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Abstract. Process planning and scheduling are important stages in manufacturing, and good strategies can significantly im-
prove the energy performance of manufacturing to achieve sustainability. In this paper, an innovative optimization approach 
has been developed to facilitate sustainable process planning and scheduling. In the approach, honey-bee mating and annealing 
processes are simulated to optimize multi-objectives including energy consumption, makespan and the balanced machine utili-
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those from a genetic algorithm, a honey bee mating optimization algorithm, ant colony optimization and a simulated annealing 
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1.  Introduction 

With the rapidly growing production demands, 
manufacturing has become one of the largest energy 
consuming sectors [50]. Statistics has shown that the 
greenhouse gas emitted from the usage of energy 
sources such as electricity, coal, oil and gas during 
manufacturing accounts for more than 37% even 
50% of the world’s total greenhouse gas emissions 
[38]. In order to balance the multi-faceted dimen-
sions of economic growth and environmental protec-
tion, a series of regulations and guidelines, such as 
the European standard EN 16001:2010 [10], life-
cycle carbon labeling outlined by the life-cycle as-
sessment frameworks of the ISO 14040: 2006 and 
ISO 14044: 2006 [19, 20], and the Publicly Available 
Specification 2050: 2008 (PAS 2050) [47], have been 
developing. For manufacturing companies, based on 
the regulations and guidelines, energy efficiency can 
be improved and the greenhouse gas emission level 
can be minimized so as to embrace “Competitive 
Sustainable Development” and shoulder “Extended 
Producer Responsibilities (EPR)” [24] effectively. 
Meanwhile, energy saving is also increasingly vital 

for customers in choosing products. For instance, a 
survey indicated that 67% of UK consumers are more 
likely to buy a product with a lower life-cycle energy 
consumption and 44% would switch to such a green-
er product even if the brand/model is not their first 
choice [54]. Therefore, these economic, environmen-
tal and competitive factors are motivating manufac-
turing companies to take measures to minimize their 
energy consumption and achieve sustainable manu-
facturing. 

A large number of studies [49] have indicated that 
careful process planning and scheduling for manufac-
turing systems will realize great energy savings. That 
is, process planning and scheduling are critical func-
tions not only to minimize cost, improve adaptability, 
responsiveness and robustness but also to enhance 
the sustainability of manufacturing processes. There-
fore, effective process planning and scheduling is 
imperative to achieve sustainable manufacturing.  

In order to realize sustainable manufacturing by 
optimizing process planning and scheduling, a multi-
objective optimization problem of minimizing overall 
energy consumption, makespan and machine utiliza-
tion in a job shop is considered in this paper. An in-



novative optimization approach for sustainable pro-
cess planning and scheduling is presented. In this 
approach, a 5-phase energy consumption model and 
an effective hybrid honey-bee mating optimization 
and simulated annealing (HBMO-SA) algorithm are 
developed to optimize the overall energy consump-
tion in process planning and scheduling.  

This research is a comprehensively extended ver-
sion from a previous work of authors [31], and sig-
nificant improvements are reflected from the follow-
ing aspects. First, a detailed literature survey is given. 
Second, a model of integrated process planning and 
scheduling for dynamic manufacturing is presented 
in detail. Finally, the developed HBMO-SA approach 
is benchmarked with other classic heuristic algo-
rithms to demonstrate its merits and effectiveness. 

The remainder of this paper is organized as fol-
lows. In Section 2 related work is reviewed. In Sec-
tion 3, process planning and scheduling are first rep-
resented and then its energy consumption model is 
presented. Then, the HBMO-SA approach is present-
ed in Section 4. In Section 5, case studies and com-
parisons with other heuristic algorithms are given. 
Finally, a conclusion is drawn in Section 6. 

2.  Related works 

In recent years, both sustainable manufacturing 
and process planning and scheduling have attracted 
many researchers’ attention. This section presents a 
review of the related work from the viewpoint of 
sustainable manufacturing and heuristic algorithms 
applied to sustainable manufacturing applications. 

2.1. Sustainable manufacturing 

The research works focusing on sustainable manu-
facturing can be viewed from four different perspec-
tives, i.e., machining process, machine design, eco-
product development and manufacturing system. 

(1) Machining process 

Most of the research works were dedicated to 
quantifying the energy consumed in machining. 
Some research works focus on developing machine 
specific models of unit process energy consumption. 
In the existing models, the most representative one 
was developed by Gutowski et al [13]. The specific 
energy consumption (SEC) of machining processes 
was modeled as a function of the process rate by ana-
lyzing the unit process energy for the processes in an 
exergy framework [13]. However, in the model, the 

specifications for the fixed power P0 and the constant 
k were not given. Taking up the missing specification 
in the model of Gutowski et al., researchers devel-
oped some improved energy consumption models 
such as the unit process energy consumption model 
created by Li and Kara [25], the SEC model provided 
by Diaz et al [8] and the energy consumption model 
for milling processes developed by Li et al [28].  

