
a

: :77 !.Ihh, Nift-79"17'All

-Iftlwiaga-v- N)

r -
-

— -
— -
L -
— -

. .

F 4z

The Evolutionary Design of Digital VLSI
Hardware

Robert Thomson

A thesis submitted for the degree of Doctor of Philosophy.
The University of Edinburgh.

October 2005

Abstract

Evolutionary Algorithms (EAs) are a class of powerful stochastic search techniques, which

were inspired by natural evolution. They work by iteratively improving a population of solu-

tions, according to one or more objective functions. Evolutionary algorithms are capable of

producing near-optimal solutions to highly complex search problems;

In this thesis, multi-objective evolutionary algorithms are applied to the design of efficient

digital ASIC core designs. Specifically, the thesis addresses the evolutionary synthesis of mul-

tiplierless linear filters, multiplierless linear transforms, and polynomial transform designs. The

designs are constructed from high-level arithmetic components such as adders and subtracters,

according to a user-supplied behavioural specification. The designs are evaluated according to

three different objectives: functionality, low area requirements, and low longest-path delay. In

order to evaluate these objectives, accurate hardware models are developed.

Evolutionary algorithms are often applied to scheduling problems. This thesis investigates

the possibility of performing scheduling and allocation in parallel with circuit evolution. Two

possibilities are considered: scheduling for sequential operation and pipeline scheduling.

The choice of solution representation and evolutionary operators can have an enormous im-

pact on the performance of an evolutionary algorithm. In this thesis, solutions are represented

with graphs. Graphs are found to be a powerful and intuitive representation for circuit designs,

although the complexity of the evolutionary operators tends to be higher than with other encod-

ings. Various graph evolutionary operators are developed, including a novel non-destructive

graph crossover operator.

This thesis also proposes a class of local search operators. These operators can significantly

improve the performance of an EA. The improvement is achieved in two ways: by reducing

the computational cost of evaluating a design, and by automatically finding optimal settings

for some of the design parameters. These local search operators are initially applied to linear

designs, and are later adapted for devices with polynomial responses.

Declaration of originality

I hereby declare that the research recorded in this thesis and the thesis itself was composed and

originated entirely by myself in the School of Engineering and Electronics at The University of

Edinburgh.

Figure 2.11 is based upon a figure in [1].

Robert Thomson

IIII

Acknowledgements

Thanks to my parents, for their constant support.

Thanks to Ben Hounsell for his help early in my research.

Thanks to Tughrul Arsian and Alister Hamilton for supervising this PhD.

Thanks to John Hannah, for encouraging me to write up quickly.

lv

Contents

Declaration of originality 	 iii
Acknowledgementsiv
Contents V

List of figures IX

List of tables XII

Acronyms and abbreviations . xiii
Nomenclature xv

1 Introduction 	 1

	

1.1 	Motivation1

	

1.2 	Contribution2

	

1.3 	Overview 2

	

1.4 	Thesis contents3

2 	Hardware modelling and synthesis 7

2.1 Introduction 7

2.2 Digital signal processing 7
2.2.1 	Linear filtering 7

2.2.2 	Linear Transforms 10

2.2.3 	Nonlinear filtering 12

2.3 Filter implementation 13

2.3.1 	Hardware implementation of linear components 13
2.3.2 	Carry-save arithmetic 14

2.3.3 	Multipliers and multiplication blocks 14
2.3.4 	Linear transforms 19

2.3.5 	Existing linear filter design systems 21

2.3.6 	Implementation of Volterra filters 21

2.4 Hardware properties and modelling 22

2.4.1 	Pre-placement modelling 23

2.4.2 	Wire-load modelling 23

2.4.3 	Longest path delay 24

2.4.4 	Power 27

2.4.5 	Silicon area 29

2.4.6 	Other metrics 29

2.5 Summary 30

3 Evolutionary algorithms and stochastic search techniques 	 31
3.1 	Introduction31
3.2- Evolutionary algorithms 31

3.2.1 Operation of an evolutionary algorithm32
3.2.2 	Fitness landscapes34
3.2.3 A taxonomy of evolutionary algorithms 	35

V

Contents

3.2.4 Other stochastic search techniques 36
3.2.5 Hybrid search techniques 37

3.3 	Multiobjective evolutionary algorithms 37
3.3.1 Multiobjective problem solving 37
3.3.2 Non-Pareto ranking methods 39
3.3.3 Pareto ranking methods 40
3.3.4 Population diversity 41
3.3.5 Multiobjective elitism 42

4 	Evolutionary algorithms and electronics 42
3.4.1 The evolution of electronic designs 42
3.4.2 Assessing functionality 46
3.4.3 The genotypic representation of digital circuits 47

3.5 	Summary 51

4 Evolutionary algorithms for FIR filter synthesis 	 53
4.1 	Introduction53
4.2 	Problem description54
4.3 	System description56

4.3.1 	Objective calculation56
4.3.2 	The chromosome57
4.3.3 	Initialisation 59
4.3.4 	Evolutionary operators60
4.3.5 	Ranking and selection61
4.3.6 	Elitism 62
4.3.7 	The evolutionary algorithm63
4.3.8 	Circuit synthesis63

4.4 	Experiments and results65
4.41 	Evolution of filters65
4.4.2 	Crossover rate 66
4.4.3 	Comparison with other systems68

4.5 	Summary 72

5 The evolution of sequential circuits 	 73
5.1 	Introduction 	73
5.2 	Multistate sequential circuits 	73
5.3 	2-state hardware 	74
5.4 	Modifications to the EA 	75
5.5 	Results 	77
5.6 A multistate accumulation block 	81
5.7 	Operation over many cycles 	81
5.8 Application to other problems 	82
5.9 	Summary 	82

6 The evolution of multiplierless linear circuits
	

85
6.1 	Introduction 	 85
6.2 Problem statement 	 85
6.3 The evolution of linear transforms 	. 	 86

vi

Contents

6.3.1 The chromosome 	 86

6.3.2 	Initial population8 7

6.3.3 	Evolutionary operators87
6.3.4 	Fixed-point and integer operation88

6.3.5 	Assessment of functionality89
6.3.6 	Hardware modelling89

6.3.7 	Ranking and selection90

	

6.4 	Experiments 91

6.4.1 	Test problems91

6.4.2 	Solution functionality 92

6.4.3 	Solution quality and diversity93
6.4.4 	Hardware implementation styles94

6.4.5 	Fixed-point values95

6.4.6 	Hardware modelling96
6.4.7 Comparison with other design techniques96

	

6.5 	Summary 97

7 Local searches and the evolution of linear circuits 	 99

	

7.1 	Introduction 99

	

7.2 	Design modelling99

	

7.3 	Characterising a design103

7.4 Searching evolutionary operators 103

7.5 Experiments and results 105

7.6 Summary 108

8 	Local searches and the evolution of nonlinear circuits 111

8.1 Introduction 111

8.2 Filter specification 1 11

8.3 The EA 112

8.3.1 	The chromosome 112

8.3.2 	Initial population 113

8.3.3 	Local searches 113

8.3.4 	Functional evaluation 114

8.3.5 	Hardware modelling 115

8.3.6 	Evolutionary operators 116

8.4 Experiments and results 117

8.4.1 	An example problem - the sine function 117

8.4.2 	Application to larger problems 119

8.4.3 	Scalability of the current system 120

8.4.4 	Effectiveness of the local searches 122

8.5 Summary 124

9 Enhancements 	 125

	

9.1 	Introduction1 25

	

9.2 	System overview125

	

9.2.1 	Representation125

	

9.2.2 	Evolutionary operators 126

vu

- Contents

9.2.3 	Populations and selection126
9.3 	Pipeline scheduling127
9.4 	Improved delay modelling128
9.5 Experimental methodology130
9.6 	Initial experiments 132
9.7 A reduced parameter space134

9.7.1 	Changes to the chromosome134
9.7.2 	Experiments 135
9.7.3 	Analysis 137

9.8 	Neighbour crossover138
9.8.1 	The neighbour crossover algorithm138
9.8.2 	Experiments 140

9.9 	Summary 143

10 Conclusions 	 145
10.1 Introduction145
10.2 Review of thesis contents145
10.3 Specific findings147
10.4 Directions for further research149
10.5 Summary150

A Publications 	 153
A.1 Refereed publications 	 153
A.2 Patent application 	 153

B Transform matrices and filter responses 	 155

C Nonlinear problem specifications 	 157

References 	 159

viii

List of figures

2.1 A direct form FIR filter 8

2.2 A transposed direct form FIR filter 9

2.3 A folded direct form FIR filter 9

2.4 A folded transposed direct form FIR filter 9

2.5 A discrete wavelet transform (DWT) with 3 levels of decomposition 12

2.6 Three implementations of A + 8B. Clockwise from top left: bit-serial, 4-bit

digit-serial, and bit-parallel 13

2.7 The summation of three values using carry-save arithmetic 15

2.8 A suboptimal CSD multiplier: multiplication by 45................ 17

2.9 Common sub-expression elimination 18

2.10 Designing linear transform hardware using the iterative matching algorithm. . 20

2.11 The decomposition of a Volterra filter proposed by Panicker and Mathews[1, 2] 22

2.12 Two wire load models 23

2.13 A model of a balanced tree wiring structure with N = 3 branches of equal length. 24

2.14 Elmore delay models for (a) a chain of RC delays and (b) a tree of RC delays
with a single driver 25

2.15 Three models of the delay in a 4-bit negator: per connection, per bit and per
group of bits 26

2.16 Two four-bit ripple adders, with a combined delay of 5 full adders, while a
single adder has a delay of 4 full adders 26

2.17 Dynamic power consumption in a CMOS inverter 27

3.1 The operation of an EA. An initial population is created and then iteratively
replaced. 32

3.2 Crossover and mutation as applied to a binary chromosome 33
3.3 Point a dominates point b, while both a and b are dominated by some of the

points on the Pareto surface 	38

3.4 Selection pressure towards optimal solutions (solid arrows) and a diverse solu-
tion set (dashed arrows).............................. 38

3.5 A concave Pareto surface with Pareto points A, B, and C, where point B is in a
concavity...................................... 	39

3.6 The ranks assigned to a population by the non-dominated sorting algorithm. 	40

4.1 An example filter specification - the response of the filter must be in the
shaded area at all frequencies55

4.2 The multiplication block and the accumulation block in a transposed direct
form FIR filter................................... 	55

4.3 Calculation of the functionality objective, which is defined as the largest devi-
ation from the specification (in this example at f = 0.125)...........56

4.4 Conversion from the genotype to the phenotype 58

4.5 A breakdown of the contents of the chromosome 59

ix

List of figures

	

4.6 The heuristic mutation operators . 	60
4.7 Selection: (a) by rank, and (b) by both rank and functionality 62
4.8 	An example filter netlist . 	63
4.9 	An evolved filter 	64

	

4.10 Filter specifications . 	64
4.11 The number of populations containing a correct solution, by generation. 65
4.12 Area and delay results for low-pass (left) and high-pass filters (right) 66
4.13 Experiments with different levels of crossover, for the 40dB low-pass (left) and
17 	high-pass (right) problems . 	67
4.14 Comparison of component counts with the modelled areas 69

5.1 	2-state and n-state state machines 	74
5.2 A 21-times multiplier using two additions, performed using one adder, two

MUXs and one register74
53 How the position of an operation within the chromosome is used to encode

scheduling and binding information.75
5.4 Correct results for the test problems . 77
5.5 Critical paths. The last adder (shown in grey) is always part of the accumulation

block ...78
5.6 Comparison of sequential and equivalent combinatorial areas for evolved mul-

tiplication blocks79
5.7 Comparison of sequential and equivalent combinatorial areas for evolved filters 79
5.8 A 2-state accumulation block81

6.1 A chromosome and the corresponding circuit design86
6.2 The functional fitness of the best DHT design, for 20 runs 92
6.3 Properties of the evolved circuits for the test pr oblems 93
6.4 Minimum area and minimum delay circuits for computing f = a + b + c + d

	

and g = b + c + d . 	94
6.5 Properties of 4-point DCT designs evolved with 3 different hardware models. 	94
6.6 Functional fitness in integer mode (upper lines) and fixed-point mode (lower

lines) . 	. 	95
6.7 A comparison of the hardware models with Synopsys Design Compiler 96

7.1 A model of how a single connection (labelled 'X') relates to the inputs and
outputs of a linear system . 100

7.2 The effect of inserting a shift and negation into a connection 102
7.3 A model of how the 'insert node' operation changes a design 105
7.4 The functional error of the most functional DHT design, by generation 106
7.5 Comparison of result delay and area between the original EA system and the

searching EA system . 107

8.1 A model of a nonlinear system, where one connection has been selected for
modification114

8.2 The properties of evolved sine circuits . 118
8.3 The response of an evolved sine circuit, and the error when compared to an

ideal sine . 118
8.4 The properties of the functional solutions to the test problems 120

x

List of figures

8.5 Circuit properties for the non-searching and searching EAs 123

9.1 Two ways of repairing an invalid schedule . 128
9.2 RC delays according to fanout . 129
9.3 Calculation of attainment surfaces: the four non-dominated surfaces in (a) are

converted to four attainment surfaces in (b)....................130
9.4 Solution properties according to pipeline depth 132
9.5 The hardware models compared with Design Compiler 133
9.6 Performance comparisons between the original EA (light grey) and the reduced-

parameter EA (dark grey) . 136
9.7 Attainment surfaces for the original and reduced-parameter EAs 136
9.8 The relationship between normalised and un-normalised responses 137
9.9 One step of the neighbour crossover region growing process 138
9.10 Neighbour crossover (light grey) compared to other techniques (dark grey). . . 141
9.11 5% and 10% attainment surfaces, with various crossover operators 142

lug

List of tables

4.1 Component costs 	 . 57
4.2 	EA settings . 	65
4.3 	EA performance................................. 	66
4.4 Comparison of component counts for evolved and conventional filters 68
4.5 Comparison of the number of adders on the longest path, for evolved and con-

ventional filters . 70
4.6 A filter specification from Suckley [3].......................70
4.7 Comparison with results from Redmill et aL [4]..................71

5.1 	Component properties 	77
5.2 Component counts for three different filter implementation techniques 80
5.3 Components required for an n-th order accumulation block 80

6.1 Bit-serial component properties 90
6.2 Functionality results from the test problems 92
6.3 Adder counts for evolved and non-evolved solutions to the test problems. 	. 97

7.1 Functionality results from the test problems 105
7.2 Lowest-area and lowest-delay design properties for the original and searching

EAs 106
7.3 Adder counts for evolved and non-evolved solutions to the test problems. 	. 107
7.4 Time taken for each experiment 108.

8.1 The mapping between graph nodes and hardware components 113
8.2 Component properties 116
8.3 Test problems 119
8.4 Computational costs for the 'factored 1' problem 122

9.1 Summary of gene types 125
9.2 Niching parameters 127
9.3 Cell delays 129
9.4 Summary of gene types for the reduced encoding 134

xii

Acronyms and abbreviations

ADF Automatically defined function

ALAP As late as possible

ASAP As soon as possible

ASIC Application specific integrated circuit

BIST Built-in self-test

CAD Computer aided design.

CES Chip estimation system

CLA Carry look-ahead adder

CSA Carry sum adder

CSD Canonic signed digit

CSE Common sub-expression elimination

DAG Directed acyclic graph

DBT Dual bit type

DCT Discrete cosine transform

DFG Data flow graph

DFT Discrete Fourier transform

DHT Discrete Hartley transform

EA Evolutionary algorithm

EP Evolutionary programming

FIT Fast Fourier transform

FIR Finite impulse response

FPGA Field programmable gate array

FSM Finite state machine

FT Fourier transform

GA Genetic algorithm

GP Genetic programming

HDL Hardware description language

hR Infinite impulse response

IM Iterative matching

xffl

Acronyms and abbreviations

JPEG Joint photographic experts group

LSB Least significant bit

MAG Minimised adder graph

MCM Multiple constant multiplication

MOEA Multiobjective evolutionary algorithm

MPEG Motion picture experts group

MSB Most significant bit

MSD Minimal signed digit

NDS Non-dominated sorting

PFA Power factor approximation

PLA Programmable logic array

RAG-n n-dimensional reduced adder graph

RGB Red green blue

RTL Register transfer level

SD Signed digit

SNR Signal to noise ratio

SoC System on a chip

XYZ Colour components in the CIE XYZ colour space

xiv

Nomenclature

a 	Response vector describing the relationship between the inputs and a node.

b 	Response vector describing the relationship between a node and the outputs.

C 	Matrix containing the part of the system response independent of a chosen node.

d 	Desired response vector, which minimises the error at a node.

d' 	Desired correction vector, which minimises the error at a node.

H 	Response matrix of a system.

M 	Number of outputs.

N Number of inputs.

R Desired response matrix.

X Vector of system inputs.

x(t) Time domain input.

x(z) Frequency domain input.

Y Vector of system outputs.

y(t) Time domain output.

y(z) Frequency domain output.

Chapter 1
Introduction

1.1 Motivation

Modem microchips are increasingly complex, however there is intense pressure to limit devel-

opment costs and maintain rapid development times. These pressures are often combined with

a need for more efficient use of hardware resources. The net effect is to create a strong demand

for increased productivity from IC designers. Powerful CAD tools will play a major role in

meeting this demand.

Many modern design tasks are highly complex. In fact, some common problems are actually

intractable. The following two examples are particularly relevant to this thesis:

Scheduling problems relate to the scheduling of a set of tasks over a series of different steps,

typically with constraints. Two cases which are relevant to digital design are pipeline

scheduling and scheduling for sequential hardware. Many scheduling problems belong

to the class of NP-Complete [5] intractable problems.

Multiplierless design involves the creation of linear filters and linear transforms which do not

include any multipliers. Multiplication is instead achieved through the use of adders,

subtracters and shifters. The resulting circuits are efficient in terms of silicon area, power

and longest-path delay. The design problem is often intractable.

Intractable problems preclude the reliable discovery of optimal solutions, however powerful

searching techniques can be used to find near-optimal solutions. Conventional synthesis tech-

niques, focussing on the iterative improvement of a single design according to a set of heuristics,

are often insufficient for these problems.

Evolutionary algorithms are a class of powerful stochastic search techniques, which were in-

spired by natural evolution. EAs can find near-optimal solutions to highly complex problems.

EM can be applied to problems with discontinuous, multimodal search spaces, and to multiob-

jective problems.

1

Introduction

Evolutionary algorithms have previously been applied to a range of different electronic hard-

ware design problems. In particular, they have often been used for the design of gate-level

digital circuits [6-8]. In contrast, relatively little work has been done relating to the evolution

of digital circuit designs based upon higher-level components, and in particular the synthesis of

high-level ASIC core designs. This thesis addresses the question of whether EAs can be used

to construct useful core designs from arithmetic-level components.

1.2 Contribution

The objective of this thesis can be summarised by the following statement:

To investigate ways in which multiobjective evolutionary algorithms can be
used for high-level digital circuit design, and to find ways in which the effi-
ciency and usefulness of these EAs can be improved.

This can be split into three key areas:

To demonstrate the use of EAs for the synthesis of several important classes of hardware.

To demonstrate multiobjective evolution, where the objectives are based upon accurate

hardware models.

To increase the performance and capabilities of evolutionary algorithms for these prob-

lems, and in general.

1.3 Overview

This thesis investigates the evolutionary design of three important classes of digital hardware:

• multiplierless FIR filters,

• multiplierless linear transforms,

• polynomial transforms.

2

Introduction

These three classes of hardware have applications throughout the field of digital signal process-

mg.

EvolutiOnary hardware design systems were developed for all three of the above problems. The

designs are specified by a behavioural-level description - either the desired frequency response

for a filter, or the desired coefficient set for a transform. The EAs construct efficient hardware

designs from high-level components such as adders and subtracters. The final circuit designs

are produced as Verilog netlists, containing structural descriptions of the designs.

The EAs in this thesis all have the objectives of functionality, low silicon area, and low longest-

path latency. The area and delay objectives are calculated according to technology-specific

hardware models. The EAs are designed so that, if possible, they can find multiple solutions

that make different trade-offs between the objectives.

While most of this thesis focusses on the evolution of combinatorial designs, multistate Se-

quential designs and pipelined designs are also investigated. Multistate sequential designs save

area by performing a single computation over several cycles. This enables the construction of

large designs in a limited area. Pipelining reduces the longest-path delay of a design through

the insertion of extra registers. Pipelining is very useful when a high throughput is required.

This thesis describes evolutionary algorithms for the design of both pipelined hardware and

multistate sequential hardware.

The above design problems require powerful EAs. The performance of an EA is highly de-

pendent on the choice of design representation and the choice of evolutionary operators. This

thesis proposes the use of a directed graph design representation, which is a useful and intuitive

representation for digital hardware. A variety of powerful evolutionary operators are investi-

gated. These include heuristic evolutionary operators, evolutionary operators that perform local

searches, and a novel non-destructive graph crossover operator.

1.4 Thesis contents

This thesis is structured as follows.

Chapters 2 and 3 contain descriptions of existing literature. Chapter 2 describes relevant tech-

niques for the design and modelling of digital hardware. Chapter 3 describes stochastic search

techniques, including evolutionary algorithms, as well as investigating how they have been

tm

Introduction

applied to the field of digital design.

Chapters 4 and 5 investigate the evolutionary design of multiplierless FIR filters. In chapter 4,

an EA for the design of multiplierless filters is introduced. This BA takes a frequency-domain

filter specification as input, and produces a set of efficient structural filter designs as output. The

EA searches for filter designs that meet the functional specification, and have a low area and

longest-path delay. In contrast to other filter-design systems, the entire filter design process,

from frequency-domain specification to hardware design, is performed by the EA. This means

that the EA can choose coefficients which have low associated hardware costs, but which still

meet the frequency-domain specification. Chapter 4 also introduces the use of novel construc-

tive evolutionary operators, which treat the chromosome as a graph and heuristically improve

the design.

Chapter 5 investigates the evolution of circuits with multistate sequential datapaths. The work

in chapter 5 adapts the BA introduced in chapter 4 so that it can produce sequential multi-

plication blocks that perform a set of multiplications over two or more cycles. The BA per-

forms scheduling, resource allocation and resource binding in parallel with the evolution of

functionality. This means that the schedule can take account of the hardware requirements of

the datapath. This contrasts with pre-existing systems, which separate functional design from

scheduling.

Chapters 6, 7 and 8 investigate the evolution of digital circuits that have multiple inputs and

multiple outputs. As before, in these chapters the EA has the objectives of functionality, low

area, and low longest-path delay.

Chapter 6 investigates the evolution of multiplierless linear transforms, which is a new applica-

tion area for evolutionary methods. The EA introduced in chapter 6 can produce three different

types of hardware designs: bit-serial, bit-parallel with fixed component widths, or bit-parallel

with variable component widths.

In chapter 7, a novel local search technique is used to accelerate the evolutionary algorithm that

was introduced in chapter 6. This local search technique speeds up the algorithm in two ways:

by reducing the computational cost of design evaluation, and by automatically determining

high quality values for some genes. The net result is a tremendous increase in BA performance

relative to the system from chapter 6.

4

Introduction

Chapter 8 investigates the evolution another new class of circuit designs: polynomial trans-

forms. These are circuits where the response of each output is a polynomial that can include

nonlinear terms. The search technique from chapter 7 is adapted for use with these nonlinear

designs.

In chapter 9, pipelined linear transform circuits are evolved. Pipeline scheduling is performed

in parallel with the evolution of functionality, so the EA can take account of the final hardware

costs when evaluating different designs. The EA introduced in this chapter uses a cell-level

delay model, which incorporates wire-load modelling, resulting in more accurate delay values.

Chapter 9 introduces a novel non-destructive crossover operator for graph chromosomes, which

could also be useful with other problems.

Finally, the thesis is concluded with the summary in chapter 10.

61

Chapter 2

Hardware modelling and synthesis

2.1 Introduction

This chapter introduces techniques for the synthesis and 'modelling of digital signal processing

hardware. Three useful classes of signal processing hardware are described: linear filters,

linear transforms, and Volterra filters. This chapter describes the possible architectures for

these circuits, as well as introducing non-evolutionary synthesis methods that can be used to

create them. Later chapters will investigate how evolutionary techniques can be applied to

the synthesis of these three types of hardware. Hardware modelling is an important aspect of

evolutionary hardware synthesis, as it is used when assessing the fitness of a particular design.

For this reason, this chapter describes how important hardware properties such as delay, area,

and power consumption can be modelled.

This chapter is structured as follows. Section 2.2 gives brief descriptions of three important

classes of digital filters - linear FIR filters, linear transforms, and nonlinear Volterra filters.

Section 2.3 describes how these filters can be realised using fixed-point arithmetic ASIC hard-

ware. Section 2.4 describes how' the major properties of a digital filter can be estimated. The

properties that are discussed in section 2.4 include silicon area, longest-path latency, and power.

2.2 Digital signal processing

2.2.1 Linear filtering

According to [9], a system H is linear if it meets the following condition:

H{axi + bx21 = aH{xi} + bH{x2} 	 (2.1)

for signals Xl, X2 and constants a, b. The two definitive properties of a linear system are ho-

mogeneity and additivity. Homogeneity implies that scaling the input is equivalent to scaling

7

Hardware modelling and synthesis

the output. Additivity means that a linear system preserves addition. If the components of a

system are all linear, the whole system will also be linear. The simplest linear operations are

addition, subtraction, negation, and multiplication by a constant. Bit-shifting is equivalent to

multiplication by a power-of-2 constant, so it is also a linear operation.

Convolution of a signal with a set of coefficients is a useful operation. In particular, convolution

in the time domain corresponds to scaling and phase shifting in the frequency domain. A

Finite Impulse Response (FIR) filter is a device that convolves a signal with a finite number of

coefficients. It can be described as follows:

y(n) = 	a2x(n—i) 	 (2.2)

A filter is said to be linear phase if the phase shift in the filter response increases linearly with

frequency throughout the passband. This is a useful property, because it implies that the filter

delays all frequencies by the same amount. Therefore, a linear phase filter will not cause parts

of a signal to be time-shifted relative to each other. This can be guaranteed if the following

identity holds:

ai = a(N_l_),Vi E Z 	 (2.3)

In other words, the filter will be linear phase if the coefficient set is symmetrical around the

central coefficient or coefficients [10].

a0 a1 -Q) 	 aNl

--I",
. L 	I

Figure 2.1: A direct form FIR filter.

An FIR filter for processing time-domain signals can be realised as shown in figure 2.1. This

is known as a direct form implementation. The transposition theory [11] implies that the FIR

filter in figure 2.1 is equivalent to the transposed form FIR filter shown in figure 2.2. For a

linear-phase filter, the constraint that the coefficient set is symmetrical leads to the folded form

FIR filters shown in figures 2.3 and 2.4.

Hardware modelling and synthesis

a0

Figure 2.2: A transposed direct form FIR filter.

a0

Figure 23: A folded direct form FIR filter.

Figure 2.4: A folded transposed direct form FIR filter.

Hardware modelling and synthesis

An Infinite Impulse Response (IIR) filter can produce a response of infinite duration when a

finite stimulus is applied. An hR filter could be modelled using equation 2.2 with N = oc,

however it is more useful to introduce feedback into equation 2.2:

N-i 	 M

y(n) =a2x(n - i) + 	by(n - i) 	 (2.4)

The above equation introduces a second set of coefficients, which allow the filter response to

depend on the previous output values. Although the response of the filter is infinite, both sets of

coefficients can be of finite size. As an hR filter has a response of infinite duration, the response

cannot be symmetrical, and the filter cannot be linear phase. Stability can be a problem for hR

filters; a badly designed hR filter can. oscillate. When designing an hR filter, particular care

must be taken to ensure that the effects of finite arithmetic precision do not lead to instability.

Many tasks can be performed by either an FIR filter or an hR filter. The advantages of FIR

filters are that they are relatively simple to design and model, and that they can be linear phase.

IIR filters typically require fewer, coefficients than FIR filters, and they can perform a wider

range of tasks.

There are a variety of algorithms for producing a filter coefficient set from a frequency-domain

specification [10, 12]. In particular, many of these techniques produce coefficient sets that are

of low or minimal order:

2.2.2 Linear Transforms

A linear transform with inputs x(.), outputs y(.) and coefficient set h(..) can be specified as:

y(n) =
	

h(n, i)x(i) 	 (2.5)

A linear transform can also be modelled using matrix multiplication, where the coefficients in

the matrix define the transform. For example, in computer graphics the conversion from an

RGB to an XYZ colour space [13] can be written as follows:

X 0.49 0.31 0.20 R

Y = 0.17697 0.81240 0.01063 G

Z 0.00 0.01 0.99 B

10

Hardware modelling and synthesis

Two especially noteworthy transforms are the Discrete Fourier Transform (DFT) and the Dis-

crete Cosine Transform (DCT). The DFT is used to convert signals between a space/time do-

main representation and a frequency domain representation. It is fundamental to an enormous

range of signal processing and signal analysis applications. The DFT works using complex

numbers, so it produces results that have both a magnitude and phase. The N-point DFT can

be expressed as follows:

N-i
21 1k

Y(j)
= 	x(k)e N , where 0 < I <N 	 (2.6)

k=O

The DFT is commonly implemented using the Fast Fourier Transform (FIT) algorithm. The

n-point FF1' [10] has O(n log n) complexity, compared to the 0(n2) complexity of a naïve

DFT. The DCT is mathematically related to the DFT, however the DCT is entirely based on

real numbers. The N-point 1-dimensional DCT can be expressed as follows:

C2
N-i

where 0 < 1 < N 	(2.7) y(I) 	, 	x(k) 	
(2k + l)fr

2N
k=O

G1={
ifl=0,

1 	otherwise.

Like the DFT, the DCT converts time/space domain signals into the frequency domain. The

DCT is commonly used in data compression - two of the most significant DCT applications

are the JPEG image compression standard [14] and the MPEG video compression standard [15].

The 2-dimensional DCT is calculated by sequentially applying the 1-dimensional DCT to the

rows and columns of the input data. Both of these transforms have corresponding inverse trans-

forms: the Inverse Discrete Fourier Transform (IDFT) and Inverse Discrete Cosine Transform

(IDCT).

The Discrete Wavelet Transforms (DV,/Ts) [16] are a family of linear transforms that are used

in signal analysis and data compression applications. A DWT is characterised by recursive

filtering and decimation of the signal data, as illustrated in figure 2.5. A particular DWT is

defined by the filters used, and the pattern of recursion. Wavelet transforms are commonly

implemented using the lifting scheme [17]. One noteworthy application of wavelet transforms

is the JPEG 2000 compression standard [18], which specifies one DWT for lossy compression,

and a second for lossless compression.

11

Hardware modelling and synthesis

input
(N items)

IL L LP 	2 	HP 	2
II

outputs
(N items total)

H (N/2 items)

LH (N/4 items)

LLH (N/8 items)

LLL (N/8 items)

Figure 2.5: A discrete wavelet transform (DWT) with 3 levels of decomposition.

2.2.3 Nonlinear filtering

The term 'nonlinear filter' can be applied to any nonlinear computational device, so it is useful

to limit investigation of this area to particular classes of nonlinear systems. One of the most

well-known classes of nonlinear filter is the class of Volterra filters [19].

Volterra filters can include both linear and nonlinear terms in the response. The nonlinear terms

are the scaled products of two or more of the input values. An n-th order Volterra filter can be

described using an n-th order polynomial in terms of the filter inputs. A first order Volterra filter

is therefore equivalent to a linear filter. A discrete Volterra filter can be described as follows:

	

y(n) = 	hi(ki)x(m—ki)
	

(2.8)
k1

+ >>h2(ki,k2)x(n—ki)x(n— k2)
k1 k2

	

+ 	 ,kM)x(n—kl) ... x(n—km)
k1 	km

where the symbols are:

12

Hardware modelling and synthesis

h(k1,... , k r,) pth-order Volterra kernel

YO 	output values

x(.) 	 input yalues

The nonlinear terms in equation 2.8 exhibit symmetry, which can be used to eliminate many

of the coefficients. For example, the coefficients h2 (0, 1) and h2 (1,0) are both multiplied by

x(0)x(1), so one of these two coefficients can be eliminated. The same principle applies for

any reordering of the variables k 1 . kij.

Non-polynomial functions can often be approximated using a Taylor series, which can then be

realised as a Volterra filter. For example, a sine function can be approximated by the following

series:
X3 x 5 x 7

s1n(x)x—+ j--j-+... 	 (2.9)

which can be implemented as a Volterra filter.

23 Filter implementation

2.3.1 Hardware implementation of linear components

add
input A-

°::: 	

- output input

carry
shift

input
clock—i

re—label

bit 7 bit 10
input 	_____

bit 0 bit 3 	_______
_______output

input A

add

output

Figure 2.6: Three implementations of A + 8B. Clockwise from top left: bit-serial, 4-bit digit-
serial, and bit-parallel.

Three ways of implementing the same linear function are shown in figure 2.6. A bit-parallel

implementation uses a separate wire for each data bit, while bit-serial implementations use 1-

bit components and process data items one bit at a time. Digit-serial represents a compromise

between bit-parallel and bit-serial. Digit-serial systems divide a data item into several multi-

1 13

Hardware modelling and synthesis

bit digits, and then process the digits sequentially. Bit-serial implementations are more area-

efficient, while bit-parallel designs offer higher performance.

In binary arithmetic, a left-shift of n bits is equivalent to a multiplication by 2, where n e Z.

In bit-parallel arithmetic, constant shifts can be performed at no cost, as they merely represent

a re-labelling of the bits in a value. In bit-serial arithmetic, a left-shift of one bit is equivalent

to a delay of one cycle, so one register is required for each bit of left-shift. As bit-serial shifts

are implemented using registers, they can reduce the longest-path delay. Shifts in digit-serial

designs are implemented using a combination of registers and bit re-labelling. Right-shifts are

not possible in bit-serial or digit-serial implementations.

2.3.2 Carry-save arithmetic

A carry-save adder has three inputs and two outputs. It does not propagate carries, but instead

has separate outputs for all of the sum bits and all of the carry bits. The delay through a carry-

save adder is the same as the delay through a single full adder. A carry-save adder with inputs

x, y, z, sum output s, and carry output c, can be characterised as follows:

S + • C = X + y + z

A circuit based upon carry-save adders will usually include a fast conventional adder before

each output, so that the final sum and carry values can be added together.

Figure 2.7 shows how a carry-save adder (CSA) can be used together with a ripple adder to sum

three values. A high-level diagram is shown in the left of figure 2.7, while the right-hand side

shows the same thing decomposed into half- and full-adders.

Carry-save arithmetic can be used together with shifts, provided that the sum and carry output

from each carry-save adder are scaled by the same amount prior to the final addition. Carry-save

arithmetic is therefore a useful technique for the realisation of linear circuits.

2.3.3 Multipliers and multiplication blocks

A multiplier takes two inputs and multiplies them. If one of the inputs is a constant, then a con-

stant multiplier can be used. Constant multipliers are typically more hardware efficient, where

efficiency is measured in terms of power, silicon area or latency. The design of a constant mul-

14

Hardware modelling and synthesis

Eti1Et

x[3]
y[31
z[3]

x[2]
y[2]
z[2]

X[1]

y[1I
Z[11

X[O]

YE0 '
Z[01

t[5]

t[4]

t[3]

t[2]

t[1]

t[O]

Figure 2.7: The summation of three values using carry-save arithmetic.

tiplier depends upon the constant. There are several algorithms for designing efficient constant

multipliers, starting with the value of the constant.

