
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322389703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Comparison of Swarm Optimization and Genetic Algorithm for Mobile Robot Navigation 47

Comparison of Swarm Optimization and Genetic Algorithm for Mobile
Robot Navigation

Petar Ćurković, Bojan Jerbić and Tomislav Stipančić

X

Comparison of Swarm Optimization and Genetic
Algorithm for Mobile Robot Navigation

Petar Ćurković, Bojan Jerbić and Tomislav Stipančić

University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture
Croatia

1. Introduction

Swarm optimization, swarm intelligence and swarm robotics are the fields considering a
group of relatively simple individuals able cooperate to perform complex tasks, in
decentralized manner. The inspiration is found in the first line within animal societies, such
as birds, ants and bees. Social insects exhibit successful behavior in performing complex
tasks on the level of the group, and are able to eliminate noise, errors, failure of swarm
members. These swarms are robust, able to adapt to constant environmental changes in
conditions of limited communications among members and lack of global data. In the
context of swarm optimization, the example of Dorigo’s “Ant Colony Optimization “ (ACO)
and Kennedy ad Eberhart “Particle swarm Optimization” (PSO) are most known examples
of applying swarm-based concepts to development of optimization algorithms able to cope
with hard optimization problems. These algorithms are justifiably called swarm algorithms,
because they are run asynchronously and in decentralized manner (Benni, 2004). They also
mimic the stigmergic (communication by dynamically changing environment) behavior of
swarm of insects.
PSO is inspired by flocking behavior of the birds searching for food. Although PSO shares
many common attributes with the field of Genetic Algorithms (GA), such as stochastic
nature, population of solution candidates, PSO methods, unlike GA use a kind of
cooperation between the particles to drive the search process. PSO methods have no
evolutionary operators like crossover and mutation. Each particle keeps track of its own best
solution, and the best solution found so far by the swarm. It means that the particles posses
own and collective memory, and are able to communicate. The difference between the
global best and personal best is used to direct particles in the search space.
ACO employs the search process that is inspired by the collective behavior of trail deposit
and follow-up, which is observed within real ant colonies. A colony of simple agents, the
ants, communicates indirectly via dynamic modifications of their environment (trails of
pheromones) and thus proposes solution to a problem, based their collective experience.
Honey Bees Mating Algorithm (HBMA) can also be observed as a typical swarm based
approach to optimization. The algorithm is inspired by behavior of eusocial insects, which
are characterized by three main features: cooperation among adults in brood care and nest
construction, overlapping of at least two generations, and reproductive division of labour,

3

www.intechopen.com

Swarm Robotics, From Biology to Robotics48

respectively. In a recent work, Abbas proposed an optimization algorithm based on honey-
bees mating process (Abbas, 2001; Abbas, 2002).
The path planning problem of a mobile robot is to find a safe and efficient path for the robot,
given a start location, a goal location and a set of obstacles distributed in a workspace
(Latombe, 1991.). The robot can go from the start location to the goal location without
colliding with any obstacle along the path. In addition to the fundamental problem, we also
try to find a way to optimize the plan, i.e. to minimize the time required or distance
travelled (Du et al., 2005; Sadati and Taheri,2002; Ramakrishnan and Zein-Sabatto, 2002).
The popular methods are the visibility graph algorithm and the artificial potential field
algorithm. However, the former lacks flexibility and the latter is prone to suffer from
difficulties with local minima (Alexopoulos and Griffin, 1992; Chen and Liu, 1997). Neural
network and genetic algorithm have been shown to be very efficient in robot navigation
(Zarate et al., 2002). General path planning methods based on neural network always
establish the neural network model for a robot from the start position to the goal position
and entail much computational time. The input data of the model are the previous distance
values and position or direction from the sensors. The output data are the next position or
direction by self-learning process.
 Genetic algorithm is multisearch algorithm based on the principles of natural genetics and
natural selection (Goldberg, 1989). Genetic algorithm provides a robust search in complex
spaces and is usually computationally less expensive than other search algorithms. Genetic
algorithm searches the solution from a population of points and is less likely to be trapped
in a local optimum. Many results in the literature show the good application of genetic
algorithm in robot path planning (Khoogar and Parker, 1991; Ram et al., 1994).
In this chapter, concept of swarm intelligence, as an optimization technique is proposed for
finding collision free paths in work space containing differently shaped and distributed
obstacles. Thus, the problem of path planning is considered as an optimization problem,
whereat collision free paths receive higher fitness values relative to those resulting in
collision with an obstacle. Performance of HBMA algorithm is compared to the performance
of a GA developed for the same purpose on two examples, Diophantine equation problem
and path planning problem.
Organization of the chapter is as follows: in section 2 we briefly describe colony of Honey
Bees, as they are in nature. Section 3 describes proposed abstraction and simplification and
describes core elements of the algorithm. In section 4 and 5 HBMA is compared with GA for
the first test case, Diophantine equation, and the performances of both algorithms in terms
of completeness of the solution and speed of the convergence are discussed. In sections 5
and 6 both algorithms are applied to the second test case, path planning. We conclude with
section 7 by finally comparing both algorithms and proposing further possibilities of
improving and testing of the described algorithms.