Different from the research works on modeling 
unit process energy consumption, some other re-
search works concentrated on modeling the total en-
ergy consumption in machining. For instance, Diaz et 
al. modeled the total energy consumption in machin-
ing as a function of average power and the processing 
time [8]. However, the impact of machine tools, 
work-piece materials and cutting variables were ne-
glected. Mori et al. presented an energy consumption 
model which involved the energy consumption of 
several processes: positioning and acceleration the 
spindle, returning the spindle to the tool change posi-
tion after machining and stopping the spindle [36]. 
He et al. divided the total energy consumption of 
Numerical Control (NC) machining into five parts, 
i.e. the energy consumption of spindle, axis feed, tool 
change system, coolant pump, and the fixed energy 
consumption. Each part can be estimated by the cor-
responding power characteristics and the parameters 
extracted from the NC codes [14]. However, this 
model can only be used to help NC code designers 
make decisions regarding energy-efficient NC pro-
grams because it is based on the NC programming 
but ignores some other energy factors consumed by 
chillers, swarf conveyors and lubrication of machines 
etc. Aiming at predicting direct electrical energy re-
quirements in machining tool-paths, Balogun and 
Mativenga divided the energy states of machine tools 
into three categories: basic, ready and cutting states, 
where the energy is demanded to activate required 
machine components, making the axis and tool to be 
ready for action and remove work-piece material 
respectively [4]. However, this model is limited be-
cause the energy consumed by the machine axis has 
not been taken into account. Duflou et al. [9] studied 
the energy efficiency on the machining factory level.  
However, the energy consumption of preparation 
phase in scheduling is neglected. 

(2) Machine design 

The research works focus on developing and de-
signing more energy-efficient machines and equip-
ment. The most representative work is the standard 
on energy saving for machine tools drafted by the 



International Standard Organization (i.e. 
ISO/WD14955-1) [21]. Two informative annexes 
related to environmentally relevant improvements 
and well tried mechanical and electrical components 
are listed in the standard. 

(3) Eco-product development 

The related works concentrate on modeling and 
reducing the embodied product energy (EPE) during 
manufacturing to support energy efficient manufac-
turing. A modeling framework was introduced by 
Seow et al. to represent the total energy required to 
manufacture a unit product [44]. Another model was 
built by Kara et al. to assess the impact of global 
manufacturing on the EPE [26]. 

(4) Manufacturing system  

The energy efficiency of a manufacturing system 
is improved mainly by two methods. One is simula-
tion based method which improves the energy effi-
ciency by simulating electricity consumption and the 
process chain [16].  The other is optimization based 
method which improves the energy efficiency by 
optimizing the single machine scheduling [37] and 
the flow shop scheduling [5].  

From the literature survey, it can be observed that 
energy consumption and sustainability are related to 
the different stages of product development and 
manufacturing life-cycle. Hence, as an important 
sector of manufacturing, process planning and sched-
uling is of great importance for energy saving. 

2.2. Algorithms for process planning and scheduling  

In the past decade, a number of research works ap-
peared to develop heuristic algorithms [46]. Among 
these algorithms, GA is the most popular one [2, 3, 
15, 22, 32, 55]. It was used to generate the feasible 
sequences of operations and identify the optimal tool 
sequence in process planning for machining (e.g., 
milling). It is proved that GA has a good global 
search capability [6, 23, 33, 35, 40, 42, 43]. However, 
the algorithm is liable to be trapped in a local opti-
mum. SA is another algorithm widely used in process 
planning and scheduling. It was applied to search the 
optimal solution in process planning and scheduling 
[29]. SA can identify a good solution quickly but 
may fluctuate around the local optima due to the lack 
of the memory mechanism. Additionally, several 
swarm intelligence algorithms such as ACO [12], 
particle swarm optimization (PSO) [17, 18, 45, 48, 
52, 53] and HBMO [51], were applied to process 

planning and scheduling. Compared with the other 
most known heuristic algorithms such as GA, SA and 
ACO, HBMO has a better performance in computa-
tional effectiveness and stability.  

HBMO is a swarm intelligence algorithm which 
was developed by modeling the mating behavior of 
honey bee swarm. It is known that the intelligent 
behaviors of bees include mating, foraging, dance, 
nest site selection and so on. Hence, different intelli-
gence algorithms can be obtained by modeling dif-
ferent behaviors of honey bee swarm. For instance, 
the artificial bee colony (ABC) algorithm [41] was 
developed by simulating foraging behavior of honey 
bees. Different from these algorithms, HBMO is in-
spired by the mating behavior of honey bees.  

After HBMO was first presented by Abbass [1] to 
address the propositional satisfiability problems, the 
algorithm was applied to various domains. Koudil et 
al. [27] applied HBMO to solve partitioning and 
scheduling problems in code design. Curkovic and 
Jerbic [7] used HBMO to address the non-linear dio-
phantine equation benchmark problem. Haddad et al. 
applied HBMO to optimize reservoir operation and 
distribution systems. Amiri and Fathian [11] im-
proved HBMO to solve a real-world problem of an 
Internet bookstore market segmentation, and then, 
applied the algorithm in clustering. Marinakis et al. 
[34] used a hybrid algorithm combining HBMO and 
Greedy randomized adaptive search procedure to 
solve the vehicle routing problem. Niknam et al. [39] 
presented an improved HBMO for multi-objective 
placement of renewable energy resources. Wen et al. 
[51] first applied HBMO to address process planning 
problem and obtained a good process plan with min-
imal global machining cost in reasonable time.  

