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1. Introduction  

Swarm optimization, swarm intelligence and swarm robotics are the fields considering a 
group of relatively simple individuals able cooperate to perform complex tasks, in 
decentralized manner. The inspiration is found in the first line within animal societies, such 
as birds, ants and bees. Social insects exhibit successful behavior in performing complex 
tasks on the level of the group, and are able to eliminate noise, errors, failure of swarm 
members. These swarms are robust, able to adapt to constant environmental changes in 
conditions of limited communications among members and lack of global data. In the 
context of swarm optimization, the example of Dorigo’s “Ant Colony Optimization “ (ACO) 
and Kennedy ad Eberhart  “Particle swarm Optimization” (PSO) are most known examples 
of applying swarm-based concepts to development of optimization algorithms able to cope 
with hard optimization problems. These algorithms are justifiably called swarm algorithms, 
because they are run asynchronously and in decentralized manner (Benni, 2004). They also 
mimic the stigmergic (communication by dynamically changing environment) behavior of 
swarm of insects. 
PSO is inspired by flocking behavior of the birds searching for food. Although PSO shares 
many common attributes with the field of Genetic Algorithms (GA), such as stochastic 
nature, population of solution candidates, PSO methods, unlike GA use a kind of 
cooperation between the particles to drive the search process. PSO methods have no 
evolutionary operators like crossover and mutation. Each particle keeps track of its own best 
solution, and the best solution found so far by the swarm. It means that the particles posses 
own and collective memory, and are able to communicate. The difference between the 
global best and personal best is used to direct particles in the search space. 
ACO employs the search process that is inspired by the collective behavior of trail deposit 
and follow-up, which is observed within real ant colonies. A colony of simple agents, the 
ants, communicates indirectly via dynamic modifications of their environment (trails of 
pheromones) and thus proposes solution to a problem, based their collective experience. 
Honey Bees Mating Algorithm (HBMA) can also be observed as a typical swarm based 
approach to optimization. The algorithm is inspired by behavior of eusocial insects, which 
are characterized by three main features: cooperation among adults in brood care and nest 
construction, overlapping of at least two generations, and reproductive division of labour, 
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respectively. In a recent work, Abbas proposed an optimization algorithm based on honey-
bees mating process (Abbas, 2001; Abbas, 2002).  
The path planning problem of a mobile robot is to find a safe and efficient path for the robot, 
given a start location, a goal location and a set of obstacles distributed in a workspace 
(Latombe, 1991.). The robot can go from the start location to the goal location without 
colliding with any obstacle along the path. In addition to the fundamental problem, we also 
try to find a way to optimize the plan, i.e. to minimize the time required or distance 
travelled (Du et al., 2005; Sadati and Taheri,2002; Ramakrishnan and Zein-Sabatto, 2002). 
The popular methods are the visibility graph algorithm and the artificial potential field 
algorithm. However, the former lacks flexibility and the latter is prone to suffer from 
difficulties with local minima (Alexopoulos and Griffin, 1992; Chen and Liu, 1997). Neural 
network and genetic algorithm have been shown to be very efficient in robot navigation 
(Zarate et al., 2002). General path planning methods based on neural network always 
establish the neural network model for a robot from the start position to the goal position 
and entail much computational time. The input data of the model are the previous distance 
values and position or direction from the sensors. The output data are the next position or 
direction by self-learning process. 
 Genetic algorithm is multisearch algorithm based on the principles of natural genetics and 
natural selection (Goldberg, 1989). Genetic algorithm provides a robust search in complex 
spaces and is usually computationally less expensive than other search algorithms. Genetic 
algorithm searches the solution from a population of points and is less likely to be trapped 
in a local optimum. Many results in the literature show the good application of genetic 
algorithm in robot path planning (Khoogar and Parker, 1991; Ram et al., 1994).  
In this chapter, concept of swarm intelligence, as an optimization technique is proposed for 
finding collision free paths in work space containing differently shaped and distributed 
obstacles. Thus, the problem of path planning is considered as an optimization problem, 
whereat collision free paths receive higher fitness values relative to those resulting in 
collision with an obstacle. Performance of HBMA algorithm is compared to the performance 
of a GA developed for the same purpose on two examples, Diophantine equation problem 
and path planning problem. 
Organization of the chapter is as follows: in section 2 we briefly describe colony of Honey 
Bees, as they are in nature. Section 3 describes proposed abstraction and simplification and 
describes core elements of the algorithm. In section 4 and 5 HBMA is compared with GA for 
the first test case, Diophantine equation, and the performances of both algorithms in terms 
of completeness of the solution and speed of the convergence are discussed. In sections 5 
and 6 both algorithms are applied to the second test case, path planning. We conclude with 
section 7 by finally comparing both algorithms and proposing further possibilities of 
improving and testing of the described algorithms. 

