Domain-specific and Reconfigurable Instruction

Cells based Architectures for Low-Power SoC

Sami Khawam

A thesis submitted for the degree of Doctor of Philosophy
The University of Edinburgh
April 2006

Abstract

Silicon technologies have been conforming to the maxim of Moore’s law for the past 40 years
[131], but, even though production prices per unit have gone down, the NRE costs for making
new chips keep going up with every new technology. This made a number of application-
sectors discouraged to design new chips and in favour of adopting more generic solutions
such as FPGAs and high-performance DSPs. These two programmable technologies have also
evolved dramatically over the past decade providing much larger usable silicon areas and

higher throughputs at the expense of increased power consumptions.

New communication standards and the requirements of modern mobile-device’s users push
the silicon towards processing more data in an increasingly shorter time; this is precisely the
case for new compression formats targeting high-quality low-bandwidth multimedia. This
presses forward the need for new programmable hardware solutions that intrinsically achieve

generality, high-performance and, most importantly, low power consumption.

This work investigates the design of reconfigurable hardware architéctures to address these
issues. Two novel solutions are thus proposed along with the implementations of several
multimedia applications on them; the first architecture fits as a middle ground between
FPGAs and ASICs in terms of performance and cost. This is achieved by using coarse-grain
functional units combined with programmable interconnects to build flexible, high-
performance and low-power circuits. A framework for generating and programming the
custom domain-specific reconfigurable arrays is also proposed. The tool-flow leverages some
of the design effort that goes in creating and using the arrays by facilitating the reuse of
pﬁ:vious design elements. Furthermore, this work proposes novel direction-aware routing

elements to allow efficient tailoring of interconnect structures to the application.

The second proposed processing architecture adds the dimension of high-level
programmability to the reconfigurable arrays. This is achieved by using functional units that
can be directly matched to elements in a compiler’s internal representation of software. By
using a custom instruction-controller the array can execute control operations in a similar way
to processors, while at the same time allowing highly efficient mapping of datapath circuits.
Coupled to the low-power and high-throughput achieved, this creates a viable alternative to
FPGAs, DSPs and ASICs suitable for deployment in high performance mobile applications

entirely programmable using languages such as C/C++.

Page iii

Acknowledgement

I would like to thank Prof Tughrul Arslan for his supervision during this project. I am most
grateful for my parents George and Samia, whose support not only made this possible, but
allowed me to actually enjoy my time throughout the process. I would also like to thank my
sisters Lina and Zeina for their encouragement all way long. Special thanks go to my
girlfriend Teresa for making this agreeable and for the tedious proof-reading; bad English
should be blamed on her.

I also thank my examiners. Steve Furber, Ahmed Bouridane and Alan F Murray for their

comments and advices.

Finally, I would like to thank everyone who gave me energy by expending their cooking:
Teresa Kao, Sandy Gulyurtu, Khodor Fawaz and his mum, Ioannis Nousias, Nardine Osman,
and Mehdi Tassoumt. I hope that this acknowledgement will only encourage every one of

them to invite me more.

Page vi

Table of Contents

Chapter 1: Introduction 1
Chapter 2: Previous Reconfigurable and low-power architectures.................... 7
2.1. Reconfigurable arrays and COMPULETSccovviiriiiiiiiiinnns e 8
2.1.1. FiNE-GIaiN @ITAYS ..cooceerennieiieeeineeaiereesniresiseresorsssssssesesnsenassssssssssssssmessssessnses 9
2.1.2. Coarse-Grain / Domain-SpecifiC arrayscccccceeverercrieriiecrenieecrnteeseeeeneeeineeens 11
2.1.3. High-level FPGA synthesis..........cccceoeviiiiiniinniin e 12
2.1.4. Reconfigurable inStructions-Set PrOCESSOTS.......ccovveiiriivieruiireeiiiiesieiniesscsseeens 13
2.1.5. Loosely and tightly coupled arrays and processors...........cccovueenreneninninsienncnnne. 13
2.1.6. Reconfigurable computing architectureccooceecuiiiiiiiiiniicnininis 17
2.1.7. Generic low-power solutionsc..cccevvivvinniiiiiiiienniiinnennn, feterenneseeenteseneeseenaee 19
2.2. Interconnect structures in FPGAS.........ccccooiiiniinnni, e 19
2.2.1. Symmetrical Meshc.ccoceiiiiiiiiiiiiiiiiiii 19
2.2.2. Binary intercONNECt trEES.......ccoueeuereiriertiniiiiiieiiiiese st enn 22
2.2.3. Hierarchical StIUCIUTIESccoeivirieriiriiciienir e e 22
2.2.4. Combined structures for low-power from LP-FPGA...........cccccoviviinininnnnnnn, 23
2.3. SUMIMATY ..evveitetiiieeterecee ettt st b bbb a e b b ne e eens 24
Chapter 3: Domain-Specific Reconfigurable Arrays: 25
3.1. Building Domain-Specific AITays.........cccocvviiviiiiiniiniiieiieieeeeseee s 26
3.2. Proposed reconfigurable System-on-Chip..........ccociviiiiiiiiinininininiiriciens 27
3.3. Programmable CIUSEETScocovviiriiiiiiiiiiiiiniii e e 28
3.4, INEETCOMMECESoouerurieniiiiiiiiiiicic ettt ettt b e st re s s a e nesbeesbane s 29
3.4.1. C-BOX CIFCUIt dESIZI ..eveueerirerieeienienieneteeiieceetrere ettt saeressrs et se s sss e 31
3.4.2. S-BOX CIFCUIt dESIZM..c.uioeiiiiiieiiieieeieett ettt et ree s as b b as s 33
3.5. Configuration MEMOTYc.ccevuiiniinieniinieniiiiiiie et eneerens 33
3.5.1. Requirements and ObSEIVALIONS........cc.ccovreurireriiiiniiininiccniie e 33
 3.5.2. Alternatives-and improvements to shift-registers...........ceovvrrreeerernereecrennenee 35
3.5.3. Further improvements...........ccccoveverieriieiiriienninncneencinenens eeeerree e —e et e nreneaaae s 37
3.6. Design-Tools flOW......cccervuiiniiniiniiiiiii i 38
3.6.1. Design entry and array gENErationcoccveriiiiinveniieniciiiiien e enens 38
3.6.2. Array programming and teStINgcceeriiieriiiiiiiiiiniic s 40
3.6.3. VEIfICAtION ..oouveiiereieeeieeiiiee ettt sttt b b s srae b s 41
3.6.4. Implementationc..ccceeuerurune ettt ettt e a e s b st as s e sanens 42
3.7. Problems and future Workc..cooveeiiriiiiiiirniiniiee et 43
3.8. CONCIUSION. ... eeieveeciieecte e et e e e et sr e s te e s rreesabee s aeaeeabe e e sne e s meeeereesaneesnnessanes 43
Chapter 4: Domain-specific reconfigurable array for video coding................. 45
4.1. Overview of the targeted MPEG Operations............cccooeeiieiiiiiicieninncincneneenienneene 46
4.2. DSRA for Motion EStIMation..........c.ccooveruireiieirriinierniiniis it 47
4.2.1. AlGOTINIMooiiiiiiiiiiii e 47
4.2.2. Existing reconfigurable architectures.............ccocooiiiiiinniniiinceee 49
4.2.3. CIUSEET dESIMN....eeveeiiiereeeiiiieececre et sre bbb s bbb a e aes 51
4.2.4. Cluster arrangement and interconnect meshcooevevciiiiiiiiiinenencensennne 53
4.3, DSRA fOr DCT ..ottt ettt sttt s sas s ere e st s sanasse s S5
4.3.1. AlZOIIRMS ...oooviiiiiiiiiii i s 55
4.3.2. DCT using Distributed Arithmetic...........coceiniiiiiniiiiiie 59
B TG TR O 11111 ¢- SO OO P PO PR O OIPPP 60
4.3.4. Clusters arrangement and interconnects Meshccoocovueiiiineeieninnnnnnennnen, 64
4.4, PerfOrmMAnCE.........cccovereriieimiiiiiiicietenti ettt st 64

Page vii

4.4.1. BeNCHMATKS. ... ciiiiiiieiieeiiiitieceee e eeieereeeererer s eeeeessserassassseesessrasranssonsessrees 64

4.4.2. Comparison of the DCT implementationsccoccevveeeeieireruenienenerseennennn 69
4.4.3. Measurement of overhead.............coccoveviiiiiiiinniiiice e 69

4.5, CODCIUSION.....ieeiuinriiiiiitiitiet ettt sa e sttt saen et sasne s 71
Chapter 5: Symnthesisable interconnect customisation for DSRAScceeeerercecnee 73
5.1 PropoSed AESIZNSueeieiriieeiieiieciie et e et et eee s b evessee et e e eeeenesaeesreeeneees 74
5.1.1. Full directions using tri-statesccccerreeermriiesiecriiniuenne reerrerrene et nae e enaaas 75
5.1.2. Full directions using multipleXers..........cecrerrerecrerirnrenirrreereee e 76
5.1.3. Full directions using tri-states and compressed configuration memory............. 76
5.1.4. Reduced directions USINg tri-StAtES.......ccueerceerrerrererreeereere e sreeseeseesnereanees 76
5.1.5. Reduced directions using tri-states with compressionccccecerveeeeciniinnienne 77
5.1.6. Reduced direction using 2-t0-1 multipleXerscccooovevvicviviniiniininiiniiiinins 78
5.1.7. Reduced directions using both tri-states and 2-to-1 muxes........cc.cceeeverveererennn. 78

5.2. Performance evaluationoocuieiieiiiiiiiieeceiee et 79
5.2.1. ATCA..iiiiiiie e sttt st aa s 79
5.2.2. PCWET CONSUMPLIONcueiruiiiiiieriieitieieetteeit e st eseeeseseneeneeetesraeesaeseeesasaseennnens 81
5.2.3.0 DRIAYS oottt e 81
5.2.4., ROUADILILY....coooiiiiiiiiiiiiieiice et e s 82
5.2.5. ANALYSIS...iiiiiieiieiiiieeecie ettt ettt 83

5.3. CONCIUSION.....cucueieiieeriie s ecee et cesctte e e st e e be e s seaesebeeesseeesssteesmnessaeeessanbenaseesmneesanns 84
Chapter 6: Reconfigurable Instruction Cells Array 85
6.1. Processor-like operation of a reconfigurable array............c.coceeiiiiniiiiiiiiiinicinnnne 86
6.1.1. Example of Instruction-Level Parallel Processing.........cc.cocccccernervencceninnenan 87
6.1.2. Reconfigurable COTecccceecvuierieiiiniieeiieeeiete et e e ceeseeeesr e sessrae st s sanesan 88

6.2. Hardware deSigii.......ocooeeieeiieeieieee ettt e 90
6.2.1. InStruction CelIS........ccoiiiiiiiiiiiiiieiieie ettt et s e 90
6.2.2. TNLEICOMMECES ...coviiiiiieeereiienteeitete et e e st erbee st e st e s s st e asesanneseeeeennenesrensabes 93
6.2.3. Data Memory INLEIrfACESvevvreerieierirereeietenieeeeeire et eesceereeeeieeesaeeesressanneas 97
6.2.4. Program Memory implementations.............ccecuecversierirrrcercnnenneenieenninienesnesnesnes 97

6.3. Design-Tools for RICAcooiiii ettt 98
6.4. Performance evaluation of sample RICAccooooiiiiiiiiiincneee 100
6.4.1. Comparison with DSRAccccccoviriiiiiiieniiin e 101
6.4.2. Comparison with DSP Processors........ccocceeiiiririeseiiniciiiinniinincissercereinineeins 102

6.5. Reconfigurability overhead............cocoovriiiniiiiieiieice 105
6.6. CONCIUSION......ciereieeitiecieeie et eieeieeseeseeseessbeases e neeeeeesreesbeesaeessnesssssnassssnsasas 106
Chapter 7: Advanced implementations on RICA 109
7.1. Example of manually optimised implementationscccocceerevenreeneenrennennennees 110
7.1.1. FIR Filter using shift-TEZISter.......cocovrmieiiriiriiiiiiiiniicce e 110
7.1.2. Pipelined 8192-point FFT for OFDM.........cccceveroiiiiiiiecieneneenee e 112

7.2. Larger systems: MP3 Audio and H264 Videocccccocveviviiiiciiinicneiiiicicnens 116
7.3. CONCIUSION.....cieiiieiiiterte et et a e s b a e b en 118
Chapter 8: Conclusion 121
A. Sample RICA cells with instruction set 127
B. Publications arising from this work 139
C. References 143

Page viii

List of Figures

Figure 1-1: Characteristics diagram of popular solutions and area of interestc.......... 2
Figure 1-2: Estimated relative characteristics of existing architectures..............cccoovueeevviinnne, 4
Figure 1-3: Characteristics of ideal SOlution.............cocecievuiiiiniiiininiiicircc s 5
Figure 1-4: Estimated relative characteristics of the two proposed solutions...............cceceueunene. 5
Figure 2-1: Example topology of an FPGA showing a simplified 4-to-1 LUT......................... 9
Figure 2-2: Fine grain vs. coarse grain approach...........cccocceveviniiiiniiinieinisicicesccsceienns 11
Figure 2-3: Signal routing between two clusters using switch and connection boxes.............. 20
Figure 2-4: Generalised mesh for heterogeneous elements with different sizes in Plaides [37]
.. 21
Figure 2-5: Hierarchical generalized mesh in Plaides [37]........ccoovviiiniiniiiiniinie 22
Figure 2-6: Reconfigurable Binary multiplexer-tree interconnect [54]cccocviieeiennnnen. 22
Figure 2-7: Hierarchical FPGA architecture [55] [S6].......cccoiiiniminiiiiiiieiiee e 23
Figure 3-1: Reconfigurable System-on-Chip with a number of reconfigurable arrays each
SPECITIC t0 ONE OPETALION.covreveiniirierieesierieente sttt sane b 28
Figure 3-2: Modules, clusters and interconnects in the DSRAevveeeeereerrereereeersseereeee 29
Figure 3-3: Synthesisable equivalent of a bidirectional pass-transistor using 2 tri-state buffers,
coONSUMINg 8 tiMes MOTE ATEA.cccuruiireiriiriiiiriiie i cieerie st seaeeaeebeeens 31
Figure 3-4: Basic island-style interconnect mesh scheme with customisable single bit tracks
and WOrd-Wide trACKS.c.ccivirieieiieeeeicee et sere e b 31
Figure 3-5: Tri-state buffer based C-boxccceeeeeeens eeeueererreeaetenteeteteeseesse s e neeae e e neas 32
Figure 3-6: C-Box using a multiplexer for input pins only..........cccocvviiinninninieiniinin, 32
Figure 3-7: Two possible combinations of the MUX and tri-state buffer for use in C-Boxes. 32
Figure 3-8: S-Box using tri-state bufferscccocoovniiiii 33
Figure 3-9: Example of cascading of shift-register based configuration memory................... 35
Figure 3-10: System-on-Chip design-flow when using synthesizable reconfigurable arrays.. 38
Figure 3-11: Inputs and outputs of the array generator.............coc.coveviemniiniiiniiiniennniiieeas 39
Figure 3-12: Inputs and outputs of the array configuration program...........ccoeeeerevieeeincnennnas 40
Figure 3-13: Example of placed and routed arrays using Cadence Silicon Ensemble............. 42
Figure 3-14: Example of placed and routed arrays using Cadence Silicon Ensemble showing
the INLETCOTMNECT WITES.eeeireieieeiiieieeeieerieereesreeeseeeserareeeeessessessssessnsssessveesanes 43
Figure 4-1: Block Diagram of operations in Encoder and Decoder for rectangular objects from
[130]. coeeieeeeetereete ettt e et et b e ae b e r e e e benaaea 47
Figure 4-2: Block-matching between current and previous frames.cccoceeineininicnncnns 48
Figure 4-3: Elements for Motion Estimation. Four of these elements are packed into a cluster.
.. 53
Figure 4-4: Possible array arrangement of CluStercccooiiiiiiiiiiiiniiieeccs 54
Figure 4-5: Array arrangement of cluster, with each cluster composed of 4 modules. 54
Figure 4-6: Dataflow graph for 8-points Chen fast DCT algorithm [91].........cccovieininiin. 56
Figure 4-7: Use of memory in Distributed Arithmeticcocoovveveierieeeceninieninninnnscnieaas 57

Figure 4-8: Simple DCT implementation using distributed arithmetic without memory
TEAUCHION. ..ottt ettt ettt s s san e saner b s s e s eane s anssans 59

Figure 4-9: Implementation of DCT using odd-even decomposition for memory reduction. . 59
Figure 4-10: CORDIC Rotator Based §-Point DCT Implementation mapped by Sajid Baloch

to the array [100] ..o 60
Figure 4-11: Example of combining memory-elements together vertically and horizontally. 61
Figure 4-12: S-RAM based MemOry CIUSLETccvieeeciernrerieeiiiiicneiniciieneresnee e 61
Figure 4-13: Adder-tree CIUSTET.........cooeiieeiiireee et ceeere e ens s esat st ar e e eaaees 63
Figure 4-14: Add-Shift CIUSEET.ceieiieiiiiie ettt s 63
Figure 4-15: Arrangement of the clusters in the array. More add-shift clusters are used

according to the NEEdS.ccervererrieireni e 64
Figure 4-16: Mapping of a PE from [82] using 7 modules from 3 clusters.ccccceeuvrnnenn. 65
Figure 4-17: Average performance of DSRA in all benchmarks..........c..cccovviiinininnnn. 67
Figure 4-18: Relative area comparison of DSRA wit ASIC and FPGAs. ..o, 67
Figure 4-19: Relative power comparison of DSRA wit ASIC and FPGAs. ..o 68

Figure 4-20: Relative maximum frequency comparison of DSRA wit ASIC and FPGA:s......68

Figure 4-21: Distribution of the average power consumption between an add-shift cluster and

its associated C-box and S-BoX........ccccccevieviiiiiininiiini e 70
Figure 4-22: Area of add-shift cluster and its associated C- and S-boxes.ccccevurvrennennn 70
Figure 5-1: S-Box formed out of 6W switch-points arranged in a subset topology. S &
Figure 5-2: 6W switch-point usiﬁg bidirectional tri-state buffers. 8 configuration bits 75
Figure 5-3: 6W switch-point with full directions using multiplexers...........ccooeirviininininnn 76
Figure 5-4: Two possible arrangements for the 6W box using tri-states..........ccceeeeeriiiennenens 77
Figure 5-5: Possible arrangements using the two types of 6W boxes ..o 77
Figure 5-6: Two possible arrangements for the 6W switch-point using 2-to-1 multiplexers.. 78
Figure 5-7: Directional 6W switch-points using both tri-states and multiplexers. 78
Figure 5-8: Area of Switch Boxes with contributions of switches, configuration memory and
MELAl TOULIME, «.eeitiiiieiiiiiiiii ettt a b st e b a e sae s e ane s 79
Figure 5-9: The routed area vs. number of bit in the word tracks.........ccccocvevveviniiniinnnnnnnn, 80
Figure 5-10: The typical power consumption per switch-box typeccocveeveveenniiininiis 81
Figure 5-11: The longest path in the DCT implementations using each switch-box type...... 82
Figure 5-12: The total length of the routings depending on the ratio between the number of
Type 1 blocks and Type 2 blocks in switch-boxes (4) and (7).......ccccoevvviiinnnnnen. 82
Figure 5-13: The total length of the routings depending on the ratio between the number of
Type 1 blocks and Type 2 blocks in switch-box in (6).c.coeceveviniinnenenieennn. 82
Figure 5-14: The total wirelength for each switch-box implementations. For (4), (7), (5) and
(6) the ratio of Typel/Type2 with the lowest wirelength is chosen. 83
Figure 5-15: Comparison of the different designs in terms of power, area and delays. 83
Figure 6-1: Execution of the 19 instructions in 2 cycles if a specific number of resource is
PIESEIL ..ottt ettt bttt ers et e a bbb e b e s bttt88
Figure 6-2: Harvard-like structure of the RICA with reconfigurable core as instruction-cells
and programmable INtEICONNECHS...........coviiruiiiiiiiiiinietese e 89

Page x

Figure 6-3:
Figure 6-4:
Figure 6-5:

Figure 6-6:

Figure 6-7:
Figure 6-8:
Figure 6-9:

Multiplexers based INtEICONNECES...........curviruieruireiiiiiiriieci s 94
Silicon area of N-t0-1 MUltipleXerc.cccceiiiriiiiiiiiieiccrrcerec e 95
Exponential increase of silicon area with number of cells when using
IUIEPLEXETS ...ttt e 95
Configurable switches around each cell to form an interconnects-box for the
1S1aNA-StY1E MESH.ooveriiiiiiieece e 96
Mesh of island-style interconnects with torodial interconnects..............ccocevuenne. 96
Design-software tool-flow for RICA.c.cccecvviviiiinininiiinccccne 99
Normalised execution time graph of the benchmarks on RICA and other
ATCHILECTUTIES ..euveuvreeeeiceiire ettt st sttt a s bbb ae e s 104

Figure 6-10: Normalised energy consumption graph of the benchmarks on RICA and other

ATCHIEECIUIES evvieeeeeeieeeeeee e eee e eetveetaanebssssseassssesasesassessessssssssnssssnesssssnnsennen 104

Figure 6-11: Break down of area in RICA using both multiplexers and s-boxes as

ITILETCOMITIECES .. oo eeeeeeeeee e eetvtaaeeeesseesessssnssnnssensnssssessessressasnssassaessseeeeersssnnnnaasnes 105