Although HBMO can be used to solve optimiza-
tion problems and good solutions can be obtained 
quickly, it often converges to local optima. Therefore, 
an improved HBMO method is required to overcome 
this shortcoming. 

3. Sustainable Process Planning and Scheduling 
Approach 

3.1. Representations for process planning and 
scheduling  

Process planning and scheduling, which bridges 
Computer Aided Design (CAD) and Manufacturing 
Execution Systems (MES), is a critical function to 
minimize cost, improve adaptability, responsiveness, 



robustness and sustainability of manufacturing pro-
cesses.  

The major considerations in process planning in-
clude: (1) generating machining operations based on 
the features of a part to meet desired functional speci-
fications and achieve good manufacturability, (2) 
identifying machining resources applicable to the 
operations, and (3) determining the set-up plan and 
operation sequence according to some criteria such as 
makespan, energy efficiency and so on. Therefore, a 
process plan for a part can be represented by a series 
of machining operations, applicable resources for the 
operations, set-up plans, operation sequence, etc. A 
set-up can be generally defined as a group of opera-
tions that are manufactured on a single machine with 
the same fixture.  

Based on the generated process plans of parts, the 
scheduling task is to assign the parts and their ma-
chining operations to specific machines to be execut-
ed in different time slots, targeting at a good shop 
floor performance, such as the shortest makespan, the 
most balanced machine utilization, the least total tar-
diness, etc. A Gantt chart has been popularly used to 
represent a schedule of a group of parts, illustrated in 
Fig. 1. In the Gantt chart, the order in which the parts 
and their operations are carried out is laid out and the                  
dependencies of the tasks are managed. The X axis of 
the Gantt chart represents time. Each row in the Y 
axis represents a machine and the specific arrange-
ment for the operations of the parts on the machine. A 
machine is comprised of a number of time slots, 
which can be further classified into idle time slots, 
preparation time slots for machining operations (fur-
ther including the set-up time, the machine change 
time, or the tool change time), and machining time 
slots of operations. 

As a consequence of the above, a part can be 
manufactured by different process plans. A group of 
alternative process plans can be generated using two 
strategies: processing flexibility and operation se-
quencing flexibility. Processing flexibility refers to 
the possibility of performing an operation on alterna-
tive machines with alternative set-ups or tools. Opera-
tion sequencing flexibility corresponds to the possi-
bility of interchanging the sequence in which the op-
erations are performed. For a group of parts, alterna-
tive schedules can be created based on scheduling 
flexibility, which relates to the possibility of arrang-
ing different schedules to manufacture the parts and 
the operations. 

3.2. Energy consumption modeling for process 
planning and scheduling 

It has been known that there are a group of ma-
chines in the machining resources. Following the pro-
cess planning and scheduling solution, one or more 
operations will be executed on the same machine. For 
a machine, its power profile is illustrated in Fig. 2, 
which consists of startup phases, idle phases, prepara-
tory phases, working phases, and shutdown phases. 

Hence, the energy consumption of a machine can 
be separated into the corresponding five segments. 

The energy consumption during the startup phase 
can be computed as: 

_1( ). ( )i

i

T

i startup iT
E M startup P M dt= ∫  
where E(Mi).startup represents the energy con-

sumed during the startup phase, Pstartup(Mi) represents 
the power demand of the i-th machine during the 
startup phase, Ti and Ti_1 stand for the start and end 
time of the startup phase. 

 

 
Fig. 1. A Gantt chart for scheduling parts and machining operations.
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Fig. 2. Different phases of energy consumption for a machine. 

The energy consumption during the idle phase can 
be formulated as: 

( ). ( ) ( ) (2)i idle i idle iE M idle P M T M= ×
where E(Mi).idle stands for the energy consumption of 
the idle phase, Pidle(Mi) is the power demand of the i-
th machine during the idle phase, which is the sum of 
the power demand of all the components in the ma-
chine and usually a constant value. Tidle(Mi) stands for 
the total idle time of the i-th machine and can be rep-
resented as: 

, 1
1

( ) (3)
n

idle i j j
j

T M T +
=

=∑
where n stands for the number of the operations to be 
executed on the i-th machine, Tj,j+1 stands for the idle 
time between the j-th and (j+1)-th operations to be 
executed on the i-th machine. Tj,j+1 can be obtained by 
the following pseudo codes.  

If   Tj.end< Tj+1.start   then    
// The j-th operation ends before the (j+1)-th 
// operation and the machine will be idle. 

, 1 1. .j j j jT T start T end+ += −  
Else    // There is no waiting. 

, 1j jT + =0 
Endif 

Here, Tj.end and Tj+1.start stand for the j-th opera-
tion’s end time and (j+1)-th operation’s start time 
respectively. Let O be the operation in the process 
plan, which shares the same part with the (j+1)-th 
operation and is followed by the (j+1)-th operation. 
Tj+1.start does not equal to O’s end time because O 
and the (j+1)-th operation may be executed on differ-
ent machines or tools. That is, the time consumed by 
changing machines should be considered. Thus, 
Tj+1.start can be represented as: 

1. . (4)j O machinechange toolchangeT start T end T T+ = + +

where To.end and Tmachinechange and Ttoolchange stand for 
O’s end time and the time needed for changing ma-
chines and tools respectively. 