The simplest algorithm is the binary multiplier [20], which corresponds to the binary version

of long multiplication. A binary multiplier uses N - 1 adders, where N is the number of '1'

bits in the constant. For example, the multiplication of a value x by 7 can be broken down as

follows. Note that 1112 is the binary representation of 7.

111 2 .x=(1002 +102 +1)x1002.x+102.x+X=(X<<2)+(2<<1)+x

This multiplication can therefore be performed by adding together three different shifted ver-

sions of x.

A signed-digit binary number representation [21] is a number representation where the digits

in a number can take the values 1-1, 0, 11, rather than just {0, 1}. A signed-digit constant with

digits di has the following value:

2'd, for diE {-1,0,1}
	

(2.10)

iEZ

A common notation is that digits valued —1 are represented by T. For example, the value 3

15

Hardware modelling and synthesis

could be represented by 1101 = 1000 - 100 - 1. Note that this representation is redundant;

there can be multiple representations of a single value. For example, 3 can be represented by

11, loT, ill, 1101, 1111, 11111111, and infinitely many more representations. A minimum-

weight signed-digit (MSD) representation of a number is a signed-digit representation that has

the minimum number of non-zero digits. For the value 3, there are two minimum-weight rep-

resentations: 11 and 101. The Canonic Signed Digit (CSD) representation of a number is the

unique MSD representation that does not have any consecutive non-zero digits. CSD numbers

have on average one third fewer non-zero digits than binary numbers [22]. There is a computa-

tionally cheap algorithm for converting binary numbers into CSD representation [22,23].

If the constant is represented in a signed-digit form, a constant multiplier can be implemented

in a similar fashion to the binary multiplier. Negative digits result in the use of subtracters.

As an MSD number will typically have fewer non-zero digits than the corresponding binary

value, the number of additions and subtractions will often be lower in an MSD or CSD constant

multiplier.

As an example of CSD multiplication, note that the CSD representation of 7 is 1001, so the

corresponding multiplier can be derived as follows.

10012 . x = (10002 - 1)x = 10002 . x - x = (x << 3) - x

The CSD 7-times constant multiplier requires only one subtracter, in comparison with the two

adders required for the corresponding binary multiplier mentioned earlier.

There are several papers that describe the use of low-precision CSD multipliers for FIR filter

applications [24, 25]. The coefficients typically have two or three non-zero digits, and the re-

sulting coefficient quantisation has been shown to have a tolerable effect on the filter responses

in several test problems. Scaling of the coefficient set can sometimes reduce the number of

digits required [25].

CSD multiplication is not necessarily the most efficient technique. There are cases where

reusing a common sub-expression can result in a more efficient implementation. For an ex-

ample of this, see figure 2.8.

Bernstein [26] proposed a searching algorithm for constant multiplier design. Although Bern-

stein's algorithm was targeted at machine code implementation, it can also be used for elec-

16

Hardware modelling and synthesis

input "H <<:=—

	
__ 45 output

input 	u...•<< 2 4
	40 <<3 I 	output

Figure 2.8: A suboptimal CSD multiplier: multiplication by 45.

tronic hardware design. The algorithm iteratively simplifies the constant through addition, sub-

traction, or factorisation. The choice of simplifying operation is made according to a recursively

calculated cost metric.

Dempster and Macleod devised the Minimised Adder Graph (MAG) algorithm [27-29]. This

simultaneously finds optimal constant-coefficient multipliers for many different constants, us-

ing an exhaustive search. As the number of components is increased, the computational time

required by the MAG algorithm grows at a greater than factorial rate. Dempster and Macleod

initially discovered optimal solutions for all constant multiplications with constants up to 12 bits

wide using the MAG algorithm. They later extended their results to all 19 bit constants [30]. An

exhaustive algorithm was also proposed by Li [31], however Dempster and Macleod claim that

Li's algorithm can produce sub-optimal results in some cases [32]. The explosive properties

of the search-space rule out the application of exhaustive algorithms to design multipliers for

arbitrarily large constants.

Many of the applications for constant multiplications require the same variable to be multiplied

by several constants. This introduces the possibility that intermediate values can be shared

between the multipliers, resulting in further hardware savings. The problem of designing a

multiplication block that multiplies a single variable by several constants is known as the Mul-

tiple Constant Multiplication (MCM) problem. Efficient multiplication blocks are particularly

useful for the implementation of transposed form FIR and IIR filters. For example, all of the

multiplications in the transposed form FIR shown in figure 2.2 can be combined into a single

multiplication block.

Bull and HorTocks [33] introduced four greedy search algorithms for the design of multiplica-

tion blocks, where the choice of algorithm depends upon which types of component are avail-

17

Hardware modelling and synthesis

able. The last of the four algorithms proposed by Bull and Horrocks uses adders, subtracters

and shifts, so it is the most relevant to digital circuit design. This algorithm was improved by

Dempster and Macleod [34,35].

(a)
coefficient A: 1 0 1 0 0 1 1 1 = Y+100

coefficient B: 110 10 1011= y+10000 1000

where y = 10100011

(b) 	 001 = x+(x<.cz8)+10000

where x= 1001

Figure 2.9: Common sub-expression elimination.

Many algorithms for the design of multiplication blocks are based upon the concept of common

sub-expression elimination (CSE). A simple but inefficient implementation is found, and an

efficient implementation is then derived through the elimination of duplicated hardware. In

many cases, the coefficients for a multiplication block are represented in a binary or signed-

digit form, and common sub-expression elimination is applied in cases where similar patterns

of digits appear. This is illustrated in figure 2.9. The eliminated sub-expression can be a

bit-pattern that appears in two coefficients (figure 2.9(a)), or a repeated bit-pattern in a single

coefficient (figure 2.9(b)).

Potkonjak et al. [36] proposed the iterative matching algorithm, which is one of the most well-

known CSE-based approaches. This is a greedy algorithm which iteratively finds cases where

two signed-digit coefficients have two or more identical bits. The hardware for multiplying by

the identical bits can then be shared, as shown in figure 2.9(a). A weakness of the iterative

matching algorithm is that it does not eliminate common sub-expressions which are shifted rel-

ative to each other - for example it would not share hardware between the coefficients 11012

and 110102. The iterative matching approach led to the development of several similar algo-

rithms [37-39]. Mehendale etal. developed an algorithm which is similar to iterative matching,

but is also capable of eliminating repeated bit patterns within one coefficient [37]. The hier-

archical clustering algorithm developed by Matsuura et al. [38] can eliminate sub-expressions

between coefficients, even if they are shifted relative to each other. Pako et aL proposed a

system that can eliminate shifted multibit subexpressions across many coefficients [39]. Hart-

18

Hardware modelling and synthesis

ley's algorithm can perform common sub-expression elimination on a FIR filter implemented

using CSD coefficients [40,41]. It can eliminate sub-expressions that are relatively shifted

and delayed. Hartley's system attempts to minimise the number of registers. The NR-SCSE

system [42] is based upon Hartley's system, but also attempts to minimise logic depth. Park

and Kang [43,44] proposed a CSE-based method that makes use of the fact that there can be

multiple minimal signed-digit representations for a number. They claim this leads to increased

efficiency relative to other systems ([36,39,40]).

Dempster and Macleod's RAG-n algorithm [34] designs multiplication blocks. It builds upon

their MAG algorithm for optimal multiplier design. The RAG-n algorithm does not perform

common sub-expression elimination, and it considers a larger variety of designs when compared

with CSE-based methods. In other words, RAG-n performs a more thorough search, and the

size of the search space is correspondingly large. In many cases the RAG-n algorithm can

produce optimal results, however for some coefficient sets a fast sub-optimal search is used.

The algorithm works by generating hardware for the coefficients, one coefficient at a time. It

first generates hardware for the coefficients that are easiest to realise. When hardware for a

new coefficient is inserted into the design, the algorithm attempts to reuse as much hardware as

possible, by building upon pre-existing intermediate values.

2.3.4 Linear transforms

In [36], a variation of the iterative matching algorithm which is capable of generating hardware

for multiplication-free linear transforms was proposed. A multiplication-free linear transform is

a linear transform with coefficients limited to the values { —1, 0, 1 }. A general linear transform

can be created by using the basic iterative matching algorithm to perform the multiplications in

each column of the transformation matrix, and then summing the rows using a multiplication-

free linear transform. This is illustrated in figure 2.10.

Dempster et al. introduced an algorithm for the realisation of linear transforms [45]. It is based

upon the results of the MAG algorithm [27]. The new algorithm is compared against equivalent

hardware produced using multiple invocations of the RAG-n algorithm [34]. The results are

mixed; the new algorithm seems to be superior for smaller problems, while RAG-n is superior

if the matrix size or the precision is greater. The authors note that one option is to use the best

result from the two different algorithms.

19

Hardware modelling and synthesis

original transform

90 	117 	'90 	49

~ Y1

\

 Y2 (90 	49 	—90 —117

~yj
	90 	—49 	—90 	117 1 	3 (90)x1

y 	\ 90 	—117 	90 	—49 / \x4 /

$ 	1 (49)#
(90)x1 	(90)x3

117

(90)x3
49

(117) x2 	(4)x4 I 49\
I\ 117)

X4

multiplication block
for each column

multiplication—free
transform / 90X,

(

/y1 	101110 /49x2
(y2 	1 1 	0 	—1 	0 	-11 117x2

1 —1 	0-1 	0 	1 90x3
\y4 / 	\ 1 0 	—1 	1 	—1 	0 1 \ 49;

117;

Figure 2.10: Designing linear transform hardware using the iterative matching algorithm.

In [46], Chatterjee et al. proposed several common subexpression elimination methods for

matrix multiplications, together with a greedy algorithm that iteratively applies these optimisa-

tions.

Transform-specific optimisations are often devised for important transforms. The higher-level

optimisation methods attempt to minimise the number of multiplications. The most famous

example of this is the use of the Fast Fourier Transform (FF1) algorithm [10] for the discrete

Fourier transform (DFT). Chen et aL [47] proposed a technique for efficiently calculating the

DCT. This method can be used to calculate the 8-point 1-dimensional DCT using 16 multiplies

and 26 additions/subtractions. Loeffler et al. devised an algorithm which can perform an 8-

point DCT using 11 multiplications and 29 additions [48]. Arai et al. [49] proposed a method

which is more efficient if scaling of the DCT outputs does not matter. The algorithm uses

5 multiplications and 27 additions for the 8-point DCT. There are also several multiplierless

approximations to the DCT, based upon the lifting scheme [50-53]. The complexity of fixed-

point approximations to the DCT varies depending on the accuracy, so direct comparisons

between these methods are not always possible.

20

Hardware modelling and synthesis

The inverse DCT can be realised using the transposition [11] of any DCT implementation. It

was found that the complexity of a particular DCT implementation and its transpose are always

identical, as the number of branches in the transform's flowgraph is always equal to the number

of additions [14]. Therefore, every efficient DCT algorithm can be converted to an efficient

IDCT algorithm.

2.3.5 Existing linear filter design systems

While section 2.3.3 described several different algorithms for the design of efficient multiplica-

tion blocks, there are also tools that use those algorithms during the creation of complete filter

designs. FIRGEN [54] is an FIR filter design system that converts a filter specification into a

chip layout. FIRGEN generates CSD multiplication blocks. Wacey and Bull implemented the

POFGEN filter design system [55], which is based around the algorithms introduced in [33].

2.3.6 Implementation of Volterra filters

The hardware required for a Volterra filter is likely to be dominated by multipliers. Variable-

variable multipliers are very expensive in terms of area, delay, and power. For this reason,

Volterra filters are often designed to use the lowest number of multipliers possible for a given

filter order.

Direct implementation of Volterra filters is possible, but it can be inefficient if the filter has

more than a few nonlinear terms. For high-order filters, the number of coefficients can be very

large, and the complexity of the filter can be reduced through factorisation.

As linear filters can be realised using the techniques mentioned in section 2.3.3, it is useful if

a nonlinear filter can be constructed from a combination of linear filters and nonlinear com-

ponents. As quadratic filters are sufficient for many applications, there are many techniques

that are primarily targeted towards quadratic filter realisation [56]. Schetzen [19] describes

how high-order Volterra filters can be broken down into several linear filters and multipliers.

An alternative strategy is to iteratively construct a high-order filter using several lower-order

sections [57]. Mertzios [58] proposed such a technique, which eventually reduces the filter to

a set of second-order stages followed by a tree structure. Mertzios also proposed a systolic

array [59] implementation for quadratic filters. Panicker and Mathews proposed a method for

the parallel-cascade implementation of Volterra filters [1, 2]. Their method is based upon the

21

Hardware modelling and

r.J

x(n)

y(n)

Figure 2.11: The decomposition of a Volterra filter proposed by Panicker and Mathews[1, 4.

recursive decomposition of a pth order filter into multiple filters of order 1 and order p - 1. This

is shown in figure 2.11. Panicker and Mathews also investigate the inaccuracies introduced in

truncated representations of these filters.

The frequency domain analysis of nonlinear filters is a well established field [19]. Techniques

which are based upon a frequency domain representations of the filter [60, 61] can also be. used

for filter implementation. The Fast Fourier Transform (FFT) and inverse Fast Fourier Transform

can then be used to move between the time/space domain and the frequency domain. The com-

bined operation is sometimes more efficient than a direct implementation. This methodology

can also be used with transforms other than the Fourier transform [60].

2.4 Hardware properties and modelling

This section investigates the ways in which the hardware described in section 2.3 can be mod-

elled. Modelling is of interest because it is essential for evlutionary circuit design. Therefore,

this section focusses on modelling the circuit properties that can usefully serve as objectives

during evolutionary circuit design.

22

Hardware modelling and synthesis

2.4.1 Pre-placement modelling

The properties of a digital hardware design are heavily influenced by the particular placement

and routing that is applied. This is particularly relevant to clock speed, power consumption, and

circuit area. The properties of a design can be accurately modelled after placement and routing,

however placement and routing are complex, computationally expensive tasks. It is common for

placement and routing problems to be NP-complete [62,63]. Even non-optimal placement and

routing systems necessarily work with a very detailed low-level design representation, leading

to high computational costs. It is therefore often desirable to able to estimate the properties of

a design prior to placement and routing. This is possible through the use of statistical models.

2.4.2 Wire-load modelling

(a) V o—LIIIiJ---i 	 VOUT
IN

T T T

R

(b) 	VINo 	I 	 VOUT

C

Figure 2.12: Two wire load models.

A wire on a chip can be characterised as a distributed resistance connected to the substrate by

a distributed capacitance [64]. Figure 2.12 illustrates two models of this. The transmission

line model shown in figure 2.12(a) is an accurate representation of the properties of the wire,

however a simplified model such as figure 2.12(b) can be sufficiently accurate for most prac-

tical power or delay simulation. The loads in a CMOS device are transistor gates, which are

largely capacitive. Assuming that the wire is a balanced tree, with branches of equal length, the

combined model in figure 2.13 can be used [65].

The above model makes several simplifying assumptions. In particular, the shape of the wire

and the distribution of the loads are not known prior to placement and routing, so they must be

23

Hardware modelling and synthesis

IN

V1

V2

CLOAD

V3

CLOAD - WIRE

IN
•W1RE

NI

Figure 2.13: A model of a balanced tree wiring structure with N = 3 branches of equal length.

assumed in that case. The above model also ignores gate leakage current and wire inductance,

two factors which are likely to become important in future. Nevertheless, it is sufficiently

accurate that it is used in real-world synthesis systems such as those sold by Synopsys [65].

The fanout of a wire is defined as the number of components that are driven by the wire. The

fanout gives an indication of both the likely load driven by a wire, and also the wire length. As

wire resistance and wire capacitance are approximately proportional to wire length, they can

also be estimated. -

Prior to placement and routing, accurate wire properties are not available, however statistical

models can provide approximate values. In practice, the expected wire resistance and capac-

itance are usually found from tables of manufacturer-supplied information. These list the ex-

pected wire properties according to design area and wire fanout. The load capacitances are a

property of the standard cells, so they are known prior to placement.

2.4.3 Longest path delay

The delay through a piece of hardware is often defined as the time between the input crossing

the 50% voltage, and the output crossing the 50% voltage. Propagation delays have two major

components: delays within components, and delays between components. Intra-component

delays can be characterised in advance by the technology provider, either by construction and

measurement, or using an analogue simulation tool such as SPICE. Inter-component delays

24

Hardware modelling and synthesis

depend upon the properties of the driver, interconnect, and load.

input 	RA 	 RB 	© 	R 	
output

VIN 	 VOUT

T C, 	1C2 	1C3

R

	

RB © 	C3

inp:tRA 	

R C2 I 	
RE

D

C4

_

RF

I _
- 	 Có ::

Figure 2.14: Elmore delay models for (a) a chain of RC delays and (b) a tree of RC delays with

a single driver.

RC delays are commonly used in delay modelling. They let the delay model take account of

the electronic properties of the circuit, without introducing excessive computational complexity.

Elmore delays [66] are a useful technique for estimating the overall delay produced by a net-

work of resistances and capacitances. The Elmore delay for the network shown in figure 2.14(a)

is given by:

TD= 	RC, 	 (2.11)

where R is the sum of the resistances between the input and node i. For tree-structured net-

works, such as the network in figure 2.14(b), the Elmore delay for node i can be calculated as

follows [67]:

	

Tj=>RjjCj 	
(2.12)

25

y[2]

All (c)

Y101

y[3:2]

Y[1:0]

x[3:2]

X[1:0]

x[2]

(b)

X[1]

x[0]

Hardware modelling and synthesis

where R 3 is the sum of the resistances in the part of the tree driving both nodes i and j [68-70].

For example in figure 2.14(a), the delay between the input and the output is estimated as:

TD = RAC1 + (RA + RB)C2 + (RA + RB + R)C3 	 (2.13)

The delay between the input and node 4 in figure 2.14(b) can be modelled as:

T4=RA(Cl+C2+C3)+ (RA +RD)(C4+C5+C6) 	 (2.14)

Another important factor for delay models is the transition time. The transition time is defined

as the time for a signal to go between the 10% and 90% voltage levels during a transition. The

transition time is important because components will often have a longer delay when given

inputs that switch slowly.

input 	 output 	 input 	 output

(a) x[3:0]0 	 oy[3:0] 	 x[3]o 	ED 	y[3]

Figure 2.15: Three models of the delay in a 4-bit negator: per connection, per bit and per
group of bits.

Figure 2.16: Two four-bit ripple adders, with a combined delay of full adders, while a single
adder has a delay of full adders.

A simple high-level delay model [71] is illustrated in figure 2.15(a). This model assumes a set

Wei

Hardware modelling and synthesis

of constant delays between the inputs and outputs of the high-level components. This model

is often inaccurate due to skewing of the arrival times for individual bits. An example of this

problem is shown in figure 2.16. The problem can be avoided if the model instead considers

delays between individual bits [71,72], as shown in figure 2.15(b). Computing delays for

individual bits is a computationally intensive task, so one possibility is that delays can instead

be computed for groups of bits [721, as shown in figure 2.15(c). Wire-load modelling can also

be important for high-level delay modelling.

2.4.4 Power

Power consumption can be split into static and dynamic power consumption. In current CMOS

technologies, the power consumption is dominated by dynamic power consumption. Static

power consumption is likely to become more significant in future technologies [73]. Dynamic

power consumption is caused by signal transitions, so it is data-dependent.

Transitions are often a result of glitching. During one cycle of a computation a signal can

change state several times before assuming a correct value. This happens because of unequal

signal propagation delays. Glitching can be a notable cause of power dissipation.

As power consumption is strongly related to the number of signal transitions, the most accurate

power models are based upon circuit simulation, and use a representative sample of the circuit

inputs. These models are typically accurate but computationally expensive. Alternatively, a

power model can be based upon a statistical model of the input data. These models are typically

computationally cheaper than a full simulation, but give less accurate results. The simplest

power models ignore the effects of the input data on power consumption.

VDD

ILOAD

 rT - ---------
II

JSHORT
R 	

_L
Figure 2.17: Dynamic power consumption in a CMOS inverter.

The dynamic power consumption of a CMOS circuit can be estimated using the model shown

27

Hardware modelling and synthesis

in figure 2.17. The power consumption is a combination of the power used to drive the load,

and the short circuit power consumption that occurs when the pull-up and pull-down transistors

simultaneously conduct during switching. CMOS transistors are usually designed so that short-

circuit power consumption is largely avoided, and it is often ignored in power simulations. The

power dissipation due to the charging and discharging of the load capacitance can be expressed

as follows:

P = CV Df 	 (2.15)

where C is the load capacitance, lID is the supply voltage, and f is the transition frequency.

Therefore, the power dissipation can be approximated if the capacitance and transition fre-

quency is found for each wire in the design.

Power dissipation can be estimated by simulating the design, and counting the transitions on

each wire. The transition counts and estimated capacitances can then be used in equation 2.15,

giving the overall power estimate [74]. This method is accurate, but also computationally

expensive. Other computationally cheaper approaches attempt to estimate the power dissipation

according to the high-level properties of the design.

Power dissipation is related to design area. The chip estimation system (CES) model [75]

calculates power as follows:

P GE(E + VDDCL)fAiTht 	 (2.16)

where GE. is the area in gate equivalents, Etyp is the energy consumed by a typical gate, CL

is the average load, f is the frequency of operation, and Ai,, t is the activity. Aint represents

the proportion of gates that transition in an average clock cycle. Liu and Svensson described

a similar system, which divides components into several classes, where each class has distinct

properties [76]. The Power Factor Approximation (PFA) technique [77] estimates the power

used by hardware components relative to other similar components. It can be stated as follows:

P = kGf 	 (2.17)

where k is a constant, f is the frequency of operation. C is measure of complexity specific to

the class of components. For example, for n-bit multipliers C = n2 . This style of analysis

was later investigated in greater depth by the same authors [78]. A major weakness of these

high-level techniques is that they ignore the fact that power dissipation is very data dependent.

003

- 	 Hardware modelling and synthesis

The dual bit type (DBT) model of power consumption [79] divides data items into upper and

lower bits. The former represent sign bits which transition whenever the sign of a value is

changed, while the latter are data bits that can be modelled using uniform white noise. This

division allows different switched capacitance activity models to be used for each class of bits.

The DBT model can be used together with high-level components that have a known power

consumption for each type of bit.

Other power estimation techniques include those that treat switching activity as a form of en-

tropy [80,81], table based methods [82-84], and methods based on statistical regression in

terms of the input variables [85]. Many other power estimation systems are described in a

number of review papers [86-88].

2.4.5 Silicon area

The silicon area required for a circuit is a function of two different areas - the area used by

components (cell area) and the area used by interconnects (net area). The cell area can be found

from the type and number of cells in a design. The net area depends upon how the interconnects

are routed. The net area can be approximated prior to routing according to a statistical model

of the likely area taken by each wire. The expected area for a wire can be deduced according

to the fanout of the wire and the area of the design. This method of area estimation is sup-

ported by real synthesis systems [65]. Unfortunately, the necessary data is not always present

in technology libraries. Alternative ways of estimating the net area include constructive meth-

ods [89] or analytic methods [90,91]. These techniques offer increased accuracy, but also have

more parameters. Constructive methods in particular can produce very accurate results, but are

computationally expensive and require extensive knowledge of a technology.

2.4.6 Other metrics

Finite precision arithmetic can introduce round-off noise into the response of a digital system.

Round-off noise is-nonlinear and data-dependent. It is commonly expressed as a signal to

noise ratio (SNR). While the SNR can be calculated through simulation, the use of statistical

models [92] is more practical. This thesis does not investigate the problems caused by finite

arithmetic precision.

A testability metric measures how well a particular design can be used together with the built-

29

Hardware modelling and synthesis

in self-test (BIST) techniques, required in modern chips. Testability is often measured at a

low-level [93]. These low-level metrics are based around the evaluation of the observability

and controllability of each node in a design. There are also some useful high-level testability

measures, which are based on similar principles [94, 95].

Routability metrics assess how amenable to placement and routing a particular design is. Rout-

able designs are likely to have shorter interconnects. A routability metric will therefore indicate

how optimistic or pessimistic preplacement area, delay and power estimates are likely to be.

Routability can be assessed prior to routing [96, 97], or else during hierarchical routing [98].

2.5 Summary

This chapter has described various techniques for the design, implementation and modelling

of digital filters. It has documented various ways in which hardware efficient filters can be

designed. This information will be used in later chapters.

It was noted that filter designs can be made more efficient through the use of primitive opera-

tors such as adders and shifters, and by reusing intermediate results. Optimal filter realisation

is'often an intractable problem. In several cases, this has led to the development of greedy

algorithms and partial searches for near-optimal filter design.

Interconnect modelling was shown to be a major source of inaccuracy when modelling ASIC

hardware. Area, delay, and power models all depend upon the properties of the interconnects,

which cannot be reliably estimated prior to placement and routing. Statistical models enable

rapid wire modelling, however they have a limited accuracy.

Accurate hardware models are often computationally intensive. A practical approach to mod-

elling should trade between accuracy and computational complexity as required.

WE

Chapter 3
Evolutionary algorithms and
stochastic search techniques

3.1 Introduction

Many important CAD problems have large multiinodal search spaces, so robust search tech-

niques are essential. Evolutionary algorithms are an appropriate search technique for applica-

tion to some of the hardest digital hardware synthesis problems.

This chapter describes evolutionary algorithms and other stochastic search techniques, and in-

vestigates how they relate to electronics. Section 3.2 gives a brief overview of some of these

search techniques. Section 3.3 demonstrates how these techniques can be applied to multiob-

jective searches with conflicting objectives. Section 3.4 describes how evolutionary methods

can be used to design electronic circuits, and digital filters in particular.

3.2 Evolutionary algorithms

The term 'evolutionary algorithm' can be used to describe algorithms from a large set of biolog-

ically inspired stochastic search techniques. The major features of EAs are mutation, hybridis-

ation, and selection, iteratively performed on a population of solutions. Although evolutionary

algorithms are frequently compared with natural evolution, a more accurate analogy would be

the selective breeding of plants or animals. Both evolutionary algorithms and selective breeding

work upon a population, and attempt to achieve improvements in the population by repeatedly

favouring the reproduction of population members that have desired characteristics.

Evolutionary algorithms can be classified into several groups, which often overlap. The most

significant groupings are: genetic algorithms, evolutionary programming, evolution strategies,

and genetic programming. Evolution strategies are for continuously valued problems, so will

not be discussed in this thesis. Many EAs have features associated with two or more of the

above categories.

31

Evolutionary algorithms and stochastic search techniques

Evolutionary algorithms are now well established as a search technique for difficult problem

domains. There are many good textbooks describing EAs [99-101], and EAs are the subject of

several large international conferences.

Evolutionary algorithms are one part of the larger family of stochastic search techniques. There

are several other search techniques that can be used wherever an EA can be used, but which

have different qualities.

3.2.1 Operation of an evolutionary algorithm

randomly
create initial

chromosomes

fitness
evaluation

-

population F = 7

 101i)1(
fltness=5

101 [1011)010101001

fitness = 2

iiiüöiooioti

fitness = 6

I: fl 110 	1110 011)1)

selection I

crossover

Fulation

fitness /
evaluation

Figure 3.1: The operation of an EA. An initial population is created and then iteratively re-
placed.

First of all, it is useful to introduce some terminology. An EA works on a population, which is

a set of solutions. Each solution in the population is known as an individual, and is encoded by

a chromosome; Each chromosome consists of a set of data items known as genes. The genes

can hold several different values, and each of the possible values is known as an allele. The

chromosomes are modified by evolutionary operators such as crossover or mutation, which

will be described later. The individuals are evaluated by an objective function, which calculates

a fitness value' for each individual. The fitness values are used by a selection operation, which

chooses which chromosomes can survive and reproduce. The chromosome is also known as

the genotype, in contrast to the final form of the individual (such as an animal or an electronic

circuit), which is known as the phenotype. An EA will typically start with a population of

'The term 'fitness' has been used to denote the value used by the selection operator, whereas 'objective' has
been used for the value returned by the objective function. The two terms are synonymous for single-objective
algorithms.

32

Evolutionary algorithms and stochastic search techniques

randomly generated chromosomes. It then iteratively improves the population. Each iteration

is known as a generation. The cycle at the right of figure 3.1 shows the operations that a

simple EA uses to progress one generation. The algorithm stops either after a set number of

generations, or else when the population is judged to be of satisfactory quality.

Selection is the process of choosing chromosomes, either for reproduction or for survival. EM

typically use a stochastic selection operator, where the fittest individuals have the highest prob-

ability of selection. The three most common selection operators are: rank proportionate, fit-

ness proportionate, and tournament selection. Fitness proportionate selection is also known

as roulette wheel selection. In size-n tournament selection, n individuals are picked from the

population at random, and entered into a tournament. The winner of the tournament is the in-

dividual with the highest fitness, and the winner is selected. The fittest individual will win any

tournament it is selected for, while the worst individual can only win if it is selected n times

for the same tournament. The probability of selection in a tournament is therefore dependent

on rank within the population.

The choice of selection scheme can have a major effect on the, performance of an EA. If the se-

lection scheme only weakly favours the best solutions, the EA can run slowly or fail to produce

a solution. If selection strongly favours the best solutions, the search becomes more greedy, and

faster, but is more likely to get stuck in a local optimum. This conflict is known as the problem

of exploration versus exploitation.

Crossover enables the creation of hybrid chromosomes, as shown in figure 3.2. Crossover takes

two (or more) parent chromosomes, and produces a child chromosome that contains some genes

from each of the parent chromosomes. Crossover therefore serves a similar purpose to sexual

reproduction in nature. In the best case, it can combine good genes from both parents resulting

in a child chromosome with a greater fitness than either parent.

Crossover

1öIiIoIoIoIiIiIiI 	oIiIoIojoIoTj.':j
_

FiIooliiliIiIiI

Mutation,

lojilolololililil -.,. roTiioriioIiIiIiI

Figure 3.2: Crossover and mutation as applied to a binary chromosome.

Mutation is the modification of some of the genes in a chromosome, as shown in figure 3.2.

OJ

Evolutionary algorithms and stochastic search techniques

The parallel in nature is the modification of DNA by radiation, chemical processes, or incorrect

replication. Mutation is useful as a search technique as it enables the creation of new genetic

material in a population.

An idea which is central to the development of EAs is the building block hypothesis. Useful

genes can arise in different individuals within a population, which can later be combined into

a single chromosome by the crossover operator. In this way, high-fitness chromosomes can be

rapidly assembled from small genetic 'building blocks'. This principle is encoded by schema

theory [99], which mathematically describes the investigation and reproduction of such building

blocks in an evolutionary search.

An elitist BA is one that explicitly preserves the best chromosomes. The set of preserved

chromosomes is known as the elite. Elitism is intended to prevent the wasteful elimination of

good genes. Elitism can aid the rapid discovery of high-quality chromosomes, however it can

also be detrimental in some cases. Elitism is effectively an extra form of selection that rewards'

the best individuals in the population. Alternatively, elitism can be considered to be a form of

evolutionary punishment for non-elite individuals; non-elite individuals are more likely to be

displaced by the elite and their relatives. Elitism theref6re trades the preservation of good genes

in the elite, against the loss of good genes from the non-elite.

3.2.2 Fitness landscapes

If a chromosome has n genes, then the fitness could theoretically be found for every combina-

tion of alleles, resulting in a fitness 'landscape' in ii + 1 dimensional space. The shape of this

landscape indicates how hard the problem is; if the landscape is smooth, the problem is likely

to be simple. If the fitness landscape is rough and has a large number of peaks and valleys, the

problem is likely to be harder to solve. If the fitness landscape is rough, an explorative search

algorithm is necessary, otherwise the search is likely to become stuck at a local optimum. In

contrast, greedier searches perform better if the landscape is relatively smooth and there is little

benefit in exploring.

The interaction of different genes in a chromosome is known as epistasis. The degree of epis-

tasis can be used to measure the roughness of the fitness landscape, and hence the complexity

of the problem. Kauffman proposed the NK model of fitness landscapes [102]. The NK

model describes an entity with N components (genes), where the fitness contribution from

34

Evolutionary algorithms and stochastic search techniques

each component depends upon K other components. Rugged fitness landscapes can therefore

be modelled using an NK model where K is large.

3.23 A taxonomy of evolutionary algorithms

3.2.3.1 Genetic algorithms

Genetic algorithms were originally devised by Holland [103]. The features that typify a genetic

algorithm are the use of crossover as the major evolutionary operator, and the use of a linear

binary encoding for the chromosome. Genetic algorithms use mutation as a minor operator,

which is intended to aid the application of crossover.

3.2.3.2 Evolutionary programming

Evolutionary programming (EP) was invented by Lawrence Fogel in the 1960's. It was origi-

nally applied to the design of Finite State Machines (FSM5) [104]. EP does not use crossover,

and uses mutation as the sole evolutionary operator.

In contrast to GAs, EP is more robust where there is a high level of epistasis. Crossover tends

to be destructive when applied to epistatic chromosomes, as it interferes with a large number

of relationships between genes. Mutation causes only local changes, so it is less likely to be

damaging.

3.2.3.3 Genetic programming

Genetic programming (GP) was originally described by Koza [105]. It uses a chromosome

encoding that is based upon trees of expressions. GP was originally used for the creation of

computer programs, interpreting the chromosomes as S-expressions 2 in the LISP programming

language. The major operator used by GP is crossover, which is performed by cloning the

parents, randomly selecting a subtree in each clone, and swapping the subtrees. The chro-

mosome encoding used by GP is relatively expressive, and has been applied to a variety of

problems [105].

Koza developed an extension to genetic programming known as automatically defined functions

2 An S-expression is a representation for a tree of LISP operators and operands. Every program or expression in
LISP is represented as an S-expression.

35

Evolutionary algorithms and stochastic search techniques

(ADFs) [106]. An ADF is a sub-expression which can be repeatedly referenced elsewhere in

the chromosome. This is similar to the use of function calls in programming languages. ADFs

are useful because they enable the rapid evolution of repeating features in the phenotype.

3.2.4 Other stochastic search techniques

Hill-climbing is a greedy search technique. It works on a single solution. At each step in the

algorithm, .the fitness values of all of the neighbours to the current solution are found. The

hill-climbing algorithm selects the neighbour solution with the highest fitness. If all of the'

neighbour solutions have lower fitness than the current solution, the algorithm stops. A hill-

climbing algorithm travels 'uphill' in the fitness landscape until it reaches an optimum in the

fitness landscape. There is no way of knowing whether it is a local or global optimum. Hill-

climbing is efficient, but not robust.

A random walk is a simple greedy search technique. It iteratively compares a current solution

with a modified version of the same current solution, and makes the better of the two into the

new current solution. Like hill-climbing, a random walk cannot distinguish between 'local and

global optima.

Simulated Annealing [1071 is a search technique that is inspired by the behaviour of atoms in

a hot metal which is being cooled. Simulated Annealing uses a parameter T, which represents

the temperature of the search. T is used in defining the probability that the current solution is

replaced with a worse solution. If T is high, the search is explorative, whereas low values of T

result in a greedy search. T is reduced over time. Simulated Annealing iteratively compares a

single current solution with modified versions of the same current solution.