Figure 6-12: Break down of power consumption in RICA using multiplexers as

Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:
Figure 7-6:

IIILETCOMIIECES .evevuteeeeeeeeisieetsetresaeeeeseeseersesassesssssasssssssessesssnsnsnsesensessssssessnnnnnnsasenns 106

Typical hardware and RICA implementation of an FIR using shift-registers. .. 111

Radix-2 complex butterfly computation.cc.cceeecerrvrecennnninirenniinieesieneeenons 113
8-point FFT computation using Radix-2 butterfly........c.cccooinnnnnnnnnn, 114
Main loop step if compiled from code (counter not shown) et s e 115
Main loop in FFT calculation with pipeline registers.cocovviviiriinirnniieinnenn, 116
Comparison of the performance ffmpeg H264 decoder on RICA, ARM9 and

ARM7 (2 QCIF frames) e 117

Page xi

Table 2-1:
Table 2-2:
Table 2-3:
Table 2-4:
Table 2-5:
Table 2-6:
Table 2-7:
Table 2-8:
Table 3-1:
Table 3-2:
Table 3-3:
Table 3-4:
Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:

Table 4-5:
Table 6-1:

Table 6-2:
Table 6-3:
Table 6-4:
Table 6-5:
Table 6-6:

Table 6-7:

Table 7-1:
Table 7-2:

Table 7-3:
Table 7-4:
Table 7-5:
Table 7-6:

Table 7-7:

Table 7-8:

List of Tables

Established SOIUtIONSccceeveeuirreiiiiiiniiiiiiii e 8
Improvements t0 FPGAScccoiviiiiiiiiiieni s 10
COAISE-GIAIN AITAYS.ceveevireeeiiriitiietetereesite st ese e s s et b sttt et 12
High-level synthesis of FPGA CIFCUItIYccocenieieininieiniiiiie e 13
Reconfigurable instruction-Set PrOCESSOTS.........cvevveeereruirieieirieeseesieensn s 13
Loosely coupled processor and a reconfigurable arrayccoooevieineiicnecnen. 14
Tightly coupled processor and a reconfigurable array ..o 16
Reconfigurable computing architeCtures..........ooieieieiiinenininennenenneceens 17
Area comparison of configuration memory cells. ... 36
Area and power of different control circuit and configuration memories.............. 36
Options given to array generation t00l...........cooeirineeiininniiec, 39
Example of mapping a DCT computation to the arrays............cceeeuereenee. oo 41
Possible geometries achievale by reconfiguring a memory cluster........................ 62
Performance of the implementations of one ME processing-element from [82] ... 66
Performance of the simple DCT implementation on DA array with SRAM 66
Performance of the odd-even DCT implementation on DA array with SRAM and
array With Adder-TTee.......ccoovviiiiiiiiiii e 67
Advantages and disadvantage of the DSRA to FPGA, ASIC, and DSP 71
Example C-code and its assembled sequential and VLIW code compiled with
level-2 OptimMIZationscooiviiiminiiieniirie e eeerenne 87
Possible Instruction Cells and their Operationscoceeveveiiiinnninenieenieniencnne 91
Comparison between cross-bar and island-style interconnects..............oooceeeveucne. 93
Instruction Cells in the samMPle arrayccoceeviiniinieiiiiniirre e 101
Comparison of the 8-points DCT on RICA and DSRA ..o 101
Comparison of datapath area on 0.13um of CPUs excluding variations in program
11113 1010) o 25O OO OO PP PP PP OP PSP TP P 103
Comparing RICA with other processor, low-power DSP and VLIWSs using
BENCHIMATKS. ... evvveeeiecie ettt et r e s san s 103
C code for conventional FIR in software from TI benchmarks [121].................. 110
C code for FIR with reduces memory access using shift-registers, similar to
hardware iImplementations.c.ccocueiiriiiiiniiiniinee e 111
Measurement of improvement in shift-register based FIR filter.cccccocc... 112
8k FFT computation with the main loop fitting into a single stepccc.coceveee 114
Comparison of the performance of FFT with and without pipeline. 115
Performance comparison of the libmad mp3 decoder on RICA and ARM9 (2
1Y 115 OO OO O IO TP PP O PSPPI 117
Performance comparison of the ffmpeg H264 decoder on RICA, ARM9 and
ARMYT7 (2 QCIF frames)ccceeeeeuemeumimiirunieeeninseessssnssessessssssssesesscssnss SN 117

Profiling of the ffmpeg H264 decoder on RICA, running through 20 D1 frames 118

Page xiii

ASIC

AVC

Basic block

CLB

CORDIC

DCT

Distributed
Arithmetic

DSP

DSRA

DVB-T

eFPGA

FFT
FPGA
GPP

H.264

HDL

HLL

IC

Leaf
functions
LUT

MCU

Motion

Glossary / Acronyms

Application Specific Integrated Circuit and commonly means the use of hardwired
non-programmable silicon

Advanced Video Coding, otherwise known as H.264

A block of instructions generated by a compiler where no instruction other than the
first is jumped to, and no instruction other than the last one jumps to other locations

Configurable Logic Blocks are usually, in FPGA s, a group of several LUTs

COordinate Rotation Dlgital Computer is an algorithm useful for the efficient
calculation of trigonometric functions using a look-up-table, adds and shifts

Discrete Cosine Transform, time-to-frequency transform useful in image coding
Calculation of a matrix-by-vector multiplication using look-up-tables, adds and shifts
A Digital Signal Processor is a processor with instructions useful for signal processing
applications

Domain Specific Reconfigurable-Array, the first fabric proposed in this work

Terrestrial part of the Digital Video Broadcasting standard for transmitting TV
channels

Embedded FPGA, which is a programmable FPGA core than can be used as part of a
SoC .

Fast Fourier Transform, time-to-frequency transform useful in radio application
Field Programmable Gate Array
General Purpose Processor

Video coding standard also referred to as MPEG-4 Part 10 Advanced Video Coding
(AVC)

Hardware Description Language, a low-level programming language that describes
parallelism. Examples: Verilog and VHDL

High Level Language usually for programming a processor, €.g. C, C++, Java
Instruction Cell, the basic function units in RICA

A function in a program that does not call any other function

Look-Up-Table, usually addressable memory with pre-computed data stored in it. In
FPGAs, LUTs with programmable memory are used to create programmable gates

Micro Controller Units, can be seen as simple GPP with low mathematical processing
resources and typically slower operating frequency ’

Calculation to find the temporal redundancy between two blocks in two consecutive

Page xv

Estimation

NRE
OFDM

PLA
RICA

SDR

SIMD

SoC

VLIW

video frames

Non-Recurring Engineering is the initial design effort and costs spent to allow the
creation of end-units, irrespective of thee total number of units produced

Orthogonal Frequency-Division Multiplexing, a radio modulation technique used in
modern wireless standards such as DVB-T and WiMax

Programmable Logic Arrays
Reconfigurable Instruction-Cells Array, the second fabric proposed in this work

Software Defined Radio, a radio modem where the physical layer executes on a
programmable fabric as opposed to the traditional way of using hardwired silicon

Single-Instruction Mutliple-Data, a method used in a processor to increase speed in
computations that are data parallel where the same operation is executed on a stream
of data independently

System-on-Chip, an integrated circuit containing several cores which can be a
combination of hardwired and programmable elements

Very Large Instruction Word: a DSP processor with several operational units
(typically 8) that are able to simultaneously execute independent instructions while
sharing registers and memory.

Page xvi

Chapter 1:

Introduction

Undoubtedly, the traditional problems of hardwired Application Specific Integrated Circuits
(ASICs) designs such as inflexibility and very high NRE costs — which have been increasing
as the technology got smaller — have opened a big opportunity for reconfigurable technology
to flourish. The typical use of software solutions such as processors and Digital Signals
Processors (DSPs) for adding flexibility to ASIC designs is nearing its limits as new
performance-demanding applications emerge. This is particularly true for new complex
algorithms such as MPEG-4 and Advanced Video Coding (AVC) that require a throughput
only achievable with high DSP operating-frequencies and high power consumption. Other
solutions such as Field Programmable Gate Arrays (FPGAs) are able to achieve performance
unattainable with conventional programmable systems such as (Micro Controller Unit) MCU
and DSP processors, while providing an enormous ‘margin of reconfigurability compared to
ASICs. However, this flexibility comes at the cost of very high consumption power and
silicon area, which makes them unusable in battery-operated devices. Figure 3-1 shows the
characteristics of these discussed solutions. A current SoC implementation would ideally

include several combinations of these solutions to meet requirements.

 Page 1

To solve this problem a multitude of research projects and commercial solutions have been
proposed in several directions. One way to deal with these new requirements is to improve the
performance of current processors and DSPs. This can be achieved by increasing the level of
pipelining in the instruction issue and execution process, which boosts throughput for
instructions with a sequential and predictable execution flow. However, this comes at the cost
of wasting cycles when executing code contains conditional and unpredictable branch
instructions. Another strategy for increasing performance is to execute several instructions in
parallel as in Very Large Instruction Word (VLIW) and Superscaler processors. This usually
gives a good performance enhancement when compared to single-issue processors; however,
in VLIWs only independent instructions can be executed simultaneously and the problem is
that typical programs are not abundant in instruction level parallelism (ILP), which creates a
practical barrier to the extent of achievable performance. Although all these DSP-based
solutions offer very good flexibility, they usually have much less performance and a lot more
power consumption than hardwired ASIC solutions. The current ongoing trend for increasing
performance in processors is to have multiple cores that are able to execute multiple threads
simultaneously. Although this is a very promising approach, it still requires a lot of effort to
radically change the way programs are written and compiled so that parallelism is explicitly

or implicitly defined.

Power
consumptipn

il [AsIC

o=
~

rogrammability
Flexibility

Figure 3-1: Characteristics diagram of popular solutions and area of interest

The popular reconfigurable logic and Field Programmable Gate Arrays (FPGAs) today offer
very high flexibility compared to ASICs and higher performance than DSPs - hence they

Page 2 -

. represent a potential architecture for future implementations. In a similar way to ASICs, the
high performance of FPGAs comes from the fact that they have the ability to implement a
large number of parallel operations on their fabric. The main drawback in FPGAs is their very
high silicon area and power consumption which makes them unusable in portable and battery-
operated devices. Also — similar to ASICs — FPGAs are programmable using a Hardware
Description Language (HDL) as opposed to processors that use high-level languages such as
C/C++. In HDLs the parallelism between operations is explicitly defined, where as languages
such Aas C have traditionally been used for serial definitions of operations. Nevertheless
programmability through high-level languages is preferred over HDLs since high-level
languages are more popular as many existing designs and new standards use them.
Furthermore, programming at HDL-level requires much more effort for representing
algorithms in a parallel form. An easy programmability is crucial for the success of any
hardware architectures as it reduces the design-time and time-to-market.

As opposed to the single-chip FPGA solutions, embedded FPGAs (eFPGAs) are
reconfigurable logic cores that can be fitted inside a custom System-on-Chip (SoC) to
increase its post-fabrication flexibility. Several commercial eFPGAs exists, even though they
still suffer from high area and power overheads. Their usage is also problematic as it
complicates the overall chip design tool-flow at the verification and implementation stages.
While FPGAs are mainly a lump of programmable gates, there is currently a trend of so called
reconfigurable computers/architectures which recently gained two types of definitions. The
exact detail of the inside of a reconfigurable computer can be some combination of a
processor and FPGA fabrics, such as the case where an array implements the processor’s
ALU to effectively allow reconfiguring the processor’s instruction-set. Reconfigurable
computers can also be seen as a fabric with special programmable elements for which
software can be compiled in a similar way to processors. There are several proposed
architectures that fall in this category promising high performance gains by using FPGA-like
parallelism, while at the same time providing the ease of use found in processors. Figure 3-1
and Figure 3-2 show the different advantages and disadvantages of the existing SoC solutions;
reconfigurable computers are promising to fill the performance and flexibility triangular gap
between DSP, FPGAs and ASIC. As detailed in Chapter 2, most of the existing architectures
suffer from disadvantages in flexibility, performance, programmability or area and power
overheads. It can also be noted that most architectures were designed to have the highest
performance possible while maintaining good flexibility and hence there is no solution that

tackles the power consumption problem specifically.

Page 3

Flexibllity

Flexibility

] - ASIC
Low NRE .- Performance " Performance
Programmability -~ -~ ~ Low Power
Programmability - o Low Power
FIebelllty Flexibility
Low NRE v Performance " Performance
r/ [[
/
wd .
/
. /
Y / Wy
Programmability Low Pow er Programmability '~ ===~~~ ow Power

Figure 3-2: Estimated relative characteristics of existing architectures

This thesis explores these reconfigurable technologies and tries to extend the existing

architectures to find a solution for future portable devices. Here, we are trying to prove that it

is possible to efficiently exploit the “area-of-interest” highlighted in Figure 3-1 in order to

find an architecture that gives a better throughput than current programmable technologies,

while achieving much lower power consumption and/or better programmability. This is

explored here using two approaches: domain-specific arrays and instruction-cell arrays. The

comparison of the performance of these approaches with existing and ideal solution is shown

in Figure 3-3 and Figure 3-4.

Page 4

Flexibility

Performance

Programmability Low Power

Figure 3-3: Characteristics of ideal solution

Flexibility . - Flexibility

Jow NRE .~ . Performance|Low NRE ("(

Low Power Programmability\‘ Low Power

Figure 3-4: Estimated relative characteristics of the two proposed solutions.

The domain-specific arrays (DSRA) are based on the observation that in most SoCs the design
that would be mapped to an eFPGA is chosen at the partitioning stage prior to the design of
the hardware and that, depending on the application, only a specific portion of the eFPGA is
usually used completely for random logic. This opens the opportunity to use an eéFPGA that is
more domain-specific to the target application but which has increased performance in power,
timing and area when compared to generic eFPGA. This is usually achieved by using coarse-
grain programmable elements as opposed to the fine-grain ones in FPGAs. Although such a
domain-specific solution can be extensively designed for every application encountered, a
rapid generation of such architectures is essential to have a usable programmability. Hence,
the initial approach described in Chapters 3, 4 and 5 proposes the so called Domain-Specific
Reconfigurable Arrays (DSRAs) to semi-automatically create SoC cores that achieve good
performance, area and power consumptions while at the same time providing a margin of

flexibility to support post-fabrication changes, as seen in Figure 3-4. The DSRA approach

Page 5

proves that it is indeed a compromise between ASICs and FPGAs as it can achieve up to 3
times less power and 60% less area than an FPGA, while having 3 and 2.5 times more area
and power than ASICs. A methodology for creating and using such cores inside an SoC is
proposed, along with optimised implementations of multimedia operations.

However, the DSRA approach inherits the low programmability found in FPGAs, since it
tries to port ASICs and FPGA designs to the architecture while reducing power and area.
Chapter 6 introduces the Reconfigurable Instruction Cell Array (RICA) where the design of
the hardware fabric .is in such a way that it can accept a high-level description of a program.
The RICA can be viewed as a coarse-grain array that can be programmed in a similar way to
processors. Due to its array structure and abundant processing elements, RICA provides more
parallel processing than high-end DSPs, while at the same time it consumes lower energy.
Results show that RICA can be around 10 times faster than VLIW DSPs at a 6 times lower
power consumption in the datapath. Furthermore, as described in Chapter 7, big systems such
as full H.264 video-decoders can be quickly and easily mapped to RICA simply by using an

existing C program description.

Page 6

‘Chapter 2:

Previous
Reconfigurable and
low-power
architectures

With the high costs of current and future chip design and manufacturing technologies there is
an urgent economical need to reduce the number of required re-spins in a design and to extend
the life of manufactured devices. This can generally be achieved by adding flexibility and
programmability to Application Specific Integrated Circuits (ASICs), which allows making
changes to the design after manufacturing in order to overcome design errors and/or to
support new and updated standards. The flexibility also allows dynamic reconfiguration
which helps the system adapt to run-time constraints to improve the performance. Such
flexibility is currently achieved using software solutions; however, the use of processors and
DSPs in performance-critical applications such as portable devices is not beneficial. This is
particularly true for new complex algorithms such as MPEG-4 and Advanced Video Coding
(AVC) that require a high throughput only achievable with a high DSP operating frequency

and high power consumption.

Page 7

On-going work to find better architectures for future devices has led to several novel systems
upon which the work presented in this thesis is based. Existing and established architectures
described in the previous chapter like DSPs, FPGAs and ASICs are listed in Table 3-1. The
rest of this chapter will detail the features of all emerging and researched reconfigurable
technologies. As will be shown later, only a few of these architectures can potentially provide
suitable high performance and low-power consumption. The pros and cons of every

architecture are described to allow drawing a comparison between the solutions.

Table 3-1: Established solutions

ASIC

Pros: High speed, Low power

Cons: Low flexibility, high NRE costs, designed using HDL
FPGA

Fabric: Fine-grain look-up-tables (LUT)

Interconnects = Symmetrical Mesh

Pros: Very high flexibility,

Cons Very high power consumption, programmable using HDL

DSP, low-power DSP, VILIW, Superscaler, SIMD

Architecture: = ALU-based. Can take advantage of Instruction Level Parallelism

Pros: Programmability using high-level languages, high flexibility

Cons: Limited throughput

Multi-Core and Multi-processor

Architecture: | Multiple cores with multi-threading between core to increase parallelism
Pros: High throughput, programmability using HLL

Cons: Synchronisation between the cores currently requires manual work.

This chapter first examines reconfigurable logic structures and reconfigurable computing
architectures, i.e. systems able to execute a program-like sequence of instructions. Since
programmable interconnects represent a big contribution to flexibility of reconfigurable
systems, and consequently a considerable part of this work focused on the interconnects, the

second section of this chapter overviews the existing programmable interconnects topologies.

2.1. Reconfigurable arrays and computers
Reconfigurable arrays can be generally defined as programmable fabrics where a

circuit/datapath is mapped for execution. Even though the arrays might support partial
dynamic reconfiguration, we define a reconfigurable array any situation where the datapath
mapped is fixed temporally; the circuit usually contains its own control and datapath
elements. Reconfigurable arrays can be further classified into ones based on fine-grain or
coarse-gain elements as functional uriits._

Another class of reconﬁgufable architectures includes structures programmable to execute
both control and datapath operations. This can be further split into reconfigurable processors

which are simply a tight combination of an FPGA and a processor and reconfigurable

Page 8

computing architectures, which are fabrics that can directly .execute control and datapath

operations.

2.1.1. Fine-Grain arrays
Commercial FPGA architectures, such as [1] and [2), are fine-grain arrays, as this gives the

maximum flexibility possible. The operational elements are the Configurable Logic Blocks
(CLBs) which are mainly Lookup-Up-Tables (LUTs) with 16 single bit inputs. These inputs
are controlled by the bits from the configuration memory, making it possible to build any 4-
input logic function by changing the content of the SRAM configuration memory [41]. The
programmable elements also have the ability to register their outputs. Furthermore, a mesh of
programmable interconnects is available to connect the CLBs together to build bigger circuits.
The structure of these single-bit level interconnect is described below in Section 2.2. The fine-
grain aspect of FPGAs makes them extremely flexible and suitable for a very wide range of
application. Hence, FPGA chips are produced in large quantities which makes their usage
come with very reduced NRE costs. This high flexibility also implies very high power
consumption which prohibits the deployment of FPGAs in portable applications. In terms of
performance FPGAs have usually around 10 times longer delays than ASICs. In an FPGA
chip the energy dissipated in interconnects is about 65% of the total energy consumption,
while 30% are dissipated in programmable clock-routings and 10 blocks [4].

Although FPGAs are traditionally homogenous arrays of fine-grain CLBs, some FPGA
manufacturers recently started adding large application-specific blocks inside the fabric, such

as multipliers, arithmetic operators and general purpose processors [1].

L C L C L

Cc S C S C

BJ sram Bit

Figure 3-5: Example topology of an FPGA showing a simplified 4-to-1 LUT.

Page 9

In order to add flexibility to custom ASIC and SoC designs, FPGA technology can also be
used as embedded FPGA (or eFPGA) cores. As in single-chip FPGAs, eFPGA cores contain
the same array of programmable LUTs and an interconnect network. Existing commercial
eFPGAs are described in [5]. They represent a good development towards programmable
custom SoCs, however, designers are faced with problems due to the difficulty of integrating
these analogue-level cores into SoC. The existence of a big programmable hard-core in the
SoC makes tasks such as verifications, timings and power analysis difficult, as the
characteristics of the core are very dependent on the design mapped on it. Furthermore, the
existence of such configurable transistor-level IPs in the SoC makes the overall
implementation tool-flow complex.

To overcome this problem, embedded synthesisable reconfigurable logic was proposed in [6]
where synthesisable programmable logic to implement combinatorial functions such as next-
state circuits based on programmable Look-up-tables (LUTSs). The elements are spread in the
circuit and are suitable for small logic functions and glue-logic between the bigger elements
of the SoC. The area of the circuit in [6] is larger than the area of normal FPGAs due to the

use of synthesisable cells.
Table 3-2: Improvements to FPGAs

Synthesisable FPGA [6]

Fabric: Based on LUTs to build small logic functions and glue-logic.
Performance: The area is larger than FPGA due to the use of synthesisable switching
circuit elements.

FPGA with Dynamic Reconfiguration: DP-FPGA [7]

Fabric: Similar to a fine-grain FPGA, but supports fast dynamic
reconfiguration by storing multiple context in the FPGA memory.
Performance: The ability to support fast dynamic reconfiguration was found to

increase the silicon utilisation of an FPGA by 3-4x times.

