig. 8.

of s, so close as to be indistinguishable on the scale of the figure. However, although the distinction
between branches B and C is not clear from the figure, we explain the important differences in
more detail below.

3.3.1 The curve of Hopf bifurcations

If we continue the Hopf bifurcations at any fixed value of s through the s, p phase plane, a continu-
ous, looped curve of Hopf bifurcations results (Fig. 5, curve HB). This loop, with two limit points,
is a direct consequence of the S-shaped curve of steady states visible in the c, p phase plane at
fixed values of s. As s varies, the Hopf bifurcations collide with the limit points of the steady state
curves. Since the steady state curve constrains the possible positions of the Hopf bifurcations, this
results in the limit points visible in Fig. 5.

3.3.2 Behavior as s→∞

The behavior of the simplified traveling wave model for very large s is exactly the behavior of the
spatially homogeneous model (Fig. 4). Thus, a cross-section of the c, p phase plane at a constant,
large, value of s shows two Hopf bifurcations (labeled HB1 and HB2 in Fig. 4) and two homoclinic
bifurcations (HC1 and HC2 in Fig. 4). We note a number of things. Firstly, HB1 and HB2 both
must necessarily lie on the curve labelled HB in Fig. 5; at higher values of s, HB1 lies on the
left part of the curve HB, and HB2 lies on the right part. Secondly, HB1 is connected to HC1
by a branch of periodic orbits (as shown in Fig. 4), and HC1 lies on HC (branch C) of Fig. 5.
Thirdly, HB2 is connected to HC2 by a branch of periodic orbits, and HC2 lies on HC (branch B)
of Fig. 5. Thus branches B and C, although very close together, correspond to completely different
homoclinic orbits, and are connected by branches of periodic orbits to different parts of the HB
curve. Finally, we note that this diagram is not an exhaustive list of all the homoclinic bifurcations
occuring in the model, as indeed there are infinitely many others not shown here. Nevertheless,
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Figure 6: Bifurcation diagram for the traveling wave equations of the simplified two-state model,
at a fixed value of s = 1.5. A broken line denotes the curve of steady states, while a solid line
indicates the maximum and minimum values of c over a periodic orbit. Stability is not indicated.
Inset shows the period of all orbits as a function of p.

the principal behaviour of the model can be well understood by consideration of only these three
branches.

3.3.3 Homoclinic branch A

For intermediate values of s, the branch of periodic orbits arising from the right branch of HB (i.e.,
corresponding to HB2 in Fig. 4) no longer ends on branch B, but ends instead in a homoclinic
bifurcation on branch A (Fig. 6). Thus, for intermediate values of s, the branch of periodic orbits
extends to much lower values of p than is the case for higher values of s.

In the two-state model, branch A corresponds to physiologically occuring traveling waves, and
so branch A of the simplified model is of great interest to us. Branch A has a positive slope in
the s, p phase plane, indicating that wave speed increases with increased IP3 concentration, which
agrees with the two-state model and with experimental data from some cell types (Nathanson
et al., 1992). In other cell types such as hepatocytes and oocytes (Robb-Gaspers and Thomas,
1995; Lechleither and Clapham, 1992) the concentration of IP3 does not appear to affect the
intracellular calcium wave speed greatly. However, in more realistic models than the one presented
here the predicted effect of IP3 concentration on wave speed is small, and well within the observed
experimental variability (Sneyd et al., 1993, 2000). Outside the vicinity of the intersection with
branch B, the homoclinic orbits of branch A show a simple baseline spike (Fig. 7, curve 1). This
reflects the behavior of the orbit when viewed in the c, h phase plane. The homoclinic orbit begins
at the saddle focus and makes a large amplitude orbit, returning to the saddle focus.

Branches A and B intersect in a T-point (Glendinning and Sparrow, 1986), a place where there
exists a heteroclinic cycle. As the orbits approach the T-point along branch A their behavior
changes (Fig. 7). As we enter the region in p where three steady states exist for a given s, two
more steady states appear: an unstable node, and a saddle point. The orbits on branch A change
in two significant ways as a result. First, the orbit in the c, h plane spends some time in the vicinity
of the saddle point before returning to the saddle focus. Second, the orbit begins to spiral about
the saddle focus before returning to it (curve 2). This is visible in the c, ξ plane as a transient
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Figure 7: Homoclinic orbits approaching the T-point on homoclinic branch A.

elevation in the value of c after the main baseline spike, followed by a fall back to slight oscillations
about the value of c corresponding to the saddle focus. The effect become more pronounced as
orbits get closer to the T-point (curve 3).

3.3.4 Homoclinic branch B

Just as the homoclinic orbits of branch A approximate the heteroclinic connection of the T-point as
they approach it, the orbits of branch B are affected by their proximity to the T-point. As predicted
by Glendinning and Sparrow (1986), the linear branch A of homoclinic orbits is accompanied by
a spiraling branch (branch B) of homoclinic orbits near the T-point; i.e., as branch B moves away
from the T-point, it forms a spiral of homoclinic orbits. Since the spiral is compressed into a very
small range of values of p, it can not be seen in Fig. 5. Furthermore, the homoclinic orbits on
branch B approximate the heteroclinic connection differently than those on branch A. Whereas
the homoclinic orbits of branch A “fall off” the saddle point and remain “attached” to the saddle
focus, the orbits of branch B remain attached to the saddle point and fall off the saddle focus. If
we approach the T-point along branch B, we see this clearly illustrated. At high values of s, the
homoclinic orbit begins at the saddle point and makes a large amplitude orbit, returning to the
saddle point (Fig. 8, curve 4). As s decreases, the time spent in the vicinity of the saddle focus
increases (curve 5, curve 6). In the c, h plane (Fig. 8, B and C) the orbit begins at the saddle
point, then proceeds to spiral about the saddle focus before making a large amplitude loop and
returning to the saddle point. In the c, ξ phase plane, this appears as an oscillating tail preceding
the main baseline spike, rather than following it as on branch A.