2. Structure of a Honey-Bee Colony

A honey-bee colony typically consists of a single egg laying queen, usually from zero to
several thousands drones and 10000 to 60000 workers. Drones are the fathers of the colony.
They are haploid and act to amplify their mother’s genome without alteration of their
genetic composition except through mutation. Workers specialize in brood care and
sometimes lay eggs. Broods arise from either fertilized or unfertilized eggs, whereby the

former represent potential queens or workers, and the latter represent prospective drones.
The mating process occurs during mating-flights far from the nest. A mating flight starts
with the dance where the drones follow the queen and mate with her in the air. In a typical
mating-flight, each queen mates with seven to twenty drones. In each mating, sperm reaches
the sprematheca and accumulates there to form the genetic pool of the colony. Each time a
queen lays fertilized eggs, she retrieves at random a mixture of the sperms accumulated in
the spermatheca to fertilize the egg.

3. Artificial Model

The main processes of the algorithm are: mating flight of the queen with the drones, creation
of new broods by the queen, improvement of the broods by workers, adaptation of workers
fitness, replacement of the queen with the fitter brood. The mating flight may be considered
as a set of transitions in a state-space (the environment) where the queen moves between the
different states in some speed and mates with the drone encountered at each state
probabilistically, according to (1).
At the start of the flight, the queen is initialized with some energy content, typically this is a
random value from range (0,1] and returns to her nest when energy content equals to zero
or when her spermatheca is full. In developing the algorithm, the functionality of workers is
restricted to brood care, and therefore, each worker may be represented as a different
heuristic which acts to improve a set of broods.
A drone mates with a queen probabilistically according to annealing function:

 
 
 tS
f

eDQprob




, (1)

Where prob(Q,D) represents the probability of successful mating, i.e. the probability of
adding drone’s D sperm to queen’s Q spermatheca. Δ(f) is the absolute difference between
the fitness of the drone and the queen, and S(t) is the speed of the queen at time t.
According to defined annealing function, the probability of mating is high when either the
queen is the start of her flight, and therefore, her speed is high, or when the fitness of the
new potential drone is similar to the queen’s fitness. The main steps of the algorithm are
presented in Fig. 1.
After each transition in space, the queen’s speed S(t) and energy E(t) decay using the
following equations:

   tStS  1 (2)

     tEtE 1 (3)

Where α is a factor in range [0.5, 1] and γ is calculated according to expression:

   
M

tEt 


5.0 (4)

And M is the size of sphermatheca.

www.intechopen.com

Comparison of Swarm Optimization and Genetic Algorithm for Mobile Robot Navigation 49

respectively. In a recent work, Abbas proposed an optimization algorithm based on honey-
bees mating process (Abbas, 2001; Abbas, 2002).
The path planning problem of a mobile robot is to find a safe and efficient path for the robot,
given a start location, a goal location and a set of obstacles distributed in a workspace
(Latombe, 1991.). The robot can go from the start location to the goal location without
colliding with any obstacle along the path. In addition to the fundamental problem, we also
try to find a way to optimize the plan, i.e. to minimize the time required or distance
travelled (Du et al., 2005; Sadati and Taheri,2002; Ramakrishnan and Zein-Sabatto, 2002).
The popular methods are the visibility graph algorithm and the artificial potential field
algorithm. However, the former lacks flexibility and the latter is prone to suffer from
difficulties with local minima (Alexopoulos and Griffin, 1992; Chen and Liu, 1997). Neural
network and genetic algorithm have been shown to be very efficient in robot navigation
(Zarate et al., 2002). General path planning methods based on neural network always
establish the neural network model for a robot from the start position to the goal position
and entail much computational time. The input data of the model are the previous distance
values and position or direction from the sensors. The output data are the next position or
direction by self-learning process.
 Genetic algorithm is multisearch algorithm based on the principles of natural genetics and
natural selection (Goldberg, 1989). Genetic algorithm provides a robust search in complex
spaces and is usually computationally less expensive than other search algorithms. Genetic
algorithm searches the solution from a population of points and is less likely to be trapped
in a local optimum. Many results in the literature show the good application of genetic
algorithm in robot path planning (Khoogar and Parker, 1991; Ram et al., 1994).
In this chapter, concept of swarm intelligence, as an optimization technique is proposed for
finding collision free paths in work space containing differently shaped and distributed
obstacles. Thus, the problem of path planning is considered as an optimization problem,
whereat collision free paths receive higher fitness values relative to those resulting in
collision with an obstacle. Performance of HBMA algorithm is compared to the performance
of a GA developed for the same purpose on two examples, Diophantine equation problem
and path planning problem.
Organization of the chapter is as follows: in section 2 we briefly describe colony of Honey
Bees, as they are in nature. Section 3 describes proposed abstraction and simplification and
describes core elements of the algorithm. In section 4 and 5 HBMA is compared with GA for
the first test case, Diophantine equation, and the performances of both algorithms in terms
of completeness of the solution and speed of the convergence are discussed. In sections 5
and 6 both algorithms are applied to the second test case, path planning. We conclude with
section 7 by finally comparing both algorithms and proposing further possibilities of
improving and testing of the described algorithms.

