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Abstract 

Evolutionary Algorithms (EAs) are a class of powerful stochastic search techniques, which 

were inspired by natural evolution. They work by iteratively improving a population of solu-

tions, according to one or more objective functions. Evolutionary algorithms are capable of 

producing near-optimal solutions to highly complex search problems; 

In this thesis, multi-objective evolutionary algorithms are applied to the design of efficient 

digital ASIC core designs. Specifically, the thesis addresses the evolutionary synthesis of mul-

tiplierless linear filters, multiplierless linear transforms, and polynomial transform designs. The 

designs are constructed from high-level arithmetic components such as adders and subtracters, 

according to a user-supplied behavioural specification. The designs are evaluated according to 

three different objectives: functionality, low area requirements, and low longest-path delay. In 

order to evaluate these objectives, accurate hardware models are developed. 

Evolutionary algorithms are often applied to scheduling problems. This thesis investigates 

the possibility of performing scheduling and allocation in parallel with circuit evolution. Two 

possibilities are considered: scheduling for sequential operation and pipeline scheduling. 

The choice of solution representation and evolutionary operators can have an enormous im-

pact on the performance of an evolutionary algorithm. In this thesis, solutions are represented 

with graphs. Graphs are found to be a powerful and intuitive representation for circuit designs, 

although the complexity of the evolutionary operators tends to be higher than with other encod-

ings. Various graph evolutionary operators are developed, including a novel non-destructive 

graph crossover operator. 

This thesis also proposes a class of local search operators. These operators can significantly 

improve the performance of an EA. The improvement is achieved in two ways: by reducing 

the computational cost of evaluating a design, and by automatically finding optimal settings 

for some of the design parameters. These local search operators are initially applied to linear 

designs, and are later adapted for devices with polynomial responses. 
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Chapter 1 
Introduction 

1.1 Motivation 

Modem microchips are increasingly complex, however there is intense pressure to limit devel-

opment costs and maintain rapid development times. These pressures are often combined with 

a need for more efficient use of hardware resources. The net effect is to create a strong demand 

for increased productivity from IC designers. Powerful CAD tools will play a major role in 

meeting this demand. 

Many modern design tasks are highly complex. In fact, some common problems are actually 

intractable. The following two examples are particularly relevant to this thesis: 

Scheduling problems relate to the scheduling of a set of tasks over a series of different steps, 

typically with constraints. Two cases which are relevant to digital design are pipeline 

scheduling and scheduling for sequential hardware. Many scheduling problems belong 

to the class of NP-Complete [5] intractable problems. 

Multiplierless design involves the creation of linear filters and linear transforms which do not 

include any multipliers. Multiplication is instead achieved through the use of adders, 

subtracters and shifters. The resulting circuits are efficient in terms of silicon area, power 

and longest-path delay. The design problem is often intractable. 

Intractable problems preclude the reliable discovery of optimal solutions, however powerful 

searching techniques can be used to find near-optimal solutions. Conventional synthesis tech-

niques, focussing on the iterative improvement of a single design according to a set of heuristics, 

are often insufficient for these problems. 

Evolutionary algorithms are a class of powerful stochastic search techniques, which were in-

spired by natural evolution. EAs can find near-optimal solutions to highly complex problems. 

EM can be applied to problems with discontinuous, multimodal search spaces, and to multiob-

jective problems. 

1 



Introduction 

Evolutionary algorithms have previously been applied to a range of different electronic hard-

ware design problems. In particular, they have often been used for the design of gate-level 

digital circuits [6-8]. In contrast, relatively little work has been done relating to the evolution 

of digital circuit designs based upon higher-level components, and in particular the synthesis of 

high-level ASIC core designs. This thesis addresses the question of whether EAs can be used 

to construct useful core designs from arithmetic-level components. 

1.2 Contribution 

The objective of this thesis can be summarised by the following statement: 

To investigate ways in which multiobjective evolutionary algorithms can be 
used for high-level digital circuit design, and to find ways in which the effi-
ciency and usefulness of these EAs can be improved. 

This can be split into three key areas: 

To demonstrate the use of EAs for the synthesis of several important classes of hardware. 

To demonstrate multiobjective evolution, where the objectives are based upon accurate 

hardware models. 

To increase the performance and capabilities of evolutionary algorithms for these prob-

lems, and in general. 

1.3 Overview 

This thesis investigates the evolutionary design of three important classes of digital hardware: 

• multiplierless FIR filters, 

• multiplierless linear transforms, 

• polynomial transforms. 
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Introduction 

These three classes of hardware have applications throughout the field of digital signal process-

mg. 

EvolutiOnary hardware design systems were developed for all three of the above problems. The 

designs are specified by a behavioural-level description - either the desired frequency response 

for a filter, or the desired coefficient set for a transform. The EAs construct efficient hardware 

designs from high-level components such as adders and subtracters. The final circuit designs 

are produced as Verilog netlists, containing structural descriptions of the designs. 

The EAs in this thesis all have the objectives of functionality, low silicon area, and low longest-

path latency. The area and delay objectives are calculated according to technology-specific 

hardware models. The EAs are designed so that, if possible, they can find multiple solutions 

that make different trade-offs between the objectives. 

While most of this thesis focusses on the evolution of combinatorial designs, multistate Se-

quential designs and pipelined designs are also investigated. Multistate sequential designs save 

area by performing a single computation over several cycles. This enables the construction of 

large designs in a limited area. Pipelining reduces the longest-path delay of a design through 

the insertion of extra registers. Pipelining is very useful when a high throughput is required. 

This thesis describes evolutionary algorithms for the design of both pipelined hardware and 

multistate sequential hardware. 

The above design problems require powerful EAs. The performance of an EA is highly de-

pendent on the choice of design representation and the choice of evolutionary operators. This 

thesis proposes the use of a directed graph design representation, which is a useful and intuitive 

representation for digital hardware. A variety of powerful evolutionary operators are investi-

gated. These include heuristic evolutionary operators, evolutionary operators that perform local 

searches, and a novel non-destructive graph crossover operator. 

1.4 Thesis contents 

This thesis is structured as follows. 

Chapters 2 and 3 contain descriptions of existing literature. Chapter 2 describes relevant tech- 

niques for the design and modelling of digital hardware. Chapter 3 describes stochastic search 

techniques, including evolutionary algorithms, as well as investigating how they have been 
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applied to the field of digital design. 

Chapters 4 and 5 investigate the evolutionary design of multiplierless FIR filters. In chapter 4, 

an EA for the design of multiplierless filters is introduced. This BA takes a frequency-domain 

filter specification as input, and produces a set of efficient structural filter designs as output. The 

EA searches for filter designs that meet the functional specification, and have a low area and 

longest-path delay. In contrast to other filter-design systems, the entire filter design process, 

from frequency-domain specification to hardware design, is performed by the EA. This means 

that the EA can choose coefficients which have low associated hardware costs, but which still 

meet the frequency-domain specification. Chapter 4 also introduces the use of novel construc-

tive evolutionary operators, which treat the chromosome as a graph and heuristically improve 

the design. 

Chapter 5 investigates the evolution of circuits with multistate sequential datapaths. The work 

in chapter 5 adapts the BA introduced in chapter 4 so that it can produce sequential multi-

plication blocks that perform a set of multiplications over two or more cycles. The BA per-

forms scheduling, resource allocation and resource binding in parallel with the evolution of 

functionality. This means that the schedule can take account of the hardware requirements of 

the datapath. This contrasts with pre-existing systems, which separate functional design from 

scheduling. 

Chapters 6, 7 and 8 investigate the evolution of digital circuits that have multiple inputs and 

multiple outputs. As before, in these chapters the EA has the objectives of functionality, low 

area, and low longest-path delay. 

Chapter 6 investigates the evolution of multiplierless linear transforms, which is a new applica-

tion area for evolutionary methods. The EA introduced in chapter 6 can produce three different 

types of hardware designs: bit-serial, bit-parallel with fixed component widths, or bit-parallel 

with variable component widths. 

In chapter 7, a novel local search technique is used to accelerate the evolutionary algorithm that 

was introduced in chapter 6. This local search technique speeds up the algorithm in two ways: 

by reducing the computational cost of design evaluation, and by automatically determining 

high quality values for some genes. The net result is a tremendous increase in BA performance 

relative to the system from chapter 6. 
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Chapter 8 investigates the evolution another new class of circuit designs: polynomial trans-

forms. These are circuits where the response of each output is a polynomial that can include 

nonlinear terms. The search technique from chapter 7 is adapted for use with these nonlinear 

designs. 

In chapter 9, pipelined linear transform circuits are evolved. Pipeline scheduling is performed 

in parallel with the evolution of functionality, so the EA can take account of the final hardware 

costs when evaluating different designs. The EA introduced in this chapter uses a cell-level 

delay model, which incorporates wire-load modelling, resulting in more accurate delay values. 

Chapter 9 introduces a novel non-destructive crossover operator for graph chromosomes, which 

could also be useful with other problems. 

Finally, the thesis is concluded with the summary in chapter 10. 
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Chapter 2 

Hardware modelling and synthesis 

2.1 Introduction 

This chapter introduces techniques for the synthesis and 'modelling of digital signal processing 

hardware. Three useful classes of signal processing hardware are described: linear filters, 

linear transforms, and Volterra filters. This chapter describes the possible architectures for 

these circuits, as well as introducing non-evolutionary synthesis methods that can be used to 

create them. Later chapters will investigate how evolutionary techniques can be applied to 

the synthesis of these three types of hardware. Hardware modelling is an important aspect of 

evolutionary hardware synthesis, as it is used when assessing the fitness of a particular design. 

For this reason, this chapter describes how important hardware properties such as delay, area, 

and power consumption can be modelled. 

This chapter is structured as follows. Section 2.2 gives brief descriptions of three important 

classes of digital filters - linear FIR filters, linear transforms, and nonlinear Volterra filters. 

Section 2.3 describes how these filters can be realised using fixed-point arithmetic ASIC hard-

ware. Section 2.4 describes how' the major properties of a digital filter can be estimated. The 

properties that are discussed in section 2.4 include silicon area, longest-path latency, and power. 

2.2 Digital signal processing 

2.2.1 Linear filtering 

According to [9], a system H is linear if it meets the following condition: 

H{axi + bx21 = aH{xi} + bH{x2} 	 (2.1) 

for signals Xl, X2 and constants a, b. The two definitive properties of a linear system are ho- 

mogeneity and additivity. Homogeneity implies that scaling the input is equivalent to scaling 
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the output. Additivity means that a linear system preserves addition. If the components of a 

system are all linear, the whole system will also be linear. The simplest linear operations are 

addition, subtraction, negation, and multiplication by a constant. Bit-shifting is equivalent to 

multiplication by a power-of-2 constant, so it is also a linear operation. 

Convolution of a signal with a set of coefficients is a useful operation. In particular, convolution 

in the time domain corresponds to scaling and phase shifting in the frequency domain. A 

Finite Impulse Response (FIR) filter is a device that convolves a signal with a finite number of 

coefficients. It can be described as follows: 

y(n) = 	a2x(n—i) 	 (2.2) 

A filter is said to be linear phase if the phase shift in the filter response increases linearly with 

frequency throughout the passband. This is a useful property, because it implies that the filter 

delays all frequencies by the same amount. Therefore, a linear phase filter will not cause parts 

of a signal to be time-shifted relative to each other. This can be guaranteed if the following 

identity holds: 

ai = a(N_l_),Vi E Z 	 (2.3) 

In other words, the filter will be linear phase if the coefficient set is symmetrical around the 

central coefficient or coefficients [10]. 

a0 a1 -Q) 	 aNl 

--I", 
. L 	I 

Figure 2.1: A direct form FIR filter. 

An FIR filter for processing time-domain signals can be realised as shown in figure 2.1. This 

is known as a direct form implementation. The transposition theory [11] implies that the FIR 

filter in figure 2.1 is equivalent to the transposed form FIR filter shown in figure 2.2. For a 

linear-phase filter, the constraint that the coefficient set is symmetrical leads to the folded form 

FIR filters shown in figures 2.3 and 2.4. 
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a0  

Figure 2.2: A transposed direct form FIR filter. 

a0  

Figure 23: A folded direct form FIR filter. 

Figure 2.4: A folded transposed direct form FIR filter. 



Hardware modelling and synthesis 

An Infinite Impulse Response (IIR) filter can produce a response of infinite duration when a 

finite stimulus is applied. An hR filter could be modelled using equation 2.2 with N = oc, 

however it is more useful  to introduce feedback into equation 2.2: 

N-i 	 M 

y(n) =a2x(n - i) + 	by(n - i) 	 (2.4) 

The above equation introduces a second set of coefficients, which allow the filter response to 

depend on the previous output values. Although the response of the filter is infinite, both sets of 

coefficients can be of finite size. As an hR filter has a response of infinite duration, the response 

cannot be symmetrical, and the filter cannot be linear phase. Stability can be a problem for hR 

filters; a badly designed hR filter can. oscillate. When designing an hR filter, particular care 

must be taken to ensure that the effects of finite arithmetic precision do not lead to instability. 

Many tasks can be performed by either an FIR filter or an hR filter. The advantages of FIR 

filters are that they are relatively simple to design and model, and that they can be linear phase. 

IIR filters typically require fewer,  coefficients than FIR filters, and they can perform a wider 

range of tasks. 

There are a variety of algorithms for producing a filter coefficient set from a frequency-domain 

specification [10, 12]. In particular, many of these techniques produce coefficient sets that are 

of low or minimal order: 

2.2.2 Linear Transforms 

A linear transform with inputs x(.), outputs y(.) and coefficient set h(..) can be specified as: 

y(n) = 
	

h(n, i)x(i) 	 (2.5) 

A linear transform can also be modelled using matrix multiplication, where the coefficients in 

the matrix define the transform. For example, in computer graphics the conversion from an 

RGB to an XYZ colour space [13] can be written as follows: 

X 0.49 0.31 0.20 R 

Y = 0.17697 0.81240 0.01063 G 

Z 0.00 0.01 0.99 B 
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Two especially noteworthy transforms are the Discrete Fourier Transform (DFT) and the Dis-

crete Cosine Transform (DCT). The DFT is used to convert signals between a space/time do-

main representation and a frequency domain representation. It is fundamental to an enormous 

range of signal processing and signal analysis applications. The DFT works using complex 

numbers, so it produces results that have both a magnitude and phase. The N-point DFT can 

be expressed as follows: 

N-i 
21 1k 

Y(j) 
= 	x(k)e N , where 0 < I <N 	 (2.6) 

k=O 

The DFT is commonly implemented using the Fast Fourier Transform (FIT) algorithm. The 

n-point FF1' [10] has O(n log n) complexity, compared to the 0(n2 ) complexity of a naïve 

DFT. The DCT is mathematically related to the DFT, however the DCT is entirely based on 

real numbers. The N-point 1-dimensional DCT can be expressed as follows: 

C2 
N-i 

where 0 < 1 < N 	(2.7) y(I) 	, 	x(k) 	
(2k + l)fr 

2N 
k=O 

G1={
ifl=0,  

1 	otherwise. 

Like the DFT, the DCT converts time/space domain signals into the frequency domain. The 

DCT is commonly used in data compression - two of the most significant DCT applications 

are the JPEG image compression standard [14] and the MPEG video compression standard [15]. 

The 2-dimensional DCT is calculated by sequentially applying the 1-dimensional DCT to the 

rows and columns of the input data. Both of these transforms have corresponding inverse trans-

forms: the Inverse Discrete Fourier Transform (IDFT) and Inverse Discrete Cosine Transform 

(IDCT). 

The Discrete Wavelet Transforms (DV,/Ts) [16] are a family of linear transforms that are used 

in signal analysis and data compression applications. A DWT is characterised by recursive 

filtering and decimation of the signal data, as illustrated in figure 2.5. A particular DWT is 

defined by the filters used, and the pattern of recursion. Wavelet transforms are commonly 

implemented using the lifting scheme [17]. One noteworthy application of wavelet transforms 

is the JPEG 2000 compression standard [18], which specifies one DWT for lossy compression, 

and a second for lossless compression. 
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input 
(N items) 

IL L LP 	2 	HP 	2
II 

outputs 
(N items total) 

H (N/2 items) 

LH (N/4 items) 

LLH (N/8 items) 

LLL (N/8 items) 

Figure 2.5: A discrete wavelet transform (DWT) with 3 levels of decomposition. 

2.2.3 Nonlinear filtering 

The term 'nonlinear filter' can be applied to any nonlinear computational device, so it is useful 

to limit investigation of this area to particular classes of nonlinear systems. One of the most 

well-known classes of nonlinear filter is the class of Volterra filters [19]. 

Volterra filters can include both linear and nonlinear terms in the response. The nonlinear terms 

are the scaled products of two or more of the input values. An n-th order Volterra filter can be 

described using an n-th order polynomial in terms of the filter inputs. A first order Volterra filter 

is therefore equivalent to a linear filter. A discrete Volterra filter can be described as follows: 

	

y(n) = 	hi(ki)x(m—ki) 
	

(2.8) 
k1 

+ >>h2(ki,k2)x(n—ki)x(n—  k2) 
k1 k2 

	

+ 	 ,kM)x(n—kl) ... x(n—km) 
k1 	km 

where the symbols are: 
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h(k1,... , k r,) pth-order Volterra kernel 

YO 	output values 

x(.) 	 input yalues 

The nonlinear terms in equation 2.8 exhibit symmetry, which can be used to eliminate many 

of the coefficients. For example, the coefficients h2 (0, 1) and h2  (1,0) are both multiplied by 

x(0)x(1), so one of these two coefficients can be eliminated. The same principle applies for 

any reordering of the variables k 1  . kij. 

Non-polynomial functions can often be approximated using a Taylor series, which can then be 

realised as a Volterra filter. For example, a sine function can be approximated by the following 

series: 
X3 x 5  x 7  

s1n(x)x—+ j--j-+... 	 (2.9) 

which can be implemented as a Volterra filter. 

23 Filter implementation 

2.3.1 Hardware implementation of linear components 

add 
input A- 

°::: 	

- output input 

carry 
shift 

input 
clock—i 

re—label 

bit 7 bit 10 
input 	_____ 

bit 0 bit 3 	_______ 
_______output  

input A  

add 

  

output 

Figure 2.6: Three implementations of A + 8B. Clockwise from top left: bit-serial, 4-bit digit-
serial, and bit-parallel. 

Three ways of implementing the same linear function are shown in figure 2.6. A bit-parallel 

implementation uses a separate wire for each data bit, while bit-serial implementations use 1-

bit components and process data items one bit at a time. Digit-serial represents a compromise 

between bit-parallel and bit-serial. Digit-serial systems divide a data item into several multi- 
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bit digits, and then process the digits sequentially. Bit-serial implementations are more area-

efficient, while bit-parallel designs offer higher performance. 

In binary arithmetic, a left-shift of n bits is equivalent to a multiplication by 2, where n e Z. 

In bit-parallel arithmetic, constant shifts can be performed at no cost, as they merely represent 

a re-labelling of the bits in a value. In bit-serial arithmetic, a left-shift of one bit is equivalent 

to a delay of one cycle, so one register is required for each bit of left-shift. As bit-serial shifts 

are implemented using registers, they can reduce the longest-path delay. Shifts in digit-serial 

designs are implemented using a combination of registers and bit re-labelling. Right-shifts are 

not possible in bit-serial or digit-serial implementations. 

2.3.2 Carry-save arithmetic 

A carry-save adder has three inputs and two outputs. It does not propagate carries, but instead 

has separate outputs for all of the sum bits and all of the carry bits. The delay through a carry-

save adder is the same as the delay through a single full adder. A carry-save adder with inputs 

x, y, z, sum output s, and carry output c, can be characterised as follows: 

S + • C = X + y  + z 

A circuit based upon carry-save adders will usually include a fast conventional adder before 

each output, so that the final sum and carry values can be added together. 

Figure 2.7 shows how a carry-save adder (CSA) can be used together with a ripple adder to sum 

three values. A high-level diagram is shown in the left of figure 2.7, while the right-hand side 

shows the same thing decomposed into half- and full-adders. 

Carry-save arithmetic can be used together with shifts, provided that the sum and carry output 

from each carry-save adder are scaled by the same amount prior to the final addition. Carry-save 

arithmetic is therefore a useful technique for the realisation of linear circuits. 

2.3.3 Multipliers and multiplication blocks 

A multiplier takes two inputs and multiplies them. If one of the inputs is a constant, then a con- 

stant multiplier can be used. Constant multipliers are typically more hardware efficient, where 

efficiency is measured in terms of power, silicon area or latency. The design of a constant mul- 
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Figure 2.7: The summation of three values using carry-save arithmetic. 

tiplier depends upon the constant. There are several algorithms for designing efficient constant 

multipliers, starting with the value of the constant. 

The simplest algorithm is the binary multiplier [20], which corresponds to the binary version 

of long multiplication. A binary multiplier uses N - 1 adders, where N is the number of '1' 

bits in the constant. For example, the multiplication of a value x by 7 can be broken down as 

follows. Note that 1112 is the binary representation of 7. 

111 2 .x=(1002 +102 +1)x1002.x+102.x+X=(X<<2)+(2<<1)+x 

This multiplication can therefore be performed by adding together three different shifted ver-

sions of x. 

A signed-digit binary number representation [21] is a number representation where the digits 

in a number can take the values 1-1, 0, 11, rather than just {0, 1}. A signed-digit constant with 

digits di  has the following value: 

2'd, for diE {-1,0,1} 
	

(2.10) 

iEZ 

A common notation is that digits valued —1 are represented by T. For example, the value 3 
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could be represented by 1101 = 1000 - 100 - 1. Note that this representation is redundant; 

there can be multiple representations of a single value. For example, 3 can be represented by 

11, loT, ill, 1101, 1111, 11111111, and infinitely many more representations. A minimum-

weight signed-digit (MSD) representation of a number is a signed-digit representation that has 

the minimum number of non-zero digits. For the value 3, there are two minimum-weight rep-

resentations: 11 and 101. The Canonic Signed Digit (CSD) representation of a number is the 

unique MSD representation that does not have any consecutive non-zero digits. CSD numbers 

have on average one third fewer non-zero digits than binary numbers [22]. There is a computa-

tionally cheap algorithm for converting binary numbers into CSD representation [22,23]. 

If the constant is represented in a signed-digit form, a constant multiplier can be implemented 

in a similar fashion to the binary multiplier. Negative digits result in the use of subtracters. 

As an MSD number will typically have fewer non-zero digits than the corresponding binary 

value, the number of additions and subtractions will often be lower in an MSD or CSD constant 

multiplier. 

As an example of CSD multiplication, note that the CSD representation of 7 is 1001, so the 

corresponding multiplier can be derived as follows. 

10012 . x = (10002 - 1)x = 10002 . x - x = (x << 3) - x 

The CSD 7-times constant multiplier requires only one subtracter, in comparison with the two 

adders required for the corresponding binary multiplier mentioned earlier. 

There are several papers that describe the use of low-precision CSD multipliers for FIR filter 

applications [24, 25]. The coefficients typically have two or three non-zero digits, and the re-

sulting coefficient quantisation has been shown to have a tolerable effect on the filter responses 

in several test problems. Scaling of the coefficient set can sometimes reduce the number of 

digits required [25]. 

CSD multiplication is not necessarily the most efficient technique. There are cases where 

reusing a common sub-expression can result in a more efficient implementation. For an ex-

ample of this, see figure 2.8. 

Bernstein [26] proposed a searching algorithm for constant multiplier design. Although Bern- 

stein's algorithm was targeted at machine code implementation, it can also be used for elec- 
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input "H <<:=— 

	
__ 45 output 

input 	u...•<< 2 4 
	40 <<3 I 	output 

Figure 2.8: A suboptimal CSD multiplier: multiplication by 45. 

tronic hardware design. The algorithm iteratively simplifies the constant through addition, sub-

traction, or factorisation. The choice of simplifying operation is made according to a recursively 

calculated cost metric. 

Dempster and Macleod devised the Minimised Adder Graph (MAG) algorithm [27-29]. This 

simultaneously finds optimal constant-coefficient multipliers for many different constants, us-

ing an exhaustive search. As the number of components is increased, the computational time 

required by the MAG algorithm grows at a greater than factorial rate. Dempster and Macleod 

initially discovered optimal solutions for all constant multiplications with constants up to 12 bits 

wide using the MAG algorithm. They later extended their results to all 19 bit constants [30]. An 

exhaustive algorithm was also proposed by Li [31], however Dempster and Macleod claim that 

Li's algorithm can produce sub-optimal results in some cases [32]. The explosive properties 

of the search-space rule out the application of exhaustive algorithms to design multipliers for 

arbitrarily large constants. 

Many of the applications for constant multiplications require the same variable to be multiplied 

by several constants. This introduces the possibility that intermediate values can be shared 

between the multipliers, resulting in further hardware savings. The problem of designing a 

multiplication block that multiplies a single variable by several constants is known as the Mul-

tiple Constant Multiplication (MCM) problem. Efficient multiplication blocks are particularly 

useful for the implementation of transposed form FIR and IIR filters. For example, all of the 

multiplications in the transposed form FIR shown in figure 2.2 can be combined into a single 

multiplication block. 

Bull and HorTocks [33] introduced four greedy search algorithms for the design of multiplica- 

tion blocks, where the choice of algorithm depends upon which types of component are avail- 
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able. The last of the four algorithms proposed by Bull and Horrocks uses adders, subtracters 

and shifts, so it is the most relevant to digital circuit design. This algorithm was improved by 

Dempster and Macleod [34,35]. 

(a) 
coefficient A: 1 0 1 0 0 1 1 1 = Y+100  

coefficient B: 110 10 1011= y+10000 1000 

where y = 10100011 

(b) 	 001 = x+(x<.cz8)+10000 

where x= 1001 

Figure 2.9: Common sub-expression elimination. 

Many algorithms for the design of multiplication blocks are based upon the concept of common 

sub-expression elimination (CSE). A simple but inefficient implementation is found, and an 

efficient implementation is then derived through the elimination of duplicated hardware. In 

many cases, the coefficients for a multiplication block are represented in a binary or signed-

digit form, and common sub-expression elimination is applied in cases where similar patterns 

of digits appear. This is illustrated in figure 2.9. The eliminated sub-expression can be a 

bit-pattern that appears in two coefficients (figure 2.9(a)), or a repeated bit-pattern in a single 

coefficient (figure 2.9(b)). 

