18 research outputs found

    DCT Implementation on GPU

    Get PDF
    There has been a great progress in the field of graphics processors. Since, there is no rise in the speed of the normal CPU processors; Designers are coming up with multi-core, parallel processors. Because of their popularity in parallel processing, GPUs are becoming more and more attractive for many applications. With the increasing demand in utilizing GPUs, there is a great need to develop operating systems that handle the GPU to full capacity. GPUs offer a very efficient environment for many image processing applications. This thesis explores the processing power of GPUs for digital image compression using Discrete cosine transform

    Low power VLSI implementation schemes for DCT-based image compression

    Get PDF

    VLSI design concepts for iterative algorithms

    Get PDF
    Circuit design becomes more and more complicated, especially when the Very Large Scale Integration (VLSI) manufacturing technology node keeps shrinking down to nanoscale level. New challenges come up such as an increasing gap between the design productivity and the Moore’s Law. Leakage power becomes a major factor of the power consumption and traditional shared bus transmission is the critical bottleneck in the billion transistors Multi-Processor System–on–Chip (MPSoC) designs. These issues lead us to discuss the impact on the design of iterative algorithms. This thesis presents several strategies that satisfy various design con- straints, which can be used to explore superior solutions for the circuit design of iterative algorithms. Four selected examples of iterative al- gorithms are elaborated in this respect: hardware implementation of COordinate Rotation DIgital Computer (CORDIC) processor for sig- nal processing, configurable DCT and integer transformations based CORDIC algorithm for image/video compression, parallel Jacobi Eigen- value Decomposition (EVD) method with arbitrary iterations for com- munication, and acceleration of parallel Sparse Matrix–Vector Multipli- cation (SMVM) operations based Network–on–Chip (NoC) for solving systems of linear equations. These four applications of iterative meth- ods have been chosen since they cover a wide area of current signal processing tasks. Each method has its own unique design criteria when it comes to the direct implementation on the circuit level. Therefore, a balanced solution between various design tradeoffs is elaborated for each method. These tradeoffs are between throughput and power consumption, com- putational complexity and transformation accuracy, the number of in- ner/outer iterations and energy consumption, data structure and net- work topology. It is shown that all of these algorithms can be imple- mented on FPGA devices or as ASICs efficiently

    Evolutionary design of digital VLSI hardware

    Get PDF

    Algorithms and VLSI architectures for parametric additive synthesis

    Get PDF
    A parametric additive synthesis approach to sound synthesis is advantageous as it can model sounds in a large scale manner, unlike the classical sinusoidal additive based synthesis paradigms. It is known that a large body of naturally occurring sounds are resonant in character and thus fit the concept well. This thesis is concerned with the computational optimisation of a super class of form ant synthesis which extends the sinusoidal parameters with a spread parameter known as band width. Here a modified formant algorithm is introduced which can be traced back to work done at IRCAM, Paris. When impulse driven, a filter based approach to modelling a formant limits the computational work-load. It is assumed that the filter's coefficients are fixed at initialisation, thus avoiding interpolation which can cause the filter to become chaotic. A filter which is more complex than a second order section is required. Temporal resolution of an impulse generator is achieved by using a two stage polyphase decimator which drives many filterbanks. Each filterbank describes one formant and is composed of sub-elements which allow variation of the formant’s parameters. A resource manager is discussed to overcome the possibility of all sub- banks operating in unison. All filterbanks for one voice are connected in series to the impulse generator and their outputs are summed and scaled accordingly. An explorative study of number systems for DSP algorithms and their architectures is investigated. I invented a new theoretical mechanism for multi-level logic based DSP. Its aims are to reduce the number of transistors and to increase their functionality. A review of synthesis algorithms and VLSI architectures are discussed in a case study between a filter based bit-serial and a CORDIC based sinusoidal generator. They are both of similar size, but the latter is always guaranteed to be stable

    Domain-specific and reconfigurable instruction cells based architectures for low-power SoC

    Get PDF

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Differential Privacy - A Balancing Act

    Get PDF
    Data privacy is an ever important aspect of data analyses. Historically, a plethora of privacy techniques have been introduced to protect data, but few have stood the test of time. From investigating the overlap between big data research, and security and privacy research, I have found that differential privacy presents itself as a promising defender of data privacy.Differential privacy is a rigorous, mathematical notion of privacy. Nevertheless, privacy comes at a cost. In order to achieve differential privacy, we need to introduce some form of inaccuracy (i.e. error) to our analyses. Hence, practitioners need to engage in a balancing act between accuracy and privacy when adopting differential privacy. As a consequence, understanding this accuracy/privacy trade-off is vital to being able to use differential privacy in real data analyses.In this thesis, I aim to bridge the gap between differential privacy in theory, and differential privacy in practice. Most notably, I aim to convey a better understanding of the accuracy/privacy trade-off, by 1) implementing tools to tweak accuracy/privacy in a real use case, 2) presenting a methodology for empirically predicting error, and 3) systematizing and analyzing known accuracy improvement techniques for differentially private algorithms. Additionally, I also put differential privacy into context by investigating how it can be applied in the automotive domain. Using the automotive domain as an example, I introduce the main challenges that constitutes the balancing act, and provide advice for moving forward
    corecore