The preparatory phase mainly consists of two activ-
ities: machine change and tool change. The energy 
consumption of the preparatory phase is just the ener-
gy consumed during these activities, which can be 
computed as: 

where E(Mi).preparation represents the energy con-
sumed during the preparatory phase, n stands for the 
number of the operations to be executed on the i-th 
machine, Ti_2 and Ti_3 stand for the start and end time 
to prepare the j-th operation, Ppreparation is the power 
needed during the preparation for the j-th operation, 
which can be the sum of Pidle and the machine change 
power or the tool change power. 

The energy consumption during the working phase 
can be represented as: 

where E(Mi).working stands for the energy consump-
tion of the working phase, n stands for the number of 
the operations to be executed on the i-th machine, 
Ej(Mi).working stands for the energy consumption of 
the j-th operation to be executed on the i-th machine. 
Ej(Mi).working can be computed as: 

( ). (7)j i jE M working V SEC= ×

where Vj is the volume of the material removed by the 
j-th operation, SEC is the energy consumed by remov-
ing 1 cm3 material. SEC can be computed by using the 
following formulation [25]. 

_ 3

_ 21
( ). ( ) (5)i

i

n T

i preparation iT
j

E M preparation P M dt
=

=∑∫

1
( ). ( ). (6)

n

i j i
j

E M working E M working
=

=∑



where the coefficient C0 is related to the work-piece 
material, tool geometry and spindle drive characteris-
tics; C1 depends on how the machine tool is designed 
including its motor and transmission system; MRR 
stands for material removal rate for the working phase, 
which is influenced mainly by four types of factors, 
i.e., tool conditions, work-piece material, cutting pa-
rameters and cutting environment. For C0 and C1, 
multiple machines’ corresponding coefficients were 
provided by Kara and Li [25]. MRR can be obtained 
using the cutting volume and time.    

The energy consumed during the shutdown phase 
can be computed as: 

_ 5

_ 4

(9)( ). ( )i

i

T

i shutdown iT
E M shutdown P M dt= ∫

where E(Mi).shutdown represents the energy con-
sumption of the shutdown phase, Ti_4 and Ti_5 stand 
for the start and end time for switching off the i-th 
machine respectively, Pshutdown(Mi) stands for the pow-
er consumption of the i-th machine during the shut-
down phase.  

Based on the energy consumption of the above 
phases, the total energy consumption of a machine can 
be represented below: 

( ) ( ). ( ). ( ).
( ). ( ). (10)

i i i i

i i

E M E M startup E M idle E M preparation
E M working E M shutdown

= + + +
+

where E(Mi) stands for the total energy consumption 
of the i-th machine.  

Therefore, if there are m machines to be used in the 
process planning and scheduling, the overall energy 
consumed by all the machines to machine all the parts 
is: 

1
( ) (11)

m

Group i
i

E E M
=

=∑
 

3.3. Process planning and scheduling criteria 

The energy consumption for a process planning and 
scheduling, as an essential criterion, has been defined 
above. Some other criteria based on time to evaluate 
the performances of process plans and schedules are 
defined in the following, which consists of the 
makespan and the balanced level of the machine utili-
zation. In order to present the criteria, two assump-
tions are made. One is the number of machine (m). 
The other is the number of operations (n) to be exe-
cuted on the machine.  

Makespan means the maximum interval time spent 
to machine all the parts. It can be defined in the fol-
lowing: 

1
( ( )) (12)

m

ii
Makespan Max T M

=
=  

where T(Mi) is the total utilization time of the i-th 
machine, which is composed of multiple startup, idle, 
preparation and working phases. That is, T(Mi) can be 
represented as: 

( ) ( ). ( ).
( ). ( ). (13)

i i i

i i

T M T M startup T M preparation
T M idle T M working
= + +

+
where T(Mi).startup, T(Mi).preparation, T(Mi).idle, 
and T(Mi).working stand for the time of the corre-
sponding phases. Let Oij be the j-th operation to be 
executed on the i-th machine. 

1
( ). ( . . _ ) (14)

n

i ij ij
j

T M startup O Startup O Startup Index
=

= ×∑
where Oij.Startup represents whether the i-th machine 
is started up, Oij.Startup_Index is the time index for 
each start up. 

0
.

1
(15)ij

if the i th machine has been started up
O Startup

if not
−

= 


1
( ). ( . _ . _ ) (16)

n

i ij ij
j

T M preparation O MC T O TC T
=

= +∑
where Oij.MC_T and Oij.TC_T represent the time for 
machine change and tool change respectively. 

T(Mi).idle can be computed by using Eq. 3. 
T(Mi).working is just the time used to execute all the 
operations on the i-th machine. Thus, it can be com-
puted as: 

1
( ). ( . _ ) (17)

n

i ij
j

T M working O Working T
=

=∑
where Oij.Working_T represents the time used by the 
i-th machine to execute the j-th operation. 