Low Power FPGA [4]

Fabric: Fine-grain LUT based fabric, but with modified interconnects and
clock routing circuits to reduce the power. Very low-level and non-
synthesisable techniques are employed.

Performance: This architecture presents an order of magnitude improvement, in
terms of power, over commercial FPGAs, while still maintaining the
same speed.

Another problem with FPGAs is the large number of configuration bits they require (typically
in the order of 5 MBits for recent devices [1]), which makes the time required to program
these bits long. This can be a restriction if dynamic reconfiguration is desired in cases where
parts of the circuit mapped on the FPGA are idle waiting for another part to finish. Dynamic
reconfiguration of the circuit in this case would lead to better use of the available silicon. To
enable this, FPGA manufacturers started allowing partial reconfiguration of the device, which
would take a relatively short time to reprogram as long as the area reconfigured is small. On

the other hand, the DP-FPGA project [7] proposed an FPGA architecture that can store

Page 10

multiple configurations and switch between them. Even though the memory area needed to
store the configuration is large, this approach was found to increase the silicon utilisation of
an FPGA by around 3-4 times.

An attempt to reduce the power consumption of FPGAs was proposed in [4] and included a
combination of analogue circuit techniques and interconnect topologies. The approach in [3]
and [4] was to reduce the power dissipated in interconnects and in the clock-trees. Even
though the power dissipated in the CLBs is negligible, their structures were slightly modified
to provide a better overall routing capability to suit the interconnect topology (described later
in Section 2.2). On the circuit level, low-swing circuits are placed on both ends of an
interconnect line to reduce the voltage swing to 0.8V, while the rest of the circuit runs at
1.5V. This reduction in voltage improves power consumption. The power dissipation in the
global clock distribution networks is reduced by using dual-edge triggered flip-flops in the
CLB, which halves the operating frequency, however, it puts more constraints on the clock
signal generator (e.g. correct duty-cycle). A 0.8V voltage swing is also used in the clock trees.
This architecture preéents an order of magnitude improvement, in terms of power, over
commercial FPGAs, while still maintaining the same speed. The area is only increased a small
amount due to the added circuits. However; the above-mentioned circuit level techniques
would be difficultly to implement in an embedded FPGA and hard to integrate into an SoC.
Such circuit level techniques become very complex especially when trying to create a

synthesisable core, as that means that new library cells have to be manually created.

2.1.2. Coarse-Grain / Domain-Specific arrays
The efficiency of implementing an algorithm on FPGA hardware greatly depends on the

structure of the basic logic-block used in the array. As described above, commercial FPGA
implementations provide a fine-grain structure that can be used to implement a wide range of
hardware. However, this generality adds hardware overheads such as interconnects, which
affect the power, speed and area efficiency of the implementation. By making hardware
architectures less generic and more specific to a domain of applications, several

improvements can be gained in terms of power cfficiency, speed and area.

swer | ||| [wew

Fine-Grain Coarse-Grain

Figure 3-6: Fine grain vs. coarse grain approach

Page 11

As shown in Table 3-3 below, several commercial and academic coarse-grain arrays exist; the
CHESS architecture from [8] is an array of 4-bit ALUs targeting general multimedia
applications. The array proposed in [9] is based on 4-bit LUTs with reduced flexibility in
implementing random logic leading to a smaller area. The commercial D-fabrix from Elixent
[10] is another attempt to reduce the area and power overhead. Although this approach is

efficient, it still requires low-level manual coding for mapping the implementations.

Table 3-3: Coarse-grain arrays

D-fabrix/Elixent [10] (Similar: [8] and [9])

Fabric: | Homogeneous grid of 4-bit ALU units. This ALU bit-width is not high
. enough to be defined as coarse-grain, but it is wider than the 1-bit in
FPGAs. The array works as a coprocessor and the synchronisation
i between the host and the array has to be done manually.

Programmability | Programming the array is done at hardware netlist level using Handel-

: Cor VHDL.
Array i The array is not synthesisable and hence difficult to port to new
customisation { process technologies.
Performance i Timing and power comparison to other solutions are not disclosed.

benefits:

Another example of efficient domain-specific PLAs has been shown [11]: An FPGA
architecture is proposed for the implementation of reduced complexity filters using a
Primitive Operator Filter (POF). POF uses primitive operators such as shifts, additions and
subtractions in the form of signal flow graphs to replace multiplications in digital filters.
Thus, different CLB structures are described and compared. The CLBs consist of shifters,
adders and subtracters to implement POF structures, as well as latches for memory elements
and multiplexers. The multiplexers are used to route signals inside the CLB and to select the
output signal of a CLB. Different CLB granularities are investigated and their performance
compared in terms of speed and area. Since the CLBs are all connected to a single data bus,
the speed of the output throughput is limited. In [12], a similar PLA architecture is presented,
but with local reconfigurable interconnects between the CLBs, similar to the ones in
commercial FPGAs. However, the advantage of using this structure over generic commercial
ones is that the overall number of interconnects is much lower and, thus, the area and delays
are reduced. This structure is also more power efficient since less power is dissipated in the

interconnect.

2.1.3. High-level FPGA synthesis
Several attempts have been made to increase the programmability of FPGAs, trying to

automatically synthesise programs written using high-level languages into FPGA circuitry.
The first class of such tools use programming languages having a higher description level
than HDLs; this is the case of the SA-C language provided by the Cameron project [13] and

Page 12

‘Handel-C provided by Celoxica [14]. Although these languages are easier to use than standard
Verilog and VHDL, they still represent only a small subset of the standard ANSI-C and they

have their own non-standard constructs, which prohibits reusing code written in standard C.

Table 3-4: High-level synthesis of FPGA circuitry

FPGA with SA-C [13], Handel-C [14]

Programmability: | SA-C is a subset of ANSI-C without pointer and where variables
i | represent wires. In the Cameron project which uses SA-C, VHDL is
 still required to make the control logic.
| Handel-C is also a subset of C and requires existing C program to be
! re-written to explicitly define parallelism between functions.

Performance: Using these languages typically leads to 20% performance

degradation over the manual design of the FPGA circuit in HDL.

FPGA with FREEDOM [15] and [16]

Programmability: : Compiled binaries (which can be generated from any high-level
: language) are converted into a number of FSMs that are mapped to
| the FPGA.

Performance: i A speedup of 1.3-5x was observed between the FPGA exeution (on
{ Xilinx Virtex 2) and the DSP execution (an TI C64x VLIW).

The FREEDOM compiler from Binachip [15] [16] is a more successful attempt to create
FPGA circuitry from existing program binaries, which can be created by compiling a high-
level program source. The program binary, which represents a Control Flow Graph (CFG) of
scheduled instructions, is converted into a number of Finite State Machines (FSMs) that are

executed in sequence on the FPGA to achieve the same operation.

2.1.4. Reconfigurable instructions-set processors
Reconfigurable instruction-set processors can tailor the possible operations executed each

cycle by the‘ processors elements (e.g. ALU) according to the application. This can for
example be the creation of an ADD-SHIFT instruction which combines 2 ALU 6perations in

a single cycle, if the application uses this pair of operations frequently.

Table 3-5: Reconfigurable instruction-set processors

Configurable mstructlons (Chimaera [17], ConCise [18], Tensilica [19])

Fabric: ! Processors with reconfigurable fabric embedded into their pipeline
which allows creating customised instructions.

Programmability Full ANSI-C, the compiler only has to know about the extra instructions
added.

Performance The problem in such processors is that they cannot achieve a very high
throughput, as they are still limited by the typical problems of
Processors.

2.1.5. Loosely and tightly coupled arrays and processors
Reconfigurable processors are a combination.of a processor and a reconfigurable FPGA-like

structure, where all the compute intensive operations are executed on the FPGA to gain

Page 13

improvements. A large number of such processors exists [20]. Such architectures suffer from

the fact that a lot of manual work goes into designing the code for the processor and the

reconfigurable fabric — which in most cases has to be done separately. Furthermore, data and
" time synchronisation between array and the processor requires manual interference.

Two classes of such systems can be distinguished according to the loose or tight coupling of

the array with the processor.

Table 3-6: Loosely coupled processor and a reconfigurable array

Garp [21]

Architecture:

Programmability

Performance

Low-power

A fine-grain array with 2-bit CLBs acting as a coprocessor to a DSP.
The array and the processor communicate using a shared memory
block. The processor is responsible for configuring the array and for
synchronising the operations time with the array. The configuration
time is relatively slow as it requires the transfer of 6 kbytes, however,

: this is still faster than the time needed to configure an FPGA.

i The program for the array is created using a proprietary netlist
. language, independently of the program running on the processor,
i which takes care of the synchronisation.

Depending on the application, speedups between 2 and 24 times were
observed when using this coprocessor, which is quite typical of
speedups obtained between FPGAs and processors.

Not disclosed

Morphesys [22]

Fabric:

A RISC Processor coupled to a homogenous coarse-grain array of 32-
bit ALUs (containing a multiplier and a register file). This architecture
follows the SIMD model, since all the functional units in the same row
or column execute the same operation but on different data. Hence the
array is only useful for data-parallel operations, while the rest of the
(control) operations are executed by the RISC. Its main target is pixel-
processing where such parallel-data operations are common.

- Data transfer to/from the array is programmed manually into the RISC,
i along with all the required synchronisation between the two. One
advantage is that the array and the RISC can both be functioning at the
! same time.

Performance: i In operations such as DCT, Motion Estimation and Viterbi-decoding
i around a 5-10 improvements over normal CPUs is observed.

Programmability | Both the RISC and the array are programmed using low-level assembly
| language.

Customisation . Although the core is synthesisable it is not customisable.

Low-power Lower power over DSPs is claimed, details not disclosed.

Recore Systems’s Chameleon/Momium [23]and [24]

Fabric:

{ Programmability
Low-power

- The coarse-grain array acts as a co-processor to a general purpose

rocessor in order to execute datapath code (no control). Several arrays
the proposed example has 4) can be used together through an
nterconnect scheme. The processor is responsible for configuring and
perating all the arrays.

i It has the potential to achieve high bandwidth through parallel and
! distributed memory access.

i Proprietary Montium LLL language which is quite low-level.

i Benchmarks with other solutions are not disclosed.

Page 14

SiliconHive [25]

. Arrays of Processing and Storage Elements (PSE) cells built around a

ase processor. The base processor handles control applications and

 distributes datapath operations to the PSEs. Example PSEs from
. Avispa-CH1 (for SDR application) are DSP units supporting complex

. | arithmetic.

Interconnects i Done between cells using blocking FIFOs accessed from each cell.

Programmability | All the processors (base processor and PSEs) are programmed using
i standard C language, however, the timing and data synchronisation
| between them has to be coded manually..

| Fabric:

Array i The architecture is synthesisable, scalable and different types of PSEs
customisation : can be used.

Low-power & Not disclosed

performance :

PACT from XPP Technologies [26]

Fabric: ' The XPP64-Al chip is built from an 8 x 8 array of ALU-PAEs

(Processing Array Elements) with 2 rows of RAM-PAEs at the edges
. (each has 512 x 24 bit). The core supports general-purpose opcodes and
: special operation such as packed complex arithmetic. Programs are
 partitioned into datapaths for the PAE and control operations for the
host processor

Programmability Special NML language, which is quite low-level and difficult to

program.

Low-power Not disclosed

REMARC [27]

Fabric: Coarse gain 8x8 array of 16-bit nanoprocessors. Coupling between

RISC and fabric is done through registers, with some registers shared
. between both (which can be defined as tight coupling).

Performance: This approach was compared to the use of a processor with an FPGA
array, and it was found that a coarse-grain REMARC array of the same
size gives around 7 time better performance.

Page 15

Table 3-7: Tightly coupled processor and a reconfigurable array

Matrix [28]

Fabric:

Low-power

Performance and

Similar to MorphoSys as being a combination of having a RISC and an
array, but in this case they share the same configuration memory. Quite
old, has no multipliers and targets simple operations. Functional units
are 8-bit ALUs with memory and some control logic.

Not disclosed

PipeRench [29]

Fabric:

The array consists of a series of stripes each containing programmable
ALUs that are interconnected using programmable pipeline stages in
order to implement highly-pipelined datapath circuits. A feature if this
architecture is the ability to reconfigure every block in one clock (the
configuration is stored in context memory). Thus, e.g., a computation
that requires 5 different operations in series can be implemented using
only 3 blocks by constantly changing the configuration at each cycle in
a pipelined manner (stages are configured while others are executed).

Interconnects:

Programmability

Data connections are only present between two consecutive ALUs, in
such a way that the output of the previous block is fed to the input of
the next one. The processor and array communication is done through a
FIFO.

i Uses a special language which is a subset of C that only supports single
: assignments. When compiled programs are converted into a straight-

line single-assignments by inlining all the functions and loops — hence
the applications are limited to non-control ones.

Low-power

ADRES [30]

¢ Not disclosed

Fabric:

Programmability

Performance:

Low-power

A VLIW coupled with a coarse-grain array. Memory and registers are
shared between the array and VLIW to simplify the programming

i model of this processor/co-processor scheme — the only difference is
i that the register file is shared. A datapath on the array can support

limited control operations: if a loop requires small conditional
executions they get converted into predication (i.e. conditional
execution). The configuration RAM stores several contexts to allow
fast switching between them — this is also extended by the ability to
load extra configurations from the system’s main memory.

i Through C, since array and VLIW share memory and registers. Loops
i which can be pipelined and fit onto the array are automatically
i identified and mapped to the array. Data communication between the
i array and the VLIW is automatically done through the registers.

i Around 3x faster than a VLIW when mapping an application such as a
: MPEG-2 video decoder.

| Not disclosed

Page 16

2.1.6. Reconfigurable computing architecture
Although some of the architectures described below in Table 3-8 can be seen as yet another

combination scheme of a processor/microcontroller with an array of Functional Units (FU),

reconfigurable computing architectures in general are more a solution where both control and

datapath computations are naturally executed on the same fabric without the need for moving

a large amount of data or manually synchronising the operation of the different elements.

Table 3-8: Reconfigurable computing architectures

RAW [31]

Fabric:

Interconnects

Programmability

Performance

Low-power

| Array of 16 files, where each tile is a processor coupled with some
| FPGA-like"reconfigurable circuitry. Current RAW architecture targets
: high-end processing architectures as each processor has a Floating
: Point Unit. Each processor has its own instruction memory (and cache)
: and can access several banks of data memory.

| Big programmable network of switches to connect each tile to its
: neighbours. ‘

| On going work on a C compiler that allows high-level programming
 taking advantage of several levels of parallelism such as Instruction and

Thread Level Parallelisms. However, current optimised
implementations require manual low-level coding.

Hand-written and parallelised code achieved a performance comparable
to FPGAs [32].

RAW targets high-end processing and power reduction measures are

not implemented. The area is a massive 255mm’ on 0.15um.

Pleiades [35] [36]

Fabric:

Coarse grain satellites (e.g. 16-bits) units around a main processor. The
main processor executes control-dominated sections of the program
while satellites execute data-dominated computations. The system is
distributed in a sense that every satellite has its own instruction fetch
and execute. The satellites communicate between each other through
dedicated interconnects. The satellite processors could be arithmetic
modules (multipliers, MACs, etc.), memory modules, address
generators or reconfigurable arrays.

Programmability The design of the architecture and the choice of satellites to use have to
be done manually. At partitioning stages the designer decides which
loops of the full high-level program need to speeded-up using
reconfigurable fabric; then the choice of deployed satellites can be

. made and their design started. This technique can create efficient
 architectures, however, they become too specific to the application.
: Programming the satellites requires writing low-level netlists.

Interconnects i See Section 36.0.5 below.

Array Interconnects and the type/number of satellites can be made tailored for

customisation : the application.

Low-power - Not disclosed

Page 17

Tetem/RalPiD [33]

Fabric:

Interconnects

Programmability

Flexibility and

array
customisation

Performance:

Low-Power

RaPiD is a linear 1D array of coarse-grain Functional Units (FU). FU
are of the order of ALUs, multipliers and shifters. It can implement
dataflow graphs where the result of one FU is forwarded directly to
other FUs that use it. The intermediate values are stored in distributed
registers. The hardware allows two levels of configuration switching: A
fast one that can change every cycle and a slower one (the decision is
made at programming time by the compiler). A sequencer acts as a
program controller to the array for loading and decoding the
configuration — a standard RISC ALU is also provided inside the
sequencer to execute control-like instructions that are.not suitable for
the FUs.

Pipelined data buses between the functional elements. Data buses
restricts the scalability, as the number of FUs can only be increased if
data locality is maintained, which requires a lot of design efforts.

Uses RaPiD-C which, despite the name, is an assembly-level language
that allows describing multiple parallel threads. All the synchronisation
between threads is manually programmed using signals. However, the
compiler automatically performs the pipelining and retiming required.
Programming the RaPiD requires a detailed knowledge about the
underlying reconfigurable fabric

To achieve high throughputs for certain applications, a new array has to
be generated with appropriate FUs, since each RaPiD array is not

. generic enough to support all applications with a high throughput.

i In the Totem project, research is also being carried out for the
i automatic generation of custom FUs, interconnects and VLSI layout of
i the core by specifying the high-level C algorithms [132].

i For OFDM [34] application, around 6 times speed improvement over
i VLIW DSPs was observed.

i Not disclosed

TTA [38] [39]

Fabric:

Interconnects
Programmability
Array

customisation

Performance

Low-power

Uses general Function Units (FU) such as ALUs and register files
combined with Special Function Units (SFU) that execute application-
specific computations. Units are all pipelined in order to improve the
performance of repetitive loops, which is the target application of this
architecture — the TTA architecture is well suited for small applications
such as DCT, Viterbi-decoding and encryption.

Based on a bus with segmented tracks. Although the design of the bus
is simple, it limits the scalability of the system: The arrays have to be
limited to small number of units (in the order of 25).

Standard ANSI-C is supported. However, as with any processor, some
manual assembly code is required to achieve high throughput and to
make sure the timing in highly pipelined loops is met.

The arrays have to be customised to every application, since it is not
possible to create a big array containing enough units to achieve high-
throughput for every application.

Good ratio of area / throughput is achieved: High speeds can be
achieved for the amount of silicon area used, however, in some
applications an ARM9 processor can achieve a higher speed than TTA
at the cost of higher area, which, in a way, limits the application of
TTA in future devices.

Not disclosed, only area consumption is measured.

Page 18

2.1.7. Generic low-power solutions

Only a few of the previous research projects specifically target reducing power consumption,
as the majority are concerned with achieving high performance. Furthermore, only a few of
the previous works focus on developing generic signal-processing architectures with reduced
power consumption, since it is easier to achieve power reduction by tailoring the hardware to
the application. This includes low-power DSP processors such as the Hi-Perion from Fujitsu
[40], which has the flexibility of normal DSPs but with lower power consumption. To achieve
this it uses application-independent techniques, such as physical improvements in size and
circuit capacitance as well as standard methods such as pipelining and parallel MAC
processing to improve the performance and hence lower the supply voltage / operating

frequency.

2.2. Interconnect structures in FPGAs
In an ideal situation where a reconfigurable system has Functional Units (FUs) operating in

parallel, every FU would be able to connect to any other FU to exchange data. Although this
is useful, it is quite often expensive in terms of area and power consumption. Since not all
FUs need to be connected to each other at any one instance of time or in any single
application, an interconnect scheme — depending on the FU type/structure/data handling — can
be used to reduce the overall area and power usage. This section lists interconnect scheme

used in FPGA devices, which have also been reused in other reconfigurable architectures.

2.2.1. Symmetrical Mesh

The symmetrical mesh architecture, which is also referred to as the island-style interconnect,
is a popular structure found in most commercial FPGAs, which are characterised by a large
number of homogenous logic-units that are commonly connected ‘randoml);’ together. The
logic blocks are grouped into clusters of blocks (41], generally containing between 4 to 10
modules (these clusters are sometimes called slices). Each cluster contains interﬁally another
layer of interconnects between the modules themselves. As shown in Figure 3-7, the array has
fixed horizontal and vertical metal tracks run between the clusters and two types of
configurable switches are present: Connection-boxes permit the connection of a pin from the
cluster to the metal tracks, and on every crossing of the metal tracks a reconfigurable Switch-

box connects the tracks together.

Page 19

-
o

TN e

DT S I N

N SN

!

| Cluster

e T
e ;_
% .

s
el
k e
. DY] S hssisionn
O O
L I A e G

Figure 3-7: Signal routing between two clusters using switch and connection boxes.

The internal design of these reconfigurable switches and interconnect elements affects the
overall flexibility and power consumption of the array. The flexibility of a switch or
connection box is determined by the number of possible programmable connections as
defined in [43] [42]. The flexibility of these boxes affects the overall flexibility of the array
(hence routability) as well as other characteristics such as area and power consumption. As
shown in [44], the design of the boxes is dependent on the type of logic blocks used.