Tabu search [108, 109] was invented by Glover in 1977. It is similar to a random walk, but

maintains a list of recently visited solutions known as the tabu list. A tabu search will not

revisit solutions which are on the tabu list. The use of a tabu list encourages exploration of the

search space, and avoids repeated evaluations of the same solutions.

The above searches do not make any assumptions about the properties of the solutions or the

form of the search space. It is very common to include domain-specific heuristics in a search

algorithm, resulting in a faster or more efficient search.

36

Evolutionary algorithms and stochastic search techniques

3.2.5 Hybrid search techniques

The search techniques in section 3.2.4 are generally fast but not robust. This contrasts with

EAs, which tend to be slower and more robust. It is therefore natural to want to combine these

techniques, to produce a search that is faster than an EA and which is still reasonably robust.

One simple approach is to apply a local search to the results of an EA, so that the overall solution

is definitely a local optimum. An alternative approach is to incorporate a local search into an

EA, either as an extra operation which is applied to some individuals, or else incorporated into

the evolutionary operators. In any of these hybrid schemes, the local search can potentially

incorporate application domain specific heuristics.

3.3 Multiobjective evolutionary algorithms

Multiobjective evolutionary algorithms (MOEAs) have been thoroughly researched in recent

years [110-112]. MOEAs are important because real problems often have multiple conflicting

objectives. The fact that MOEAs work with a population of solutions lets a single MOEA run

investigate the entire trade-off surface for a problem.

3.3.1 Multiobjective problem solving

A major distinction between multiobjective optimisation and single-objective optimisation is

the possibility that there might be more than one optimal solution. The set of optimal solutions

to a multiobjective problem is known as the Pareto-optimal set.

A point a in an objective space is said to dominate another point b if the following applies:

a is at least as good as b with respect to all objectives,

a is better than b with respect to at least one objective.

If a dominates b it implies that a is always better than b, regardless of which objectives are

considered most important. This is illustrated in figure 3.3. All of the problems mentioned

in this thesis are minimisation problems, so 'better' solutions have smaller objective values.

The Pareto set (Pareto surface) contains the solutions that can not be dominated by any other

solutions. Every non-Pareto solution is dominated by at least one solution in the Pareto set.

37

Evolutionary algorithms and stochastic search techniques

objective
1

b •

a •

I--- '
I----.

objective 2
key: U Solution

--- Pareto surface

Figure 33: Point a dominates point b, while both a and bare dominated by some of the points
on the Pareto surface.

When dealing with a subset of the possible solutions, such as the results of a multiobjective

EA, the set of best quality solutions is known as the non-dominated set.

The non-dominated solution set produced by a multiobjective search algorithm should have

two important properties. Firstly, the non-dominated set should be as close as possible to the

Pareto set; in other words, the results should be near-optimal. Secondly, the solution set should

be as diverse as possible. Diversity can be divided into two key qualities: the non-dominated

surface should-be as broad as possible, and the solutions should be evenly distributed across the

non-dominated surface. This is shown in figure 3.4.

objective 	

/

objective 2

Figure 3.4: Selection pressure towards optimal solutions (solid arrows) and a diverse solution
set (dashed arrows).

Many modem multiobjective ranking schemes are based upon the concept of Pareto domina-

tion. These schemes are useful because they enable the discovery of the widest variety of

solutions. Nevertheless, non-Pareto methods are useful in situations where exploration should

02

-- Evolutionary algorithms and stochastic search techniques

be limited to part of the objective space.

3.3.2 Non-Pareto ranking methods

objective 1

objective 2

Figure 3.5: A concave Pareto surface with Pareto points A, B, and C, where point B is in a

concavity.

Some MOEAs rank individuals using a weighted sum of the objectives. This is simple to

implement, but it has several disadvantages. The most significant disadvantage of this method

is that it tends to encourage the whole population to move towards one point on the Pareto

surface. A further disadvantage is an inability to adequately reward solutions on a concave

section of the non-dominated surface. For example, in figure 3.5, either point A or point C will

always be ranked higher than point B, for any choice of weights. It is possible to partially avoid

this problem by nonlinear transformation of the objective values [111].

The Vector Evaluated GA (VEGA) proposed by Schaffer [113] divides the population into

different sub-populations each generation, and performs selection in each sub-population us-

ing a different objective. Richardson et al. later found this to be equivalent to an aggregate

method [1121.

Some methods rely on a way of explicitly defining intermediate goals for evolution. Such a

system will not cover an entire trade-off surface, but will let evolution concentrate on the part

of the surface that is of most interest to the user. Fonseca and Fleming described the use of a

decision maker - an entity that sets intermediate goals during evolution [114, 115].

A lexicographic ranking [116] defines an order of precedence for the objectives. Individuals

are initially ranked according to the highest precedence objective, and, individuals that are equal

with respect to higher precedence objectives are sorted by successively lower precedence ob-

39

Evolutionary algorithms and stochastic search techniques

jectives. Lexicographic ranking does not encourage the exploration of compromises between

different objectives, but it is useful when some objectives are clearly more important than oth-

ers.

3.3.3 Pareto ranking methods

Pareto-based ranking methods are not heavily biased towards one part of the Pareto surface.

They should be used together with a method of rewarding diversity, so that the population does

not converge on one part of the trade-off surface due to factors such as genetic drift.

Fonseca and Fleming proposed a ranking scheme where the rank of each chromosome is one

more than the number of chromosomes that dominate it [114, 115]. This scheme was used in

MOGA, their multiobjective EA.

objective
A

0 	: 	 U3
•- 	: 	: 	U..

21
u.....

1............
0I ---- i

0l---i

objective B
key: • Individual

--- Non—dominated individuals
Dominated ranks

Figure 3.6: The ranks assigned to a population by the non-dominated sorting algorithm.

Goldberg proposed the non-dominated sorting algorithm [99], which is a ranking scheme based

on domination:

let r = 0;
initialise set P containing the whole population;
while (P is not empty) do {

find the non-dominated set, N, for set P;
assign rank r to all members of N;
remove all members of N from P;
let r = r + 1

}

9]

Evolutionary algorithms and stochastic search techniques

An example of the results of using this algorithm is shown in figure 3.6. Note that the non-

dominated solutions are assigned a rank of zero.

Horn et aL proposed the Niched Pareto GA (NPGA) [117]. This uses a type of tournament

selection which is based on domination. In each tournament, two candidates are chosen from

the population at random. A comparison set of individuals is also randomly picked from the

population. If one of the candidates is dominated by the comparison set, but the other is not, the

latter wins the tournament. In other cases the winner is chosen according to a diversity metric.

3.3.4 Population diversity

There are two types of diversity: variable-space (genotypic) diversity and objective-space di-

versity. MOEAs normally require results that are spread across a trade-off surface, so objective-

space diversity is essential. Genotypic diversity indicates an explorative search. There is often

correlation between these two types of diversity - in particular, genotypic diversity can lead

to diversity in the objective space.

Most MOEAs employ some kind of mechanism that explicitly encourages diversity. This coun-

teracts the tendency for the population to converge on a small area of the objective space, due

to genetic drift and variations in the fitness landscape. Two of the most common methods of

rewarding diversity are crowding and fitness sharing [99, 110]. Crowding encourages diversity

by ensuring that each new child individual replaces the most similar individual from a randomly

chosen set of pre-existing individuals. Sharing introduces a penalty for individuals that are sim-

ilar - it is designed so that n identical individuals will be given a 1/n share of the original

fitness value. Fitness sharing only occurs when individuals are less than a set distance apart,

typically defined by the parameter share• Goldberg and Richardson define a sharing function,

s(d), which is defined in terms of the distance d between two solutions [110]:

(3.1) = 	 share s(d)
{ 1 - 	if d

0, 	 otherwise.

The sharing function has value 1 at distance 0, and value 0 at distance Usha,. If the parameter

c is set to 1, then s(d) declines linearly with distance. s(d) Is used when calculating a niche

count ni for solution i:

n=s(dj). 	 (3.2)

41

Evolutionary algorithms and stochastic search techniques

This is an estimate of the number of other solutions in the same evolutionary niche as solution

i. A scaled fitness value can then be calculated as follows:

fi 	ni
	 (3.3)

Both of the above techniques can measure the distance between solutions in either the objective

space or the variable space.

3.3.5 Multiobjective elitism

The best individuals in an MOEA population are the non-dominated set. As the number of

objectives is increased, it becomes increasingly likely that a particular individual will be in the

non-dominated set. Many MOEAs have a limited elite size, and choose a diverse selection

of non-dominated individuals if the non-dominated set is larger than the elite size. There are

several methods for choosing a diverse elite - see [110] for examples.

3.4 Evolutionary algorithms and electronics

Digital circuit synthesis involves many complex tasks. Many of these tasks are optimisation

problems with large, multi-modal objective landscapes. Many of the optimisation problems

are computationally intractable, in which case a globally optimal solution can be unobtainable.

In addition, there are often multiple, possibly conflicting objectives. The complexity of these

problems encourages the use of powerful heuristic search algorithms, of which EAs are one

example.

3.4.1 The evolution of electronic designs

EM have been used for a very wide range of tasks related to circuit 'synthesis. Examples

include circuit design [118, 119], circuit optimisation [120, 121], physical design [122], and

test pattern generation [123]. There has been extensive research into the evolutionary design

of both analogue [124] and digital circuits. Digital circuit designs have been evolved using

arithmetic components [125], at gate level [118, 126], and at mask level [127]. Circuits can be

evolved for fully custom processes [125] or for programmable devices [119, 128].

42

Evolutionary algorithms and stochastic search techniques

3.4.1.1 Gate-level design

The evolution of gate-level circuits has been thoroughly investigated by a number of researchers.

This has resulted in some successes, such as the discovery of area-efficient designs [129]. The

successes have been somewhat balanced by the poor performance of many of the algorithms,

particularly in terms of the number of evaluations required. A major problem is that the com-

plexity of the evaluation procedure can have 0(272) growth for circuits with n inputs.

Koza used the evolution of gate-level circuits as a test problem for genetic programming [105],

hovever these circuits are area-inefficient because they do not reuse common subexpressions. A

similar technique was described by Vemuri and Vemun in [130], and applied to the creation of

a 4-bit parity checker and a 3-bit majority voter. Vemuri and Vemuri mentioned the use of mul-

tiplicative performance constraints in the fitness calculation, and demonstrated the use of area

and delay constraints. Higuchi et al investigated the use of GAs for the on-line configuration

of programmable logic devices [119], using the chromosome to directly represent the hardware

configuration bits. This approach was applied to a wide variety of real-world problems [131].

Miller and Thomson [118, 132] evolved circuit designs, using chromosomes that represent the

configuration of 2-D arrays of gates. Vassilev et al. used a related method to discover several

circuit designs that use fewer gates than the best conventionally designed equivalents [129].

Arslan et al. evolved gate-level circuit netlists, using a linear chromosome representation that

is capable of representing a wide variety of acyclic netlists [126]. The crossover operator in-

cluded a repair operation that fixed broken connections. A similar approach was later used by

Hounsell and Arslan [7, 133].

Hemmi et al. evolved a bit-serial adder, and the sequential controller for an artificial ant,

as example problems for their AdAM evolutionary design system [134, 135]. AdAM evolves

sequential boolean circuits. Miller evolved digital filters that are based upon combinatorial

gate-level components [136, 137]. This has the advantage that the filters can be more area-

efficient than conventional designs, but the disadvantage that the filter response can be noisy

and severely nonlinear.

3.4.1.2 High-level RTL optimisation

Bright considered the use of EAs for the power optimisation of pre-existing register transfer

level (RTL) netlists [121, 138-140]. Bright's system is only capable of modifying a circuit

43

Evolutionary algorithms and stochastic search techniques

design in ways that preserve the original functionality of the circuit. Pipelining is an example

of one such modification. Landwehr and Marwedel [120] proposed an evolutionary system

which performs algebraic transforms to a data-flow graph (DFG), with the aim of reducing the

area and delay. Safiri et al. proposed a GP-based system for common subexpression elimination

in multiplierless digital filters [141].

3.4.13 High-level design

There are a number of evolutionary systems that evolve coefficient sets for filters. Coefficient

sets have been evolved for FIR filters [142], hR filters [143, 144], and FIR filters restricted

to power-of-two coefficients [145]. While correct frequency response is a common objective,

other objectives such as avoiding roundoff noise have also been investigated [144]. Redmill et

al. used a GA to find the coefficient sets that can be most efficiently realised using the RAG-n

heuristic algorithm [4].

Suckley described a GA system which constructs cascade FIR filters using a library of primi-

tive multiplierless filter stages [3]. The GA selects the stage types and also the power-of-two

coefficients. The performance of these filters is measured in the frequency domain. Wade and

Roberts describe a GA system that orders the stages in a cascade FIR filter [146], also measur-

ing fitness in the frequency domain. Wade et al. [147] describe a more advanced version of this

system that evolves the stage types and the power-of-two coefficients for cascade filters. The

fitness is a weighted sum of the error in the filter frequency response, the area and the delay.

Bull and Aladjidi proposed a method for evolving multiplication blocks [148]. This can be used

for the evolution of FIR filters directly from a frequency-domain specification, using the error

in the frequency response to determine the fitness. This EA uses a linear chromosome which

directly encodes the connection of edges and the applied shifts.

The EGG system [149] has been used to evolve carry-save multiplication blocks [150] for a

user-supplied coefficient set. The evolved multiplication blocks can be used in FIR filters.

Hounsell and Arsian investigated the use of a high-level programmable architecture for the im-

plementation of fault tolerant multiplierless FIR filters [133, 151]. This platform has functional

units which can perform operations such as addition, subtraction or shifting. Filter fitness was

measured by comparison with a user-supplied coefficient set.

44

Evolutionary algorithms and stochastic search techniques

Erba et al. [125, 152] describe a system which is capable of evolving the VHDL rietlist for

a multiplierless FIR filter from a frequency specification. This system has two objectives:

functionality and power. Functionally correct individuals are ranked according to the power

objective, while functionally incorrect individuals are ranked according to the functionality ob-

jective. The functionality objective is based upon the frequency response of the filter. An error

value is found for each frequency band. These error values measure how far the frequency

response diverges from the specified values for that frequency. If the frequency response meets

the specification in that band, the error is zero. The functionality objective is based upon the

sum of the errors at all frequencies. The power objective assumes a fixed power consump-

tion for each component type. The component power consumption figures are estimated in

advance, so the power model is computationally cheap. The authors also describe the use of a

distributed approach which reduces the algorithm's run-time [153]. The filters are constructed

from a variety of high-level components, such as adders and shifters, however the components

are always followed by a register. As all components include a register, there is no need for a

separate accumulation block. The filters typically have an asymmetrical frequency response,

however the authors observe that the evolved filters are still approximately linear-phase in the

pass band. A linear chromosome was used. Each component is described by three genes -

one gene selects the component type, while the other two genes determine what the component

inputs should connect to. This system was demonstrated on the problem of designing decima-

tion filters for use in analogue to digital converters. It was later applied to FPGA-based filter

implementation [154].

Sharman etal. described the evolution of nonlinear signal processing algorithms using GP [155].

The fundamental nonlinear operations included multiplication, division and a single-input non-

linear function. Algorithms featuring delays and recurrence could be evolved. This system was

tested on a nonlinear channel equalisation problem. The use of programmable hardware with

high-level functional units was proposed by Murakawa etal. [156, 157]. Each functional unit in

this hardware platform could perform operations such as addition, multiplication, division, or

a sine function. The functional units operate on floating-point values. This hardware platform

was simulated with real-world problems relating to communications channel equalisation and

predictive image compression.

45

Evolutionary algorithms and stochastic search techniques

3.4.1.4 Multistate sequential hardware

The evolved circuits described in section 3.4.1.3 are sequential, but perform the same operation

in every clock cycle. It is often desirable for circuits to perform different operations in different

cycles. To do so, a circuit requires a controller, which is typically a finite state machine (FSM).

One of the earliest applications of EAs was the evolution of Finite State Machines by Fo-

gel [104]. Fogel evolved FSMs for tasks such as prediction of the next symbol in a series of

symbols, and prediction of prime numbers in the series of positive integers. Higuchi et al. also

evolved simple FSMs, including a 3-bit counter circuit [119]. EAs have also been applied to thô

problem of finding the FSM state assignment that results in the most efficient hardware realisa-

tion [158-160]. In [161], All et al. used an evolutionary state assignment scheme, together with

the evolutionary combinatorial logic design system described in [162], and evolved sequential

boolean circuit designs.

Scheduling problems are complex problems which are often NP-complete [5]. The scheduling

problem which is most relevant here is the problem of scheduling the execution of a dataflow

graph on a limited number of computational units. Typical objectives are the minimisation

of both the number of computational units and minimisation of the overall latency. EAs are

often used for the discovery of near-optimal solutions to this problem [163-167]. BA-based

scheduling systems can be designed to perform scheduling and data-path synthesis simultane-

ously [165-168], in which case the objectives can incorporate the cost of the interconnects and

multiplexors that are required for a design. Zhao and Papachristou developed a system which

evolves datafiow graphs so that they can be implemented on a simpler datapath [169]. A com-

mon feature of EM used for scheduling is the use of reordering evolutionary operators such as

the order crossover operator [170].

3.4.2 Assessing functionality

Any EA which is used for the creation of circuit designs must have some way of ensuring that

the designs function correctly. In many cases this can be a complex problem. The difficulty

stems from the large number of evaluations typical of most EM, something that is especially

troublesome if the individual evaluations require a significant amount of computation. Some

EM avoid this problem by starting with a population of functionally correct designs and ensur -

ing that all modifications preserve functionality [121].

Evolutionary algorithms and stochastic search techniques

EAs can be divided into those that assess functionality using the actual hardware (intrinsic

evaluation), and those that simulate the hardware (extrinsic evaluation). Intrinsic evaluation is

limited to programmable hardware. Extrinsic evaluation can be applied to any class of hard-

ware, but requires a hardware simulator, which can be slow or inaccurate.

In many cases, the functionality of an evolved circuit can be completely characterised. For

boolean circuits, the complete characterisation can be represented by a truth table, whereas for

filter circuits a coefficient set can be found. This is a useful approach, if it is possible. In -

particular, it can detect whether a design entirely meets a specification. The problem with this

approach is that the amount of characterisation information, and the characterisation process,

can often be large. This is particularly problematic for truth tables, which double in size with

each extra input. Once a design has been characterised, it is relatively simple to derive an

objective measure from the characterisation information. For boolean design, the number of

correct truth table entries can be used [105, 1711. When designing signal processing hardware,

the sum of differences between the actual coefficients and the desired coefficients can be used

as an objective measure [151].

There are many situations where a design cannot be completely characterised, either due to the

complexity of the characterisation operation, or because of the nature of the hardware being

evaluated. In that case, the functionality of the circuit can be estimated using a representative

sample of the possible inputs [136, 155].

This thesis largely focusses on the use of complete characterisation when assessing function-

ality. Specifically, this thesis focusses on functionality measures which are derived from the

impulse response of a design.

3.4.3 The genotypic representation of digital circuits

3.43.1 Purpose and limitations of a representation

The genetic representation of a digital circuit design has two main functions. The first is to

enable the description of some desirable solutions to the problem, so that the problem can

actually be solved. The second function of a representation is to be amenable to evolution -

the evolutionary operators must be capable of making constructive changes to a chromosome.

The choice of representation can have a large effect on the fitness landscape, so the development

of a good chromosome encoding is important. The chromosome encoding defines the type of

47

Evolutionary algorithms and stochastic search techniques

genetic operators that can be used.

There are two main classes of chromosome encoding in common use: direct encodings and

developmental encodings. The former directly encode all of the properties of the design in the

chromosome, making the process of converting from the genotype to the phenotype relatively

straightforward. The latter produce the phenotype using a more complex iterative procedure,

inspired by growth processes (ontogenesis) in nature.

3.4.3.2 Direct representations

Direct representations are the class of chromosome representations that have been most ex-

tensively studied. A direct representation encodes each circuit attribute with a specific gene.

Mutation then corresponds to a single-point change in a circuit design - for example, changing

a component type or rerouting a connection. Crossover corresponds to combining parts of one

design with parts of another, something that is often very destructive. The problem is that there

are often strong relationships between components, which correspond to strong relationships

between genes in a direct representation. Direct representations therefore tend to be epistatic.

Linear representations are widely used. They are easy to operate on, and many off-the-shelf

EAs use a linear chromosome. Binary gene encodings are the most common, but higher-radix

encodings are also used.

Genetic programming has been applied to the creation of both digital and analogue circuits.

In [105], Koza mentioned two boolean circuit design problems multiplexer design and full

adder design, however the GP-based methods he describes are only capable of producing tree-

structured circuit designs. Similar methods are described in [172]. Yanagiya evolved boolean

functions using a version of GP that automatically shares common subexpressions [173]. Yana-

giya devised a crossover operator that recursed backwards through the directed graphs encoding

the two parent chromosomes. Hemiui et al. used GP to evolve hardware designs according to a

grammar for a hardware description language [134, 135]. Uesaka and Kawamata used GP for

the design of low coefficient sensitivity digital filters [174]. Graph structures could be created

because the leaf nodes in the chromosome could refer to the outputs from other nodes in the

chromosome. Sharman et al. used a similar method when evolving nonlinear filter algorithms

using GP [155].

Cartesian genetic programming [175] uses a 2-D matrix of cells. The inputs to the design are

48

Evolutionary algorithms and stochastic search techniques

connected to one side of the matrix, and the outputs to the other side. Each cell can take input

data from the elements in some of the previous columns. Uniform crossover is used. The

possibility of mutating the dimensions of the matrix has been investigated [6].

Poli devised a grid-based chromosome representation called parallel distributed genetic pro-

gramming (PDGP) [176]. This uses a crossover operator that selects a random node from one

parent, and copies it, and all of the nodes it depends on, to a randomly chosen position in a clone

of the other parent. This system was shown to have superior performance when compared with

conventional GP, for some test problems.

Graphs are a very natural representation for both digital and analogue circuits. As circuits

designs are effectively a type of graph, the conversion between genotype and phenotype can be

trivial.

There are several ways to perform crossover when using a graph chromosome. The simplest

methods choose some nodes in each parent, and splice the chosen nodes together. Genetic

network programming (GNP) evolves graphic computer programs, using a uniform crossover

operator that randomly selects nodes from one or other parent [177, 178]. Sims devised a multi-

point crossover technique that alternates between the parents when choosing nodes [179]. Al-

ternatively, crossover can be performed by copying a subgraph from one graph to another. This

has the potential to be less disruptive than node-level crossover, if fewer edges are spliced. The

Evolutionary Graph Generation (EGG) system [149] evolves circuit designs using a graph chro-

mosome, and performs crossover by swapping subgraphs between the two parents. Sims [179]

devised a second crossover technique known as grafting, in which a node is randomly chosen

in each parent. These nodes, and, all the nodes that they depend on, form subgraphs which are

swapped between the parents. Finally, some of the most sophisticated systems meta-evolve the

graph crossover operators during the operation of the algorithm [180, 181].

3.4.3.3 Developmental representations

Developmental representations were inspired by observations of growth in nature. The defini-

tive feature of a developmental representation is that the chromosome encodes instructions for

the construction of the phenotype, whereas other representations tend to directly encode the

properties of the phenotype. The hope is that, by exploiting the presence of regularity in the

phenotype, a complex phenotype can be described by a relatively simple developmental geno-

49

algorithms and stochastic search techniques

type.

Lindenmayer Systems (L-Systems) [182] are one of the simplest models of organic growth.

An L-system models the grow of a structure with a set of symbols and a set of replacement

rules. An L-system starts with a single symbol and applies the replacement rules over several

time steps. This results in a structure that grows and becomes more complex over time. As a

very simple example, Lindenmayer modelled the growth of algae using an L-system with the

symbols A and B, and the rules (A -f AB) and (B -f A). It produces the following strings

of symbols in the first 7 time-steps:

t=O:B

A

AB

ABA

ABAAB

ABAABABA

ABAABABAABAAB

L-systems can be used to create a wide variety of structures, including lists, matrices, trees and

graphs.

Kitano described a method of evolving graphs which is based upon the formation of adjacency

matrices using L-systems [183]. Kitano applied this technique to the topological design of

neural networks, and demonstrated superior performance when compared to direct evolution

of the adjacency matrices. Kitano's experiments were examined and repeated by Siddiqi and

Lucas, who did not find a clear difference between the two.approaches [184]. Haddow et al.

proposed the use of L-systems for digital circuit evolution [185], but did not investigate this

idea in great depth. Boers et aL used context-sensitive L-systems for the design of neural

networks [186], with results that suggest better performance than direct encodings.

Gruau proposed a Cellular Encoding, which represents graphs using sets of trees [187]. It can

be used with GP, and was originally applied to the design of neural networks. The graphs are

constructed from a primitive graph containing a single node - the ancestor cell. The encoding

then defines a grammar for iteratively replacing single cells with more complex structures.

Edge Encoding [188] is a similar scheme, which differs from cellular encoding in that it mainly

focuses on the creation of new edges rather than new nodes.

50

Evolutionary algorithms and stochastic search techniques

Lohn and Colombano designed a developmental encoding for analogue circuits [124]. It is

based on the iterative creation of components by an automaton. Most of the components that

it uses have two terminals, with transistors being the only exception. The encoding therefore

focuses on two-terminal components, and places some restrictions on how transistors can be

created. This could present problems were this encoding used with digital circuits, where two-

terminal components are relatively rare.

Several studies have investigated FPGA-based circuit development [128, 189-1931. This puts

some constraints on how a circuit can grow - in particular, circuit growth is often constrained

by the availability of unused modules in the FPGA. The development of FPGA-based designs

can be similar to the growth of structures in a cellular automaton.

Miller and Thomson created a developmental encoding called developmental Cartesian genetic

programming [194]. This is based upon Cartesian genetic programming [175], but rather than

directly encoding the circuit, the chromosome instead defines the functions that control the iter-

ative development of a cell (component). In each iteration, a cell can move, change connections,

or split in two. The action that a cell takes depends on its position, connections, and function.

The development process starts with a single cell, and runs for a set number of iterations.

Some recent work closely emulates natural ontogenesis. Gordon and Bentley developed a sys-

tem that was inspired by the regulated transcription of proteins in nature [195, 1961. It was used

to program an FPGA, and was tested on the 2-bit adder problem. Enzyme genetic program-

ming [197, 198] is based upon enzyme binding. Each component input has a specificity for a

particular data source - this measures the input's affinity for a particular connection. Initial

versions of this technique used the chromosome to encode a numeric specificity, for every pos-

sible connection, whereas [198] introduced a more compact encoding. The latter encoding lets

a component input have a specificity for the outputs from particular types of subcircuit, rather

than just particular component outputs. In most cases, a component input is connected to the

data source with the largest specificity, however there are situations where this is not possible,

for example if it would result in unclocked feedback.

3.5 Summary

EAs are a robust, powerful method for finding near-optimal solutions to complex problems.

They are often applied to NP-complete problems, including tasks related to digital synthesis.

Evolutionary algorithms and stochastic search techniques

It is important to limit the number of objective function evaluations that an EA performs, so

that the search can finish in a reasonable time. One way of improving performance is to use a

hybrid technique, that combines the EA with a fast local search. Alternatively, the chromosome

encoding can be chosen so that epistasis is avoided - a non-trivial problem that is under inves-

tigation by many researchers working in a variety of problem domains. The latter approach has

led to recent growth in the use of developmental encodings.

A multiobjective EA can use a diverse population to simultaneously sample multiple solutions,

covering an entire trade-off surface in a single run. To do this, an MOEA must avoid biasing

population growth towards one part of the objective space. This is achieved through the use of

selection schemes based on Pareto dominance, and through the use of techniques that explicitly

encourage population diversity.

Evolutionary methods have been applied to many electronic circuit design problems. These

include designing the connectivity of a circuit, selecting components, and choosing component

parameters. The large number of distinct synthesis problems has resulted in a similarly large

number of different approaches.

52

Chapter 4
Evolutionary algorithms for FIR filter

synthesis

4.1 Introduction

A conventional constant-coefficient filter design process involves converting a frequency do-

main filter specification into a set of time domain coefficients, and then designing a filter with

those coefficients. A problem with this system is that, in many cases, the hardware costs depend

upon the coefficient set, but the hardware costs are only known after the hardware is designed.

Thus it is unlikely that a filter will have a coefficient set that can be effiôiently implemented

in hardware. It would be useful if the coefficients could be chosen so that the filter can be

efficiently implemented, while still meeting the frequency domain specification. One approach

to this problem is to restrict the filter coefficients to values that can be easily modelled, for ex-

ample sum of power-of-two values [24]. Alternatively, a measure such as the number of CSD

digits in the coefficient set can be used to guide the choice of coefficients [199]. These, methods

are not ideal, as they either restrict the choice of filter implementation or else limit the accuracy

of the cost information. A more reliable technique is to make the filter design process iterative.

Filters can be repeatedly designed, and the cost information from each successive filter design

can be used to guide the design of subsequent filters. The search space for such a search can

be large and multimodal, so powerful search techniques such as simulated annealing or ge-

netic algorithms are required. Redmill and Bull developed a GA that evolves filter coefficient

sets [4,200], using the RAG-n algorithm [34] both to assess the hardware cost of a filter, and

also to generate filter designs. An alternative method is for the chromosome to encode an actual

circuit design rather than a coefficient set. This eliminates the need to have separate algorithms

for choosing the coefficients and for designing the filter. The search algorithm can build upon

both the coefficient sets and the filter designs that were found in previous iterations.

This chapter introduces a multiobjective EA system for the design of multiplierless linear-

phase FIR filters. This system evolves filter designs according to a user-supplied frequency-

domain specification. The algorithm has three objectives: a filter design should have the correct

53

Evolutionary algorithms for FIR filter synthesis

frequency response, it should use the minimum possible silicon area and it should have the

lowest possible longest-path delay. In order to evaluate these objectives, the EA models the

properties of actual hardware components. The end product is a set of netlists, which represent

the evolved filters using the Verilog hardware description language. The EA was written in the

C++ programming language.

There are several papers that investigate the evolution of filters according to a frequency do-

main specification. Suckley [3] developed a GA that constructs a cascade FIR filter from a set

of primitive filter stages. Redmill et al. devised an algorithm that is very effective at finding

minimum-adder solutions to the filter realisation problem [4,200]. The algorithm evolves the

coefficients and uses a heuristic search to design the filters. Optimisation based on a more

accurate area estimate, or with respect to a different objective, might necessitate using a dif-

ferent heuristic search technique. Extending this approach to multiobjective problems could be

difficult, particularly if the heuristic algorithm would need to search a larger and more com-

plex search space. Bull and Aladjidi developed a system for the evolution of multiplierless

transposed direct form FIR filters [148]. They evolved filters in both the time domain and the

frequency domain. The frequency domain example used functionality as the sole objective,

although the time domain example included an area term in the fitness score of designs that

met the functional specification. Erba et al. recently developed an EA that evolves nonlinear

phase FIR filters, with low power consumption as an objective [125, 152, 154]. The filters are

constructed from a library of primitive components. Each component includes a register, so

unclocked feedback is impossible.

The contribution to knowledge from this chapter has two aspects. Firstly, an evolutionary sys-

tem for the design of area- and delay-efficient transposed direct form FIR filters is described.

This is the first time such a system has been developed. Secondly, this chapter introduces a set

of novel heuristic evolutionary operators. These evolutionary operators treat the chromosome

as a graph. The use of graph chromosomes and graph operators is investigated further in later

chapters.

4.2 Problem description

A linear filter can be specified in the frequency domain by defining a range of acceptable attenu-

ations at each frequency. An example is shown in figure 4.1. More complex filter specifications

54

Evolutionary algorithms for FIR filter synthesis

gain J 	band 1 	band 2
	

band 3
(au) Tg2

< H(z) < g1 	H(z) < g1 	H(z)<g3

92---- 	I

g3 -i..................................

ii 	 .1; 	0.5
normalised
frequency

Figure 4.1: An example filter specification - the response of the filter must be in the shaded
area at all frequencies.

can divide the filter response into a larger number of bands.

multiplication block

i 	a, -••- 	 a.\ ..7

Er
accumulation block

Figure 4.2: The multiplication block and the accumulation block in a transposed direct form

FIR filter.

A transposed direct form FIR filter can be divided into a multiplication block and an accumu-

lation block, as shown in figure 4.2. The multiplication block multiplies the input by a set of

coefficients, while the accumulation block is the series of additions, subtractions and delays

that produces the final result. Recall from section 2.2.1 that if the coefficient set is symmetrical,

the filter will have a linear phase response in the pass band. The design problem is to devise

a filter design which meets a given filter specification. This includes choosing the number of

taps, finding coefficients, designing a multiplierless multiplication block, and deciding how the

55

Evolutionary algorithms for FIR filter synthesis

outputs from the multiplication block are used by the accumulation block. Generally, a design

should not only meet the specification, but also be efficient. The definition of efficiency will

vary depending upon the situation, however common objectives are low area utilisation, low

power consumption, or fast operation. In this chapter, design area and longest-path latency

have been used as objectives.

4.3 System description

4.3.1 Objective calculation

There are three objectives: functionality, silicon area, and longest-path latency. All three of the

objectives are minimisation objectives. The functionality objective measures how well a design

functions, relative to the user-supplied filter specification. As the functionality objective is a

minimisation objective, the term 'functional error' will be used.

+50dB
+47dB key

specification: - - -
response:

error:

+20dB

	

OdBI 	 I 	 I1

	

0 	 0.125 	 0.25 	 0.5
normalised frequency

Figure 4.3: Calculation of the functionality objective, which is defined as the largest deviation
from the specification (in this erample at f = 0.125).

The functionality of a design is evaluated as follows. The input to the design is set to '1'

and the data is propagated through the multiplication block, giving the coefficient set. The

coefficient values are then Fourier transformed, giving the frequency response of the design.

The frequency response is then compared with the user-supplied filter specification. The error

in each frequency band is calculated as the difference in decibels between the actual filter

response and the closest value that is acceptable to the user. The overall functional error of the

filter is defined as the largest of the frequency band error values. If a filter has a response that

Evolutionary algorithms for FIR filter synthesis

Component Area Latefl
(NAND gates) (ns)

16-bit adder 196.85 10.77
16-bit register 85.28 -

Table 4.1: Component costs

is within the user-specified ranges in all frequency bands, then the functional error of the filter

will be zero. The process of calculating a functionality objective is illustrated in figure 4.3.

The silicon area and longest-path delay of a design are estimated using values taken from a real

0.35um technology library. These values are shown in table 4.1. Subtracters are modelled using

the adder properties. Shifts can be implemented in the interconnects, so do not introduce area

or latency costs. The values in table 4.1 only describe 16-bit components, so the properties of

other components are approximated using linear extrapolation.

The area of a design is estimated by summing the corresponding component area estimates.

The interconnect area is ignored. The longest-path latency is estimated by finding the largest

sum of component delays corresponding to a path through the design. The delay model also

ignores the interconnects, a factor that is significant because wiring is often a major source

of delay. Both the area model and the delay model are computationally cheap but relatively

inaccurate in comparison to other hardware models.