The standard deviation concept is introduced here 
to evaluate the balanced machine utilization. 

1
( )

(18)

m

i
i

T M

m
χ ==

∑

    2

1
_ ( ( ) ) (19)

m

i
i

Utilization level T M χ
=

= −∑  

Based on the above functions, the weighted addi-
tive utility function is used to solve multi-objective 
optimization problem. The total weighted perfor-
mance criteria (TWPC) can be described as: 

1 2 3 _level (20)GroupTWPC w E w Makespan w Utilisation= + +

where w1, w2 and w3 are the weights. The value of 
each weight is between 0 and 1, and the sum of them 
equals to one.  

1
0 (8)CSEC C

MRR
= +



4. Hybrid HBMO-SA algorithm 

4.1.  Overview 

HBMO is a recently developed evolutionary algo-
rithm. It is inspired by the process of real honey-bee 
mating and has been applied in some combinatorial 
optimization problems such as the traveling salesman 
problem, vehicle routing problem and the process 
planning problem. Furthermore, all the results have 
shown that better local optimum solutions can be 
found quickly using HBMO. However, it has also 
been observed that HBMO is liable to converge to 
local optima. Fortunately, SA can be used to compen-
sate for this shortcoming because it can accept some 
probability. Consequently, in this paper, the strengths 
of HBMO and SA are combined to achieve the global 
optimization effectively.  

The proposed HBMO-SA consists of two phases: 
HBMO-phase and SA-phase. In the HBMO-phase, the 
honey-bee mating process is simulated to generate a 
population. Good chromosomes in the population are 
then selected as the initial current process plans and 
schedules for the SA to search the optimal or near-
optimal process plans and schedule. The flowchart of 
the proposed hybrid HBMO-SA is shown in Fig. 3.  

In the hybrid HBMO-SA, the encoding scheme for 
each individual consists of four parts: operation se-
quencing, machine sequencing, tool sequencing and 
tool approaching direction (TAD) sequencing. In the 
operation sequencing, each position corresponds to an 
operation number. That is, the i-th element of the op-
eration sequence represents the operation that will be 
executed. The second part is machine sequencing 
where the i-th position corresponds to the machine 
number used by the i-th operation. The third part is 
tool sequencing that is just the tool number used by 
the corresponding operation. The fourth part is TAD 
sequencing used by the operations. 

In addition, the reciprocal of the objective function 
is chosen as the fitness function (cf. equation 21) to 
follow the rule that the individual with a greater fit-
ness has a higher chance to be chosen. The fitness 
function for a solution is as follows: 

1 (21)Fitness
TWPC

=

 

4.2. Honey-bee mating algorithm: Phase 1 

The HBMO algorithm has been developed by simu-
lating the honey-bee mating process. In the mating 

process, the queen flies far from the nest. During the 
mating flight, the strong drones catch up with the 
queen and mate with her. After the queen’s sperma-
theca is full of sperms, she will fly back to the nest 
and lay eggs. Each time the queen lays eggs, she ran-
domly retrieves a sperm from her spermatheca to ferti-
lize the eggs and a set of broods are generated. Then, 
the works will take care of and improve the broods 
(e.g. feeding them with royal jelly). If a brood is better 
than the queen, it will be the new queen and starts its 
mating flight. The final queen obtained after all the 
mating flights is just the optimization result. 

As a consequence of the above, the HBMO algo-
rithm should contain a number of different procedures 
which correspond to the different phases of the honey-
bee mating process. The HBMO algorithm can be 
described as follows: 

Step 1: Initialization consists of the following steps:  
Step 1.1: The parameters of HBMO, including  

size of queen’s spermatheca, number of 
drones, workers, number of mating flights, 
the queen’s flight speed at the t-th mating 
Speed(t) and its drop coefficient α, are initial-
ized respectively.  

Step 1.2: The population of the honey bees  
(i.e., initial solutions) is created to configure 
the initial hive. In the proposed algorithm, 
the initial population, where each individual 
is composed of the operation sequence, and 
the selected machine, tool and TAD, is gen-
erated using a GA. Then, the reciprocal of 
the objective function is used as the fitness 
function and the fitness values of all mem-
bers are calculated by Eq. 21. According to 
the fitness values, the queen (i.e. the best 
schedule in the initial population) with the 
maximum fitness value is selected. All the 
other members of the population are used as 
drones.  

It should be pointed out that the GA used to gener-
ate the initial population is the basic version of GA. It 
consists of three operators: selection, crossover and 
mutation. The roulette-wheel selection is used as the 
selection operator to choose individuals for crossover 
and mutation. The two-point crossover is implement-
ed to crossover the first parts of two chromosomes. A 
specified probability is then used in the mutation op-
erator to judge whether the mutation will be executed. 
If the probability is greater than a random number, the 
machine, tool and TAD used by the corresponding 
operation will mutate. 



Step 2: Drones are selected to mate with the queen. 
A drone mates probabilistically by using an annealing 
function as follows: 

( ) (22)
f

Speed te r
− ∆

>
where △f is the difference between the fitness of the 
drone and queen, which can be evaluated by using the 
Eq. 21, r is between 0 and 1 and randomly generated, 
Speed(t) is the queen’s flight speed at the t-th mating , 
the queen’s flight speed decays with the mating ac-
cording to the following equation: 

( 1) ( ) (23)Speed t Speed tα+ = ×
where α is between 0 and 1.   