In [43] Rose and Brown concluded from place and route experiments with multiple designs
that FPGA connection blocks need high flexibility to achieve a high percentage of routing
completion, and that relaﬁvely low flexibility is needed in the switch blocks. In commercial
FPGAs the programmable switching circuits inside the boxes are implemented using pass-
transistors, tri-state buffers or multiplexers. ‘

Several topologies for the S-Box designs exist and their performance tends to be related to the
type of the logic cells and the application mapped to the FPGA. The main topologies are the
Disjoint [52] (used in Xilinx, also called subset), Universal [51] and the Wilton [S3]. The
work in [49] also proposes an s-box topology to support non-rectangular array forms. This
would particularly be useful for embedded configurable logic, where the shape of the array
depends on the system. In this work different types of connections inside the S-box are

evaluated to find the optimum one.
Segmented tracks

The use of long metal tracks spanning multiple logic blocks was introduced in [50] as

segmented tracks. It was found to improve speed and reduce delays due to the fact that

Page 20

applications mapped to the FPGA’s functional units tend to require long connections. A
similar approach is used in most of Altera’s devices. Several works were focused on finding
the optimal length and distribution of segments to achieve the best performance in generic
applications. Furthermore, the work in [49] [48] proposed a switch box design that is more

suited for segmented tracks where unused connections at the end of a segment are removed.
Interconnects in heterogeneous array in Pleiades

In [37] interconnect schemes for heterogeneous arrays are evaluated. The research is focused
on interconnects between the coarse block elements in the Pleiades architecture (see review
earlier) and tries to overcome the routing problems caused by having blocks with different
sizes.

Global interconnects that can connect any part of the array to another were found to be
suitable for distant connections, but inefficient for local ones. Fﬁrthermore, switching activity
of the lines is transmitted for long distances. Segmented Mesh architectures improve over
global interconnects, but they are difficult to adapt for heterogeneous arrays, as a 2D regular
grid has to be found. The proposed solution is to use a generalised mesh where wiring
channels are used along the sides of each module, with S-boxes on the crossing between the

wires, as shown in Figure 3-8.

Tx' X | X
Module Module

e ——" p—— = —
Module | 1

Module

H Module
Module

bz —"= — X

Module * = |
b ——

Figure 3-8: Generalised mesh for heterogeneous elements with different sizes in Plaides [37]

The disadvantége is that distant connections go through a lot of switching elements, which
introduces delays and might increase the power consumption. Another proposed solution is to
use a hierarchical generalised mesh with 2 levels of mesh: The elements are grouped into
clusters, and an array is made out of clusters. One generalised mesh is responsible for
interconnects inside the cluster, and a mesh with larger granularity connects the clusters
between each other, as show in Figure 3-9. The tracks are segmented at different levels in t‘he

two arrays.

Page 21

Cluster Cluster

Cluster

Figure 3-9: Hierarchical generalized mesh in Plaides [37]

2.2.2. Binary interconnect trees

The binary interconnect tree [54] is a useful alternative to the shared bus when cell to cell
connections are needed; it uses multiplexers arranged as a tree with each programmable-
switch intersection having 3 ports. The advantage of this architecture is that the number of
switches used to route the signal grows logarithmically with the distance, which means that
the overall delays introduced by the switches are lower. The disadvantage is that this scheme
it is not scalable for very high numbers of FUs nor for changes in the number of I/O pins in

each cluster.

)

.......... e

Figure 3-10: Reconfigurable Binary multiplexer-tree interconnect [54]

2.2.3. Hierarchical structures

Hierarchical interconnect structures are useful in applications where data locality is high
(neighbouring FUs are making most of the data communication) and only a few signals need

to be sent across the chip. Several studies were done on such classes of interconnect and were

Page 22

found to be efficient for some types of application [55] [56] — in most cases they can improve
the speed at the cost of increased area over FPGAs. It should be noted that even though
Hierarchical structures and Binary-Trees are conceptually the same in terms of switches, the

only difference is the layout and FU-placement used when implementing on silicon.

FU H Switch H;I FU _| Switch FU

Switch witch Switch

FU |—] switch Fu | FU |— Switch FU

FU i——[Switch Fu |

Switchl Switch

FU ’—| Switch l—'F_U‘ FU —[Switch FuU |

Figure 3-11: Hierarchical FPGA architecture [55] [56]

2.2.4. Combined structures for low-power from LP-FPGA

The power reduction measures in the low-power FPGA from [4] are mainly performed by
corribining 3 levels of interconnect:

1. Nearest neighbour: High-speed and short lines are present from each functional unit
to its 8 neighbour. Very low energy is dissipated in those connections.

2. Mesh Interconnect: Connections between central functional units that cannot be made
using nearest-neighbour connections. Those are similar to standard interconnect lines,
but the difference is that the number of lines used is lower, and hence less power is
dissipated. This is based on a segmented symmetrical mesh.

3. Hierarchical Interconnects: High-delay lines for use between large distant logic
blocks on the array. The structure is a mix of a symmetrical mesh and binary-tree

architecture with inverse clustering.

Furthermore, to reduce the power consumption of interconnects, circuit techniques are used
such as low-voltage drivers on the tracks to reduce the voltage from 1.5V to 0.8V, and hence

reduce the power consumed by switching activity.

Page 23

2.3. Summary

By surveying the existing solution and the on-going work we can identify two gaps:

1. A very large disparity exists between FPGAs and ASICs in terms of cost, power,
area, delays and flexibility. This forces applications to chose one of the extremes depending
on requirements. This gap needs to be filled with a general solution, or general platform for
creating specific solution, as described in Chapter 3, 4 and 5.

2. Amongst the large number of existing couplings of processors and reconfigurable-
arrays and the surveyed reconfigurable computing architectures there is a lack of a solution
that supports high-level programming through C and at the same time addresses critical issues

such as low-power and high-flexibility. This is addressed in Chapters 6 and 7.

Page 24

Chapter 3:
Domain-Specific
Reconfigurable

Arrays:

As described in Chapter 1, there is a need in future portable System-on-Chip designs to
achiev.e a higher computational performance than is currently achieved, while keeping the
power consumption at a minimum. Although custom hardwired ASIC designs are currently
the choice in such situations, they suffer from a high level of inflexibility and costs not
suitable for such rapidly changing requirements and markets. At the same time,
programmable solutions such as FPGAs offer flexibility but suffer from high power
consumption. Based of the results found in previous work (Chapter 2), the domain-specific
approach seems to be a promising and extensible solution for achieving a balance between
ASICs and FPGAs in order to bridge the gaps in cost and performance between these two

alternatives.

Page 25

The existing domain-specific solutions provide a good cost / performance ratio, however, they
are tied to only one application.- The main problem with the domain-tailored approach is that
it is too time consuming to design a custom datapath from scratch each time a new
algorithm/application is encountered in an SoC. Hence, for domain-specific solutions to
become useful there is a need to make their creation fast and customisable. A platform and
infrastructure to quickly allow the design of such arrays is required, and, to our knowledge,
none of the previous works focused on the fast generation of domain-specific architectures.
Such customisability is important to allow choosing the exact degree of flexibility required in
the architecture according to system-level constraints such as power, area and delays.

The work presented in this chapter can be put in perspective with previous research into
domain-specific silicon compilers carried out at the University of Edinburgh; The FIRST
Compiler {133] generates VLSI designs based on high-level description of computations. This
compiler is domain-specific in a sense that it only creates circuits based on bit-serial atomic
building-blocks; This greatly narrows the range of applications that can be targeted but gives
very high-performance circuits for computations that can be expressed within the scope of the
compiler. This compiler can also be coupled with domain-specific standard-cells, as shown in
the SECOND Compiler [134]. The work presented here takes a similar approach but
concentrates on a complete algorithm level rather than one computation, and it also adds the

flexibility criteria to the final design.

3.1. Building Domain-Specific Arrays

Ideally the platform for generating domain-specific architectures should be completely
automatic, and its only input would be a description of the application using a high-level
description language. Another approach is to make the creation of the domain-specific arrays
semi-automatic, where the designer would have to manually choose the resources required on
the array before it can be automatically created. Even though the semi-automatic
‘methodology gives more responsibility to the designer, it was chosen as a starting target for
this work as it allows an easy benchmarking of the performance in the domain-specific-arrays.
The methodology proposed gives the option to the designer to choose each element of the
array from a library of predefined elements. The elements library would be large enough to
make it possible to customise the array in terms of functionality and degree of flexibility,
which also affect the timing, silicon-area and power consumption. Furthermore, to have a
useful platform, the array creation and customisation processes needs to be fast enough to
allow testing array with a number of if-then-else scenarios to choose the best compromise
between flexibility and performance. '

According to the results in the previous work described in Chapter 1, it was decided that an

FPGA-like array arrangement and interconnect structure would be best suited for initial

Page 26

performance testing, as it would allow the reuse of some of the work done on such structures.
As described earlier, FPGAs are usually composed of functional clusters (in the FPGA case
these are Configurable Logic Blocks) surrounded by programmable interconnects in an
island-style fashion to allow connecting the clusters together. Hence, this scheme uses
independent elements for routing and for data-processing. If such an arrangement is used for
the Domain-Specific Reconfigurable Arrays (DSRAs), which are composed of programmable
data-processing clusters and data routing elements, then the elements-library would provide
different types of interconnects-circuits and operational clusters that would make it possible to
generate any array according to the desired functionality and application.
This customisability makes it possible to choose the desired amount of flexibility according to
constraints such as performance (i.e. the delays allowed), silicon area and power consumption
' of the final SoC. The generated array has to fit inside the existing SoC software tool-flow as if
it was a standard core. This can be done by generating a pre-routed silicon layout of the array;
however the resulting array would not be portable to different fabrication technologies and the
array-generation tool would need to know the details of the technology used. This is
impractical as only a limited number of processes and fabrication fechnologies would be
supported. The solution used here is to generate the array in a generic synthesisable format so

that it can be used as a standard block inside the SoC software tool-flow.

3.2. Proposed reconfigurable System-on-Chip

Since the proposed reconfigurable arrays are domain-specific, in order to perform multiple
operations a reconfigurable System-on-Chip would need to contain a number of such arrays
each targeting one computation (as shown in Figure 3-1). Usually an array would be created
for each computation that needs to be speeded up and all the arrays would run concurrently to
achieve a high throughput. The arrangement using a processor and a number of domain-
specific arrays in an SoC can also be seen as a compromise between the two existing solutions
of using a number of hardwired cores limited to an operation or using a large embedded
FPGA that could implement all operations. An SoC bus can be used to provide an easy
integration of the arrays with the processors and DSPs, however, a Network-on-Chip (NoC)
approach would be more efficient. NoCs are more difficult to implement as currently no
standard exists for them. In any approach, the processor would make the synchronisation
between the arrays, configure them, provide them with the input data and read back their
processed outputs. 'f‘he array could also have some internal interim buffers, or it could have a

Direct-Memory-Access (DMA) to the DSP’s memory.

Page 27

_3

E
o
.7

n

.‘uuuhudhﬁuhﬁihhuu:ﬂﬁ

E
&
e
=
Gl
K
i
£
Ca
%
E= -

Figure 3-1: Reconfigurable System-ip th a b of onﬁbe ys each specific to one operation.
3.3. Programmable Clusters

The proposed arrays contain separate elements for data functionality and data routing. The
clusters are the main functional elements in the array and they define the operations
executable on it. The array was chosen to support heterogeneous clusters, as this can
potentially reduce the area and silicon utilisation of the area when compared to a homogenous
approach, in case the provided functional units match the required operations. When having a
number of different clusters each of them would be responsible for one type of operation. In
such a heterogeneous array it becomes possible to add new functionality to the array by
augmenting it with new clusters. Individually, a cluster might not be able to perform any
practical operations on its own; it is only by connecting several clusters together that a useful
computation can be performed; hence, each cluster has I/O pins connectable to other clusters
using the programmable switches.

In the proposed scheme, the array is made specific to one domain of application according to
the choice of deployed clusters. As will be seen later in Section 4.2, the operation performed
by the clusters entirely depends on the application and its requirements in terms of flexibility
and performance; typically, each programmable cluster can perform a small set of operations
such as add, sub or shift. Clusters usually operate on word-level, e.g. 16-bit or 32-bits. In
contrast to generic FPGA architectures, the clusters used here are coarse grain. This reduces
the flexibility but improves performance as fewer interconnects are required as was shown in

a number of previous architectures.

Page 28

Figure 3-2: Modules, clusters and interconnects in the DSRA

Making the clusters programmable allows the support of different operations or
configurations on the same cluster. For example, an ADD cluster could perform additions as
well as subtractions. Also, an ADD cluster which was designed as a 32-bit adder can be
programmed to perform either a single 32-bit or two 16-bit addition / subtractions.
Furthermore, the clusters can be programmable in such a way as to make it possible to select
whether they should operate combinatorially or have registered outputs. Such an option can
be used to create dynamically customisable pipelines.

Once a number of domain-specific arrays have been generated for a number of applications,
the library of clusters described earlier can be compiled. With such a library, an array for any
application can be simply created by means of selecting the types, locations and numbers of

clusters.

3.4. Interconnects

The role of interconnects is to allow the transfer of data from the output pins of a cluster to
the inputs pins of another cluster so that large operational circuits can be formed. Ideally, the
switching network would allow the routing of signals between any two cluster-pins in the
array at any time. An implementation of such interconnects can be done by using a large
multiplexer on each input port of each cluster; this multiplexer would be connected to all the
output ports of other clusters and allows choosing the data to route. Although such a
multiplexer implementation would be easy to program, it occupies too much area to be
economical, and the overhead is not justified since not all the multiplexers would be used at a

single time. Hence, there is a need for an interconnect structure that reduces the overhead of

Page 29

unused programmable-switches while allowing the routing of a wide range of circuits. The
programmable switching elements also have to be combinatorial with the minimum delay
possible, as opposed to other reconfigurable architecture like PipeRench [29] where the
interconnects are registered. In the DSRA interconnects create combinatorial connections
between clusters, and any extra implementation details, such as pipelining, would be achieved
inside the clusters.

The island-style interconnect scheme used in typical FPGAs fits these requirements, since it
provides an area efficient scheme to connect the clusters together, as opposed to the
multiplexers scheme. The interconnect mesh uses connection-boxes to connect the cluster’s
pins to the tracks and switch-boxes to connect the tracks together (see Figure 3-7) to allow
sharing the programmable switches between different paths. When using this architecture,
extra effort is required to choose the optimum path between two points. Routing techniques
have been well developed over the past years and standard routing tools such as VPR [57] can
be reused in the DSRA.

Since the clusters are coarse-grain compare to CLBs in FPGAs, the interconnects have to be
adapted to the word granularity of the array. Due to the potentially large number of both
single-bit and word-wide lines, it was decided that both levels of bit widths have to be
supported by using two different levels of interconnect. The word-wide interconnects would
be wide enough to efficiently route all widths of signals. As in the examples in Section 4.2, a
combination of single-bit and 8-bits tracks can be efficiently used to route signals with widths
ranging from 1-bit to 32-bits. When compared to single-bit tracks in FPGAs, using word-wide
tracks reduces the number of configuration bits required to route signals, however, the
number of routing elements (i.e. multiplexers and programmable switches) stays the same.

In conventional generic FPGAs the configurable switches are implemented as pass-
transistors, which allow bidirectional connections between two tracks. To make the generated
array synthesisable, the configurable switches have to be implemented using tri-state buffers
if bidirectional wires are needed. Tri-state buffers are usually avoided in designs since they
may introduce instability in the system. They also increase the area and power consumption
of the interconnects when compared to pass-transistors. Using tri-state buffers allows having
longer wires since they can support higher loads [52], but such long distances are not really
needed in the DSRAS as the data is more local. Two tri-state buffers replacing a bidirectional
pass-transistor consume 8 times more area and need 2 configuration bits instead of one, hence
the design of the array should try to reduce the overall number of switches needed.

It is also possible to use unidirectional tracks which would make it possible to avoid tri-sate
buffers and reduce the overall area of the array, but it comes at the cost of reducing the
flexibility of the architecture. The usage of unidirectional tracks depends on the application’s

requirement; such optimisations are examined in Chapter 5.

Page 30

Stored cfg bit
Storelcfg bit

Stored'cfg bit

Figure 3-3: Synthesisable equivalent of a bidirectional pass-transistor using 2 tri-state buffers, consuming 8 times more area.

Inline with the remaining elements of the array, interconnects are fully customisable.
Parameters include the number of tracks, the width of the word tracks, the flexibility of the
connections and switch-boxes. These options affect the flexibility of the array, the routability
of designs, the power consumption and area of the final chip; thus they can all be set in
accordance with the requirements of the application.

As described later in Section 4.2, the initial sample array was made fully bidirectional and
with the maximum flexibility possible in the C-Boxes and the S-Boxes (defined in Chapter 2),
as the purpose of this implementation was to measure the initial performance of DSRA.

Further optimisations have been later made to the S-Box circuit (Chapter 5).

C-Box €-Box

_\ 1111 41 l
Il
Cluster Cluster Cluster
SE=EE VRN %
b4 / ~\L I
77 TN 1) -
A !
=1
Cluster Cluster Cluster
T
I
sl
— [- ' i
] 1
Cluster Cluster Cluster
‘4

Figure 3-4: Basic island-style interconnect mesh scheme with customisable single bit tracks and word-wide tracks.

3.4.1. C-Box circuit design

Connection boxes allow connecting the pins of the clusters to the tracks. Since the tracks used

are bidirectional, the programmable switches between the tracks and the ports have to be

Page 31

based on tri-state buffers. This is required for the cluster’s output pins, as show in Figure 3-5
and Figure 3-6. For the cluster’s inputs pins, either a multiplexer or tristate buffers can be use,
in order to select which track needs to be routed to the pin. For bidirectional pins, two tri-state
buffers have to be used per track. The flexibility measure Fc of a C-Box represents the
number of tracks the pin can be connected to. For the initial arrays (see next chapter) a high

flexibility of Fc=number of tracks has been chosen for measuring the initial performance.

[Decoder | [[Decose |
\/\{" g

A
v

% [
b8

3 —
Vi

PN i
Y v N T
Cluster Cluster
Figure 3-5: Tri-state buffer based C-box Figure 3-6: C-Box using a multiplexer for input pins only.
__’j N .
| > {> >
(a) (b)

Figure 3-7: Two possible combinations of the MUX and tri-state buffer for use in C-Boxes.

To improve the performance of the interconnect inverting tri-states (or multiplexers) are used,
since they have less area, power and delay than the non-inverting ones. This is possible since
it is known that each signal between two pins will go through an even number of C-Boxes (in

this case 2).

Page 32

3.4.2. S-Box circuit design

AN
Tracks —>»
\'4

AY

N
\'4

Figure 3-8: S-Box using tri-state buffers

h
N
Vv

Switch
Box

Similarly, tri-state buffers or a multiplexer can be used in the Switch-boxes. This is
investigated later in Chapter 5, as such a choice can be application dependent. Unlike the C-
Boxes, non-inverting elements have to be used, since a signal can go through an undefined
(odd or even) number of S-Boxes to reach its destination. Future examinations can try to use
inverting elements while adding a constraint on the routing program to use only an even
number of S-box connections.

Again, the initial S-Boxes tested had the highest flexibility of Fs=3, which represents the
number of different directions that a signal coming to the S-Box can go to [43]. This value
was chosen here for simplicity and can be configured by the designer according to the
requirements. The topology used was the subset S-Box (see [52] [1]), as this proved useful in

FPGA interconnects. Other topologies can affect the characteristics of the array.

3.5. Configuration Memory

The configuration bits controlling the clusters and interconnects have to be stored in a
memory device. The configuration memory contains the settings of all the configurable
switches and multiplexers in the array. This includes the settings of all the clusters as well as
the connection- and switch-boxes. Each cluster and its surrounding C-boxes require in the
order of 100-200 bits of memory. An S-Box needs around 250 bits. The large number of
configuration bits required is due to the high flexibility of the C- and S-boxes. Reducing this

flexibility will reduce the required memory and the area of the array.

3.5.1. Requirements and observations

The memory needed to store the configuration has the following characteristics which are

described below:

Page 33

o Read latency is unimportant, as no data will change quickly; this actually depends on
the rate of reconfigurability, however, it would never require changing the
configuration in a single clock cycle — for the testing purposes at least.

o The time taken to write to the memory is not crucial, as it again depends on the rate of
reconfiguration (see below).

o The data will not be read from the memory (except if debug capabilities are needed);
hence each bit-cell can have its output connected to the configurable switch.

@ All outputs need to be available at all times.

o The memory should be spread around the chip, since the memory cells should be kept
next to the switches and clusters to minimise wires lengths.

The rate of reconfiguration of the array is entirely dependent on the application. It could be
measured in months, in case the reconfiguration is only part of a firmware update or
functionality change, or it could be in fractions of a second if the application needs to
dynamically change the behaviour of the array according to external changes. Thus several
types of memory elements, such as non-volatile flash or SRAM can be used according to the
requirements.

However, the fact that the array is required to be portable to different processes and
fabrication technologies limits this choice. Flash or SRAM memory cells, as the ones used in
FPGAs, are not synthesisable. Stable synthesisable memory is restricted to flip-flops and
latches. In the configuration memory for DSRAs, all the bits of the memory-cells have to be
available all the time to constantly control the multiplexers and switches. Thus, a standard
SRAM memory block as the ones provided by foundries such as UMC, might not be suitable
as a configuration memory, since in usual SRAM block only the output-bits of the currently
selected row are available at one time. To use SRAM technology, the definition of a single-bit
SRAM cell and a controller would be needed, which requires circuit level and foundry
specific designs. Hence, a synthesisable latch or register based memory is more appropriate.
As with the bidirectional tri-state switches, the use of flip-flops as configuration memory
increases the area needed per configuration-bit by around 2.7 times when compared to
SRAM-cells. Hence, the overall number of configuration bits and programmable switches
used (or saved) in the array has a significant impact on the total chip area.

To facilitate dynamic reconfiguration of the array, it should be possible to partially change a
small data-block in the configuration memory at run time. The data change should only affect
its associated hardware and not the configured circuit for the rest of the array.