Potkonjak et al. [36] proposed the iterative matching algorithm, which is one of the most well-

known CSE-based approaches. This is a greedy algorithm which iteratively finds cases where 

two signed-digit coefficients have two or more identical bits. The hardware for multiplying by 

the identical bits can then be shared, as shown in figure 2.9(a). A weakness of the iterative 

matching algorithm is that it does not eliminate common sub-expressions which are shifted rel-

ative to each other - for example it would not share hardware between the coefficients 11012 

and 110102. The iterative matching approach led to the development of several similar algo-

rithms [37-39]. Mehendale etal. developed an algorithm which is similar to iterative matching, 

but is also capable of eliminating repeated bit patterns within one coefficient [37]. The hier-

archical clustering algorithm developed by Matsuura et al. [38] can eliminate sub-expressions 

between coefficients, even if they are shifted relative to each other. Pako et aL proposed a 

system that can eliminate shifted multibit subexpressions across many coefficients [39]. Hart- 
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ley's algorithm can perform common sub-expression elimination on a FIR filter implemented 

using CSD coefficients [40,41]. It can eliminate sub-expressions that are relatively shifted 

and delayed. Hartley's system attempts to minimise the number of registers. The NR-SCSE 

system [42] is based upon Hartley's system, but also attempts to minimise logic depth. Park 

and Kang [43,44] proposed a CSE-based method that makes use of the fact that there can be 

multiple minimal signed-digit representations for a number. They claim this leads to increased 

efficiency relative to other systems ([36,39,40]). 

Dempster and Macleod's RAG-n algorithm [34] designs multiplication blocks. It builds upon 

their MAG algorithm for optimal multiplier design. The RAG-n algorithm does not perform 

common sub-expression elimination, and it considers a larger variety of designs when compared 

with CSE-based methods. In other words, RAG-n performs a more thorough search, and the 

size of the search space is correspondingly large. In many cases the RAG-n algorithm can 

produce optimal results, however for some coefficient sets a fast sub-optimal search is used. 

The algorithm works by generating hardware for the coefficients, one coefficient at a time. It 

first generates hardware for the coefficients that are easiest to realise. When hardware for a 

new coefficient is inserted into the design, the algorithm attempts to reuse as much hardware as 

possible, by building upon pre-existing intermediate values. 

2.3.4 Linear transforms 

In [36], a variation of the iterative matching algorithm which is capable of generating hardware 

for multiplication-free linear transforms was proposed. A multiplication-free linear transform is 

a linear transform with coefficients limited to the values { —1, 0, 1 }. A general linear transform 

can be created by using the basic iterative matching algorithm to perform the multiplications in 

each column of the transformation matrix, and then summing the rows using a multiplication-

free linear transform. This is illustrated in figure 2.10. 

Dempster et al. introduced an algorithm for the realisation of linear transforms [45]. It is based 

upon the results of the MAG algorithm [27]. The new algorithm is compared against equivalent 

hardware produced using multiple invocations of the RAG-n algorithm [34]. The results are 

mixed; the new algorithm seems to be superior for smaller problems, while RAG-n is superior 

if the matrix size or the precision is greater. The authors note that one option is to use the best 

result from the two different algorithms. 
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Figure 2.10: Designing linear transform hardware using the iterative matching algorithm. 

In [46], Chatterjee et al. proposed several common subexpression elimination methods for 

matrix multiplications, together with a greedy algorithm that iteratively applies these optimisa-

tions. 

Transform-specific optimisations are often devised for important transforms. The higher-level 

optimisation methods attempt to minimise the number of multiplications. The most famous 

example of this is the use of the Fast Fourier Transform (FF1) algorithm [10] for the discrete 

Fourier transform (DFT). Chen et aL [47] proposed a technique for efficiently calculating the 

DCT. This method can be used to calculate the 8-point 1-dimensional DCT using 16 multiplies 

and 26 additions/subtractions. Loeffler et al. devised an algorithm which can perform an 8-

point DCT using 11 multiplications and 29 additions [48]. Arai et al. [49] proposed a method 

which is more efficient if scaling of the DCT outputs does not matter. The algorithm uses 

5 multiplications and 27 additions for the 8-point DCT. There are also several multiplierless 

approximations to the DCT, based upon the lifting scheme [50-53]. The complexity of fixed-

point approximations to the DCT varies depending on the accuracy, so direct comparisons 

between these methods are not always possible. 
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The inverse DCT can be realised using the transposition [11] of any DCT implementation. It 

was found that the complexity of a particular DCT implementation and its transpose are always 

identical, as the number of branches in the transform's flowgraph is always equal to the number 

of additions [14]. Therefore, every efficient DCT algorithm can be converted to an efficient 

IDCT algorithm. 

2.3.5 Existing linear filter design systems 

While section 2.3.3 described several different algorithms for the design of efficient multiplica-

tion blocks, there are also tools that use those algorithms during the creation of complete filter 

designs. FIRGEN [54] is an FIR filter design system that converts a filter specification into a 

chip layout. FIRGEN generates CSD multiplication blocks. Wacey and Bull implemented the 

POFGEN filter design system [55], which is based around the algorithms introduced in [33]. 

2.3.6 Implementation of Volterra filters 

The hardware required for a Volterra filter is likely to be dominated by multipliers. Variable-

variable multipliers are very expensive in terms of area, delay, and power. For this reason, 

Volterra filters are often designed to use the lowest number of multipliers possible for a given 

filter order. 

Direct implementation of Volterra filters is possible, but it can be inefficient if the filter has 

more than a few nonlinear terms. For high-order filters, the number of coefficients can be very 

large, and the complexity of the filter can be reduced through factorisation. 

As linear filters can be realised using the techniques mentioned in section 2.3.3, it is useful if 

a nonlinear filter can be constructed from a combination of linear filters and nonlinear com-

ponents. As quadratic filters are sufficient for many applications, there are many techniques 

that are primarily targeted towards quadratic filter realisation [56]. Schetzen [19] describes 

how high-order Volterra filters can be broken down into several linear filters and multipliers. 

An alternative strategy is to iteratively construct a high-order filter using several lower-order 

sections [57]. Mertzios [58] proposed such a technique, which eventually reduces the filter to 

a set of second-order stages followed by a tree structure. Mertzios also proposed a systolic 

array [59] implementation for quadratic filters. Panicker and Mathews proposed a method for 

the parallel-cascade implementation of Volterra filters [1, 2]. Their method is based upon the 
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Figure 2.11: The decomposition of a Volterra filter proposed by Panicker and Mathews[1, 4. 

recursive decomposition of a pth order filter into multiple filters of order 1 and order p - 1. This 

is shown in figure 2.11. Panicker and Mathews also investigate the inaccuracies introduced in 

truncated representations of these filters. 

The frequency domain analysis of nonlinear filters is a well established field [19]. Techniques 

which are based upon a frequency domain representations of the filter [60, 61] can also be. used 

for filter implementation. The Fast Fourier Transform (FFT) and inverse Fast Fourier Transform 

can then be used to move between the time/space domain and the frequency domain. The com-

bined operation is sometimes more efficient than a direct implementation. This methodology 

can also be used with transforms other than the Fourier transform [60]. 

2.4 Hardware properties and modelling 

This section investigates the ways in which the hardware described in section 2.3 can be mod-

elled. Modelling is of interest because it is essential for evlutionary circuit design. Therefore, 

this section focusses on modelling the circuit properties that can usefully serve as objectives 

during evolutionary circuit design. 
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2.4.1 Pre-placement modelling 

The properties of a digital hardware design are heavily influenced by the particular placement 

and routing that is applied. This is particularly relevant to clock speed, power consumption, and 

circuit area. The properties of a design can be accurately modelled after placement and routing, 

however placement and routing are complex, computationally expensive tasks. It is common for 

placement and routing problems to be NP-complete [62,63]. Even non-optimal placement and 

routing systems necessarily work with a very detailed low-level design representation, leading 

to high computational costs. It is therefore often desirable to able to estimate the properties of 

a design prior to placement and routing. This is possible through the use of statistical models. 

2.4.2 Wire-load modelling 

(a) V o—LIIIiJ---i 	 VOUT  
IN 

T T T 

R 

(b) 	VINo 	I 	 VOUT  

C 

Figure 2.12: Two wire load models. 

A wire on a chip can be characterised as a distributed resistance connected to the substrate by 

a distributed capacitance [64]. Figure 2.12 illustrates two models of this. The transmission 

line model shown in figure 2.12(a) is an accurate representation of the properties of the wire, 

however a simplified model such as figure 2.12(b) can be sufficiently accurate for most prac-

tical power or delay simulation. The loads in a CMOS device are transistor gates, which are 

largely capacitive. Assuming that the wire is a balanced tree, with branches of equal length, the 

combined model in figure 2.13 can be used [65]. 

The above model makes several simplifying assumptions. In particular, the shape of the wire 

and the distribution of the loads are not known prior to placement and routing, so they must be 
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Figure 2.13: A model of a balanced tree wiring structure with N = 3 branches of equal length. 

assumed in that case. The above model also ignores gate leakage current and wire inductance, 

two factors which are likely to become important in future. Nevertheless, it is sufficiently 

accurate that it is used in real-world synthesis systems such as those sold by Synopsys [65]. 

The fanout of a wire is defined as the number of components that are driven by the wire. The 

fanout gives an indication of both the likely load driven by a wire, and also the wire length. As 

wire resistance and wire capacitance are approximately proportional to wire length, they can 

also be estimated. - 

Prior to placement and routing, accurate wire properties are not available, however statistical 

models can provide approximate values. In practice, the expected wire resistance and capac-

itance are usually found from tables of manufacturer-supplied information. These list the ex-

pected wire properties according to design area and wire fanout. The load capacitances are a 

property of the standard cells, so they are known prior to placement. 

2.4.3 Longest path delay 

The delay through a piece of hardware is often defined as the time between the input crossing 

the 50% voltage, and the output crossing the 50% voltage. Propagation delays have two major 

components: delays within components, and delays between components. Intra-component 

delays can be characterised in advance by the technology provider, either by construction and 

measurement, or using an analogue simulation tool such as SPICE. Inter-component delays 
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depend upon the properties of the driver, interconnect, and load. 
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Figure 2.14: Elmore delay models for (a) a chain of RC delays and (b) a tree of RC delays with 

a single driver. 

RC delays are commonly used in delay modelling. They let the delay model take account of 

the electronic properties of the circuit, without introducing excessive computational complexity. 

Elmore delays [66] are a useful technique for estimating the overall delay produced by a net-

work of resistances and capacitances. The Elmore delay for the network shown in figure 2.14(a) 

is given by: 

TD= 	RC, 	 (2.11) 

where R is the sum of the resistances between the input and node i. For tree-structured net-

works, such as the network in figure 2.14(b), the Elmore delay for node i can be calculated as 

follows [67]: 

	

Tj=>RjjCj 	
(2.12) 
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where R 3  is the sum of the resistances in the part of the tree driving both nodes i and j [68-70]. 

For example in figure 2.14(a), the delay between the input and the output is estimated as: 

TD = RAC1 + (RA + RB)C2 + (RA + RB + R)C3 	 (2.13) 

The delay between the input and node 4 in figure 2.14(b) can be modelled as: 

T4=RA(Cl+C2+C3)+ (RA +RD)(C4+C5+C6) 	 (2.14) 

Another important factor for delay models is the transition time. The transition time is defined 

as the time for a signal to go between the 10% and 90% voltage levels during a transition. The 

transition time is important because components will often have a longer delay when given 

inputs that switch slowly. 

input 	 output 	 input 	 output 

(a) x[3:0]0 	 oy[3:0] 	 x[3]o 	ED 	y[3] 

Figure 2.15: Three models of the delay in a 4-bit negator: per connection, per bit and per 
group of bits. 

Figure 2.16: Two four-bit ripple adders, with a combined delay of  full adders, while a single 
adder has a delay of  full adders. 

A simple high-level delay model [71] is illustrated in figure 2.15(a). This model assumes a set 
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of constant delays between the inputs and outputs of the high-level components. This model 

is often inaccurate due to skewing of the arrival times for individual bits. An example of this 

problem is shown in figure 2.16. The problem can be avoided if the model instead considers 

delays between individual bits [71,72], as shown in figure 2.15(b). Computing delays for 

individual bits is a computationally intensive task, so one possibility is that delays can instead 

be computed for groups of bits [721, as shown in figure 2.15(c). Wire-load modelling can also 

be important for high-level delay modelling. 

2.4.4 Power 

Power consumption can be split into static and dynamic power consumption. In current CMOS 

technologies, the power consumption is dominated by dynamic power consumption. Static 

power consumption is likely to become more significant in future technologies [73]. Dynamic 

power consumption is caused by signal transitions, so it is data-dependent. 

Transitions are often a result of glitching. During one cycle of a computation a signal can 

change state several times before assuming a correct value. This happens because of unequal 

signal propagation delays. Glitching can be a notable cause of power dissipation. 

As power consumption is strongly related to the number of signal transitions, the most accurate 

power models are based upon circuit simulation, and use a representative sample of the circuit 

inputs. These models are typically accurate but computationally expensive. Alternatively, a 

power model can be based upon a statistical model of the input data. These models are typically 

computationally cheaper than a full simulation, but give less accurate results. The simplest 

power models ignore the effects of the input data on power consumption. 

VDD 

ILOAD 

 rT - --------- 
II 

JSHORT 
R 	

_L 
Figure 2.17: Dynamic power consumption in a CMOS inverter. 

The dynamic power consumption of a CMOS circuit can be estimated using the model shown 
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in figure 2.17. The power consumption is a combination of the power used to drive the load, 

and the short circuit power consumption that occurs when the pull-up and pull-down transistors 

simultaneously conduct during switching. CMOS transistors are usually designed so that short-

circuit power consumption is largely avoided, and it is often ignored in power simulations. The 

power dissipation due to the charging and discharging of the load capacitance can be expressed 

as follows: 

P = CV Df 	 (2.15) 

where C is the load capacitance, lID  is the supply voltage, and f is the transition frequency. 

Therefore, the power dissipation can be approximated if the capacitance and transition fre-

quency is found for each wire in the design. 

Power dissipation can be estimated by simulating the design, and counting the transitions on 

each wire. The transition counts and estimated capacitances can then be used in equation 2.15, 

giving the overall power estimate [74]. This method is accurate, but also computationally 

expensive. Other computationally cheaper approaches attempt to estimate the power dissipation 

according to the high-level properties of the design. 

Power dissipation is related to design area. The chip estimation system (CES) model [75] 

calculates power as follows: 

P GE(E + VDDCL)fAiTht 	 (2.16) 

where GE. is the area in gate equivalents, Etyp  is the energy consumed by a typical gate, CL 

is the average load, f is the frequency of operation, and Ai,, t  is the activity. Aint  represents 

the proportion of gates that transition in an average clock cycle. Liu and Svensson described 

a similar system, which divides components into several classes, where each class has distinct 

properties [76]. The Power Factor Approximation (PFA) technique [77] estimates the power 

used by hardware components relative to other similar components. It can be stated as follows: 

P = kGf 	 (2.17) 

where k is a constant, f is the frequency of operation. C is measure of complexity specific to 

the class of components. For example, for n-bit multipliers C = n2 . This style of analysis 

was later investigated in greater depth by the same authors [78]. A major weakness of these 

high-level techniques is that they ignore the fact that power dissipation is very data dependent. 
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The dual bit type (DBT) model of power consumption [79] divides data items into upper and 

lower bits. The former represent sign bits which transition whenever the sign of a value is 

changed, while the latter are data bits that can be modelled using uniform white noise. This 

division allows different switched capacitance activity models to be used for each class of bits. 

The DBT model can be used together with high-level components that have a known power 

consumption for each type of bit. 

Other power estimation techniques include those that treat switching activity as a form of en-

tropy [80,81], table based methods [82-84], and methods based on statistical regression in 

terms of the input variables [85]. Many other power estimation systems are described in a 

number of review papers [86-88]. 

2.4.5 Silicon area 

The silicon area required for a circuit is a function of two different areas - the area used by 

components (cell area) and the area used by interconnects (net area). The cell area can be found 

from the type and number of cells in a design. The net area depends upon how the interconnects 

are routed. The net area can be approximated prior to routing according to a statistical model 

of the likely area taken by each wire. The expected area for a wire can be deduced according 

to the fanout of the wire and the area of the design. This method of area estimation is sup-

ported by real synthesis systems [65]. Unfortunately, the necessary data is not always present 

in technology libraries. Alternative ways of estimating the net area include constructive meth-

ods [89] or analytic methods [90,91]. These techniques offer increased accuracy, but also have 

more parameters. Constructive methods in particular can produce very accurate results, but are 

computationally expensive and require extensive knowledge of a technology. 

2.4.6 Other metrics 

Finite precision arithmetic can introduce round-off noise into the response of a digital system. 

Round-off noise is-nonlinear and data-dependent. It is commonly expressed as a signal to 

noise ratio (SNR). While the SNR can be calculated through simulation, the use of statistical 

models [92] is more practical. This thesis does not investigate the problems caused by finite 

arithmetic precision. 

A testability metric measures how well a particular design can be used together with the built- 
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in self-test (BIST) techniques, required in modern chips. Testability is often measured at a 

low-level [93]. These low-level metrics are based around the evaluation of the observability 

and controllability of each node in a design. There are also some useful high-level testability 

measures, which are based on similar principles [94, 95]. 

Routability metrics assess how amenable to placement and routing a particular design is. Rout-

able designs are likely to have shorter interconnects. A routability metric will therefore indicate 

how optimistic or pessimistic preplacement area, delay and power estimates are likely to be. 

Routability can be assessed prior to routing [96, 97], or else during hierarchical routing [98]. 

2.5 Summary 

This chapter has described various techniques for the design, implementation and modelling 

of digital filters. It has documented various ways in which hardware efficient filters can be 

designed. This information will be used in later chapters. 

It was noted that filter designs can be made more efficient through the use of primitive opera-

tors such as adders and shifters, and by reusing intermediate results. Optimal filter realisation 

is'often an intractable problem. In several cases, this has led to the development of greedy 

algorithms and partial searches for near-optimal filter design. 

Interconnect modelling was shown to be a major source of inaccuracy when modelling ASIC 

hardware. Area, delay, and power models all depend upon the properties of the interconnects, 

which cannot be reliably estimated prior to placement and routing. Statistical models enable 

rapid wire modelling, however they have a limited accuracy. 

Accurate hardware models are often computationally intensive. A practical approach to mod-

elling should trade between accuracy and computational complexity as required. 
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Chapter 3 
Evolutionary algorithms and 
stochastic search techniques 

3.1 Introduction 

Many important CAD problems have large multiinodal search spaces, so robust search tech-

niques are essential. Evolutionary algorithms are an appropriate search technique for applica-

tion to some of the hardest digital hardware synthesis problems. 

This chapter describes evolutionary algorithms and other stochastic search techniques, and in-

vestigates how they relate to electronics. Section 3.2 gives a brief overview of some of these 

search techniques. Section 3.3 demonstrates how these techniques can be applied to multiob-

jective searches with conflicting objectives. Section 3.4 describes how evolutionary methods 

can be used to design electronic circuits, and digital filters in particular. 

3.2 Evolutionary algorithms 

The term 'evolutionary algorithm' can be used to describe algorithms from a large set of biolog-

ically inspired stochastic search techniques. The major features of EAs are mutation, hybridis-

ation, and selection, iteratively performed on a population of solutions. Although evolutionary 

algorithms are frequently compared with natural evolution, a more accurate analogy would be 

the selective breeding of plants or animals. Both evolutionary algorithms and selective breeding 

work upon a population, and attempt to achieve improvements in the population by repeatedly 

favouring the reproduction of population members that have desired characteristics. 

Evolutionary algorithms can be classified into several groups, which often overlap. The most 

significant groupings are: genetic algorithms, evolutionary programming, evolution strategies, 

and genetic programming. Evolution strategies are for continuously valued problems, so will 

not be discussed in this thesis. Many EAs have features associated with two or more of the 

above categories. 
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Evolutionary algorithms are now well established as a search technique for difficult problem 

domains. There are many good textbooks describing EAs [99-101], and EAs are the subject of 

several large international conferences. 

Evolutionary algorithms are one part of the larger family of stochastic search techniques. There 

are several other search techniques that can be used wherever an EA can be used, but which 

have different qualities. 

3.2.1 Operation of an evolutionary algorithm 
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Figure 3.1: The operation of an EA. An initial population is created and then iteratively re-
placed. 

First of all, it is useful to introduce some terminology. An EA works on a population, which is 

a set of solutions. Each solution in the population is known as an individual, and is encoded by 

a chromosome; Each chromosome consists of a set of data items known as genes. The genes 

can hold several different values, and each of the possible values is known as an allele. The 

chromosomes are modified by evolutionary operators such as crossover or mutation, which 

will be described later. The individuals are evaluated by an objective function, which calculates 

a fitness value' for each individual. The fitness values are used by a selection operation, which 

chooses which chromosomes can survive and reproduce. The chromosome is also known as 

the genotype, in contrast to the final form of the individual (such as an animal or an electronic 

circuit), which is known as the phenotype. An EA will typically start with a population of 

'The term 'fitness' has been used to denote the value used by the selection operator, whereas 'objective' has 
been used for the value returned by the objective function. The two terms are synonymous for single-objective 
algorithms. 
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randomly generated chromosomes. It then iteratively improves the population. Each iteration 

is known as a generation. The cycle at the right of figure 3.1 shows the operations that a 

simple EA uses to progress one generation. The algorithm stops either after a set number of 

generations, or else when the population is judged to be of satisfactory quality. 

Selection is the process of choosing chromosomes, either for reproduction or for survival. EM 

typically use a stochastic selection operator, where the fittest individuals have the highest prob-

ability of selection. The three most common selection operators are: rank proportionate, fit-

ness proportionate, and tournament selection. Fitness proportionate selection is also known 

as roulette wheel selection. In size-n tournament selection, n individuals are picked from the 

population at random, and entered into a tournament. The winner of the tournament is the in-

dividual with the highest fitness, and the winner is selected. The fittest individual will win any 

tournament it is selected for, while the worst individual can only win if it is selected n times 

for the same tournament. The probability of selection in a tournament is therefore dependent 

on rank within the population. 

The choice of selection scheme can have a major effect on the, performance of an EA. If the se-

lection scheme only weakly favours the best solutions, the EA can run slowly or fail to produce 

a solution. If selection strongly favours the best solutions, the search becomes more greedy, and 

faster, but is more likely to get stuck in a local optimum. This conflict is known as the problem 

of exploration versus exploitation. 

Crossover enables the creation of hybrid chromosomes, as shown in figure 3.2. Crossover takes 

two (or more) parent chromosomes, and produces a child chromosome that contains some genes 

from each of the parent chromosomes. Crossover therefore serves a similar purpose to sexual 

reproduction in nature. In the best case, it can combine good genes from both parents resulting 

in a child chromosome with a greater fitness than either parent. 

Crossover 

1öIiIoIoIoIiIiIiI 	oIiIoIojoIoTj.':j 
_ 

FiIooliiliIiIiI 

Mutation, 
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Figure 3.2: Crossover and mutation as applied to a binary chromosome. 

Mutation is the modification of some of the genes in a chromosome, as shown in figure 3.2. 
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The parallel in nature is the modification of DNA by radiation, chemical processes, or incorrect 

replication. Mutation is useful as a search technique as it enables the creation of new genetic 

material in a population. 

An idea which is central to the development of EAs is the building block hypothesis. Useful 

genes can arise in different individuals within a population, which can later be combined into 

a single chromosome by the crossover operator. In this way, high-fitness chromosomes can be 

rapidly assembled from small genetic 'building blocks'. This principle is encoded by schema 

theory [99], which mathematically describes the investigation and reproduction of such building 

blocks in an evolutionary search. 

An elitist BA is one that explicitly preserves the best chromosomes. The set of preserved 

chromosomes is known as the elite. Elitism is intended to prevent the wasteful elimination of 

good genes. Elitism can aid the rapid discovery of high-quality chromosomes, however it can 

also be detrimental in some cases. Elitism is effectively an extra form of selection that rewards' 

the best individuals in the population. Alternatively, elitism can be considered to be a form of 

evolutionary punishment for non-elite individuals; non-elite individuals are more likely to be 

displaced by the elite and their relatives. Elitism theref6re trades the preservation of good genes 

in the elite, against the loss of good genes from the non-elite. 

3.2.2 Fitness landscapes 

If a chromosome has n genes, then the fitness could theoretically be found for every combina-

tion of alleles, resulting in a fitness 'landscape' in ii + 1 dimensional space. The shape of this 

landscape indicates how hard the problem is; if the landscape is smooth, the problem is likely 

to be simple. If the fitness landscape is rough and has a large number of peaks and valleys, the 

problem is likely to be harder to solve. If the fitness landscape is rough, an explorative search 

algorithm is necessary, otherwise the search is likely to become stuck at a local optimum. In 

contrast, greedier searches perform better if the landscape is relatively smooth and there is little 

benefit in exploring. 

The interaction of different genes in a chromosome is known as epistasis. The degree of epis-

tasis can be used to measure the roughness of the fitness landscape, and hence the complexity 

of the problem. Kauffman proposed the NK model of fitness landscapes [102]. The NK 

model describes an entity with N components (genes), where the fitness contribution from 
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each component depends upon K other components. Rugged fitness landscapes can therefore 

be modelled using an NK model where K is large. 

3.23 A taxonomy of evolutionary algorithms 

3.2.3.1 Genetic algorithms 

Genetic algorithms were originally devised by Holland [103]. The features that typify a genetic 

algorithm are the use of crossover as the major evolutionary operator, and the use of a linear 

binary encoding for the chromosome. Genetic algorithms use mutation as a minor operator, 

which is intended to aid the application of crossover. 

3.2.3.2 Evolutionary programming 

Evolutionary programming (EP) was invented by Lawrence Fogel in the 1960's. It was origi-

nally applied to the design of Finite State Machines (FSM5) [104]. EP does not use crossover, 

and uses mutation as the sole evolutionary operator. 

In contrast to GAs, EP is more robust where there is a high level of epistasis. Crossover tends 

to be destructive when applied to epistatic chromosomes, as it interferes with a large number 

of relationships between genes. Mutation causes only local changes, so it is less likely to be 

damaging. 

3.2.3.3 Genetic programming 

Genetic programming (GP) was originally described by Koza [105]. It uses a chromosome 

encoding that is based upon trees of expressions. GP was originally used for the creation of 

computer programs, interpreting the chromosomes as S-expressions 2  in the LISP programming 

language. The major operator used by GP is crossover, which is performed by cloning the 

parents, randomly selecting a subtree in each clone, and swapping the subtrees. The chro-

mosome encoding used by GP is relatively expressive, and has been applied to a variety of 

problems [105]. 

Koza developed an extension to genetic programming known as automatically defined functions 

2 An S-expression is a representation for a tree of LISP operators and operands. Every program or expression in 
LISP is represented as an S-expression. 
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(ADFs) [106]. An ADF is a sub-expression which can be repeatedly referenced elsewhere in 

the chromosome. This is similar to the use of function calls in programming languages. ADFs 

are useful because they enable the rapid evolution of repeating features in the phenotype. 

3.2.4 Other stochastic search techniques 

Hill-climbing is a greedy search technique. It works on a single solution. At each step in the 

algorithm, .the fitness values of all of the neighbours to the current solution are found. The 

hill-climbing algorithm selects the neighbour solution with the highest fitness. If all of the' 

neighbour solutions have lower fitness than the current solution, the algorithm stops. A hill-

climbing algorithm travels 'uphill' in the fitness landscape until it reaches an optimum in the 

fitness landscape. There is no way of knowing whether it is a local or global optimum. Hill-

climbing is efficient, but not robust. 