2. Structure of a Honey-Bee Colony

A honey-bee colony typically consists of a single egg laying queen, usually from zero to
several thousands drones and 10000 to 60000 workers. Drones are the fathers of the colony.
They are haploid and act to amplify their mother’s genome without alteration of their
genetic composition except through mutation. Workers specialize in brood care and
sometimes lay eggs. Broods arise from either fertilized or unfertilized eggs, whereby the

former represent potential queens or workers, and the latter represent prospective drones.
The mating process occurs during mating-flights far from the nest. A mating flight starts
with the dance where the drones follow the queen and mate with her in the air. In a typical
mating-flight, each queen mates with seven to twenty drones. In each mating, sperm reaches
the sprematheca and accumulates there to form the genetic pool of the colony. Each time a
queen lays fertilized eggs, she retrieves at random a mixture of the sperms accumulated in
the spermatheca to fertilize the egg.

3. Artificial Model

The main processes of the algorithm are: mating flight of the queen with the drones, creation
of new broods by the queen, improvement of the broods by workers, adaptation of workers
fitness, replacement of the queen with the fitter brood. The mating flight may be considered
as a set of transitions in a state-space (the environment) where the queen moves between the
different states in some speed and mates with the drone encountered at each state
probabilistically, according to (1).
At the start of the flight, the queen is initialized with some energy content, typically this is a
random value from range (0,1] and returns to her nest when energy content equals to zero
or when her spermatheca is full. In developing the algorithm, the functionality of workers is
restricted to brood care, and therefore, each worker may be represented as a different
heuristic which acts to improve a set of broods.
A drone mates with a queen probabilistically according to annealing function:

 
 
 tS
f

eDQprob




, (1)

Where prob(Q,D) represents the probability of successful mating, i.e. the probability of
adding drone’s D sperm to queen’s Q spermatheca. Δ(f) is the absolute difference between
the fitness of the drone and the queen, and S(t) is the speed of the queen at time t.
According to defined annealing function, the probability of mating is high when either the
queen is the start of her flight, and therefore, her speed is high, or when the fitness of the
new potential drone is similar to the queen’s fitness. The main steps of the algorithm are
presented in Fig. 1.
After each transition in space, the queen’s speed S(t) and energy E(t) decay using the
following equations:

   tStS  1 (2)

     tEtE 1 (3)

Where α is a factor in range [0.5, 1] and γ is calculated according to expression:

   
M

tEt 


5.0 (4)

And M is the size of sphermatheca.

www.intechopen.com

Swarm Robotics, From Biology to Robotics50

Fig. 1. Flowchart of HBMA algorithm

4. Algorithm Application to Diophantine Equation

In order to perform initial test of the algorithm, we apply the HBMA to a benchmark
Diophantine problem. Diophantine equation is an algebraic function (Bull et al., 2006) which
must be solved over the integers ix  . Diophantine problems have a long pedigree in
number theory. They also constitute some of the hardest problems in modern mathematics.

Behavior and results of HBMA and GA applied to the Diophantine nonlinear equation, i.e.
Markoff equation:

 2 2 2 3x y z xyz   (5)

which has important applications in number theory and known solutions. This example is
chosen because it is known how to generate all the solutions in a cube of given size. In the
first test case, the problem is reduced to a 2D space by fixing z=433, to have a unique
solution, and finding integers that satisfy:

 2 2 2433 1299 0x y xy    (6)

with the search space highly complex in size, as presented with Fig.2.

Fig. 2. Search space for the reduced Diophantine problem

5. Results for Diophantine Equation

HBMA and GA were applied to find solutions of the described problem by searching for
values in the range  0, 400 . Both algorithms were successful finding solutions for the
problem, resulting with monotonous shape of the fitness functions, as presented with Fig. 3.
and Fig. 4.

www.intechopen.com

Comparison of Swarm Optimization and Genetic Algorithm for Mobile Robot Navigation 51

Fig. 1. Flowchart of HBMA algorithm

4. Algorithm Application to Diophantine Equation

In order to perform initial test of the algorithm, we apply the HBMA to a benchmark
Diophantine problem. Diophantine equation is an algebraic function (Bull et al., 2006) which
must be solved over the integers ix  . Diophantine problems have a long pedigree in
number theory. They also constitute some of the hardest problems in modern mathematics.

Behavior and results of HBMA and GA applied to the Diophantine nonlinear equation, i.e.
Markoff equation:

 2 2 2 3x y z xyz   (5)

which has important applications in number theory and known solutions. This example is
chosen because it is known how to generate all the solutions in a cube of given size. In the
first test case, the problem is reduced to a 2D space by fixing z=433, to have a unique
solution, and finding integers that satisfy:

 2 2 2433 1299 0x y xy    (6)

with the search space highly complex in size, as presented with Fig.2.

Fig. 2. Search space for the reduced Diophantine problem

5. Results for Diophantine Equation

HBMA and GA were applied to find solutions of the described problem by searching for
values in the range  0, 400 . Both algorithms were successful finding solutions for the
problem, resulting with monotonous shape of the fitness functions, as presented with Fig. 3.
and Fig. 4.

www.intechopen.com

Swarm Robotics, From Biology to Robotics52

The fitness function equals the value defined with eq. (6) and is normalized to the range
 0,1 . In other words, pairs of numbers which yield lower values of fitness function have
higher chances of survival, ideally approaching zero value for solution and termination
criteria satisfaction.