The easiest option for the configuration memory would be to use registers arranged as shift-
registers. The output of each register is connected to the multiplexer or switch it controls. The
programming of the registers can be done in a bit-serial manner by filling the shift register

with the configuration bit-stream. Each cluster and its corresponding c-boxes can be grouped

Page 34

together and a wide shift-register is assigned to it. The block would have one bit-input and
one bit-output pins for configuration. Multiple blocks can be cascaded by connecting the bir-
out of the current block to bit-in of the next block, hence a number of blocks can be

configured serially, as shown in Figure 3-9

FUENEEN 1]
(Tl EET
1 T8 ERY
3 *
[— L — B
Clu:ter ; Clu:ter | Clu:ter
[R [— >
C-Boxes |] C-Boxes / C-Boxes |

0000 000U

Figure 3-9: Example of cascading of shift-register based configuration memory.
In the extreme case, the configuration shift-registers of the whole array can be cascaded so
that the array can be configured by a single bit-stream. However, to enable quick dynamic
reconfiguration, the array needs to be split in small regions each region requiring a separate
configuration bit-stream input. In the initial design it was decided that every row of the array

has one input bit for configuration.

3.5.2. Alternatives and improvements to shift-registers
In typical FPGAs, very high current is drawn by the chip during the configuration process as

all the programmable elements would be switching on and off while loading the configuration
bitstream. According to the rate of reconfiguration, this exhibited power can become an
important factor. As described above, flip-flops arranged as a shift-register are quite simple to
operate. However, the configuration bits would have to hop between different registers,
triggering their programmable elements unnecessarily before arriving to its target flip-flop. To
avoid this needless switching activity, an extra enable signal can be used so that the output of
the flip-flops is disabled during the writing.

The other alternative to flip-flop memory cells is latches. As seen in Table 3-1, the area of a
latch is around 60% that of a register. However, the multitude of latches cannot be simply
cascaded into shift-register and require a controller to select which individual bit to program,
which adds an extra area overhead. Such a controller has been tested and designed to allow
addressing every programmable block (i.e. S-Boxes and clusters with their associated C-
boxes) individually. The controller accepts input configuration data and target block address.
Since the writing occurs in a word-serial manner, the width of the data line affects the speed

of writing and the number of decoders needed for the latches circuit (the performance

Page 35

measure below uses widths 1, 4, 8 and 16 bits). On the other hand, the width of the addressing
line for the controller depends on the number of clusters in the array. Also, internally the
controller would need to count which word of the configuration bitstream is being received so
that it can be sent to the correct latches. Since this counting scheme would affect the power

consumption it was decided to compare both grey-counters and one-hot counters.

Table 3-1: Area comparison of configuration memory cells.

Minimum area in 0.18um technology

[| —o al—--c o} | |
| | | |
| Register I i | 81 um’ /bit I
| | I |
| | P CLK P> CLk | |
—c (o] ,
48 /bit
Latch e
without controller
—{ SEL
SRAM cell B
il | 22 pm?/bit
(for e~ ——t T il
_ without controller
comparison)

The results of the area of the configuration memory (along with the corresponding controller)
and the configuration power are shown in Table 3-2. The results shown are for programming
a row of clusters having around 650 configuration bits. It should be noted that the area is for
UMC 0.18um technology and the power consumption is that consumed if all the writing was
done at the same speed. By comparing flip-flop implementations 1 with 2 we can see that
adding a signal to disable the configuration while programming results in a 33% power
reduction at the cost of 8% increase in total area. For the latches, this is not the same, as seen
for cases 5 and 8, since the power increases in 8 slightly by 5% (while areas also increases by
10%).

Table 3-2: Area and power of different control circuit and configuration memories

Routed Configuration
Implementation p
Area (pm°) | power (uW)

1-FF arranged as shift-register 52,867 488
2-FF, arranged as shift-register, disable while reconf. 57,135 323
3-Latch, grey counter, 1 bit / cycle 49,306 1561
4-Latch, grey counter, 4 bits / cycle 43,568 96

5-Latch, grey counter, 8 bits / cycle 42,324 104
6-Latch, grey counter, 16 bits / cycle 41,824 154
7-Latch, grey counter, disable while reconf., 8 bits / cycle 46,919 110
8-Latch, one-hot counter, 8 bits per cycle 45,629 133

Page 36

When comparing implementations 3, 4, 5 and 6 containing latches with grey-counter based
controllers, we can see that the best power/area performance is achieved for implementations
4 and 5 based on 4 and 8 bits word-wide data. Also we can see that the one-hot counter based
controller does not offer any advantages over the grey-code one, as it consumes more power
and occupies more area. It can be clearly seen that latches based memory is superior to the
flip-flop based one, as it consumes up to 70% less power and 23% less area (implementations
4 and 2). However, it should be noted that a shift-register implementation easily allows the
configuration data to be read back from the array, while the controller for the latch based one
does not allow this. Such a feature can be useful to verify the programming in applications

like fault-tolerant circuits.

3.5.3. Further improvements

Several techniques that are employed in existing reconfigurable systems for improving the
performance of the configuration memory can be used in the proposed architecture. For
example, fast dynamic reconfiguration can be enabled like in DP-FPGA (See Chapter 2) by
using a large RAM that temporarily stores a number of configuration-bits. The processor
could send multiple configuration bit-streams in parallel to the RAM and then one
configuration can be uploaded to the array. The transfer of the configuration from RAM to the
array occurs much faster than if the configuration was sent serially from the processor to the
array directly. With the RAM storing multiple configurations, a dynamié switch between
configurations can be made quickly and efficiently without much data transfer between the
processor and the array. Furthermore, the processor is free during the reconfiguration from the
RAM, and hence it can be used to execute other computations.

In reconfigurable architectures like Xilinx Virtex 4 [[1]] it is possible to reuse the
configuration registers as general purpose variable shift-register. In our array, it would be
possible to make the shift-registers of unused blocks configured to be used in the application.
However, several issues have to be solved, like having special configuration bits that sets
whether the configuration shift-register of the block is used or not and having c-boxes to
connect the configuration bit-in and configuration bit-out of the block to the routing tracks.
Another issue would be to make the size of the shift-register programmable and to be able to

read the value at each register.

Page 37

3.6. Design-Tools flow

In contrast to embedded FPGAs, the proposed domain-specific reconfigurable arrays are
integrated with the SoC as a normal core since the DSRAs are provided as synthesisable code.
However, the use of these reconfigurable cores adds extra steps to the design-flow as shown
in Figure 3-10. The arrays are designed in such as way that the overall SoC design-flow is
kept the same and only a small number of new tools is used. The new steps are described

below for the design-entry, verification and implementation stages.

3.6.1. Design entry and array generation

As with standard SoC system, early in the design stages of the system a vague partitioning
between hardware and software implementations can be achieved by identifying the compute
intensive computations of the target application. Regardless of the flexibility required in these
computations, they can be implemented efficiently on a reconfigurable array with the cost of
an added area overhead to the chip. Hence, depending on the area constraints a decision has to
be made on the algorithms to target, the number of arrays to be used and the flexibility of
each array. Since the arrays provide a flexibility margin, the initial partitioning can be

modified later in the design.

Clusters
Definition

/
Arays /
Parameters H Y
‘«.__| Behaviora
4 Simulation

Generatot ?
Array
C%ri!g%:rzrﬁor /4— Routing and
Configuratior
P&R RTL - Array
infc .
RTL
Simutation
Synthesis
Hierarchical GL -Array Gate-leve
P&R N7 Simutation
e ™

Static

. Powet

o Timing R

Analysis Estimation
\

Figure 3-10: System-on-Chip design-flow when using synthesizable reconfigurable arrays.

Page 38

The programmable clusters used in the array define the application of the array and its
flexibility. The clusters can be chosen from an existing library or defined as synthesisable
HDL by the designer. The use of a library of clusters improves design-reuse and reduces the
design time. To correctly design the clusters, the algorithm has to be analyzed and the basic
operations extracted. Another approach to the cluster design is to analyse the existing
hardware implementations of the algorithm and identify the common basic operators;
designing the clusters to support all the possible implementations allows controlling the
flexibility of the clusters.

Table 3-3: Options given to array generation tool

Number of rows, columns

HDL definition of clusters

Position of each routable pin (North, South, East, West)
Placement and number of each type of cluster

Type of Interconnects

Number of bit-wide and word-wide Tracks

The heterogeneous array of clusters is generated automatically from the clusters definition. A
tool was developed to read and analyse a Verilog HDL code defining the clusters in order to
generate the required connection-boxes and switch-boxes around the clusters. The array
generation program is given the parameters of the required array, such as its size, the cluster’s
arrangement inside it, the locations of the pins on the cluster, the number of tracks and the
type of interconnects (as shown in Table 3-3 and Figure 3-11). The array is generated as a
synthesisable RTL code.

module clusterl(module clusterZ(
pinl, pinZ, pinZ,.) pinl, pinz, pinZ,.)
1 i

Parameters

-Array size

-Area & Timing constraints'
-Cluster’s distribution
-Interconnects type

-etc..

-om.lo array 4 by E{ trackl, trackZ, tracki)

clusterl (pinl, pinZ, pin:, .);
c_boxl(pinl_1, pinl_Z, pinl_3I, .):
c_boxZ(pinZ_1, pini_Z, pinZ_ 3, .);
cluster:Z (pinll, pinl2, pinl3, _);
c box:(pini_1, pini_Z, pini 3, .);
c_boxd(pind_1, pind_Z, pind_3, .);

s_boxl(pini_1, pini_Z, pini_3, .);

Figure 3-11: Inputs and outputs of the array generator

Page 39

3.6.2. Array programming and testing

Mépping a design to an array is done manually by writing an HDL netlist of interconnected
and programmed clusters. This task is simple since a useful datapath is usually built using a
dozen of clusters; the number of clusters in typical circuits does not exceed 64, which does
not lead to a large netlist. The designer needs only to connect the clusters together, since the
configuration of the switch-boxes and connection-boxes is done automatically, as described in
the next section. The placement of the module, i.e. the choice of which physical cluster to use

if more than one clusters of the required type exists, is also done manually.

module DCT(1C, I1,., oC, 01, .)

shift_registerl(1C, bit _outl, .);
shift registerZ (11, bit_outZ, .);
LUT_1 (addressl, data outl,.);
LUT_Z (addressZ, dats_outZz,.);
SAC_1(data_outl, OC, .);
SAC_Z(data_outZ, 01, .);

Parameters

-Component placement
-efc..

module DCT(I1C, I11,., OC, 01, .)
i

array 4 by €(1C, 11, ., OC,.);

Figure 3-12: Inputs and outputs of the array configuration program

The routing program, which is based on the routing engine provided in VPR [57], generates
the required configuration of the connection-boxes and switch-boxes to correctly map the
netlist to the array. VPR was modified to allow it to create a configuration bitstream for the
interconnects in the array to build the input circuit. This bitstream is then used to configure
the array in order to establish. VPR was also augmented with the ability to generate the
configuration bits as scripts usable at the different stages of the design, like HDL scripts to
test the configured array (both at RTL and gate levels) and scripts for timing-analysis of the
mapped configuration (e.g. using PrineTime from Synopsys). The original VPR was also
limited to homogenous CLBs and has been modified to support heterogeneous clusters that
can each have a different number of I/O ports.

Page 40

P e e e

Table 3-4: Example of mapping a DCT computation to the arrays

module one_d_idct_seq_elements(IO, I1, 12, I3, I4, I5, I6, 17,
o0, o1, 02, 03, 04, 05, 06, 07,
clk, rst;
load_sregs, en_sregs, add_sub, clr_sac):
input clk, rst;
input [11:0] 10, 11, 12, 13, 14, 15, 18, 1I7;
output [11:0] oo, o1, 02, 03, 04, 05, 06, 07;
input load_sregs, en_sregs, add_sub, clr_sac;

wire [7:0] d0, d1, d2, d3, d4, d5, d6, d7; // Output of ROMs

wire data_sr0, data_srl, data_sr2, data_sr3;
wire data_sr4, data sr5, data_sr6, data sr7; // Output of shift-reg
wire [11:0]) 10_a, I1_a, I2_a, 13_a, 10_s, I1_s, 12_s, I3_s;
add_sub_12b addl (clk, rst, 1'b0, 10, I7, IO0_a);
add_sub_12b add2 (clk, rst, 1'b0, I1, I6, Il _a);
add_sub_12b add3 (clk, rst, 1'b0, 12, I5, I2_a);
add_sub_12b add4 (clk, rst, 1'b0, I3, I4, I3 _a);
add_sub_12b subl (clk, rst, 1'bl, 10, I7, I0_s);
add_sub_12b sub2 (clk, rst, 1'bl, I1, I6, Il_s);
add_sub_12b sub3 (clk, rst, 1'bl, 12, I5, I2_s);
add_sub_12b sub4 (clk, rst, 1'bl, I3, I4, I3_s);
// ROMs, output is 8-bits
coef_odd_even_rom0 lut0 (d0, {data_sr6, data_sr4, data_sr2, data_sr0});
coef_odd even_rom2 lut2 (d2, (data_sr6, data_sr4, data_sr2, data_sr0});
coef odd even_romd4 lut4 (d4, {data_sr6, data_sr4, data_sr2, data_sr0});
coef odd_even_rom6 lut6 (d6, {data_sr6é, data_sr4, data_sr2, data_sr0});
coef_odd_even_roml lutl (dl, {data_sr7, data_sr5, data_sr3, data srl});
coef _odd even_rom3 lut3 (d3, {data_sr7, data_sr5, data_sr3, data_srl});
coef_odd_even_romS5 lut5 (d5, (data_sr7, data_srS5, data_sr3, data_srl});
coef_odd_even_rom7 lut?7 (d7, {data_sr7, data_sr5, data_sr3, data_srl});

// Input Shift-registers

sr_12b in_sr0(clk,
sr_12b in_sr2(clk,
sr_12b in_sr4(clk,
sr_12b in_sré(clk,
sr_12b in_srl(clk,
sr_12b in_sr3(clk,
sr_12b in_srS5(clk,
sr_12b in_sr7(clk,

sac_16b sacO(clk,
sac_16b sacl (clk,
sac_16b sac2(clk,
sac_l16b sac3(clk,
sac_16b sacd (clk,
sac_16b sac5(clk,
sac_16b sacé (clk,
sac_16b sac7(clk,
endmodule

3.6.3. Verification

rst,
rst,
rst,
rst,
rst,
rst,
rst,
rst,

rst,
rst,
rst,
rst,
rst,
rst,
rst,
rst,

10_a, data_srO,
I1_a, data_sr2,
I2_a, data_sr4,
I13_a, data_sré,
I0_s, data_srl,
I1_s, data_sr3,
I12_s, data_srS,
I3_s, data_sr7,

do, 00, add_sub,
dl, 01, add_sub,
d2, 02, add_sub,
d3, 03, add_sub,
d4, 04, add_sub,
d5, 05, add_sub,
dé, 06, add_sub,
d7, 07, add_sub,

load_sregs, en_sregs
load_sregs, en_sregs
load_sregs, en_sregs
load_sregs, en_sregs
load_sregs, en_sregs
load_sregs, en_sregs
load_sregs, en_sregs
load_sregs, en_sregs

en_sregs,
en_sregs,
en_sregs,
en_sregs,
en_sregs,
en_sregs,
en_sregs,
en_sregs,

clr_sac);
clr_sac);
clr_sac);
clr_sac);
clr_sac);
clr_sac);
clr_sac);
clr sac):

¥
)i
)i
)
)i
)i
)i
)i

Three levels of simulations can be achieved with the synthesisable arrays: Behavioral, RTL

and Gate-level. With the HDL definitions of the clusters and the design to be mapped to the

array in netlist format an early behavioural simulation can be used to verify and debug the

functionality of the netlist of clusters.

This netlist is then passed to the VPR-based routing program along with the placement

information that describes where each cluster is placed on the array. The configuration bits

generated after routing can be loaded onto the array for simulation of the validity of the

routing both at RTL and gate level definitions of the array. Similarly, the configuration bits

for the array can be used to perform accurate timing analysis that depends on the

configuration loaded on the array. The gate-level simulation is useful to make estimation of

power consumption.

Page 41

It should be noted that the verification, performance evaluation and analysis processes are
done using the existing SoC tools, unlike commercial embedded FPGA architecture where
new tools need to be used. Furthermore, the synthesisable reconfigurable array does not
require extra design domains such as mixed-mode design; another advantage is that the
verification process can include the whole integrated SoC for accurate simulation, unlike

embedded hard-cores.

3.6.4. Implementation

The array is implemented as any soft-core with typical synthesis, placement and routing
software. Better performance is achieved if the synthesis of the elements of the array and their
placement and routing is performed using a hierarchical methodology. The array generation
program outputs guideline files for the place and route software to efficiently perform
floorplaning and routing of tracks. The same hierarchical methodology is used to implement
the full SoC design. Having a routed SoC allows the extraction of typical parasitic and delay
data for the array which permits having an accurate timing and power estimations of the SoC;
this also allows comparing the performance of different scenarios and configurations for the

array, which helps evaluate the overhead consumed by the added flexibility.

fle Edt View Foorplen Mace FRoulte Repert Verily Hoip

Scale: Big.Med
Mhject 1 ¥s

Region

Rorow

«
5
>
4
LR YR SR AR Y

i
LU
« By

A
s
v

|y
-

u,
b APL
!

Ol
~
./?‘

N

X “HE.S516 VY 423 996 ax ~74%5 546 av JBe 4N Sl D

Figure 3-13: Example of placed and routed arrays using Cadence Silicon Ensemble

 owm BTIDIE POAW DT AT OFDR .

I |

Figure 3-14: Example of placed and routed arrays using Cadence Silicon Ensemble showing the interconnect wires.

3.7. Problems and future work

As can be seen in Figure 3-14, one potential problem is the fact that different clusters can
have different sizes, which might lead to wasted silicon area. To overcome this, the designer
has to ensure that all the clusters and their associated C-Boxes have a similar height and
width. If this is not possible, large clusters can be split into two smaller ones, or it can also be
floorplanned in a rectangular shape to reduce the wasted area.

If the proposed architecture proves to provide good performance benefits, then a future
improvement would be to allow automatic mapping of applications to the array. This can be
done from an HDL definition of a circuit where a synthesiser would convert it to the coarse-
grain clusters. Ideally, such an operation would also be done from a higher description level

like C/C++.

3.8. Conclusion

The architecture introduced uses heterogeneous coarse-grain clusters with an interconnect
structure similar to that used in commercial FPGAs. Also, the proposed methodology
integrates well with existing SoC tool-flows. In order to create a DSRA targeting a new
application, the designer has to identify the repetitive basic operations in the algorithm and

create a programmable cluster in HDL to provide that operation. Eventually, once a number

Page 43

of DSRAs have been designed for several applications a library of clusters can be built; at
such a stage, creating an array for a new application becomes as simple and time-effective as
choosing the clusters from the library. The array generator uses the HDL definitions of the
cells and creates the appropriate DSRA. The designer can customise the type of interconnect
used, the positions and number of the clusters as well as the locations of the pins of each
cluster. Since the generated arrays are synthesisable, this software flow fits well with the
existing SoC design tools. A

Programming the DSRA takes the same effort as typical ASIC design: The design to be
mapped has to be written as a netlist of connected clusters before a configuration can be
generated for the array. Similar to FPGAs, automatic routing tools are used to hide the
interconnect infrastructure from the designer to simplify programming. The performance of

sample DSRA arrays generated using the proposed technique is presented in the next chapter.

Page 44

Chapter 4:

- Domain-specific
reconfigurable array

for video coding

The main applications that would immediately benefit from reduced power, iﬁcreased
throughput and increased flexibility are audio and video applications as well as
implementations of Software Defined Radios (SDRs). Standard_s such as MPEG-4, H.263 and
H.264 contain complex video algorithms such as Motion Estimation and DCT that require a
high data throughput. Current implementations of these algorithms on DSPs need a high
operating frequency and hence consume a high power. A dedicated ASIC hardware solution is
not appropriate for such applications, as these standards keep changing and a re-spin of the
chip is not cost-effective. Thus, such algorithms represent a good target for the use of domain-
specific reconfigurable arrays. The use of DSRAs for these applications should provide
enough flexibility to support a number of implementations while at the same time they should
offer a lower area and power consumption than FPGAs. To measure this, experimental arrays
were designed for the two main computationally intensive parts of low-profile MPEG-4

encoding: Motion Estimation and the Discrete Cosine Transform.

Page 45

The two arrays are only sample unoptimised arrays to help prove the concept of DSRAs and
to measure any potential performance improvements over DSPs and FPGAs. It should noted
that the proposed framework provides a generic solution, even though these chosen examples
are specific applications. the The array design and evaluation process includes first the
analysis of the target algorithm to identify the required operations, and then the creation of
clusters, which can be also composed of subclusters to perform the basic operations of the
application. These clusters are then combined together through reconfigurable interconnects.
To measure the performance of a generated DSRA, benchmarks are mapped to the clusters
making the array and the performance is compared to other technologies such as FPGA and
ASIC.

4.1. Overview of the targeted MPEG operations

In MPEG video, the moving images are composed of consecutive frames. Each colour image

is composed of 3 elements: The luminance (Y) and two chrominance (Cy and Cy) parts. The

images are divided into small 16x16 pixels blocks. Each block consists of one 8x8 Cg pixels
blocks, one 8x8 Cy pixels block and four 8x8 Y pixels blocks (which can be considered as
one large 16x16 Y pixels block).