A random walk is a simple greedy search technique. It iteratively compares a current solution 

with a modified version of the same current solution, and makes the better of the two into the 

new current solution. Like hill-climbing, a random walk cannot distinguish between 'local and 

global optima. 

Simulated Annealing [1071 is a search technique that is inspired by the behaviour of atoms in 

a hot metal which is being cooled. Simulated Annealing uses a parameter T, which represents 

the temperature of the search. T is used in defining the probability that the current solution is 

replaced with a worse solution. If T is high, the search is explorative, whereas low values of T 

result in a greedy search. T is reduced over time. Simulated Annealing iteratively compares a 

single current solution with modified versions of the same current solution. 

Tabu search [108, 109] was invented by Glover in 1977. It is similar to a random walk, but 

maintains a list of recently visited solutions known as the tabu list. A tabu search will not 

revisit solutions which are on the tabu list. The use of a tabu list encourages exploration of the 

search space, and avoids repeated evaluations of the same solutions. 

The above searches do not make any assumptions about the properties of the solutions or the 

form of the search space. It is very common to include domain-specific heuristics in a search 

algorithm, resulting in a faster or more efficient search. 
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3.2.5 Hybrid search techniques 

The search techniques in section 3.2.4 are generally fast but not robust. This contrasts with 

EAs, which tend to be slower and more robust. It is therefore natural to want to combine these 

techniques, to produce a search that is faster than an EA and which is still reasonably robust. 

One simple approach is to apply a local search to the results of an EA, so that the overall solution 

is definitely a local optimum. An alternative approach is to incorporate a local search into an 

EA, either as an extra operation which is applied to some individuals, or else incorporated into 

the evolutionary operators. In any of these hybrid schemes, the local search can potentially 

incorporate application domain specific heuristics. 

3.3 Multiobjective evolutionary algorithms 

Multiobjective evolutionary algorithms (MOEAs) have been thoroughly researched in recent 

years [110-112]. MOEAs are important because real problems often have multiple conflicting 

objectives. The fact that MOEAs work with a population of solutions lets a single MOEA run 

investigate the entire trade-off surface for a problem. 

3.3.1 Multiobjective problem solving 

A major distinction between multiobjective optimisation and single-objective optimisation is 

the possibility that there might be more than one optimal solution. The set of optimal solutions 

to a multiobjective problem is known as the Pareto-optimal set. 

A point a in an objective space is said to dominate another point b if the following applies: 

a is at least as good as b with respect to all objectives, 

a is better than b with respect to at least one objective. 

If a dominates b it implies that a is always better than b, regardless of which objectives are 

considered most important. This is illustrated in figure 3.3. All of the problems mentioned 

in this thesis are minimisation problems, so 'better' solutions have smaller objective values. 

The Pareto set (Pareto surface) contains the solutions that can not be dominated by any other 

solutions. Every non-Pareto solution is dominated by at least one solution in the Pareto set. 
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objective 
1 

b •  

a •  

I--- '  
I----. 

objective 2 
key: U Solution 

---  Pareto surface 

Figure 33: Point a dominates point b, while both a and bare dominated by some of the points 
on the Pareto surface. 

When dealing with a subset of the possible solutions, such as the results of a multiobjective 

EA, the set of best quality solutions is known as the non-dominated set. 

The non-dominated solution set produced by a multiobjective search algorithm should have 

two important properties. Firstly, the non-dominated set should be as close as possible to the 

Pareto set; in other words, the results should be near-optimal. Secondly, the solution set should 

be as diverse as possible. Diversity can be divided into two key qualities: the non-dominated 

surface should-be as broad as possible, and the solutions should be evenly distributed across the 

non-dominated surface. This is shown in figure 3.4. 

objective 	

/ 

objective 2 

Figure 3.4: Selection pressure towards optimal solutions (solid arrows) and a diverse solution 
set (dashed arrows). 

Many modem multiobjective ranking schemes are based upon the concept of Pareto domina-

tion. These schemes are useful because they enable the discovery of the widest variety of 

solutions. Nevertheless, non-Pareto methods are useful in situations where exploration should 
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be limited to part of the objective space. 

3.3.2 Non-Pareto ranking methods 

objective 1 

objective 2 

Figure 3.5: A concave Pareto surface with Pareto points A, B, and C, where point B is in a 

concavity. 

Some MOEAs rank individuals using a weighted sum of the objectives. This is simple to 

implement, but it has several disadvantages. The most significant disadvantage of this method 

is that it tends to encourage the whole population to move towards one point on the Pareto 

surface. A further disadvantage is an inability to adequately reward solutions on a concave 

section of the non-dominated surface. For example, in figure 3.5, either point A or point C will 

always be ranked higher than point B, for any choice of weights. It is possible to partially avoid 

this problem by nonlinear transformation of the objective values [111]. 

The Vector Evaluated GA (VEGA) proposed by Schaffer [113] divides the population into 

different sub-populations each generation, and performs selection in each sub-population us- 

ing a different objective. Richardson et al. later found this to be equivalent to an aggregate 

method [1121. 

Some methods rely on a way of explicitly defining intermediate goals for evolution. Such a 

system will not cover an entire trade-off surface, but will let evolution concentrate on the part 

of the surface that is of most interest to the user. Fonseca and Fleming described the use of a 

decision maker - an entity that sets intermediate goals during evolution [114, 115]. 

A lexicographic ranking [116] defines an order of precedence for the objectives. Individuals 

are initially ranked according to the highest precedence objective, and, individuals that are equal 

with respect to higher precedence objectives are sorted by successively lower precedence ob- 
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jectives. Lexicographic ranking does not encourage the exploration of compromises between 

different objectives, but it is useful when some objectives are clearly more important than oth-

ers. 

3.3.3 Pareto ranking methods 

Pareto-based ranking methods are not heavily biased towards one part of the Pareto surface. 

They should be used together with a method of rewarding diversity, so that the population does 

not converge on one part of the trade-off surface due to factors such as genetic drift. 

Fonseca and Fleming proposed a ranking scheme where the rank of each chromosome is one 

more than the number of chromosomes that dominate it [114, 115]. This scheme was used in 

MOGA, their multiobjective EA. 

objective 
A 

0 	: 	 U ......3 
•- 	: 	: 	U.. 

21 ............ 
u..... 

1............ 
0I ---- i  

0l---i 

objective B 
key: • Individual 

---  Non—dominated individuals 
Dominated ranks 

Figure 3.6: The ranks assigned to a population by the non-dominated sorting algorithm. 

Goldberg proposed the non-dominated sorting algorithm [99], which is a ranking scheme based 

on domination: 

let r = 0; 
initialise set P containing the whole population; 
while (P is not empty) do { 

find the non-dominated set, N, for set P; 
assign rank r to all members of N; 
remove all members of N from P; 
let r = r + 1 

} 

9] 
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An example of the results of using this algorithm is shown in figure 3.6. Note that the non-

dominated solutions are assigned a rank of zero. 

Horn et aL proposed the Niched Pareto GA (NPGA) [117]. This uses a type of tournament 

selection which is based on domination. In each tournament, two candidates are chosen from 

the population at random. A comparison set of individuals is also randomly picked from the 

population. If one of the candidates is dominated by the comparison set, but the other is not, the 

latter wins the tournament. In other cases the winner is chosen according to a diversity metric. 

3.3.4 Population diversity 

There are two types of diversity: variable-space (genotypic) diversity and objective-space di-

versity. MOEAs normally require results that are spread across a trade-off surface, so objective-

space diversity is essential. Genotypic diversity indicates an explorative search. There is often 

correlation between these two types of diversity - in particular, genotypic diversity can lead 

to diversity in the objective space. 

Most MOEAs employ some kind of mechanism that explicitly encourages diversity. This coun-

teracts the tendency for the population to converge on a small area of the objective space, due 

to genetic drift and variations in the fitness landscape. Two of the most common methods of 

rewarding diversity are crowding and fitness sharing [99, 110]. Crowding encourages diversity 

by ensuring that each new child individual replaces the most similar individual from a randomly 

chosen set of pre-existing individuals. Sharing introduces a penalty for individuals that are sim-

ilar - it is designed so that n identical individuals will be given a 1/n share of the original 

fitness value. Fitness sharing only occurs when individuals are less than a set distance apart, 

typically defined by the parameter share•  Goldberg and Richardson define a sharing function, 

s(d), which is defined in terms of the distance d between two solutions [110]: 

(3.1) = 	 share s(d) 
{ 1 - 	if d 

0, 	 otherwise. 

The sharing function has value 1 at distance 0, and value 0 at distance Usha,. If the parameter 

c is set to 1, then s(d) declines linearly with distance. s(d) Is used when calculating a niche 

count ni  for solution i: 

n=s(dj). 	 (3.2) 
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This is an estimate of the number of other solutions in the same evolutionary niche as solution 

i. A scaled fitness value can then be calculated as follows: 

fi 	ni 
	 (3.3) 

Both of the above techniques can measure the distance between solutions in either the objective 

space or the variable space. 

3.3.5 Multiobjective elitism 

The best individuals in an MOEA population are the non-dominated set. As the number of 

objectives is increased, it becomes increasingly likely that a particular individual will be in the 

non-dominated set. Many MOEAs have a limited elite size, and choose a diverse selection 

of non-dominated individuals if the non-dominated set is larger than the elite size. There are 

several methods for choosing a diverse elite - see [110] for examples. 

3.4 Evolutionary algorithms and electronics 

Digital circuit synthesis involves many complex tasks. Many of these tasks are optimisation 

problems with large, multi-modal objective landscapes. Many of the optimisation problems 

are computationally intractable, in which case a globally optimal solution can be unobtainable. 

In addition, there are often multiple, possibly conflicting objectives. The complexity of these 

problems encourages the use of powerful heuristic search algorithms, of which EAs are one 

example. 

3.4.1 The evolution of electronic designs 

EM have been used for a very wide range of tasks related to circuit 'synthesis. Examples 

include circuit design [118, 119], circuit optimisation [120, 121], physical design [122], and 

test pattern generation [123]. There has been extensive research into the evolutionary design 

of both analogue [124] and digital circuits. Digital circuit designs have been evolved using 

arithmetic components [125], at gate level [118, 126], and at mask level [127]. Circuits can be 

evolved for fully custom processes [125] or for programmable devices [119, 128]. 
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3.4.1.1 Gate-level design 

The evolution of gate-level circuits has been thoroughly investigated by a number of researchers. 

This has resulted in some successes, such as the discovery of area-efficient designs [129]. The 

successes have been somewhat balanced by the poor performance of many of the algorithms, 

particularly in terms of the number of evaluations required. A major problem is that the com-

plexity of the evaluation procedure can have 0(272)  growth for circuits with n inputs. 

Koza used the evolution of gate-level circuits as a test problem for genetic programming [105], 

hovever these circuits are area-inefficient because they do not reuse common subexpressions. A 

similar technique was described by Vemuri and Vemun in [130], and applied to the creation of 

a 4-bit parity checker and a 3-bit majority voter. Vemuri and Vemuri mentioned the use of mul-

tiplicative performance constraints in the fitness calculation, and demonstrated the use of area 

and delay constraints. Higuchi et al investigated the use of GAs for the on-line configuration 

of programmable logic devices [119], using the chromosome to directly represent the hardware 

configuration bits. This approach was applied to a wide variety of real-world problems [131]. 

Miller and Thomson [118, 132] evolved circuit designs, using chromosomes that represent the 

configuration of 2-D arrays of gates. Vassilev et al. used a related method to discover several 

circuit designs that use fewer gates than the best conventionally designed equivalents [129]. 

Arslan et al. evolved gate-level circuit netlists, using a linear chromosome representation that 

is capable of representing a wide variety of acyclic netlists [126]. The crossover operator in-

cluded a repair operation that fixed broken connections. A similar approach was later used by 

Hounsell and Arslan [7, 133]. 

Hemmi et al. evolved a bit-serial adder, and the sequential controller for an artificial ant, 

as example problems for their AdAM evolutionary design system [134, 135]. AdAM evolves 

sequential boolean circuits. Miller evolved digital filters that are based upon combinatorial 

gate-level components [136, 137]. This has the advantage that the filters can be more area-

efficient than conventional designs, but the disadvantage that the filter response can be noisy 

and severely nonlinear. 

3.4.1.2 High-level RTL optimisation 

Bright considered the use of EAs for the power optimisation of pre-existing register transfer 

level (RTL) netlists [121, 138-140]. Bright's system is only capable of modifying a circuit 
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design in ways that preserve the original functionality of the circuit. Pipelining is an example 

of one such modification. Landwehr and Marwedel [120] proposed an evolutionary system 

which performs algebraic transforms to a data-flow graph (DFG), with the aim of reducing the 

area and delay. Safiri et al. proposed a GP-based system for common subexpression elimination 

in multiplierless digital filters [141]. 

3.4.13 High-level design 

There are a number of evolutionary systems that evolve coefficient sets for filters. Coefficient 

sets have been evolved for FIR filters [142], hR filters [143, 144], and FIR filters restricted 

to power-of-two coefficients [145]. While correct frequency response is a common objective, 

other objectives such as avoiding roundoff noise have also been investigated [144]. Redmill et 

al. used a GA to find the coefficient sets that can be most efficiently realised using the RAG-n 

heuristic algorithm [4]. 

Suckley described a GA system which constructs cascade FIR filters using a library of primi-

tive multiplierless filter stages [3]. The GA selects the stage types and also the power-of-two 

coefficients. The performance of these filters is measured in the frequency domain. Wade and 

Roberts describe a GA system that orders the stages in a cascade FIR filter [146], also measur-

ing fitness in the frequency domain. Wade et al. [147] describe a more advanced version of this 

system that evolves the stage types and the power-of-two coefficients for cascade filters. The 

fitness is a weighted sum of the error in the filter frequency response, the area and the delay. 

Bull and Aladjidi proposed a method for evolving multiplication blocks [148]. This can be used 

for the evolution of FIR filters directly from a frequency-domain specification, using the error 

in the frequency response to determine the fitness. This EA uses a linear chromosome which 

directly encodes the connection of edges and the applied shifts. 

The EGG system [149] has been used to evolve carry-save multiplication blocks [150] for a 

user-supplied coefficient set. The evolved multiplication blocks can be used in FIR filters. 

Hounsell and Arsian investigated the use of a high-level programmable architecture for the im-

plementation of fault tolerant multiplierless FIR filters [133, 151]. This platform has functional 

units which can perform operations such as addition, subtraction or shifting. Filter fitness was 

measured by comparison with a user-supplied coefficient set. 
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Erba et al. [125, 152] describe a system which is capable of evolving the VHDL rietlist for 

a multiplierless FIR filter from a frequency specification. This system has two objectives: 

functionality and power. Functionally correct individuals are ranked according to the power 

objective, while functionally incorrect individuals are ranked according to the functionality ob-

jective. The functionality objective is based upon the frequency response of the filter. An error 

value is found for each frequency band. These error values measure how far the frequency 

response diverges from the specified values for that frequency. If the frequency response meets 

the specification in that band, the error is zero. The functionality objective is based upon the 

sum of the errors at all frequencies. The power objective assumes a fixed power consump-

tion for each component type. The component power consumption figures are estimated in 

advance, so the power model is computationally cheap. The authors also describe the use of a 

distributed approach which reduces the algorithm's run-time [153]. The filters are constructed 

from a variety of high-level components, such as adders and shifters, however the components 

are always followed by a register. As all components include a register, there is no need for a 

separate accumulation block. The filters typically have an asymmetrical frequency response, 

however the authors observe that the evolved filters are still approximately linear-phase in the 

pass band. A linear chromosome was used. Each component is described by three genes - 

one gene selects the component type, while the other two genes determine what the component 

inputs should connect to. This system was demonstrated on the problem of designing decima-

tion filters for use in analogue to digital converters. It was later applied to FPGA-based filter 

implementation [154]. 

Sharman etal. described the evolution of nonlinear signal processing algorithms using GP [155]. 

The fundamental nonlinear operations included multiplication, division and a single-input non-

linear function. Algorithms featuring delays and recurrence could be evolved. This system was 

tested on a nonlinear channel equalisation problem. The use of programmable hardware with 

high-level functional units was proposed by Murakawa etal. [156, 157]. Each functional unit in 

this hardware platform could perform operations such as addition, multiplication, division, or 

a sine function. The functional units operate on floating-point values. This hardware platform 

was simulated with real-world problems relating to communications channel equalisation and 

predictive image compression. 
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3.4.1.4 Multistate sequential hardware 

The evolved circuits described in section 3.4.1.3 are sequential, but perform the same operation 

in every clock cycle. It is often desirable for circuits to perform different operations in different 

cycles. To do so, a circuit requires a controller, which is typically a finite state machine (FSM). 

One of the earliest applications of EAs was the evolution of Finite State Machines by Fo-

gel [104]. Fogel evolved FSMs for tasks such as prediction of the next symbol in a series of 

symbols, and prediction of prime numbers in the series of positive integers. Higuchi et al. also 

evolved simple FSMs, including a 3-bit counter circuit [119]. EAs have also been applied to thô 

problem of finding the FSM state assignment that results in the most efficient hardware realisa-

tion [158-160]. In [161], All et al. used an evolutionary state assignment scheme, together with 

the evolutionary combinatorial logic design system described in [162], and evolved sequential 

boolean circuit designs. 

Scheduling problems are complex problems which are often NP-complete [5]. The scheduling 

problem which is most relevant here is the problem of scheduling the execution of a dataflow 

graph on a limited number of computational units. Typical objectives are the minimisation 

of both the number of computational units and minimisation of the overall latency. EAs are 

often used for the discovery of near-optimal solutions to this problem [163-167]. BA-based 

scheduling systems can be designed to perform scheduling and data-path synthesis simultane-

ously [165-168], in which case the objectives can incorporate the cost of the interconnects and 

multiplexors that are required for a design. Zhao and Papachristou developed a system which 

evolves datafiow graphs so that they can be implemented on a simpler datapath [169]. A com-

mon feature of EM used for scheduling is the use of reordering evolutionary operators such as 

the order crossover operator [170]. 

3.4.2 Assessing functionality 

Any EA which is used for the creation of circuit designs must have some way of ensuring that 

the designs function correctly. In many cases this can be a complex problem. The difficulty 

stems from the large number of evaluations typical of most EM, something that is especially 

troublesome if the individual evaluations require a significant amount of computation. Some 

EM avoid this problem by starting with a population of functionally correct designs and ensur -

ing that all modifications preserve functionality [121]. 
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EAs can be divided into those that assess functionality using the actual hardware (intrinsic 

evaluation), and those that simulate the hardware (extrinsic evaluation). Intrinsic evaluation is 

limited to programmable hardware. Extrinsic evaluation can be applied to any class of hard-

ware, but requires a hardware simulator, which can be slow or inaccurate. 

In many cases, the functionality of an evolved circuit can be completely characterised. For 

boolean circuits, the complete characterisation can be represented by a truth table, whereas for 

filter circuits a coefficient set can be found. This is a useful approach, if it is possible. In - 

particular, it can detect whether a design entirely meets a specification. The problem with this 

approach is that the amount of characterisation information, and the characterisation process, 

can often be large. This is particularly problematic for truth tables, which double in size with 

each extra input. Once a design has been characterised, it is relatively simple to derive an 

objective measure from the characterisation information. For boolean design, the number of 

correct truth table entries can be used [105, 1711. When designing signal processing hardware, 

the sum of differences between the actual coefficients and the desired coefficients can be used 

as an objective measure [151]. 

There are many situations where a design cannot be completely characterised, either due to the 

complexity of the characterisation operation, or because of the nature of the hardware being 

evaluated. In that case, the functionality of the circuit can be estimated using a representative 

sample of the possible inputs [136, 155]. 

This thesis largely focusses on the use of complete characterisation when assessing function-

ality. Specifically, this thesis focusses on functionality measures which are derived from the 

impulse response of a design. 

3.4.3 The genotypic representation of digital circuits 

3.43.1 Purpose and limitations of a representation 

The genetic representation of a digital circuit design has two main functions. The first is to 

enable the description of some desirable solutions to the problem, so that the problem can 

actually be solved. The second function of a representation is to be amenable to evolution - 

the evolutionary operators must be capable of making constructive changes to a chromosome. 

The choice of representation can have a large effect on the fitness landscape, so the development 

of a good chromosome encoding is important. The chromosome encoding defines the type of 
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genetic operators that can be used. 

There are two main classes of chromosome encoding in common use: direct encodings and 

developmental encodings. The former directly encode all of the properties of the design in the 

chromosome, making the process of converting from the genotype to the phenotype relatively 

straightforward. The latter produce the phenotype using a more complex iterative procedure, 

inspired by growth processes (ontogenesis) in nature. 

3.4.3.2 Direct representations 

Direct representations are the class of chromosome representations that have been most ex-

tensively studied. A direct representation encodes each circuit attribute with a specific gene. 

Mutation then corresponds to a single-point change in a circuit design - for example, changing 

a component type or rerouting a connection. Crossover corresponds to combining parts of one 

design with parts of another, something that is often very destructive. The problem is that there 

are often strong relationships between components, which correspond to strong relationships 

between genes in a direct representation. Direct representations therefore tend to be epistatic. 

Linear representations are widely used. They are easy to operate on, and many off-the-shelf 

EAs use a linear chromosome. Binary gene encodings are the most common, but higher-radix 

encodings are also used. 

Genetic programming has been applied to the creation of both digital and analogue circuits. 

In [105], Koza mentioned two boolean circuit design problems multiplexer design and full 

adder design, however the GP-based methods he describes are only capable of producing tree-

structured circuit designs. Similar methods are described in [172]. Yanagiya evolved boolean 

functions using a version of GP that automatically shares common subexpressions [173]. Yana-

giya devised a crossover operator that recursed backwards through the directed graphs encoding 

the two parent chromosomes. Hemiui et al. used GP to evolve hardware designs according to a 

grammar for a hardware description language [134, 135]. Uesaka and Kawamata used GP for 

the design of low coefficient sensitivity digital filters [174]. Graph structures could be created 

because the leaf nodes in the chromosome could refer to the outputs from other nodes in the 

chromosome. Sharman et al. used a similar method when evolving nonlinear filter algorithms 

using GP [155]. 

Cartesian genetic programming [175] uses a 2-D matrix of cells. The inputs to the design are 
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connected to one side of the matrix, and the outputs to the other side. Each cell can take input 

data from the elements in some of the previous columns. Uniform crossover is used. The 

possibility of mutating the dimensions of the matrix has been investigated [6]. 

Poli devised a grid-based chromosome representation called parallel distributed genetic pro-

gramming (PDGP) [176]. This uses a crossover operator that selects a random node from one 

parent, and copies it, and all of the nodes it depends on, to a randomly chosen position in a clone 

of the other parent. This system was shown to have superior performance when compared with 

conventional GP, for some test problems. 

Graphs are a very natural representation for both digital and analogue circuits. As circuits 

designs are effectively a type of graph, the conversion between genotype and phenotype can be 

trivial. 

There are several ways to perform crossover when using a graph chromosome. The simplest 

methods choose some nodes in each parent, and splice the chosen nodes together. Genetic 

network programming (GNP) evolves graphic computer programs, using a uniform crossover 

operator that randomly selects nodes from one or other parent [177, 178]. Sims devised a multi-

point crossover technique that alternates between the parents when choosing nodes [179]. Al-

ternatively, crossover can be performed by copying a subgraph from one graph to another. This 

has the potential to be less disruptive than node-level crossover, if fewer edges are spliced. The 

Evolutionary Graph Generation (EGG) system [149] evolves circuit designs using a graph chro-

mosome, and performs crossover by swapping subgraphs between the two parents. Sims [179] 

devised a second crossover technique known as grafting, in which a node is randomly chosen 

in each parent. These nodes, and, all the nodes that they depend on, form subgraphs which are 

swapped between the parents. Finally, some of the most sophisticated systems meta-evolve the 

graph crossover operators during the operation of the algorithm [180, 181]. 

3.4.3.3 Developmental representations 

Developmental representations were inspired by observations of growth in nature. The defini-

tive feature of a developmental representation is that the chromosome encodes instructions for 

the construction of the phenotype, whereas other representations tend to directly encode the 

properties of the phenotype. The hope is that, by exploiting the presence of regularity in the 

phenotype, a complex phenotype can be described by a relatively simple developmental geno- 
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type. 

Lindenmayer Systems (L-Systems) [182] are one of the simplest models of organic growth. 

An L-system models the grow of a structure with a set of symbols and a set of replacement 

rules. An L-system starts with a single symbol and applies the replacement rules over several 

time steps. This results in a structure that grows and becomes more complex over time. As a 

very simple example, Lindenmayer modelled the growth of algae using an L-system with the 

symbols A and B, and the rules (A -f AB) and (B -f A). It produces the following strings 

of symbols in the first 7 time-steps: 

t=O:B 

A 

AB 

ABA 

ABAAB 

ABAABABA 

ABAABABAABAAB 

L-systems can be used to create a wide variety of structures, including lists, matrices, trees and 

graphs. 

Kitano described a method of evolving graphs which is based upon the formation of adjacency 

matrices using L-systems [183]. Kitano applied this technique to the topological design of 

neural networks, and demonstrated superior performance when compared to direct evolution 

of the adjacency matrices. Kitano's experiments were examined and repeated by Siddiqi and 

Lucas, who did not find a clear difference between the two.approaches [184]. Haddow et al. 

proposed the use of L-systems for digital circuit evolution [185], but did not investigate this 

idea in great depth. Boers et aL used context-sensitive L-systems for the design of neural 

networks [186], with results that suggest better performance than direct encodings. 

Gruau proposed a Cellular Encoding, which represents graphs using sets of trees [187]. It can 

be used with GP, and was originally applied to the design of neural networks. The graphs are 

constructed from a primitive graph containing a single node - the ancestor cell. The encoding 

then defines a grammar for iteratively replacing single cells with more complex structures. 

Edge Encoding [188] is a similar scheme, which differs from cellular encoding in that it mainly 

focuses on the creation of new edges rather than new nodes. 
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Lohn and Colombano designed a developmental encoding for analogue circuits [124]. It is 

based on the iterative creation of components by an automaton. Most of the components that 

it uses have two terminals, with transistors being the only exception. The encoding therefore 

focuses on two-terminal components, and places some restrictions on how transistors can be 

created. This could present problems were this encoding used with digital circuits, where two-

terminal components are relatively rare. 

Several studies have investigated FPGA-based circuit development [128, 189-1931. This puts 

some constraints on how a circuit can grow - in particular, circuit growth is often constrained 

by the availability of unused modules in the FPGA. The development of FPGA-based designs 

can be similar to the growth of structures in a cellular automaton. 

Miller and Thomson created a developmental encoding called developmental Cartesian genetic 

programming [194]. This is based upon Cartesian genetic programming [175], but rather than 

directly encoding the circuit, the chromosome instead defines the functions that control the iter-

ative development of a cell (component). In each iteration, a cell can move, change connections, 

or split in two. The action that a cell takes depends on its position, connections, and function. 

The development process starts with a single cell, and runs for a set number of iterations. 