Fig. 3. Fitness value for the HBMA for Diophantine equation

Fig. 4. Fitness value for the GA for Diophantine equation

It is important to notice that performance of the HBMA depend on the depth of stochastic
search. In this example, only two workers i.e. different heuristics were included; namely,
random walk (RW) and two point crossover (2PCO). That means that in each generation of
the main loop, a number of local iterations (heuristics) take place for improvement of the
brood. In our examples, depth of the local searches is set to 100 iterations.

HBMA has implicitly included elitist function, because the queen is always represented by
the best chromosome found so far over all previous generations.
For the GA, 10% elitism is included, meaning that 10% of best chromosomes are directly
copied to the new generation, resulting with keeping of best genetic material through the
whole evolutionary search. Results and behavior of HBMA and GA are presented with
Fig.3. and Fig.4. Fitness values are normalized, and it is possible to directly compare fitness
values. In the case of HBMA, the search starts from initial value 0.45, what is likely to be the
consequence of the first worker applied to initial queen’s chromosome.

 No. of runs No. of solutions
found

Average No
of generations G

GA 30 28 340 44.6
HBMA 30 30 22.9 4.6

Table 1. GA vs. HBMA performance comparison

Both algorithms were tested for 30 runs, with results presented in the Table 1. It could be
summarized that HBMA outperforms GA in terms of the completeness of the solution. In
terms of speed of the convergence, one should bear in mind that HBMA has inner loop with
different heuristics. In each generation, there are number of iterations, defined by the depth
of stochastic search, taking place.
Parameters of the GA are: crossover probability: 0.7, mutation probability: 0.01, population
size: 30, survival selection: generational, initialization: random, termination condition:
solution found or no fitness improvement over the last 50 generations.
Parameters of the HBMA are: sphermatheca size: M=12, stochastic search depth: 100,
number of broods: 30, queens energy E and speed S randomly initialized on range  0.5,1 ,

energy reduction step
 0.5 E t

M



 , heuristics included: random walk and two point

crossover. Termination conditions are: solution found or no queens fitness improvement
over last 50 generations.

6. Path Planning Results

HBMA algorithm is implemented to solve the problem of navigation of the mobile robot
through the space containing arbitrarily distributed obstacles. The environment presentation
is based on occupancy grid representation. Occupancy grids represent the world as a two-
dimensional array, with each cell having particular value of 1 (if occupied) or 0 (free cell). In
our study, obstacles are presented with pairs of nodes connected by mathematically defined
lines. This is a more compact way of presenting obstacles which will be shown as very
useful for determining collisions with the KBA. It is possible to create different obstacles as
lines, or polygons, both convex or concave easily using this compact representation. To be
able to treat the mobile robot a point in the environment, a minimum safety distance is
added on the nodes producing a safety shadow around the actual obstacles.

www.intechopen.com

Comparison of Swarm Optimization and Genetic Algorithm for Mobile Robot Navigation 53

The fitness function equals the value defined with eq. (6) and is normalized to the range
 0,1 . In other words, pairs of numbers which yield lower values of fitness function have
higher chances of survival, ideally approaching zero value for solution and termination
criteria satisfaction.

Fig. 3. Fitness value for the HBMA for Diophantine equation

Fig. 4. Fitness value for the GA for Diophantine equation

It is important to notice that performance of the HBMA depend on the depth of stochastic
search. In this example, only two workers i.e. different heuristics were included; namely,
random walk (RW) and two point crossover (2PCO). That means that in each generation of
the main loop, a number of local iterations (heuristics) take place for improvement of the
brood. In our examples, depth of the local searches is set to 100 iterations.

HBMA has implicitly included elitist function, because the queen is always represented by
the best chromosome found so far over all previous generations.
For the GA, 10% elitism is included, meaning that 10% of best chromosomes are directly
copied to the new generation, resulting with keeping of best genetic material through the
whole evolutionary search. Results and behavior of HBMA and GA are presented with
Fig.3. and Fig.4. Fitness values are normalized, and it is possible to directly compare fitness
values. In the case of HBMA, the search starts from initial value 0.45, what is likely to be the
consequence of the first worker applied to initial queen’s chromosome.

 No. of runs No. of solutions
found

Average No
of generations G

GA 30 28 340 44.6
HBMA 30 30 22.9 4.6

Table 1. GA vs. HBMA performance comparison

Both algorithms were tested for 30 runs, with results presented in the Table 1. It could be
summarized that HBMA outperforms GA in terms of the completeness of the solution. In
terms of speed of the convergence, one should bear in mind that HBMA has inner loop with
different heuristics. In each generation, there are number of iterations, defined by the depth
of stochastic search, taking place.
Parameters of the GA are: crossover probability: 0.7, mutation probability: 0.01, population
size: 30, survival selection: generational, initialization: random, termination condition:
solution found or no fitness improvement over the last 50 generations.
Parameters of the HBMA are: sphermatheca size: M=12, stochastic search depth: 100,
number of broods: 30, queens energy E and speed S randomly initialized on range  0.5,1 ,

energy reduction step
 0.5 E t

M



 , heuristics included: random walk and two point

crossover. Termination conditions are: solution found or no queens fitness improvement
over last 50 generations.