These behaviours are qualitatively identical to those seen in the full model, and thus we conclude
that our simplified model does indeed retain the essential wave features found in the full model.

4 Discussion

Many models of cellular calcium dynamics have been conceived based on a physiological under-
standing of the mechanism of calcium release. In particular, LeBeau et al. (1999) have modeled
the dynamics of the IP3 receptor in pancreatic acinar cells. The numerical study of these models
has been very successful, and has led to several testable predictions regarding calcium dynamics.
The complex functional forms of these models, however, prohibit further analysis, even in the
most simplified two-state model. It is thus desirable to find simplified models which exhibit the
same behavior without retaining the functional forms necessary for a physiological model of the
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of the c, h plane in the region of the saddle point and saddle focus. SP — saddle point. SF —
saddle focus.
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receptor. Following the approach of the FitzHugh-Nagumo simplification of the Hodgkin-Huxley
equations, we constructed a heuristic simplification of the two-state model. We constructed quali-
tative approximations of the nullclines in the two-state model, and use these as the basis of both
an oscillating model, and a traveling wave model.

Note that although we employed the approach of FitzHugh-Nagumo, the simplified model is not
simply another variant of the widely studied FitzHugh-Nagumo system, but is an excitable system
of a different type. Although we have not done a rigorous study, it appears that the behaviour of
our simplified model is qualitatively similar to the behaviour of earlier models of calcium waves
and oscillations, such as the model of Atri et al. (1993) or the model of Goldbeter et al., (1990).
For instance, the bifurcation diagram shown in Fig. 4 is qualitatively identical to the bifurcation
diagram of the Atri model (Keener and Sneyd, 1998, Fig. 5.14), with a fold in the steady-state
curve resulting in a homoclinic bifurcation close to the lower Hopf bifurcation. Furthermore,
the bifurcation structure of the traveling wave equations of our model is very similar to that of
the model of Goldbeter et al., (1990), with traveling waves appearing as a curve of homoclinic
bifurcations lying to the left of the curve of Hopf bifurcations. However, the bifurcation structure
of traveling waves in the Goldbeter model has not been studied to the level of detail given here,
and so it is not currently possible to determine exactly how similar the bifurcation structures are.

It is already well-known that the Goldbeter model is an excitable system of an unusual type
(Sneyd et al., 1993; Sneyd and Atri, 1993); for instance, traveling waves in that model do not
obey the usual curvature-dependence of those in excitable systems of FitzHugh-Nagumo type.
The model of Atri et al. also appears to behave differently from FitzHugh-Nagumo-type excitable
systems, although there has been considerably less analysis done on that model. The simplified
model presented here appears to incorporate, at least in a qualitative sense, the behaviour of both
the Atri and the Goldbeter models, and thus we believe that a detailed analysis of this model will
aid in a better understanding, not just of this model, but of the behaviour of a range of models of
calcium wave propagation. However, this yet remains an open question.

It is interesting to note that there is not complete agreement about whether or not calcium dy-
namics in living cells really have properties that differ from the behaviour of generalised FitzHugh-
Nagumo models. For instance, the models from Keizer’s group (see, for instance, De Young
and Keizer, 1992, and its simplifications) are usually of FitzHugh-Nagumo type, while the ones
discussed above are not. The major difference is the assumptions made about the role of the
concentration of calcium in the endoplasmic reticulum in terminating calcium release through the
IP3 receptor. In models where release is terminated entirely by receptor inactivation, the calcium
dynamics seem to have some unusual properties, while other models, in which calcium release is
terminated (at least in part) by a decrease in the endoplasmic reticulum calcium concentration,
seem to behave similarly to the FitzHugh-Nagumo model. It is thus highly likely that both kinds
of dynamic behaviour occur in cells, and that there is a continuum of behaviours between the two
extremes.

Our approach was successful in reproducing all of the behaviors of the two-state model. The
spatially homogeneous model exhibited the expected bifurcation behavior, with two homoclinic
bifurcations and two Hopf bifurcations framing two branches of periodic orbits. In the traveling
wave model, we successfully reproduced the looped curve of Hopf bifurcations and three branches of
homoclinic bifurcations. Branch A, the stable branch of homoclinic orbits which, in the two-state
model, corresponds to physiologically significant waves, has an increasing slope in the s, p phase
plane. This means that an increased IP3 concentration corresponds to an increased wave speed,
an observed physiological characteristic of IP3-mediated calcium waves. Two of these branches,
A and B, intersect in a T-point. Near the heteroclinic connection of the T-point, the homoclinic
orbits on branch A takes on an oscillating tail in addition to its primary wave. The amplitude of
this oscillating tail may increase beyond the threshold of wave initiation, spawning new traveling
waves. These secondary waves could then initiate tertiary waves, and so on. This behavior has
been studied in detail in Sneyd et al. (2000) and is the underlying cause of an interesting kind of
traveling wave instability, caused by the presence of the T-point.
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