 
2. Structure of a Honey-Bee Colony 

A honey-bee colony typically consists of a single egg laying queen, usually from zero to 
several thousands drones and 10000 to 60000 workers. Drones are the fathers of the colony. 
They are haploid and act to amplify their mother’s genome without alteration of their 
genetic composition except through mutation. Workers specialize in brood care and 
sometimes lay eggs. Broods arise from either fertilized or unfertilized eggs, whereby the 

 

former represent potential queens or workers, and the latter represent prospective drones. 
The mating process occurs during mating-flights far from the nest. A mating flight starts 
with the dance where the drones follow the queen and mate with her in the air. In a typical 
mating-flight, each queen mates with seven to twenty drones. In each mating, sperm reaches 
the sprematheca and accumulates there to form the genetic pool of the colony. Each time a 
queen lays fertilized eggs, she retrieves at random a mixture of the sperms accumulated in 
the spermatheca to fertilize the egg. 

 
3. Artificial Model 

The main processes of the algorithm are: mating flight of the queen with the drones, creation 
of new broods by the queen, improvement of the broods by workers, adaptation of workers 
fitness, replacement of the queen with the fitter brood. The mating flight may be considered 
as a set of transitions in a state-space (the environment) where the queen moves between the 
different states in some speed and mates with the drone encountered at each state 
probabilistically, according to (1). 
At the start of the flight, the queen is initialized with some energy content, typically this is a 
random value from range (0,1]  and returns to her nest when energy content equals to zero 
or when her spermatheca is full. In developing the algorithm, the functionality of workers is 
restricted to brood care, and therefore, each worker may be represented as a different 
heuristic which acts to improve a set of broods. 
A drone mates with a queen probabilistically according to annealing function: 
 

 
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f
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Where prob(Q,D) represents the probability of successful mating, i.e. the probability of 
adding drone’s D sperm to queen’s Q spermatheca. Δ(f) is the absolute difference between 
the fitness of the drone and the queen, and S(t) is the speed of the queen at time t. 
According to defined annealing function, the probability of mating is high when either the 
queen is the start of her flight, and therefore, her speed is high, or when the fitness of the 
new potential drone is similar to the queen’s fitness. The main steps of the algorithm are 
presented in Fig. 1. 
After each transition in space, the queen’s speed S(t) and energy E(t) decay using the 
following equations: 
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Where α is a factor in range [0.5, 1] and γ is calculated according to expression: 
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And M is the size of sphermatheca. 
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Fig. 1. Flowchart of HBMA algorithm 

 
4. Algorithm Application to Diophantine Equation 

In order to perform initial test of the algorithm, we apply the HBMA to a benchmark 
Diophantine problem. Diophantine equation is an algebraic function (Bull et al., 2006) which 
must be solved over the integers ix  . Diophantine problems have a long pedigree in 
number theory. They also constitute some of the hardest problems in modern mathematics. 

 

Behavior and results of HBMA and GA applied to the Diophantine nonlinear equation, i.e. 
Markoff equation: 
 

 2 2 2 3x y z xyz    (5) 

 
which has important applications in number theory and known solutions. This example is 
chosen because it is known how to generate all the solutions in a cube of given size. In the 
first test case, the problem is reduced to a 2D space by fixing z=433, to have a unique 
solution, and finding integers that satisfy: 
 

 2 2 2433 1299 0x y xy     (6) 

 
with the search space highly complex in size, as presented with Fig.2. 
 