6. Path Planning Results

HBMA algorithm is implemented to solve the problem of navigation of the mobile robot
through the space containing arbitrarily distributed obstacles. The environment presentation
is based on occupancy grid representation. Occupancy grids represent the world as a two-
dimensional array, with each cell having particular value of 1 (if occupied) or 0 (free cell). In
our study, obstacles are presented with pairs of nodes connected by mathematically defined
lines. This is a more compact way of presenting obstacles which will be shown as very
useful for determining collisions with the KBA. It is possible to create different obstacles as
lines, or polygons, both convex or concave easily using this compact representation. To be
able to treat the mobile robot a point in the environment, a minimum safety distance is
added on the nodes producing a safety shadow around the actual obstacles.

www.intechopen.com

Swarm Robotics, From Biology to Robotics54

Y

X
0 21 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

21 22 23 24 25 26 27 28 2920

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99

Start

Goal

Fig. 5. Environment presented in form of occupancy grid. Numbers denote different nodes.
Bold lines: obstacles; solid lines: feasible path; dashed line: unfeasible path.

One possible mobile robot environment is presented in Fig. 2. Obstacles are defined as lines
connecting corresponding nodes e.g. nodes 21 and 23 are occupied and connected with the
first line, making the intermediate node 22 also occupied. Nodes 55 and 47 are connected
with the second line etc. Lines can create different shapes, making nodes falling into the
polygons, “unavailable” for the robot. In case of vertical lines, which cannot be defined as
mathematical functions since mapping x→y is not uniform, a threshold value is defined
such that threshold → 0 and added on the x value of second boundary node of the line. In
such manner, line is slightly rotated around the first node, without real impact on the
obstacle position and mathematical consistence is preserved.

6.1 Objective Function
Impact of the objective or fitness function has a crucial role on the overall performance of the
evolutionary-based algorithms. The main concept in evolutionary robotics has so far been
the definition of an effective fitness function (Mermigikis & Petrou, 2006). The authors
propose some kind of methodology and state that in order to achieve evolution of useful
behaviours, the corresponding fitness function must have the simplest possible form
(implicit), it must be possible to be calculated by means of the robot itself (intrinsic) and
includes elements of the behaviour itself rather than functional details of how this can be
achieved. Proper form and tuning of the parameters can significantly increase speed of the
convergence and reduce the possibility of trapping in local optima. In evolutionary-based
algorithms, objective function has the role of selection of individuals competing to be
selected for the breeding pool and to transfer their genetic material to the new population
through the offspring. In the problem being in focus here, the objective function has to
reward those individuals (paths) that result in minimal number of collisions with obstacles
and travel minimal distance from the start to goal position at the same time. Fitness function
is presented by eq. 7:

 1 2

1 1

_
k n

i j
i j

w w
Fitness value

A a d
 

 

 

(7)

Where w1 and w2 are weight constants, 1 2 0w w  , ia is number of collisions of current
trajectory with obstacles; jd is total Euclidean distance travelled from origin to
destination point for current trajectory composed of n components; A is a constant and

0A  .
Fitness function penalizes trajectories resulting with more collisions and larger total distance
travelled. To check collisions of the trajectory i and obstacle k, two cases can occur. Case 1: a
going-through node falls onto the obstacle. This situation is easy to detect and to handle.
Case 2: a part of the trajectory between two consecutive going-through nodes intersects
obstacle. This case is handled by solving linear systems of equations for each line segment of
the trajectory and for each obstacle as a result of following system of presented with Eq. 8.

 1 X A B (8)
Matrices A and B contain coefficients derived from lines that describe obstacles and line
segments of current path. Matrix X contains solution of linear system and contains point of
intersection of obstacle and linear segment of the trajectory. If intersection point of any line
segment S and any obstacle O lies on that particular line segment, then trajectory τ intersects
obstacle O. Otherwise obstacle O doesn’t intersect trajectory τ.
Formally:

   

 

    

 

 

1

1

1

1

: , ; -

: , ;0 1

:

,

, 0

n
i

i

i

i
i

i i

i i

k
j

j

n
i

i
k

i j i
j

j i ji ji

i i

ji ji i j
j i

O

y yp x y |x y y x x
x x

y y
y

y y

O x y |x y

S

O

O S O

S p x y

Intersection of segment S and obstacle O :

x y for y
S O







 







 
 

 



 







 

 
    

 





   



 












 

 









  1i

 otherwise

 



(9)

Values of weight factors are environment dependent and determined experimentally in this
study, although parameterization of environment with regards on number and distribution
of the obstacles is considered for future work. This parameterization will include number of
obstacles, distribution (spread or clustered) and position of obstacles in environment (along

www.intechopen.com

Comparison of Swarm Optimization and Genetic Algorithm for Mobile Robot Navigation 55

Y

X
0 21 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

21 22 23 24 25 26 27 28 2920

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99

Start

Goal

Fig. 5. Environment presented in form of occupancy grid. Numbers denote different nodes.
Bold lines: obstacles; solid lines: feasible path; dashed line: unfeasible path.

