668 research outputs found

    Hybrid Honey Bees Mating Optimization Algorithm for Identifying the Near-Optimal Solution in Web Service Composition

    Get PDF
    This paper addresses the problem of optimality in semantic Web service composition by proposing a hybrid nature-inspired method for selecting the optimal or near-optimal solution in semantic Web Service Composition. The method hybridizes the Honey-Bees Mating Optimization algorithm with components inspired from genetic algorithms, reinforcement learning, and tabu search. To prove the necessity of hybridization, we have analyzed comparatively the experimental results provided by our hybrid selection algorithm versus the ones obtained with the classical Honey Bees Mating Optimization algorithm and with the genetic-inspired algorithm of Canfora et al

    A Survey on Natural Inspired Computing (NIC): Algorithms and Challenges

    Get PDF
    Nature employs interactive images to incorporate end users2019; awareness and implication aptitude form inspirations into statistical/algorithmic information investigation procedures. Nature-inspired Computing (NIC) is an energetic research exploration field that has appliances in various areas, like as optimization, computational intelligence, evolutionary computation, multi-objective optimization, data mining, resource management, robotics, transportation and vehicle routing. The promising playing field of NIC focal point on managing substantial, assorted and self-motivated dimensions of information all the way through the incorporation of individual opinion by means of inspiration as well as communication methods in the study practices. In addition, it is the permutation of correlated study parts together with Bio-inspired computing, Artificial Intelligence and Machine learning that revolves efficient diagnostics interested in a competent pasture of study. This article intend at given that a summary of Nature-inspired Computing, its capacity and concepts and particulars the most significant scientific study algorithms in the field

    Honey Bees Inspired Optimization Method: The Bees Algorithm

    Get PDF
    Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem

    Using HBMO Algorithm to Optimal Sizing & Sitting of Distributed Generation in Power System

    Full text link
    This paper analyzes of HBMO placement method efficiency in comparison with PSO and GA in order to sizing and sitting of distributed generation in distribution power system. These algorithms for optimization in this paper is tested on IEEE 33 bus reconfigured test system. The proposed objective function considers active power losses and the voltage profile in nominal load of system. In order to use of optimization algorithms, at first, placement problem is written as an optimization problem which includes the objective function and constraints, and then to achieve the most desirable results, Optimization methods is applied to solve the problem. High performance of the proposed algorithm in mention system is verified by simulations in MATLAB software and in order to illustrate of feasibility of proposed method will accomplish

    Using HBMO Algorithm to Optimal Sizing & Sitting of Distributed Generation in Power System

    Get PDF
    oai:ojs.portalgaruda.org:article/179This paper analyzes of HBMO placement method efficiency in comparison with PSO and GA in order to sizing and sitting of distributed generation in distribution power system. These algorithms for optimization in this paper is tested on IEEE 33 bus reconfigured test system. The proposed objective function considers active power losses and the voltage profile in nominal load of system. In order to use of optimization algorithms, at first, placement problem is written as an optimization problem which includes the objective function and constraints, and then to achieve the most desirable results, Optimization methods is applied to solve the problem. High performance of the proposed algorithm in mention system is verified by simulations in MATLAB software and in order to illustrate of feasibility of proposed method will accomplish

    Review of Metaheuristics and Generalized Evolutionary Walk Algorithm

    Full text link
    Metaheuristic algorithms are often nature-inspired, and they are becoming very powerful in solving global optimization problems. More than a dozen of major metaheuristic algorithms have been developed over the last three decades, and there exist even more variants and hybrid of metaheuristics. This paper intends to provide an overview of nature-inspired metaheuristic algorithms, from a brief history to their applications. We try to analyze the main components of these algorithms and how and why they works. Then, we intend to provide a unified view of metaheuristics by proposing a generalized evolutionary walk algorithm (GEWA). Finally, we discuss some of the important open questions.Comment: 14 page

    Improvement of voltage profile for large scale power system using soft computing approach

    Get PDF
    In modern power system operation and planning, reactive power is an important part of power system operation to supply electrical load such as an electric motor. However, the reactive current that flows from the generator to load demand can cause voltage drop and active power loss. Hence, it is essential to install a compensating device such as a shunt capacitor close to the load bus to reduce the total power loss of the transmission line and improve the voltage stability of the system. This paper presents the application of a genetic algorithm (GA), particle swarm optimization (PSO), and artificial bee colony (ABC)) to obtain the optimal size of the shunt capacitor where those capacitors are located on the critical bus. To examine the efficacy of the proposed algorithm, Java-Madura-Bali (JAMALI) 500kV power system grid is used as the test system. From the simulation results, the use of PSO and ABC algorithms to obtain the sizing of the capacitor’s capacity can reduce the power loss of around 15.873 MW. Moreover, a different result is showed by the GA approach where the power loss in the JAMALI 500kV power grid can be compressed only up to 15.54 MW or 11.38% from the power system operation without a shunt capacitor. The three soft computing techniques could also maintain the voltage profile within 1.05 p.u and 0.95 p.u

    Determination of optimal tool path in drilling operation using Modified Shuffled Frog Leaping Algorithm

    Get PDF
    Applications like boilerplates, food-industry processing separator, printed circuit boards, drum and trammel screens, etc. consists of a matrix of a large number of holes. The primary issue involved in hole-making operations is a tool travel time. It is often necessary to find the optimal sequence of operations so that the total processing cost of hole-making operations can be minimized. In this work, therefore an attempt is made to reduce the total tool travel of hole-making operations by applying a relatively new optimization algorithm known as modified shuffled frog leaping for determining the optimal sequence of operations. Modification is made in the existing shuffled frog-leaping algorithm by introducing three parameters with their positive values to widen the search capability of existing algorithms. A case study of the printed circuit board is considered in this work to demonstrate the proposed approach. Obtained results of optimization using modified shuffled frog leaping algorithm are compared with those obtained using particle swarm optimization, firefly algorithm and shortest path search algorithm
    • …
    corecore