The general structure for a frame encoder and decoder is shown in Figure 4-1. The encoder

computes the motion information and texture information. These data are multiplexed to form

the compressed bitstream; using which the decoder is able to reconstruct the frame. In MPEG-

4, the actual compression of video data is done at 3 different levels:

o Motion Estimation (ME) is used to reduce temporal redundancy in the image sequence, as
the consecutive frames of a video sequence tend to be highly correlated. Hence the motion
information contains the movement data between the current frame and the previous
frame.

o Transform-domain coding, here Discrete Cosine Transform (DCT), and quantisation are

used to reduce the spatial redundancy found in a single frame.

o Finally, Bitstream compression is used to compress further the generated data.

Motion Compensation (MC) is the operation of reconstructing a frame from a previously
constructed frame knowing the motion information. This is used at the decoder to reconstruct
the video. However, as shown in Figure 4-1, the encoder also requires this operation so that it
knows the previous reconstructed frame that the decoder is using. The decoder needs only to
know the motion information and the error between two pixel-blocks in order to reconstruct

the current block, and hence the full frame.

Page 46

Residue

X .. .
DCT p=] Quantisation Coding Texture
- ' Information
y
Prediction 1Q 1Q
for x(n) L] i Y
IDCT : IDCT
Residue -
I Motion = ﬂ’ Motion
Compensation Reconstructed Compensation
1...-.-....- lIlIlIlllll"....lllll:’l...l’
: Motion revious i Motion
) reconstructed ! Vectors
Estimation frame :
Encoder Decoder

Figure 4-1: Block Diagram of operations in Encoder and Decoder for rectangular objects from [130].

The MPEG-4 standard only specifies how the MPEG bitstream data needs to be formatted and
how the decoder should use the information contained in the bitstream. The standard leaves
the choice open for the algorithms used to make specific computations, hence the existence of -

multiple coding algorithms with different characteristics in terms performance and cost.

4.2. DSRA for Motion Estimation

4.2.1. Algorithm
Motion Estimation (ME) is the process of matching the current block to be coded (in the

current frame) with a similar block from the previous frame. As video sequences tend to be
highly correlated, it is easier to transmit the movement of a block between 2 frames rather
than transmitting the completely coded block.

In general a ME algorithm uses a cost criterion to compare the current block to some blocks
in the previous frame (limited within a search area) and selects the best suited one where the
error between the two blocks is the smallest. This is shown in Figure 4-2, where an area is
searched for an NxN block matching the block in the current frame. The Motion Vector (MV)
represents the 2D movement vector between the current block and the most suitable previous

block found.

Page 47

Frame n

Y ! '

R -b T F(ame n+1

AN i N L

B

R ' .

BEEEE T i

Y] . L]

= T

x (4

SAD
ABS ACC ———

Figure 4-2: Block-matching between current and previous frames.

A criterion function suitable for finding the best motion vector is the sum of Mean Squared
Error (MSE) of all the pixels of the two blocks compared. However, to reduce the
computational needs nearly all algorithms use the Sum of Absolute Difference (SAD)
function. The SAD between two blocks is the sum of absolute differences between pixels
from the current block and their corresponding pixels in the pll'evious block. For a MV of

coordinates (x,y) the SAD is:
N N

SAD,, (x, y) = ZZ|0riginal(i, j)— previous(i +Xx,j+ y} .1
iJ

Where N is the size of the block (which could be 8, 16 or 32).

A number of motion estimation algorithms exist based on the SAD calculation and differ by
the order, number and size of blocks compared as well as by the bit-width of the pixels. The
basic ME uses the Full Search Block Matching Algorithm (FSBMA, in which the SADs for
all the possible blocks in the search area are calculated and the motion vector giving the
minimum SAD is selected. This gives the best results and has a simple structure when
implemented. However, the FSBMA consumes a long computational time when compared to
other algorithms. If NxN is the size of the block and (N+P+Q)x(N+P+Q) the size of the
search area, then there are (P+(Q+1)x(P+(+1) candidate blocks to be tested. The loop needed

for the calculation of the motion vector for only one block is:

For m = -p top
For n = -p to p
For k =1 to N
For 1 =1 to N
SAD(m,n) = SAD(m,n) + | x(k,1) - y(k+m, j+n) |
End 1
End k
If SAD < SADpin
SADyin = SAD
MV = (m, n)
End if
End n
End m

Page 48

Most of the existing algorithms for speeding-up the computation are based on reducing the
number of tested motion vectors. One such popular algorithm is the Three Step Search (TSS)
[60] where the first step of the search evaluates 9 uniformly located candidate points and
selects a winner with minimum SAD. In the second step, the search is refined at the area
around the winner of the previous step. Again, 9 candidates are evaluated, but this time the
distance between candidates is halved. Finally, in the third step the 9 blocks around the
winner in step 2 are evaluated and a final motion vector is chosen. A large number of other
algorithms exists tho reduce the number of tested points further, usually at the cost of a
quality degradation; for example: The New TTS [61], Fast TTS [62], Diamond Search [63],
Spiral Search [64] (where the search moves spirally around the vector predictor location till a
threshold is passed, thus having a dynamically changing search area), M-IBOS [65], 2SMWS
[66] and hierarchical Search. Another technique to speedup the blocks comparison is to
change the tested blocks themselves, such as using size-downsampled blocks of 8x8 or 4x4

instead of 16x16 [67] or bit-downsampled of 4-bits or 2-bits insteéd of 16-bit [68].

4.2.2. Existing reconfigurable architectures
An architecture targeting ME with flexibility would ideally support all the search algorithms

listed earlier. Pervious work on motion estimation has lead to architectures providing
flexibility in the supported algorithms, however, it is very limited and not adequate to allow
changing between different coding standards.‘ E.g., the hardwired elements proposed in [69]
can be configured at run-time to support 3 different bit-widths to save power; however, only
one basic algorithm is supported. Similarly, [70] and [71] present architectures supporting
only one algorithm but having flexibility in the size of blocks and search area. The hardware
in [72] and [73] offer reconfigurable elements that can switch between two algorithms
differing by the number and the order of blocks searched.

Processor solution
Most previous flexible solutions for implementing ME are based on processors; in such

solutions the processor supports specific instructions that help in rapidly performing the ME
computation. This includes instructions such as absolute-difference calculation and
instructions for min and max calculation as in [74]. The absolute-accumulate instruction is
sometimes provided [75] to allow an easier calculation of the total SAD.

Another method for improving a processor’s performance in video applications that has a
benefit to ME is the increase of data parallelism: In [76] sub-word parallelism allows the
execution of four 16-bit operations on a 64-bit datapath simultaneously. This same Single
Instruction Multiple Data (SIMD) concept is used in the multimedia tailored ARMv6
architecture [77] which performs four 8-bit SAD calculations in one cycle. This reduces the

total processing time of 4 pixels down to 3 cycles.

Page 49

Non-reconfigurable array structures for FSBMA
Basic systolic-array architectures for motion estimation have been presented in [82] and [78].

A large number of newer architectures are improved version of these designs. Since the
computation for calculating the SAD of one candidate block consists of 4 loops, the different
systolic arrays proposed attenmpts to calculate two or more of these loops in parallel.

The work in [81] presents the four systolic arrays for the FSBMA algorithm where each array
has a different dimension and different variable projection. The processing elements (PE) of
the arrays compute subtraction, absolute computation and addition. The elements have 3
inputs (sum from previous PE, current pixel and reference pixel) and one output (sum). The
output feeds to the next PE or an adder array that computes the final SAD. The arrays
presented are used in conjunction with a local-memory that stores the current and search data
frames and a controller that controls the array and generates the address for the memory.

In [82], two systolic arrays are presented to support two data-ﬂow techniques: One array
broadcasts the previous—blobk data to all the elements in the array while the current-block data
is propagated. The other array broadcasts the current-block data and propagates the previous-
block data. The 16 Processing Elements (PE) used consist each of a subtractor, an absolute
value calculator and an accumulator. Each PE computes the SAD for one candidate vector.
Registers are used to propagate data and a large comparator is used to select the best SAD of
the 16 ones found at the output of each PE. Finally, a controller and an address generator are
used to control the operation of the PE and to feed data into them. If a change in the block
size is required, without changing the search-area, then the same array can be used as the
computations carried out remain unchanged, since only the address generator requires
modification. On the other hand, if the search area is changed, then multiple arrays can be
cascaded to support this (allocate one area for each array)

Similarly, [79] and [80] present another set of array architectures where the & and / loops
shown earlier in the code are parallelised; all absolute difference values for the SAD of one
candidate block are computed concurrently and the SAD is computed using an adder tree. The
previous-frame data is input sequentially, through shift registers and fed to the PEs after
appropriate reordering to replace the address-generator used in the previous architectures. The
shifting network of the registers is changed dynamically. Each PE has a register for storing
the previous and current data and for storing interim AD. The PE has three inputs for the
previous data pixels (delayed from adjacent PE, from registers, etc.) and a multiplexer to

select between them. The current data is also propagated between PEs.

Architectures targeting other algorithms
Special hardware exists for running specific ME algorithms, such as the one proposed in [83]

for the TTS algorithm. In this technique, 9 PEs are used each to compute the SADs of the 9

Page 50

candidate MV concurrently. A column of 9 comparators is then used to select the best MV
from the 9 SAD. The array described in [89] is targeted for the NTTS algorithm where 3
check-points (i.e. candidate MV) are used for the search, thus three columns of PE are used,
and each column calculating the SAD of one check-point. The previous data is broadcast to
-every row, while the current data is propagated horizontally using programmable-delay-
elements, which is required by the NTTS algorithm.

In [84] the same architecture presented in [78] is used, but a programmable address generator
and control unit allow supporting alternative sub-sampling algorithms, where the pixels of the
block are alternatively sub-sampled to make a N/2xN/2 block size. Similarly in [69], the
architecture from [78] is modified to enable dynamic change of the bit-width of the ME
operation in order to save power. This is achieved by using different (4) clocks to the latches

and flip-flops.

4.2.3. Cluster design

A flexible reconfigurable motion estimation array would support a larger number of different

SAD-based motion estimation algorithms and would provide a selection of bit-width,

performance, quality, power consumption and speed. This flexibility can be used at design-

time as well as run-time to adapt the system to real time constrains. By examining previous
hardware implementations of ME we can identify the following operations and elements in all
the implementations:

= Absolute-differences (AD) calculation. .

* 'Additions, subtractions and accumulation. Addition and accumﬁlation are required to
compute the sum-of-absolute-differences (SAD). Adders can be used alongside the AD
calculators to calculate the interim SAD as in the case of the architectures given in [81].
In [81] and [82] accumulators are used to find the final SAD. Finally, in [78] [85] [69],
adders are used to form an adder-tree for calculating the SAD.

» Comparison operators to select the motion-vector with minimum SAD value. The
comparators can be global for the whole SAD calculator ([81]), or local for each PE
module in the array ([87], [86], and {83]). The comparator should be flexible enough to
support maximum/minimum calculations and general comparison (greater-than, greater-
than-or-equal, equal-to).

= Registers to store the calculated AD and interim SAD values. These are useful to
implement pipelined and systolic arrangement [81], [82], [71].

* In systolic implementations [82], [88] an'd [89], the broadcasting of data using
interconnects is essential. '

= Cascading of elements and modules to change the bit-width, search area and other details

of the calculation.

Page 51

o

Multiplexing of signals to enable selecting between multiple data input signals as in the

arrangements in [82].

Allowing the array to perform all the operations would allow us to implement all these

different implementations. Each implementation has different characteristics in terms of

throughput, area usage, bit-width and search area size, which can affect the final image

quality and power consumption.

From these constrains, the following four basic elements have been designed:

a

Multiplexers: 2-to-1 multiplexers with optional register at the output. Using interconnects
the multiplexers can be cascaded to create larger input sizes. They also can be configured
to implement a two input multiplexer, a register or a connect-through wire. Figure 4-3 (a)
Adders: Modules supporting combinatorial 2-input additions and subtractions. An
optional combinatorial absolute-difference calculators, useful for SAD based motion
estimation, is also available at the output of the module. AD calculation, the difference
between the two inputs can be calculated and the absolute value can be optionally

selected. The output can be configured as a registered or a combinatorial circuit. Figure

4-3 (b)

Accumulators: Sequential accumulators which can also be configured as simple
combinatorial adder/subtracters. The accumulator contains an internal register. ADD,
SUB, ACC, the element can be configured as-adders or subtractors (combinatorial or
registered) to help calculating intermediate SADs. It can also be configured as an
accumulator. Figure 4-3 (c)

Comparators: Modules enabling the comparison of two numbers producing greater-than
and equal signal. Registers and logic are also available for finding and storing the
minimum/maximum value useful for the minimum SAD selection. This element can
compare two numbers or the input SAD with the value stored in the register, which is

helpful for determining minimum and maximum values. Figure 4-3 (d)

In typical image data 8-bit values are used for representing one colour of a pixel. Hence, the

adders and multiplexers are 8-bits wide and can be cascaded to produce higher bit count, in

case the pixels bit-width changes. The accumulators and comparators are 16-bits wide and can

also be cascaded.

Page 52

i B-A s . NOREG
SuB] M —

=S
N e S SUE [

L Ry SN PR R SRR R :
Figure 4-3: Elemems for Motion Estimation. Four of these elements are packed into a cluster.

The 4 elements described above are too small to justify the overhead in interconnects needed
if each element became a cluster, i.e. the area of these elements would be too small compared
to the area of the additional s-boxes and c-boxes that would be built around the I/O pins (the
overhead due to interconnects for typical FPGAs has been reproted to be around 90%).
Hence, it was decided that 4 elements can be packed into each cluster. The main reason is that
the cluster has 4 sides, and with such an arrangement all the I/O pins belonging to an element
can be made avaialble on the same side. This manually created organization makes the array
easier to debug, however, it might be possible to achieve better results by having a different
choice of elements inside the clusters and the sides of the I/O pins. Three clusters were
created as follows:

= MUX: Has 4 multiplexer elements.

= AD/ACC: Has 2 Absolute Difference and 2 Accumulator elements

» MUX/COMP: Has 2 multiplexer and 2 Compare elements

4.2.4. Cluster arrangement and interconnect mesh
The clusters were initially arranged in an array as shown in Figure 4-4 and Figure 4-5 . This

arrangement follows the dataflow between the cluster from left to right, although the

interconnects are bidirectional. Other array arrangements in order to provide speed and area

Page 53

improvements are possible. However for the purpose of manually generated array
configuration this uniform cluster arrangement was chosen. The interconnects used are based
on tri-state buffers and have the full flexibility described in Chapter 2, with Fc=6 (since there
are six tracks) and Fs=3. Two types of tracks are provided: Six 8-bit wide tracks for data and
six 1-bit tracks for control lines. It should be noted that the multiplexers inside the clusters
connecting the different elements together can be seen as a different type of interconnects.
Unused elements are disabled in order to reduce power consumption. The performance of this

array is measured in section 4.4.

AD7 | [muxs AD/ | [mox
MUX | | acc | |compe| | MUX MUX { | acc ||come] | MUX
AD/ | [Muxs AD | [Muxi
MUX | | acc | |come|| MUX MUX 1 | acc | |comp| | MUX
AD/ | [Muxs aDr | (o
MUX | | acc ||come| | MuX MUX 1 | acc | |comp| | MUX
AD/ | [mox ADr | [muxe
MUX 11 acc | comp] | MUX MUX 1 | acc ||comp|| MUX
AD/ | [Muxs A0/ | [mux
MUX | | acc | |comp| | MUX MUX 1 1 acc | |compe| | MUX
AD/ | [Muxs AD/ | Mo
MUX | | acc | |comp] | MUX MUX 1| acc | |come || MUX
AD/ | [Mux AD/ | [mox
MUX | | acc | |comp] | MUX MUX'| | acc | |come| | MUX
AD/ | [mux A0/ | [Muxs
MUX | 1 acc | |come| | MUX MUX 1 1 acc ||comp] | MUX
Figure 4-4: Possible array arrangement of cluster
Muxs | =3 AD e mox-e mux |
REG {g=1[NACC C‘OMR&E] REG
PareN e NI
:m:lItN NM WMI_D(X T
=< o n % =z I y
muxs |IEH aor Y= muxs |5 muxs 11
REG HH1| ACC EEJ COMP 151 REG ' L ADD/
:m:m % 1_57%\1 =N m % Sec
] ot &zl m AcC
Mux/ |BEH ADy [[EH ™ 0=H muxy “x=zc |
REG (E5)| ACC |e=| COMR 6= REG <mH83¢ ¥
<+ >es>
I | | 4 7 ggalT™
[| | |
jﬂé@u« 4@&&@%75} m'm | QBS;
% TRt M7 S E R ACC
muxs |5 ADr |IEH muxs |05 Muxs 11
REG {&=f1| ACC || COMP [551| REG 2R

Figure 4-5: Array arrangement of cluster, with each cluster composed of 4 modules.

Page 54

4.3. DSRA for DCT
4.3.1. Algorithms

Once motion estimation is calculated, the colour difference between the pixels of the two
blocks is coded and transmitted. To reduce the spatial redundancy further, difference data is
coded in a transform-domain. (DCT is also used to code a block that has no reference to a
previous frame, in so-called INTRA frames). Thus, by applying a Discrete Cosine Transform
(DCT) [90] to the 8x8 pixels blocks, the distribution of the data coefficients is changed in
such a way that it is easier to quantise the data without losing much quality. The enerjy of the
resulting DCT coefficients tends to be concentrated around the DC coefficient (at location
(0,0)), and a large number of small coefficients can be effectively quantised to zero. The 2-D
DCT operation is done using the following equation:
F = c(m)c(n) Nz:”i[3 (2m+1)-u7[j.cos((2n+l)~v7rj]
070 2N 2N

A N-point 1-D DCT of the input x// is defined as:

AL PN (2i+1)-un)
X, —-c(u) gx(z) cos(——zN (4.2)

Which consists of a vector by matrix multiplication. Thus for N=38, it can be written as:

Y, | c, ¢, C, C, Cy, C, C, Co] [X]
Y, 1 G, Cs G - ¢, ¢ -G =G X,
Y, c, ¢, -c, -C, -C, -C, C, C, | |X,
L_, () ¢, -C, -C, -Cs -C; G C, -Cy |X, @3
Y, c, -¢, -¢, ¢, ¢ -C, -C, C, X,
Y, c, -¢, ¢, ¢ -=-C, -C, C -C5| |XS
Y, c, -¢, ¢, -C, -C, C, -C, (X,
Y, | c, -¢ ¢ -¢ ¢ -C G -G [X;

Equation (4.3) can be seen as N parallel FIR filters with common input data X.

1-D DCT Implementation
Different popular techniques exist for implementing a 1D DCT. These techmques can also be

mixed together as described below.

Dataflow Graph

A direct parallel implementation of equation (4.2) would require 64 multiplications and 56
additions (for N=8). Various schemes exist to reduce the complexity required to carry this

calculation; these schemes usually reorder the input data in such a way that the computation is

Page 55

simplified. This is the basis of fast DCT algorithms. These algorithms also rely on the fact
that some output coefficient can be computed recursively using previously computed outputs.
The dataflow presented in [91] requires 16 multiplications and 26 additions. The dataflow
graph is shown in Figure 4-6, where an arrow (=) represents a subtraction and a circle
corresponds to a multiplication. Similarly, the dataflow presented in [92] uses 11

multiplications and 29 additions.

o)

o4

02

Figure 4-6: Dataflow graph for 8-points Chen fast DCT algorithm [91]

As the DCT is usually followed by quantisation (Q), it is possible to further simplify the DCT
computation such that each output of the DCT is scaled by a factor. This factor is
compensated for in the quantisation process and hence the name of such a DCT is as scaled-
DCT. The work in [108] presented a flowgraph for a scaled DCT which reduces the number

of multiplications to 5 and 25 additions.

Distributed arithmetic
In Distributed Arithmetic (DA) multiplications by fixed coefficients are carried out using a set

of shift accumulates to reduce the complexity. The computation is distributed in the sense that
the b-th bits from all of the input variables are processed simultaneously and not, as in
conventional multiplications, where all the bits from one input variable are processed at a
time. This becomes very efficient for situations where a set of input data is multiplied by
several constant coefficients, as is the case in DCT and constant matrix multiplication. By
using the bit representation of the input signals x;, the following vector multiplication:

y= Zkl:] Ay - x,

This equation can be reorganised and written as the following, where xy), is bit M of input x:

Page 56

i Ay g - Ay A+ Xy - A]-2°

_ A g A A A2
M

Ay + Xy Ay A+ Xy A] 278

y (4.4)

As it can be seen in (4.4), the multiplication is written as bit-level AND, addition (OR) and
shift operations. Each term:

I, =x, A +Xx,,- A, +A + Xy, - Ay

can be calculated using AND operators and an adder-tree. However, this is usually performed
using a memory containing the pre-computed values, as shown in Figure 4-7. A fully parallel
implementation of an N-point DCT using equation (4.4) would require N memory elements,
each containing 2¥ words. The outputs of the ROM is fed to an adder-tree with integrated
shifting (done using interconnects). Several techﬁiques and algorithms exist for reducing the

amount of storage needed [93].

Data Address
{ C 000000C
Ac 0000001
Al 000001C
Ac+A 0000011 I
2% words { A 000010¢ L, o
ActA 0000101 16
A+ A 000011C
ActAI+A: | 0000111
Az 000100C
\ :
11—
Xie Xt Xt Xkt
() J
~
Address

Figure 4-7: Use of memory in Distributed Arithmetic

Systolic arrays
The DCT computation can be rewritten as a recursive relationship between the DCT

coefficients as described in [94]. This leads to a systolic implementation using processing
elements (PEs) array, where each PE takes the result of the previous PE and applies twiddle
factors multiplications and additions to get the new output. The 1-D array involves 2N
multipliers and requires N cycles to compute a 1-D N-point DCT.