One possible mobile robot environment is presented in Fig. 2. Obstacles are defined as lines
connecting corresponding nodes e.g. nodes 21 and 23 are occupied and connected with the
first line, making the intermediate node 22 also occupied. Nodes 55 and 47 are connected
with the second line etc. Lines can create different shapes, making nodes falling into the
polygons, “unavailable” for the robot. In case of vertical lines, which cannot be defined as
mathematical functions since mapping x→y is not uniform, a threshold value is defined
such that threshold → 0 and added on the x value of second boundary node of the line. In
such manner, line is slightly rotated around the first node, without real impact on the
obstacle position and mathematical consistence is preserved.

6.1 Objective Function
Impact of the objective or fitness function has a crucial role on the overall performance of the
evolutionary-based algorithms. The main concept in evolutionary robotics has so far been
the definition of an effective fitness function (Mermigikis & Petrou, 2006). The authors
propose some kind of methodology and state that in order to achieve evolution of useful
behaviours, the corresponding fitness function must have the simplest possible form
(implicit), it must be possible to be calculated by means of the robot itself (intrinsic) and
includes elements of the behaviour itself rather than functional details of how this can be
achieved. Proper form and tuning of the parameters can significantly increase speed of the
convergence and reduce the possibility of trapping in local optima. In evolutionary-based
algorithms, objective function has the role of selection of individuals competing to be
selected for the breeding pool and to transfer their genetic material to the new population
through the offspring. In the problem being in focus here, the objective function has to
reward those individuals (paths) that result in minimal number of collisions with obstacles
and travel minimal distance from the start to goal position at the same time. Fitness function
is presented by eq. 7:

 1 2

1 1

_
k n

i j
i j

w w
Fitness value

A a d
 

 

 

(7)

Where w1 and w2 are weight constants, 1 2 0w w  , ia is number of collisions of current
trajectory with obstacles; jd is total Euclidean distance travelled from origin to
destination point for current trajectory composed of n components; A is a constant and

0A  .
Fitness function penalizes trajectories resulting with more collisions and larger total distance
travelled. To check collisions of the trajectory i and obstacle k, two cases can occur. Case 1: a
going-through node falls onto the obstacle. This situation is easy to detect and to handle.
Case 2: a part of the trajectory between two consecutive going-through nodes intersects
obstacle. This case is handled by solving linear systems of equations for each line segment of
the trajectory and for each obstacle as a result of following system of presented with Eq. 8.

 1 X A B (8)
Matrices A and B contain coefficients derived from lines that describe obstacles and line
segments of current path. Matrix X contains solution of linear system and contains point of
intersection of obstacle and linear segment of the trajectory. If intersection point of any line
segment S and any obstacle O lies on that particular line segment, then trajectory τ intersects
obstacle O. Otherwise obstacle O doesn’t intersect trajectory τ.
Formally:

   

 

    

 

 

1

1

1

1

: , ; -

: , ;0 1

:

,

, 0

n
i

i

i

i
i

i i

i i

k
j

j

n
i

i
k

i j i
j

j i ji ji

i i

ji ji i j
j i

O

y yp x y |x y y x x
x x

y y
y

y y

O x y |x y

S

O

O S O

S p x y

Intersection of segment S and obstacle O :

x y for y
S O







 







 
 

 



 







 

 
    

 





   



 












 

 









  1i

 otherwise

 



(9)

Values of weight factors are environment dependent and determined experimentally in this
study, although parameterization of environment with regards on number and distribution
of the obstacles is considered for future work. This parameterization will include number of
obstacles, distribution (spread or clustered) and position of obstacles in environment (along

www.intechopen.com

Swarm Robotics, From Biology to Robotics56

the path connecting initial and goal position, or in corner away of main pathways). Through
parameterization, correlation of form of objective function, neural architecture and
presented environment could be revealed and thus efficiency of the algorithm further
increased.

6.1 Simulation Results
Different environmental setups were used for the experiments. Performance of both
algorithms significantly depends on the distribution of the obstacles, namely, whether
obstacles are cluttered, concentrated, in the vicinity of the goal position etc. The most
difficult environmental setup is when obstacles are cluttered around the proximity of the
goal position.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9
Environment

X distance

Y
 d

is
ta

nc
e

Accepted solution after
n= 320 generations

Best individual in
initial population

Initial position

Target position

Fig. 6. Environment with obstacles, dashed, unfeasible path, red and feasible path in green
colour

One possible environment setup is presented with Fig. 6. Four obstacles are present in the
environment with given initial and destination position. For the environment presented
with Fig.6., comparison of HBMA and GA is conducted. Results are presented in the Table 2.

 No. of runs No. of solutions
found

Average No
of generations G

GA 500 478 3120 430
HBMA 500 493 430 58

Table 2. GA vs. HBMA performance comparison for path planning problem.

For simplicity, 10 x 10 grid is applied to the environments. Parameters of the GA are:
Population size = 50, crossover probability: 0.8, adaptive mutation rate: start with 0.1,

increment 0.1 if no fitness improvement over 50 consecutive steps. Selection is roulette-
wheel generational, with the best member of previous generation replacing the worst
member of current population. Maximum length of chromosomes (degrees of freedom of
trajectory) =15.
Both algorithms are able to find solutions for the presented environment with relatively
high confidence. Again is the completeness (total number of the solutions found by the
algorithm) slightly on the side of the HBMA. At the same time, number of iterations
required is lesser for the HBMA, but CPU time is larger, because of the presence of the
internal loop for the brood improvement.
Parameters of the HBMA were the same as in the Diophantine equation example. Regarding
the problem of appropriate parameter selection, it is known to be difficult to tune
parameters for optimal algorithm behavior, for both algorithms. Parameters were
experimentally chosen..