The component widths are automatically chosen so that overflows are impossible. The filter

output is therefore wider than the input. In some cases the lower bits of a value are always zero,

so they can be omitted.

Circuits that have an unclocked feedback loop in the multiplication block will not work cor-

rectly. These circuits are severely penalised by having all three objective values set to a very

large number. This was found to be sufficient to ensure the rapid elimination of such circuits.

4.3.2 The chromosome

A fixed-length linear chromosome has been used. Each gene in the chromosome is an inte-

ger. The genes represent connections, shifts,. and signs. There are two sets of genes: those

representing operations in the multiplication block, and those representing the outputs from the

multiplication block (taps). Each operation in the multiplication block consists of one adder,

57

input
(index 3)

itput

Evolutionary algorithms for FIR filter synthesis

input 0, source
input 0, shift
input 1, source

Ir 	—input l,shift 	--

131331012 1131001
operation 0 operation 1 operation 2

Figure 4.4: Conversion from the genotype to the phenotype.

Evolutionary algorithms for FIR filter synthesis

I source I shift I

	

-(source 	shift/sign
input 0 	

J
input 1

/

/
/

op op op op tap tap tap
o 1 i 1 2 3 	0 ±1 ±2

	

operations 	taps

Figure 4.5: A breakdown of the contents of the chromosome.

possibly also with left-shifts on the adder inputs. The chromosome encoding is illustrated in

figure 4.5. Figure 4.4 illustrates how the linear representation is converted into a circuit design.

Connections are described by an index that denotes the source of the connection; either the

output of an operation, or the input to the entire design. Shifts are described by non-negative

integers indicating the number of positions to left-shift a value. In the case of tap shifts, the

quantity indicates both the shift, as well as the sign of the tap. The sign indicates whether the

tap should be added, subtracted or ignored by the accumulation block, which is equivalent to

multiplication of the coefficient by 1, 0 or -1. A single integer is used to encode both attributes.

A tap with left-shift s and sign n E {—1, 0, l} is encoded as (s + 1)n.

While the chromosome encodes a fixed number of operations and a fixed number of taps, not

all of the genes are expressed. Taps are ignored if the sign/shift gene is set to zero, leading to a

reduction in the size of the accumulation block. Operations are ignored if they do not contribute

to the output of the entire circuit. For example, in figure 4.4 operation 1 is not expressed, as

no tap or operation depends upon its result. This means that the number of components in the

design is not fixed by the size of the chromosome.

4.3.3 Initialisation

The designs in the initial population are randomly generated. All of the component inputs are

connected to the circuit input, and assigned random shifts. All of the taps are connected to

random components. The taps are not shifted, and are randomly set as added, subtracted, or

ignored. The initial population therefore includes a wide variety of genes.

59

Evolutionary algorithms for FIR filter synthesis

4.3.4 Evolutionary operators

Children are either created through crossover, with probability Pc, or else through cloning and

mutation. Two-point crossover was used. Children created through cloning are mutated a ran-

dom number of times. The number of mutations per child has a binomial distribution, achieved

by performing 10 trials with a mutation probability of 10%. The expected number of mutations

is therefore one. The use of a probability distribution for the number of mutations leads to

the creation of identically cloned children, and also children with multiple mutations, both of

which can be useful.

swap

. Dfa
duplicate 	 ±

scale

Figure 4.6: The heuristic mutation operators.

There are six mutation operators. The particular mutation operator is chosen at random when-

ever a mutation is performed, and all of the operators have the same probability. The set of

mutation operators includes a 'conventional' mutation, which changes the value of a gene, and

also several 'heuristic' operators. The heuristic mutation operators treat the chromosome like

a graph, and attempt to perform operations that are likely to be useful. The heuristic mutation

operators are illustrated in figure 4.6.

Evolutionary algorithms for FIR filter synthesis

Conventional mutation - A single gene is modified; genes encoding connections are recon-

nected to a random source, while shifts are incremented or decremented.

Scale value - An existing module or output is chosen, and a new, adder is placed before

it. The new adder adds a randomly shifted, randomly chosen value to the pre-existing

input value. The new value is likely to be larger, so the shift on the pre-existing input is

decremented with probability 50%.

Insert component - An original component and a new component are chosen. One input

to the new component is connected to the output from the original component, and the

Other input is given a random source and shift. Components and outputs that are driven

by the original component are changed to be driven by the new component, with 50%

probability.

Remove component - A component is chosen at random. One of the inputs to this compo-

nent is chosen. Everything driven by the component is reconnected to the chosen input

net, and given a random shift.

Duplicate component - Copy a randomly chosen component, and then change the connec-

tions that are driven by the original component so that they are driven by the new corn-

portent, with 50% probability.

Swap inputs - Swap the inputs to a component. This operator is used because some of the

other operators do not treat the two component inputs identically. This operator is neutral

with respect to all three objectives.

4.3.5 Ranking and selection

The three objectives are combined using the non-dominated sorting algorithm described by

Goldberg [99]. This algorithm assigns a rank to each individual, where the non-dominated

individuals have the lowest-numbered rank.

Selection based purely on the non-dominated sorting algorithm would produce a trade-off sur -

face between the three objectives. There 'are two problems with this. The first problem is that

the trade-off surface is likely to be very large, so the population will be very sparsely distributed

across the surface. The second problem is that there is a strong bias towards small, fast, non-

functioning designs. In other words, it is far easier to evolve a design that contains few compo-

61

Evolutionary algorithms for FIR filter

	

(a) 	 (b)

	

area 	 selection 	area

	

or 	 pressure 	or

	

delay 	 towards 	delay
non dominated

\surface

0 functional 	0
error

fittest solutions
here

I 	pressure towards
-..-- 	functional

non—dominated
solutions

functional
error

Figure 4.7: Selection: (a) by ran/c, and (b) by both rank and functionality.

nents than it is to evolve a design that functions well. The most extreme result of this trend is

the regular evolution of filters where the input is connected directly to the output. The solution

to this problem is to use tournament selection and to randomly judge 50% of the tournaments

according to rank, and the other 50% of the tournaments according to functionality'. This is

illustrated in figure 4.7. The combined effect of the two different selection pressures is to move

the population towards the most functional end of the non-dominated surface. Note that the

two different types of selection (rank and functionality) do not conflict, as the most functional

solutions are also non-dominated. The population can therefore be expected to converge on the

most efficient, most functional designs.

If a tournament is a draw, the winner is instead chosen according to a diversity measure. The

diversity measure is equal to the number of population members that have the same objective

values as a particular individual. This metric has been termed the niche count.

4.3.6 Elitism

The elite set is moved directly from the intermediate population to the new population. One

individual is entered into the elite set from each of the 10 most functional non-dominated points

in the objective space. If there are fewer than 10 non-dominated points, a smaller elite set is

used. Elitism ensures that the best solutions are never eliminated.

'Alternating between different types of selection is similar to the multiobjective technique used by VEGA [113],
which is itself similar to aggregate methods.

62

Evolutionary algorithms for FIR filter synthesis

module fir(in,out,clk,rSt),
input clk,rst;
input [7:0] in;
output [15:0] out;
wire [12:3] wO;

wire [18:3] w45;
register_8bit fr12 (w12,clk,ifl,rSt);

register_16bit fr2l (w21,clk,w44,rst);
adder 10 aO (wO,{{2{in[7]}},ifl},{{1{irl[7]}},ifl,l'b0},l'bO)

adder 12 al (w1,{{1{in[7]}},ifl,3'b0},{{4{in[7]}},in},'bO)

adder-14 a2 (w2, {wi, 2 'bO}, {{6{in[7]}} , in}, 1 'bO);
adder 12 a8 (W8,{{2{w0[12]}},W0},{W0,2'bO},i'bO)

adder-11 a36 (w36,{{1{wO[12]}},wO},{(2{W12[7]}},W12,i'bO}ri'bO)
adder 11 a37 (W37,1{2{ifl[7]11,ifl,l'b0},wl3,1'bl)
adder 13 a38 (w38,{{l{w8[14]}},w8},{{2{wi4[13]}},w14}li'bl);

adder-14 a39 (w39,{{i{w8[14]}},W8,l'bO},{{i{wi5[15]}},wiS},l'bi)

adder-15 a40 (W4O, - {{l{W2[16]}},W2},{{1{w16[16]}},W:1.6},l'bfl
adder 15 a41 (W4l,{(2{W8[14]}},W8,1'b0),wl7,l'bl);

adder-16 a42 (w42,{{4{w8[i4]}},W8},{{i{wi8[i7]}},
8}fl');

adder 16 a43 (w43,{{7{in[7]}},in,i'b0},W19,i'bi)

adder _i6a44 (W44,{{6{wO[12]}},W0},W20,i'bO)
adder-16 a45 (W45,{{7{in[7]}},ifl,l'b0},W21,i'b0)
assign out = w45;
endinodu le

Figure 4.8: An example filter netlist.

43.7 The evolutionary algorithm

The EA is a (p + A) system, where an existing population of p individuals is expanded through

the creation of A children, and the intermediate population of p + A individuals must then

compete for the p places in the new population. The advantage of a (p + A) system is that good

individuals can survive for many generations, in contrast to a (p, A) system, where the children

replace the parents every generation. The experiments in this chapter have used p = A = 100.

When expanding the population, parents are chosen at random. When reducing the population

size, the new population are chosen through the selection and elitism operations described

previously.

4.3.8 Circuit synthesis

Verilog netlists are produced for the evolved circuit designs. Each netlist contains a structural

description of a design; in other words, a netlist describes a set of high-level components, and

rev

Evolutionary algorithms for FIR filter synthesis

—16

—24

16

120

240

-i-F 296

-+ 240

-i-F 120

*16
-± 16

- ± —24

- ± —16

Note: lines represent buses,
multiplications represent shifts. 	output

Figure 4.9: An evolved filter

the interconnections between them. An example is shown in figure 4.8. The same evolved filter,

with coefficient set, is shown in figure 4.9.

gam gain
(dB) (dB)

3dB I 	: 30, 40, 3dB 30, 40,
or 50dB or 50dB

+20dB +20dB Y
pass
ia - stop band - pass band

no
0 0.125 0.25 normalised 0 0.125 0.25 normalised

frequency frequency

input

*64

IIIL
*8

Figure 4.10: Filter specifications.

Evolutionary algorithms for FIR filter synthesis

Setting Value

Population 100
Generations 20000
Crossover 50%

Components 10
Maximum taps 19 (10 symmetrical)

Input width 8 bit

Table 4.2: EA settings.

4.4 Experiments and results

4.4.1 Evolution of filters

Some test problems are shown in figure 4.10. These are low-pass and high-pass filter specifi-

cations, which attenuate by 30, 40 and 50dB in the stop bands. Filter designs that completely

meet these specifications have been termed 'correct'.

20

,, 15
0

Ca

0.
0

CL 10
75
(0
a)
C)
C)

(1) 5

0
	

5000 	 10000 	 15000 	 20000

Generation

30dB low-pass 	40dB low-pass 	50dB low-pass

	

30dB high-pass -------- - 	40dB high-pass 	50dB high-pass

Figure 4.11: The number ofpopulations containing a correct solution, by generation.

The BA was applied to the problems in figure 4. 10, using the settings shown in table 4.2. Twenty

runs were performed on each problem. The results are shown in table 4.3 and in figure 4.11.

The EA was able to find correct solutions for all of the problems. The predicted area and delay

algorithms for FIR filter synthesis

Problem Successful runs I Firstcorrect generation

30dB high-pass 19 377
30dB low-pass 20 349
40dB high-pass 14 806
40dB low-pass 16 1066
50dB high-pass 3 3905
50dB low-pass 1 17296

Table 4.3: EA performance.

00dB
40d 	.

55 0d
B
B

50

45

140

135

30

25 • °.60 0

20

15
2000 2500 	3000 	3500 4000 4500 	5000 5500 6000

area (NAND gates)

45

40

35

30

25

20
20

15
2000 	2500 	3000 	3500 	4000 	4500 	5000 	5500

area (NAND gates)

Figure 4.12: Area and delay results for low-pass (left) and high-pass filters (right).

properties of the designs are shown in figure 4.12.

4.4.2 Crossover rate

Given the high level of epistasis inherent to digital circuit design problems, operators that make

extensive changes to the chromosome are likely to be deleterious. For this reason, the usefulness

of the crossover operator was investigated. The two 40dA filter evolution experiments specified

in figure 4.10 were repeated with the crossover probability Pc set to 0% and 25% rather than

the original 50%. As mutation is applied when crossover is not, the lower crossover rates also

correspond to increased mutation rates. The results are shown in figure 4.13.

Crossover seems to have a slightly detrimental effect on the speed of the algorithm, although

this effect is somewhat ambiguous with the high-pass problem. The stochastic nature of the

LA makes evaluating the quality of the results difficult. All of the different sets of runs were

successful at finding low-latency solutions. The low crossover runs appear to show a greater

variation in the properties of the results, although this is mostly apparent in the higher numbers

of low quality solutions produced. The low crossover runs seem to have been particularly

Evolutionary algorithms for FIR ifiter synthesis

60

55

50

7 45

40

35

30

25
3000. 	3500
	

4000 	4500 	5000 	5500 	6000

area (NAND gates)

0% crossover *
	

25% crossover c 	 50% crossover

20

15

10

I
(5 5

50

45 	 *

40

35

30

o0 0 	 00

25

20 	 x x x x 19
000

15
2500 	3000 	3500 	4000 	4500 	5000 	5500 	6000

area (NAND gates)

 0% crossover * 	25% crossover o 	 50% crossover

 :

20

16

F:
2 	

T- o
o 	 5000 	 10000 	 15000 	 20001

Generation

0% crossover 	 25% crossover 	 50% crossover

0
	

5000 	 10000 	 15000 	 20000

Generation

0% crossover - 	25% crossover 	 50% crossover

Figure 4.13: Experiments with different levels of crossover, for the 40d6 low-pass (left) and
high-pass (right) problems.

67

Evolutionary algorithms for FIR filter synthesis

Problem SPW/IM Evolved
Adds I Registers Adds I Registers

30dB low-pass 16 8 11 10
30dB high-pass 14 8 10 8
40dB low-pass 19 10 16 10
40dB high-pass 19 10 14 12
50dB low-pass 28 12 24 16
50dB high-pass 16 12 20 16

Table 4.4: Comparison of component counts for evolved and conventional filters.

successful at producing low-area solutions to the low-pass problem. The conclusion that can be

drawn from these results is that crossover is not essential, and that it might actually be mildly

detrimental. Alternatively, the low crossover runs might be benefiting from increased mutation

rates.

4.4.3 Comparison with other systems

In this section, the EA is compared with the results from some other systems. These results

should be interpreted with caution for two reasons. Firstly, the EA introduced in this chapter is

a multiobjective system, and as such it attempts to strike a balance between the area and latency

of a design. Minimum area or minimum delay solutions represent extreme points on such a

trade-off surface. Finding an extreme point is not just a test of an algorithm's ability to find.

near-optimal solutions, it is also a test of how thoroughly the algorithm explores the trade-off

surface. Thus, finding a minimum area or minimum delay solution is a harder problem for a

multiobjective EA. A second point is that, for reasons of comparison, this section describes

areas in terms of component counts, and delays in terms of adder delays. The results therefore

do not include any gains achieved through using a more accurate hardware model. Indeed, if

area can be saved while increasing the component count, or if the delay can be reduced while

placing more components on the longest path, then using a more accurate model would become

counterproductive. Figure 4.14 shows the modelled area plotted against the component count

for all of the circuits evolved in section 4.4.1. It can be seen that the variations between the two

models are larger than one component area. The area required for a component is not constant,

but instead depends on the type and width of the component.

The 'Fxp.Equiripple' design method of the Cadence SPW filter design system was used

68

Evolutionary algorithms for FIR filter synthesis

30

25

20
(1)

a)
-a
(5

15

10

5
1000

-l-4-+-+H-+ -44+

- 	 (1114(111 4-4-

-44-4-f 11111 111(1 III

- 	 +-HI-I-l-IIIIl 11111(1

-44441-01-Il lII44IU liii ++

- 	-1-441-Ill i.UhIliiIilI 11-1+

+ llIDIlhlIl• 111111111 +

	

I 	IIlllI II 1(1111111114

#414414Ilf1444f+ +4+

+ 	111Ul liii IlEllIl

111111 1111 II lull +

	

+ -+4- -4-1441- III UI III 	I I

+++-*044-Il--I440-f -I- +

-if-Il--Hf -44--4++ 	++ +
IllIlli I 444+1+ -4-1- -4-4- 	 -

-4111041+ +4- * 	+

ll__I+ + 	+

+4141444- +I-+

+44-Il-I-I- ++ -111-

+44-1- 	+1-

+f++ +

+

2000 	3000 	4000 	5000 	6000 	7000 	8000

area (NAND gates)

Figure 4.14: Comparison of component counts with the modelled areas.

to generate quantised equiripple coefficient sets for the filter specifications given in figure 4.10.

The iterative matching algorithm suggested by Potkonjak et al. [36] was then used to implement

the multiplication blocks for these filter designs. These designs are referred to as the SPW/IM

designs. These two sets of designs are compared in table 4.4. The implementation of the

iterative matching algorithm was not able to compute area results using the same model as the

EA, so the results are given in terms of adders and registers rather than area. The number of

registers corresponds to the filter order, so it can be seen that the coefficient sets produced by

SPW tend to have a lower order than the evolved equivalent. The evolved filters generally use

fewer adders than the SPWIIM filters. Provided that registers have a low area relative to adders,

the evolved designs will be the most area efficient. This is the case for the library components

described in table 4.1. -

The iterative matching algorithm is designed to produce area-efficient multiplication blocks,

however it does not attempt to reduce the longest path delay. When minimising the delay, there

is no reason to use a multiplication block rather than. discrete multipliers. Table 4.5 shows

the delays required by the filters previously calculated using SPW. The filters are implemented

using CSD multipliers with balanced trees of adders. The latencies are measured in terms

Evolutionary algorithms for FIR filter synthesis

Problem SPW/CSD I Evolved
30dB low-pass 3 2
30dB high-pass 3 2
40dB low-pass 3 3
40dB high-pass 3 2
50dB low-pass 4 6
50dB high-pass 3 3

Table 4.5: Comparison of the number of adders on the longest path, for evolved and conven-
tional filters.

Band I Frequencies Constraint

0 0-0.1 6p=0.1
1 0.15-0.2 8s = 0.3
2 0.2-0.3 58 = 0.01
3 0.3-0.5 ös = 0.1

Table 4.6: A filter specification from Suckley [3]..

of adder-delays. The accumulation block always causes an additional delay of one adder 2 .

Table 4.5 compares the SPW/CSD results with the fastest evolved designs. While the evolved

50dB low-pass filter is slower than the SPW/CSD equivalent, the evolved solutions are fastest

for three of the other problems.

The most notable difference between the evolved and non-evolved designs is that the evolved

designs have a smaller multiplication block, but have a higher order and hence a larger accu-

mulation block. The longest path delay is entirely defined by the multiplication block, so the

evolved designs tend to be faster. The reduction in the size of the accumulation block is also

sufficient to offset the increased size of the accumulation block, leading to a reduced area. The

SPW-produced filters have coefficient sets that are not easily realisable. In contrast, the evolved

filters have coefficients that can commonly be expressed with one or two signed digits. This

leads to the observed differences in size of the multiplication blocks.

The EA was tested with a filter specification that was used by Suckley [3], and also by Bull and

Aladjidi [148]. The filter response is shown in table 4.6. In table 4.6, op denotes an acceptable

deviation in the pass band, and Os denotes the desired attenuation in a stop band. Bull and

2There are some cases where the longest path of a design can be reduced by merging the accumulation block
addition into the multiplication block. For example a filter with response H(z) = 21 + z 1 could be implemented
as y(t) = (x(t - 1) + 24x(t)) +(2 2X(t) + x(t)) instead of y(t) = x(t - 1) + (24x(t) + (22x(t) + x(t))); the
former has 2 adders on the longest path, while the latter has 3. This optimisation was not investigated here.

fill

Evolutionary algorithms for FIR filter synthesis

Problem Results from [4] 	Evolved
Adds Registers Adds I Registersj

10dB 3 2 3 2

20dB 9 8 12(11) 8

30dB 17 16 20(19) 18

Table 4.7: Comparison with results from Redmill et al. [4].

Aladjidi evolved a filter which matches this specification, and which uses 12 adders in the

multiplication block. According to the impulse response mentioned in [148], the filter requires

19 registers and a further 13 adders in the accumulation block, resulting in a total requirement

of 19 registers and 25 adders. Bull and Aladjidi used functionality as the sole objective; they did

not attempt to minimise the area or delay of their filters. Suckley mentioned an evolved solution

to this problem that uses 11 adders in a cascade filter, however the number of registers was not

documented. The best filter produced from 20 runs of the EA introduced in this chapter is a

14th order filter that requires 19 adders and 14 registers. It has a longest-path delay of 3 adders.

This filter is estimated to have an area of 4242 1um2 and a delay of 25.6ns. The multiplication

block requires 5 adders, however one of these adders performs a multiplication by 2, so the

total number of adders could be reduced to 18 through strength reduction.

A comparison with the results in [4] is shown in table 4.7. These results relate to low-pass

filters, with the pass band at 0-0.15 and the stop band at 0.25-0.5. The maximum pass band

ripple was set equal to the maximum stop band ripple (op = Os). The numbers in brackets

in table 4.7 denote cases where an adder can be removed by strength reduction. The system

developed by Redmill et al. gives results with lower component counts.

As noted above, some of the evolved designs include redundant components. One example of

this problem is the use of an adder to perform a multiplication by a power of two - in which

case the adder can be replaced with a shift (strength reduction). A second example happens

when two different componçnts always calculate the same value, in which case one of the two

components can be eliminated. In both of these cases it is trivial to eliminate the redundant

components. This could be done by an extra operator which is either applied during evolution,

or else applied to the final population.

71

Evolutionary algorithms for FIR filter synthesis

4.5 Summary

This chapter has described an evolutionary algorithm for designing linear-phase multiplierless

FIR filters. The filters are designed with respect to a frequency domain specification. Circuit

area and longest path latency are also minimisation objectives for the BA. The EA produces a

set of solutions, and in most cases there are multiple non-dominated solutions. In some of the

examples it was seen that the trade-off surface can account for as much of 20% of the absolute

area and delay values.

The area and delay values are modelled using values derived from actual arithmetic compo-

nents. The current netlists use unlimited precision for calculations, and as a result, the compo-

nent widths were often found to vary by more than a factor of two in a single circuit. For this

reason, the hardware models take account of variations in component width.

The EA sometimes produces multiplication blocks that contain some redundant hardware. One

possibility is the inefficient use of an adder to multiply a value by 2. A second possibility is the

recalculation of the same sum by two different adders. These inefficiencies only seem to affect

a minority of circuits, nonetheless they are undesirable. Their continued selection suggests that

the EA is not always capable of eliminating the inefficiency. One possibility is to explicitly

identify and correct such circuits, either during or after evolution.

The usefulness of the crossover operator was investigated. It was found that crossover can be

disabled without compromising the speed of the EA or the quality of the results.

The BA can compete with a conventional system based upon calculating a coefficient set, and

then synthesising a filter using either iterative matching or CSD multipliers. In terms of com-

ponent counts, it was found to give results superior to the results in [148], but inferior to the

results in [4].

In conclusion, this chapter has described a multiobjective EA for the evolution of efficient

multiplierless filter hardware designs. The BA makes use of realistic area and delay models

in order to evolve hardware that is targeted at a particular technology. This chapter is also a

first step in investigating the more general problem of evolving high-level signal processing

hardware using a graph chromosome that directly represents the structure of the circuit.

72

Chapter 5
The evolution of sequential circuits

5.1 Introduction

This chapter investigates the evolution of a class of sequential circuits. These sequential circuits

perform a single computation over two or more cycles. While the circuits evolved in chapter 4

could be considered sequential due to the inclusion of registers, they only had one state of

operation and performed the same task in every cycle. The circuits evolved in this chapter

are controlled by state machines (albeit simple ones), and go through several states in order to

perform a single computation.

There are several existing systems that perform scheduling using an EA [163-167].. These

systems perform scheduling, allocation and binding for all operations in a data-flow graph

(DFG). They take a DFG as input and produce a sequential circuit design as output. EAs have

also been used for pipelining data-flow graphs [121], again starting with a functionally correct

DFG. In contrast, the system introduced in this chapter performs scheduling in parallel with

evolution of the functionality of the circuit.

There are two objectives to the work in this chapter. The first, more minor objective is to demon-

strate a technique that can reduce the area required for a particular task. The major objective is

to demonstrate the evolutionary design of some members of a useful class of sequential circuits.

It is hoped that the techniques introduced in this chapter will enable the evolution of circuits

that can only be practically realised using sequential hardware.

This chapter builds upon the software developed in chapter 4.

5.2 Multistate sequential circuits

This chapter investigates circuits that perform one computation over a set number of cycles.

These circuits are controlled by a state machine such as those shown in figure 5.1. An n-state

circuit can process one set of data every n cycles. The circuits can contain multiplexors that

73

The evolution of sequential circuits -

state

state 	
0 	state

state

Figure 5.1: 2-state and n-state state machines.

are controlled by the state machine, and which enable the reconfiguration of the datapath every

cycle. Ideally, the area requirement of an n-state sequential circuit could approach 1/n of the

area of an equivalent combinatorial circuit, however the savings are limited by the need for

extra registers and multiplexors.

In this chapter, the EA system introduced in the previous chapter is modified so that the mul-

tiplication block operates sequentially. The multiplication block therefore uses a faster clock

speed than the accumulation block. The initial investigation focuses on the development of

2-state multiplication blocks, but n-state multiplication blocks are investigated later.

5.3 2-state hardware

input

output

state

Figure 5.2: A 21-times multiplier using two additions, performed using one adder, two MUXs
and one register.

The datapath for a 2-state multiplication block differs from combinatorial designs in two ways.

Firstly, each component input can connect to a different location in each state, in which case

a multiplexor is necessary. A multiplexor is also necessary if an input requires different shifts

74

The evolution of sequential circuits

in different cycles. Common subexpression elimination can prevent the creation of multiple

identically configured multiplexors. Secondly, a register is required whenever a value that is

produced in cycle 0 is used in cycle 1. It should be emphasised that the requirement for registers

and multiplexors varies from circuit to circuit, and that better designs use few such components.

An example is shown in figure 5.2.

5.4 Modifications to the EA

operations 	 taps

The packedop op op op op op tap tap tap
chromosome: 1 2 3 4 1 5 6 1 1 2 3

rip
op op
3 5

op op op tap tap tap
2 4 6 123

cycle 0:

cycle 1:

Adder 1 Adder 2 Adder 3

Figure 5.3: How the position of an operation within the chromosome is used to encode schedul-
ing and binding information.

The EA used in this chapter is a modified version of the EA introduced in chapter 4. The

following changes were performed to enable the evolution of multistate hardware.

• The chromosome was changed to include scheduling and binding information.

• An extra evolutionary operator, which modifies the scheduling information, was intro-

duced.

• The functions that perform hardware modelling and netlist generation were updated to

reflect the nature of the hardware being generated.

When designing a combinatorial circuit, there is a one-to-one correspondence between com-

ponents and operations. With sequential hardware, each component can perform a different

operation in each cycle. The chromosome can either represent a dataflow graph (DFG), or else

it can directly represent a circuit. If the chromosome represents a dataflow graph, the genes

represent operations, and the chromosome must also include some scheduling and binding in-

formation. It should then be relatively easy to modify the scheduling and binding of individual

75

The evolution of sequential circuits

operations. If the chromosome directly represents a sequential circuit, the genes describe com-

ponents. The schedule is then implicitly coded through the explicit use of components such as

multiplexors. The problem with a component-based strategy is that changes to the chromosome

have effects in every cycle, so the search landscape will be extremely multimodal. Therefore,

a DFG-based strategy was chosen. The scheduling and binding information for each operation

was encoded by the position of the operation within the chromosome. Odd-numbered oper-

ations are performed in cycle 0, and even-numbered operations are performed in cycle 1, as

shown in figure 5.3.

The interpretation of the genes that represent connections was altered, so that operations cannot

depend on future results. Inputs that depend upon future values are remapped to the past or

present, using the modulus operation. The inputs for all operations in cycle c are interpreted as

originating in a cycle modulo c + 1.

In order to allow the rescheduling of the operations in a chromosome, the 'swap operations'

mutation operator was introduced. This randomly chooses two operations within a chromo-

some, and swaps their positions, causing the scheduling and binding of the operations to also

be swapped. The 'swap operations' operator will also change other genes within the chro-

mosome, so that connections are not broken and the functionality of the circuit is unchanged.

However, if an operation is moved to an earlier time-slot, data dependencies might still lead to

a change in circuit functionality. The complete list of mutation operations is now as follows:

• Conventional mutation.

• Scale value.

• Insert component.

• Remove component.

• Duplicate component.

• Swap inputs.

• Swap operations.

When a mutation is applied, a single operator is chosen at random from the above list. As

before, crossover is applied in 50% of cases, and mutation is applied in the other 50% of cases.

76

The evolution of sequential circuits

Component 	Area 	Delay
(NAND gates) (nanoseconds)

16-bit adder 196.85 10.77
16-bit register 85.28 -

16-bit 2-1 MUX 37.28 7.59

Table 5.1: Component properties.

Law-pm results

60
50

45

40

35

o 30

25

20

'5

• 2000 2500 	3000 	3500 	4000 	4500 	5000 	5500 	6000

area (NANO gates)

I-Ugh-pass results

60

70

60

50

a
40

30

20

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

area (NAND gates)

Figure 5.4: Correct results for the test problems.

Assessment of functionality is unchanged from the previous chapter, with the addition of the

causality constraints mentioned above. Unlike the system introduced in the previous chapter,

all components are the same width. This simplifies modelling and netlist generation. The

hardware modelling system first calculates where registers and multiplexors are needed. The

delay model must consider both adders and multiplexors as sources of delay. The longest-

path delay is calculated for each cycle independently, and the largest delay value defines the

longest path delay for the whole circuit. The area model now reflects the fact that registers and

multiplexors are used in the multiplication block. The component properties are derived from

the same 0.35um library as used in chapter 4— they are shown in table 5.1.

5.5 Results

The modified EA was tested on the problems that were previously introduced in figure 4.10.

It produced correct results for all of the problems except for the 50dB low-pass problem. The

properties of the results are shown in figure 5.4. Note that the longest path delay refers to the

time for a single cycle, so twice that time is needed to process a data item.

77

The evolution of sequential circuits

clock

(b)

clock

(c)

Figure 5.5: Critical paths. The last adder (shown in grey) is always part of the accumulation
block

It was found that the limited set of possible values for the circuit latency restricts the number

of non-dominated circuits that the system can produce. The fastest designs that were produced

are actually pipelined circuits. This is because multiplexors introduce extra latency. Without

multiplexors, the circuit can operate quickly, but cannot make the most efficient use of the

available adders. Speed is bought at the cost of increased area. The thee fastest types of circuit

are as follows:

• A pipelined circuit with one adder on the longest path (figure 5.5(a)).

• A pipelined circuit with two adders on the longest path (figure 5.5(b)).

• A circuit that has two adders and one multiplexor on the longest path (figure 5.5(c)).

According to the costs in table 5.1, these circuits have a delay of 10.77ns, 21.54ns, and 29.13ns

respectively. Possible critical paths for these circuits are shown in figure 5.5. Note that the last

adder belongs to the accumulation block, so it is only used in the second cycle. This adder is

shown in grey in figure 5.5. Its output will either go to a register, or to the output from the

whole circuit.

Each sequential multiplication block can be converted to a functionally equivalent combinato-

rial multiplication block. The ratio of the areas of these two designs gives a measure of the

in

The evolution of sequential circuits

Low-pass area savings
	 I-Ugh-pass area savings

1800

1600

l400

1200

i l000
800

0)

600

don
400 	600 	500 	1000 	1200 	1400 	1600 	1800

Combinatorial area (NAND gates)

no saving - 	20% saving 	 30dB
10% saving --- 	30% saving 	 40dB

2000

1800

1600

1400

1200

1000

800

600

400

20
200 	400 	600 	800 1000 1200 1400 1600 1800 2000

Combinatorial arm (NAND gates)

no saving - 	30% saving - 	 50dB
10% saving ------ 	 30dB
2(Y% saving ---------- -40dB

Figure 5.6: Comparison of sequential and equivalent combinatorial areas for evolved multi-

plication blocks.

Low-pass area savings
	 High-pass arm savings

6500

6000

- 5500

5000

4500

4000

! 3500

3000

° 2500

2000

150
2500 3000 3500 4000 4500 5000 5500 6000 6500

Combinatorial area (NAND gates)

no saving 	2D% saving 	 30dB *
10% saving -- 	30% saving 	 40dB

8000

7000

6000

5000

8 4000

3000

2000

1000
 jsoo 3000 3500 4000 4500 5000 5500 60M ssao moo moo

Combinatorial area (NAND gates)

no saving 	 30% saving 	 50dB
10% saving - 	 30dB
20% saving ---------- 40dB 	-

Figure 5.7: Comparison of sequential and equivalent combinatorial areas for evolved filters.

79

The evolution of sec,uential circuits

Problem. SPWJIM original EA multistate EA
Adds Registers Adds] Registers Adds Registers MUXs

30dB low-pass 16 8 11 10 8 9 4
30dB high-pass 14 8 10 8 8 10 3
40dB low-pass 19 10 16 10 13 15 4
40dB high-pass 19 10 14 12 13 14 2
50dB low-pass 28 12 24 .16 - - -
50dB high-pass 16 12 20 16. 18 19 6

Table 5.2: Component counts for three different filter implementation techniques.

Scheme I Adders I Registers I MUXs
I Conventional n I I 	0

2-state n
2

3n
I 	+ 1 + 1

Table 5.3: Components required for an n-th order accumulation block

area saving that is achieved through the use of the sequential design. The combinational and

sequential areas of the multiplication blocks from the correct designs are plotted in figure 5.6.

In the best case, using the sequential scheme leads to an area saving of 28%. This figure relates

to the multiplication block alone. When the area of the accumulation block is also included, the

area savings are smaller, as shown in figure 5.7. This is because the area of the accumulation

block is the major part of the area of a design, and it has the same area in both cases. The

design for a multistate accumulation block will be described in section 5.6. When the area of

the accumulation block is included, the best saving is about 7%. In some cases, the sequential

designs have a greater area than the combinatorial equivalent - although, as noted above, this

can be due to the evolution of pipelined designs.

In the table 5.2, the results from table 4.4 are extended to include the component counts for

the multistate system. The results show that the multistate EA requires lower numbers of

adders than the original EA, but increased numbers of registers and multiplexors. The non-

evolutionary system is superior to either EA for the 50dB high-pass problem, but requires

larger numbers of adders in other cases. If the component properties from table 5.1 are used,

the multistate EA gives the smallest results for both 30dB problems and for the 40dB low-pass

problem.

Kc

The evolution of sequential circuits

output

.te

input 	 input input input input
0 	 3 	1 	4 	2

Note: Clock speed is twice data rate.
Inputs are valid in state 1.
Output is valid in state 0.