Some recent work closely emulates natural ontogenesis. Gordon and Bentley developed a sys-

tem that was inspired by the regulated transcription of proteins in nature [195, 1961. It was used 

to program an FPGA, and was tested on the 2-bit adder problem. Enzyme genetic program-

ming [197, 198] is based upon enzyme binding. Each component input has a specificity for a 

particular data source - this measures the input's affinity for a particular connection. Initial 

versions of this technique used the chromosome to encode a numeric specificity, for every pos-

sible connection, whereas [198] introduced a more compact encoding. The latter encoding lets 

a component input have a specificity for the outputs from particular types of subcircuit, rather 

than just particular component outputs. In most cases, a component input is connected to the 

data source with the largest specificity, however there are situations where this is not possible, 

for example if it would result in unclocked feedback. 

3.5 Summary 

EAs are a robust, powerful method for finding near-optimal solutions to complex problems. 

They are often applied to NP-complete problems, including tasks related to digital synthesis. 
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It is important to limit the number of objective function evaluations that an EA performs, so 

that the search can finish in a reasonable time. One way of improving performance is to use a 

hybrid technique, that combines the EA with a fast local search. Alternatively, the chromosome 

encoding can be chosen so that epistasis is avoided - a non-trivial problem that is under inves-

tigation by many researchers working in a variety of problem domains. The latter approach has 

led to recent growth in the use of developmental encodings. 

A multiobjective EA can use a diverse population to simultaneously sample multiple solutions, 

covering an entire trade-off surface in a single run. To do this, an MOEA must avoid biasing 

population growth towards one part of the objective space. This is achieved through the use of 

selection schemes based on Pareto dominance, and through the use of techniques that explicitly 

encourage population diversity. 

Evolutionary methods have been applied to many electronic circuit design problems. These 

include designing the connectivity of a circuit, selecting components, and choosing component 

parameters. The large number of distinct synthesis problems has resulted in a similarly large 

number of different approaches. 
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Chapter 4 
Evolutionary algorithms for FIR filter 

synthesis 

4.1 Introduction 

A conventional constant-coefficient filter design process involves converting a frequency do-

main filter specification into a set of time domain coefficients, and then designing a filter with 

those coefficients. A problem with this system is that, in many cases, the hardware costs depend 

upon the coefficient set, but the hardware costs are only known after the hardware is designed. 

Thus it is unlikely that a filter will have a coefficient set that can be effiôiently implemented 

in hardware. It would be useful if the coefficients could be chosen so that the filter can be 

efficiently implemented, while still meeting the frequency domain specification. One approach 

to this problem is to restrict the filter coefficients to values that can be easily modelled, for ex-

ample sum of power-of-two values [24]. Alternatively, a measure such as the number of CSD 

digits in the coefficient set can be used to guide the choice of coefficients [199]. These, methods 

are not ideal, as they either restrict the choice of filter implementation or else limit the accuracy 

of the cost information. A more reliable technique is to make the filter design process iterative. 

Filters can be repeatedly designed, and the cost information from each successive filter design 

can be used to guide the design of subsequent filters. The search space for such a search can 

be large and multimodal, so powerful search techniques such as simulated annealing or ge-

netic algorithms are required. Redmill and Bull developed a GA that evolves filter coefficient 

sets [4,200], using the RAG-n algorithm [34] both to assess the hardware cost of a filter, and 

also to generate filter designs. An alternative method is for the chromosome to encode an actual 

circuit design rather than a coefficient set. This eliminates the need to have separate algorithms 

for choosing the coefficients and for designing the filter. The search algorithm can build upon 

both the coefficient sets and the filter designs that were found in previous iterations. 

This chapter introduces a multiobjective EA system for the design of multiplierless linear- 

phase FIR filters. This system evolves filter designs according to a user-supplied frequency- 

domain specification. The algorithm has three objectives: a filter design should have the correct 
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frequency response, it should use the minimum possible silicon area and it should have the 

lowest possible longest-path delay. In order to evaluate these objectives, the EA models the 

properties of actual hardware components. The end product is a set of netlists, which represent 

the evolved filters using the Verilog hardware description language. The EA was written in the 

C++ programming language. 

There are several papers that investigate the evolution of filters according to a frequency do-

main specification. Suckley [3] developed a GA that constructs a cascade FIR filter from a set 

of primitive filter stages. Redmill et al. devised an algorithm that is very effective at finding 

minimum-adder solutions to the filter realisation problem [4,200]. The algorithm evolves the 

coefficients and uses a heuristic search to design the filters. Optimisation based on a more 

accurate area estimate, or with respect to a different objective, might necessitate using a dif-

ferent heuristic search technique. Extending this approach to multiobjective problems could be 

difficult, particularly if the heuristic algorithm would need to search a larger and more com-

plex search space. Bull and Aladjidi developed a system for the evolution of multiplierless 

transposed direct form FIR filters [148]. They evolved filters in both the time domain and the 

frequency domain. The frequency domain example used functionality as the sole objective, 

although the time domain example included an area term in the fitness score of designs that 

met the functional specification. Erba et al. recently developed an EA that evolves nonlinear 

phase FIR filters, with low power consumption as an objective [125, 152, 154]. The filters are 

constructed from a library of primitive components. Each component includes a register, so 

unclocked feedback is impossible. 

The contribution to knowledge from this chapter has two aspects. Firstly, an evolutionary sys-

tem for the design of area- and delay-efficient transposed direct form FIR filters is described. 

This is the first time such a system has been developed. Secondly, this chapter introduces a set 

of novel heuristic evolutionary operators. These evolutionary operators treat the chromosome 

as a graph. The use of graph chromosomes and graph operators is investigated further in later 

chapters. 

4.2 Problem description 

A linear filter can be specified in the frequency domain by defining a range of acceptable attenu- 

ations at each frequency. An example is shown in figure 4.1. More complex filter specifications 
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Figure 4.1: An example filter specification - the response of the filter must be in the shaded 
area at all frequencies. 

can divide the filter response into a larger number of bands. 

multiplication block 

i 	a, -••- 	 a.\ ..7 

Er  
accumulation block 

Figure 4.2: The multiplication block and the accumulation block in a transposed direct form 

FIR filter. 

A transposed direct form FIR filter can be divided into a multiplication block and an accumu-

lation block, as shown in figure 4.2. The multiplication block multiplies the input by a set of 

coefficients, while the accumulation block is the series of additions, subtractions and delays 

that produces the final result. Recall from section 2.2.1 that if the coefficient set is symmetrical, 

the filter will have a linear phase response in the pass band. The design problem is to devise 

a filter design which meets a given filter specification. This includes choosing the number of 

taps, finding coefficients, designing a multiplierless multiplication block, and deciding how the 
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outputs from the multiplication block are used by the accumulation block. Generally, a design 

should not only meet the specification, but also be efficient. The definition of efficiency will 

vary depending upon the situation, however common objectives are low area utilisation, low 

power consumption, or fast operation. In this chapter, design area and longest-path latency 

have been used as objectives. 

4.3 System description 

4.3.1 Objective calculation 

There are three objectives: functionality, silicon area, and longest-path latency. All three of the 

objectives are minimisation objectives. The functionality objective measures how well a design 

functions, relative to the user-supplied filter specification. As the functionality objective is a 

minimisation objective, the term 'functional error' will be used. 

+50dB 
+47dB key 

specification: - - - 
response: 

error: 

+20dB 

	

OdBI 	 I 	 I1 

	

0 	 0.125 	 0.25 	 0.5 
normalised frequency 

Figure 4.3: Calculation of the functionality objective, which is defined as the largest deviation 
from the specification (in this erample at f = 0.125). 

The functionality of a design is evaluated as follows. The input to the design is set to '1' 

and the data is propagated through the multiplication block, giving the coefficient set. The 

coefficient values are then Fourier transformed, giving the frequency response of the design. 

The frequency response is then compared with the user-supplied filter specification. The error 

in each frequency band is calculated as the difference in decibels between the actual filter 

response and the closest value that is acceptable to the user. The overall functional error of the 

filter is defined as the largest of the frequency band error values. If a filter has a response that 
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Component Area Latefl 
(NAND gates) (ns) 

16-bit adder 196.85 10.77 
16-bit register 85.28 - 

Table 4.1: Component costs 

is within the user-specified ranges in all frequency bands, then the functional error of the filter 

will be zero. The process of calculating a functionality objective is illustrated in figure 4.3. 

The silicon area and longest-path delay of a design are estimated using values taken from a real 

0.35um technology library. These values are shown in table 4.1. Subtracters are modelled using 

the adder properties. Shifts can be implemented in the interconnects, so do not introduce area 

or latency costs. The values in table 4.1 only describe 16-bit components, so the properties of 

other components are approximated using linear extrapolation. 

The area of a design is estimated by summing the corresponding component area estimates. 

The interconnect area is ignored. The longest-path latency is estimated by finding the largest 

sum of component delays corresponding to a path through the design. The delay model also 

ignores the interconnects, a factor that is significant because wiring is often a major source 

of delay. Both the area model and the delay model are computationally cheap but relatively 

inaccurate in comparison to other hardware models. 

The component widths are automatically chosen so that overflows are impossible. The filter 

output is therefore wider than the input. In some cases the lower bits of a value are always zero, 

so they can be omitted. 

Circuits that have an unclocked feedback loop in the multiplication block will not work cor-

rectly. These circuits are severely penalised by having all three objective values set to a very 

large number. This was found to be sufficient to ensure the rapid elimination of such circuits. 

4.3.2 The chromosome 

A fixed-length linear chromosome has been used. Each gene in the chromosome is an inte-

ger. The genes represent connections, shifts,. and signs. There are two sets of genes: those 

representing operations in the multiplication block, and those representing the outputs from the 

multiplication block (taps). Each operation in the multiplication block consists of one adder, 

57 



input 
(index 3) 

itput 

Evolutionary algorithms for FIR filter synthesis 

input 0, source 
input 0, shift 
input 1, source 

Ir 	—input l,shift 	-- 

131331012 1131001 
operation 0 operation 1 operation 2 
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Figure 4.5: A breakdown of the contents of the chromosome. 

possibly also with left-shifts on the adder inputs. The chromosome encoding is illustrated in 

figure 4.5. Figure 4.4 illustrates how the linear representation is converted into a circuit design. 

Connections are described by an index that denotes the source of the connection; either the 

output of an operation, or the input to the entire design. Shifts are described by non-negative 

integers indicating the number of positions to left-shift a value. In the case of tap shifts, the 

quantity indicates both the shift, as well as the sign of the tap. The sign indicates whether the 

tap should be added, subtracted or ignored by the accumulation block, which is equivalent to 

multiplication of the coefficient by 1, 0 or -1. A single integer is used to encode both attributes. 

A tap with left-shift s and sign n E {—1, 0, l} is encoded as (s + 1)n. 

While the chromosome encodes a fixed number of operations and a fixed number of taps, not 

all of the genes are expressed. Taps are ignored if the sign/shift gene is set to zero, leading to a 

reduction in the size of the accumulation block. Operations are ignored if they do not contribute 

to the output of the entire circuit. For example, in figure 4.4 operation 1 is not expressed, as 

no tap or operation depends upon its result. This means that the number of components in the 

design is not fixed by the size of the chromosome. 

4.3.3 Initialisation 

The designs in the initial population are randomly generated. All of the component inputs are 

connected to the circuit input, and assigned random shifts. All of the taps are connected to 

random components. The taps are not shifted, and are randomly set as added, subtracted, or 

ignored. The initial population therefore includes a wide variety of genes. 
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4.3.4 Evolutionary operators 

Children are either created through crossover, with probability Pc,  or else through cloning and 

mutation. Two-point crossover was used. Children created through cloning are mutated a ran-

dom number of times. The number of mutations per child has a binomial distribution, achieved 

by performing 10 trials with a mutation probability of 10%. The expected number of mutations 

is therefore one. The use of a probability distribution for the number of mutations leads to 

the creation of identically cloned children, and also children with multiple mutations, both of 

which can be useful. 

swap 

. Dfa 
duplicate 	 ± 

scale  

Figure 4.6: The heuristic mutation operators. 

There are six mutation operators. The particular mutation operator is chosen at random when-

ever a mutation is performed, and all of the operators have the same probability. The set of 

mutation operators includes a 'conventional' mutation, which changes the value of a gene, and 

also several 'heuristic' operators. The heuristic mutation operators treat the chromosome like 

a graph, and attempt to perform operations that are likely to be useful. The heuristic mutation 

operators are illustrated in figure 4.6. 
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Conventional mutation - A single gene is modified; genes encoding connections are recon-

nected to a random source, while shifts are incremented or decremented. 

Scale value - An existing module or output is chosen, and a new, adder is placed before 

it. The new adder adds a randomly shifted, randomly chosen value to the pre-existing 

input value. The new value is likely to be larger, so the shift on the pre-existing input is 

decremented with probability 50%. 

Insert component - An original component and a new component are chosen. One input 

to the new component is connected to the output from the original component, and the 

Other input is given a random source and shift. Components and outputs that are driven 

by the original component are changed to be driven by the new component, with 50% 

probability. 

Remove component - A component is chosen at random. One of the inputs to this compo-

nent is chosen. Everything driven by the component is reconnected to the chosen input 

net, and given a random shift. 

Duplicate component - Copy a randomly chosen component, and then change the connec-

tions that are driven by the original component so that they are driven by the new corn-

portent, with 50% probability. 

Swap inputs - Swap the inputs to a component. This operator is used because some of the 

other operators do not treat the two component inputs identically. This operator is neutral 

with respect to all three objectives. 

4.3.5 Ranking and selection 

The three objectives are combined using the non-dominated sorting algorithm described by 

Goldberg [99]. This algorithm assigns a rank to each individual, where the non-dominated 

individuals have the lowest-numbered rank. 

Selection based purely on the non-dominated sorting algorithm would produce a trade-off sur -

face between the three objectives. There 'are two problems with this. The first problem is that 

the trade-off surface is likely to be very large, so the population will be very sparsely distributed 

across the surface. The second problem is that there is a strong bias towards small, fast, non-

functioning designs. In other words, it is far easier to evolve a design that contains few compo- 
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Figure 4.7: Selection: (a) by ran/c, and (b) by both rank and functionality. 

nents than it is to evolve a design that functions well. The most extreme result of this trend is 

the regular evolution of filters where the input is connected directly to the output. The solution 

to this problem is to use tournament selection and to randomly judge 50% of the tournaments 

according to rank, and the other 50% of the tournaments according to functionality'. This is 

illustrated in figure 4.7. The combined effect of the two different selection pressures is to move 

the population towards the most functional end of the non-dominated surface. Note that the 

two different types of selection (rank and functionality) do not conflict, as the most functional 

solutions are also non-dominated. The population can therefore be expected to converge on the 

most efficient, most functional designs. 

If a tournament is a draw, the winner is instead chosen according to a diversity measure. The 

diversity measure is equal to the number of population members that have the same objective 

values as a particular individual. This metric has been termed the niche count. 

4.3.6 Elitism 

The elite set is moved directly from the intermediate population to the new population. One 

individual is entered into the elite set from each of the 10 most functional non-dominated points 

in the objective space. If there are fewer than 10 non-dominated points, a smaller elite set is 

used. Elitism ensures that the best solutions are never eliminated. 

'Alternating between different types of selection is similar to the multiobjective technique used by VEGA [113], 
which is itself similar to aggregate methods. 
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module fir(in,out,clk,rSt), 
input clk,rst; 
input [7:0] in; 
output [15:0] out; 
wire [12:3] wO; 

wire [18:3] w45; 
register_8bit fr12 (w12,clk,ifl,rSt); 

register_16bit fr2l (w21,clk,w44,rst); 
adder 10 aO ( wO,{{2{in[7]}},ifl},{{1{irl[7]}},ifl,l'b0},l'bO) 

adder 12 al (w1,{{1{in[7]}},ifl,3'b0},{{4{in[7]}},in},'bO) 

adder-14 a2 (w2, {wi, 2 'bO}, {{6{in[7]}} , in}, 1 'bO); 
adder 12 a8 (W8,{{2{w0[12]}},W0},{W0,2'bO},i'bO) 

adder-11 a36 ( w36,{{1{wO[12]}},wO},{(2{W12[7]}},W12,i'bO}ri'bO) 
adder 11 a37 (W37,1{2{ifl[7]11,ifl,l'b0},wl3,1'bl) 
adder 13 a38 (w38,{{l{w8[14]}},w8},{{2{wi4[13]}},w14}li'bl); 

adder-14 a39 ( w39,{{i{w8[14]}},W8,l'bO},{{i{wi5[15]}},wiS},l'bi) 

adder-15 a40 ( W4O, - {{l{W2[16]}},W2},{{1{w16[16]}},W:1.6},l'bfl 
adder 15 a41 (W4l,{(2{W8[14]}},W8,1'b0),wl7,l'bl); 

adder-16 a42 (w42,{{4{w8[i4]}},W8},{{i{wi8[i7]}},
8}fl'); 

adder 16 a43 (w43,{{7{in[7]}},in,i'b0},W19,i'bi) 

adder _i6a44 (W44,{{6{wO[12]}},W0},W20,i'bO) 
adder-16 a45 (W45,{{7{in[7]}},ifl,l'b0},W21,i'b0) 
assign out = w45; 
endinodu le 

Figure 4.8: An example filter netlist. 

43.7 The evolutionary algorithm 

The EA is a (p + A) system, where an existing population of p individuals is expanded through 

the creation of A children, and the intermediate population of p + A individuals must then 

compete for the p places in the new population. The advantage of a (p + A) system is that good 

individuals can survive for many generations, in contrast to a (p, A) system, where the children 

replace the parents every generation. The experiments in this chapter have used p = A = 100. 

When expanding the population, parents are chosen at random. When reducing the population 

size, the new population are chosen through the selection and elitism operations described 

previously. 

4.3.8 Circuit synthesis 

Verilog netlists are produced for the evolved circuit designs. Each netlist contains a structural 

description of a design; in other words, a netlist describes a set of high-level components, and 
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Figure 4.9: An evolved filter 

the interconnections between them. An example is shown in figure 4.8. The same evolved filter, 

with coefficient set, is shown in figure 4.9. 
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Figure 4.10: Filter specifications. 
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Setting Value 

Population 100 
Generations 20000 
Crossover 50% 

Components 10 
Maximum taps 19 (10 symmetrical) 

Input width 8 bit 

Table 4.2: EA settings. 

4.4 Experiments and results 

4.4.1 Evolution of filters 

Some test problems are shown in figure 4.10. These are low-pass and high-pass filter specifi-

cations, which attenuate by 30, 40 and 50dB in the stop bands. Filter designs that completely 

meet these specifications have been termed 'correct'. 
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Figure 4.11: The number ofpopulations containing a correct solution, by generation. 

The BA was applied to the problems in figure 4. 10, using the settings shown in table 4.2. Twenty 

runs were performed on each problem. The results are shown in table 4.3 and in figure 4.11. 

The EA was able to find correct solutions for all of the problems. The predicted area and delay 
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Problem Successful runs I Firstcorrect generation 

30dB high-pass 19 377 
30dB low-pass 20 349 
40dB high-pass 14 806 
40dB low-pass 16 1066 
50dB high-pass 3 3905 
50dB low-pass 1 17296 

Table 4.3: EA performance. 
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Figure 4.12: Area and delay results for low-pass (left) and high-pass filters (right). 

properties of the designs are shown in figure 4.12. 

4.4.2 Crossover rate 

Given the high level of epistasis inherent to digital circuit design problems, operators that make 

extensive changes to the chromosome are likely to be deleterious. For this reason, the usefulness 

of the crossover operator was investigated. The two 40dA filter evolution experiments specified 

in figure 4.10 were repeated with the crossover probability Pc  set to 0% and 25% rather than 

the original 50%. As mutation is applied when crossover is not, the lower crossover rates also 

correspond to increased mutation rates. The results are shown in figure 4.13. 

Crossover seems to have a slightly detrimental effect on the speed of the algorithm, although 

this effect is somewhat ambiguous with the high-pass problem. The stochastic nature of the 

LA makes evaluating the quality of the results difficult. All of the different sets of runs were 

successful at finding low-latency solutions. The low crossover runs appear to show a greater 

variation in the properties of the results, although this is mostly apparent in the higher numbers 

of low quality solutions produced. The low crossover runs seem to have been particularly 
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Problem SPW/IM Evolved 
Adds I Registers Adds I Registers 

30dB low-pass 16 8 11 10 
30dB high-pass 14 8 10 8 
40dB low-pass 19 10 16 10 
40dB high-pass 19 10 14 12 
50dB low-pass 28 12 24 16 
50dB high-pass 16 12 20 16 

Table 4.4: Comparison of component counts for evolved and conventional filters. 

successful at producing low-area solutions to the low-pass problem. The conclusion that can be 

drawn from these results is that crossover is not essential, and that it might actually be mildly 

detrimental. Alternatively, the low crossover runs might be benefiting from increased mutation 

rates. 

4.4.3 Comparison with other systems 

In this section, the EA is compared with the results from some other systems. These results 

should be interpreted with caution for two reasons. Firstly, the EA introduced in this chapter is 

a multiobjective system, and as such it attempts to strike a balance between the area and latency 

of a design. Minimum area or minimum delay solutions represent extreme points on such a 

trade-off surface. Finding an extreme point is not just a test of an algorithm's ability to find. 

near-optimal solutions, it is also a test of how thoroughly the algorithm explores the trade-off 

surface. Thus, finding a minimum area or minimum delay solution is a harder problem for a 

multiobjective EA. A second point is that, for reasons of comparison, this section describes 

areas in terms of component counts, and delays in terms of adder delays. The results therefore 

do not include any gains achieved through using a more accurate hardware model. Indeed, if 

area can be saved while increasing the component count, or if the delay can be reduced while 

placing more components on the longest path, then using a more accurate model would become 

counterproductive. Figure 4.14 shows the modelled area plotted against the component count 

for all of the circuits evolved in section 4.4.1. It can be seen that the variations between the two 

models are larger than one component area. The area required for a component is not constant, 

but instead depends on the type and width of the component. 

The 'Fxp.Equiripple' design method of the Cadence SPW filter design system was used 
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Figure 4.14: Comparison of component counts with the modelled areas. 

to generate quantised equiripple coefficient sets for the filter specifications given in figure 4.10. 

The iterative matching algorithm suggested by Potkonjak et al. [36] was then used to implement 

the multiplication blocks for these filter designs. These designs are referred to as the SPW/IM 

designs. These two sets of designs are compared in table 4.4. The implementation of the 

iterative matching algorithm was not able to compute area results using the same model as the 

EA, so the results are given in terms of adders and registers rather than area. The number of 

registers corresponds to the filter order, so it can be seen that the coefficient sets produced by 

SPW tend to have a lower order than the evolved equivalent. The evolved filters generally use 

fewer adders than the SPWIIM filters. Provided that registers have a low area relative to adders, 

the evolved designs will be the most area efficient. This is the case for the library components 

described in table 4.1. - 

The iterative matching algorithm is designed to produce area-efficient multiplication blocks, 

however it does not attempt to reduce the longest path delay. When minimising the delay, there 

is no reason to use a multiplication block rather than. discrete multipliers. Table 4.5 shows 

the delays required by the filters previously calculated using SPW. The filters are implemented 

using CSD multipliers with balanced trees of adders. The latencies are measured in terms 
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Problem SPW/CSD I Evolved 
30dB low-pass 3 2 
30dB high-pass 3 2 
40dB low-pass 3 3 
40dB high-pass 3 2 
50dB low-pass 4 6 
50dB high-pass 3 3 

Table 4.5: Comparison of the number of adders on the longest path, for evolved and conven-
tional filters. 

Band I Frequencies Constraint 

0 0-0.1 6p=0.1 
1 0.15-0.2 8s = 0.3 
2 0.2-0.3 58 = 0.01 
3 0.3-0.5 ös = 0.1 

Table 4.6: A filter specification from Suckley [3].. 

of adder-delays. The accumulation block always causes an additional delay of one adder 2 . 

Table 4.5 compares the SPW/CSD results with the fastest evolved designs. While the evolved 

50dB low-pass filter is slower than the SPW/CSD equivalent, the evolved solutions are fastest 

for three of the other problems. 

The most notable difference between the evolved and non-evolved designs is that the evolved 

designs have a smaller multiplication block, but have a higher order and hence a larger accu-

mulation block. The longest path delay is entirely defined by the multiplication block, so the 

evolved designs tend to be faster. The reduction in the size of the accumulation block is also 

sufficient to offset the increased size of the accumulation block, leading to a reduced area. The 

SPW-produced filters have coefficient sets that are not easily realisable. In contrast, the evolved 

filters have coefficients that can commonly be expressed with one or two signed digits. This 

leads to the observed differences in size of the multiplication blocks. 

The EA was tested with a filter specification that was used by Suckley [3], and also by Bull and 

Aladjidi [148]. The filter response is shown in table 4.6. In table 4.6, op denotes an acceptable 

deviation in the pass band, and Os denotes the desired attenuation in a stop band. Bull and 

2There are some cases where the longest path of a design can be reduced by merging the accumulation block 
addition into the multiplication block. For example a filter with response H(z) = 21 + z 1  could be implemented 
as y(t) = (x(t - 1) + 24x(t)) +(2 2X(t)  + x(t)) instead of y(t) = x(t - 1) + (24x(t) + (22x(t) + x(t))); the 
former has 2 adders on the longest path, while the latter has 3. This optimisation was not investigated here. 

fill 
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Problem Results from [4] 	Evolved 
Adds Registers Adds I Registersj 

10dB 3 2 3 2 

20dB 9 8 12(11) 8 

30dB 17 16 20(19) 18 

Table 4.7: Comparison with results from Redmill et al. [4]. 

Aladjidi evolved a filter which matches this specification, and which uses 12 adders in the 

multiplication block. According to the impulse response mentioned in [148], the filter requires 

19 registers and a further 13 adders in the accumulation block, resulting in a total requirement 

of 19 registers and 25 adders. Bull and Aladjidi used functionality as the sole objective; they did 

not attempt to minimise the area or delay of their filters. Suckley mentioned an evolved solution 

to this problem that uses 11 adders in a cascade filter, however the number of registers was not 

documented. The best filter produced from 20 runs of the EA introduced in this chapter is a 

14th order filter that requires 19 adders and 14 registers. It has a longest-path delay of 3 adders. 

This filter is estimated to have an area of 4242 1um2  and a delay of 25.6ns. The multiplication 

block requires 5 adders, however one of these adders performs a multiplication by 2, so the 

total number of adders could be reduced to 18 through strength reduction. 

A comparison with the results in [4] is shown in table 4.7. These results relate to low-pass 

filters, with the pass band at 0-0.15 and the stop band at 0.25-0.5. The maximum pass band 

ripple was set equal to the maximum stop band ripple (op = Os). The numbers in brackets 

in table 4.7 denote cases where an adder can be removed by strength reduction. The system 

developed by Redmill et al. gives results with lower component counts. 