7. Conclusions

HBMA algorithm was developed and compared with performance of the GA algorithm for
two test cases. The firs test case was a benchmark Diophantine equation problem. It is
shown that HBMA is comparable to the performance of well known GA in terms of CPU
time, with the time slightly on the side of the GA. In terms of completeness of the solution,
HBMA was able to find all solutions for the given problem, whereas GA twice did not find
the solution for given termination criteria.
Similar behavior was observed for the second test case, namely collision free path planning
for the mobile robot. However, it is not easy to conclude that HBMA outperforms GA in any
way, since both algorithms are stochastic and dependant on the proper selection of
parameters. Although both algorithms and objective were designed to be as simple as
possible, to enable fair comparison, additional experiments should be performed to achieve
more reliable behavior and merits for the algorithms.
HBMA could be further improved by adding additional workers (heuristics) and by
monitoring success of different heuristics on different problems. GA could be improved by
tailoring specific evolutionary operators for given problems.

8. References

Abass, H.A. (2001). A single queen single worker honey bees approach to 3-SAT, Proceedings
of the Genetic and Evolutionary Computation Conference, San Francisco, 2001.

Abass, H.A. (2002). Marriage in honey bees’ optimization: A haplometrics polygonus
swarming approach, Proceedings of the Congress on Evolutionary Computation, Seoul,
2001.

Alexopulous, C.; Griffin, P.M. (1992). Path planning for a mobile robot. IEEE Transactions on
Systems, Man and Cybernetics, Vol.22, No.2, page numbers 318-322.

Beni, G. (2004). From Swarm Intelligence to Swarm Robotics, In: Swarm Robotics, Erol Sahin
(Ed.), 1-10, Springer LNCS, 3-540-24296-1, Berlin

Bull, P.; Knowles, A.; Tedesco, G. (2006). Diophantine benchmarks for the b-cell algorithm.
In proceedings of International Conference on Artificial Immune Systems Canterbury,
Great Britain

www.intechopen.com

Comparison of Swarm Optimization and Genetic Algorithm for Mobile Robot Navigation 57

the path connecting initial and goal position, or in corner away of main pathways). Through
parameterization, correlation of form of objective function, neural architecture and
presented environment could be revealed and thus efficiency of the algorithm further
increased.

6.1 Simulation Results
Different environmental setups were used for the experiments. Performance of both
algorithms significantly depends on the distribution of the obstacles, namely, whether
obstacles are cluttered, concentrated, in the vicinity of the goal position etc. The most
difficult environmental setup is when obstacles are cluttered around the proximity of the
goal position.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9
Environment

X distance

Y
 d

is
ta

nc
e

Accepted solution after
n= 320 generations

Best individual in
initial population

Initial position

Target position

Fig. 6. Environment with obstacles, dashed, unfeasible path, red and feasible path in green
colour

One possible environment setup is presented with Fig. 6. Four obstacles are present in the
environment with given initial and destination position. For the environment presented
with Fig.6., comparison of HBMA and GA is conducted. Results are presented in the Table 2.

 No. of runs No. of solutions
found

Average No
of generations G

GA 500 478 3120 430
HBMA 500 493 430 58

Table 2. GA vs. HBMA performance comparison for path planning problem.

For simplicity, 10 x 10 grid is applied to the environments. Parameters of the GA are:
Population size = 50, crossover probability: 0.8, adaptive mutation rate: start with 0.1,

increment 0.1 if no fitness improvement over 50 consecutive steps. Selection is roulette-
wheel generational, with the best member of previous generation replacing the worst
member of current population. Maximum length of chromosomes (degrees of freedom of
trajectory) =15.
Both algorithms are able to find solutions for the presented environment with relatively
high confidence. Again is the completeness (total number of the solutions found by the
algorithm) slightly on the side of the HBMA. At the same time, number of iterations
required is lesser for the HBMA, but CPU time is larger, because of the presence of the
internal loop for the brood improvement.
Parameters of the HBMA were the same as in the Diophantine equation example. Regarding
the problem of appropriate parameter selection, it is known to be difficult to tune
parameters for optimal algorithm behavior, for both algorithms. Parameters were
experimentally chosen..

7. Conclusions

HBMA algorithm was developed and compared with performance of the GA algorithm for
two test cases. The firs test case was a benchmark Diophantine equation problem. It is
shown that HBMA is comparable to the performance of well known GA in terms of CPU
time, with the time slightly on the side of the GA. In terms of completeness of the solution,
HBMA was able to find all solutions for the given problem, whereas GA twice did not find
the solution for given termination criteria.
Similar behavior was observed for the second test case, namely collision free path planning
for the mobile robot. However, it is not easy to conclude that HBMA outperforms GA in any
way, since both algorithms are stochastic and dependant on the proper selection of
parameters. Although both algorithms and objective were designed to be as simple as
possible, to enable fair comparison, additional experiments should be performed to achieve
more reliable behavior and merits for the algorithms.
HBMA could be further improved by adding additional workers (heuristics) and by
monitoring success of different heuristics on different problems. GA could be improved by
tailoring specific evolutionary operators for given problems.