Figure 5.8: A 2-state accumulation block

5.6 A multistate accumulation block

The EA system described in this chapter uses a conventional accumulation block, however a 2-

state accumulation block could be used instead. A multistate architecture for the accumulation

block is shown in figure 5.8. The costs of these two schemes are compared in table 5.3. When

using the properties in table 5.1, the 2-state accumulation block makes a 13% area saving,

assuming m is large. The 2-state scheme introduces an extra multiplexor delay onto the longest-

path of the accumulation block.

5.7 Operation over many cycles

The system for creating 2-cycle sequential circuits was extended, so that circuits that operate

over many cycles could be created. The number of cycles that the design should use could be

defined at the start of evolution.

The calculation of area and delay information becomes much more complicated in the multi-

cycle case. This is because the most efficient way of organising the registers and multiplexors

is no longer obvious. A poor-quality solution to these problems was simply to ignore the extra

area and latency introduced by the registers and multiplexors, and only to take account of the

adders in the circuit. This reduced the complexity of the circuit modelling system, but also

01

The evolution of sequential circuits

prevented accurate computation of the circuit area and delay. Circuit netlists could no longer

be generated.

When evolving filters that operate over three or more cycles, it was found that the system

would often create inefficient designs. This is because the number of available operations is

often poorly matched to the number of required operations. This, combined with the extra area

that will be needed for registers and multiplexors, leads to a very low benefit, when applied to

the FIR POF circuit creation problem. As an example of this problem, consider the scheduling

of four additions over two cycles, and, also over three cycles. In the 2-cycle case, two adders

are used, and each adder performs two additions. In the 3-cycle case, two adders must still be

used, but only four of the six available additions are needed. This means that the 3-cycle case is

no more efficient than the 2-cycle case. In fact, the 3-cycle case might be less efficient, as more

area could be dedicated to registers and multiplexors. This inefficiency is most notable when

there are few components. As the number of cycles is increased there will be a point where

it becomes most efficient to use a general purpose circuit, composed of a register file and an

arithmetic unit.

5.8 Application to other problems

Other types of sequential circuit can be evolved using similar techniques. The main require-

ments are that the problem should be amenable to the evolution of solutions, and the compu-

tational components should have a large area relative to registers and multiplexors. Problems

that require larger numbers of operations could be suitable for implementation with hardware

that runs over more than 2 cycles.

5.9 Summary

This chapter has demonstrated an EA system that evolves sequential circuits. The EA cre-

ates a fuhctionally correct design, while simultaneously scheduling and binding the individual

operations performed by the design. The EA evolves FIR filters that use sequential multipli-

cation blocks. The filters were evolved according to a frequency-domain specification, with

multiplication blocks that operate over 2 cycles. When compared with equivalent combinato-

rial designs, multiplication block area savings of up to 28% were demonstrated. The large size

The evolution of sequential circuits

of the accumulation block limits the effectiveness of reducing the multiplication block area -

use of the 2-state multiplication blocks led to best-case filter area savings of about 7%. For this

reason, a 2-state accumulation block was investigated, with expected area savings of up to 13%.

Other types of sequential circuit could also be evolved, using similar methods. Multistate cir-

cuit implementations are most useful when computational components are expensive in terms

of area, and when registers and multiplexors are relatively cheap. The requirement for an accu-

mulation block, and the consequent limitation of the area saving, is peculiar to the multiplierless

FIR filter design problem.

The evolution of circuits that operate over more than two cycles was investigated. It was noted

that the circuits are most efficient when the number of operations is a multiple of the number

of states, and that this becomes less likely as the number of states is increased. The problem

of creating efficient multistate storage and switching networks is complex, and has not been

addressed in this thesis.

83

Chapter 6
The evolution of multiplierless linear

circuits

6.1 Introduction

This chapter introduces an evolutionary algorithm for the implementation of multiplierless lin-

ear transforms. The evolved circuit designs can have multiple inputs and multiple outputs. Each

circuit design can be characterised by a transformation matrix.

Linear transforms are used as a building block for an enormous variety of signal processing

applications. This includes practical applications in areas such as data compression, signal

conditioning, and signal analysis. A particular advantage of linear systems is the ease with

which they can be characterised, which is something that is also useful in the context of this

chapter.

While the work in this chapter was inspired by the work in chapter 4, the EA is a completely

new implementation.

6.2 Problem statement

A linear transform can be specified as follows:

y=Hx
	 (6.1)

where x and y are column vectors containing the N inputs and M outputs, and where H is an

(M x N) matrix of coefficients. If H is unknown, it can be found by applying a series of inputs

Xl, , XM, such that element n of Xn is one, and all other elements are zero. The outputs then

correspond to the columns of H.

The problem of implementing a linear transform can be stated as follows. Given a user-supplied

ideal response matrix H2 , construct a linear transform circuit with the actual response matrix

The evolution of multiplierless linear circuits

Ha, such that Ha H2 . The circuit should be as efficient as possible. In this chapter efficiency

is defined as low area consumption and a short longest path delay.

6.3 The evolution of linear transforms

63.1 The chromosome

Figure 6.1: A chromosome and the corresponding circuit design.

A graph chromosome has been used. Each node in the graph represents an addition. Each node

has two inputs. The inputs to a node can be negated and shifted. Depending on which inputs

are negated, the node can correspond to one of the following implementations:

an adder,

a subtracter,

an adder followed by a negator.

The evolution of multiplierless linear circuits

The inputs to a node can connect to any circuit input or node output. The circuit outputs can be

shifted, and negators can be inserted at the circuit outputs. In other words, a node can calculate

a value +28u + 2tv , where u, v are the node inputs and s, t e Z select how many bit-positions

the input values should be shifted. A circuit output can take values of the form ±28u, where u

is the value at a node or input and s is the shift.

Figure 6.1 shows an example chromosome and the corresponding circuit design. This repre-

sentation is more flexible than the linear representation introduced in figure 4.4. The graph

representation introduced here can encode subtractions and negations, and represent designs

which have multiple inputs and multiple outputs.

A cyclic graph corresponds to a circuit that contains an unclocked feedback loop, which is

undesirable. If a chromosome is found to contain a cycle, the chromosome is replaced with a

trivial design that is guaranteed to be acyclic. In this way the population is kept acyclic.

6.3.2 Initial population

The initial population contains designs where each output is directly connected to a randomly

selected input. No shifts or negations are used. The designs in the initial population therefore

have no area and no delay.

6.3.3 Evolutionary operators

There is no crossover operator. The chromosomes are modified by the following mutation

operators:

Change connection - reconnect a node input to a different source.

Insert node - insert a new node, which adds a randomly selected value to a pre-existing edge.

Change shift - change the shift and negation at a node input or an output. The shift is in-

cremented or decremented. lithe shift is at the minimum allowable value, the edge is

instead negated.

Associativity - swap the positions of two connected nodes; for example replacing (a + b) + c

with a+(b+c).

87

The evolution of multiplierless linear circuits

Delete node - a node is chosen at random and eliminated. The source, shift and negation

information from one of the node inputs is propagated to the input of all of the nodes that

depend upon the eliminated node.

The 'change connection' and 'insert node' operators form new edges. When forming a new

edge, these operators must decide how much shift should be applied. If too great a left-shift

is used, it can easily introduce a large error into the response of the circuit. If the shift results

in a value that is too small, the value at the node will be defined by the other input, and the

node will be redundant. It is also worth noting that large shifts are sometimes useful, so it is

sometimes helpful if they can be created. As a compromise between these conflicting effects,

new connections are randomly assigned a shift of up to +4 bits. Increasing this range causes the

algorithm to run slower, while reducing this range increases the area and delay of the evolved

designs. New connections are negated with probability 50%.

If an evolutionary operator causes some nodes to become redundant, then those nodes are elim-

inated from the chromosome. The chromosome only contains nodes that connect to the outputs,

either directly or indirectly.

6.3.4 Fixed-point and integer operation

The EA has two modes of operation, fixed-point mode and integer mode. In integer mode

right-shifts are disabled, and the EA can only create designs that use integer coefficients. In

fixed-point mode the EA can produce both left- and right-shifts, so the EA can design hardware

with fractional coefficients.

In integer mode, left-shifts that are common to both node inputs are eliminated. This is achieved

by repeatedly using the rule of distributivity and replacing a shift that is common to both com-

ponent inputs with a shift at the component output. In other words, the value computed at a

node is altered as follows:

(a << si) + (b << (si + 82)) =. (a + (b << s2)) << S1

where a and b are the node input values, s1 is the common left-shift and s2 is the left-shift that

is not common to both inputs. While applying this transformation does not change the func-

tionality of a design, it does make the intermediate values smaller. Without this transformation,

0.

The evolution of multiplierless linear circuits

it was found that the EA was unlikely to correct a chromosome that has only a small functional

error.

In fixed-point mode, the fractional coefficients can cause the functional error to also become

fractional. The functional error typically reduces asymptotically towards zero as evolution

progresses. If this trend is allowed to continue unrestricted, it results in circuit designs that

include a large number of components, and which have a functional error that is extremely close

to zero. These circuits are probably too expensive in terms of area and delay, so it is important

to constrain the growth of the designs. This is done by letting the user specify an acceptable

functional error. This is a level of error below which designs are considered functionally correct.

Functionally correct designs can only compete in terms of area and delay, so they do not become

bloated.

6.3.5 Assessment of functionality

The user supplies the desired transformation matrix, which is known as the ideal matrix H2 . The

response of a circuit is found by setting each input to i in turn, while the other inputs are set to

0. The circuit's actual response matrix, Ha, can then be constructed from the circuit outputs.

The response matrix is subtracted from the ideal matrix, giving an error matrix He = Ha - H.

The functional error of a circuit is defined as the sum of the squares of all of the elements in the

error matrix. Functionality is a minimisation objective; better circuits have a lower functional

error.

As mentioned previously, it is useful for the user to be able to specify a level of error that

is considered acceptable. If the user specifies an acceptable error, all functional error values

are made greater than or equal to this level, so all functionally acceptable chromosomes are

considered equivalent.

6.3.6 Hardware modelling

The EA has the ability to produce three distinct types of design:

• Fixed-width bit-parallel designs.

• Variable-width bit-parallel designs.

Me

The evolution of multiplierless linear circuits

• Bit-serial designs.

These three different classes of hardware require different hardware models, and different rou-

tines for netlist generation. The fixed-width bit-parallel designs use components that are a pre-

defined width, and truncate the least significant bits to ensure that this width is not exceeded.

The variable-width bit-parallel designs have a predefined input width, and then increase the

precision of the intermediate components, ensuring that no precision is lost. The bit-parallel

designs can implement shifts by renumbering the bits in the interconnects, so shifts do not have

any associated cost. Bit-serial left-shifts are implemented by using 1-bit registers to delay the

data by one cycle for each bit-position of shifting. There is no way of implementing bit-serial

right-shifts, so the EA can only produce bit-serial designs when in integer mode. Bit-serial left-

shifts have an area cost, but they are made of registers so they can sometimes limit the longest

path latency.

Component Area Delay
(um') (nanoseconds)

Adder 207.34 0.25
Subtracter 207.34 0.25
Negator 154.49 0.12

1-bit left shift 117.90 -

Table 6.1: Bit-serial component properties.

The hardware models are based upon the properties of a UMC 0. 18gm technology library. Bit-

parallel adders, subtracters and negators were generated for widths of between 1 and 64 bits.

The area and longest-path delay were found for each of these components. The properties of

bit-serial adders, subtracters, negators and shifts were also found, as listed in table 6.1.

As before, neither the area model, nor the delay model take account of wiring. The area model

ignores wire area. The delay model ignores wire-load delays. The delay model models delays

on a per-connection basis, rather than per-wire, so the delay estimates can be larger than in

reality.

6.3.7 Ranking and selection

The EA is a (t + A) system, with population sizes of It = A = 100. Selection is performed

when choosing parent individuals, and again when choosing which individuals survive into the

90

The evolution of multiplierless linear circuits

next generation.

The population is ranked using the non-dominated sorting algorithm. Size-2 tournament se-

lection is used. 50% of the tournaments are judged by rank, and the other 50% are judged by

functionality. This encourages the discovery of solutions that are both functional and efficient.

In the event of a tournament being judged a draw, the winner is the individual with the lowest

niche count. The niche count is equal to the number of individuals that have identical objective

values.

An elite set is preserved when the population size is reduced. The elite consists of one individual

chosen from each of the 10 most functional non-dominated points. If there are fewer than 10

non-dominated points, a correspondingly smaller elite set is used.

6.4 Experiments

6.4.1 Test problems

Four test problems have been used in this chapter. They are the 4-point DCT, the 8-point DCT,

the RGB to XYZ colour transform, and the 8-point Discrete Hartley Transform (DHT). The

DCT was introduced in chapter 2, and the other two problems are introduced here. Most of the

EA runs were performed in integer mode, in which case the coefficients were scaled up and

rounded to integer values. The matrices for the test problems are listed in appendix B.

When processing colour images, the transformation from an RGB colour representation to an

XYZ colour representation can be specified as follows [13]:

X 0.49 	0.31 	0.20 R

Y = 0.17697 	0.81240 	0.01063 G (6.2)

Z 0.00 	0.01 	0.99 B

The Discrete Hartley Transform (DHT) is related to the Fourier transform and the Cosine trans-

form. The DHT can be computed using only real numbers. The N-point DHT can be specified

as follows:
N-i 27r1k 	27r1k

y(1) = 	x(k) cos —k- + sin --, where 0 <1 <N 	(6.3)

k=O

The inverse DHT is equivalent to the DHT, but scaled by a factor of 11N. Alternatively, a

91

The evolution of multiplierless linear circuits

Problem I Correct runs I First correct generation
DCT-4 14 1132

RGB-XYZ 7 3257
DHT-8 9 14337
DCT-8 2 34394

Table 6.2: Functionality results from the test problems.

factor of 11s/N can be introduced into the right-hand side of equation 6.3, making the DHT

and inverse DHT identical.

The EA was applied to each of the four test problems. 20 runs were performed on each prob-

lem. The EA was allowed to run for 5000 generations with the 4-point DCT problem, 10,000

generations with the RGB-to-XYZ problem, and 40,000 generations with the 8-point DCT and

DHT problems. The bit-parallel variable-width hardware model was used in integer mode. A

solution with a functional error of zero is considered to be 'correct'.

6.4.2 Solution functionality

le+06

100000

10000

1000

0

ts
100

LL.

10

1

0.1 L

0
	

5000 10000 15000 20000 25000 30000 35000 40000

Generations

Figure 6.2: The functional fitness of the best DHT design, for 20 runs.

Figure 6.2 shows the functionality score for the best solution in each population, for 20 runs

92

The evolution of m ultiplierless linear circuits

with the DHT problem, according to generation. In the beginning, there is an almost exponen-

tial decline in the functional error. The progress slows down in later generations, and a large

amount of time is spent removing the final few imperfections in the functionality of the designs.

This trend is most pronounced with the hardest problems. Note that there is a large variability

in the number of generations until a correct solution is discovered. For the DHT problem, the

fastest nm produced correct solution after 14337 generations, whereas some of the runs did not

produce any correct solutions after 40000 generations. Table 6.2 lists the details for all four test

problems.

6.4.3 Solution quality and diversity

I 	 I 	 I I

' 0

+
M

U

+ 	W

++

+4 il

h
+

• 	+4f

+

4-point OCT +
A BtoXYZ
8-point DHT *

I 	

I 8-point DCT

0 	20000 40000 60000 80000 100000 120000 140000 160000

Area (square microns)

Figure 6.3: Properties of the evolved circuits for the test problems.

The area and delay properties of the correct solutions to the four test problems are shown in

figure 6.3. In all four cases, the size of the tradq-off surface is so small that it is insignificant.

This suggests that the area and delay objectives do not conflict. Figure 6.4 illustrates one

situation in which a conflict does arise, so the objectives are not necessarily non-conflicting,

however such conflicts do not appear to happen in practice.

The results for the DHT problem are very widely distributed in terms of area. The largest

solutions are approximately three times the size of the smallest solutions. The DHT solutions

93

20

18

16

14

12
Cl)
C

ip
10

C)

8

6

4

2

n

The evolution of multiplierless linear circuits

appear in small clusters, and it was found that each cluster corresponds to the results from an

individual run.

abed a c

Figure 6.4: Minimum area and minimum delay circuits for computing f = a + b + c + d and
g= b+c+d.

6.4.4 Hardware implementation styles

25

20

15
(1)
C

>.,
a)
a)

10

5

1.1

	

bit-paralll variable idth 	+ ' 	 I

	

bit-parallel fixed width 	x

bit-serial
X

X

	

X 	 X 	X

X 	x
X

X 	 XX(XXXX X
X 	 X • 	• XX 	X

+)*(X 	X
+

+ 	+

	

+ +_ 	 +

' 	f+

+f

+

4,
I 	 I 	 I

0 	10000 	20000 	30000 	40000 	50000 	60000 	70000

Area (square microns)

Figure 6.5: Properties of 4-point DCT designs evolved with 3 different hardware models.

Figure 6.5 shows the area and delay properties of evolved 4-point DCT circuits, evolved for

the three different styles of hardware. In this case, the variable-width bit-parallel solutions

are smaller and faster, however the fixed-width bit-parallel solutions could be more efficient in

94

The evolution of multiplierless linear circuits

other situations. The longest path delay for a bit-serial design defines the time taken to process

a bit, rather than the time taken to process a sample, so the bit-serial solutions are actually much

slower than the bit-parallel equivalents.

6.4.5 Fixed-point values

100000

10000

1000

100

10

.2 1
C)

LL 0.1

0.01

0.001

0.0001

le-05 L

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Generations

Figure 6.6: Functional fitness in integer mode (upper lines) and fixed-point mode (lower lines).

In order to test the generation of fixed-point solutions, fixed-point solutions to the 4-point DCT

problem were evolved. The acceptable error level in the fixed-point system was set to 0.000764.

This value was chosen so that the error in an acceptable fixed-point solution is proportionate to

the rounding error in the integer coefficient set. Note however, that the fixed-point coefficients

were not scaled up, so the error values are correspondingly smaller. Figure 6.6 shows the

functional fitnesses of the populations during evolution. The initial performance of the two

different modes is similar, however integer mode becomes slower later on. While most of the

integer runs eventually achieve a functional error of zero, the fixed-point runs rapidly decline to

the acceptable level and then remain in the acceptable range. All of the fixed point runs were in

the acceptable range by generation 2500, whereas 6 of the 20 integer runs failed to find correct

solutions. It seems that the EA is not able to promptly correct small functional errors when in

integer mode, leading to the observed performance difference between the two modes.

95

The evolution of multiplierless linear circuits

0 	5000 	10000 	15000 	20000 	25000 	30000 	 0 	0.5 	1 	1.5 	2 	2.5 	3 	3.5 	4 	4.5 	5
Design Compiler area (square mimons) 	 Design Compiler delay)nn)

(a) The area model compared with Design Compiler. (b) The delay model compared with Design Compiler.

Figure 6.7: A comparison of the hardware models with Synopsys Design Compiler.

6.4.6 Hardware modelling

The area and delay figures calculated by the EA were compared with the corresponding figures

calculated by Synopsys Design Compiler. Figure 6.7 shows the results of the comparison, for,

evolved variable-width bit-parallel solutions to the 4-point DCT problem. Figure 6.7 shows that

the area model produces results which are very similar to the Synopsys figures. Note that the

0. 181um technology library does not include wire area information, so both the EA area model

and the Synopsys area model do not take account of the wire area. The delay comparison

in figure 6.7(b) shows that the EA delay model is very inaccurate. The EA delay figures are

approximately a factor of 2 larger than the corresponding Synopsys figures. The delay model is

used when ranking solutions, so incorrect scaling of the results is ignored, however figure 6.7(b)

also shows that there is only a weak correlation between the two delay models. One problem is

that the delay model works with connections rather than wires, so it is too pessimistic when the

individual wires have different delays. The delay model also ignores wire-load delays, which

can have a major effect on the results.

6.4.7 Comparison with other design techniques

Table 63 compares the quality of the evolved circuits with designs produced through non-

evolutionary techniques. The comparisons are in terms of numbers of components. The compo-

nent counts in the best evolved circuits are compared with the component counts for equivalent

circuits created using the iterative matching algorithm [36]. The evolved results are competi-

tive with the non-evolved results in terms of component counts. The longest path delays of the

35000

30000

S
1 25000
S

20000

m000

10000

5000

,

14

12

10

1 8
S

4

2

The evolution of multiplierless linear circuits

Problem Area Delay
IM I Evolved CSD I Evolved

DCT-4 26 17 4 4
RGB-XYZ 38 42 5 7

DHT-8 38 42 4 6
DCT-8 130 111 5 8

Table 6.3: Adder counts for evolved and non-evolved solutions to the test problems.

evolved results were compared with the longest path delay of a transform implemented using

CSD multipliers followed by a tree of adders. It was found that the evolved results are slower,

as seen in table 6.3. Note that transforms implemented using parallel CSD multipliers are fast

but very area inefficient. The CSD results therefore represent a lower bound on the delay of the

evolved designs. In chapter 7 an improved EA is developed, and results from the improved EA

are compared against the results given in table 6.3.

6.5 Summary

This chapter introduced an evolutionary algorithm for the creation of multiplierless linear trans-

form circuits. These circuits can have multiple inputs and outputs, and are specified by a user-

supplied transformation matrix. The circuit designs are evolved with the objectives of having

low area requirements and low longest path delays. The circuit area and circuit delay are mod-

elled using component properties extracted from a real 0.18um technology library. The EA can

produce bit-serial, fixed-width bit-parallel and variable-width bit-parallel designs.

The EA was found to perform faster and more reliably when right shifts could be used. This

seems to be because of difficulties when attempting to correct small functional errors using only

left shifts and integer values. Introducing right shifts corrected this deficiency.

The area and delay properties of the evolved solutions were investigated. It was found that for

each of the four problems the best solutions are clustered together in the objective space. It

was not possible to trade between area and delay for any of the result sets. This suggests that

the area and delay objectives do not conflict. While the example in figure 6.4 proves that such

conflicts can happen, they were not observed in practice.

The accuracy of the hardware models was investigated. It was found that the area model gives

97

The evolution of multiplierless linear circuits

results similar to areas calculated by Synopsys Design Compiler. The delay model was found

to be very inaccurate. This is probably due to two main factors. Firstly, the delay model does

not model wire loads, so it ignores delays introduced by excessive fanout. Secondly, delays are

modelled on a per-connection basis, which can be very inaccurate when the individual wires in

a connection have different delays.

The evolved results were found to be competitive with results from the iterative matching al-

gorithm, in terms of component counts. The evolved results were found to be slower than

high-area, low delay designs constructed from CSD multipliers and adder trees, when delay is

measured by component counts.

The EA uses a graph chromosome, and each graph directly corresponds to a circuit design.

Crossover was not used. The evolutionary operators perform simple modifications to the graph,

corresponding to actions such as splicing an adder into the circuit design.

Chapter 7
Local searches and the evolution of

linear circuits

7.1 Introduction

In this chapter, a type of local search is proposed. This local search technique is combined

with the evolutionary algorithm that was introduced in the previous chapter. The resultant

hybrid algorithm is faster than a plain EA, while still being robust enough to be used on highly

multimodal digital circuit design problems.

There are two ways in which the performance of the searching EA is improved relative to the

original EA. Firstly, the local searches reuse intermediate values between the individual circuit

evaluations, greatly reducing the computational effort required to evaluate the functionality

of an individual design. Secondly, performance was improved through the introduction of

a heuristic technique for determining where shifts and negations should occur. This greatly

reduces the effective size of the search space.

The modified EA is compared with the original EA, using the test problems introduced in

chapter 6.

7.2 Design modelling

A linear transform can be described as follows:

y=Hx
	 (7.1)

where x is a column vector containing the N inputs, y is a column vector containing the M

outputs, and H is the (M x N) response matrix.

Figure 7.1 shows how a single connection, labelled 'X', relates to the rest of a linear system.

The relationship between the inputs and connection X can be characterised by an array of

99

Local searches and the evolution of linear circuits

innuts

a3 	 03

Figure 7.1: A model of how a single connection (labelled 'X') relates to the inputs and outputs
of a linear system.

coefficients a = (ai, a2, ... , aN). The relationship between connection X and the outputs can

also be characterised by an array of coefficients b = (b1, b2, ... , bj4. Finally, the part of the

circuit which is completely independent • of connection X can be characterised by an (M x N)

matrix of coefficients, here called C, which is labelled as 'linear circuitry' in figure 7.1. The

response of the circuit, H, can then be restated as follows:

H=baT+C 	 (7.2)

The method for calculating a, b, and C is described in section 7.3, below.

Note that the model shown in figure 7.1 is likely to have a completely different structure from

the design that it models. In particular, the components in the model do not correspond with

components in the actual design. The model in figure 7.1 only describes the relationships

between the inpUts, one intermediate value (at point X), and the outputs. Other details of the

design are not modelled.

If a multiplier is inserted into connection X, and the value on the connection is multiplied by

some constant k, the response of the circuit will be:

H = kbaT + C 	 (7.3)

100

Local searches and the evolution of linear circuits

Setting k to 2, -1 or 0 enables us to model the effects of inserting an s-bit left-shift on connec-

tion X, inserting a negator, or setting connection X to zero. These three cases can be restated

as follows:

	

H = 2sbaT + C 	 (7.4)

H = C_baT 	 (7.5)

H=C 	 (7.6)

If a value from elsewhere in the circuit (from another connection, connection Y) is added to the

value on connection X, the circuit response can be modelled as follows:

H=b(a+a')T+C 	 (7.7)

The vector a' in equation 7.7 serves a similar purpose to a but describes the value on connection

Y rather than the original value on connection X. Combinations of the above operations can also

be described in a similar fashion.

The user-specified required response matrix, R, is now introduced. The difference between the

actual response and the ideal response-can be used to calculate an error matrix, or alternatively

•a correction matrix:

	

error = H - R
	

IM

desired correction = R - H 	 (7.9)

The desired value, d, is the value of a which minimises the error in the response of the whole

circuit. Ideally a = d. It is not usually possible to perfectly correct the outputs by changing

the value on a single connection, however a best-case value can still be found. Connection X

does not necessarily connect to every output. For this reason, we define the set S, containing

the indices of all of the outputs that connection X does connect to:

S={xI1<s<M,bs0} 	 (7.10)

This enables calculation of the desired value d = (d1,. .. , dN) for connection X:

d 	 b 	
(7.11)

SES

101

Local searches and the evolution of linear circuits

Alternatively, the desired correction can be found - this is the value d' which should be added

to a in order to minimise the circuit error.

d 	
1R3,—H3,
- 	 (7.12)

sES 	b8

In most cases, nodes with exactly the values d and d' will not be available, however an ap-

proximation to these values can be found. If no extra nodes are inserted, then d and d' must be

approximated by the value of a node output or circuit input, optionally shifted and negated.

innuts

a3 	 b3

Figure 7.2: The effect of inserting a shift and negation into a connection.

If a shift and a negation is inserted onto a connection, the result is equivalent to inserting a

constant multiplier, as shown in figure 7.2. This can be modelled as follows:

H = (_1)t28baT + C 	 (7.13)

where s is the shift, and t defines whether the connection is negated. Ideally, s and t should be

chosen so that the difference between (1)2a and d is minimised. The connection should be

negated if the sign of the dot product a d is negative. The correct value of the shift s can be

estimated, for example using the following function:

S = [_ log2ff+o.5j 	 (7.14)

102

Local searches and the evolution of linear circuits

This is very useful because it allows the estimation of reasonable values of the shift and negation

properties of a new connection. The overall effect is a dramatic reduction in the size of the

search space, as the EA does not need to search for good shift and negation settings.

7.3 Characterising a design

The section 7.2 made use of two matrices, H and C, as well as vectors a and b. H describes

the response of the whole design, while a, b, and C relate to a particular connection within the

design. All of these values must be calculated before the searching evolutionary operators can

proceed.

The vector a describes the response of a node in terms of the inputs. It can be found by

propagating similar vectors through the design from the inputs. The response vectors at the

inputs are trivial - for example, the first input has a response of (1,0,. . .
()) T by definition.

The response at the output of a node can be computed by scaling and summing the responses

of the node inputs.

The matrix H can be found by computing the responses of all of the circuit outputs. The

response of each output corresponds to a row in H.

The vector b describes how the outputs of a circuit relate to a particular connection. It iscalcu-

lated by transposing [11] the circuit, and then calculating the response of the same connection

in the transposed circuit, in terms of the inputs to the transposed circuit. In other words, the

vectors a and b are exchanged when a linear circuit is transposed, so the technique for finding

a can also be used to find b.

The matrix C is found by rearranging equation 7.2:

C = H_.baT

7.4 Searching evolutionary operators

Recall that the EA in chapter 6 has the following evolutionary operators:

Change connection,

(7.15)

103

Local searches and the evolution of linear circuits

• Insert node,

• Change shift,

• Associativity,

• Delete node.

The first three of these operators were changed so that they perform local searches. Before

performing the local searches, the response of the circuit is found, and the vectors a and b are

found for every node in the chromosome.

The new 'change connection' operation chooses one connection destination at random. This

can either be a node input or a circuit output. The operator then searches through all of the

possible data sources for the connection. For each possibility, the shift and negation properties

are set according to the methods described by in section 7.2 and equation 7.14. For each

possibility, the response of the system can be rapidly calculated using the following equation:

H = (_1)t28baT + C 	 (7.16)

where the vector a' describes the relationship between the chosen data source and the circuit

inputs. The functional error can then be calculated from the circuit response in the usual way.

The connection source that results in the lowest functional error is chosen and stored.

The 'insert node' operator selects a connection at random. It inserts a new node into the con-

nection. The first input to the new node is set to the data source from the old connection, and a

search is performed in order to choose what the second input should connect to. The search is

very similar to the search performed by the 'change connection' operator. The only differences

are that the desired correction d' is used in place of the desired value d when setting the shift

and sign, and that the response of-the circuit is calculated with the following equation:

H = b(a + (_1)t2sa)T + C 	 (7.17)

This is illustrated in figure 7.3.

The shift settings produced by both of the above operators are estimated. The 'change shift'

operator finds the completely optimal shift and negation settings using hiliclimbing. The func-

tional error is a unimodal function of the shift and negation settings, so the new settings are

104

Local searches and the evolution of linear circuits

(—l) ' 2s

Figure 7.3: A model of how the 'insert node' operation changes a design.

I Problem I Correct runs I First correct generation I
DCT-4 20 66

RGB-XYZ 20 155
DHT-8 19 362

DCT-.8 17 484

Table 7.1: Functionality results from the test problems.

guaranteed to be optimal. For each different shift and negation setting, the response of the

circuit is calculated using equation 7.13. Shift values are considered between a minimum (left-

most) and maximum (rightmost) value. If the search reaches the minimum shift value, the

connection is negated and the search continues for increasing shift values.

7.5 Experiments and results

The modified EA was tested on the problem set from chapter 6. The modified EA was found

to require far fewer generations than the basic EA from chapter 6. For this reason, the 4-point

DCT problem and the RGB-to-XYZ problem were allowed to run for 500 generations, while

the 8-point DCT and DHT problems were allowed to run for 2000 generations.

In figure 7.4(b); the functional error for the most functional individual in the population is

105

Local searches and the evolution of linear circuits

le+06

100000

10000

, 1000

100

10

0 	5000 10000 15000 20000 25000 30000 35000 40000 	 0 	 500 	 1000 	 1500 	 2000

Generations 	 Generations

(a) Original system. 	 (b) Modified system.

Figure 7.4: The functional error of the most functional DHT design, by generation.

Problem Lowest area (urn 2) Lowest delay (ns)
Original EA I Searching EA Original EA I Searching EA

DCT-4 17684.7 14639.8 5.12 5.12
RGB-XYZ 53062.4 36739.6 10.88 9.14

DHT-8 43768.5 51931.9 7.62 7.33
DCT-8 122964 80519.6 11.01 8.97

Table 7.2: Lowest-area and lowest-delay design properties for the original and searching EAs.

plotted, for 20 runs of the modified system with the DHT problem. The equivalent graph for

the original system is shown in figure 7.4(a). The modified EA evolves correct designs in far

fewer generations. The modified BA is also successful in more runs, evolving correct designs

in 19 of 20 runs. The original EA only evolved correct designs in 9 of 20 runs. Table 7.1 lists

the functionality results from all of the problems.

Figure 7.5 shows the area and delay properties of the results produced by the original and

modified EAs. The properties of the best designs for each algorithm are also listed in table 7.2.

The results show that the modified BA produces superior solutions in nearly every case. The

original algorithm produced the lowest area DHT designs, but in other cases it was inferior.

In table 7.3, the results previously presented in table 6.3 are extended with the results for the

searching BA. In terms of adder counts, the searching BA performs better than either of the

other systems for all of the problems except the DHT problem. The poor results for the DHT are

perhaps due to the large number of identical coefficients in the 8-point DI-IT response matrix.

The DHT design problem is therefore largely a problem of performing common subexpression

100000

1000C

fi000

100

10

01 -- - 	 0.1

106

Sc 	
I
I

S

Oriqinal
ModIfied

,nnnn 	rrflnn 	coons 	ennon 	100005 120000 140

Area (square microns)

(c) 8-point DFIT.

20

18

16

14

12 a
10

8

6

4

2

Local searches and the evolution of linear circuits

14

12

10

8

6

Orig8ral

0
ModIfied

0 	5000 10000 15000 20000 25000 30000 35000 40000 4500(1

Area (square microns) 	 -

(a) 4-point DCT.

20

18

16

14 	 - 	 4 	•'_&' •I

12

10

2 	 orilnal
Modified

0 	10000 20000 30000 40000 50000 60000 70000 80000

Area (square microns)

(b) RGB to XYZ transform.

16

14

12

10

a

0 	-
6

Oriqinal

0 	
ModIfied

>00 	0 	20000 40000 60000 80000 100000 120000 140000 160000

Area (square microns)

(d) 8-point DCI'.

Figure 7.5: Comparison of result delay and area between the original EA system and the
searching EA system.

Problem 	 Area 	 I Delay
IM I EA I Searching EA I CSD I EA I Searching EA

DCT-4 26 17 14 4 4 4

RGB-XYZ 38 42 26 5 7 6

DHT-8 38 42 48, 4 6 6

DCT-8 130 111 69 5 8 7

Table 7.3: Adder counts for evolved and non-evolved solutions to the test problems.

107

Local searches and the evolution of linear circuits

System Problem I Generations I Time/Run (s) I Time/Generation (ii]

Original EA DCT-4 5000 93.45 18.69
Searching EA DCT-4 500 8.78 17.56
Original EA RGB-XYZ 10000 254.37 25.44

Searching EA RGB-XYZ 500 10.63 21.26
Original EA DHT-8 40000 1857.96 46.45

Searching EA DHT-8 2000 125.03 62.51
Original EA DCT-8 40000 2586.23 64.65

Searching EA DCT-8 2000 181.26 90.63

Table 7.4: Time taken for each experiment.

elimination between adder trees - a problem which the iterative matching algorithm can solve

efficiently, but which is not very amenable to iterative approximation. When delay is measured

by the number of adders on the longest path, the searching EA produces designs which are

faster than the designs from the original BA, but still slower than completely parallel CSD

implementations. The searching BA produces results that are of generally higher quality than

the results from the original BA, despite the fact that the searching EA was allowed fewer

generations.