Based on this probabilistic rule in Eq. 22, the strong 
drones with the great fitness value are selected and 
their sperms are stored in the queen’s spermatheca. 
This selection procedure will not stop until the 
queen’s spermatheca is full. 

Step 3: A brood is generated by crossovering the 
queen’s genotype with the sperm selected from the 
queen’s spermatheca. The crossover operator includes 
the following steps: 

Step 3.1: A crossover position P is chosen ran- 
domly. The queen and the selected sperm are 
separated into left and right parts from the 
crossover point. 

Step 3.2: Both the right part of the queen and the 
left part of the selected sperm are copied to 
generate a brood. 

Step 3.3: The brood is checked to find out those  
genes that are redundant or lost. 

Step 3.4: The redundant genes in the brood are  
replaced with the lost ones. The machines, 
tools and TADs are adjusted according to the 
operations. The new brood is obtained. 

Step 4: For each brood, a worker (i.e. a local 
search heuristics) is chosen randomly to improve it. If 
the improved brood (i.e., the new solution) has a 
greater fitness than that of the current queen, it will 
replace the queen. All the other broods will take part 
in the next mating flight as drones. The improvement 
is achieved by three operators: mutation, adjacent 
swapping and shift.  

• The mutation operator is achieved mainly by 
two steps. First, an operation in the current so-
lution is selected randomly. Then, the corre-
sponding machine and tool are renewed from 
the candidate lists. 

• The adjacent swapping is realized by ex-
changing two adjacent operations in the cur-
rent solution. Meanwhile, the corresponding 
machines, tools and TADs are exchanged.  

Create the initial honey bee population and select the 
best one as the queen

Select strong drones from the current population and 
save their sperms in the queen’s spermatheca until its 

spermatheca is full

Generate a new brood by crossovering the queen’s 
genotype and the sperms stored in its spermatheca

Improve the brood and select the individual which is 
better than the queen to replace it

The maximum number 
of mating flight                  N

       Y

Select the queen generated by HBMO as the initial 
solution S0 for SA

Determine the start and end temperatures Tstart and Tend 
and let Tstart be T

Generate a new schedule S’, ∆=PC(S’)-PC(S)

∆≤0 || e-abs(∆)/T>rand

       Y

S=S’
          N

T=α×T

T≤Tend
             N

          Y

HBMO

SA

The best solution
 

Fig. 3. Flowchart of the hybrid HBMO-SA algorithm. 

• The shift operator is done by removing an op-
eration from its present position to insert it at 
another position. The machine, tool and TAD 
used by the operation will also be removed to 
the corresponding positions. 

Based on the above operators, four workers are 
generated. The first three workers correspond to muta-
tion, adjacent swapping and shift respectively. The 
fourth worker simultaneously employs two operators: 
mutation and adjacent swapping. 



Step 5: If the number of mating flight is still not 
more than the maximum which has been defined in 
step1.1, a new mating flight will begin. That is, Steps 
2-4 will be repeated until the number of mating flight 
reaches the largest number. 

4.3. Simulated annealing: Phase 2 

In the second phase of the hybrid HBMO-SA ap-
proach, the SA algorithm is used to jump out of local 
optima and achieve a better localized search. Its pro-
cesses are described as follows. 

Step 1: The individual with the maximum fitness 
value is first selected from the populations generated 
by HBMO. The selected individual is used as the ini-
tial current schedule S0 for the SA. 

Step 2: The start and end temperatures Tstart and Tend 
are determined. Tstart is taken as the current tempera-
ture T. 

Step 3: A new temporary schedule S’ is generated 
by using two types of mutation strategies which are 
listed as follows: 

• Two operations in the current schedule S are 
chosen randomly and exchanged. The ma-
chines, tools and TADs used by the operations 
are exchanged too. 

• An operation in S is selected. Then, the ma-
chine, tool and TADs used by the selected op-
eration are changed by referring the candidate 
list. 

Step 4: One of the performance criterion functions 
defined above is used to compute the difference be-
tween the performance criteria of S’ and S. Let PC 
represent a performance criterion.  

( ') ( )PC S PC S∆ = −  

If 
( )

0 ||
abs

Te rand
− ∆

∆ ≤ >  // 0 1rand< <  
'S S=  

End 
T Tα= ×           // 0 1α< <  
Step 5: Steps 3-4 will be repeated until  T<=Tend. 

5. Case studies and discussions 

In this section, three groups of parts from practical 
manufacturing are presented to validate the effective-
ness and feasibility of the proposed approach. In the 
case studies, the machines tested by Kara and Li were 
used as the machining resources [25]. The experi-
ments were performed on the Windows 7 operating 
system with Intel Dual-core CPU at 2.10 GHz and 

3.00GB of main memory. The simulation was carried 
out by using the Matlab programming language.  