8. References

Abass, H.A. (2001). A single queen single worker honey bees approach to 3-SAT, Proceedings
of the Genetic and Evolutionary Computation Conference, San Francisco, 2001.

Abass, H.A. (2002). Marriage in honey bees’ optimization: A haplometrics polygonus
swarming approach, Proceedings of the Congress on Evolutionary Computation, Seoul,
2001.

Alexopulous, C.; Griffin, P.M. (1992). Path planning for a mobile robot. IEEE Transactions on
Systems, Man and Cybernetics, Vol.22, No.2, page numbers 318-322.

Beni, G. (2004). From Swarm Intelligence to Swarm Robotics, In: Swarm Robotics, Erol Sahin
(Ed.), 1-10, Springer LNCS, 3-540-24296-1, Berlin

Bull, P.; Knowles, A.; Tedesco, G. (2006). Diophantine benchmarks for the b-cell algorithm.
In proceedings of International Conference on Artificial Immune Systems Canterbury,
Great Britain

www.intechopen.com

Swarm Robotics, From Biology to Robotics58

Chen, L.; Liu, D.Y. (1997). An efficient algorithm for finding a collision-free path among poly
obstacles. Journal of Robotics Systems, Vol.7, No.1, page numbers 129-137.

Du, X.; Chen, H.H.; Gu, W. (2005). Neural network and genetic algorithm based global path
planning in a static environment. Journal of Zheijang University SCIENCE, Vol.6,
No.6, 2005, page numbers 549-554, ISSN 1009-3095

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Weseley, ISBN 02011575675, USA

Khoogar, A.R.; Parker, J.K. (1991). Obstacle Avoidance of Redundant Manipulators Using
Genetic Algorithms. Proceedings of IEEE International Conference on Robotics and
Automation, pp.317-320, Sacramento 1991

Latombe, J.C. (1991). Robot Motion Planning, Kluwer Academic Publishers, ISBN 0-7923-9129-
2, Boston

Mermigkis, I.; Petrou, L. (2006). Exploring coevolutionary relations by alterations in fitness
function: Experiments with simulated robots (2006) Journal of Intelligent and Robotic
Systems: Theory and Applications, vol.3 No.47 , pp. 257-284.

Ram, A.; Arkin, R.; Boone, G., (1994). Using genetic algorithms to learn reactive control
parameters for autonomous robotic navigation. Adaptive Behavior, Vol.2., No.2,
1994, page numbers 100-107.

Ramakrishnan, R.; Zein-Sabatto, S. (2002). Multiple Path planning for a Group of Mobile
Robots in a 3D Environment Using Genetic Algorithms. Proceedings of IEEE
Southeast Con,pp.359-363, South Carolina 2002

Sadati, N., Taheri, J. (2002). Genetic Algorithm in Robot Path Planning Problem in Crisp and
Fuzzyfied Environments. Proceedings of IEEE International Conference on Industrial
Technology, pp.175-180, Bangkok 2002

Zarate, L.E.; Becker, M.; Garrido, B.D.M.; Rocha, H.S.C. (2002). An Artificial Neural Network
Structure Able toObstacle Avoidance Behavior Used in Mobile Robots. Proceedings
of IEEE 28th Annual Conference of the Industrial Electronics Society, pp.2457-2461.
Spain

www.intechopen.com

Swarm Robotics from Biology to Robotics

Edited by Ester Martinez Martin

ISBN 978-953-307-075-9

Hard cover, 102 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

In nature, it is possible to observe a cooperative behaviour in all animals, since, according to Charles Darwin’s

theory, every being, from ants to human beings, form groups in which most individuals work for the common

good. However, although study of dozens of social species has been done for a century, details of how and

why cooperation evolved remain to be worked out. Actually, cooperative behaviour has been studied from

different points of view. Swarm robotics is a new approach that emerged on the field of artificial swarm

intelligence, as well as the biological studies of insects (i.e. ants and other fields in nature) which coordinate

their actions to accomplish tasks that are beyond the capabilities of a single individual. In particular, swarm

robotics is focused on the coordination of decentralised, self-organised multi-robot systems in order to

describe such a collective behaviour as a consequence of local interactions with one another and with their

environment. This book has only provided a partial picture of the field of swarm robotics by focusing on

practical applications. The global assessment of the contributions contained in this book is reasonably positive

since they highlighted that it is necessary to adapt and remodel biological strategies to cope with the added

complexity and problems that arise when robot individuals are considered.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Petar Curkovic, Bojan Jerbic and Tomislav Stipancic (2010). Comparison of Swarm Optimization and Genetic

Algorithm for Mobile Robot Navigation, Swarm Robotics from Biology to Robotics, Ester Martinez Martin (Ed.),

ISBN: 978-953-307-075-9, InTech, Available from: http://www.intechopen.com/books/swarm-robotics-from-

biology-to-robotics/comparison-of-swarm-optimization-and-genetic-algorithm-for-mobile-robot-navigation

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