As noted above, some of the evolved designs include redundant components. One example of 

this problem is the use of an adder to perform a multiplication by a power of two - in which 

case the adder can be replaced with a shift (strength reduction). A second example happens 

when two different componçnts always calculate the same value, in which case one of the two 

components can be eliminated. In both of these cases it is trivial to eliminate the redundant 

components. This could be done by an extra operator which is either applied during evolution, 

or else applied to the final population. 
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4.5 Summary 

This chapter has described an evolutionary algorithm for designing linear-phase multiplierless 

FIR filters. The filters are designed with respect to a frequency domain specification. Circuit 

area and longest path latency are also minimisation objectives for the BA. The EA produces a 

set of solutions, and in most cases there are multiple non-dominated solutions. In some of the 

examples it was seen that the trade-off surface can account for as much of 20% of the absolute 

area and delay values. 

The area and delay values are modelled using values derived from actual arithmetic compo-

nents. The current netlists use unlimited precision for calculations, and as a result, the compo-

nent widths were often found to vary by more than a factor of two in a single circuit. For this 

reason, the hardware models take account of variations in component width. 

The EA sometimes produces multiplication blocks that contain some redundant hardware. One 

possibility is the inefficient use of an adder to multiply a value by 2. A second possibility is the 

recalculation of the same sum by two different adders. These inefficiencies only seem to affect 

a minority of circuits, nonetheless they are undesirable. Their continued selection suggests that 

the EA is not always capable of eliminating the inefficiency. One possibility is to explicitly 

identify and correct such circuits, either during or after evolution. 

The usefulness of the crossover operator was investigated. It was found that crossover can be 

disabled without compromising the speed of the EA or the quality of the results. 

The BA can compete with a conventional system based upon calculating a coefficient set, and 

then synthesising a filter using either iterative matching or CSD multipliers. In terms of com-

ponent counts, it was found to give results superior to the results in [148], but inferior to the 

results in [4]. 

In conclusion, this chapter has described a multiobjective EA for the evolution of efficient 

multiplierless filter hardware designs. The BA makes use of realistic area and delay models 

in order to evolve hardware that is targeted at a particular technology. This chapter is also a 

first step in investigating the more general problem of evolving high-level signal processing 

hardware using a graph chromosome that directly represents the structure of the circuit. 
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Chapter 5 
The evolution of sequential circuits 

5.1 Introduction 

This chapter investigates the evolution of a class of sequential circuits. These sequential circuits 

perform a single computation over two or more cycles. While the circuits evolved in chapter 4 

could be considered sequential due to the inclusion of registers, they only had one state of 

operation and performed the same task in every cycle. The circuits evolved in this chapter 

are controlled by state machines (albeit simple ones), and go through several states in order to 

perform a single computation. 

There are several existing systems that perform scheduling using an EA [163-167].. These 

systems perform scheduling, allocation and binding for all operations in a data-flow graph 

(DFG). They take a DFG as input and produce a sequential circuit design as output. EAs have 

also been used for pipelining data-flow graphs [121], again starting with a functionally correct 

DFG. In contrast, the system introduced in this chapter performs scheduling in parallel with 

evolution of the functionality of the circuit. 

There are two objectives to the work in this chapter. The first, more minor objective is to demon-

strate a technique that can reduce the area required for a particular task. The major objective is 

to demonstrate the evolutionary design of some members of a useful class of sequential circuits. 

It is hoped that the techniques introduced in this chapter will enable the evolution of circuits 

that can only be practically realised using sequential hardware. 

This chapter builds upon the software developed in chapter 4. 

5.2 Multistate sequential circuits 

This chapter investigates circuits that perform one computation over a set number of cycles. 

These circuits are controlled by a state machine such as those shown in figure 5.1. An n-state 

circuit can process one set of data every n cycles. The circuits can contain multiplexors that 
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state 

state 	
0 	state 

state 

Figure 5.1: 2-state and n-state state machines. 

are controlled by the state machine, and which enable the reconfiguration of the datapath every 

cycle. Ideally, the area requirement of an n-state sequential circuit could approach 1/n of the 

area of an equivalent combinatorial circuit, however the savings are limited by the need for 

extra registers and multiplexors. 

In this chapter, the EA system introduced in the previous chapter is modified so that the mul-

tiplication block operates sequentially. The multiplication block therefore uses a faster clock 

speed than the accumulation block. The initial investigation focuses on the development of 

2-state multiplication blocks, but n-state multiplication blocks are investigated later. 

5.3 2-state hardware 

input 

output 

state 

Figure 5.2: A 21-times multiplier using two additions, performed using one adder, two MUXs 
and one register. 

The datapath for a 2-state multiplication block differs from combinatorial designs in two ways. 

Firstly, each component input can connect to a different location in each state, in which case 

a multiplexor is necessary. A multiplexor is also necessary if an input requires different shifts 
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in different cycles. Common subexpression elimination can prevent the creation of multiple 

identically configured multiplexors. Secondly, a register is required whenever a value that is 

produced in cycle 0 is used in cycle 1. It should be emphasised that the requirement for registers 

and multiplexors varies from circuit to circuit, and that better designs use few such components. 

An example is shown in figure 5.2. 

5.4 Modifications to the EA 

operations 	 taps 

The packedop op op op op op tap tap tap 
chromosome: 1 2 3 4 1  5 6 1  1 2 3 

rip 
op op 
3 5 

op op op tap tap tap 
2 4 6 123 

cycle 0: 

cycle 1: 

Adder 1 Adder 2 Adder 3 

Figure 5.3: How the position of an operation within the chromosome is used to encode schedul-
ing and binding information. 

The EA used in this chapter is a modified version of the EA introduced in chapter 4. The 

following changes were performed to enable the evolution of multistate hardware. 

• The chromosome was changed to include scheduling and binding information. 

• An extra evolutionary operator, which modifies the scheduling information, was intro-

duced. 

• The functions that perform hardware modelling and netlist generation were updated to 

reflect the nature of the hardware being generated. 

When designing a combinatorial circuit, there is a one-to-one correspondence between com-

ponents and operations. With sequential hardware, each component can perform a different 

operation in each cycle. The chromosome can either represent a dataflow graph (DFG), or else 

it can directly represent a circuit. If the chromosome represents a dataflow graph, the genes 

represent operations, and the chromosome must also include some scheduling and binding in-

formation. It should then be relatively easy to modify the scheduling and binding of individual 
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operations. If the chromosome directly represents a sequential circuit, the genes describe com-

ponents. The schedule is then implicitly coded through the explicit use of components such as 

multiplexors. The problem with a component-based strategy is that changes to the chromosome 

have effects in every cycle, so the search landscape will be extremely multimodal. Therefore, 

a DFG-based strategy was chosen. The scheduling and binding information for each operation 

was encoded by the position of the operation within the chromosome. Odd-numbered oper-

ations are performed in cycle 0, and even-numbered operations are performed in cycle 1, as 

shown in figure 5.3. 

The interpretation of the genes that represent connections was altered, so that operations cannot 

depend on future results. Inputs that depend upon future values are remapped to the past or 

present, using the modulus operation. The inputs for all operations in cycle c are interpreted as 

originating in a cycle modulo c + 1. 

In order to allow the rescheduling of the operations in a chromosome, the 'swap operations' 

mutation operator was introduced. This randomly chooses two operations within a chromo-

some, and swaps their positions, causing the scheduling and binding of the operations to also 

be swapped. The 'swap operations' operator will also change other genes within the chro-

mosome, so that connections are not broken and the functionality of the circuit is unchanged. 

However, if an operation is moved to an earlier time-slot, data dependencies might still lead to 

a change in circuit functionality. The complete list of mutation operations is now as follows: 

• Conventional mutation. 

• Scale value. 

• Insert component. 

• Remove component. 

• Duplicate component. 

• Swap inputs. 

• Swap operations. 

When a mutation is applied, a single operator is chosen at random from the above list. As 

before, crossover is applied in 50% of cases, and mutation is applied in the other 50% of cases. 
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Component 	Area 	Delay 
(NAND gates) (nanoseconds) 

16-bit adder 196.85 10.77 
16-bit register 85.28 - 

16-bit 2-1 MUX 37.28 7.59 

Table 5.1: Component properties. 
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Figure 5.4: Correct results for the test problems. 

Assessment of functionality is unchanged from the previous chapter, with the addition of the 

causality constraints mentioned above. Unlike the system introduced in the previous chapter, 

all components are the same width. This simplifies modelling and netlist generation. The 

hardware modelling system first calculates where registers and multiplexors are needed. The 

delay model must consider both adders and multiplexors as sources of delay. The longest-

path delay is calculated for each cycle independently, and the largest delay value defines the 

longest path delay for the whole circuit. The area model now reflects the fact that registers and 

multiplexors are used in the multiplication block. The component properties are derived from 

the same 0.35um library as used in chapter 4— they are shown in table 5.1. 

5.5 Results 

The modified EA was tested on the problems that were previously introduced in figure 4.10. 

It produced correct results for all of the problems except for the 50dB low-pass problem. The 

properties of the results are shown in figure 5.4. Note that the longest path delay refers to the 

time for a single cycle, so twice that time is needed to process a data item. 
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clock 

(b) 

clock 

(c) 

Figure 5.5: Critical paths. The last adder (shown in grey) is always part of the accumulation 
block 

It was found that the limited set of possible values for the circuit latency restricts the number 

of non-dominated circuits that the system can produce. The fastest designs that were produced 

are actually pipelined circuits. This is because multiplexors introduce extra latency. Without 

multiplexors, the circuit can operate quickly, but cannot make the most efficient use of the 

available adders. Speed is bought at the cost of increased area. The thee fastest types of circuit 

are as follows: 

• A pipelined circuit with one adder on the longest path (figure 5.5(a)). 

• A pipelined circuit with two adders on the longest path (figure 5.5(b)). 

• A circuit that has two adders and one multiplexor on the longest path (figure 5.5(c)). 

According to the costs in table 5.1, these circuits have a delay of 10.77ns, 21.54ns, and 29.13ns 

respectively. Possible critical paths for these circuits are shown in figure 5.5. Note that the last 

adder belongs to the accumulation block, so it is only used in the second cycle. This adder is 

shown in grey in figure 5.5. Its output will either go to a register, or to the output from the 

whole circuit. 

Each sequential multiplication block can be converted to a functionally equivalent combinato- 

rial multiplication block. The ratio of the areas of these two designs gives a measure of the 
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Figure 5.6: Comparison of sequential and equivalent combinatorial areas for evolved multi-

plication blocks. 
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Figure 5.7: Comparison of sequential and equivalent combinatorial areas for evolved filters. 
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Problem. SPWJIM original EA multistate EA 
Adds Registers Adds] Registers Adds Registers MUXs 

30dB low-pass 16 8 11 10 8 9 4 
30dB high-pass 14 8 10 8 8 10 3 
40dB low-pass 19 10 16 10 13 15 4 
40dB high-pass 19 10 14 12 13 14 2 
50dB low-pass 28 12 24 .16 - - - 
50dB high-pass 16 12 20 16.  18 19 6 

Table 5.2: Component counts for three different filter implementation techniques. 

Scheme I Adders I Registers I MUXs 
I Conventional n I I 	0 

2-state n 
2 

3n 
I 	+ 1 + 1 

Table 5.3: Components required for an n-th order accumulation block 

area saving that is achieved through the use of the sequential design. The combinational and 

sequential areas of the multiplication blocks from the correct designs are plotted in figure 5.6. 

In the best case, using the sequential scheme leads to an area saving of 28%. This figure relates 

to the multiplication block alone. When the area of the accumulation block is also included, the 

area savings are smaller, as shown in figure 5.7. This is because the area of the accumulation 

block is the major part of the area of a design, and it has the same area in both cases. The 

design for a multistate accumulation block will be described in section 5.6. When the area of 

the accumulation block is included, the best saving is about 7%. In some cases, the sequential 

designs have a greater area than the combinatorial equivalent - although, as noted above, this 

can be due to the evolution of pipelined designs. 

In the table 5.2, the results from table 4.4 are extended to include the component counts for 

the multistate system. The results show that the multistate EA requires lower numbers of 

adders than the original EA, but increased numbers of registers and multiplexors. The non-

evolutionary system is superior to either EA for the 50dB high-pass problem, but requires 

larger numbers of adders in other cases. If the component properties from table 5.1 are used, 

the multistate EA gives the smallest results for both 30dB problems and for the 40dB low-pass 

problem. 
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input 	 input input input input 
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Note: Clock speed is twice data rate. 
Inputs are valid in state 1. 
Output is valid in state 0. 

Figure 5.8: A 2-state accumulation block 

5.6 A multistate accumulation block 

The EA system described in this chapter uses a conventional accumulation block, however a 2-

state accumulation block could be used instead. A multistate architecture for the accumulation 

block is shown in figure 5.8. The costs of these two schemes are compared in table 5.3. When 

using the properties in table 5.1, the 2-state accumulation block makes a 13% area saving, 

assuming m is large. The 2-state scheme introduces an extra multiplexor delay onto the longest-

path of the accumulation block. 

5.7 Operation over many cycles 

The system for creating 2-cycle sequential circuits was extended, so that circuits that operate 

over many cycles could be created. The number of cycles that the design should use could be 

defined at the start of evolution. 

The calculation of area and delay information becomes much more complicated in the multi-

cycle case. This is because the most efficient way of organising the registers and multiplexors 

is no longer obvious. A poor-quality solution to these problems was simply to ignore the extra 

area and latency introduced by the registers and multiplexors, and only to take account of the 

adders in the circuit. This reduced the complexity of the circuit modelling system, but also 
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prevented accurate computation of the circuit area and delay. Circuit netlists could no longer 

be generated. 

When evolving filters that operate over three or more cycles, it was found that the system 

would often create inefficient designs. This is because the number of available operations is 

often poorly matched to the number of required operations. This, combined with the extra area 

that will be needed for registers and multiplexors, leads to a very low benefit, when applied to 

the FIR POF circuit creation problem. As an example of this problem, consider the scheduling 

of four additions over two cycles, and, also over three cycles. In the 2-cycle case, two adders 

are used, and each adder performs two additions. In the 3-cycle case, two adders must still be 

used, but only four of the six available additions are needed. This means that the 3-cycle case is 

no more efficient than the 2-cycle case. In fact, the 3-cycle case might be less efficient, as more 

area could be dedicated to registers and multiplexors. This inefficiency is most notable when 

there are few components. As the number of cycles is increased there will be a point where 

it becomes most efficient to use a general purpose circuit, composed of a register file and an 

arithmetic unit. 

5.8 Application to other problems 

Other types of sequential circuit can be evolved using similar techniques. The main require-

ments are that the problem should be amenable to the evolution of solutions, and the compu-

tational components should have a large area relative to registers and multiplexors. Problems 

that require larger numbers of operations could be suitable for implementation with hardware 

that runs over more than 2 cycles. 

5.9 Summary 

This chapter has demonstrated an EA system that evolves sequential circuits. The EA cre-

ates a fuhctionally correct design, while simultaneously scheduling and binding the individual 

operations performed by the design. The EA evolves FIR filters that use sequential multipli-

cation blocks. The filters were evolved according to a frequency-domain specification, with 

multiplication blocks that operate over 2 cycles. When compared with equivalent combinato-

rial designs, multiplication block area savings of up to 28% were demonstrated. The large size 
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of the accumulation block limits the effectiveness of reducing the multiplication block area - 

use of the 2-state multiplication blocks led to best-case filter area savings of about 7%. For this 

reason, a 2-state accumulation block was investigated, with expected area savings of up to 13%. 

Other types of sequential circuit could also be evolved, using similar methods. Multistate cir-

cuit implementations are most useful when computational components are expensive in terms 

of area, and when registers and multiplexors are relatively cheap. The requirement for an accu-

mulation block, and the consequent limitation of the area saving, is peculiar to the multiplierless 

FIR filter design problem. 

The evolution of circuits that operate over more than two cycles was investigated. It was noted 

that the circuits are most efficient when the number of operations is a multiple of the number 

of states, and that this becomes less likely as the number of states is increased. The problem 

of creating efficient multistate storage and switching networks is complex, and has not been 

addressed in this thesis. 
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Chapter 6 
The evolution of multiplierless linear 

circuits 

6.1 Introduction 

This chapter introduces an evolutionary algorithm for the implementation of multiplierless lin-

ear transforms. The evolved circuit designs can have multiple inputs and multiple outputs. Each 

circuit design can be characterised by a transformation matrix. 

Linear transforms are used as a building block for an enormous variety of signal processing 

applications. This includes practical applications in areas such as data compression, signal 

conditioning, and signal analysis. A particular advantage of linear systems is the ease with 

which they can be characterised, which is something that is also useful in the context of this 

chapter. 

While the work in this chapter was inspired by the work in chapter 4, the EA is a completely 

new implementation. 

6.2 Problem statement 

A linear transform can be specified as follows: 

y=Hx 
	 (6.1) 

where x and y are column vectors containing the N inputs and M outputs, and where H is an 

(M x N) matrix of coefficients. If H is unknown, it can be found by applying a series of inputs 

Xl, , XM, such that element n of Xn  is one, and all other elements are zero. The outputs then 

correspond to the columns of H. 

The problem of implementing a linear transform can be stated as follows. Given a user-supplied 

ideal response matrix H2 , construct a linear transform circuit with the actual response matrix 
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Ha, such that Ha  H2 . The circuit should be as efficient as possible. In this chapter efficiency 

is defined as low area consumption and a short longest path delay. 

6.3 The evolution of linear transforms 

63.1 The chromosome 

Figure 6.1: A chromosome and the corresponding circuit design. 

A graph chromosome has been used. Each node in the graph represents an addition. Each node 

has two inputs. The inputs to a node can be negated and shifted. Depending on which inputs 

are negated, the node can correspond to one of the following implementations: 

an adder, 

a subtracter, 

an adder followed by a negator. 
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The inputs to a node can connect to any circuit input or node output. The circuit outputs can be 

shifted, and negators can be inserted at the circuit outputs. In other words, a node can calculate 

a value +28u + 2tv , where u, v are the node inputs and s, t e Z select how many bit-positions 

the input values should be shifted. A circuit output can take values of the form ±28u, where u 

is the value at a node or input and s is the shift. 

Figure 6.1 shows an example chromosome and the corresponding circuit design. This repre-

sentation is more flexible than the linear representation introduced in figure 4.4. The graph 

representation introduced here can encode subtractions and negations, and represent designs 

which have multiple inputs and multiple outputs. 

A cyclic graph corresponds to a circuit that contains an unclocked feedback loop, which is 

undesirable. If a chromosome is found to contain a cycle, the chromosome is replaced with a 

trivial design that is guaranteed to be acyclic. In this way the population is kept acyclic. 

6.3.2 Initial population 

The initial population contains designs where each output is directly connected to a randomly 

selected input. No shifts or negations are used. The designs in the initial population therefore 

have no area and no delay. 

6.3.3 Evolutionary operators 

There is no crossover operator. The chromosomes are modified by the following mutation 

operators: 

Change connection - reconnect a node input to a different source. 

Insert node - insert a new node, which adds a randomly selected value to a pre-existing edge. 

Change shift - change the shift and negation at a node input or an output. The shift is in-

cremented or decremented. lithe shift is at the minimum allowable value, the edge is 

instead negated. 

Associativity - swap the positions of two connected nodes; for example replacing (a + b) + c 

with a+(b+c). 
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Delete node - a node is chosen at random and eliminated. The source, shift and negation 

information from one of the node inputs is propagated to the input of all of the nodes that 

depend upon the eliminated node. 

The 'change connection' and 'insert node' operators form new edges. When forming a new 

edge, these operators must decide how much shift should be applied. If too great a left-shift 

is used, it can easily introduce a large error into the response of the circuit. If the shift results 

in a value that is too small, the value at the node will be defined by the other input, and the 

node will be redundant. It is also worth noting that large shifts are sometimes useful, so it is 

sometimes helpful if they can be created. As a compromise between these conflicting effects, 

new connections are randomly assigned a shift of up to +4 bits. Increasing this range causes the 

algorithm to run slower, while reducing this range increases the area and delay of the evolved 

designs. New connections are negated with probability 50%. 

If an evolutionary operator causes some nodes to become redundant, then those nodes are elim-

inated from the chromosome. The chromosome only contains nodes that connect to the outputs, 

either directly or indirectly. 

6.3.4 Fixed-point and integer operation 

The EA has two modes of operation, fixed-point mode and integer mode. In integer mode 

right-shifts are disabled, and the EA can only create designs that use integer coefficients. In 

fixed-point mode the EA can produce both left- and right-shifts, so the EA can design hardware 

with fractional coefficients. 

In integer mode, left-shifts that are common to both node inputs are eliminated. This is achieved 

by repeatedly using the rule of distributivity and replacing a shift that is common to both com-

ponent inputs with a shift at the component output. In other words, the value computed at a 

node is altered as follows: 

(a << si) + (b << (si + 82)) =. (a + (b << s2)) << S1 

where a and b are the node input values, s1 is the common left-shift and s2 is the left-shift that 

is not common to both inputs. While applying this transformation does not change the func- 

tionality of a design, it does make the intermediate values smaller. Without this transformation, 

0. 
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it was found that the EA was unlikely to correct a chromosome that has only a small functional 

error. 

In fixed-point mode, the fractional coefficients can cause the functional error to also become 

fractional. The functional error typically reduces asymptotically towards zero as evolution 

progresses. If this trend is allowed to continue unrestricted, it results in circuit designs that 

include a large number of components, and which have a functional error that is extremely close 

to zero. These circuits are probably too expensive in terms of area and delay, so it is important 

to constrain the growth of the designs. This is done by letting the user specify an acceptable 

functional error. This is a level of error below which designs are considered functionally correct. 

Functionally correct designs can only compete in terms of area and delay, so they do not become 

bloated. 

6.3.5 Assessment of functionality 

The user supplies the desired transformation matrix, which is known as the ideal matrix H2 . The 

response of a circuit is found by setting each input to i in turn, while the other inputs are set to 

0. The circuit's actual response matrix, Ha, can then be constructed from the circuit outputs. 

The response matrix is subtracted from the ideal matrix, giving an error matrix He  = Ha - H. 

The functional error of a circuit is defined as the sum of the squares of all of the elements in the 

error matrix. Functionality is a minimisation objective; better circuits have a lower functional 

error. 

As mentioned previously, it is useful for the user to be able to specify a level of error that 

is considered acceptable. If the user specifies an acceptable error, all functional error values 

are made greater than or equal to this level, so all functionally acceptable chromosomes are 

considered equivalent. 

6.3.6 Hardware modelling 

The EA has the ability to produce three distinct types of design: 

• Fixed-width bit-parallel designs. 

• Variable-width bit-parallel designs. 
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• Bit-serial designs. 

These three different classes of hardware require different hardware models, and different rou-

tines for netlist generation. The fixed-width bit-parallel designs use components that are a pre-

defined width, and truncate the least significant bits to ensure that this width is not exceeded. 

The variable-width bit-parallel designs have a predefined input width, and then increase the 

precision of the intermediate components, ensuring that no precision is lost. The bit-parallel 

designs can implement shifts by renumbering the bits in the interconnects, so shifts do not have 

any associated cost. Bit-serial left-shifts are implemented by using 1-bit registers to delay the 

data by one cycle for each bit-position of shifting. There is no way of implementing bit-serial 

right-shifts, so the EA can only produce bit-serial designs when in integer mode. Bit-serial left-

shifts have an area cost, but they are made of registers so they can sometimes limit the longest 

path latency. 

Component Area Delay  
(um') (nanoseconds) 

Adder 207.34 0.25 
Subtracter 207.34 0.25 
Negator 154.49 0.12 

1-bit left shift 117.90 - 

Table 6.1: Bit-serial component properties. 

The hardware models are based upon the properties of a UMC 0. 18gm technology library. Bit-

parallel adders, subtracters and negators were generated for widths of between 1 and 64 bits. 

The area and longest-path delay were found for each of these components. The properties of 

bit-serial adders, subtracters, negators and shifts were also found, as listed in table 6.1. 

As before, neither the area model, nor the delay model take account of wiring. The area model 

ignores wire area. The delay model ignores wire-load delays. The delay model models delays 

on a per-connection basis, rather than per-wire, so the delay estimates can be larger than in 

reality. 

6.3.7 Ranking and selection 

The EA is a (t + A) system, with population sizes of It = A = 100. Selection is performed 

when choosing parent individuals, and again when choosing which individuals survive into the 

90 



The evolution of multiplierless linear circuits 

next generation. 

The population is ranked using the non-dominated sorting algorithm. Size-2 tournament se-

lection is used. 50% of the tournaments are judged by rank, and the other 50% are judged by 

functionality. This encourages the discovery of solutions that are both functional and efficient. 

In the event of a tournament being judged a draw, the winner is the individual with the lowest 

niche count. The niche count is equal to the number of individuals that have identical objective 

values. 

An elite set is preserved when the population size is reduced. The elite consists of one individual 

chosen from each of the 10 most functional non-dominated points. If there are fewer than 10 

non-dominated points, a correspondingly smaller elite set is used. 

6.4 Experiments 

6.4.1 Test problems 

Four test problems have been used in this chapter. They are the 4-point DCT, the 8-point DCT, 

the RGB to XYZ colour transform, and the 8-point Discrete Hartley Transform (DHT). The 

DCT was introduced in chapter 2, and the other two problems are introduced here. Most of the 

EA runs were performed in integer mode, in which case the coefficients were scaled up and 

rounded to integer values. The matrices for the test problems are listed in appendix B. 

When processing colour images, the transformation from an RGB colour representation to an 

XYZ colour representation can be specified as follows [13]: 

X 0.49 	0.31 	0.20 R 

Y = 0.17697 	0.81240 	0.01063 G (6.2) 

Z 0.00 	0.01 	0.99 B 

The Discrete Hartley Transform (DHT) is related to the Fourier transform and the Cosine trans-

form. The DHT can be computed using only real numbers. The N-point DHT can be specified 

as follows: 
N-i 27r1k 	27r1k 

y(1) = 	x(k) cos —k- + sin --, where 0 <1 <N 	(6.3) 

k=O 

The inverse DHT is equivalent to the DHT, but scaled by a factor of 11N. Alternatively, a 
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Problem I Correct runs I First correct generation 
DCT-4 14 1132 

RGB-XYZ 7 3257 
DHT-8 9 14337 
DCT-8 2 34394 

Table 6.2: Functionality results from the test problems. 

factor of 11s/N can be introduced into the right-hand side of equation 6.3, making the DHT 

and inverse DHT identical. 

The EA was applied to each of the four test problems. 20 runs were performed on each prob-

lem. The EA was allowed to run for 5000 generations with the 4-point DCT problem, 10,000 

generations with the RGB-to-XYZ problem, and 40,000 generations with the 8-point DCT and 

DHT problems. The bit-parallel variable-width hardware model was used in integer mode. A 

solution with a functional error of zero is considered to be 'correct'. 

6.4.2 Solution functionality 
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Figure 6.2: The functional fitness of the best DHT design, for 20 runs. 

Figure 6.2 shows the functionality score for the best solution in each population, for 20 runs 
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with the DHT problem, according to generation. In the beginning, there is an almost exponen-

tial decline in the functional error. The progress slows down in later generations, and a large 

amount of time is spent removing the final few imperfections in the functionality of the designs. 