The evolutionary operators used by the modified system require more computational effort.

This means that the number of generations is not a good indication of computational cost.

Table 7.4 lists the times taken to perform each of the different experiments'. The times were

averaged over 20 runs. Note that the size of the local search grows with the number of nodes in

the chromosome. For both EAs, the evaluation time depends on the complexity of the circuit. It

is clear that the searching BA requires far fewer generations, and that this results in much faster

run times. The local searches can cause the evaluation times to be larger for the searching BA,

but it is only a minor effect. The searching BA produces better results at a lower computational

cost.

7.6 Summary

This chapter has introduced a method for combining BAs with local searches. The hybrid

algorithm is superior to a purely evolutionary system in terms of computational requirements

and also in terms of result quality.

'Figures are for a Sun Blade 1500 workstation. Times are the 'user' times returned by the time command.

108

Local searches and the evolution of linear circuits

The technique introduced in this chapter enables the rapid functional evaluation of large num-

bers of similar designs. This means that computationally cheap local searches can be performed

by the evolutionary operators. The searching EA can evaluate the functionality of many differ -

ent designs whenever an evolutionary operator is applied. The computational cost of a single

evaluation in the local search is very low, due to the fact that many intermediate values are

common to all of the local search evaluations, so can be precomputed. The overall effect is that

the search space can be explored at a lower computational cost, when compared with a purely

evolutionary system.

This chapter introduced a method for rapidly estimating whether shifting or negation should

be applied to a connection. This eliminates a problem with the original BA, where shifts were

randomly chosen from a range of values. Previously, allowing a wide range of shift values led

to poor performance, but restricting the system to a narrow range of possible settings artificially

constrained the search space and could lead to inefficient designs. The modified BA is always

able to discover a shift setting that is close to the optimal value. This reduces the effective size

of the search space.

The technique introduced in this chapter enables the application of evolutionary algorithms to

large problems. This includes problems where evolutionary methods would previously have

been impractical.

109

Chapter 8

Local searches and the evolution of
nonlinear circuits

8.1 Introduction

This chapter investigates the evolutionary design of a class of nonlinear transforms. There

are many different types of nonlinear transform, so this chapter concentrates on polynomial

transforms. A polynomial transform is a nonlinear transform where the response of each output

can be expressed as a polynomial in terms of the inputs. A polynomial transform is equivalent

to a bank of Volterra filters [19].

The EA system introduced in chapter 6 designed multiplierless linear hardware. The EA intro-

duced in this chapter implements nonlinear transforms in a similar fashion, however multipliers

must be used for the generation of the nonlinear terms in the response. Multipliers are only

used for variable-variable multiplications, and never for constant-variable multiplications. This

could be termed a 'mostly multiplierless' implementation style.

This chapter demonstrates that the local searching technique introduced in chapter 7 can be

extended to nonlinear problems.

Linear systems with variable coefficients can be specified by second order polynomials, so the

nonlinear EA - could also be useful for some linear problems. The EA system is most likely to

be useful for linear problems that require both constant and variable coefficients.

8.2 Filter specification

While chapter 2 described a matrix representation for nonlinear systems, it is inefficient for

high-order systems, where the matrices can become large and very sparse. This is a particular

concern for nonlinear systems with multiple inputs.

111

Local searches and the evolution of nonlinear circuits

The linear systems mentioned in earlier chapters can be represented as follows:

y=Hx 	 1991

This can be restated in a polynomial representation:

Yi 	 h1,1 	h1,2 	 ri;1

Y2 	 h2, 1 	h2,2 	•.. h2,N 	
(8.2)

YM 	 hM,1 hM,2 •.. hM,N 	XN

h1 , 1x1 + h1,2x2 + 	+ hl,NXN

- 	 h2,1x1 + h2,2x2 + ... + h2NXN

hM,lxl + hM,2x2 + ... + hM,NXN

Each output is described by a polynomial in terms of the inputs. This representation can easily

be extended to cover polynomial nonlinear systems, through the introduction of higher-order

terms. Only non-zero terms must be included, so a polynomial representation can be much

more compact than a matrix representation.

A circuit can be specified by the following information:

• The number of inputs.

• The number of outputs.

• One polynomial for each output, specifying the output in terms of the inputs.

83 The EA

8.3.1 The chromosome

The chromosome is based upon the chromosome used in chapters 6 and 7. The only difference

is that nodes can now represent multiplications, as well as additions and subtractions. This

is achieved by giving each node an extra attribute, which specifies whether the node should

perform an additive or multiplicative operation. As before, the inputs to a node can be negated,

112

Local searches and the evolution of nonlinear circuits

[Operation I Components usedi

x+y adder
x - y subtracter

- (x + y) adder, negator
xy multiplier

—xy multiplier, negator

Table 8.1: The mapping between graph nodes and hardware components.

resulting in the various different node implementations listed in table 8.1.

8.3.2 Initial population

The initial population is filled with randomly created chromosomes. These chromosomes have

a large number of nodes. Each connection is configured with randomly chosen source, shift and

negation properties. 10% of the nodes are multipliers, and the rest are adders and subtracters.

The connections are initialised in such a way that the initial chromosomes are always acyclic.

The chromosomes in the initial population typically have a large area and a high latency. The

average area and delay of the designs decreases rapidly in the first few generations. The designs

in the initial population are very inefficient, but their responses include many high-order terms.

This is important, as useful new terms are rarely generated later in evolution.

8.3.3 Local searches

The local searches introduced in chapter 7 were only defined for linear systems. This chap-

ter introduces local searches that can be applied to nonlinear systems. The most significant

difference between linear and nonlinear systems is that the input to a nonlinear system can-

not generally be calculated from a given output. This means that there cannot be a nonlinear

equivalent to the 'desired correction' introduced in the previous chapter. As a result, there is no

nonlinear equivalent to the technique for choosing shifts that was introduced for linear systems.

Like the local searches introduced in chapter 7, the local searches introduced in this chapter-re-

duce the computational cost of functionally evaluating a design, by sharing intermediate values

between several evaluations.

The nonlinear response is found at each node. This is a polynomial in terms of the inputs. A

single connection in the design can then be selected at random. This connection will later be

113

Local searches and the evolution of nonlinear circuits

inputs

non—linear 	outputs
circuitry

non—linear
~20circuitry

Figure 8.1: A model of a nonlinear system, where one connection has been selected for modi-
fication.

modified. The connection is then labelled as a, and treated as an unknown. The outputs are

then characterised by polynomials in terms of the inputs and the chosen connection. This is

illustrated in figure 8.1. A particular design can then be evaluated by substituting a with the

response of a node. The computational cost of a 'functional evaluation is therefore the cost of

performing these substitutions, which is lower than the cost of re-computing the response of

the whole design.

Note that figure 8.1 has some similarities with the decomposition of a linear circuit in figure 7.1.

In both cases the model describes the relationships between the inputs, one connection which

is internal to the design, and the outputs. The leftmost nonlinear block in figure 8.1 serves a

similar purpose to the multiplications with the coefficient set a in figure 7.1. The other parts of

figure 7.1 together serve a similar purpose to the nonlinear block in the upper right of figure 8.1.

The differences between the two models are due to the requirement that figure 8.1 is able to

represent nonlinear hardware of any order.

83.4 Functional evaluation

There are three objectives: area, delay and functionality. The functionality objective is com-

posed of two values. The first value is the number of desired terms which are actually present,

and the second value represents the error in the response of the circuit. The first value should be

maximised, and the second value should be minimised. These two values are lexicographically

114

Local searches and the evolution of nonlinear circuits

ordered, with the number of terms taking precedence over the error value. In other words:

(ti, el) >- (t2, e2) if' ti > t2,

(ti, el) >- (t2, e2) if tl = t2, el < e2,

where >- denotes 'is better than'.

As an example of how the functionality score is calculated, consider how the response 3x +

3x1 + 7x2 compares to the specification 6x1x2 + 5x1 + 8x2. First of all there are x1 and x2

terms present in both polynomials, so the first part of the score is 2, denoting that there are

two desired terms. The second value is the sum of squares difference between the terms in the

polynomials. This can be calculated as follows:

wanted: 	6x1x2 + 	0 + 	5x1 + 	8x2

actual: 	0 + 	3x 2 + 	3x1 + 	7x2

terms: 	0 + 	0 + 	1 + 	1 	= 	2

error: 	62 + 	32 + 	22 + 	12 	= 	50

Therefore, the final score is (2, 50).

The reason for this two-tier functional fitness system is that it very strongly rewards designs

that have all of the desired terms. If only the error is used as the functional objective measure,

the resulting designs often omit many of the specified terms.

The nonlinear EA lets the user specify an acceptable level of functional error. Designs with a

functional error below this level are considered to be 'correct'. All correct designs are treated

as if they have the same functional error, so correct designs can only compete in terms of area

and delay.

8.3.5 Hardware modelling

The area and delay objectives are calculated using figures from the same 0.18 1um library that

was used in the previous two chapters. A 16-bit fixed-width implementation' is used, and the

component properties are listed in table 8.2. Note that multipliers are much more expensive

'These component properties are for the default components synthesised by Design Compiler. In fact, the adder
and subtracter have different architectures, which is why the subtracter is faster than the adder.

115

Local searches and the evolution of nonlinear circuits

r Component I Area (um2) I Delay (ns)

adder 1016 2.14
subtracter 1537 1.68
negator 870 0.99

multiplier 32635 7.97

Table 8.2: Component properties.

than other components, in terms of both area and delay.

8.3.6 Evolutionary operators

The nonlinear EA has one extra evolutionary operator, when compared to the EM from chap-

ters 6 and 7. This is the 'insert multiplier' operator. The complete set of operators is as follows:

• Insert multiplier

• Insert adder

• Change connection

• Change shift

• Associativity

• Delete node

The 'delete node' and 'associativity' operators are unchanged from the previous systems. The

other four operators perform local searches.

The 'change connection' operator chooses a node input at random, and searches for the best

possible settings for that input. It tries random source, shift, and negation settings, and se-

lects the combination that results in the most functional design. A fixed number of different

configurations are searched.

The 'insert adder' operator is similar to the 'change connection' operator, however rather than

changing the source of a connection, it inserts an adder on the connection and searches for the

best properties for the adder's second input.

116

Local searches and the evolution of nonlinear circuits

The 'insert multiplier' operator creates a new multiplier, which becomes the source for an

existing connection. A search is then performed to find the best settings for both inputs to the

multiplier. The search considers settings for both multiplier inputs simultaneously. The pair of

input settings that results in the most functional design is selected.

The 'change shift' operator chooses a single connection, and then considers all of the possible

shift values, both negated and un-negated. The settings that result in the most functional design

are chosen.

The 'change connection', 'insert adder' and 'insert multiplier' operators all consider a fixed

number of randomly chosen parameters. An arbitrary search size of 20 was used. Smaller

searches will lead to increased computational costs, while larger searches might reduce the

robustness of the evolutionary search.

8.4 Experiments and results

8.4.1 An example problem - the sine function

The Taylor series approximation of a sine function can be written as follows:

x 5 x 7

This approximation gets increasingly inaccurate as x is moved away from 0, however if x is

limited to the range - x < E , three terms are sufficient for results that are accurate to

within 1%. If five terms are used, the results will have the equivalent of more than 16 bits of

accuracy.

The EA was applied to the following sine approximation:

x3 x5
sin(x) c x - 	+ -

Twenty runs of 100 generations were performed. The acceptable error was set to 0.001. 19 of

the 20 runs produced results that met the functionality constraint. The area and delay properties

of the highest ranked functionally correct designs are plotted in figure 8.2.

The lowest area design uses three multipliers, one adder, one negator and one subtracter. Three

117

Local searches and the evolution of nonlinear circuits

I 	 I 	 I
+

29.5

+ 	 +

29
+ 	 +

28.5

Ca

+ 	 ++
'I)
C

+

	

27.5 	 +

	

27 	 + 	 +

	

26.5 	 + 	 +

	

26 	 + 	 +

	

25.5 	 I 	 +
100500 	101000 	101500 	102000 	102500 	103000

Area (square microns)

Figure 8.2: The properties of evolved sine circuits.

80

60

40

20

0
w

-20

-40

-60

-80
-20000 	-10000 	0 	10000 	20000

Input

Figure 8.3: The response of an evolved sine circuit, and the error when compared to an ideal
sine.

10000

8000

6000

4000

2000
15
CL 	0
0

-2000

-4000

-6000

-8000

-10000

response
error

118

Local searches and the evolution of nonlinear circuits

roblem [Inputs I Outputs I Order [Terms [Max. error

sine 1 1 5 3 0.001

factored 1 2 1 3 7 2099.88

factored 2 2 2 3 14 915.66

random 3 x 3 3 3 2 27 1031.22

random 4 x 4 4 4 2 56 1883.06

Table 8.3: Test probhms.

multipliers are required for a fifth-order response, and at least one adder or subtracter is required

if the response is to have multiple non-zero terms. This suggests that this design has a near-

minimal area. The fastest evolved design has three multipliers and one subtracter on the critical

path, which is the minimal delay for a fifth-order response with multiple non-zero terms:

8.4.2 Application to larger problems

The EA was tested on four more problems. These problems are specified in appendix C. The

properties of these problems are listed in table 8.3. Two of these problems are factorisable; they

can be expressed in the form:

(kixi + k2x2)(k3xi + k4) (k 5x2 + k6)

where k1 . . . k6 are random real numbers between —10 and 10, and xl and x2 are the inputs.

These polynomials were used for the one output and two output cases. These test problems are

called 'factored 1' and 'factored 2'. The system was also tested on larger polynomials, which

are not factorisable. These polynomials include all of the possible first and second-order terms

for a set of inputs. Each term is multiplied by an integer between -100 and 100. These test

problems have been called 'random 3 x 3' and 'random 4 x 4', according to the numbers of

inputs and outputs.

The EA was applied to the above four problems. Twenty runs were performed for each problem.

The EA was allowed to run for 500 generations with the 'factored 1' and 'factored 2' problems,

1000 generations with the 'random 3 x 3' problem, and 2000 generations with the 'random 4 x 4'

problem. For all of the problems, the maximum acceptable error was set to one hundredth of

the sum of the squares of the coefficients.

Figure 8.4 shows the properties of the functionally acceptable non-dominated solutions from

119

Local searches and the evolution of nonlinear circuits

80

70

60

50
CO

'40
0)
0

30

20

10

n

WV
V V
V V

V
V V

x

x
x

.4
x

V

VV 0

•

X 0 0

so
X XX 	0 • 00 	 VAI 	 V

 xz P,~, ; XW
XX %

• 	1 *

	

factored 1 	+

	

factored 2 	x

random 3x3 0

	

I 	 I 	random 4x4

0 	100000 	200000 	300000 	400000 	500000
Area (square microns)

Figure 8.4: The properties of the functional solutions to the test problems.

all of the individual runs with the four problems. Some observations can be made about the

optimality of the evolved circuits. Firstly, the EA can solve the 'factored 1' problem using only

two multipliers, which is the minimum number for a cubic filter. The fastest solutions to both

the 'factored 1' and 'factored 2' problems have two multipliers on the longest path, which is

the minimum for a cubic filter. The lowest area solutions to the 'random 3 x 3' problem use

only three multipliers. The fastest solutions to the 'random 3 x 3' problem have two multipliers

on the longest path, which is not minimal for a quadratic problem, although it could, still be

Pareto optimal. The lowest area solutions to the 'random 4 x 4' problem use seven multipliers.

In comparison, in [56] the number of multipliers for a quadratic filter is defined by the rank of

the second order Volterra kernel, so an implementation of the 'random 4 x 4' problem would

require four multipliers for each output. If the terms are constructed independently and then

summed, the 'random 4 x 4' problem can be implemented using ten multipliers.

8.4.3 Scalability of the current system

The scalability of the EA system is limited by the appearance of 'junk' terms in the circuit

responses. These are terms which are not in the desired response, and which are small enough

that they do not add significant errors to the system response. Junk terms are a problem because

120

Local searches and the evolution of nonlinear circuits

they can greatly increase the computational cost of evaluating a circuit. The number of junk

terms tends to increase as the number of terms in the desired response is increased, and they

introduce a significant overhead to the evaluation of larger designs. As an example of the extent

of this problem, one of the circuits evolved for the 'random 4 x 4 problem in section 8.4.2

has a response that includes 102 junk terms as well as the 56 desired terms. In such cases,

the junk terms account for most of the computational cost of a functional evaluation. There

are two ways of avoiding this problem: either the junk terms can be discouraged, or else the

computational costs of calculating the junk terms can be reduced. The former technique places

extra constraints on the circuit designs - remember that junk terms are often functionally

insignificant. The latter technique was implemented. This was done by estimating terms that

are higher than a pre-determined order. A single term is used to represent all of the terms

of a particular order. The calculation of low-order terms is unaffected. This scheme tends to

overestimate the contribution from the high-order terms. First of all, all of the variables in the

high order terms are replaced with the dummy variable /3, according to the following rule:

- 	 (8.3)

If there are several high order terms with the same order, the terms are merged according to the

following rule:

	

af3 + b3T -4 (lal + IbI)/3 	 (8.4)

For example, the expression:

	

3x + 5x + 2x 1x - 3x + 	 (8.5)

can be expressed as the sum of low and high order terms, where here we define high-order as

being third order or higher:

(3x1 + 5x) + (2xix - 3x + x) 	 (8.6)

The high order terms can then be approximated as follows:

(3x1 +5x)+ (2xix-3x+x) 	(3x1 +5x)+(2/3/3 2 —3j3+/3) (8.7)

= (3x1 +5x)+(2/33 —3/3+/3)

121

Local searches and the evolution of nonlinear circuits

Search size I Generations I Time/run (]
20 500 21.96
1 500 12.94

.1 1000 24.41
1 10000 218.91

Table 8.4: Computational costs for the 'factored 1' problem.

The third order terms can then be merged, giving the final estimate:

(3x1 +5x)+(233 —3j3+8) (3x1 +5x) +(5)33 +f35) 	(8.8)

The EA originally required about one week to perform the 20 runs with the 'random 4 x 4

problem. When the above scheme was used for the representation of terms of third or higher

order, the 20 runs could be performed in fourteen hours 2 . There was not a significant difference

between the two sets of runs in terms of design area and longest-path delay.

8.4.4 Effectiveness of the local searches

If the local searches are working correctly, the EA should produce better results in fewer gen-

erations, when compared to a non-searching EA. The computational cost of a single generation

should be higher with the local searches. The overall computational cost of the searching sys-

tem should be lower, as it should require fewer generations to produce results of a particular

quality.

The runs for the 'factored 1' problem were repeated with the search size set to 1. This ef-

fectively disabled searching for all of the evolutionary operators except for the shift-setting

operator. The shift-setting operator was left unchanged; it still searches through all possible

shift values. Runs of 500 generations were originally performed with the 'factored 1' problem,

however the non-searching EA was allowed 10,000 generations. The properties of the correct

designs are compared in figure 8.5. It can be seen that after 500 generations, the best designs

from the two systems are equivalent, while the non-searching EA shows far more variation

between the runs. When the non-searching system is allowed to run for 10,000 generations,

the results that it produces are of equivalent quality to the results from the searching system

2These times are for a Sun Blade 1500 workstation, and are only approximate. Note however that the speed
increase is substantial.

122

Local searches and the evolution of nonlinear circuits

40

35

30
2

25

20 	 20

15 	 15

60000 	70000 	50000 	90000 	100000 	110000 	120000 	60000 	70000 	50000 	90000 	100000 	110000 	120000

Area (square microns) 	 Area (square morons)

40

35

30
2

25

20 	
1 151

60000 	70000 	80000 	90000 	100000 	110000 	120000

Area (square microns)

Figure 8.5: Circuit properties for the non-searching and searching EAs.

40

35

20,
S
500 genes

,IOOgmsemlronS

- 30
2

25 '5

123

Local searches and the evolution of nonlinear circuits

after 500 generations. This is consistent with the quality of the results being determined by the

number of evaluations, regardless of whether the evaluations are performed by the local search

or by the EA. The times taken to perform the runs 3 are listed in table 8.4. Each generation

is approximately a factor of two faster for the non-searching EA. If the results from the non-

searching EA after 10,000 generations are considered to be equivalent to the results from the

searching EA after 500 generations, then the searching EA is clearly faster.

8.5 Summary

This chapter has introduced a system for the evolutionary design of polynomial transforms.

This was achieved through the extension of the chromosome so that multipliers could be rep-

resented, and through the use of polynomials t6 represent the responses of nodes and circuit

outputs.

The local search technique that was introduced in chapter 7 was adapted for use with nonlin-

ear circuits. The shift-setting heuristic from chapter 7 could not be used, due to the fact that

nonlinear functions are not usually invertible. As in chapter 7, the local searches can save

computational effort by sharing common calculations between multiple evaluations in the local

search.

The generation of circuit responses that include all of the required terms can be problematic.

The EA has two ways of ensuring that the correct terms are present. Firstly, the initial popu-

lation is intentionally populated with 'bloated' individuals, that are likely to generate a large

number of terms. Secondly, when ranking individuals according to functionality, higher prece-

dence is given to individuals that include more of the desired terms, regardless of how well they

perform in terms of functional error.

In contrast to linear circuits, the response of a nonlinear circuit can include an arbitrarily large

amount of information. This is a major problem, as the computational costs of evaluating

a design can explode in some cases. Two solutions to this problem were considered: either

complex designs could be punished, or else the accuracy of the simulation could be reduced

when handling the more complex responses. The latter approach was implemented - the EA

was altered so that higher-order terms could be approximated by a computationally cheaper

model.

3These times are the 'user' times returned by the time command on a Sun Blade 1500 workstation.

124

Chapter 9
Enhancements

9.1 Introduction

This chapter investigates ways in which the work in earlier chapters can be extended. The

following areas are investigated:

• Pipelining and pipeline scheduling.

• Improved delay modelling.

• The use of a reduced parameter space.

• Crossover operators.

In order to investigate these areas, an EA is introduced. This basic EA is later extended in two

ways, in order to investigate the last two of the above points. For the sake of simplicity, the EA

used in this chapter does not incorporate the local searches that were introduced in chapter 7.

9.2 System overview

9.2.1 Representation

The designs are represented by a graph chromosome with a fixed number of nodes. Each node

represents an addition or a subtraction. The genes are summarised in table 9.1. The pipeline

Gene Occurrence Value

Node input source 2 per node any node or input
Node input shift 2 per node integer [-4,4]
Node operation 1 per node + or -
Pipeline stage 1. per node integer > 0

Output source 1 per output any node or input
Output shift 1 per output integer [-4,4]

Table 9.1: Summary of gene types.

125

Enhancements

stage gene, and a related repair operator, are discussed later.

The designs must be acycic. A repair operator which removes cycles is applied after every

evolutionary operation. When a cycle is detected, some of the node inputs are connected to the

design inputs, breaking the cycle.

9.2.2 Evolutionary operators

Initially, only mutation is used. Crossover operators are investigated in section 9.8.

The number of mutations is decided according to a geometric probability distribution, where the

expected number of mutations is supplied by the user. Each mutation affects a single gene. Most

mutations overwrite the gene with a randomly chosen allele. Mutations to the pipeline stage

genes randomly increment or decrement the stage number. Mutations to the 'node operation'

gene convert adders into subtracters and vice versa.

9.2.3 Populations and selection

There are three objectives: area, delay and functionality. The area and delay objectives are cal-

culated at the cell level - how this is done will be described later. The functionality objective

is calculated as follows:

MN

fuiictional error = 10 log 10 	 - 	 (9.1)
i=1 j=1

where H is the response matrix, and R is the desired response matrix. A logarithmic scale was

chosen to aid calculation of the niche count.

The EA is a (+ A) system, with a = A = 100. Elitism was not used. Size-2 tournament

selection was used. Tournaments are either decided by rank or by functionality alone, with a

50% probability of each option. If a tournament is a draw, the individual with the smaller niche,

count wins.

The niche count for each individual is calculated according to the sharing scheme described by

126

Enhancements

T Objective I Scale factor

Functionality 1
Area 1/470.08
Delay 1/1.728

Table 9.2: Niching parameters.

Goldberg [99]. This defines a sharing function s (d):

1—d ifd<1
s(d) 	

{ 0
	otherwise 	

(9.2)

The niche count ni of individual i is defined as follows:

ni =
	 (9.3)

where c1 3 denotes the distance between indi'iiduals i and j. The niche count is calculated in

the normalised objective space. The objectives are scaled according to the factors shown in

table 9.2. The area and delay objectives were scaled so that the niche radius is approximately

equal to the area and delay of an adder.

9.3 Pipeline scheduling

The EA produces pipelined designs. To do that, it evolves a DFG that includes scheduling

information. Pipeline registers are then inserted into the design, according to the scheduling

information. The scheduling information is encoded by a gene in each graph node. This gene

contains the number of the pipeline stage in which the node should be scheduled.

It is possible for a schedule to be invalid - for example if a component makes use of a value

that is computed in a later stage of the pipeline. In general, invalid designs can be avoided

through the use of a repair operator, by explicitly punishing invalid designs, or by ensuring that

invalid designs cannot be created. This EA uses a repair operator. Repair is more reliable than

punishment, but not as complex as ensuring that the evolutionary operators can only produce

valid schedules.

There are two ways in which an invalid schedule can be repaired. They are illustrated in fig-

127

Enhancements

Stage 0 	a 	Stage 1

(a)
invalid

schedule

ii
reschedule

later E14_________ +

reschedule
earlier

Figure 9.1: Two ways of repairing an invalid schedule.

ure 9.1. Nodes which are scheduled too early can be moved later (figure 9.1(b)), or alternatively

nodes Which are scheduled too late can be moved earlier (figure 9.1(c)). Using one of these

repair operators exclusively will tend to bias the search towards either ALAP or ASAP sched-

ules. For this reason one of the two repair operators is selected'at random whenever a repair

operation is needed.

9.4 Improved delay modelling

In chapter 6, the delay model was found to be very inaccurate. The inaccuracy seemed to be

the result of two different factors: the lack of a wire-load model, and the fact that delays were

calculated on a per-connection basis, rather that a per-wire basis. This chapter introduces an

improved delay model, which eliminates both of those limitations. The new model calculates

delays on a per-wire basis, incorporating wire-load delays that are independently calculated for

each wire.

The wire-load model is based upon component properties for a 0.13 4um technology library.

When calculating delays, the fanout is first calculated for each wire in the design. The fanout is

IM

Enhancements

0.5

0.4

U)
C

0.3
Co
a)
a

0.1

0
0

Fanout

Figure 9.2: RC delays according tofanout.

Cell From To Delay (ns)

NOT input output 0.032
full adder inputs carry output 0.108
full adder inputs sum output 0.167
register clock edge Q output 0.157

Table 9.3: Cell delays.

used to find resistance and capacitance figures from library-specific tables of wire information.

The resistance and capacitance are then used to find an RC delay for each individual wire in the

design. The wire-load delay is estimated as:

delay Rw(Cw +FCL) 	 (9.4)

for wire resistance Rw, wire capacitance Cw and fanout F. The standard load capacitance,

CL, is taken from the technology library documentation. The delays are plotted in figure 9.2.

The cell delays are based upon simple estimates of the the properties of 1-bit standard cells.

The designs are based upon three different standard cells: full adders, NOT gates, and registers.

129

Enhancements

Subtractions are performed using the identity:

a — b=a+(-'b)-i-1 	 (9.5)

where '—" represents a bitwise NOT operation. Ripple adders are used. All of the standard cells

have a lx drive strength. The cell delays are summarised in table 9.3.

The new delay model is more computationally expensive than the systems used in previous

chapters. When the program was profiled, the delay modelling was found to take approximately

47% of the total execution time. This is not excessive.

9.5 Experimental methodology

Evolutionary algorithms are stochastic, and the quality of the results can vary drastically be-

tween individual runs. This makes comparisons between EAs difficult. This problem is even

more acute for multiobjective EAs, where multiple trade-offs can exist. Reliable comparisons

require multiple EA runs.

objective 	: 	 _._._,_ 	objective
A 	 : 	 A

a---,

I1

-

U

100%

75%
50%

25%

(a) 	 objective B 	(b) 	 objective B

Figure 9.3: Calculation of attainment surfaces: the four non-dominated surfaces in (a) are
converted to four attainment surfaces in (b).

Attainment surfaces [110,201] are a useful tool for the evaluation and comparison of multi-

objective EAs. Attainment surfaces are found by combining the non-dominated surfaces from

multiple EA runs. An attainment surface delineates the area of the objective space that is dom-

inated by a certain proportion of the runs. For example, the 50% attainment surface marks the

edge of the region where each point is dominated by 50% of the runs. This is illustrated in

figure 9.3. Attainment surfaces are a median-like measure of performance, so they are only

130

Enhancements

reliable in areas of the objective space with a high density of non-dominated surfaces. They act

asr an estimate of the likelihood that a particular algorithm can produce solutions with the given

objective values. Attainment surfaces can be used together with statistical techniques such as

the Mann-Whitney U test, to compare the performance of multiobjective algorithms [201]. -

This chapter includes comparisons between pairs of algorithms. These comparisons can be

performed independently for each point in the objective space. The result of an individual

comparison either states that one algorithm is superior, or else states that no conclusion can be

reached.

There is a probability, p, that at least one result from a particular algorithm dominates a particu-

lar point in the objective space. If the algorithm is executed n times, the number of dominating

runs can be stated as f)n, where j5 is the observed likelihood that a run dominates the chosen

point in the objective space. Now consider two algorithms, A and B, with probabilities PA and

PB. Algorithm A could be said to be more reliable, at least with respect to the chosen point in

the objective space, if PA - PB > 0. Over many observations, the observed value 73A - PB will

tend towards PA - PB. This observed value will have a binomial distribution. The binomial

distribution involves large factorials, so a normal approximation can be used instead [2021. The

normal approximation has the following parameters:

= PAPB 	 (9.6)

a
= /J3A(1- PA) ±PB(1-PB) 	 (9.7)

This approximation breaks down with extreme values, so it is used subject to the following

conditions:
5 	TtPA :~: Th —5, 	

(9.8)
5 < n15B < fl —5

The null hypothesis, PA - PB < 0, therefore has the following estimated likelihood, derived

from the above normal distribution:

P(null) = (i ± erf a/)
	

(9.9)

If the conditions are met, PA -PB > 0, and P(null) <0.05, algorithm A is declared superior for

these particular objective values. This statistical test is repeated for other points in the objective

space, resulting in a plot that shows the areas of the objective space where each algorithm is

131

Enhancements

4

3

2
5000

7

6

5

a

3

2

0

•0

0* + 	+ +
+ 	+

+

0_ t$*tb +

++ 0 	0t XXX
0 	

+ ++ * is 0 	 x 1+hi XX
10000 	15000 	20 	25000 	30000 	35000 	40000 	45000

Area (square microns)

depth 1 0 	 depth 3 0 	 depthS
depth 2 + 	 depth 4 X 	 depth 6

(a) RGB to XYZ.

t)t 0

	

+ 	a

	

+ 	+ 	*

	

• J * 	Dt+

• 	+40++ 	
X 0

- 13

• +

	

• * t$9+ 	 tt a

51010 10000 15000 20000 25000 300(5) 3SO00 40000 45000 50000 55000
Area (square microns)

depth 1 0 	 drpth 3 0 	de h5 a 	depth 9 0
dnpth2 * 	depth 4 X 	 depth 6 0

(b) 4-point DCT

$ 0

00

a

0
00

0

Figure 9.4: Solution properties according to pipeline depth.

superior, as well as the areas where no conclusion can be reached.

9.6 Initial experiments

The EA was tested on two problems: the conversion from an RGB to an XYZ colour represen-

tation, and the 4-point DCT. Fixed-point coefficients were used in both cases, and the matrices

are provided in appendix B. The acceptable functional error was set at -40 for the RGB-to-

XYZ problem, and -31.169 for the 4-point DCT problem. This latter error value was chosen

because it is equivalent to the acceptable error value used when evolving fixed-point 4-point

DCT designs in chapter 6. The RGB-to-XYZ problem was allowed 10,000 generations, while

the 4-point DCT problem was allowed 20,000 generations. One hundred runs were performed

with each problem.

Figure 9.4 shows the properties of the functionally acceptable solutions to the two test problems.

In both cases, the best solutions have pipeliuie depths of between 1 and 4 stages. The DCT

results are slightly surprising, as the entire non-dominated surface was produced by a single

run, run 23. The results produced by this run have been circled in figure 9.4(b). Run 23 was

significantly better than the other runs, but it did not evolve any unpipelined designs. This

explains why the lowest area single-stage design is dominated by a 2-stage design.

In theory, the minimum delay designs should have pipeline registers between every compu-

tational component. This would result in a delay of just less than 2ns, using this technology

132

Enhancements

140000

120000

:1 00000

000

40000

20000

0'

12

10

8

'2

S

20000 40000 80000 80000 100000 120000 140000

Design Compiler area model,

(a) Area.

2 	 4 	 6 	 8 	 10 	12

Design Compiler delay model

(b) Delay.

Figure 9.5: The hardware models compared with Design Compiler.

model. In practice, such designs are unlikely to evolve using the current scheme, as every com-

ponent would be on the critical path, and nearly every change to the chromosome would lead

to an increase in critical path delay. Nevertheless, the fastest designs do approach the minimum

delay.

This EA performs worse than the EA introduced in chapter 6, both in terms of the number of

generations required, and in terms of the properties of the designs. This is evident in the results

from the 4-point DCT problem, which can be compared with the fixed-point DCT designs

evolved in chapter 6. The EA introduced in this chapter managed to create DCT designs that

require 15 additions in run 23, and 22 additions in other runs. The older system repeatedly

evolved smaller designs, including designs that use only 13 adders. This comparison is biased

towards the new EA, as the new EA was allowed 100 runs of 20,000 generations rather than

20 runs of 5000 generations. The main difference between the two systems is the evolutionary

operators. The old system uses a variety of complex operators, which were designed to be non-

destructive. The new system uses evolutionary operators which simply change a single gene.

This provides some justification for the use of the heuristic evolutionary operators in chapter 6.

The area and delay models are compared with Design Compiler's models in figure 9.5. This

comparison was performed using a selection of partially evolved 4-point DCT designs. The two

area models give identical results in all cases. The two delay models show a strong correlation.

The EA delay model consistently underestimates the delay by about one quarter. The delay

model could possibly be improved by altering some of the model parameters, although this

possibility was not investigated. The new delay model is significantly more accurate than the

133

Enhancements

Gene]_Occurrence L_Value
Node input source 2 per node any node or input
Relative input shift 1 per node integer [-4,4]

Node operation 1 per node + or -
Pipeline stage 1 per node integer > 0
Output source 1 per output any node or input

Table 9.4: Summary of gene types for the reduced encoding.

model used in chapter 6, which was compared with Design Compiler in figure 6.7(b).

9.7 A reduced parameter space

9.7.1 Changes to the chromosome

This section considers a more compact chromosome encoding for the EA. This encoding re-

duces the number of genes in the chromosome, while retaining the ability to represent most

useful designs.