In [95], the previous recursive algorithm is merged with a fast DCT algorithm to generate an

array that contains only /og,N multipliers, while maintaining the same throughput.

Page 57

Digit-serial and bit serial arithmetic
To reduce the area used by bit-parallel arithmetic units, bit-serial adders and multipliers can

be used. The logic used is minimised, however, B cycles are need to perform a B-bit
computation. The wiring overhead and interconnects are also minimised, as only 1 or 2 wires
need to be routed per interconnect. This reduces the power consumption, but prevents the
exploitation of signal correlations possible in bit-parallel implementations. The Digit-serial
technique is a trade-off between bit-serial and bit-parallel, where computation is carried out
on several bits at a time and the required clock cycles are reduced.

Digit and bit serial arithmetic can be applied to any implementation, such as dataflow or
distributed arithmetic. Bit-serial is well suited for DA, as the input data is processed at one bit
from each input variable at a time (see above). When using bit-serial with DA, the adder-tree

in DA becomes an accumulator.

Other techniques and combinations
Other techniques include replacing the multipliers by CORDIC calculators [96], [97], [98],

which is a cost-effective method to perform rotations on vectors in the 2-D plane. This can be
combined with DA as in [99].

The combination of a fast dataflow algorithm and distributed arithmetic to replace fixed-
coefficient multipliers is used in [100] and [93]. This permits the implementation of a DCT
with low ROM requirements.

The implementation in [101] uses 3-bit digit-serial arithmetic and DA along with a fast DCT
algorithm based on the dataflow reduction. This implementation finishes the computation in 3
times fewer cycles than the bit-serial implementation, however, in terms of DA LUT memory

3 times the size is required.

2-D DCT Implementation
The computation of a 2-D DCT is generally derived from the 1-D DCT calculation. Using the

row-column decomposition technique where a NxN 2D DCT calculation can be computed

using two N-point 1D DCT calculations:
[YNxN] = [CNxN] [x] [CNxN]T

The Crwvx/[] calculation is done on the N rows in x//, and the second DCT is done on the N
columns of the intermediate result. Thus, the 2D DCT is implemented using 2N 1D DCT
calculations and a transpose operation. Usually, two DCT modules are used. However, in
some implementation only one module is implemented in order to save area, as in [102] and
[101].

In other techniques only one DCT module is used to compute N 1-D DCTs, and the second

DCT module is replaced by simple add and shift operations on the intermediate output result,

Page 58

as in the polynomial transform technique [103], [104] and [105], the second DCT module can
be replaced by simi)le additions and shift operation.

Alternatively, a systolic implementation can be derived by using a recursive algorithm [106].
The number of multipliers is Jog,N, and no transpose memory is needed.

Amongst the implementations listed in this section, DCTs based on Distributed Arithmetic
(DA) are the most promising in terms of flexibility, since DA can be adapted for other
algorithms such as the Discrete Wavelet Transform (DWT); hence the DSRA designed was

chosen to target DA implementations.

4.3.2. DCT using Distributed Arithmetic

A 1-D N-point DCT bit-serial DA implementation would consist of N shift-registers for
parallel-to-serial conversion, N LUT memories and N shift-accumulators. All the N memories

receive the same address. The 8-point 1-D DCT is shown in Figure 4-8 and Figure 4-9.

25¢ 16-bit o
Words / > Shif > —
12-bit 8-bits Acc
Shif p—F_—r
Register
25¢ 16-bit o
1201 Words / 2 Shit > —
! ., Shit , A 8-bits Acc
Register
|
H 25¢ 16-bit N o
12-bit Worfjs ! - ihif L —
L3 3 Shif A 8-bits cc
Register

Figure 4-8: Simple DCT implementation using distributed arithmetic without memory reduction.

3 16-bit . .
Words / > Shift f—rt—— >
= 12:6it 12:bit 8bite Ace
+ — snin bt
Register
3 . 16-bit . B
. Words / Shift L —1
. i 12:bit 12-bit
> + it y 8-bits Acc
I—— Register
| |
! | I i
{ | | "
t . . 3z . 16-bit . o
- Words / Shift 7 >
[S i E 8-bits Ac
f— 5 - Register

Figure 4-9: Implementation of DCT using odd-even decomposition for memory reduction.

Other DA-based implementations that the DSRA should support include a number of possible
DCT implementations using DA, such as the one presented in [107] where COordinate
Rotation DIgital Computer (CORDIC) computations are used to reduce the memory size, and
in [101] where 3-bit digit serial arithmetic is used to improve the throughput of the array. The
odd-even decomposition technique also described in [101] and shown in Figure 4-10 can be
used to reduce the memory size by using adders and subtracters at the input. More details can

be found in [109].

Page 59

rmrr} [e Rag

a | smntkes ff] CORDC
3 128t | [2en B, U corme § 12817 ¥5
. T 1 sknres i +
x1 12BIT l_| 12bit ::{ cori Y3
i sw-z/lﬂf/—' i

Figure 4-10: CORDIC Rotator Based 8-Point DCT Implementation mapped by Sajid Baloch to the array [109]

4.3.3. Clusters

General DA implementations require shift-registers, memory elements and shift-
accumulators. Additionally, to accommodate for a wider range of algorithms such as odd-
even DCT or reduced-memory DA, adders and subtracters are needed. Hence, two types of
clusters have been identified and used in the proposed DSRA: Memory clusters for LUTs and
add-shift clusters for making add/sub/shift and accumulation.

As described in section 9.512.5, the memory cluster is responsible for performing the pre-
computed addition from Figure 4-7. The idea in DA is to make this computation pre-
computed using a Look-up-table (LUT) to speed up the calculation. This is useful in ASIC
designs, as the fixed LUT is translated into simple gates. However, to make this LUT
programmable in the DSRA hardware, we need to use a programmable memory such as
SRAM, which occupies a large area. Hence, we decided to also test the performance of a
DSRA array with an adder-tree cluster that provides the same functionality as the memory-
cluster by directly performing the addiction operation. In FPGAs, the LUT gets translated into
a connection of fine-grain programmable gates; such a programmable logic is another
potential implementation for the LUT. This was not tested, however, in theory the adder-tree
solution can be seen as a more tailored (hence more efficient) version of such programmable

logic that supports random fine-grain datapaths.

Memory cluster using SRAM

The memory clusters are used to implement the LUTs in the DA using SRAM. A dual-port
512-bit SRAM, organized as 64 words 8-bits per word, is used as the basic memory element.
Four such memory elements are grouped together to form a 2K-bit memory cluster. The

grouping is performed using logic to enable the configuration of the cluster as a memory with

Page 60

all the possible geometries listed in Table 4-1. The logic used is similar to the one presented
in [58]. It should be noted that each memory element can be turned off and on separately;
hence, allowing the lower sized memories of Table 4-1. Each of the modules can be accessed
separately, or all the 4 ones can be combined to form a big memory. In such a case, only one

port needs to be used. This also reduces power consumption in unused memory.

512 bits 512 bits f—pl—r

N
)

7

>
512 bits 512 bits | &/
€7

Address[€] S€
decoder

L)

Figure 4-11: Example of combining memory-elements together vertically and horizontally.

| 512-bit 512-bit Date

Figure 4-12: S-RAM based memory cluster

Having elements with these memory sizes enables the realization of basic DA
implementations, as well as those with reduced memory described above. Clusters of memory
can be further combined together using interconnects to make wider memories. Dual-port
memories were chosen due to the easier configuration: Data is written during configuration on
one port and read during operation on the other port. The initial content of the RAM (which

reflects the coefficients) is part of the configuration data.

Page 61

Table 4-1: Possible geometries achievale by reconfiguring a memory cluster.

Bits per word
Word Size | 8-bits 16-bits | 24-bits 32-bits
64 v v v v
128 o v
192 v
256 v

The fact that this cluster uses SRAM makes it very flexible in terms of possible applications
and not specific to DA. For comparison to the adder-tree cluster below, this cluster has an
area of 0.lmm’ on UMC 0.18um. Also, the SRAM from UMC can be clocked at a maximum
frequency of 250MHz, which gives a response time of 4ns.

Adder-tree cluster

This cluster implements the same operation as the previous one, i.c. the computation from
Figure 4-7, but using an adder-tree without precomputing the values in a table. The coefficient
values Ay, A,...A are part of the configuration stream. As shown in Figure 4-13, each cluster
contains four independent sub-modules, each summing having 8 inputs. The internal
configuration to each cluster allows combining these sub-modules together. Also, in a similar
way to other clusters, adder-tree clusters can be cascaded together to make bigger trees. The
output can be optionally registered. Registering the output is useful in this clusters, since the
output of the adder-tree has more intermediate switching activity than other clusters; the
register in this case would prevent this useless activity from propagating. Also, the register
would make the operation of this cluster compatible with the previous SRAM based one.

Unlike the previous SRAM-based clusters, the use of this cluster is very limited to distributed
arithmetic implementations, as this is the only application that would benefit from such an
arrangement. However, on UMC 0.18um, the adder-tree cluster has an area of 47,258um’, i.e.
2.13 times smaller than the SRAM based alternative. However, in terms of delays it is slower
(as expected) than SRAM: If several sub-clusters are used to make an 8-input adder tree the
delay was measure to be 14.02ns, which is around 3.5 times that of the above SRAM-based

cluster.

Page 62

—{X] Coef_
—0

X Coef_2
—0

L—{X] Coef_3
—0

X Coef 4
—0

f_1

C N D)
(] v i —iX] Coet_
i =y T
—.r?_ X Coef_2
 JFroeebi —C
22 {5 Coef_3
—
= s —X] Coef_4
_/ W, —0
C M)

X
o—
X
0
X
Pl
X
0-—

| 4800
¢ 4200
€ 3900
¥ 4900

Figure 4-13: Adder-tree cluster.

Add and shift cluster

The add-shift modules provided can be configured as:
= Parallel, digit-serial or bit-serial adders/subtractors.
= Shift registers that can be used for parallel-to-serial conversion. Right and left shifts
are supported.

= Accumulators with optional shift-accumulation.

Each module is 4-bit wide; four modules are grouped into a cluster and configurable switches
are provided between them to support cascading to get wider bit ranges (up to 16-bits) in a

similar way to the clusters used for ME. Wider operations are possible by cascading multiple

clusters.

Add-Shift
Cluster

Figure 4-14: Add-Shift cluster.

Page 63

4.3.4. Clusters arrangement and interconnects mesh
Again, the columns were manually arranged according to the dataflow as shown in Figure

4-15. As can be seen, the number of add-shift clusters used is three times more than that of
memory clusters. This allows the mapping of a wide range of applications. The arrangement
of the clusters in the array is performed at design-time and according to the required
application and flexibility. The array containing the adder-tree clusters would have them in

place of the memory clusters shown.

581
8|28 ||%| |28
HIEIE
48|28 48 |28

55|
AHEHELEL

Mem Mem

$%||£8| 4% |28
g8 ||48||2%) |48

Figure 4-15: Arrangement of the clusters in the array. More add-shift clusters are used according to the needs.

The interconnects used are based on six 8-bit tracks and six 1-bit tracks provided for both data
and control lines. As with the array for ME, the full flexibility interconnects from Section

4.2.4 are used, with C-boxes having Fc=6 and S-boxes having Fs=3.

4.4. Performance

4.4.1. Benchmarks

The motion-estimation architecture from [82] shown in Figure 4-16 was implemented using

the module described above. In this implementation, 16 PEs are used simultaneously to

compute the SAD values of 16 candidate motion-blocks. The block size is 16x16 and the

search area is 32x32 pixels wide. The current motion-block data is propagated through the

PEs (signal c), while two pixels from the search-area are broadcasted to the PEs (signals p and

p). Each PE is composed of a multiplexer, a register for propagation, an absolute-difference

calculator, an accumulator and a comparator for selecting the minimum SAD calculated on

that PE, as shown in Figure 4-16. Thus, one PE can be mapped to 3 clusters; this was

manually done as follows:

= A cluster of four multiplexers and registers for implementing one multiplexer and one
register.

= A cluster of two absolute-difference calculators and two accumulators for implementing
one of each.

= A cluster of two comparators and registers and two multiplexers to implement one

minimum-value finder.

Page 64

Clearly, the mapping of elements is not the most efficient in terms of area usage since it was
performed manually. An intelligent automatic mapping process, similar to the ones found in
current FPGA implementation software would have produced better results in terms of area
and timing.

To implement a full ME hardware, further clusters for implementing the generic control
functions such as counters and state machines are needed for the purpose of this benchmark;
these controller has been simulated as hardware. The ultimate goal of the project is to provide
a library of clusters that include elements for executing Finite State Machines (FSMs) as
described in the derived project [110].

(9]

k o |

-
0
4

mox | o —— 0

| | ags 'R

1 PE I min SA ‘
Minimum SAC

ACC !

REG L /
Min_SAD =
0“ {}u U"- | " PE Local min Sﬁg

Figure 4-16: Mapping of a PE from [82] using 7 modules from 3 clusters.

U A
G o . T
U PE Local min SAH \

The simple 8-point 1-D DCT calculation without memory compression and the DCT with
odd-even decomposition described in Figure 4-8 and Figure 4-9 were implemented on the
RA. The DCT is implemented using 12-bits input coefficients and 8-bits output coefficients
from the LUT, which results in a 16-bit output values. The first DCT without memory
compression has been manually mapped such that:

= A 12-bits shift register is mapped to three add-and-shift elements part of one cluster.

= A 2-Kbit memory is mapped to four memory elements found in one cluster.

= A 16-bit shift accumulator is mapped to four add-shift modules part of one cluster.

In the second DCT implementation with odd-even decomposition the mapping was similar to
the previous one but with the following differences:
= The 8-bit adder/subtractor at the input is mapped to two add-and-shift elements part
of one cluster.
= The 32x8 bit memory is mapped to one 256x8 bits memory element found in one

cluster.

Page 65

Both implementations were carried out using the Memory-LUT and Adder-tree version of the
array. Other DCTs and DWTs were implemented by Sajid Baloch on the same array as part of
his work [109]. However, the performance of these implementations were not measured and
not listed here.

The same benchmarks were also implemented using standard hardwired ASIC and using a
commercial Xilinx Virtex-E FPGA. ASIC and Virtex-E: All of these systems use a 0.18um
CMOS technology and are powered at 1.8V. In the case of the DCT, they all run at I0MHz,
and for the ME, the operating frequency is 30MHz. The power, area and timing
measurements for the hardwired and the DSRAs implementations are done using post-layout
simulations vectors with typical switching activity and accurate parasitic and load
information. Synthesis was performed with Synopsys DesignCompiler, the layout with
Cadence Silicon Ensemble, power estimation with Synopsys PrimePower and timing
evaluation with Synopsys PrimeTime.

The area estimation on the Xilinx Virtex-E FPGA is based on the estimate that the area of one
slice, its surrounding routings (C-boxes and S-boxes) and its belonging configuration memory
occupies 3303 pm®. This estimation was found by taking the approximate area of the Virtex-E
core without I/O pads, memory blocks and clock buffers (from a die photo[111]) and “dividing
it by the total number of slices in the chip. The power measurement of the FPGA’s logic was
made using Xilinx XPower. The power includes only the logic cell and its belonging
configuration memory, but not any I/O port, clocking buffers or other memory elements.

The performance in terms of area, power consumption and maximum frequency is shown in
Table 4-2 for the ME implementation and in Table 4-3 and Table 4-4 for the DCTs. In the
case of the DCTs, the values are measured for one row only of the array; the result for a full

1D DCT or a 2D DCT would be similar.

Table 4-2: Performance of the implementations of one ME processing-element from [82]

.18um ASIC [DSRA Xilinx's Virtex-E
Area (um?) 8,594 32,207 (178,362
Power consumption (mW) |0.68 1.08 4.37
Max Freq. (MHz) 440 111 90

Table 4-3: Performance of the simple DCT implementation on DA array with SRAM
.18um DSRA & | DSRA & | Xilinx's
ASIC SRAM Adder-tree Virtex-E

Area (um®) 17,483 | 212,135 172,212 234,510
Power consumption. (mW) 0.52 1.922 1.531 3.2
Max Frequency (MHz) 210 ¥ g4 68 50

Page 66

Table 4-4: Performance of the odd-even DCT implementation on DA array with SRAM and array with Adder-Tree
.18pm DSRA & | DSRA & | Xilinx's
ASIC SRAM Adder-tree | Virtex-E

Area (um®) 10,518 235,234 | 143,872 267,725
Power consumption. (mW) 0.48 1.50 1.28 2.9
Max Frequency (MHz) 250 77 68 66

Normalised Average Performance

BASIC
@ DSRA
[| I ~---@ Virtex-E -

Area Pow er Maximum Freq

Figure 4-17: Average performance of DSRA in all benchmarks

Area
From Figure 4-18 below, it can be seen that the relative area of the DSRA compared to ASICs

and FPGAs greatly depends on the application running and design of the clusters in the
DSRA. On average (see Figure 4-17) the area of the DSRA is 12 times that of the ASIC,
while being around 60% of the FPGA’s occupied area. The relative performance figures are
better in the case of the motion-estimation implementation, as they are closer to the ASICs

one than the FPGA (the DSRA is only 3.7 times larger than the ASIC).

Relative Area
----------------------------- B------1 m ASIC
____________________ Hl-----1] obDsraA
____________________ ﬁ |l _____ O Virtex-E
B §
ME DCT-1 DCT-1 AT DCT-2 DCT-2 AT
SRAM SRAM

Figure 4-18: Relative area comparison of DSRA wit ASIC and FPGAs.

Page 67

Power consumption
When examining the power consumption we can see that the power consumed by the DSRA

is indeed a middle-ground between ASICs and FPGA: It is on average 3 times lower than
FPGAs while 2.5 times larger than ASICs. Again, this also depends on the DSRA and
implementation — in the case of DCTs with SRAM-based clusters, the power consumption is
only 40% less than in FPGA; this is caused by the fact that using SRAMs for implementing
such tables is not much more efficient than using the LUTs in the FPGA.

Relative Power Consumption

mASIC
0 DSRA
0O Virtex-E

mli i w0l mitl mll
ME DCT-1 DCT-1 AT DCT-2 DCT-2 AT
SRAM SRAM

Figure 4-19: Relative power comparison of DSRA wit ASIC and FPGAs.

Timing
From a timing perspective, the implemented DSRAs are on average 20% faster than the
FPGA, while being 3 times slower than ASICs. The best speed is observer for the DCT with
SRAM case where the DSRA achieve around 40% the speed of ASIC. This increase in delays
comes as a price for the increased flexibility due to the extra over head introduced in the

reconfigurable switches and the higher-loads and longer routings.

Relative Maximum Frequency

mASIC
0O DSRA
O Virtex-E

ME DCT-1 DCT-1AT DCT-2 DCT-2AT
SRAM SRAM

Figure 4-20: Relative maximum frequency comparison of DSRA wit ASIC and FPGAs.

Page 68

4.4.2. Comparison of the DCT implementations

When comparing the DCT with adder-tree cluster and the DCT with SRAM-based clusters, it
can be clearly seen that the SRAM achieves slightly higher speeds (13% higher) at the cost of
much higher area (increases between 25% and 60%) and higher power consumption (20%
higher). The higher area in the case of the SRAM is not only caused by the large space
occupied by memories, but also due to the fact that the size and dimensions of the SRAM
cluster are larger than the add-shift clusters. Hence, organising them uniformly into an array
leads to wasted area. This is not the case for the adder-tree cells, as they have a similar area to
the add-shift clusters. .

The odd-even decomposition in the DCT requires less memory due to the smaller LUTs;
however, an extra adder/subtractor is required per row. This is reflected in the area used by
the second implementation, which is 10% higher than the first one. ‘

Power consumption is reduced by 22% in the second implementation due to the fact that the
adder/subtractor consumes less power than the large memory. ’fhe maximum frequency is the
same in both implementations, due to the fact that the largest delay is between the output of
the shift-registers and the output of the shift-accumulator, and not at the input. It is also
possible to implement the adder/subtractor as bit-serial elements after the shift-register, but
this may introduce extra delay.

Similar results are found when comparing the ASIC and the Virtex-E implementations of both
DCTs.

4.4.3. Measurement of overhéad

When compared to hardwired solutions, the added programmability comes at the expense of
an overhead in power and area consumption. In this case this overhead can be effectively seen
as the average contribution of the interconnects (C-Boxes and S-Boxes) and the configuration

bits is to the total area and power of the array.
Power overhead

When modules and clusters are unconfigured and if there is no activity at their inputs, they
exhibit only static power consumption. In the case of unconfigured C-boxes, some switching
power is dissipated when the output of the cluster connected to the C-box is switching.

The total static power consumption of the array was measured to be only 0.03% of the total
power consumption. Hence we can consider that static power consumption of unconfigured
fabric to be negligible when compared to the total power consumption. This assumption is
only valid for 0.13um technology and above, as smaller technologies would have a larger

value of leakage power.

Page 69

Figure 4-21 shows the total power consumption of one add-shift cluster and its associated C-
Box and S-Box. The values shown are the average of both the shift-register and shift-
accumulator used in one row of DCT. Highly similar values are found when examining other
clusters in the DCT or ME array, except the Memory clusters in the DA array, since SRAM

consumes a high energy compared to logic.

6.E+05 -
5.E+05 - []
4.E+05 -]
3.E+05 -
2.E+05 -
1.E+05 -

0.E+00 D

Cluster C-Box S-Box

Static and dynamic power (nW)

Figure 4-21: Distribution of the average power consumption between an add-shift cluster and its associated C-box and S-Box.