This trend is most pronounced with the hardest problems. Note that there is a large variability 

in the number of generations until a correct solution is discovered. For the DHT problem, the 

fastest nm produced correct solution after 14337 generations, whereas some of the runs did not 

produce any correct solutions after 40000 generations. Table 6.2 lists the details for all four test 

problems. 

6.4.3 Solution quality and diversity 
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Figure 6.3: Properties of the evolved circuits for the test problems. 

The area and delay properties of the correct solutions to the four test problems are shown in 

figure 6.3. In all four cases, the size of the tradq-off surface is so small that it is insignificant. 

This suggests that the area and delay objectives do not conflict. Figure 6.4 illustrates one 

situation in which a conflict does arise, so the objectives are not necessarily non-conflicting, 

however such conflicts do not appear to happen in practice. 

The results for the DHT problem are very widely distributed in terms of area. The largest 

solutions are approximately three times the size of the smallest solutions. The DHT solutions 
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appear in small clusters, and it was found that each cluster corresponds to the results from an 

individual run. 

abed  a c 

Figure 6.4: Minimum area and minimum delay circuits for computing f = a + b + c + d and 
g= b+c+d. 

6.4.4 Hardware implementation styles 
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Figure 6.5: Properties of 4-point DCT designs evolved with 3 different hardware models. 

Figure 6.5 shows the area and delay properties of evolved 4-point DCT circuits, evolved for 

the three different styles of hardware. In this case, the variable-width bit-parallel solutions 

are smaller and faster, however the fixed-width bit-parallel solutions could be more efficient in 
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other situations. The longest path delay for a bit-serial design defines the time taken to process 

a bit, rather than the time taken to process a sample, so the bit-serial solutions are actually much 

slower than the bit-parallel equivalents. 

6.4.5 Fixed-point values 
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Figure 6.6: Functional fitness in integer mode (upper lines) and fixed-point mode (lower lines). 

In order to test the generation of fixed-point solutions, fixed-point solutions to the 4-point DCT 

problem were evolved. The acceptable error level in the fixed-point system was set to 0.000764. 

This value was chosen so that the error in an acceptable fixed-point solution is proportionate to 

the rounding error in the integer coefficient set. Note however, that the fixed-point coefficients 

were not scaled up, so the error values are correspondingly smaller. Figure 6.6 shows the 

functional fitnesses of the populations during evolution. The initial performance of the two 

different modes is similar, however integer mode becomes slower later on. While most of the 

integer runs eventually achieve a functional error of zero, the fixed-point runs rapidly decline to 

the acceptable level and then remain in the acceptable range. All of the fixed point runs were in 

the acceptable range by generation 2500, whereas 6 of the 20 integer runs failed to find correct 

solutions. It seems that the EA is not able to promptly correct small functional errors when in 

integer mode, leading to the observed performance difference between the two modes. 
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(a) The area model compared with Design Compiler. (b) The delay model compared with Design Compiler. 

Figure 6.7: A comparison of the hardware models with Synopsys Design Compiler. 

6.4.6 Hardware modelling 

The area and delay figures calculated by the EA were compared with the corresponding figures 

calculated by Synopsys Design Compiler. Figure 6.7 shows the results of the comparison, for, 

evolved variable-width bit-parallel solutions to the 4-point DCT problem. Figure 6.7 shows that 

the area model produces results which are very similar to the Synopsys figures. Note that the 

0. 181um technology library does not include wire area information, so both the EA area model 

and the Synopsys area model do not take account of the wire area. The delay comparison 

in figure 6.7(b) shows that the EA delay model is very inaccurate. The EA delay figures are 

approximately a factor of 2 larger than the corresponding Synopsys figures. The delay model is 

used when ranking solutions, so incorrect scaling of the results is ignored, however figure 6.7(b) 

also shows that there is only a weak correlation between the two delay models. One problem is 

that the delay model works with connections rather than wires, so it is too pessimistic when the 

individual wires have different delays. The delay model also ignores wire-load delays, which 

can have a major effect on the results. 

6.4.7 Comparison with other design techniques 

Table 63 compares the quality of the evolved circuits with designs produced through non-

evolutionary techniques. The comparisons are in terms of numbers of components. The compo-

nent counts in the best evolved circuits are compared with the component counts for equivalent 

circuits created using the iterative matching algorithm [36]. The evolved results are competi-

tive with the non-evolved results in terms of component counts. The longest path delays of the 
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Problem Area Delay 
IM I Evolved CSD I Evolved 

DCT-4 26 17 4 4 
RGB-XYZ 38 42 5 7 

DHT-8 38 42 4 6 
DCT-8 130 111 5 8 

Table 6.3: Adder counts for evolved and non-evolved solutions to the test problems. 

evolved results were compared with the longest path delay of a transform implemented using 

CSD multipliers followed by a tree of adders. It was found that the evolved results are slower, 

as seen in table 6.3. Note that transforms implemented using parallel CSD multipliers are fast 

but very area inefficient. The CSD results therefore represent a lower bound on the delay of the 

evolved designs. In chapter 7 an improved EA is developed, and results from the improved EA 

are compared against the results given in table 6.3. 

6.5 Summary 

This chapter introduced an evolutionary algorithm for the creation of multiplierless linear trans-

form circuits. These circuits can have multiple inputs and outputs, and are specified by a user-

supplied transformation matrix. The circuit designs are evolved with the objectives of having 

low area requirements and low longest path delays. The circuit area and circuit delay are mod-

elled using component properties extracted from a real 0.18um technology library. The EA can 

produce bit-serial, fixed-width bit-parallel and variable-width bit-parallel designs. 

The EA was found to perform faster and more reliably when right shifts could be used. This 

seems to be because of difficulties when attempting to correct small functional errors using only 

left shifts and integer values. Introducing right shifts corrected this deficiency. 

The area and delay properties of the evolved solutions were investigated. It was found that for 

each of the four problems the best solutions are clustered together in the objective space. It 

was not possible to trade between area and delay for any of the result sets. This suggests that 

the area and delay objectives do not conflict. While the example in figure 6.4 proves that such 

conflicts can happen, they were not observed in practice. 

The accuracy of the hardware models was investigated. It was found that the area model gives 

97 



The evolution of multiplierless linear circuits 

results similar to areas calculated by Synopsys Design Compiler. The delay model was found 

to be very inaccurate. This is probably due to two main factors. Firstly, the delay model does 

not model wire loads, so it ignores delays introduced by excessive fanout. Secondly, delays are 

modelled on a per-connection basis, which can be very inaccurate when the individual wires in 

a connection have different delays. 

The evolved results were found to be competitive with results from the iterative matching al-

gorithm, in terms of component counts. The evolved results were found to be slower than 

high-area, low delay designs constructed from CSD multipliers and adder trees, when delay is 

measured by component counts. 

The EA uses a graph chromosome, and each graph directly corresponds to a circuit design. 

Crossover was not used. The evolutionary operators perform simple modifications to the graph, 

corresponding to actions such as splicing an adder into the circuit design. 



Chapter 7 
Local searches and the evolution of 

linear circuits 

7.1 Introduction 

In this chapter, a type of local search is proposed. This local search technique is combined 

with the evolutionary algorithm that was introduced in the previous chapter. The resultant 

hybrid algorithm is faster than a plain EA, while still being robust enough to be used on highly 

multimodal digital circuit design problems. 

There are two ways in which the performance of the searching EA is improved relative to the 

original EA. Firstly, the local searches reuse intermediate values between the individual circuit 

evaluations, greatly reducing the computational effort required to evaluate the functionality 

of an individual design. Secondly, performance was improved through the introduction of 

a heuristic technique for determining where shifts and negations should occur. This greatly 

reduces the effective size of the search space. 

The modified EA is compared with the original EA, using the test problems introduced in 

chapter 6. 

7.2 Design modelling 

A linear transform can be described as follows: 

y=Hx 
	 (7.1) 

where x is a column vector containing the N inputs, y is a column vector containing the M 

outputs, and H is the (M x N) response matrix. 

Figure 7.1 shows how a single connection, labelled 'X', relates to the rest of a linear system. 

The relationship between the inputs and connection X can be characterised by an array of 
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innuts 

a3 	 03 

Figure 7.1: A model of how a single connection (labelled 'X') relates to the inputs and outputs 
of a linear system. 

coefficients a = (ai, a2, ... , aN). The relationship between connection X and the outputs can 

also be characterised by an array of coefficients b = (b1, b2, ... , bj4. Finally, the part of the 

circuit which is completely independent • of connection X can be characterised by an (M x N) 

matrix of coefficients, here called C, which is labelled as 'linear circuitry' in figure 7.1. The 

response of the circuit, H, can then be restated as follows: 

H=baT+C 	 (7.2) 

The method for calculating a, b, and C is described in section 7.3, below. 

Note that the model shown in figure 7.1 is likely to have a completely different structure from 

the design that it models. In particular, the components in the model do not correspond with 

components in the actual design. The model in figure 7.1 only describes the relationships 

between the inpUts, one intermediate value (at point X), and the outputs. Other details of the 

design are not modelled. 

If a multiplier is inserted into connection X, and the value on the connection is multiplied by 

some constant k, the response of the circuit will be: 

H = kbaT + C 	 (7.3) 
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Setting k to 2, -1 or 0 enables us to model the effects of inserting an s-bit left-shift on connec-

tion X, inserting a negator, or setting connection X to zero. These three cases can be restated 

as follows: 

	

H = 2sbaT + C 	 (7.4) 

H = C_baT 	 (7.5) 

H=C 	 (7.6) 

If a value from elsewhere in the circuit (from another connection, connection Y) is added to the 

value on connection X, the circuit response can be modelled as follows: 

H=b(a+a')T+C 	 (7.7) 

The vector a' in equation 7.7 serves a similar purpose to a but describes the value on connection 

Y rather than the original value on connection X. Combinations of the above operations can also 

be described in a similar fashion. 

The user-specified required response matrix, R, is now introduced. The difference between the 

actual response and the ideal response-can be used to calculate an error matrix, or alternatively 

•a correction matrix: 

	

error = H - R 
	

IM 

desired correction = R - H 	 (7.9) 

The desired value, d, is the value of a which minimises the error in the response of the whole 

circuit. Ideally a = d. It is not usually possible to perfectly correct the outputs by changing 

the value on a single connection, however a best-case value can still be found. Connection X 

does not necessarily connect to every output. For this reason, we define the set S, containing 

the indices of all of the outputs that connection X does connect to: 

S={xI1<s<M,bs0} 	 (7.10) 

This enables calculation of the desired value d = (d1,. .. , dN) for connection X: 

d 	 b 	
(7.11) 

SES 
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Alternatively, the desired correction can be found - this is the value d' which should be added 

to a in order to minimise the circuit error. 

d 	
1R3,—H3, 
- 	 (7.12) 

sES 	b8  

In most cases, nodes with exactly the values d and d' will not be available, however an ap-

proximation to these values can be found. If no extra nodes are inserted, then d and d' must be 

approximated by the value of a node output or circuit input, optionally shifted and negated. 

innuts 

a3 	 b3 

Figure 7.2: The effect of inserting a shift and negation into a connection. 

If a shift and a negation is inserted onto a connection, the result is equivalent to inserting a 

constant multiplier, as shown in figure 7.2. This can be modelled as follows: 

H = (_1)t28baT + C 	 (7.13) 

where s is the shift, and t defines whether the connection is negated. Ideally, s and t should be 

chosen so that the difference between ( 1)2a and d is minimised. The connection should be 

negated if the sign of the dot product a d is negative. The correct value of the shift s can be 

estimated, for example using the following function: 

S = [_ log2ff+o.5j 	 (7.14) 
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This is very useful because it allows the estimation of reasonable values of the shift and negation 

properties of a new connection. The overall effect is a dramatic reduction in the size of the 

search space, as the EA does not need to search for good shift and negation settings. 

7.3 Characterising a design 

The section 7.2 made use of two matrices, H and C, as well as vectors a and b. H describes 

the response of the whole design, while a, b, and C relate to a particular connection within the 

design. All of these values must be calculated before the searching evolutionary operators can 

proceed. 

The vector a describes the response of a node in terms of the inputs. It can be found by 

propagating similar vectors through the design from the inputs. The response vectors at the 

inputs are trivial - for example, the first input has a response of (1,0,. . . 
()) T by definition. 

The response at the output of a node can be computed by scaling and summing the responses 

of the node inputs. 

The matrix H can be found by computing the responses of all of the circuit outputs. The 

response of each output corresponds to a row in H. 

The vector b describes how the outputs of a circuit relate to a particular connection. It iscalcu-

lated by transposing [11] the circuit, and then calculating the response of the same connection 

in the transposed circuit, in terms of the inputs to the transposed circuit. In other words, the 

vectors a and b are exchanged when a linear circuit is transposed, so the technique for finding 

a can also be used to find b. 

The matrix C is found by rearranging equation 7.2: 

C = H_.baT 

7.4 Searching evolutionary operators 

Recall that the EA in chapter 6 has the following evolutionary operators: 

Change connection, 

(7.15) 
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• Insert node, 

• Change shift, 

• Associativity, 

• Delete node. 

The first three of these operators were changed so that they perform local searches. Before 

performing the local searches, the response of the circuit is found, and the vectors a and b are 

found for every node in the chromosome. 

The new 'change connection' operation chooses one connection destination at random. This 

can either be a node input or a circuit output. The operator then searches through all of the 

possible data sources for the connection. For each possibility, the shift and negation properties 

are set according to the methods described by in section 7.2 and equation 7.14. For each 

possibility, the response of the system can be rapidly calculated using the following equation: 

H = (_1)t28baT + C 	 (7.16) 

where the vector a' describes the relationship between the chosen data source and the circuit 

inputs. The functional error can then be calculated from the circuit response in the usual way. 

The connection source that results in the lowest functional error is chosen and stored. 

The 'insert node' operator selects a connection at random. It inserts a new node into the con-

nection. The first input to the new node is set to the data source from the old connection, and a 

search is performed in order to choose what the second input should connect to. The search is 

very similar to the search performed by the 'change connection' operator. The only differences 

are that the desired correction d' is used in place of the desired value d when setting the shift 

and sign, and that the response of-the circuit is calculated with the following equation: 

H = b(a + (_1)t2sa)T  + C 	 (7.17) 

This is illustrated in figure 7.3. 

The shift settings produced by both of the above operators are estimated. The 'change shift' 

operator finds the completely optimal shift and negation settings using hiliclimbing. The func-

tional error is a unimodal function of the shift and negation settings, so the new settings are 
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(—l) ' 2s  

Figure 7.3: A model of how the 'insert node' operation changes a design. 

I Problem I Correct runs I First correct generation I 
DCT-4 20 66 

RGB-XYZ 20 155 
DHT-8 19 362 

DCT-.8 17 484 

Table 7.1: Functionality results from the test problems. 

guaranteed to be optimal. For each different shift and negation setting, the response of the 

circuit is calculated using equation 7.13. Shift values are considered between a minimum (left-

most) and maximum (rightmost) value. If the search reaches the minimum shift value, the 

connection is negated and the search continues for increasing shift values. 

7.5 Experiments and results 

The modified EA was tested on the problem set from chapter 6. The modified EA was found 

to require far fewer generations than the basic EA from chapter 6. For this reason, the 4-point 

DCT problem and the RGB-to-XYZ problem were allowed to run for 500 generations, while 

the 8-point DCT and DHT problems were allowed to run for 2000 generations. 

In figure 7.4(b); the functional error for the most functional individual in the population is 
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Figure 7.4: The functional error of the most functional DHT design, by generation. 

Problem Lowest area (urn 2 ) Lowest delay (ns) 
Original EA I Searching EA Original EA I Searching EA 

DCT-4 17684.7 14639.8 5.12 5.12 
RGB-XYZ 53062.4 36739.6 10.88 9.14 

DHT-8 43768.5 51931.9 7.62 7.33 
DCT-8 122964 80519.6 11.01 8.97 

Table 7.2: Lowest-area and lowest-delay design properties for the original and searching EAs. 

plotted, for 20 runs of the modified system with the DHT problem. The equivalent graph for 

the original system is shown in figure 7.4(a). The modified EA evolves correct designs in far 

fewer generations. The modified BA is also successful in more runs, evolving correct designs 

in 19 of 20 runs. The original EA only evolved correct designs in 9 of 20 runs. Table 7.1 lists 

the functionality results from all of the problems. 

Figure 7.5 shows the area and delay properties of the results produced by the original and 

modified EAs. The properties of the best designs for each algorithm are also listed in table 7.2. 

The results show that the modified BA produces superior solutions in nearly every case. The 

original algorithm produced the lowest area DHT designs, but in other cases it was inferior. 

In table 7.3, the results previously presented in table 6.3 are extended with the results for the 

searching BA. In terms of adder counts, the searching BA performs better than either of the 

other systems for all of the problems except the DHT problem. The poor results for the DHT are 

perhaps due to the large number of identical coefficients in the 8-point DI-IT response matrix. 

The DHT design problem is therefore largely a problem of performing common subexpression 
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Figure 7.5: Comparison of result delay and area between the original EA system and the 
searching EA system. 

Problem 	 Area 	 I Delay 
IM I EA I Searching EA I CSD I EA  I Searching EA 

DCT-4 26 17 14 4 4 4 

RGB-XYZ 38 42 26 5 7 6 

DHT-8 38 42 48, 4 6 6 

DCT-8 130 111 69 5 8 7 

Table 7.3: Adder counts for evolved and non-evolved solutions to the test problems. 

107 



Local searches and the evolution of linear circuits 

System Problem I Generations I Time/Run (s) I Time/Generation (ii] 

Original EA DCT-4 5000 93.45 18.69 
Searching EA DCT-4 500 8.78 17.56 
Original EA RGB-XYZ 10000 254.37 25.44 

Searching EA RGB-XYZ 500 10.63 21.26 
Original EA DHT-8 40000 1857.96 46.45 

Searching EA DHT-8 2000 125.03 62.51 
Original EA DCT-8 40000 2586.23 64.65 

Searching EA DCT-8 2000 181.26 90.63 

Table 7.4: Time taken for each experiment. 

elimination between adder trees - a problem which the iterative matching algorithm can solve 

efficiently, but which is not very amenable to iterative approximation. When delay is measured 

by the number of adders on the longest path, the searching EA produces designs which are 

faster than the designs from the original BA, but still slower than completely parallel CSD 

implementations. The searching BA produces results that are of generally higher quality than 

the results from the original BA, despite the fact that the searching EA was allowed fewer 

generations. 

The evolutionary operators used by the modified system require more computational effort. 

This means that the number of generations is not a good indication of computational cost. 

Table 7.4 lists the times taken to perform each of the different experiments'. The times were 

averaged over 20 runs. Note that the size of the local search grows with the number of nodes in 

the chromosome. For both EAs, the evaluation time depends on the complexity of the circuit. It 

is clear that the searching BA requires far fewer generations, and that this results in much faster 

run times. The local searches can cause the evaluation times to be larger for the searching BA, 

but it is only a minor effect. The searching BA produces better results at a lower computational 

cost. 

7.6 Summary 

This chapter has introduced a method for combining BAs with local searches. The hybrid 

algorithm is superior to a purely evolutionary system in terms of computational requirements 

and also in terms of result quality. 

'Figures are for a Sun Blade 1500 workstation. Times are the 'user' times returned by the time command. 
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The technique introduced in this chapter enables the rapid functional evaluation of large num-

bers of similar designs. This means that computationally cheap local searches can be performed 

by the evolutionary operators. The searching EA can evaluate the functionality of many differ -

ent designs whenever an evolutionary operator is applied. The computational cost of a single 

evaluation in the local search is very low, due to the fact that many intermediate values are 

common to all of the local search evaluations, so can be precomputed. The overall effect is that 

the search space can be explored at a lower computational cost, when compared with a purely 

evolutionary system. 

This chapter introduced a method for rapidly estimating whether shifting or negation should 

be applied to a connection. This eliminates a problem with the original BA, where shifts were 

randomly chosen from a range of values. Previously, allowing a wide range of shift values led 

to poor performance, but restricting the system to a narrow range of possible settings artificially 

constrained the search space and could lead to inefficient designs. The modified BA is always 

able to discover a shift setting that is close to the optimal value. This reduces the effective size 

of the search space. 

The technique introduced in this chapter enables the application of evolutionary algorithms to 

large problems. This includes problems where evolutionary methods would previously have 

been impractical. 
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Chapter 8 

Local searches and the evolution of 
nonlinear circuits 

8.1 Introduction 

This chapter investigates the evolutionary design of a class of nonlinear transforms. There 

are many different types of nonlinear transform, so this chapter concentrates on polynomial 

transforms. A polynomial transform is a nonlinear transform where the response of each output 

can be expressed as a polynomial in terms of the inputs. A polynomial transform is equivalent 

to a bank of Volterra filters [19]. 

The EA system introduced in chapter 6 designed multiplierless linear hardware. The EA intro-

duced in this chapter implements nonlinear transforms in a similar fashion, however multipliers 

must be used for the generation of the nonlinear terms in the response. Multipliers are only 

used for variable-variable multiplications, and never for constant-variable multiplications. This 

could be termed a 'mostly multiplierless' implementation style. 

This chapter demonstrates that the local searching technique introduced in chapter 7 can be 

extended to nonlinear problems. 

Linear systems with variable coefficients can be specified by second order polynomials, so the 

nonlinear EA - could also be useful for some linear problems. The EA system is most likely to 

be useful for linear problems that require both constant and variable coefficients. 

8.2 Filter specification 

While chapter 2 described a matrix representation for nonlinear systems, it is inefficient for 

high-order systems, where the matrices can become large and very sparse. This is a particular 

concern for nonlinear systems with multiple inputs. 
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The linear systems mentioned in earlier chapters can be represented as follows: 

y=Hx 	 1991 

This can be restated in a polynomial representation: 

Yi 	 h1,1 	h1,2 	 ri;1 

Y2 	 h2, 1 	h2,2 	•.. h2,N 	
(8.2) 

YM 	 hM,1 hM,2 •.. hM,N 	XN 

h1 , 1x1 + h1,2x2 + 	+ hl,NXN 

- 	 h2,1x1 + h2,2x2 + ... + h2NXN 

hM,lxl + hM,2x2 + ... + hM,NXN 

Each output is described by a polynomial in terms of the inputs. This representation can easily 

be extended to cover polynomial nonlinear systems, through the introduction of higher-order 

terms. Only non-zero terms must be included, so a polynomial representation can be much 

more compact than a matrix representation. 

A circuit can be specified by the following information: 

• The number of inputs. 

• The number of outputs. 

• One polynomial for each output, specifying the output in terms of the inputs. 

83 The EA 

8.3.1 The chromosome 

The chromosome is based upon the chromosome used in chapters 6 and 7. The only difference 

is that nodes can now represent multiplications, as well as additions and subtractions. This 

is achieved by giving each node an extra attribute, which specifies whether the node should 

perform an additive or multiplicative operation. As before, the inputs to a node can be negated, 
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[Operation I Components usedi 

x+y adder 
x - y subtracter 

- (x + y) adder, negator 
xy multiplier 

—xy multiplier, negator 

Table 8.1: The mapping between graph nodes and hardware components. 

resulting in the various different node implementations listed in table 8.1. 

8.3.2 Initial population 

The initial population is filled with randomly created chromosomes. These chromosomes have 

a large number of nodes. Each connection is configured with randomly chosen source, shift and 

negation properties. 10% of the nodes are multipliers, and the rest are adders and subtracters. 

The connections are initialised in such a way that the initial chromosomes are always acyclic. 

The chromosomes in the initial population typically have a large area and a high latency. The 

average area and delay of the designs decreases rapidly in the first few generations. The designs 

in the initial population are very inefficient, but their responses include many high-order terms. 

This is important, as useful new terms are rarely generated later in evolution. 

8.3.3 Local searches 

The local searches introduced in chapter 7 were only defined for linear systems. This chap-

ter introduces local searches that can be applied to nonlinear systems. The most significant 

difference between linear and nonlinear systems is that the input to a nonlinear system can-

not generally be calculated from a given output. This means that there cannot be a nonlinear 

equivalent to the 'desired correction' introduced in the previous chapter. As a result, there is no 

nonlinear equivalent to the technique for choosing shifts that was introduced for linear systems. 

Like the local searches introduced in chapter 7, the local searches introduced in this chapter-re-

duce the computational cost of functionally evaluating a design, by sharing  intermediate values 

between several evaluations. 

The nonlinear response is found at each node. This is a polynomial in terms of the inputs. A 

single connection in the design can then be selected at random. This connection will later be 
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inputs 

non—linear 	outputs 
circuitry 

non—linear 
~20circuitry 

 

Figure 8.1: A model of a nonlinear system, where one connection has been selected for modi-
fication. 

modified. The connection is then labelled as a, and treated as an unknown. The outputs are 

then characterised by polynomials in terms of the inputs and the chosen connection. This is 

illustrated in figure 8.1. A particular design can then be evaluated by substituting a with the 

response of a node. The computational cost of a 'functional evaluation is therefore the cost of 

performing these substitutions, which is lower than the cost of re-computing the response of 

the whole design. 

Note that figure 8.1 has some similarities with the decomposition of a linear circuit in figure 7.1. 

In both cases the model describes the relationships between the inputs, one connection which 

is internal to the design, and the outputs. The leftmost nonlinear block in figure 8.1 serves a 

similar purpose to the multiplications with the coefficient set a in figure 7.1. The other parts of 

figure 7.1 together serve a similar purpose to the nonlinear block in the upper right of figure 8.1. 

The differences between the two models are due to the requirement that figure 8.1 is able to 

represent nonlinear hardware of any order. 

83.4 Functional evaluation 

There are three objectives: area, delay and functionality. The functionality objective is com-

posed of two values. The first value is the number of desired terms which are actually present, 

and the second value represents the error in the response of the circuit. The first value should be 

maximised, and the second value should be minimised. These two values are lexicographically 
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ordered, with the number of terms taking precedence over the error value. In other words: 

(ti, el) >- (t2, e2) if' ti > t2, 

(ti, el) >- (t2, e2) if tl = t2, el < e2, 

where >- denotes 'is better than'. 

As an example of how the functionality score is calculated, consider how the response 3x + 

3x1 + 7x2 compares to the specification 6x1x2 + 5x1 + 8x2. First of all there are x1 and x2 

terms present in both polynomials, so the first part of the score is 2, denoting that there are 

two desired terms. The second value is the sum of squares difference between the terms in the 

polynomials. This can be calculated as follows: 

wanted: 	6x1x2 + 	0 + 	5x1 + 	8x2 

actual: 	0 + 	3x 2 + 	3x1 + 	7x2 

terms: 	0 + 	0 + 	1 + 	1 	= 	2 

error: 	62  + 	32  + 	22  + 	12 	= 	50 

Therefore, the final score is (2, 50). 

The reason for this two-tier functional fitness system is that it very strongly rewards designs 

that have all of the desired terms. If only the error is used as the functional objective measure, 

the resulting designs often omit many of the specified terms. 