In order to select the appropriate parameters, a 
number of different alternative values of the proposed 
algorithm’s parameters were tested. The selected pa-
rameters of HBMO are: size of queen’s spermatheca 
equals to 60, number of drones equals to 100, number 
of mating flights equals to 400, the initial speed(t) and 
α in equation (23) are 1000 and 0.85 respectively. For 
the SA, the selected parameters are: the start and end 
temperatures Tstart and Tend equal to 1000 and 3.5116e-
025 respectively, and α equals to 0.9.  

It should be pointed out that some assumptions [29, 
30] that are commonly used in most of the previous 
research works regarding scheduling were still taken 
for this study. The assumptions include: 
• Parts are independent, and part preemption is not 

allowed; 
• The sequence of the operations of each part 

complies with manufacturing constraints; 
• All parts, machines and tools are available at 

time zero simultaneously; 
• Each operation is performed on a single machine, 

and each machine can only execute an operation 
at a time; 

• Machines are continuously available for produc-
tion; 

• If a machine or a tool is broken down, or a new 
part is inserted, the algorithm can re-start and 
generate new process plans and a schedule due to 
the efficient optimization performance of the al-
gorithm; 

• The time for a set-up is identical and independ-
ent of specific operations. The time for a ma-
chine change or a tool change follows the same 
assumption. 

5.1. Case study 1 

The first case consists of three parts which are 
shown in Fig. 4. This group of parts has 38 machining 
features.  

For the parts, various experiments were conducted 
for three different conditions.  
• 1PC Makespan=     

where PC1 represents the first performance crite-
rion (to achieve the minimum makespan). 

• 
2 _PC Energy Consumption=  

where PC2 represents the second performance cri-
terion (to achieve the minimum energy consump-
tion).  



• The third performance criterion is used to opti-
mize energy consumption and the balanced utili-
zation simultaneously, and thus consists of both 
of them. It can be represented as: 

3 1

3

_
_

PC w Energy Consumption
w Utilization Level

= × +
×

 

where PC3 stands for the third performance criterion, 
and w1 and w3 stand for the weights of the two criteria. 
Both w1 and w3  are set 0.5 in the experiments to take 
the energy consumption and utilization into account 
simultaneously. 

The proposed HBMO-SA was conducted 15 times 
under different conditions respectively to verify its 
performance. The average convergence curves of 
HBMO-SA under different conditions are illustrated 
in Fig. 5, 6 and 7 respectively. It can be observed that 
the HBMO drops fast in the first phase of the pro-
posed algorithm and converges to an intermediate 
solution. Based on this intermediate solution, a further 
optimization is obtained by the SA in the second 
phase.  

To explore the relation between energy consump-
tion and the other two performance criteria, i.e., ener-
gy consumption vs makespan and energy consumption 
vs balanced utilization of machines, were obtained 
under Condition 2 respectively. As shown in Fig. 8(a), 
they follow the similar trends since the numbers of 
machine changes and tool changes and the reduced 
idle time under Condition 2 contribute to both energy 
consumption and makespan. However, it is not the 
linear relation since the energy consumption is also 
affected by other factors such as power, material re-
moval rate, etc. In Fig 8(b), the energy consumption 
and the balanced utilization of machines were ob-
tained under Condition 2. Energy saving can be 
achieved through the intensive utilization of energy 
efficient machines. It is conflicted with the criterion 
for the balanced utilization of machines. Therefore, 
the targets for the lower energy consumption and the 

more balanced utilization of machines are in contra-
diction, which is clearly reflected in Fig 8(b).  

The algorithm was further compared with four 
popular evolutionary algorithms: HBMO, SA, ACO 
and GA. In GA, the operators including selection, 
crossover and mutation are used to improve the popu-
lations gradually [32]. The number of generations 
equals to 1000, the crossover and mutation rates equal 
to 0.8 and 0.6 respectively. SA’s parameters mainly 
include the start and end temperatures and factor α 
[29]. Tstart and Tend equal to 1000 and 1.7479e-043 
respectively, and α equals to 0.9.  An ACO algorithm 
was modelled based on the behavior of ant seeking a 
path between their colony and a source of food [12]. 
Its parameters include the number of ants n, evapora-
tion factor ρ, and weight parameters α and β. n equals 
to 100. ρ equals to 0.1. α and β are 1 and 2 respective-
ly. For HBMO, the number of mating flights is 1000, 
and other parameters are the same as the correspond-
ing ones used by the hybrid HBMO-SA. Fig.9 shows 
the comparisons among the proposed algorithm, 
HBMO, SA, ACO and GA under condition 2. All the 
algorithms were executed for 15 times. The results 
obtained by the proposed algorithm were better than 
those obtained by other algorithms. In addition, the 
CPU time consumed by the proposed algorithm and 
HBMO were 126s and 287s respectively. The pro-
posed algorithm showed a better performance in effi-
ciency since the inner loop in the SA adopted in its 
second phase iterates only 1 times to obtain a better 
efficiency than the HBMO under the fore-mentioned 
parameters. In addition, the comparisons among 
HBMO-SA, HBMO, SA, GA and ACO under Condi-
tion 1 are displayed in Table 1. From the results of 
Table 1, HBMO-SA got smaller makespan in mean, 
maximum and minimum. The comparison studies in 
this case showed that HBMO-SA exceeds HBMO, SA, 
GA and ACO in effectiveness and stability. 