 
Fig. 2. Search space for the reduced Diophantine problem 

 
5. Results for Diophantine Equation  

HBMA and GA were applied to find solutions of the described problem by searching for 
values in the range  0, 400 . Both algorithms were successful finding solutions for the 
problem, resulting with monotonous shape of the fitness functions, as presented with Fig. 3. 
and Fig. 4.  
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The fitness function equals the value defined with eq. (6) and is normalized to the range 
 0,1 . In other words, pairs of numbers which yield lower values of fitness function have 
higher chances of survival, ideally approaching zero value for solution and termination 
criteria satisfaction. 

 
Fig. 3. Fitness value for the HBMA for Diophantine equation 
 

 
Fig. 4. Fitness value for the GA for Diophantine equation 
 
It is important to notice that performance of the HBMA depend on the depth of stochastic 
search. In this example, only two workers i.e. different heuristics were included; namely, 
random walk (RW) and two point crossover (2PCO).  That means that in each generation of 
the main loop, a number of local iterations (heuristics) take place for improvement of the 
brood. In our examples, depth of the local searches is set to 100 iterations.  

 

HBMA has implicitly included elitist function, because the queen is always represented by 
the best chromosome found so far over all previous generations. 
For the GA, 10% elitism is included, meaning that 10% of best chromosomes are directly 
copied to the new generation, resulting with keeping of best genetic material through the 
whole evolutionary search. Results and behavior of HBMA and GA are presented with 
Fig.3. and Fig.4. Fitness values are normalized, and it is possible to directly compare fitness 
values. In the case of HBMA, the search starts from initial value 0.45, what is likely to be the 
consequence of the first worker applied to initial queen’s chromosome. 
 

 No. of runs No. of solutions 
found 

Average No 
of generations G  

GA 30 28 340 44.6 
HBMA 30 30 22.9 4.6 

Table 1. GA vs. HBMA performance comparison 
 
Both algorithms were tested for 30 runs, with results presented in the Table 1. It could be 
summarized that HBMA outperforms GA in terms of the completeness of the solution. In 
terms of speed of the convergence, one should bear in mind that HBMA has inner loop with 
different heuristics. In each generation, there are number of iterations, defined by the depth 
of stochastic search, taking place. 
Parameters of the GA are: crossover probability: 0.7, mutation probability: 0.01, population 
size: 30, survival selection: generational, initialization: random, termination condition: 
solution found or no fitness improvement over the last 50 generations. 
Parameters of the HBMA are: sphermatheca size: M=12, stochastic search depth: 100, 
number of broods: 30, queens energy E and speed S randomly initialized on range  0.5,1 , 

energy reduction step 
 0.5 E t

M



 , heuristics included: random walk and two point 

crossover. Termination conditions are: solution found or no queens fitness improvement 
over last 50 generations. 

 
6. Path Planning Results 

HBMA algorithm is implemented to solve the problem of navigation of the mobile robot 
through the space containing arbitrarily distributed obstacles. The environment presentation 
is based on occupancy grid representation. Occupancy grids represent the world as a two-
dimensional array, with each cell having particular value of 1 (if occupied) or 0 (free cell). In 
our study, obstacles are presented with pairs of nodes connected by mathematically defined 
lines. This is a more compact way of presenting obstacles which will be shown as very 
useful for determining collisions with the KBA. It is possible to create different obstacles as 
lines, or polygons, both convex or concave easily using this compact representation. To be 
able to treat the mobile robot a point in the environment, a minimum safety distance is 
added on the nodes producing a safety shadow around the actual obstacles. 
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0 21 3 4 5 6 7 8 9
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21 22 23 24 25 26 27 28 2920

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99

Start

Goal

 
Fig. 5. Environment presented in form of occupancy grid. Numbers denote different nodes. 
Bold lines: obstacles; solid lines: feasible path; dashed line: unfeasible path. 
 