The new chromosome encoding replaces the two genes used to represent shifts with a single

gene. This gene represents the relative shift between the two inputs. A second shift is applied

at the output of each node, however it is not encoded in the chromosome. Instead, the response

at each node output is normalised. The output of a node with un-normalised response vector a

is shifted right by s places, where s is defined as:

S=

1092 	 (9.10)

This ensures that the response of the node is scaled as follows:

0.5< 2 	au 1 <1

The new encoding also omits the shifts at the outputs. Instead, the objective function must find

the shift that minimises the difference between the actual and desired responses at an output.

Consider an output with actual and desired response vectors a and d. The sum of squares error

134

Enhancements

between these two quantities can be expressed like this:

E=(a—dj)2 	 (9.12)

If the output can be shifted or negated, this becomes:

E = 	- d2) 2 	 (9.13)

where the scale factor k represents the shifting and negation. The ideal value of k, k', can be

derived from equation 9.13: 	
EN = i.6 	 (9.14)
>1i=O a2

Note that k' e R, whereas k must be expressible as a shift and an optional negation. Therefore,

k can be defined like so:

k = p2 	 (9.15)

for an n-bit shift, and a sign p e {-1, 1}. The values of n and p can now be fixed:

1 —1 ifk'<O,
P
	 (9.16)

1 	otherwise.

	

n= 0.5+1092(k')j 	 (9.17)

The above procedure assumed that the user is indifferent to the sign of the output responses.

If it is important that the outputs have the correct sign, then the sign can be fixed as p = 1.

The EA introduced in this chapter provides both options, but by default assumes that the sign

is important and p = 1. The genes in the new encoding are summarised in table 9.4.

9.7.2 Experiments

One hundred runs were performed with each system and both test problems. The results are

compared in figure 9.6, using the confidence technique described in section 9.5. The original

encoding was often found to be superior for the RGB-to-XYZ problem, while the reduced en-

coding was found to be superior in many cases with the 4-point DCT problem. The attainment

surfaces plotted in figure 9.7 also suggest that the reduced encoding is slightly better for 4-point

135

8 8

x1O

(a) RGB to XYZ.

.r.eWe) 	 xIO

(b) 4-point DCI'.

Enhancements

Figure 9.6: Performance comparisons between the original EA (light grey) and the reduced-
parameter EA (dark grey).

7

6.5

6

5.5

5
2

4.5

4

3.5

3

2.5

2
10000 15000 - 	20000 	25000 	30000 	35000

Area (square ma—)

(a) RGB to XYZ.

6.5

6

5.5

85

4.5

4

3.5

2.5
15000 50000 500005000050000 40000 45000 50000 50000

Axea (square mia)

(b) 4-point DCL

Figure 9.7: Attainment surfaces for the original and reduced-parameter EAs.

136

Enhancements

DCT problem, but slightly worse for the RGB-to-XYZ problem.

9.7.3 Analysis

2

1.8

1.6

a)
C,)
C o 1.4
0.
(I)
a)

1.2
C,)

as
1

0
z

0.8

0.6

0.4

n(x)
n(1 .2X)

n(1.2)+n(x)

1 	1.5 	2 	2.5 	3 	3.5 	4 	4.5 	5

Un-normalised response

Figure 9.8: The relationship between normalised and un-normalised responses.

The use of normalised intermediate responses can cause discontinuities to be introduced into

the search space. For example, consider designs with only a single input. The response of a

node can be characterised by a single value a = (ai). The normalised response can be stated

as n(ai), where n(.) is a normalisation function derived from equation 9.10:

n(al) = _ I1092ail1 	 (9.18)

This is a 'sawtooth' function, as shown in figure 9.8. The function is discontinuous where

the shift changes. In other words, a small change in the un-normalised response of a node

can lead to a large change in the normalised node response. Where a response depends upon

several nodes, these discontinuities can accumulate. This is shown in figure 9.8, where the

combination of two normalisation functions results in a double sawtooth function. In other

words, a small change to the response of a node leads to an unpredictable change in the response

of the whole circuit. Recall that the original EA has a linear relationship between the response

137

Iij2!J

Enhancements

of a node and the response of the entire circuit. The reduced parameter system could therefore

be characterised as having a more compact encoding, but a more complex relationship between

the genotype and the functionality objective.

9.8 Neighbour crossover

9.8.1 The neighbour crossover algorithm

'0
Key

Q Parent A
• Parent B 	 \ • o Undetermined

(a) There is a neighbourhood for each parent.
Node 3 could be assigned to either parent.
Node 6 could be assigned to parent A.

(b) The neighbourhood for parent A is
determined by the parent A edges.

(d) If node 3 is assigned to parent A, the
parent A neighbourhood is expanded.

(c) The neighbourhood for parent B is
determined by the parent B edges.

(e) If node 3 is assigned to parent A, the
parent B neighbourhood is reduced.

Figure 9.9: One step of the neighbour crossover region growing process.

A crossover operator was introduced in chapter 4. In figure 4.13 it was shown that there is not a

138

Enhancements

clear benefit from that crossover operator. Chapters 6, 7 and 8 use a graph representation for the

chromosome, and do not use a crossover operator. This was partly due to the poor results in the

earlier BA system, but it was also partly due to the difficulty of implementing a non-destructive

graph crossover operator. In this section, a non-destructive crossover operator, the neighbour

crossover operator, is introduced.

In a graph, locality is defined by the edges. If two nodes share an edge, then those two nodes

are close to each other. Nodes with a higher degree of separation are further apart, while

nodes that share multiple edges are closer together. The neighbour crossover algorithm is based

upon the principle that if two nodes are local to each other, it should be unlikely that they are

separated. Conversely, if two nodes are only distantly connected, they should be more likely to

be separated by crossover.

The nodes in the chromosome have an index, and this is used to define which nodes correspond

in the two parents. A node with index i in the child will therefore be a copy of the node with

index i in one of the parents. Note that the index defines a correspondence between nodes in

different chromosomes, but it is not used to define a linear ordering for the nodes in a single

chromosome. The purpose of the crossover operator is to determine which nodes come from

which parent.

A node in the child can be marked as being derived from one or other parent, or else it can

be marked as 'undetermined'. When the algorithm starts, all nodes are marked as undeter-

mined, and the algorithm finishes when all nodes have been assigned a parent. Two nodes are

neighbours if there is an edge between them.

The neighbour crossover algorithm is as follows:

• Mark all nodes as undetermined.

• Define two neighbour lists, which are initially empty. One neighbour list corresponds to

each parent.

• While there are undetermined nodes:

- Choose a parent P.

- If the neighbour list Np is empty, insert a randomly chosen undetermined node into

Np.

139

Enhancements

- Pick a random node n E Np, assign it to parent P, and remove it from both neigh-

bour lists.

- Insert all of the undetermined neighbours of n into Np; if there are multiple edges

between n and an undetermined node n', insert n' multiple times. This step uses

the edges from parent P to determine the neighbours.

• Copy node information from the parents according to the how the nodes are labelled.

• Copy edges from the parents according to how the destination nodes are labelled.

Neighbours are determined using the edges from one or other parent. In other words, the

neighbours for a node n, assigned to parent P, are determined according to the, edges from

parent P. Figure 9.9 illustrates one step of this algorithm.

9.8.2 Experiments

The neighbour crossover algorithm was compared with the following alternative schemes:

• no crossover,

• 2-point crossover,

• uniform crossover.

All of the crossover operators operate at the node level; they always copy all of the genes in

a node from the same parent. The crossover rate was set to 100%. A mutation rate of 1 was

used when crossover was available, while a mutation rate of 2 was used when crossover was

disabled.

In figure 9.10, neighbour crossover is compared with the other schemes, using both test prob-

lems. Neighbour crossover is superior over large parts of the objective space in all but one case.

In figure 9.10(a), it was found that disabling crossover often gives better results for the RGB-to-

XYZ problem, although neighbour crossover is superior for some of the most important points

closer to the origin.

In figure 9.11, the 5% and 10% attainment surfaces are shown for the two problems. The

neighbour crossover attainment surfaces dominate the other surfaces in all cases, with the most

pronounced differences evident with the 4-point DCT problem.

140

Enhancements

I

—41-11 	 aio

(b) No crossover, 4-point DC-

(a) No crossover, RGB to XYZ. r--W"

I

I
I

(c) Uniform crossover, RGB to XYZ.

aio•

(d) Uniform crossover, 4-point DCI'.

a;
, 	 1

o.s 	 i 	 is 	 2 	 as 	 a

(e) 2-point crossover, RGB to XYZ.

iO

(I) 2-point crossover, 4-point DC'!'.

Figure 9.10: Neighbour crossover (light grey) compared to other techniques (dark grey).

141

Enhancements

5.5

5

4.5

0
3.5

3

2.5

2

7

6.5

6

5.5

5

4.5

4

3.5

3

2.5

no crossover
neighbour crossover

2-point crossover
uniform crossover

6

5.5

5

4.5

3.5

3

7-s

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Area (square micro(rs(

(a) RGB tp XYZ, 5%.

iw crossover
neighbour crossover --

2-point crossover
uniform crossover

10000 	15000 	20000 	25000 	30000 	35000 	40000

Area (square mfooins)

(c) 4-point DCT, 5%.

5000 	10000 	15000 	20000 	25000 	30000

Area (square microns(

(b) RGB to XYZ, 10%.

6
rio Crossover

neighbour crossover
1 	 2-point CrOssove............

unrfonn crossover

4.5

3.5

2.5
10000 	15000 20000 	25000 30000 35000 40000 45000

Area (square mlcrons(

(d) 4-point DCT, 10%.

Figure 9.11: 5% and 10% attainment surfaces, with various crossover operators.

142

Enhancements

9.9 Summary

This chapter has investigated several improvements over the EAs introduced in earlier chapters.

These improvements include:

• pipelining,

• improved delay modelling,

• a more compact chromosome encoding,

a non-destructive crossover operator.

The EA introduced in this chapter did not make use of local searches, and the evolutionary

operators were designed for simplicity rather than constructiveness. This meant that the EA

was not as effective as the EAs in previous chapters. In particular, it was shown to be worse

than the EA introduced in chapter 6. This provides some justification for the design decisions

in earlier chapters.

The introduction of pipelining caused a clear conflict between the area and longest-path delay

objectives. The EA is capable of evolving designs with relatively few pipeline stages. It did

not evolve maximally pipelined designs. Scheduling becomes more complex as the number of

stages is increased, so it is likely that the lack of highly pipelined designs is due to limitations of

the current scheduling technique. The delay for the pipelined designs was close to the minimum

possible delay, the delay of an adder and a register, so extra pipelining would only have a minor

effect.

In chapter 6, two major deficiencies were identified in the delay model. These were the omis-

sion of wire-load modelling, and the fact that delays were modelled on per-connection basis,

rather than a per-wire basis. This chapter introduces a new wire model, that addresses both of

these deficiencies. The new wire model was found to more closely agree with the Design Com-

piler delay model. The new model is not perfect; it tends to underestimate delays by more than

25%. It is possible that these inaccuracies could be reduced through the use of more accurate

parameter settings. While the new delay model is more computationally expensive, it is not

excessively so.

A reduced parameter chromosome encoding was investigated. This reduces the number of

genes required to represent shifts in the chromosome by making use of the automatic normali-

143

Enhancements

sation of shifts. This resulted in a reduced variable space, without significantly impacting upon

the representation of useful designs. The net effect is to increase the probability that a particular

chromosome is useful. This reduction in the size of the chromosome possibly comes at the cost

of an increase in the number of discontinuities in the objective landscape. When tested, the re-

duced encoding was found to be inferior to the original scheme for the RGB-to-XYZ problem,

but superior for the more difficult 4-point DCT problem.

The neighbour crossover operator was introduced. This is a non-destructive graph crossover

operator. It is designed so that the parent chromosomes are spliced together at relatively few

points. This is achieved by taking account of the degree of separation between nodes when

performing crossover. The neighbour crossover operator ensures that nodes with a high degree

of connectedness are likely to be taken from the same parent. It was shown that the neighbour

crossover operator increases the probability that good quality results are evolved, in comparison

with other crossover operators or no crossover.

144

Chapter 10

Conclusions

10.1 Introduction

This chapter concludes this thesis. In section 10.2, the contents of individual chapters are

reviewed. Section 10.3 lists some specific conclusions that can be drawn from the results in

this thesis. In section 10.4, some possible directions for future work are listed. Finally, in

section 10.5 the contents of the thesis are summarised, with reference to the thesis statement.

10.2 Review of thesis contents

Chapters 2 and 3 provided a review of the existing literature which is relevant to this thesis;

In chapter 4, an BA for the evolution of multiplierless FIR filters was introduced. This EA

takes a frequency domain specification as input, and produces a set of structural filter designs

as output. The BA has three objectives: functionality, low silicon area, and low longest-path

latency. The area and delay objectives are based on figures taken from a real technology library.

The EA used several 'heuristic' evolutionary operators. These evolutionary operators treat the

chromosome as a graph, and perform operations which are likely to lead to improvements to

the design. The BA was tested on several different problems. Crossover was found to be of

no benefit to the EA. The evolved filters were found to be competitive with filters produced by

other filter design systems.

In chapter 5, the evolution of multistate sequential hardware was investigated. The BA intro-

duced in chapter 4 was extended so that it could generate filters with multiplication blocks that

operate over two cycles. These filters are slower but have lower area requirements. The EA was

able to perform scheduling, allocation and binding in parallel with circuit design, so hardware

costs could influence the schedule. While modest area savings were achieved, the savings were

limited by two factors. Firstly, the multiplication block is only part of the filter area, and the

accumulation block generally consumes most of the area. Secondly, the area cost of an adder is

/

145

Conclusions

not much higher than the areas of registers and multiplexors, so the overheads incurred by mul-

tistate operation cancel out a significant part of the savings. Multiplication blocks that operate

over more than two states were also considered. When operating over more than two states,

finding the most efficient topology for the registers and multiplexors becomes a hard problem.

The techniques introduced in this chapter could be applied to other problems, and in particular

with components that have a high area cost.

Chapters 6, 7 and 8 all dealt with similar EAs. Chapter 6 introduced an EA for the evolution

of multiplierless linear transforms. The transforms are specified by a coefficient matrix, and

the resulting circuit designs are constructed from adders, subtracters, negators and shifts. As

before, the designs were evolved with the objectives of functionality, low area and low longest-

path latency. The EA made use of a graph chromosome, which was altered by a set of heuristic

mutation operators. Crossover was not used. It was found that the EA could compete with the

Iterative Matching algorithm [36] in terms of component counts. The fastest evolved designs

were found to be slower than CSD transform implementations, although the evolved designs

are still more area-efficient than the CSD results. It was found that the EA is more successful

if it is allowed to use right-shifts in the evolved designs.

The EA in chapter 6 could generate three different types of hardware: bit-serial, fixed-width

bit-parallel, and variable-width bit-parallel. The accuracy of the area and delay models was

investigated - the area model was found to be acceptable, however the delay model was found

to be inaccurate. The delay model inaccuracies were probably caused by two factors: the lack

of a wire-load model, and the fact that delays were modelled at a component level rather than

at the level of individual wires.

In chapter 7, the EA from chapter 6 was extended through the introduction of local searches.

The local searches are based on a linear decomposition of the design, and implemented within

the evolutionary operators. The local searches are capable of rapidly evaluating the function-

ality of large numbers of mutated designs. This is achieved through the reuse of intermediate

values during the local search. A second improvement in search efficiency is achieved through

the automatic calculation of near-optimal shift settings during the search. It was shown that

the local searches greatly increase the efficiency of the EA. This means that that the EA can be

applied to problems for which evolutionary design would otherwise be infeasible.

In chapter 8, an EA for the design of polynomial transform circuits is introduced. This EA is

146

Conclusions

similar to the EM introduced in chapters 6 and 7, however it can produce designs that contain

multipliers and have a nonlinear response to the input signals. The designs are specified by

a set of polynomials, where each. polynomial describes an output response in terms of the

inputs. This EA uses a variation of the local searches that were introduced in chapter 7. The

local searches used in chapter 8 were not as powerful as the searches used in chapter 7, as

there is no way to efficiently calculate good shift settings in a nonlinear design. It was found

that the EA would often fail to generate many of the terms that. are in the specified response.

Two solutions were devised. Firstly, the initial population was created in a way that is likely to

result in responses with many terms. Secondly, functionality was scored in a way that explicitly

rewarded designs that include more of the desired response terms. Extra terms were also found

to be a problem, as they could drastically slow down the evaluation of functionality. This

problem could be solved with a penalty function, or by using estimated responses rather than

exact responses. The latter of these options was implemented, and was found to be effective.

Chapter 9 introduced an EA which can produce designs for pipelined linear transforms. It

combines pipeline scheduling with the evolution of functionality, so that both of these tasks

can take account of the objectives. The EA was capable of producing combinatorial designs

and designs with relatively few pipeline stages. It was not capable of producing maximally

pipelined designs. Nevertheless, the fastest evolved designs were close to the minimum delay.

Chapter 9 introduced a new delay model, without deficiencies that were identified in chapter 6.

The new delay, model was found to be better than the earlier models, although it could possibly

benefit from more accurate parameter settings. Chapter 9 investigated two ways in which the

performance of the EA could be improved: through the use of a more compact chromosome

encoding scheme, and with a novel crossover operator. The new encoding scheme was based on

The use of normalised shifts. It resulted in an objective landscape which was smaller but more

complex, and produced improved results some of the time. The, neighbour crossover operator

is a graph crossover operator which was designed to be largely non-destructive. In most tests

the neighbour crossover was found to be superior to other crossover operators, or no crossover

operator. The neighbour crossover operator could be applied to other problems.

103 Specific findings

This section presents a variety of conclusions, which stem from the research in this thesis.

147

Conclusions

While most research into evolutionary hardware design has focussed on gate-level circuits, EAs

can also be used for the creation of designs based upon high-level arithmetic components. This

thesis demonstrated the application of EAs to several high-level synthesis problems.

Graph chromosomes were found to be a useful and very intuitive representation for digital

circuits. The use of a graph chromosome representation greatly simplifies the mapping between

the genotype and the phenotype. The main drawback for graph chromosomes is that they

require many complicated evolutionary operators in order to properly search the design space.

Most evolutionary operators were found to be destructive in a majority of cases. In other words,

most changes to a semi-functional circuit are detrimental to functionality. Both crossover and

mutation operators were found to be destructive. This observation led to the development of

evolutionary operators that are designed to be less damaging to the chromosome; namely the

heuristic mutation operators and the neighbour crossover operator.

There are many improvements to a circuit design, which although obvious to a human de-

signer, are unlikely to be discovered by an evolutionary algorithm. For example, some of the

circuits examined in chapter 4 could be trivially improved by strength reduction and common

subexpression elimination operations. An evolutionary algorithm can not discover these im-

provements because they involve the simultaneous modification of several genes. This problem

can be overcome through the development of a rich set of evolutionary operators, which can

explicitly perform such improvements.

The local searches which were described in chapters 7 and 8 produced major increases in the

performance of the EA. The use of local searches combined with an EA results in a hybrid

algorithm which combines the power and robustness of an BA with the speed of hiliclimbing.

Evolutionary algorithms can perform scheduling in parallel with other circuit design tasks. This

approach is in contrast to conventional methods, which typically treat scheduling as one step

in the design process. By iteratively performing scheduling in parallel with other design tasks,

the BA ensures that all aspects of the design can be directly influenced by the objectives.

It is very useful if the response of a design can be completely characterised. This not only

aids evaluation of the functionality objective, but also ensures that the user can be sure of

the response of the design to all possible inputs. The response of linear digital circuits is

compact and easy to calculate. For most classes of nonlinear digital circuits, the complexity of

148

Conclusions

the response is likely to grow as the number of components is increased. This can make the

calculation of exact responses impractical for nonlinear circuits, as was found in chapter 8. If

this happens, approximate responses can be used instead.

There is often a large amount of variation in solution quality between different EA runs. This

variation can be reduced by combining the results from multiple runs. Evolutionary algorithms

do not guarantee a worst-case performance. If such a guarantee is required, a non-stochastic

method could be used either to seed the EA population, or else to provide back-up solutions in

the case that the EA fails to produce useful results.

Synthesis problems often have more than one objective. Multiobjective evolutionary algorithms

are a powerful technique for the discovery of multiple non-dominated solutions to multiobjec-

tive problems.

Accurate hardware modelling is useful, because it lets the EA correctly weigh up the costs

of different designs. This thesis has demonstrated the use of accurate models of the area and

longest-path delay of a design. While accuracy leads to some extra computational costs, the

models used in this thesis were still fast enough to be used as objectives, even when hundreds

of thousands of evaluations were required.

10.4 Directions for further research

• This thesis has considered the EA in isolation from conventional design tools, however

it is likely that a single project could make use of both conventional and evolutionary

synthesis techniques. The combination and integration of these two distinct synthesis

techniques could be investigated.

• A power objective would be very useful. This would involve the development of a fast

approximate power model. The power objective is likely to correlate with the area objec-

tive, so the area objective could possibly be removed.

• The decomposition of large designs could be investigated. Large design specifications

could be divided into module specifications, which could then be synthesised by an EA.

• Hierarchy is commonly used to simplify design tasks, and there have been some investi-

gations into the automatic determination of modular structures [106]. Could hierarchical

149

Conclusions

digital designs be evolved for high-level digital design problems, and is there any benefit

over non-hierarchical techniques?

• If multiplexors were to be introduced as a component, the evolved designs could have a

degree of programmability. This could either be used for the implementation of multiple

functions (for example, filters which can switch between two different responses), or else

to increase robustness to component failures.

10.5 Summary

The thesis statement introduced in chapter 1 is as follows:

To investigate ways in which multiobjective evolutionary algorithms can be
used for high-level digital circuit design, and to find ways in which the effi-
ciency and usefulness of these EAs can be improved.

This can be divided into three main areas:

To demonstrate the use of EAs for the synthesis of several important classes of hardware.

To demonstrate multiobjective evolution, where the objectives are based upon accurate

hardware models.

To increase the performance and capabilities of evolutionary algorithms for these prob-

lems, and in general.

These aims have been approached as follows.

Regarding the first aim, EAs have been developed for the creation of FIR filters, linear transform

circuits and polynomial transform circuits. The evolution of multistate sequential designs and

the evolution of pipelined designs were also investigated. These classes of design are used in a

wide variety of real-world applications.

Regarding the second aim, the EAs all used the objectives of functionality, low area, and low

longest-path delay. The area and delay objectives were calculated using accurate hardware

models, using figures derived from real technology libraries. Crucially, the computational costs

150

Conclusions

of hardware modelling are low enough that this approach is viable. The use of accurate hard-

ware models directed the search towards the most efficient hardware designs. Where there is a

conflict between the objectives[the use of a multiobjective EA enables the discovery of multiple

trade-off solutions, from which the user can select the most appropriate design for a particular

situation.

Regarding the final aim, several different techniques were developed. These include the use of

graph encodings together with heuristic operators, the local searches introduced in chapters 7

and 8, the reduced parameter-space encoding from chapter 9, and the neighbour crossover

operator. These techniques led to substantial increases in the, performance and capabilities

of the EM. These techniques could potentially be adapted for application to other evolutionary

design problems.

Evolutionary algorithms were found to be a powerful method for the discovery of efficient

circuit designs. Their major strengths are robustness in the face of highly complex circuit design

problems, and the ability to work with accurate hardware models and multiple objectives. This

thesis has investigated how evolutionary algorithms can be applied to the creation of useful

digital circuit designs, and how the performance of evolutionary algorithms can be improved.

Hopefully, this research will lead to the development and use of commercial digital circuit

synthesis tools which incorporate evolutionary methods.

151

Appendix A
Publications

A.! Refereed publications

Robert Thomson and Tughrul Arslan, "An Evolutionary Algorithm for the Multi-objective Op-
timisation of VLSI Primitive Operator Filters", in Proceedings of the 2002 Congress on Evolu-

tionary Computation, pages 37-42, May 2002.

Robert Thomson and Tughrul Arsian, "Evolvable Hardware for the Generation of Sequential
Filter Circuits", in Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware,

pages 17-25, July 2002.

Robert Thomson and Tughrul Arslan, "The Evolutionary Design and Synthesis of Non-Linear

Digital VLSI Systems", in Proceedings of the 2003 NASA/DoD Conference on Evolvable Hard -

ware, pages 125-134, July 2003.

Robert Thomson and Tughrul Arslan, "On the Impact of Modelling, Robustness, and Diver-
sity to the Performance of a Multi-Objective Evolutionary Algorithm for Digital VLSI System

Design", in Proceedings of the 2003 Congress on Evolutionary Computation, pages 382-389,

volume 1, December 2003.

B. Hounsell , T. Arslan and R. Thomson, "Evolutionary design and adaptation of high perfor -

mance digital filters within an embedded reconfigurable fault tolerant hardware platform", in
Soft Computing - A Fusion of Foundations, Methodologies and Applications, Volume 8, Num-

ber 5, pages 307-317, April 2004.

E. Stefatos, W. Han, T. Arslan, and R. Thomson, "Low-Power Reconfigurable VLSI Archi-
tecture for the Implementation of FIR Filters", in Proceedings of the 19th IEEE International

Parallel and Distributed Processing Symposium, April 2005.

Robert Thomson and Tughrul Arslan, "Techniques for the Evolution of Pipelined Linear Trans-

forms", in Proceedings of the 2005 Congress on Evolutionary Computation, Volume 3, pages

2476-2483, September 2005.

A.2 Patent application

The University of Edinburgh, Tughrul Arslan, Robert Graham, and Robert Thomson, "System
and Method for Rapid Prototyping of ASIC Systems", international patent application number

W02004068535, August 2004.

153

Appendix B
Transform matrices and filter

responses

This appendix lists the transformation matrices used as test problems in chapters 6 and 7, as

well as the filter impulse responses used in chapter 4.

The 4-point DCT matrix:

0.5 0.5 0.5 0.5

0.653 0.271 —0.271 —0.653

0.5 —0.5 —0.5 0.5

0.271 —0.653 0.653 —0.271

The transformation of RGB colour values to an XYZ representation [13]:

0.49 	0.31 	0.2

0.177 0.812 0.0106

0 	0.01 	0.99

When used in chapters 6 and 7, the above transform was scaled so that the coefficients use

16-bit unsigned values:

32112 20316 13107

11598 53241 	697

0 	655 64880

The 4-point DCT, scaled so that the coefficients fitwithin 8 bits:

64 64 64 64

83 34 —34 —83

64 —64 —64 64

34 —83 83 —34

155

Transform matrices and filter responses

The 8-point DCT, scaled so that the coefficients fit within 8 bits:

64 64 64 64 64 64 64 64

88 75 50 18 —18 —50 —75 —88

83 34 —34 —83 —83 —34 34 83

75 —18 —88 —50 50 88 18 —75

64 —64 —64 64 64 —64 —64 64

50 —88 18 75 —75 —18 88 —50

34 —83 83 —34 —34. 83 —83 34

18 —50 75 —88 88 —75 50 —18

The 8-point DHT, scaled so that the coefficients fit within 8 bits:

64 64 64 64 64 64 64 64

64 91 64 0 —64 —91 —64 —0

64 64 —64 —64 64 64 —64 —64

64 0 —64 91 —64 —0 64 —91

64 —64 64 —64 64 —64 64 —64

64 —91 •64 —0 —64 91 —64 0

64 —64 —64 64 64 —64 —64 64

64 —0 —64 —91 —64 0 64 91

The following filter coefficient sets were derived using SPW. They were used for some of

the comparisons in chapter 4. These coefficient sets are all symmetrical around the central

coefficient, so the duplicated coefficients are omitted here.

Filter Coefficients

30dB low pass (-1,14,44,77,92

40dB low pass (-9,1,62,183,313,369

50dB low pass (-29, —67, —18,243,721, 1214, 1426,...)

30dB high pass (-3,16, —11, —39,75,...)

40dB high pass (-15,10,58, —52,-146,288....

50dB high pass (39, —154,130,163, —134, —630,1167

156

Appendix C
Nonlinear problem specifications

The simplest test problem is the following approximation to a sine function:

x 3 x 5
sin(x) 	a: - --+

The nonlinear EA was tested on polynomials that have random coefficients. Two types of

polynomial were used. The first set of polynomials are factorisable. They are of the form:

(kixi + k2x2)(k3xi + k4) (k5xa + k6)

where k1 . . . k6 are random real numbers between —10 and 10, and x1 and a:2 are the inputs.

These polynomials were used for the one output and two output cases. These test problems are

called 'factored 1' and 'factored 2'.

The 'factored 1' problem is specified as follows:

yi = 48.38XX2 + 219.2X1X2 - 44.85xi4.+ 99.24x + 120.9x - 267.6xi + —248.1x2

The 'factored 2' problem is specified as follows:

= 62.48xx2 + 146.3x1x2 + 46.46xix + 94.61x + 25.62x +52.16xi + 38.79x2

112 = -109xx2 + 9.818x1x2 - 43.37x1x - 22.32x + 165.8x + 85.32xi + 33.94X2

The system was also tested on larger polynomials, which are not factorisable. These polyno-

mials include all of the possible first and second-order terms for a set of inputs. Each term' is

multiplied by an integer between -100 and 100. The first of these problems has three inputs and

three outputs, and is called 'random 3 x 3'. It is specified as follows:

yj = 13x1 - 44x 2 - 26x2 - 16x2x - 36x - 35x3 + 63x3x + 70x3x2 - 86x

112 = 98x1 - 76x - 24x2 - 98x2xi + 16x + 73x3 + 100x3x1 - 13x3x2 - 36x

= 9lxi - 7x + 67x2 + 14x2x1 - 90x + 83x3 - lOx3xi - 48x3x2 + 9laj

The last problem has four inputs and four outputs, and is called 'random 4 x 4':

yi = 43xi + 21x - 89x2 - 81x2x + 83x + 26x3 + 95x3x1 + 62x3x2 + 12x - 17x4 -

157

Nonlinear problem specifications

82x4x1 + 58x4x2 + 87x4x3 - 74x

Y2 = —82x1 - 61x + 35x2 + 8x2x1 - 71x + 90x3 - 43x3x1 - 25x3x2 - 2x - 91x4 +

24x4x1 - 92x4x2 - 22x4x3 - 39r4

= 79x1 + 2Ox 2 + 15x2 + 41x2x1 - 16x+ 85x3 + 87x3x1 + 43x3x2 - 39x - 74x4 -

69x4x1 - 45x4x2 + 9x4x3 - 4x

= 15x - 69x 2 + 52x2 + 20x2x1 - 14x + 7lx3 - 99x 3 x 1 - 78x3x2 - 35x + 49x4 +

29x4x1 - 60x4x2 + 65x4x3 - 5x

158

References

T. M. Panicker and V. J. Mathews, "Parallel-cascade realizations and approximations
of truncated Volterra systems," in IEEE International Conference on Acoustics, Speech,
and Signal Processing, vol. 3, pp. 1589-1592, May 1996.

T. M. Panicker and. V. J. Mathews, "Parallel-cascade realizations and approximations of
truncated Volterra systems," IEEE Transactions on Signal Processing, vol. 46, pp. 2829-

2832, Oct. 1998.

D. Suckley, "Genetic algorithm in the design of FIR filters," lEE Proceedings Circuits,

Devices and Systems, vol. 138, pp. 234-238, Apr. 1991.

D. W. Redmili, D. R. Bull, and E. Dagless, "Genetic synthesis of reduced complexity
filters and filter banks using primitive operator directed graphs," in lEE Proceedings -

Circuits, Devices and Systems, pp. 303-310, Oct. 2000.

M. R. Garey and D. S. Johnson, Computers and Intractability /A Guide to the Theory of

NP-Completeness. W. H. Freeman and Company, 1979.

T. Kalganova and J. Miller, "Evolving more efficient digital circuits by allowing circuit
layout evolution and multi-objective fitness," in Proceedings of the First NASA/DoD

Workshop on Evolvable Hardware (A. Stoica, D. Keymeulen, and J. Lohn, eds.), pp. 54-

63, July 1999.

B. I. Hounsell and T. Arslan, "A novel genetic algorithm for the automated design of
performance driven digital circuits," in Proceedings of the Congress on Evolutionary

Computation, vol. 1, pp. 601-608, July 2000.

A. Hernandez-Aguirre, C. A. Coello, and B. P. Buckles, "A genetic programming ap-
proach to logic function synthesis by means of multiplexers," in Proceedings of the First

NASA/DoD Workshop on Evolvable Hardware (A. Stoica, D. Keymeulen, and J. Lohn,

eds.), pp. 46-53, July 1999.

S. K. Mitra and J. F. Kaiser, Handbook for digital signal processing. John Wiley & Sons,

Inc., 1993.

J. G. Proakis and D. G. Manolakis, Digital signal processing: principles, algorithms, and

applications. 866 Third Avenue, New York, New York 10022: Macmillan Publishing

Company, 2 ed., 1992.

R. E. Crochiere and A. V. Oppenheim, "Analysis of linear digital networks," Proceedings

of the IEEE, vol. 63, pp. 581-595, Apr. 1975.

T. W. Parks and J. H. McClellan, "Chebyshev approximation for nonrecursive digital
filters with linear phase," IEEE Transactions on Circuits and Systems, vol. 19, pp. 189-

194, Mar. 1972.

159

References

R. W. G. Hunt, The Reproduction of Colour, ch. 8, p. 143. Fountain Press, fifth ed.,
1995.

W. B. Pennebaker and J. L. Mitchell, JPEG still image data compression standard. Van
Nostrand Reinhold, 1992.

R. J. Clarke, Digital compression of still images and video. Academic Press, 1995.

C. S. Bumis, R. A. Gopinath, and H. Guo, Introduction to wavelets and wavelet trans-
forms: a primer. Prentice-Hall, Inc., 1998.

W. Sweldens, "The lifting scheme: A custom-design construction of biorthogonal
wavelets," Applied and Computational Harmonic Analysis, vol. 3, PP. 186-200, Apr.
1996.

ISO!ITU-T, ISO/fEC 15444-1:2004 Information technology —JPEG 2000 image coding
system: Core coding system, Sept. 2004.

M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems. Krieger Publish-
ing Company, 1980.

G. W. Reitwiesner, "Binary arithmetic," Advances in Computers, vol. 1, pp. 231-308,
1960.

A. Avizienis, "Signed-digit number representations for fast parallel arithmetic," IRE
Transactions on electronic computers, vol. 10, pp. 389-400, 1961.

H. L. Garner, "Number systems and arithmetic," Advances in Computers, vol. 6, pp. 131-
194, 1965.

K. Hwang, Computer Arithmetic: Principles, Architecture, and Design. John Wiley and
Sons, Jan. 1979.

Y. C. Lim and S. R. Parker, "FIR filter design over a discrete powers-of-two coeffi-
cient space," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 31,
Pp. 583-591, June 1983.

H. Samueli, "An improved search algorithm for the design of multiplierless FIR filters
with powers-of-two coefficients," IEEE Transactions on Circuits and Systems, vol. 36,
pp. 1044-1047, July 1989.

R. Bernstein, "Multiplication by integer constants," Software : practice and experience,
vol. 16, no. 7, pp. 641--652, 1986.

A. G. Dempster and M. D. Macleod, "Constant integer multiplication using minimum
adders," fEE Proceedings -Circuits, Devices and Systems, vol. 141, pp. 407-413, Oct.
1994.