The nonlinear EA lets the user specify an acceptable level of functional error. Designs with a 

functional error below this level are considered to be 'correct'. All correct designs are treated 

as if they have the same functional error, so correct designs can only compete in terms of area 

and delay. 

8.3.5 Hardware modelling 

The area and delay objectives are calculated using figures from the same 0.18 1um library that 

was used in the previous two chapters. A 16-bit fixed-width implementation' is used, and the 

component properties are listed in table 8.2. Note that multipliers are much more expensive 

'These component properties are for the default components synthesised by Design Compiler. In fact, the adder 
and subtracter have different architectures, which is why the subtracter is faster than the adder. 
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r Component I Area (um2 ) I Delay (ns) 

adder 1016 2.14 
subtracter 1537 1.68 
negator 870 0.99 

multiplier 32635 7.97 

Table 8.2: Component properties. 

than other components, in terms of both area and delay. 

8.3.6 Evolutionary operators 

The nonlinear EA has one extra evolutionary operator, when compared to the EM from chap- 

ters 6 and 7. This is the 'insert multiplier' operator. The complete set of operators is as follows: 

• Insert multiplier 

• Insert adder 

• Change connection 

• Change shift 

• Associativity 

• Delete node 

The 'delete node' and 'associativity' operators are unchanged from the previous systems. The 

other four operators perform local searches. 

The 'change connection' operator chooses a node input at random, and searches for the best 

possible settings for that input. It tries random source, shift, and negation settings, and se-

lects the combination that results in the most functional design. A fixed number of different 

configurations are searched. 

The 'insert adder' operator is similar to the 'change connection' operator, however rather than 

changing the source of a connection, it inserts an adder on the connection and searches for the 

best properties for the adder's second input. 
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The 'insert multiplier' operator creates a new multiplier, which becomes the source for an 

existing connection. A search is then performed to find the best settings for both inputs to the 

multiplier. The search considers settings for both multiplier inputs simultaneously. The pair of 

input settings that results in the most functional design is selected. 

The 'change shift' operator chooses a single connection, and then considers all of the possible 

shift values, both negated and un-negated. The settings that result in the most functional design 

are chosen. 

The 'change connection', 'insert adder' and 'insert multiplier' operators all consider a fixed 

number of randomly chosen parameters. An arbitrary search size of 20 was used. Smaller 

searches will lead to increased computational costs, while larger searches might reduce the 

robustness of the evolutionary search. 

8.4 Experiments and results 

8.4.1 An example problem - the sine function 

The Taylor series approximation of a sine function can be written as follows: 

x 5  x 7  

This approximation gets increasingly inaccurate as x is moved away from 0, however if x is 

limited to the range - x < E , three terms are sufficient for results that are accurate to 

within 1%. If five terms are used, the results will have the equivalent of more than 16 bits of 

accuracy. 

The EA was applied to the following sine approximation: 

x3  x5  
sin(x) c x - 	+ - 

Twenty runs of 100 generations were performed. The acceptable error was set to 0.001. 19 of 

the 20 runs produced results that met the functionality constraint. The area and delay properties 

of the highest ranked functionally correct designs are plotted in figure 8.2. 

The lowest area design uses three multipliers, one adder, one negator and one subtracter. Three 
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Figure 8.2: The properties of evolved sine circuits. 
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roblem [Inputs I Outputs I Order [Terms [Max. error 

sine 1 1 5 3 0.001 

factored 1 2 1 3 7 2099.88 

factored 2 2 2 3 14 915.66 

random 3 x 3 3 3 2 27 1031.22 

random 4 x 4 4 4 2 56 1883.06 

Table 8.3: Test probhms. 

multipliers are required for a fifth-order response, and at least one adder or subtracter is required 

if the response is to have multiple non-zero terms. This suggests that this design has a near-

minimal area. The fastest evolved design has three multipliers and one subtracter on the critical 

path, which is the minimal delay for a fifth-order response with multiple non-zero terms: 

8.4.2 Application to larger problems 

The EA was tested on four more problems. These problems are specified in appendix C. The 

properties of these problems are listed in table 8.3. Two of these problems are factorisable; they 

can be expressed in the form: 

(kixi + k2x2)(k3xi + k4) (k 5x2 + k6) 

where k1 . . . k6 are random real numbers between —10 and 10, and xl and x2 are the inputs. 

These polynomials were used for the one output and two output cases. These test problems are 

called 'factored 1' and 'factored 2'. The system was also tested on larger polynomials, which 

are not factorisable. These polynomials include all of the possible first and second-order terms 

for a set of inputs. Each term is multiplied by an integer between -100 and 100. These test 

problems have been called 'random 3 x 3' and 'random 4 x 4', according to the numbers of 

inputs and outputs. 

The EA was applied to the above four problems. Twenty runs were performed for each problem. 

The EA was allowed to run for 500 generations with the 'factored 1' and 'factored 2' problems, 

1000 generations with the 'random 3 x 3' problem, and 2000 generations with the 'random 4 x 4' 

problem. For all of the problems, the maximum acceptable error was set to one hundredth of 

the sum of the squares of the coefficients. 

Figure 8.4 shows the properties of the functionally acceptable non-dominated solutions from 

119 



Local searches and the evolution of nonlinear circuits 

80 

70 

60 

50 
CO 

'40 
0) 
0 

30 

20 

10 

n 

WV 
V V 
V V 

V 
V V 

x 
 

x 
x 

.4 
x 

V 

VV  0  

• 

X 0 0  

so 
X XX 	0 • 00 	 VAI 	 V 

 xz P,~, ; XW 
XX %  

• 	1 * 

	

factored 1 	+ 

	

factored 2 	x 

random 3x3 0 

	

I 	 I 	random 4x4 

0 	100000 	200000 	300000 	400000 	500000 
Area (square microns) 

Figure 8.4: The properties of the functional solutions to the test problems. 

all of the individual runs with the four problems. Some observations can be made about the 

optimality of the evolved circuits. Firstly, the EA can solve the 'factored 1' problem using only 

two multipliers, which is the minimum number for a cubic filter. The fastest solutions to both 

the 'factored 1' and 'factored 2' problems have two multipliers on the longest path, which is 

the minimum for a cubic filter. The lowest area solutions to the 'random 3 x 3' problem use 

only three multipliers. The fastest solutions to the 'random 3 x 3' problem have two multipliers 

on the longest path, which is not minimal for a quadratic problem, although it could, still be 

Pareto optimal. The lowest area solutions to the 'random 4 x 4' problem use seven multipliers. 

In comparison, in [56] the number of multipliers for a quadratic filter is defined by the rank of 

the second order Volterra kernel, so an implementation of the 'random 4 x 4' problem would 

require four multipliers for each output. If the terms are constructed independently and then 

summed, the 'random 4 x 4' problem can be implemented using ten multipliers. 

8.4.3 Scalability of the current system 

The scalability of the EA system is limited by the appearance of 'junk' terms in the circuit 

responses. These are terms which are not in the desired response, and which are small enough 

that they do not add significant errors to the system response. Junk terms are a problem because 
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they can greatly increase the computational cost of evaluating a circuit. The number of junk 

terms tends to increase as the number of terms in the desired response is increased, and they 

introduce a significant overhead to the evaluation of larger designs. As an example of the extent 

of this problem, one of the circuits evolved for the 'random 4 x 4 problem in section 8.4.2 

has a response that includes 102 junk terms as well as the 56 desired terms. In such cases, 

the junk terms account for most of the computational cost of a functional evaluation. There 

are two ways of avoiding this problem: either the junk terms can be discouraged, or else the 

computational costs of calculating the junk terms can be reduced. The former technique places 

extra constraints on the circuit designs - remember that junk terms are often functionally 

insignificant. The latter technique was implemented. This was done by estimating terms that 

are higher than a pre-determined order. A single term is used to represent all of the terms 

of a particular order. The calculation of low-order terms is unaffected. This scheme tends to 

overestimate the contribution from the high-order terms. First of all, all of the variables in the 

high order terms are replaced with the dummy variable /3, according to the following rule: 

- 	 (8.3) 

If there are several high order terms with the same order, the terms are merged according to the 

following rule: 

	

af3 + b3T -4 (lal + IbI)/3 	 (8.4) 

For example, the expression: 

	

3x + 5x + 2x 1x - 3x + 	 (8.5) 

can be expressed as the sum of low and high order terms, where here we define high-order as 

being third order or higher: 

(3x1 + 5x) + (2xix - 3x + x) 	 (8.6) 

The high order terms can then be approximated as follows: 

(3x1 +5x)+ (2xix-3x+x) 	(3x1 +5x)+(2/3/3 2  —3j3+/3) (8.7) 

= (3x1 +5x)+(2/33  —3/3+/3) 
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Search size I Generations I Time/run (] 
20 500 21.96 
1 500 12.94 

.1 1000 24.41 
1 10000 218.91 

Table 8.4: Computational costs for the 'factored 1' problem. 

The third order terms can then be merged, giving the final estimate: 

(3x1 +5x)+(233  —3j3+8) (3x1 +5x)  +(5)33 +f35 ) 	(8.8) 

The EA originally required about one week to perform the 20 runs with the 'random 4 x 4 

problem. When the above scheme was used for the representation of terms of third or higher 

order, the 20 runs could be performed in fourteen hours 2 . There was not a significant difference 

between the two sets of runs in terms of design area and longest-path delay. 

8.4.4 Effectiveness of the local searches 

If the local searches are working correctly, the EA should produce better results in fewer gen-

erations, when compared to a non-searching EA. The computational cost of a single generation 

should be higher with the local searches. The overall computational cost of the searching sys-

tem should be lower, as it should require fewer generations to produce results of a particular 

quality. 

The runs for the 'factored 1' problem were repeated with the search size set to 1. This ef-

fectively disabled searching for all of the evolutionary operators except for the shift-setting 

operator. The shift-setting operator was left unchanged; it still searches through all possible 

shift values. Runs of 500 generations were originally performed with the 'factored 1' problem, 

however the non-searching EA was allowed 10,000 generations. The properties of the correct 

designs are compared in figure 8.5. It can be seen that after 500 generations, the best designs 

from the two systems are equivalent, while the non-searching EA shows far more variation 

between the runs. When the non-searching system is allowed to run for 10,000 generations, 

the results that it produces are of equivalent quality to the results from the searching system 

2These times are for a Sun Blade 1500 workstation, and are only approximate. Note however that the speed 
increase is substantial. 
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after 500 generations. This is consistent with the quality of the results being determined by the 

number of evaluations, regardless of whether the evaluations are performed by the local search 

or by the EA. The times taken to perform the runs 3  are listed in table 8.4. Each generation 

is approximately a factor of two faster for the non-searching EA. If the results from the non-

searching EA after 10,000 generations are considered to be equivalent to the results from the 

searching EA after 500 generations, then the searching EA is clearly faster. 

8.5 Summary 

This chapter has introduced a system for the evolutionary design of polynomial transforms. 

This was achieved through the extension of the chromosome so that multipliers could be rep-

resented, and through the use of polynomials t6 represent the responses of nodes and circuit 

outputs. 

The local search technique that was introduced in chapter 7 was adapted for use with nonlin-

ear circuits. The shift-setting heuristic from chapter 7 could not be used, due to the fact that 

nonlinear functions are not usually invertible. As in chapter 7, the local searches can save 

computational effort by sharing common calculations between multiple evaluations in the local 

search. 

The generation of circuit responses that include all of the required terms can be problematic. 

The EA has two ways of ensuring that the correct terms are present. Firstly, the initial popu-

lation is intentionally populated with 'bloated' individuals, that are likely to generate a large 

number of terms. Secondly, when ranking individuals according to functionality, higher prece-

dence is given to individuals that include more of the desired terms, regardless of how well they 

perform in terms of functional error. 

In contrast to linear circuits, the response of a nonlinear circuit can include an arbitrarily large 

amount of information. This is a major problem, as the computational costs of evaluating 

a design can explode in some cases. Two solutions to this problem were considered: either 

complex designs could be punished, or else the accuracy of the simulation could be reduced 

when handling the more complex responses. The latter approach was implemented - the EA 

was altered so that higher-order terms could be approximated by a computationally cheaper 

model. 

3These times are the 'user' times returned by the time command on a Sun Blade 1500 workstation. 
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Chapter 9 
Enhancements 

9.1 Introduction 

This chapter investigates ways in which the work in earlier chapters can be extended. The 

following areas are investigated: 

• Pipelining and pipeline scheduling. 

• Improved delay modelling. 

• The use of a reduced parameter space. 

• Crossover operators. 

In order to investigate these areas, an EA is introduced. This basic EA is later extended in two 

ways, in order to investigate the last two of the above points. For the sake of simplicity, the EA 

used in this chapter does not incorporate the local searches that were introduced in chapter 7. 

9.2 System overview 

9.2.1 Representation 

The designs are represented by a graph chromosome with a fixed number of nodes. Each node 

represents an addition or a subtraction. The genes are summarised in table 9.1. The pipeline 

Gene Occurrence Value 

Node input source 2 per node any node or input 
Node input shift 2 per node integer [-4,4] 
Node operation 1 per node + or - 
Pipeline stage 1. per node integer > 0 

Output source 1 per output any node or input 
Output shift 1 per output integer [-4,4] 

Table 9.1: Summary of gene types. 
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stage gene, and a related repair operator, are discussed later. 

The designs must be acycic. A repair operator which removes cycles is applied after every 

evolutionary operation. When a cycle is detected, some of the node inputs are connected to the 

design inputs, breaking the cycle. 

9.2.2 Evolutionary operators 

Initially, only mutation is used. Crossover operators are investigated in section 9.8. 

The number of mutations is decided according to a geometric probability distribution, where the 

expected number of mutations is supplied by the user. Each mutation affects a single gene. Most 

mutations overwrite the gene with a randomly chosen allele. Mutations to the pipeline stage 

genes randomly increment or decrement the stage number. Mutations to the 'node operation' 

gene convert adders into subtracters and vice versa. 

9.2.3 Populations and selection 

There are three objectives: area, delay and functionality. The area and delay objectives are cal-

culated at the cell level - how this is done will be described later. The functionality objective 

is calculated as follows: 

MN 

fuiictional error = 10 log 10 	 - 	 (9.1) 
i=1 j=1 

where H is the response matrix, and R is the desired response matrix. A logarithmic scale was 

chosen to aid calculation of the niche count. 

The EA is a ( + A) system, with a = A = 100. Elitism was not used. Size-2 tournament 

selection was used. Tournaments are either decided by rank or by functionality alone, with a 

50% probability of each option. If a tournament is a draw, the individual with the smaller niche, 

count wins. 

The niche count for each individual is calculated according to the sharing scheme described by 
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T Objective I Scale factor 

Functionality 1 
Area 1/470.08 
Delay 1/1.728 

Table 9.2: Niching parameters. 

Goldberg [99]. This defines a sharing function s (d): 

1—d ifd<1 
s(d) 	

{ 0 
	otherwise 	

(9.2) 
 

The niche count ni of individual i is defined as follows: 

ni = 
	 (9.3) 

where c1 3  denotes the distance between indi'iiduals i and j. The niche count is calculated in 

the normalised objective space. The objectives are scaled according to the factors shown in 

table 9.2. The area and delay objectives were scaled so that the niche radius is approximately 

equal to the area and delay of an adder. 

9.3 Pipeline scheduling 

The EA produces pipelined designs. To do that, it evolves a DFG that includes scheduling 

information. Pipeline registers are then inserted into the design, according to the scheduling 

information. The scheduling information is encoded by a gene in each graph node. This gene 

contains the number of the pipeline stage in which the node should be scheduled. 

It is possible for a schedule to be invalid - for example if a component makes use of a value 

that is computed in a later stage of the pipeline. In general, invalid designs can be avoided 

through the use of a repair operator, by explicitly punishing invalid designs, or by ensuring that 

invalid designs cannot be created. This EA uses a repair operator. Repair is more reliable than 

punishment, but not as complex as ensuring that the evolutionary operators can only produce 

valid schedules. 

There are two ways in which an invalid schedule can be repaired. They are illustrated in fig- 
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Stage 0 	a 	Stage 1 

(a) 
invalid 

schedule 

ii 
reschedule 

later E14_________ + 

reschedule 
earlier 

Figure 9.1: Two ways of repairing an invalid schedule. 

ure 9.1. Nodes which are scheduled too early can be moved later (figure 9.1(b)), or alternatively 

nodes Which are scheduled too late can be moved earlier (figure 9.1(c)). Using one of these 

repair operators exclusively will tend to bias the search towards either ALAP or ASAP sched-

ules. For this reason one of the two repair operators is selected'at random whenever a repair 

operation is needed. 

9.4 Improved delay modelling 

In chapter 6, the delay model was found to be very inaccurate. The inaccuracy seemed to be 

the result of two different factors: the lack of a wire-load model, and the fact that delays were 

calculated on a per-connection basis, rather that a per-wire basis. This chapter introduces an 

improved delay model, which eliminates both of those limitations. The new model calculates 

delays on a per-wire basis, incorporating wire-load delays that are independently calculated for 

each wire. 

The wire-load model is based upon component properties for a 0.13 4um technology library. 

When calculating delays, the fanout is first calculated for each wire in the design. The fanout is 
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Figure 9.2: RC delays according tofanout. 

Cell From To Delay (ns) 

NOT input output 0.032 
full adder inputs carry output 0.108 
full adder inputs sum output 0.167 
register clock edge Q output 0.157 

Table 9.3: Cell delays. 

used to find resistance and capacitance figures from library-specific tables of wire information. 

The resistance and capacitance are then used to find an RC delay for each individual wire in the 

design. The wire-load delay is estimated as: 

delay Rw(Cw +FCL) 	 (9.4) 

for wire resistance Rw,  wire capacitance Cw and fanout F. The standard load capacitance, 

CL, is taken from the technology library documentation. The delays are plotted in figure 9.2. 

The cell delays are based upon simple estimates of the the properties of 1-bit standard cells. 

The designs are based upon three different standard cells: full adders, NOT gates, and registers. 
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Subtractions are performed using the identity: 

a — b=a+(-'b)-i-1 	 (9.5) 

where '—" represents a bitwise NOT operation. Ripple adders are used. All of the standard cells 

have a lx drive strength. The cell delays are summarised in table 9.3. 

The new delay model is more computationally expensive than the systems used in previous 

chapters. When the program was profiled, the delay modelling was found to take approximately 

47% of the total execution time. This is not excessive. 

9.5 Experimental methodology 

Evolutionary algorithms are stochastic, and the quality of the results can vary drastically be- 

tween individual runs. This makes comparisons between EAs difficult. This problem is even 

more acute for multiobjective EAs, where multiple trade-offs can exist. Reliable comparisons 

require multiple EA runs. 

objective 	: 	 _._._,_ 	objective 
A 	 : 	 A 

a---, 

I1 

- 

U ............. 

100% 

75% 
50% 

25% 

(a) 	 objective B 	(b) 	 objective B 

Figure 9.3: Calculation of attainment surfaces: the four non-dominated surfaces in (a) are 
converted to four attainment surfaces in (b). 

Attainment surfaces [110,201] are a useful tool for the evaluation and comparison of multi- 

objective EAs. Attainment surfaces are found by combining the non-dominated surfaces from 

multiple EA runs. An attainment surface delineates the area of the objective space that is dom- 

inated by a certain proportion of the runs. For example, the 50% attainment surface marks the 

edge of the region where each point is dominated by 50% of the runs. This is illustrated in 

figure 9.3. Attainment surfaces are a median-like measure of performance, so they are only 
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reliable in areas of the objective space with a high density of non-dominated surfaces. They act 

asr an estimate of the likelihood that a particular algorithm can produce solutions with the given 

objective values. Attainment surfaces can be used together with statistical techniques such as 

the Mann-Whitney U test, to compare the performance of multiobjective algorithms [201]. - 

This chapter includes comparisons between pairs of algorithms. These comparisons can be 

performed independently for each point in the objective space. The result of an individual 

comparison either states that one algorithm is superior, or else states that no conclusion can be 

reached. 

There is a probability, p, that at least one result from a particular algorithm dominates a particu-

lar point in the objective space. If the algorithm is executed n times, the number of dominating 

runs can be stated as f)n, where j5 is the observed likelihood that a run dominates the chosen 

point in the objective space. Now consider two algorithms, A and B, with probabilities PA  and 

PB. Algorithm A could be said to be more reliable, at least with respect to the chosen point in 

the objective space, if PA - PB > 0. Over many observations, the observed value 73A - PB will 

tend towards PA - PB. This observed value will have a binomial distribution. The binomial 

distribution involves large factorials, so a normal approximation can be used instead [2021. The 

normal approximation has the following parameters: 

= PAPB 	 (9.6) 

a 
= /J3A(1- PA) ±PB(1-PB) 	 (9.7) 

This approximation breaks down with extreme values, so it is used subject to the following 

conditions: 
5 	TtPA :~: Th —5, 	

(9.8) 
5 < n15B < fl —5 

The null hypothesis, PA - PB < 0, therefore has the following estimated likelihood, derived 

from the above normal distribution: 

P(null) = (i ± erf a/) 
	

(9.9) 

If the conditions are met, PA -PB > 0, and P(null) <0.05, algorithm A is declared superior for 

these particular objective values. This statistical test is repeated for other points in the objective 

space, resulting in a plot that shows the areas of the objective space where each algorithm is 
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Figure 9.4: Solution properties according to pipeline depth. 

superior, as well as the areas where no conclusion can be reached. 

9.6 Initial experiments 

The EA was tested on two problems: the conversion from an RGB to an XYZ colour represen-

tation, and the 4-point DCT. Fixed-point coefficients were used in both cases, and the matrices 

are provided in appendix B. The acceptable functional error was set at -40 for the RGB-to-

XYZ problem, and -31.169 for the 4-point DCT problem. This latter error value was chosen 

because it is equivalent to the acceptable error value used when evolving fixed-point 4-point 

DCT designs in chapter 6. The RGB-to-XYZ problem was allowed 10,000 generations, while 

the 4-point DCT problem was allowed 20,000 generations. One hundred runs were performed 

with each problem. 

Figure 9.4 shows the properties of the functionally acceptable solutions to the two test problems. 

In both cases, the best solutions have pipeliuie depths of between 1 and 4 stages. The DCT 

results are slightly surprising, as the entire non-dominated surface was produced by a single 

run, run 23. The results produced by this run have been circled in figure 9.4(b). Run 23 was 

significantly better than the other runs, but it did not evolve any unpipelined designs. This 

explains why the lowest area single-stage design is dominated by a 2-stage design. 

In theory, the minimum delay designs should have pipeline registers between every compu- 

tational component. This would result in a delay of just less than 2ns, using this technology 

132 



Enhancements 

140000 

120000 

:1 00000 

000 

40000 

20000 

0' 

 

12 

10 

8 

'2 

S 

20000 40000 80000 80000 100000 120000 140000 

Design Compiler area model, 

(a) Area. 

 

2 	 4 	 6 	 8 	 10 	12 

Design Compiler delay model 

(b) Delay. 

Figure 9.5: The hardware models compared with Design Compiler. 

model. In practice, such designs are unlikely to evolve using the current scheme, as every com- 

ponent would be on the critical path, and nearly every change to the chromosome would lead 

to an increase in critical path delay. Nevertheless, the fastest designs do approach the minimum 

delay. 

This EA performs worse than the EA introduced in chapter 6, both in terms of the number of 

generations required, and in terms of the properties of the designs. This is evident in the results 

from the 4-point DCT problem, which can be compared with the fixed-point DCT designs 

evolved in chapter 6. The EA introduced in this chapter managed to create DCT designs that 

require 15 additions in run 23, and 22 additions in other runs. The older system repeatedly 

evolved smaller designs, including designs that use only 13 adders. This comparison is biased 

towards the new EA, as the new EA was allowed 100 runs of 20,000 generations rather than 

20 runs of 5000 generations. The main difference between the two systems is the evolutionary 

operators. The old system uses a variety of complex operators, which were designed to be non-

destructive. The new system uses evolutionary operators which simply change a single gene. 

This provides some justification for the use of the heuristic evolutionary operators in chapter 6. 

The area and delay models are compared with Design Compiler's models in figure 9.5. This 

comparison was performed using a selection of partially evolved 4-point DCT designs. The two 

area models give identical results in all cases. The two delay models show a strong correlation. 

The EA delay model consistently underestimates the delay by about one quarter. The delay 

model could possibly be improved by altering some of the model parameters, although this 

possibility was not investigated. The new delay model is significantly more accurate than the 
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Gene 	]_Occurrence L_Value 
Node input source 2 per node any node or input 
Relative input shift 1 per node integer [-4,4] 

Node operation 1 per node + or - 
Pipeline stage 1 per node integer > 0 
Output source 1 per output any node or input 

Table 9.4: Summary of gene types for the reduced encoding. 

model used in chapter 6, which was compared with Design Compiler in figure 6.7(b). 

9.7 A reduced parameter space 

9.7.1 Changes to the chromosome 

This section considers a more compact chromosome encoding for the EA. This encoding re-

duces the number of genes in the chromosome, while retaining the ability to represent most 

useful designs. 

The new chromosome encoding replaces the two genes used to represent shifts with a single 

gene. This gene represents the relative shift between the two inputs. A second shift is applied 

at the output of each node, however it is not encoded in the chromosome. Instead, the response 

at each node output is normalised. The output of a node with un-normalised response vector a 

is shifted right by s places, where s is defined as: 

S= 

1092 	 (9.10) 

This ensures that the response of the node is scaled as follows: 

0.5< 2 	au 1 <1  

The new encoding also omits the shifts at the outputs. Instead, the objective function must find 

the shift that minimises the difference between the actual and desired responses at an output. 

Consider an output with actual and desired response vectors a and d. The sum of squares error 
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between these two quantities can be expressed like this: 

E=(a—dj)2 	 (9.12) 

If the output can be shifted or negated, this becomes: 

E = 	- d2 ) 2 	 (9.13) 

where the scale factor k represents the shifting and negation. The ideal value of k, k', can be 

derived from equation 9.13: 	
EN = i.6 	 (9.14) 
>1i=O a2 

Note that k' e R, whereas k must be expressible as a shift and an optional negation. Therefore, 

k can be defined like so: 

k = p2 	 (9.15) 

for an n-bit shift, and a sign p e {-1, 1}. The values of n and p can now be fixed: 

1 —1 ifk'<O, 
P 
	 (9.16) 

1 	otherwise. 

	

n= 0.5+1092(k')j 	 (9.17) 

The above procedure assumed that the user is indifferent to the sign of the output responses. 

If it is important that the outputs have the correct sign, then the sign can be fixed as p = 1. 

The EA introduced in this chapter provides both options, but by default assumes that the sign 

is important and p = 1. The genes in the new encoding are summarised in table 9.4. 

9.7.2 Experiments 

One hundred runs were performed with each system and both test problems. The results are 

compared in figure 9.6, using the confidence technique described in section 9.5. The original 

encoding was often found to be superior for the RGB-to-XYZ problem, while the reduced en-

coding was found to be superior in many cases with the 4-point DCT problem. The attainment 

surfaces plotted in figure 9.7 also suggest that the reduced encoding is slightly better for 4-point 
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Figure 9.6: Performance comparisons between the original EA (light grey) and the reduced-
parameter EA (dark grey). 
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Figure 9.7: Attainment surfaces for the original and reduced-parameter EAs. 
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DCT problem, but slightly worse for the RGB-to-XYZ problem. 