One possible mobile robot environment is presented in Fig. 2. Obstacles are defined as lines 
connecting corresponding nodes e.g. nodes 21 and 23 are occupied and connected with the 
first line, making the intermediate node 22 also occupied. Nodes 55 and 47 are connected 
with the second line etc. Lines can create different shapes, making nodes falling into the 
polygons, “unavailable” for the robot. In case of vertical lines, which cannot be defined as 
mathematical functions since mapping x→y is not uniform, a threshold value is defined 
such that threshold → 0 and added on the x value of second boundary node of the line. In 
such manner, line is slightly rotated around the first node, without real impact on the 
obstacle position and mathematical consistence is preserved. 

 
6.1 Objective Function 
Impact of the objective or fitness function has a crucial role on the overall performance of the 
evolutionary-based algorithms. The main concept in evolutionary robotics has so far been 
the definition of an effective fitness function (Mermigikis & Petrou, 2006). The authors 
propose some kind of methodology and state that in order to achieve evolution of useful 
behaviours, the corresponding fitness function must have the simplest possible form 
(implicit), it must be possible to be calculated by means of the robot itself (intrinsic) and 
includes elements of the behaviour itself rather than functional details of how this can be 
achieved. Proper form and tuning of the parameters can significantly increase speed of the 
convergence and reduce the possibility of trapping in local optima. In evolutionary-based 
algorithms, objective function has the role of selection of individuals competing to be 
selected for the breeding pool and to transfer their genetic material to the new population 
through the offspring. In the problem being in focus here, the objective function has to 
reward those individuals (paths) that result in minimal number of collisions with obstacles 
and travel minimal distance from the start to goal position at the same time. Fitness function 
is presented by eq. 7: 
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(7) 

 
Where  w1 and w2 are weight constants, 1 2 0w w   ,  ia  is number of collisions of current 
trajectory with obstacles; jd   is total Euclidean distance travelled from origin to 
destination point for current trajectory composed of n components; A is a constant and 

0A   . 
Fitness function penalizes trajectories resulting with more collisions and larger total distance 
travelled. To check collisions of the trajectory i and obstacle k, two cases can occur.  Case 1: a 
going-through node falls onto the obstacle. This situation is easy to detect and to handle. 
Case 2: a part of the trajectory between two consecutive going-through nodes intersects 
obstacle. This case is handled by solving linear systems of equations for each line segment of 
the trajectory and for each obstacle as a result of following system of presented with Eq. 8. 
 

 1 X A B  (8) 
Matrices A  and B   contain coefficients derived from lines that describe obstacles and line 
segments of current path. Matrix X  contains solution of linear system and contains point of 
intersection of obstacle and linear segment of the trajectory. If intersection point of any line 
segment S and any obstacle O lies on that particular line segment, then trajectory τ intersects 
obstacle O. Otherwise obstacle O doesn’t intersect trajectory τ. 
Formally: 
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Values of weight factors are environment dependent and determined experimentally in this 
study, although parameterization of environment with regards on number and distribution 
of the obstacles is considered for future work. This parameterization will include number of 
obstacles, distribution (spread or clustered) and position of obstacles in environment (along 
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Fig. 5. Environment presented in form of occupancy grid. Numbers denote different nodes. 
Bold lines: obstacles; solid lines: feasible path; dashed line: unfeasible path. 
 
One possible mobile robot environment is presented in Fig. 2. Obstacles are defined as lines 
connecting corresponding nodes e.g. nodes 21 and 23 are occupied and connected with the 
first line, making the intermediate node 22 also occupied. Nodes 55 and 47 are connected 
with the second line etc. Lines can create different shapes, making nodes falling into the 
polygons, “unavailable” for the robot. In case of vertical lines, which cannot be defined as 
mathematical functions since mapping x→y is not uniform, a threshold value is defined 
such that threshold → 0 and added on the x value of second boundary node of the line. In 
such manner, line is slightly rotated around the first node, without real impact on the 
obstacle position and mathematical consistence is preserved. 