A. G. Dempster and M. D. Macleod, "Multiplication by an integer using minimum
adders," in lEE Colloquium on Mathematical Aspects of Digital Signal Processing,
pp. 11/1-11/4, Feb: 1994.

- 	160

References

A. Dempster, Digital filter design for low-complexity implementation. PhD thesis, Cam-
bridge University, Signal processing and communications laboratory, Department of en-

gineering, May 1995.

0. Gustafsson, A. G. Dempster, and L. Wanhammar, "Extended results for minimum-
adder constant integer multipliers," in IEEE International Symposium on Circuits and

Systems, pp. 1-73-1-76, 2002.

D. Li, "Minimum number of adders for implementing a multiplier and its application to
the design of multiplierless digital filters," IEEE Transactions on Circuits and Systems

II: Analog and Digital Signal Processing, vol. 42, no. 7, pp. 453-460, 1995.

A. G. Dempster and M. D. Macleod, "Comments on "minimum number of adders for im-
plementing a multiplier and its application to the design of multiplierless digital filters","
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,

vol. 45, no. 2, pp. 242-243, 1998.

D. R. Bull and D. H. Horrocks, "Primitive operator digital filters," lEE Proceedings -

Circuits, Devices and Systems, vol. 138, pp. 401-412, June 1991.

A. G. Dempster and M. D. Macleod, "Use of minimum-adder multiplier blocks in FIR
digital filters," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing, vol. 42, pp. 569-577, Sept. 1995.

A. G. Dempster and M. D. Macleod, "General algorithms for reduced-adder integer mul-
tiplier design," Electronics Letters, vol. 31, pp. 1800-1802, Oct. 1995.

M. Potkonjak, M. B. Srivastava, and A. P. Chandrakasan, "Multiple' constant multipli-
cations: efficient and versatile framework and algorithms for exploring common subex-
pression elimination," IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 15, pp. 151-165, Feb. 1996.

M. Mehendale, S. D. Sherlekar, and G. Venkatesh, "Synthesis of multiplier-less FIR
filters with minimum number of additions," in Digest of Technical Papers, IEEE IA CM
International Conference on Computer-Aided Design, pp. 668-671, Nov. 1995.

A. Matsuura, M. Yukishita, and A. Nagoya, "An efficient hierarchical clustering method
for the multiple constant multiplication problem," in Proceedings of the Asia and South

Pacific Design Automation Conference, pp. 83-88, Jan. 1997.

R. Pako, P. Schaumont, V. Derudder, S. Vernalde, and D. Iiuraëková, "A new algorithm
for elimination of common subexpressions," IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, vol. 18, pp. 58-68, Jan. 1999.

R. I. Hartley, "Subexpression sharing in filters using canonic signed digit multipliers,"
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,
vol. 43, pp. 677-688, Oct. 1996.

R. I. Hartley, "Optimization of canonic signed digit multipliers for filter design," in IEEE

International Sympoisum on Circuits and Systems, pp. 1992-1995, June 1991.

161

References

M. Martinez-Peiró, E. I. Boemo, and L. Wanhammar, "Design of high-speed multi-
plierless filters using a nonrecursive signed common subexpression algorithm," IEEE
Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 49,
pp. 196-203, Mar. 2002.

1.-C. Park and H.-J. Kang, "Digital filter synthesis based on an algorithm to generate all
minimal signed digit representations," IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 21, pp. 1525-1529, Dec. 2002.

1.-c. Park and H.-J. Kang, "Digital filter synthesis based on minimal signed digit rep-
resentation," in Proceedings of the Design Automation Conference, pp. 468-473, June
2001.

A. G. Dempster, 0. Gustafsson, and J. 0. Coleman, "Towards an algorithm for matrix
multiplier blocks," in Proceedings of the European Conference on Circuit Theory and
Design, pp. 1119-12, Sept. 2003.

A. Chatterjee, R. K. Roy, and M. A. d'Abreu, "Greedy hardware optimization for linear
digital systems using number splitting and repeated factorization," in The Sixth Interna-
tional Conference on VLSIDesign, pp. 154-159, Jan. 1993.

W.-H. Chen, C. Smith, and S. Fralick, "A fast computational algorithm for the discrete
cosine transform," IEEE Transactions on Communications, vol. 25, pp. 1004-1009, Sept.
1977.

C. Loeffer, A. Ligtenberg, and G. S. Moschytz, "Practical fast 1-13 DCT algorithms
with 11 multiplications," in International Conference on Acoustics, Speech, and Signal
Processing; vol. 2, pp. 988-991, May 1989.

Y. Arai, T. Agui, and M. Nakajima, "A fast DCT-SQ scheme for images," Transactions
of the IEICE, vol. E71, pp. 1095-1097, Nov. 1988.

Y.-J. Chen, S. Oraintara, and T. Nguyen, "Video compression using integer DCT," in
International Conference on Image Processing, vol. 2, pp. 844-847, Sept. 2000.

L. Z. Cheng, H. Xu, and Y. Luo, "Integer discrete cosine transform and its fast algo-
rithm," Electronics Letters, vol. 37, pp. 64-65, Jan. 2001.

T. D. Tran, "The binDCT: fast multiplierless approximation of the DCT," IEEE Signal
Processing Letters, vol. 7, pp. 141-144, June 2000.

J. Liang and T. D. Tran, "Fast multiplierless approximations of the DCT with the lifting
scheme," IEEE Transactions on Signal Processing, vol. 49, pp. 3032-3044, Dec. 2001.

R. Jain, P. T. Yang, and T. Yoshino, "FIRGEN: a computer-aided design system for high
performance FIR filter integrated circuits," IEEE Transactions on Signal Processing,
vol. 39, pp. 1655-1668, July 1991.

G. Wacey and D. R. Bull, "POFGEN: a design automation system for VLSI digital fil-
ters with invariant transfer function," in IEEE International Symposium on Circuits and
Systems, vol. 1, pp. 631-634, May 1993.

ITOM

References

G. L. Sicuranza, "Quadratic filters for signal processing," Proceedings of the IEEE,
vol. 80, pp. 1263-1285, Aug. 1992.

I. Pitas and A. N. Venetsanopoulos, Nonlinear digital filters: principles and applications.
Kluwer Academic Publishers, 1990.

B. G. Mertzios, "Parallel modeling and structure of nonlinear Volterra discrete systems,"
IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,
vol. 41, pp. 359-371, May 1994.

S. Y. .Kung, "VLSI array processors: designs and applications," in IEEE International

Symposium on Circuits and Systems, vol. 1, pp. 313-320, June 1988.

M. Morháë, "A fast algorithm of nonlinear Volterra filtering," IEEE Transactions on

Signal Processing, vol. 39, pp. 2353-2356, Oct. 1991.

M. J. Reed and M. 0. Hawksford, "Efficient implementation of the Volterra filter," lEE

Proceedings - Vision, Image and Signal Processing, vol. 147, pp. 109-114, Apr. 2000.

T. G. Szymanski, "Dogleg channel routing is NP-complete," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 4, pp. 31-41, Jan. 1985.

K. Shahookar and P. Mazumder, "VLSI cell placement techniques," ACM Computing

Surveys, vol. 23, pp. 143-220, June 1991.

M. Sarrafzadeh and C. K. Wong, An introduction to VLSI physical design. McGraw-Hill
International Editions, 1996.

Synopsys Inc., Library Compiler TM User Guide, Aug. 2001. Also available as part of the
Synopsys online documentation.

W. C. Elmore, "The transient response of damped linear networks with particular regard
to wideband amplifiers," Journal of Applied Physics, vol. 19, pp. 55-63, Jan. 1948.

N. Maheshwari and S. S. Sapatnekar, Timing analysis and optimization of sequential
circuits. Kluwer Academic Publishers, 1999.

P. Penfield and J. Rubinstein, "Signal delay in RC tree networks," in Proceedings of the
eighteenth Design Automation Conference, pp. 613-617, 1981.

J. Rubinstein, P. Penfield, and M. A. Horowitz, "Signal delay in RC tree networks," IEEE
Transactions on Computer-Aided Design, vol. 2, pp. 202-211, July 1983.

N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI design. Addison-Wesley
Publishing Company, 1993.

S. Note, F. Catthoor, G. Goossens, and H. de Man, "Combined hardware selection and
pipelining in high performance data-path design," in IEEE International Conference on
Computer Design: VLSI in Computers and Processors, pp. 328-331, Sept. 1990.

A. Kuehlmann and R. A. Bergamaschi, "Timing analysis in high-level synthesis," in
IEEE/ACM International Conference on Computer-Aided Design, pp. 349-354, Nov.
1992.

163

References

D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H.-S. P. Wong,
"Device scaling limits of Si MOSFETs and their application dependencies," Proceedings
of the IEEE, vol. 89, pp. 259-288, Mar. 2001.

Synopsys Inc., Power Compiler TM User Guide, Aug. 2001. Also available as part of the
Synopsys online documentation.

K. D. Miller-Glaser, K. Kirsch, and K. Neusinger, "Estimating essential design char-
acteristics to support project planning fOr ASIC design management," in IEEE Interna-
tional Conference on Computer-Aided Design, pp. 148-151, Nov. 1991.

D. Liu and C. Svensson, "Power consumption estimation in CMOS VLSI chips," IEEE
Journal of Solid-State Circuits, vol. 29, pp. 663-670, June 1994.

S. R. Powell and P. M. Chau, "Estimating power dissipation of VLSI signal processing
chips: The PFA technique," VLSI Signal Processing IV, pp. 250-259, 1990.

S. R. Powell and P. M. Chau, "A model for estimating power dissipation in a class of
DSP VLSI chips," IEEE Transactions on Circuits and Systems, vol. 38, pp. 646-650,
June 1991.

P. E. Landman and J. M. Rabaey, "Architectural power analysis: The dual bit type
method," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 3,
pp. 173-187, June 1995.

D. Marculescu, R. Marculescu, and M. Pedram, "Information theoretic measures for
power analysis," IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 15, pp. 599-610, June 1996.

M. Nemani and F. N. Najm, "Towards a high-level power estimation capability," IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 15,
pp. 588-598, June 1996.

S. Gupta and F N. Najm, "Power macromodeling for high level power estimation," in
Proceedings of the 34th Design Automation Conference, pp. 365-370, June 1997.

S. Gupta and F N. Najm, "Power modeling for high-level power estimation," IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 8, pp. 18-29, Feb.
2000.

M. Barocci, L. Benini, A. Bogliolo, B. Ricco, and G. D. Micheli, "Lookup table power
macro-models for behavioral library components," in Proceedings. IEEE Alessandro
Volta Memorial Workshop on Low-Power Design, pp. 173-181, Mar. 1999.

Q. Wu, Q. Qiu, M. Pedram, and C.-S. Ding, "Cycle-accurate macro-models for RT-level
power analysis," IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 6, pp. 520-528, Dec. 1998:

P. Landman, "High-level power estimation," in International Symposium on Low Power
Electronics and Design, pp. 29-35, Aug. 1996.

164

References

B. Macli, M. Pedram, and F. Somenzi, "High-level power modeling, estimation, and

optimization," IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 17, pp. 1061-1079, Nov. 1998.

F. N. Najm, "A survey of power estimation techniques in VLSI circuits," IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, vol. 2, pp. 446-455, Dec. 1994.

V. Natesan, A. Gupta, S. Katkoori, D. Bhatia, and R. Vemuri, "A constructive method for
data path area estimation during high-level VLSI synthesis," in Proceedings of the Asia

and South Pacific Design Automation Conference, pp. 509-515, Jan. 1997.

E J. Kurdahi and A. C. Parker, "Techniques for area estimation of VLSI layouts," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 8,

pp. 81-92, Jan. 1989.

K. M. Elleithy and A. A. Amin, "Area estimation for DSP algorithms," in IEEE Work-

shop on Signal Processing Systems, pp. 623-632, Oct. 2000.

B. Liu, "Effect of finite word length on the accuracy of digital filters - a review," IEEE

Transactions on Circuits and Systems, vol. 18, pp. 670-677, Nov. 1971.

P. H. Bardeil, W. H. McAnney, and J. Savir, Built-in test for VLSI: pseudorandom tech-

niques. John Wiley & Sons, 1987.

M. Takahashi, R. Sakurai, H. Noda, and T. Kambe, "A testability analysis method for
register-transfer level descriptions," in Asia and South Pacific Design Automation Con-

ference, pp. 307-312, Jan. 1997.

S. Chiu and C. A. Papachristou, "A design for testability scheme with applications to

data path synthesis," in ACM/IEEE Design Automation Conference, pp. 271-277, 1991.

P. Kudva, A. Sullivan, and W. Dougherty, "Metrics for structural logic synthesis," in
IEEE IA CM International Conference on Computer Aided Design, pp. 551-556, Nov.

2002.

P. Kudva, A. Sullivan, and W. Dougherty, "Measurements for structural logic synthesis
optimizations," IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 22, pp. 665-674, June 2003.

X. Yang, R. Kastner, and M. Sarrafzadeh, "Congestion estimation during top-down
placement," IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 21, pp. 72-80, Jan. 2002.

D. E. Goldberg, Genetic Algorithms in search, optimization, and machine learning.

Addison-Wesley, 1989.

T. Back, D. B. Fogel, and T. Michalewicz, Evolutionary Computation 1. Institute of

Physics Publishing, 2000.

T. Back, D. B. Fogel, and Z. Michalewicz, eds., Handbook of evolutionary computation.

Institute of Physics Publishing, 1997.

165

References

S. A. Kauffman, The origins of order. Oxford University Press, 1993.

J. H. Holland, Adaption in natural and artificial systems. The MIT Press, second ed.,
1992.

L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence through simulated
Evolution. John Wiley & Sons, 1966.

J. R. Koza, Genetic Programming: On the Programming of Computers by Means of
Natural Selection. The MIT Press, 1992.

J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs. The
MIT Press, 1994.

S. Kirkpatrick, C. Gelatt, and M. Vecchi, "Optimization by simulated annealing," Sci-
ence, vol. 220, pp. 671-680, May 1983.

E Glover, Tabu search. Kluwer Academic Publishers, 1997.

A. Hertz, E. Taillard, and D. de Werra, "A tutorial on tabu search," in Proceedings of
Giornate di Lavoro AIRO'95 (Enterprise Systems: Management of Technological and
Organizational Changes), pp. 13-24, 1995.

K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley and
Sons, 2001.

C. M. Fonseca and P. J. Fleming, "An overview of evolutionary algorithms in multiob-
jective optimization," Evolutionary Computation, vol. 3, no. 1, pp. 1-16, 1995.

C. A. Coello, "An updated survey of GA-based multiobjective optimization techniques,"
ACM Computing Surveys (CSUR), vol. 32, no. 2, pp. 109-143, 2000.

J. D. Schaffer, "Multiple objective optimization with vector evaluated genetic algo-
rithms," in Proceedings of the First International Conference on Genetic Algorithms
and Their Applications, pp. 93-100, July 1985.

C. M. Fonseca and P. J. Fleming, "Multiobjective genetic algorithms," inIEE Colloquium
on Genetic Algorithms for Control Systems Engineering, pp. 6/1-6/5, 1993.

C. M. Fonseca and P. J. Fleming, "Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization," in Proceedings of the Fifth International
Conference on Genetic Algorithms, pp. 416-423, 1993.

A. Ben-Tal, "Characterization of Pareto and lexicographic optimal solutions," in Pro-
ceedings of the Third Conference on Multiple Criteria Decision Making Theory andAp-
plications, no. 177 in Lecture Notes in Economics and Mathematical Systems, pp. 1-11,
Springer-Verlag, Aug. 1979.

J. Horn, N. Nafpliotis, and D. E. Goldberg, "A niched Pareto genetic algorithm for mul-
tiobjective optimization," in Proceedings of the First IEEE Conference on Evolutionary
Computation, vol. 1, pp. 82-87, June 1994.

166

References

J. F. Miller and P. Thomson, "Discovering novel digital circuits using evolutionary tech
niques," in lEE Half-day Colloquium on Evolvable Hardware Systems, pp. 3/1-3/4, Mar.

1998.

T. Higuchi, H. Tha, and B. Manderick, "Evolvable hardwar," Massively Parallel Artifi-

cial Intelligence, pp. 398421, 1994.

B. Landwehr and P. Marwedel, "A new optimization technique for improving resource
exploitation and critical path minimization," in Proceedings, Tenth International Sympo-

sium on System Synthesis, pp. 65-72, Sept. 1997.

M. S. Bright and T. Arslan, "Synthesis of low-power DSP systems using a genetic algo-
rithm," IEEE Transactions on Evolutionary Computation, vol. 5, pp. 27-40, Feb. 2001.

V. Schnecke and 0. Vornberger, "Genetic design of yLSI-layouts," in First International

Conference on Genetic Algorithms in Engineering Systems: Innovations and Applica-

tions, pp. 430-435, Sept. 1995.

M. J. O'Dare and T. Arsian, "Generating test patterns for VLSI circuits using a genetic

algorithm," Electronics Letters, vol. 30, pp. 778-779, May 1994.

J. D. Lohn and S. P. Colombano, "A circuit representation technique for automated circuit
design," IEEE Transactions on Evolutionary Computation, vol. 3, pp. 205-219, Sept.

1999.

M. Erba, R. Rossi, V. Liberali, and A. Tettamanzi, "An evolutionary approach to auto-
matic generation of VHDL code for low-power digital filters," in Genetic Programming.

4th European Conference, EuroGP 2001 (J. Miller, M. Tomassini, P. L. Lanzi, C. Ryan,
A. Tettamanzi, and W. Langdon, eds.), pp. 36-50, Springer-Verlag, 2001.

T. Arslan, D. H. Horrocks, and E. Ozdemir, "Structural cell-based VLSI circuit design
using a genetic algorithm," in IEEE International Symposium on Circuits and Systems,

vol. 4, pp. 308-311, May 1996.

A. Bahuman, K. Rasheed, and B. Bishop, "An evolutionary approach for VLSI stan-

dard cell design," in Proceedings of the 2002 Congress on Evolutionary Computation,

pp. 431-436, May 2002.

P. Marchal, P. Nussbaum, C. Piguet, S. Durand, D. Mange, B. Sanchez, A. Stauffer,
and G. Tempesti, "Embryonics: the birth of synthetic life," in Towards Evolvable Hard-

ware: The Evolutionary Engineering Approach, vol. 1062 of Lecture Notes in Computer

Science, pp. 166-196, 1996.

V. K. Vassilev, D. Job, and J. F. Miller, "Towards the automatic design of more effi-

cient digital circuits," in Proceedings of The Second NASA/DoD Workshop on Evolvable

Hardware (J. Lohn, A. Stoica, D. Keymeulen, and S. Colombano, eds.), pp. 151-160,

July 2000.

R. Vemuri and R. Vemuri, "Genetic synthesis: performance-driven logic synthesis using

genetic evolution," in First Great Lakes Symposium on VLSI, pp. 312-317, Mar. 1991.

References

T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. Murakawa, I. Kajitani, E. Taka-
hashi, K. Toda, N. Salami, N. Kajihara, and N. Otsu, "Real-world applications of ana-
log and digital evolvable hardware," IEEE Transactions on Evolutionary Computation,
vol. 3, pp. 220-235, Sept. 1999.

J. E Miller and P. Thomson, "Evolving circuits on gate arrays," in lEE Colloquium on
Reconfigurable Systems, pp. 10/1-10/6, Mar. 1999.

B. I. Hounsell, Programmable Architectures for the Automated Design of Digital FIR
Filters using Evolvable Hardware. PhD thesis, The University of Edinburgh, Aug. 2001.

H. Hemmi, J. Mizoguchi, and K. Shimohara, "Development and evolution of hardware
behaviors," in Towards Evolvable Hardware: The Evolutionary Engineering Approach,
vol. 1062 of Lecture Notes in 'Computer Science, pp. 250-265, 1996.

T. Hikage, H. Hemmi, and K. Shimohara, "Hardware evolution system introducing
dominant and recessive heredity," in Evolvable Systems: From Biology to Hardware,
vol. 1259 of Lecture Notes in Computer Science, pp. 423-436, Oct. 1996.

J. F. Miller, "On the filtering properties of evolved gate arrays," in Proceedings of the
First NASA/DoD Workshop on Evolvable Hardware, pp. 2-11, July 1999.

J. F. Miller, "Digital filter design at gate-level using evolutionary algorithms," in Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 1127-1134, July
1999.

M. S. Bright and T. Arslan, "A genetic algorithm for the high-level synthesis of DSP
systems for low power," in Second International Conference On Genetic Algorithms in
Engineering Systems: Innovations and Applications, pp. 174-179, Sept. 1997.

M. S. Bright and T. Arslan, "Genetic framework for the high level optimisation of low
power VLSI DSP systems," Electronics Letters, vol. 32, pp. 1150-1151, June 1996.

M. S. Bright, Evolutionary Strategies for the High-Level Synthesis of VLSI-Based DSP
Systems for Low Power. PhD thesis, Cardiff University, Division of Electronic Engineer-
ing, Oct. 1998.

H. Safiri, M. Ahmadi, G. A. Juffien, and W. C. Miller, "A new algorithm for the elimi-
nation of common subexpressions in hardware implementation of digital filters by using
genetic programming," in Proceedings, IEEE International Conference on Application-
Specific Systems, Architectures, and Processors (E. E. S. Jr., G. A. Juffien, and M. J.
Schulte, eds.), pp. 319-328, July 2000.

A. Lee, M. Ahmadi, G. A. Juffien, W. C. Miller, and R. S. Lashkari, "Digital filter de-
sign using genetic algorithm," in IEEE Symposium on Advances in Digital Filtering and
Signal Processing, pp. 34-38, June 1998.

T. Arslan and D. H. Horrocks, "A genetic algorithm for the design of finite word length
arbitrary response cascaded hR digital filters," in First International Conference on Ge-
netic Algorithms in Engineering Systems: Innovations and Applications, pp. 276-281,
Sept. 1995.

168

References

S. P. Harris and E. C. Ifeachor, "Automating hR filter design by genetic algorithm," in
First International Conference on Genetic Algorithms in Engineering Systems: Innova-
tions and Applications, pp. 271-275, Sept. 1995.

R. Cemes and D. Ait-Boudaoud, "Genetic approach to design of multiplierless FIR fil-

ters," Electronics Letters, vol. 29, pp. 2090-2091, Nov. 1993.

[1461 G. Wade and A. Roberts, "Ordering of cascade FIR filter structures," Electronics Letters,

vol. 30, pp. 1393-1394, Aug. 1994.

G. Wade, A. Roberts, and G. Williams, "Multiplier-less FIR filter design using a genetic
algorithm," in lEE Proceedings - Vision, Image and Signal Processing, pp. 175-180,

June 1994.

D. R. Bull and A. Aladjidi, "The optimisation of multiplier-free directed graphs: an ap-
proach using genetic algorithms," in Proceedings of the IEEE International Symposium
on Circuits and Systems, vol. 2, pp. 1.97-200, May 1994.

D. Chen, T. Aoki, N. Homma, T. Terasaki, and T. Higuchi, "Graph-based evolutionary
design of arithmetic circuits," IEEE Transactions on Evolutionary Computation, vol. 6,

pp. 86-100, Feb. 2002.

N. Homma, T. Aoki, and T. Higuchi, "Multiplier block synthesis using evolutionary
graph generation," in Proceedings of the NASA/DoD conference on evolvable hardware,

pp. 79-82, June 2004.

B. I. Hounsell and T. Arsian, "Evolutionary design and adaptation of digital filters within
an embedded fault tolerant hardware platform," in Proceedings of the Third NASA/DoD

Workshop on Evolvable Hardware (D. Keymeulen, A. Stoica, J. Lohn, and R. S. Zebu-

lum, eds.), pp. 127-135, July 2001.

M. Erba, R. Rossi, V. Liberali, and A. Tettamanzi, "Digital filter design through sim-
ulated evolution," in Proceedings of the European Conference on Circuit Theory and
Design, vol. II, (Espoo, Finland), pp. 137-140, August 2001.

R. Rossi, V. Liberali, and A. G. B. Tettamanzi, "An application of genetic programming
to electronic design automation: from frequency specifications to VHDL code," in Soft

Computing and Industry Recent Applications (R. Roy, M. Koppen, S. Ovaska, T. Fu-

ruhashi, and F. Hoffmann, eds.), pp. 809-820, Springer-Verlag, Sept. 2001.

A. Azzini, M. Bettoni, V. Libeiali, R. Rossi, and A. Tettamanzi, "Evolutionary design
and FPGA implementation of digital filters," in VLSI Circuits and Systems - Proceedings

of SPIE Volume 5117, (Maspalomas (Gran Canaria), Spain), May 2003.

K. C. Sharman, A. I. E. Alca.zar, and Y. Li, "Evolving signal processing algorithms
by genetic programming," in First International Conference on Genetic Algorithms in
Engineering Systems: Innovations and Applications, pp. 473-480, Sept. 1995.

M. Murakawa, S. Yoshizawa, I. Kajitani, T. Furuya, M. Iwata, and T. Higuchi, "Hard-
ware evolution at function level," in Parallel Problem Solving from Nature —PPSNIV,

pp. 62-71, Sept. 1996.

169

References

T. Higuchi, M. Murakawa, M. Iwata, I. Kajitani, W. Liu, and M. Salami, "Evolvable
hardware at function level," in IEEE International Conference on Evolutionary Compu-
tation, pp. 187-192, Apr. 1997.

A. E. A. Almaini, J. F. Miller, P. Thomson, and S. Billina, "State assignment of finite
state machines using a genetic algorithm," in lEE Proceedings —Computers and Digital
Techniques, pp. 279-286, July 1995.

J. N. Amaral, K. Turner, and J. Ghosh, "Designing genetic algorithms for the state assign-
ment problem," IEEE Transactions on Systems, Man and Cybernetics, vol. 25, pp. 687-
694, Apr. 1995.

S. Chattopadhyay, "Low power state assignment and fiipflop selection for finite state
machine synthesis - a genetic algorithmic approach," lEE Proceedings - Computers
and Digital Techniques, vol. 148, no. 45, pp. 147-151, 2001.

B. Ali, A. E. A. Almaini, and T. Kalganovà, "Evolutionary algorithms and their use in
the design of sequential logic circuits," Genetic Programming and Evolvable Machines,
vol. 5, pp. 11-29, Mar. 2004.

T. Kalganova and J. E Miller, "Circuit layout evolution: an evolvable hardware ap-
proach," in lEE Half-day Colloquium on Evolutionary Hardware Systems, pp. 3/1-3/4,
June 1999.

E. Torbey and J. Knight, "Performing scheduling and storage optimization simultane-
ously using genetic algorithms," in Proceedings of the Midwest Symposium on Circuits
and Systems, pp. 284-287, Aug. 1998.

E. Torbey and J. Knight, "High-level synthesis of digital circuits using genetic algo-
rithms," in Evolutionary Computation Proceedings, 1998, IEEE World Congress on
Computational Intelligence, pp. 224-229, May 1998.

J. H. Satyanarayana and B. Nowrou.zian, "FLIGHT: a novel approach to the high-level
synthesis of digit-serial digital filters," in Proceedings of the 37th Midwest Symposium
on Circuits and Systems, vol. 1, pp. 335-338, Aug. 1994.

I. Ahmad, M. K. Dhodhi, and C. Y. R. Chen, "Integrated scheduling, allocation and mod-
ule selection for design-space exploration in high-level synthesis," in lEE Proceedings
-Computers and Digital Techniques, pp. 65-7 1, Jan. 1995.

M. K. Dhodhi, E H. Hielscher, R. H. Storer, and J. Bhasker, "Datapath synthesis using
a problem-space genetic algorithm," IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 14, pp. 934-944, Aug. 1995.

C. P. Ravikumar and V. Saxena, "Synthesis of testable pipelined datapaths using genetic
search," in Ninth International Conference on VLSI Design, pp. 205-210, Jan. 1996.

W. Zhao and C. A. Papachristou, "An evolution programming approach on multiple be-
haviors for the design of application specific programmable processors," in European
Design and Test Conference, pp. 144-150, Mar. 1996.

170

References

R. Morris and B. Nowrou.zian, "A novel technique for pipelined scheduling and allo-
cation of data-flow graphs based on genetic algorithms," in Canadian Conference on
Electrical and Computer Engineering, vol. 1, pp. 429-432, May 1996.

J. F. Miller, D. Job, and V. K. Vassilev, "Principles in the evolutionary design of digital
circuits - part I," Genetic Programming and Evolvable Machines, vol. 1, no. 3, pp. 259-

288,2000.

K. M. Dill, J. H. Herzog, and M. A. Perkowski, "Genetic programming and its applica-
tions to the synthesis of digital logic," in IEEE Pacific Rim Conference on Communica-
tions, Computers and Signal Processing, vol. 2, pp. 823-826, Aug. 1997.

M. Yanagiya, "Efficient genetic programming based on binary decision diagrams," in
IEEE International Conference on Evolutionary Computation, vol. 1, pp. 234-239,

1995.

K. Uesaka and M. Kawamata, "Heuristic synthesis of low coefficient sensitivity second-
order digital filters using genetic programming," fEE Proceedings Circuits, Devices and
Systems, vol. 148, pp. 121-125, June 2001.

J. E Miller and P. Thomson, "Cartesian genetic programming," in Genetic Program-
ming, Proceedings of EuroGP'2000 (R. Poli, W. Banzhaf, W. B. Langdon, J. F. Miller,
P. Nordin, and T. C. Fogarty, eds.), vol. 1802, (Edinburgh), pp. 121-132, Springer-
'Verlag, 15-16 2000.

R. Poli, "Evolution of graph-like programs with parallel distributed genetic program-
ming," in Genetic Algorithms: Proceedings of the Seventh International Conference
(T. Back, ed.), pp. 346-353, Morgan Kaufmann, 1997.

Y. Matsuya, K. Hirasawa, J. Hu, and J. Murata, "Automatic generation of programs using
genetic network programming," in Proceedings of the 41st SICE Annual Conference,
vol. 2, pp. 1269-1274, Aug. 2002.

H. Katagiri, K. Hirasawa, J. Hu, and J. Murata, "Comparing some graph crossover in
genetic network programming," in Proceedings of the 41st SICE Annual Conference,
vol. 2, pp. 1263-1268, Aug. 2002.

K. Sims, "Evolving virtual creatures," in Computer Graphics (SlGGRAPHproceedings),
pp. 15-22, 1994.

A. Teller, "Evolving programmers: The co-evolution of intelligent recombination oper-
ators," Advances in Genetic Programming II, 1996.

W. Kantschik, P. Dittrich, M. Brameier, and W. Banzhaf, "Meta-evolution in graph GP,"
in Genetic Programming: Second European Workshop EuroGP'99 (R. Poli, P. Nordin,
W. B. Langdon, and T. C. Fogarty, eds.), (Berlin), pp. 15-28, Springer, 1999.

A. Lindenmayer, "Mathematical models for cellular interaction in development," Journal

of Theoretical Biology, vol. 18, pp. 280-315, 1968.

H. Kitano, "Designing neural networks using genetic algorithms with graph generation
system," Complex Systems, vol. 4, pp. 461-476, 1990.

171

References

A. A. Siddiqi and S. M. Lucas, "A comparison of matrix rewriting versus direct encoding
for evolving neural networks," in The IEEE International Conference on Evolutionary
Computation, pp. 392-397, May 1998.

P. C. Haddow, G. Tufte, and P. van Remortel, "Shrinking the genotype: L-systems for
EHW?," in Evolvable systems: from biology to hardware, vol. 2210 of Lecture Notes in
Computer Science, pp. 128-139, Oct. 2001.

E. J. W. Boers, H. Kuiper, B. L. M. Happel, and I. G. Sprinhuizen-Kuyper, "Design-
ing modular artificial neural networks," in Proceedings of Computing Science in The
Netherlands, pp. 87-96, 1993.

F. Gruau, "Cellular encoding as a graph grammar," in lEE Colloquium on Grammatical
Inference: Theory, Applications and Alternatives, pp. 17/1-17/10, Apr. 1993.

S. Luke and L. Spector, "Evolving graphs and networks with edge encoding: Preliminary
report," in Late Breaking Papers at the Genetic Programming 1996 Conference, 1996.

C. S. Ortega and A. M. Tyrrell, "A hardware implementation of an embryonic architec-
ture using Virtex FPGAs," in Evolvable Systems: From Biology to Hardware, vol. 1801
of Lecture Notes in Computer Science, pp. 153-164, Apr. 2000.

G. Tempesti, D. Mange, E. Petraglio, A. Stauffer, and Y. Thoma, "Developmental pro-
cesses in silicon: an engineering perspective," in Proceedings of the NASA/DoD Confer-
ence on Evolvable Hardware, pp. 255-264, July 2003.

R. Canham and A. Tyrrell, "An embryonic array with improved efficiency and fault tol-
erance," in Proceedings of the NASA/DoD Conference on Evolvable Hardware, pp. 265-
272, July 2003.

A. H. Jackson and A. M. Tyrrell, "Implementing asynchronous embryonic circuits using
AARDVArc," in Proceedings of the NASA/DoD Conference on .Evolvable Hardware,
pp. 231-240, July 2002.

A. H. Jackson and A. M. Tyrrell, "Asynchronous embryonics with reconfiguration," in
Evolvable Systems: From Biology to Hardware, vol. 2210 of Lecture Notes in Computer
Science, pp. 88-99, 2001.

J. E Miller and P. Thomson, "A developmental method for growing graphs and circuits,"
in Fifth International Conference on Evolvable Systems: From Biology to Hardware,
vol. 2606 of Lecture Notes in Computer Science, pp. 93-104, Mar. 2003.

T. G. W. Gordon and P. J. Bentley, "Towards development in evolvable hardware," in
Proceedings of the NASA/DoD Conference on Evolvable Hardware, pp. 241-250, July
2002.

T. G. W. Gordon, "Exploring models of development for evolutionary circuit design," in
Proceedings of the Congress on Evolutionary Computation, pp. 2050-2057, Dec. 2003.

M. A. Lones and A. M. Tyrrell, "Enzyme genetic programming," in Proceedings of the
2001 Congress on Evolutionary Computation, vol. 2, pp. 1183-1190, May 2001.

172

References

M. A. Lones and A. M. Tyrrell, "Biomimetic representation with genetic programming
enzyme," Genetic Programming and Evolvable Machines, vol. 3, pp. 193-217, 2002

June.

L. Gefferth, "Discrete optimisation of wave digital filters combining simulated anneal-
ing and line search method," in European Conference on Circuit Theory and Design,

pp. 502-506, Sept. 1989.

D. W. Redmill and D. R. Bull, "Design of low complexity FIR filters using genetic algo-
rithms and directed graphs," in Genetic Algorithms In Engineering Systems: Innovations
And Applications (GALESIA), pp. 168-173, Sept. 1997.

C. M. Fonseca and P. J. Fleming, "On the performance assessment and comparison of
stochastic multiobjective optimizers," in Proceedings of the 4th International Confer-
ence on Parallel Problem Solving from Nature, vol. 1141 of Lecture Notes In Computer

Science, pp. 584-593, 1996.

S. B. Vardeman, Statistics for Engineering Problem Solving. PWS Publishing, 1994.

173