 

 

                     
 

Fig 4. The first group of parts. 

Part1-1: Part1-2: Part1-3: 



 

 
 

Fig. 5. Convergence curve for Case 1under makespan.         Fig. 6. Convergence curve for Case 1 under energy consumption.             

 
 

 
Fig. 7. Convergence curve for Case 1 under energy consumption and utilization level. 

 
(a) Energy consumption vs Makespan 

       
(b) Energy consumption vs Balanced utilization of machines 

Fig. 8. The comparison of two criteria for Case 1 under the same condition. 
 



 

Fig. 9. The comparisons of the five algorithms for Case 1 under energy consumption. 

Table 1 

 Comparison studies of five algorithms for case study1 under makespan 

 HBMO-SA HBMO SA GA ACO 
Mean 1945.1 2172.7 2147.7 2442.8 2928.5 

Maximum 2002.4 2392.8 2317.4 2554.5 3128.2 
Minimum 1893.6 1985.1 1980.1 2278.8 2743.7 

 

5.2. Case study 2 

The second case study employed another three 
parts (c.f. Fig. 10) to further validate the proposed 
approach. The parts have 48 machining features.   

The above three conditions in Condition 1 were 
taken into ac-count again. All the algorithms were 
conducted for 15 times under these conditions. The 
optimization results are shown in Fig. 11 and 12. 
The trend was similar to that in Case study 1. As 
illustrated in Fig. 13, the similar trend between en-
ergy consumption and makespan, energy consump-
tion and the balanced utilization of machines were 
verified again. In addition, through further trials on 

other groups of parts, the algorithm was verified to 
have the stable performance and good optimization 
results.  

The comparisons among the proposed algorithm, 
HBMO, SA, ACO and GA under condition 
makespan are shown in Fig. 14. From the results, it 
can be observed that HBMO converged to a good 
solution more quickly than other algorithms. The 
local optima can be avoided by SA. The hybrid 
HBMO and SA adopted in the approach of this pa-
per combined the advantages of HBMO and SA, and 
thus can achieve better optimized results.  

                                
Fig 10. The second group of parts. 

 
 

Part2-1:                                                        Part2-2:                                       Part2-3: 
   
 



              
Fig. 11. Convergence curve for Case 2 under makespan.                  Fig. 12. Convergence curve for Case 2 under energy consumption. 

 

    
 (a) Energy consumption vs Makespan 

  
                                             (b) Energy consumption vs Balanced utilization of machines 

Fig 13. The comparison of two criteria for Case 2 under the same condition. 

 

Fig 14. The comparisons of the five algorisms for Case 2 under makespan. 

5.3. Case study 3 

The third case study utilized the parts shown in 
Fig. 15. This group of parts consists of 48 machin-
ing features.  

The proposed algorithm was executed for 15 
times under the above three conditions defined in 
Case study 1 to verify its performance of the parts. 
The optimization results are shown in Fig. 16 to 19. 

It can be observed that the results for this group of 
parts followed the similar trends for the parts in the 
above two groups. It was verified again that the pre-
sented algorithm had the stable performance and 
good optimization results. The comparison results 
shown in Fig. 20 also demonstrated that HBMO-SA 
had a good performance in solving process planning 
and scheduling problem.  

 



 

                                    

Fig 15. The third group of parts. 
 

        
Fig. 16. Convergence curve for Case 3 under makespan. Fig. 17. Convergence curve for Case 3 under energy consumption. 

 

Fig 18. The comparisons of the five algorisms for energy consumption. 

 
(a) Energy consumption vs Makespan 

Part3-1:                                        Part3-2:                                           Part3-3:                                     Part3-4: 
   
 



 
(b) Energy consumption vs Balanced utilization of machines 

Fig 19. The comparison of two criteria for Case 3 under the same condition. 
 

 
Fig 20. The comparisons of the five algorisms for Case 3 under energy consumption. 

 

6. Conclusions 

Sustainable process planning and scheduling are 
critical to reduce its energy consumption and achieve 
sustainable development of machining processes. In 
this paper, sustainable process planning and schedul-
ing are explored and presented in a hybrid optimiza-
tion approach. In summary, the contributions of the 
presented approach are from the following aspects: 
• Systematic models and strategies for dynamic 

process planning and scheduling in terms of en-
ergy consumption and other important perfor-
mance criteria are established. On the basis of the 
models and strategies, the energy consumption of 
machining processes is effectively considered to 
achieve sustainability. 

• Compared with some other optimization algo-
rithms, the developed HBMO-SA approach can 
achieve better optimized results. Various cases 
are used to verify and demonstrate the effective-
ness of the approach. The experimental bench-
marking demonstrates that the approach is prom-
ising and outperforms GA, HBMO and SA. The 

approach can be further used to solve other com-
plex combinatorial optimization problems. 

Future research is intended to be focused on two as-
pects. The energy consumption model will be applied 
in more complex environments involving machine 
breakdown and existing jobs cancellation. A further 
test and discussion about hybridization will be done to 
verify the performance of the presented algorithm. 
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