 
6.1 Objective Function 
Impact of the objective or fitness function has a crucial role on the overall performance of the 
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the definition of an effective fitness function (Mermigikis & Petrou, 2006). The authors 
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achieved. Proper form and tuning of the parameters can significantly increase speed of the 
convergence and reduce the possibility of trapping in local optima. In evolutionary-based 
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selected for the breeding pool and to transfer their genetic material to the new population 
through the offspring. In the problem being in focus here, the objective function has to 
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Where  w1 and w2 are weight constants, 1 2 0w w   ,  ia  is number of collisions of current 
trajectory with obstacles; jd   is total Euclidean distance travelled from origin to 
destination point for current trajectory composed of n components; A is a constant and 

0A   . 
Fitness function penalizes trajectories resulting with more collisions and larger total distance 
travelled. To check collisions of the trajectory i and obstacle k, two cases can occur.  Case 1: a 
going-through node falls onto the obstacle. This situation is easy to detect and to handle. 
Case 2: a part of the trajectory between two consecutive going-through nodes intersects 
obstacle. This case is handled by solving linear systems of equations for each line segment of 
the trajectory and for each obstacle as a result of following system of presented with Eq. 8. 
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obstacle O. Otherwise obstacle O doesn’t intersect trajectory τ. 
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Values of weight factors are environment dependent and determined experimentally in this 
study, although parameterization of environment with regards on number and distribution 
of the obstacles is considered for future work. This parameterization will include number of 
obstacles, distribution (spread or clustered) and position of obstacles in environment (along 
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the path connecting initial and goal position, or in corner away of main pathways). Through 
parameterization, correlation of form of objective function, neural architecture and 
presented environment could be revealed and thus efficiency of the algorithm further 
increased. 

 
6.1 Simulation Results 
Different environmental setups were used for the experiments. Performance of both 
algorithms significantly depends on the distribution of the obstacles, namely, whether 
obstacles are cluttered, concentrated, in the vicinity of the goal position etc. The most 
difficult environmental setup is when obstacles are cluttered around the proximity of the 
goal position. 
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Fig. 6. Environment with obstacles, dashed, unfeasible path, red and feasible path in green 
colour 
 
One possible environment setup is presented with Fig. 6.  Four obstacles are present in the 
environment with given initial and destination position. For the environment presented 
with Fig.6., comparison of HBMA and GA is conducted. Results are presented in the Table 2. 
 

 No. of runs No. of solutions 
found 

Average No 
of generations G  

GA 500 478 3120 430 
HBMA 500 493 430 58 

Table 2. GA vs. HBMA performance comparison for path planning problem. 
 
For simplicity, 10 x 10 grid is applied to the environments. Parameters of the GA are: 
Population size = 50, crossover probability: 0.8, adaptive mutation rate: start with 0.1, 

 

increment 0.1 if no fitness improvement over 50 consecutive steps. Selection is roulette-
wheel generational, with the best member of previous generation replacing the worst 
member of current population. Maximum length of chromosomes (degrees of freedom of 
trajectory) =15. 
Both algorithms are able to find solutions for the presented environment with relatively 
high confidence. Again is the completeness (total number of the solutions found by the 
algorithm) slightly on the side of the HBMA. At the same time, number of iterations 
required is lesser for the HBMA, but CPU time is larger, because of the presence of the 
internal loop for the brood improvement. 
Parameters of the HBMA were the same as in the Diophantine equation example. Regarding 
the problem of appropriate parameter selection, it is known to be difficult to tune 
parameters for optimal algorithm behavior, for both algorithms. Parameters were 
experimentally chosen.. 

 
7. Conclusions 

HBMA algorithm was developed and compared with performance of the GA algorithm for 
two test cases. The firs test case was a benchmark Diophantine equation problem. It is 
shown that HBMA is comparable to the performance of well known GA in terms of CPU 
time, with the time slightly on the side of the GA.  In terms of completeness of the solution, 
HBMA was able to find all solutions for the given problem, whereas GA twice did not find 
the solution for given termination criteria. 
Similar behavior was observed for the second test case, namely collision free path planning 
for the mobile robot. However, it is not easy to conclude that HBMA outperforms GA in any 
way, since both algorithms are stochastic and dependant on the proper selection of 
parameters. Although both algorithms and objective were designed to be as simple as 
possible, to enable fair comparison, additional experiments should be performed to achieve 
more reliable behavior and merits for the algorithms. 
HBMA could be further improved by adding additional workers (heuristics) and by 
monitoring success of different heuristics on different problems. GA could be improved by 
tailoring specific evolutionary operators for given problems. 
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