9.7.3 Analysis 
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Figure 9.8: The relationship between normalised and un-normalised responses. 

The use of normalised intermediate responses can cause discontinuities to be introduced into 

the search space. For example, consider designs with only a single input. The response of a 

node can be characterised by a single value a = (ai). The normalised response can be stated 

as n(ai), where n(.) is a normalisation function derived from equation 9.10: 

n(al) = _ I1092ail1 	 (9.18) 

This is a 'sawtooth' function, as shown in figure 9.8. The function is discontinuous where 

the shift changes. In other words, a small change in the un-normalised response of a node 

can lead to a large change in the normalised node response. Where a response depends upon 

several nodes, these discontinuities can accumulate. This is shown in figure 9.8, where the 

combination of two normalisation functions results in a double sawtooth function. In other 

words, a small change to the response of a node leads to an unpredictable change in the response 

of the whole circuit. Recall that the original EA has a linear relationship between the response 
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of a node and the response of the entire circuit. The reduced parameter system could therefore 

be characterised as having a more compact encoding, but a more complex relationship between 

the genotype and the functionality objective. 

9.8 Neighbour crossover 

9.8.1 The neighbour crossover algorithm 

'0 
Key 

Q Parent A 
• Parent B 	 \ •  o Undetermined  

(a) There is a neighbourhood for each parent. 
Node 3 could be assigned to either parent. 
Node 6 could be assigned to parent A. 

(b) The neighbourhood for parent A is 
determined by the parent A edges. 

(d) If node 3 is assigned to parent A, the 
parent A neighbourhood is expanded. 

(c) The neighbourhood for parent B is 
determined by the parent B edges. 

(e) If node 3 is assigned to parent A, the 
parent B neighbourhood is reduced. 

Figure 9.9: One step of the neighbour crossover region growing process. 

A crossover operator was introduced in chapter 4. In figure 4.13 it was shown that there is not a 
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clear benefit from that crossover operator. Chapters 6, 7 and 8 use a graph representation for the 

chromosome, and do not use a crossover operator. This was partly due to the poor results in the 

earlier BA system, but it was also partly due to the difficulty of implementing a non-destructive 

graph crossover operator. In this section, a non-destructive crossover operator, the neighbour 

crossover operator, is introduced. 

In a graph, locality is defined by the edges. If two nodes share an edge, then those two nodes 

are close to each other. Nodes with a higher degree of separation are further apart, while 

nodes that share multiple edges are closer together. The neighbour crossover algorithm is based 

upon the principle that if two nodes are local to each other, it should be unlikely that they are 

separated. Conversely, if two nodes are only distantly connected, they should be more likely to 

be separated by crossover. 

The nodes in the chromosome have an index, and this is used to define which nodes correspond 

in the two parents. A node with index i in the child will therefore be a copy of the node with 

index i in one of the parents. Note that the index defines a correspondence between nodes in 

different chromosomes, but it is not used to define a linear ordering for the nodes in a single 

chromosome. The purpose of the crossover operator is to determine which nodes come from 

which parent. 

A node in the child can be marked as being derived from one or other parent, or else it can 

be marked as 'undetermined'. When the algorithm starts, all nodes are marked as undeter-

mined, and the algorithm finishes when all nodes have been assigned a parent. Two nodes are 

neighbours if there is an edge between them. 

The neighbour crossover algorithm is as follows: 

• Mark all nodes as undetermined. 

• Define two neighbour lists, which are initially empty. One neighbour list corresponds to 

each parent. 

• While there are undetermined nodes: 

- Choose a parent P. 

- If the neighbour list Np is empty, insert a randomly chosen undetermined node into 

Np. 
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- Pick a random node n E Np, assign it to parent P, and remove it from both neigh-

bour lists. 

- Insert all of the undetermined neighbours of n into Np; if there are multiple edges 

between n and an undetermined node n', insert n' multiple times. This step uses 

the edges from parent P to determine the neighbours. 

• Copy node information from the parents according to the how the nodes are labelled. 

• Copy edges from the parents according to how the destination nodes are labelled. 

Neighbours are determined using the edges from one or other parent. In other words, the 

neighbours for a node n, assigned to parent P, are determined according to the, edges from 

parent P. Figure 9.9 illustrates one step of this algorithm. 

9.8.2 Experiments 

The neighbour crossover algorithm was compared with the following alternative schemes: 

• no crossover, 

• 2-point crossover, 

• uniform crossover. 

All of the crossover operators operate at the node level; they always copy all of the genes in 

a node from the same parent. The crossover rate was set to 100%. A mutation rate of 1 was 

used when crossover was available, while a mutation rate of 2 was used when crossover was 

disabled. 

In figure 9.10, neighbour crossover is compared with the other schemes, using both test prob-

lems. Neighbour crossover is superior over large parts of the objective space in all but one case. 

In figure 9.10(a), it was found that disabling crossover often gives better results for the RGB-to-

XYZ problem, although neighbour crossover is superior for some of the most important points 

closer to the origin. 

In figure 9.11, the 5% and 10% attainment surfaces are shown for the two problems. The 

neighbour crossover attainment surfaces dominate the other surfaces in all cases, with the most 

pronounced differences evident with the 4-point DCT problem. 
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Figure 9.10: Neighbour crossover (light grey) compared to other techniques (dark grey). 
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9.9 Summary 

This chapter has investigated several improvements over the EAs introduced in earlier chapters. 

These improvements include: 

• pipelining, 

• improved delay modelling, 

• a more compact chromosome encoding, 

a non-destructive crossover operator. 

The EA introduced in this chapter did not make use of local searches, and the evolutionary 

operators were designed for simplicity rather than constructiveness. This meant that the EA 

was not as effective as the EAs in previous chapters. In particular, it was shown to be worse 

than the EA introduced in chapter 6. This provides some justification for the design decisions 

in earlier chapters. 

The introduction of pipelining caused a clear conflict between the area and longest-path delay 

objectives. The EA is capable of evolving designs with relatively few pipeline stages. It did 

not evolve maximally pipelined designs. Scheduling becomes more complex as the number of 

stages is increased, so it is likely that the lack of highly pipelined designs is due to limitations of 

the current scheduling technique. The delay for the pipelined designs was close to the minimum 

possible delay, the delay of an adder and a register, so extra pipelining would only have a minor 

effect. 

In chapter 6, two major deficiencies were identified in the delay model. These were the omis-

sion of wire-load modelling, and the fact that delays were modelled on per-connection basis, 

rather than a per-wire basis. This chapter introduces a new wire model, that addresses both of 

these deficiencies. The new wire model was found to more closely agree with the Design Com-

piler delay model. The new model is not perfect; it tends to underestimate delays by more than 

25%. It is possible that these inaccuracies could be reduced through the use of more accurate 

parameter settings. While the new delay model is more computationally expensive, it is not 

excessively so. 

A reduced parameter chromosome encoding was investigated. This reduces the number of 

genes required to represent shifts in the chromosome by making use of the automatic normali- 

143 



Enhancements 

sation of shifts. This resulted in a reduced variable space, without significantly impacting upon 

the representation of useful designs. The net effect is to increase the probability that a particular 

chromosome is useful. This reduction in the size of the chromosome possibly comes at the cost 

of an increase in the number of discontinuities in the objective landscape. When tested, the re-

duced encoding was found to be inferior to the original scheme for the RGB-to-XYZ problem, 

but superior for the more difficult 4-point DCT problem. 

The neighbour crossover operator was introduced. This is a non-destructive graph crossover 

operator. It is designed so that the parent chromosomes are spliced together at relatively few 

points. This is achieved by taking account of the degree of separation between nodes when 

performing crossover. The neighbour crossover operator ensures that nodes with a high degree 

of connectedness are likely to be taken from the same parent. It was shown that the neighbour 

crossover operator increases the probability that good quality results are evolved, in comparison 

with other crossover operators or no crossover. 
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Chapter 10 

Conclusions 

10.1 Introduction 

This chapter concludes this thesis. In section 10.2, the contents of individual chapters are 

reviewed. Section 10.3 lists some specific conclusions that can be drawn from the results in 

this thesis. In section 10.4, some possible directions for future work are listed. Finally, in 

section 10.5 the contents of the thesis are summarised, with reference to the thesis statement. 

10.2 Review of thesis contents 

Chapters 2 and 3 provided a review of the existing literature which is relevant to this thesis; 

In chapter 4, an BA for the evolution of multiplierless FIR filters was introduced. This EA 

takes a frequency domain specification as input, and produces a set of structural filter designs 

as output. The BA has three objectives: functionality, low silicon area, and low longest-path 

latency. The area and delay objectives are based on figures taken from a real technology library. 

The EA used several 'heuristic' evolutionary operators. These evolutionary operators treat the 

chromosome as a graph, and perform operations which are likely to lead to improvements to 

the design. The BA was tested on several different problems. Crossover was found to be of 

no benefit to the EA. The evolved filters were found to be competitive with filters produced by 

other filter design systems. 

In chapter 5, the evolution of multistate sequential hardware was investigated. The BA intro-

duced in chapter 4 was extended so that it could generate filters with multiplication blocks that 

operate over two cycles. These filters are slower but have lower area requirements. The EA was 

able to perform scheduling, allocation and binding in parallel with circuit design, so hardware 

costs could influence the schedule. While modest area savings were achieved, the savings were 

limited by two factors. Firstly, the multiplication block is only part of the filter area, and the 

accumulation block generally consumes most of the area. Secondly, the area cost of an adder is 

/ 
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not much higher than the areas of registers and multiplexors, so the overheads incurred by mul-

tistate operation cancel out a significant part of the savings. Multiplication blocks that operate 

over more than two states were also considered. When operating over more than two states, 

finding the most efficient topology for the registers and multiplexors becomes a hard problem. 

The techniques introduced in this chapter could be applied to other problems, and in particular 

with components that have a high area cost. 

Chapters 6, 7 and 8 all dealt with similar EAs. Chapter 6 introduced an EA for the evolution 

of multiplierless linear transforms. The transforms are specified by a coefficient matrix, and 

the resulting circuit designs are constructed from adders, subtracters, negators and shifts. As 

before, the designs were evolved with the objectives of functionality, low area and low longest-

path latency. The EA made use of a graph chromosome, which was altered by a set of heuristic 

mutation operators. Crossover was not used. It was found that the EA could compete with the 

Iterative Matching algorithm [36] in terms of component counts. The fastest evolved designs 

were found to be slower than CSD transform implementations, although the evolved designs 

are still more area-efficient than the CSD results. It was found that the EA is more successful 

if it is allowed to use right-shifts in the evolved designs. 

The EA in chapter 6 could generate three different types of hardware: bit-serial, fixed-width 

bit-parallel, and variable-width bit-parallel. The accuracy of the area and delay models was 

investigated - the area model was found to be acceptable, however the delay model was found 

to be inaccurate. The delay model inaccuracies were probably caused by two factors: the lack 

of a wire-load model, and the fact that delays were modelled at a component level rather than 

at the level of individual wires. 

In chapter 7, the EA from chapter 6 was extended through the introduction of local searches. 

The local searches are based on a linear decomposition of the design, and implemented within 

the evolutionary operators. The local searches are capable of rapidly evaluating the function-

ality of large numbers of mutated designs. This is achieved through the reuse of intermediate 

values during the local search. A second improvement in search efficiency is achieved through 

the automatic calculation of near-optimal shift settings during the search. It was shown that 

the local searches greatly increase the efficiency of the EA. This means that that the EA can be 

applied to problems for which evolutionary design would otherwise be infeasible. 

In chapter 8, an EA for the design of polynomial transform circuits is introduced. This EA is 
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similar to the EM introduced in chapters 6 and 7, however it can produce designs that contain 

multipliers and have a nonlinear response to the input signals. The designs are specified by 

a set of polynomials, where each. polynomial describes an output response in terms of the 

inputs. This EA uses a variation of the local searches that were introduced in chapter 7. The 

local searches used in chapter 8 were not as powerful as the searches used in chapter 7, as 

there is no way to efficiently calculate good shift settings in a nonlinear design. It was found 

that the EA would often fail to generate many of the terms that. are in the specified response. 

Two solutions were devised. Firstly, the initial population was created in a way that is likely to 

result in responses with many terms. Secondly, functionality was scored in a way that explicitly 

rewarded designs that include more of the desired response terms. Extra terms were also found 

to be a problem, as they could drastically slow down the evaluation of functionality. This 

problem could be solved with a penalty function, or by using estimated responses rather than 

exact responses. The latter of these options was implemented, and was found to be effective. 

Chapter 9 introduced an EA which can produce designs for pipelined linear transforms. It 

combines pipeline scheduling with the evolution of functionality, so that both of these tasks 

can take account of the objectives. The EA was capable of producing combinatorial designs 

and designs with relatively few pipeline stages. It was not capable of producing maximally 

pipelined designs. Nevertheless, the fastest evolved designs were close to the minimum delay. 

Chapter 9 introduced a new delay model, without deficiencies that were identified in chapter 6. 

The new delay, model was found to be better than the earlier models, although it could possibly 

benefit from more accurate parameter settings. Chapter 9 investigated two ways in which the 

performance of the EA could be improved: through the use of a more compact chromosome 

encoding scheme, and with a novel crossover operator. The new encoding scheme was based on 

The use of normalised shifts. It resulted in an objective landscape which was smaller but more 

complex, and produced improved results some of the time. The, neighbour crossover operator 

is a graph crossover operator which was designed to be largely non-destructive. In most tests 

the neighbour crossover was found to be superior to other crossover operators, or no crossover 

operator. The neighbour crossover operator could be applied to other problems. 

103 Specific findings 

This section presents a variety of conclusions, which stem from the research in this thesis. 
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While most research into evolutionary hardware design has focussed on gate-level circuits, EAs 

can also be used for the creation of designs based upon high-level arithmetic components. This 

thesis demonstrated the application of EAs to several high-level synthesis problems. 

Graph chromosomes were found to be a useful and very intuitive representation for digital 

circuits. The use of a graph chromosome representation greatly simplifies the mapping between 

the genotype and the phenotype. The main drawback for graph chromosomes is that they 

require many complicated evolutionary operators in order to properly search the design space. 

Most evolutionary operators were found to be destructive in a majority of cases. In other words, 

most changes to a semi-functional circuit are detrimental to functionality. Both crossover and 

mutation operators were found to be destructive. This observation led to the development of 

evolutionary operators that are designed to be less damaging to the chromosome; namely the 

heuristic mutation operators and the neighbour crossover operator. 

There are many improvements to a circuit design, which although obvious to a human de-

signer, are unlikely to be discovered by an evolutionary algorithm. For example, some of the 

circuits examined in chapter 4 could be trivially improved by strength reduction and common 

subexpression elimination operations. An evolutionary algorithm can not discover these im-

provements because they involve the simultaneous modification of several genes. This problem 

can be overcome through the development of a rich set of evolutionary operators, which can 

explicitly perform such improvements. 

The local searches which were described in chapters 7 and 8 produced major increases in the 

performance of the EA. The use of local searches combined with an EA results in a hybrid 

algorithm which combines the power and robustness of an BA with the speed of hiliclimbing. 

Evolutionary algorithms can perform scheduling in parallel with other circuit design tasks. This 

approach is in contrast to conventional methods, which typically treat scheduling as one step 

in the design process. By iteratively performing scheduling in parallel with other design tasks, 

the BA ensures that all aspects of the design can be directly influenced by the objectives. 

It is very useful if the response of a design can be completely characterised. This not only 

aids evaluation of the functionality objective, but also ensures that the user can be sure of 

the response of the design to all possible inputs. The response of linear digital circuits is 

compact and easy to calculate. For most classes of nonlinear digital circuits, the complexity of 
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the response is likely to grow as the number of components is increased. This can make the 

calculation of exact responses impractical for nonlinear circuits, as was found in chapter 8. If 

this happens, approximate responses can be used instead. 

There is often a large amount of variation in solution quality between different EA runs. This 

variation can be reduced by combining the results from multiple runs. Evolutionary algorithms 

do not guarantee a worst-case performance. If such a guarantee is required, a non-stochastic 

method could be used either to seed the EA population, or else to provide back-up solutions in 

the case that the EA fails to produce useful results. 

Synthesis problems often have more than one objective. Multiobjective evolutionary algorithms 

are a powerful technique for the discovery of multiple non-dominated solutions to multiobjec- 

tive problems. 

Accurate hardware modelling is useful, because it lets the EA correctly weigh up the costs 

of different designs. This thesis has demonstrated the use of accurate models of the area and 

longest-path delay of a design. While accuracy leads to some extra computational costs, the 

models used in this thesis were still fast enough to be used as objectives, even when hundreds 

of thousands of evaluations were required. 

10.4 Directions for further research 

• This thesis has considered the EA in isolation from conventional design tools, however 

it is likely that a single project could make use of both conventional and evolutionary 

synthesis techniques. The combination and integration of these two distinct synthesis 

techniques could be investigated. 

• A power objective would be very useful. This would involve the development of a fast 

approximate power model. The power objective is likely to correlate with the area objec-

tive, so the area objective could possibly be removed. 

• The decomposition of large designs could be investigated. Large design specifications 

could be divided into module specifications, which could then be synthesised by an EA. 

• Hierarchy is commonly used to simplify design tasks, and there have been some investi-

gations into the automatic determination of modular structures [106]. Could hierarchical 
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digital designs be evolved for high-level digital design problems, and is there any benefit 

over non-hierarchical techniques? 

• If multiplexors were to be introduced as a component, the evolved designs could have a 

degree of programmability. This could either be used for the implementation of multiple 

functions (for example, filters which can switch between two different responses), or else 

to increase robustness to component failures. 

10.5 Summary 

The thesis statement introduced in chapter 1 is as follows: 

To investigate ways in which multiobjective evolutionary algorithms can be 
used for high-level digital circuit design, and to find ways in which the effi-
ciency and usefulness of these EAs can be improved. 

This can be divided into three main areas: 

To demonstrate the use of EAs for the synthesis of several important classes of hardware. 

To demonstrate multiobjective evolution, where the objectives are based upon accurate 

hardware models. 

To increase the performance and capabilities of evolutionary algorithms for these prob-

lems, and in general. 

These aims have been approached as follows. 

Regarding the first aim, EAs have been developed for the creation of FIR filters, linear transform 

circuits and polynomial transform circuits. The evolution of multistate sequential designs and 

the evolution of pipelined designs were also investigated. These classes of design are used in a 

wide variety of real-world applications. 

Regarding the second aim, the EAs all used the objectives of functionality, low area, and low 

longest-path delay. The area and delay objectives were calculated using accurate hardware 

models, using figures derived from real technology libraries. Crucially, the computational costs 
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of hardware modelling are low enough that this approach is viable. The use of accurate hard-

ware models directed the search towards the most efficient hardware designs. Where there is a 

conflict between the objectives[the use of a multiobjective EA enables the discovery of multiple 

trade-off solutions, from which the user can select the most appropriate design for a particular 

situation. 

Regarding the final aim, several different techniques were developed. These include the use of 

graph encodings together with heuristic operators, the local searches introduced in chapters 7 

and 8, the reduced parameter-space encoding from chapter 9, and the neighbour crossover 

operator. These techniques led to substantial increases in the, performance and capabilities 

of the EM. These techniques could potentially be adapted for application to other evolutionary 

design problems. 

Evolutionary algorithms were found to be a powerful method for the discovery of efficient 

circuit designs. Their major strengths are robustness in the face of highly complex circuit design 

problems, and the ability to work with accurate hardware models and multiple objectives. This 

thesis has investigated how evolutionary algorithms can be applied to the creation of useful 

digital circuit designs, and how the performance of evolutionary algorithms can be improved. 

Hopefully, this research will lead to the development and use of commercial digital circuit 

synthesis tools which incorporate evolutionary methods. 
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timisation of VLSI Primitive Operator Filters", in Proceedings of the 2002 Congress on Evolu-

tionary Computation, pages 37-42, May 2002. 

Robert Thomson and Tughrul Arsian, "Evolvable Hardware for the Generation of Sequential 
Filter Circuits", in Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware, 

pages 17-25, July 2002. 

Robert Thomson and Tughrul Arslan, "The Evolutionary Design and Synthesis of Non-Linear 

Digital VLSI Systems", in Proceedings of the 2003 NASA/DoD Conference on Evolvable Hard -

ware, pages 125-134, July 2003. 

Robert Thomson and Tughrul Arslan, "On the Impact of Modelling, Robustness, and Diver-
sity to the Performance of a Multi-Objective Evolutionary Algorithm for Digital VLSI System 

Design", in Proceedings of the 2003 Congress on Evolutionary Computation, pages 382-389, 

volume 1, December 2003. 

B. Hounsell , T. Arslan and R. Thomson, "Evolutionary design and adaptation of high perfor -

mance digital filters within an embedded reconfigurable fault tolerant hardware platform", in 
Soft Computing - A Fusion of Foundations, Methodologies and Applications, Volume 8, Num-

ber 5, pages 307-317, April 2004. 

E. Stefatos, W. Han, T. Arslan, and R. Thomson, "Low-Power Reconfigurable VLSI Archi-
tecture for the Implementation of FIR Filters", in Proceedings of the 19th IEEE International 

Parallel and Distributed Processing Symposium, April 2005. 

Robert Thomson and Tughrul Arslan, "Techniques for the Evolution of Pipelined Linear Trans-

forms", in Proceedings of the 2005 Congress on Evolutionary Computation, Volume 3, pages 

2476-2483, September 2005. 

A.2 Patent application 

The University of Edinburgh, Tughrul Arslan, Robert Graham, and Robert Thomson, "System 
and Method for Rapid Prototyping of ASIC Systems", international patent application number 

W02004068535, August 2004. 
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Transform matrices and filter 

responses 

This appendix lists the transformation matrices used as test problems in chapters 6 and 7, as 

well as the filter impulse responses used in chapter 4. 

The 4-point DCT matrix: 

0.5 0.5 0.5 0.5 

0.653 0.271 —0.271 —0.653 

0.5 —0.5 —0.5 0.5 

0.271 —0.653 0.653 —0.271 

The transformation of RGB colour values to an XYZ representation [13]: 

0.49 	0.31 	0.2 

0.177 0.812 0.0106 

0 	0.01 	0.99 

When used in chapters 6 and 7, the above transform was scaled so that the coefficients use 

16-bit unsigned values: 

32112 20316 13107 

11598 53241 	697 

0 	655 64880 

The 4-point DCT, scaled so that the coefficients fitwithin 8 bits: 

64 64 64 64 

83 34 —34 —83 

64 —64 —64 64 

34 —83 83 —34 
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The 8-point DCT, scaled so that the coefficients fit within 8 bits: 

64 64 64 64 64 64 64 64 

88 75 50 18 —18 —50 —75 —88 

83 34 —34 —83 —83 —34 34 83 

75 —18 —88 —50 50 88 18 —75 

64 —64 —64 64 64 —64 —64 64 

50 —88 18 75 —75 —18 88 —50 

34 —83 83 —34 —34. 83 —83 34 

18 —50 75 —88 88 —75 50 —18 

The 8-point DHT, scaled so that the coefficients fit within 8 bits: 

64 64 64 64 64 64 64 64 

64 91 64 0 —64 —91 —64 —0 

64 64 —64 —64 64 64 —64 —64 

64 0 —64 91 —64 —0 64 —91 

64 —64 64 —64 64 —64 64 —64 

64 —91 •64 —0 —64 91 —64 0 

64 —64 —64 64 64 —64 —64 64 

64 —0 —64 —91 —64 0 64 91 

The following filter coefficient sets were derived using SPW. They were used for some of 

the comparisons in chapter 4. These coefficient sets are all symmetrical around the central 

coefficient, so the duplicated coefficients are omitted here. 

Filter Coefficients 

30dB low pass (-1,14,44,77,92 .... 

40dB low pass (-9,1,62,183,313,369 .... 

50dB low pass (-29, —67, —18,243,721, 1214, 1426,...) 

30dB high pass (-3,16, —11, —39,75,...) 

40dB high pass (-15,10,58, —52,-146,288.... 

50dB high pass (39, —154,130,163, —134, —630,1167 .... 
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Appendix C 
Nonlinear problem specifications 

The simplest test problem is the following approximation to a sine function: 

x 3  x 5  
sin(x) 	a: - --+ 

The nonlinear EA was tested on polynomials that have random coefficients. Two types of 

polynomial were used. The first set of polynomials are factorisable. They are of the form: 

(kixi + k2x2)(k3xi + k4) (k5xa + k6) 

where k1 . . . k6 are random real numbers between —10 and 10, and x1 and a:2 are the inputs. 

These polynomials were used for the one output and two output cases. These test problems are 

called 'factored 1' and 'factored 2'. 

The 'factored 1' problem is specified as follows: 

yi = 48.38XX2 + 219.2X1X2 - 44.85xi4.+ 99.24x + 120.9x - 267.6xi + —248.1x2 

The 'factored 2' problem is specified as follows: 

= 62.48xx2 + 146.3x1x2 + 46.46xix + 94.61x + 25.62x +52.16xi + 38.79x2 

112 = -109xx2 + 9.818x1x2 - 43.37x1x - 22.32x + 165.8x + 85.32xi + 33.94X2 

The system was also tested on larger polynomials, which are not factorisable. These polyno-

mials include all of the possible first and second-order terms for a set of inputs. Each term' is 

multiplied by an integer between -100 and 100. The first of these problems has three inputs and 

three outputs, and is called 'random 3 x 3'. It is specified as follows: 

yj = 13x1 - 44x 2 - 26x2 - 16x2x - 36x - 35x3 + 63x3x + 70x3x2 - 86x 

112 = 98x1 - 76x - 24x2 - 98x2xi + 16x + 73x3 + 100x3x1 - 13x3x2 - 36x 

= 9lxi - 7x + 67x2 + 14x2x1 - 90x + 83x3 - lOx3xi - 48x3x2 + 9laj 

The last problem has four inputs and four outputs, and is called 'random 4 x 4': 

yi = 43xi + 21x - 89x2 - 81x2x + 83x + 26x3 + 95x3x1 + 62x3x2 + 12x - 17x4 - 
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82x4x1 + 58x4x2 + 87x4x3 - 74x 

Y2 = —82x1 - 61x + 35x2 + 8x2x1 - 71x + 90x3 - 43x3x1 - 25x3x2 - 2x - 91x4 + 

24x4x1 - 92x4x2 - 22x4x3 - 39r4 

= 79x1 + 2Ox 2 + 15x2 + 41x2x1 - 16x+ 85x3 + 87x3x1 + 43x3x2 - 39x - 74x4 - 

69x4x1 - 45x4x2 + 9x4x3 - 4x 

= 15x - 69x 2 + 52x2 + 20x2x1 - 14x + 7lx3 - 99x 3 x 1  - 78x3x2 - 35x + 49x4 + 

29x4x1 - 60x4x2 + 65x4x3 - 5x 
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