From the graph it can also be concluded that the power consumed by the cluster is only 9% of
the total power, while the C-Box consumes 50% and the S-Box 41%. This is expected due to
the high number of switches and buffers introduced in the signals and due to the long routing.
This could be improved by reducing the flexibility of the boxes taking into consideration that
the flexibility is not decreased greatly [43]. Hence, the next step in future power reductions

would be in optimizing the interconnects.
Area overhead

Similarly, Figure 4-22 shows the area overhead used to make the hardware reconfigurable.
The add-shift cluster occupies only 6% of the total area while the C- and S-boxes occupy 50%
and 44% respectively. As it can be seen from the graph these area values include the area
occupied by the configuration registers, which represents a large percentage of the area of the
boxes. The total area can be reduced considerably if the flexibility of the C- and S-boxes is

lowered: this would reduce the size of the configuration memory as well as area switches.

7.E+04 -
6.E+04 4 [D Configuration
&ET 5.E+04 - registers
= 4.E+04 - O Configurable
g 3.E+04 4 i switches
& 2.E+04 4 _
1.E404 - OLogic
0.E+00 [; : -

Cluster C-Box S-Box

Figure 4-22: Area of add-shift cluster and its associated C- and S-boxes.

Page 70

Using a data coding style to compress the bit-stream in the configuration registers, e.g. usage
of a decoder in the C-Boxes to allow connecting a pin to one track only would reduce
substantially the number of configuration registers required, while maintaining the same
number of configurable switches. This would reduce the area at the expense of removing the

option of connecting a pin to multiple tracks.

4.5. Conclusion

In this chapter, two DSRAs for multimedia application were designed and several benchmark-
circuits mapped to them. The first array targets the Motion Estimation computation, while the
second is for the Discrete Cosine Transform and Distributed Arithmetic applications. Initial
results showed that the proposed technique of building-up reconfigurable arrays by creating
application-specific clusters and combining them with an interconnects mesh provides a good
compromise between hardwired and FPGA solutions: The DSRA was assessed to provide on
average 3 times less power, 60% less area and 20% less delays than FPGAs, while having
consecutively 2.5, 12 and 3 times more power, area and delays than ASIC. The flexibility
provided by the array is limited between the boundaries of the application it was designed for,

which makes its flexibility somewhere between FPGAs and ASICs.

Table 4-5: Advantages and disadvantage of the DSRA to FPGA, ASIC, and DSP

DSRA vs. FPGA

= Lower area

‘= Much lower power consumption
= Higher frequency

= Less flexibility

DSRA vs. ASIC

* Much higher flexibility

» Higher power consumption
= Higher area

= More delays

DSRA vs. DSP

= Better performance
= More difficult to program, integrate and debug than processors

However, DSRAs have several limits which could curb their chance of becoming the ultimate
architecture for future ‘mobile devices. The most important limitation is the way the
implementations are designed, i.e. through a HDL netlist; to implement an algorithm the
designer is required to have knowledge in hardware design. Since it takes a long time to
design on a hardware level, a better solution for future architectures would be to provide a

solution that can be easily programmed through a high-level language such as C/C++.

Page 71

On another level, the way the configuration memory was implemented as a shift-register
makes the whole reconfiguration process time-consuming and limits the dynamic
reconfiguration ability of the array. This is due to the high number of configuration bits
required. Finally, as measured, the reconfigurable interconnects consume around 90% of the
total power and area of the array. This high overhead in flexibility is acceptable in FPGAs,
but it should be lower on domain-specific architectures. Some of these limitations are

addressed in the following chapters.

Page 72

Chapter S:

Synthesisable
interconnect
customisation for

DSRASs

As seen in the previous chapter, further performance improvements in the DSRA’s
interconnect and configuration memory need to be investigated in order to allow further
reductions in area and power consumption. Such performance improvements can be achieved
by making the interconnect and its configuration memory more tailored to the application, in
a similar way the clusters were designed.

In the previous chapter it was measured that the island-style non-segmented programmable
interconnects used occupied up to 91% of the total array area and power consumption. Such
high ratios are usual for generic fine-grain FPGAs, however this is too high for the purpose of
embedded coarse-grain arrays. The C-Boxes and S-Boxes making the interconnects share the
total area and power between them by around 50% and 41%, respectively.

The main inefficiency occurs when trying to build synthesisable interconnects and

configuration memories having the same functionality as the ones found in typical FPGAs.

Page 73

The use of standard-cells libraries limits the possible circuit designs of the programmable
switches, since the pass-transistors used in typical FPGAs [46] have to be replaced by
synthesizable cells such as tri-state buffers or multiplexers. This significantly increases the
area, power consumption and delays: two tri-state buffers forming a bidirectional switch have
nearly 8 times the area of a single pass-transistor. This is similar to synthesisable memory;
synthesisable alternative for SRAM-cells such as flip-flops or latches can occupy up to 2.7
times more area. As described in [59], a possible solution is to augment the standard-cell
library with handcrafted FPGA-friendly cells. However, this reduces the portability of the
array between different fabrication technologies. '

The approach in this chapter is to change the design of interconnects so that they become
customised to the application in order to reduce the area and power requirements. To verify
the validity and performance gained by such a strategy, the DSRA created for the DCT

computation is taken as an example.

5.1. Proposed designs

S-Boxes designed using pass-transistors take advantage of the fact that that pass-transistors
act as bidirectional programmable switches. To design such a synthesizable bidirectional
switch (see Figure 3-3 and Figure 3-8), two tri-state buffers are needed. A single tri-state
buffer is a uni-directional switch. A similar uni-directional switch can be implemented using
multiplexers.

In this work, only the design of the 6W switch-point [42] from which the switch-box is made
up is investigated. The 6W switch-points are connected together using the standard Subset s-
box topology shown in Figure 5-1, as this was initially measured to provide better routability
results than other topologies such as the Universal and Wilton ones [51] [53]. The boxes with
full directions have a flexibility of Fs=3. This value was initially chosen for simplicity and for
creating interconnects that have the same functionality as the ones found in standard FPGAs.
(It should be noted that this flexibility measure does not apply to the s-boxes with reduced

directions explained below, as these would have different values for each side.)

Page 74

")
o

]

°

[y RN PR .

|
i
A
|
|
1
|
|
I

N
4z

A=z

-—4-—--4
0
bl

-
|
[
i

n D

|
-——}48

Figure 5-1: S-Box formed out of 6W switch-points arrangéd in a subset topology.

The following 7 variations of s-boxes designs are compared together. They use both tri-state
buffers and multiplexers inside their switch-points:

(1) All directions, tri-state

2) All directions, multiplexers

3) All directions, tri-state with reduced cfg memory

(4) Reduced directions, tri-state _

(5) Reduced directions, tri-state with reduced cfg memory
(6) Reduced directions, multiplexers

(7) Reduced directions, multiplexers and tri-state

The performance of these designs is compared later in section 5.2.

5.1.1. Full directions using tri-states
As was shown in Figure 5-2, this design attempts to create bi-directional switches that

connect any two sides together by using tri-state buffers. The switch-points shown have the
same functionality as the basic switch made using pass-transistors in generic FPGAs; hence
this switch has the relatively highest flexibility when compared to the rest of the proposed
below. '

One switch point requires 12 configuration bits.

Figure 5-2: 6W switch-point using bidirectional tri-state buffers. 8 configuration bits

Page 75

5.1.2. Full directions using multiplexers
This switch has the same functionality and flexibility as the previous one but uses a 3-fo-1

multiplexer and one tri-state buffer per port to implement this. A similar design was presented
in [112]. The tri-state buffers at the outputs are still needed since the track is driven by
multiple sources.

One switch point requires 8 configuration bits.

Figure 5-3: 6W switch-point with full directions using muitiplexers

5.1.3. Full directions using tri-states and compressed configuration
Memory '
Since the area cost per configuration memory bit is high, area optimizations might be

achieved by compressing the memory content: e.g. the number of configuration bits needed in
switch (1) can be reduced by compressing the redundant states, since only 2 bits are required
per side to select which of the 3 other sides, if any, has to be routed through. Hence, decoders

are used in here to reduce the number of configuration bits from 12 to 8 configuration bits.

5.1.4. Reduced directions using tri-states
Depending on the placement of the components on the array the data flow can be more

intense in some directions than others. This is especially true when routing for our case of
coarse-grain circuits where the direction of the data-flow is predictable, unlike the case of
random logic circuits in FPGAs. Hence, switches (4)-(7) favor some directions over others. It
should be noted that switch-points with reduced directions are still able to perform all the
possible connections between two sides by using two tri-state buffers in a row, but this
requires more resources and creates more switching activity in the wires, as measured in
section 5.2.

As shown below in Figure 5-4 for this switch, two types of switch-point are proposed, each

allowing connections only in specific directions. The two types of switch-point are both used

Page 76

in different ratios inside the switch-box as shown in Figure 5-5, which allows the creation an
overall switch-box that accepts more connections from left-to-right and top-to-bottom.

One switch point requires 6 configuration bits.

Type 1 Type 2

Figure 5-4: Two possible arrangements for the 6W box using tri-states

yd

————bee e e F-—=}-1 r-q----

-

Figure 5-5: Possible arrangements using the two types of 6W boxes

5.1.5. Reduced directions using tri-states with compression
In a similar way to switch (3), this switch reduces the configuration bits required in switch (4)

from 8 down to 4 configuration bits. However, the flexibility is reduced as only two tri-state
buffers are allowed to be on at the same time, which also decreases the routability of the

design.

Page 77

5.1.6. Reduced direction using 2-to-1 multiplexers
As seen below in Figure 5-6, the use of 2-to-1 multiplexers allows the switch to have a larger

flexibility than the buffer-based switch (4). Each multiplexer is followed by a tri-state to
allow disabling the connection.

One switch point requires 8 configuration bits.

Type 1 Type 2

Figure 5-6: Two possible arrangements for the 6W switch-point using 2-to-1 multiplexers

5.1.7. Reduced directions using both tri-states and 2-to-1 muxes
This switch uses both multiplexers and tri-state buffers to create a switch with the same

functionality as (4), as shown in Figure 5-7. One switch point requires 6 configuration bits.

Type 1 Type 2

Figure 5-7: Directional 6W switch-points using both tri-states and multiplexers.

Page 78

5.2. Performance evaluation
In order to identify the most suitable 6W switch-point design, the performance of each circuit

is measured in terms of area, power, delays and routings overhead. An array with each type of
switch-box was generated and a sample circuit was mapped on it. The benchmark circuit used
is the DCT implementations mapped to the DSRA designed for Distributed Arithmetic
(Section 4.3). The test conditions are slightly different from the ones in the earlier in chapter:
A UMC 0.13pum technology is used as opposed to UMC 0.18um. The 0.13pm technology has
a higher leakage power consumption which should provide an evaluation better suited to

future technologies with high leakage power.

5.2.1. Area
The area of the switch-boxes can be split in two parts: The area needed for the actual switches

and the area required by the configuration memory. The total area of these switch-boxes and
the contribution of the switches and configuration memory are shown in Figure 5-8. The
values shown are for a switch box containing 12 1-bit tracks and 12 word-wide tracks. The
configuration memory used is based on flip-flops; other alternatives such as latches would
require slightly less area as described in Section 3.5. The area measurements also include the
overhead in the metal routing required, which varies due to changes in the number of wires

inside each box.

(7) ;:m O Switches
‘ ST @ Cfg Area
T B ™ Routing Overhead
E, (5) |
@ ()
o 3) | |
(2) | [
(1) — |
0 10,000 20,000

Area (pm2)

Figure 5-8: Area of Switch Boxes with contributions of switches, configuration memory and metal routing.

As expected the highest areas are consumed by the switch-boxes having full directions (1), (2)
and (3). Implementation (2) with the 3-to-1 multiplexers has the highest area, which is 5.2%
more than that of (1). Implementation (3) shows that no gain is achieved by compressing the
configuration memory, as the area in (3) is 2.8% higher than in (1), due to the area occupied

by the decoding circuit which is higher than what would have been taken by configuration

Page 79

memory. These results depend on the number of bits in the word track of the array as
explained at the end of this section. The result also depends on the design library and cell-
geometries used: other libraries used (UMC 0.18pum) showed results where (2) had up to 11%
lower area than (1) for the same widths of tracks.

The switch-boxes with reduced directions have considerably less area than the full directions
ones. Implementation (4) has half the area used by (1) since the number of switches and
configuration bits is halved. In (5), for the chosen number of tracks, the area savings in
configuration memory is less than the area occupied by the decoding circuit used, and hence
(5) is 18% larger than (4). The use of 2-to-1 multiplexers in (6) reduces the area taken by
switches when compared to tri-state buffers in (4); however, more configuration bits are
needed which make the overall area of (6) 8% higher than (4). Finally, implementation (7) has
the lowest area, which is 20% smaller than (4), since the switches area is reduced by using 2-

to-1 multiplexers and the number of configuration bits is kept the same.

5.E+04

5.E+04 -
——(1) ®-(2) ——(3)

) —¢-(4) —¥—(5) ——(6)

4.E+04

\

=={7)

& 3.E+04 -

§

5 3E+04 -

@

< 2.E+04 -
2.E+04 |
1.E+04 -

5.E+03 -

0.E+00 T T r - ;
1 2 4 6 8 10 12
Number of bits in word-track

Figure 5-9: The routed area vs. number of bit in the word tracks.

The graph in Figure 5-9 shows the relationship between the area of the boxes and the number
of bits in the word-tracks. It should be noted that when the bit-width of the word track is
increased, the number of configuration bits remains constant and only the area occupied by
the switches is increased. It can be seen that the use of compressed configuration memory as
in (3) and (5) only offers area advantages for bit-widths below 8 and 4 respectively. The
implementations with reduced directions have always a lower area; switch-box (7) has the

smallest area for all bit-widths of the word-track.

Page 80

5.2.2. Power consumption

The total power consumption measured for each type of switch-box is shown in Figure 5-10.
It can be clearly seen that the introduction of the multiplexers in implementation (2) increases
the total power consumed by 29%. Similarly, implementation (3) has a slight increase of 3%
in power due to the presence of the decoders, even though the decoders are not in the data
path and hence do not get as much switching. This increase is due higher leacker power cause

by the larger area. The same slight increase can be observed between (4) and (5).

(7)

(6)

(5)

(4)

(3)
 ——
UN. : .

0.00E+00 5.00E-06 1.00E-05

Power Consumption (W)

Figure 5-10: The typical power consumption per switch-box type

The power consumption in (4) is reduced by 27% when compared to the one in (1) since the
load on the input lines has been reduced. It should be also noted that when using the switches
with reduced directions extra routing is required on the array, and hence more power is
dissipated in other switches-boxes on the array (the values measured is the average of all the
switch-boxes). Switch-boxes (6) and (7) consume 8% to 12% more power than (4), while

having around 20% less power than (1).

5.2.3. Delays
The delays in implementation (1) are the lowest as the switch has a high flexibility which

generates short routed interconnects (see Figure 5-11). Switches (1) and (3) have both the
same delays since the decoding circuit in (3) does not affect the data path signals. The use of
3-to-1 multiplexers in the data path in switch (2) increases the delays considerably by 37%
when compared to tri-state buffers. The switch-boxes with reduced directions only show
between 7% and 14% more delays than the full switch box due to the longer routings created.
Furthermore, the use of 2-to-1 multiplexers in (6) does not add as much delay as the 3-to-1

multiplexers in (2).

Page 81

(7) P S S|
(6) T ——]
(5) Cr e ———————)
(4) T
(3) Cr————

¥
Qssse....—————
= e e e
10 20 30 40 50

Longest path in DCT (ns)

T T T 1

Figure 5-11: The longest path in the DCT implementations using each switch-box type.

5.2.4. Routability
The ratio of Type 1 and Type 2 blocks in switch-boxes with reduced directions

(implementations (4), (5), (6) and (7)) has an effect on the routability of the design depending
on the data-flow. Changing this ratio has an effect on the total wirelength of the routed design,
as measured and shown in Figure 5-12 for switches (4) and (7) and in Figure 5-13 for switch
(6). It can be seen that for implementations (4) and (7) the lowest wirelength is achievable
when around 65% of the switch blocks are of Type 1. For switch (6) the minimum wirelength
occurs when around 60% of the blocks are of Type 2.

The routability of each switch-box type is shown in Figure 5-14. Implementations (4), (5) and
(7) with optimized ratios have a wirelength around 12% higher than the implementations with
full-directions. Using switch (6) with the optimized ratio we observe only a 2% increase in
wirelength over the full switch-boxes. These values greatly depend on the implementation and
the data-flow used; however, they represent what can be achieved when typical designs are

mapped to coarse-grain architecture.

420 -
£ 410
5

390 -
£

370

4/12 5/12 6/12 712 8/12 9/12 10/12 11/12 ; ; . '
Ratio in implementations (4), (7) 4/12 512 6/12 7/12 8/12 9/12 10/12 11/12
Ratio in implementation (6)

Figure 5-12: The total length of the routings depending on Figure 5-13: The total length of the routings
the ratio between the number of Type 1 blocks and Type 2 depending on the ratio between the number of Type 1
blocks in switch-boxes (4) and (7). blocks and Type 2 blocks in switch-box in (6).

Page 82

400 -
390 -
380

}
370 {
360 -
350 -
340 -
330
320

(1. (2), (3) 4). (7) (%)

Implemementation

Best wirelenght

S P

Figure 5-14: The total wirelength for each switch-box implementations. For (4), (7), (5) and (6) the ratio of
Typel/Type2 with the lowest wirelength is chosen.

5.2.5. Analysis

From the above evaluations we can deduce that the compression of configuration data (as in
(3) and (5)) only provides some area reductions for low widths of word-tracks. The use of 3-
to-1 multiplexers (as in (2)) to implements full four-side switch blocks is inefficient as it
increases the area, power and delays when compared to the use of tri-state buffers. Attractive
results were achieved using switch-box with reduced directions ((4), (6) and (7)) when
compared to full-directions switches.

The half-box based on tri-state buffers (implementation (4)) has low area, power consumption
and delays but a large wirelength. Using 2-to-1 multiplexers (as in (6)) allows big
improvements in routability at a price of a slightly larger area, longer delays and higher power
consumption. Finally, the lowest area is achieved by combining multiplexers and tri-state
buffers in the box (as in (7)) which give low-power consumption but slightly lower routability

and longer delays (see Figure 5-15).

1.6 1
1.4 1

1.2 *‘ O Power
1.0 Consumption

0.8 - M Longest Path

@ Area

Normalised Value

0.4 |
0.2 -
0.0 —

m @ ©@ @ ©6 6 @)

Implementation

Figure 5-15: Comparison of the different designs in terms of power, area and delays.

Page 83

5.3. Conclusion

It has been shown that the DSRA arrays can be further optimised to the application by
tailoring the interconnects further to suit the application. In the given example, several
directivities of the switch boxes were tested and the performance (area, power and timing)
was measured. It was found that by making directivities of the programmable switches follow
the intended data flow in the array, saving by up to 50% and 27% can be achieved in area and
power, at the expense of only increasing the delays by 7%. On the circuit level, it was found
that the lowest area and power were achieved by using a combination of 2-to-1 multiplexers
and tri-state buffers in the 6W switch-point of the subset S-Box; the reason is that the total
area of the S-Box depends on both the switching element used and the number of
configuration bits required. The improvement in this type of S-Box comes at a price of

increased delays and a lowered routability.

Page 84

Chapter 6:

Reconfigurable
Instruction Cells
Array |

In the previous chapters, the domain-specific reconfigurable arrays designed provided a good
compromise between high-flexibility, high-power and high-area FPGAs on one side and low-
flexibility and low-power ASICs on the other side. The DSRAs showed a throughput higher
than FPGAs (and DSP processors), not very far from the level achieved in ASIC, while
providing a good degree of flexibility. However, the two major drawbacks in the proposed
DSRAs are, first, the long time required to design the DSRA itself according to the
application, and second, the long design-time needed to map and program new algorithms on
the array. As described earlier, programming the array occurs in a similar way to
programming FPGAs using an HDL to represent netlists of programmed clusters. Ideally, a
reconfigurable architecture would be programmable using a high-level (C/C++) programming
language. Based on this, another limitation which emerges in DSRAs is the difficulty to
automatically create an array tailored to the application starting from a high-level definition of

the application, since the programming happens manually at low-level. Even though the

Page 85

silicon-area usage of DSRAs was found to be lower than FPGA, it is still regarded as elevated
when compared to the area occupied by ASICs or to the area of datapaths in typical CPU and
DSP processors. This is mainly caused by the fact that 90% of the silicon is consumed by
interconnects. Finally, the large number of configuration bits needed to configure a ‘useful’
section of the DSRA is too large (around 3000 bits) to permit dynamic re-configuration of
that section, and hence it limits the possible rate of reconfigurability.

This chapter proposes a solution to overcome these limitations by changing the structure of
the initial DSRA design. This is mainly carried out by moving from the previously described
type of clusters into a cluster type that can directly execute assembly-like instructions
commonly found in software implementations. Such clusters are called here Instruction Cells
(ICs). The basic ideas presented in this section come from elaborations with other members of
the research-group, mainly Ioannis Nousias along with Mark Milward and Ying Yi, who are
working on the same project, namely the Reconfigurable Instruction Cell Array (RICA). L
Nousia’s further work was to efficiently implement the data and program memory sub-
systems along with coding of paths in the program memory using small foot-prints. M.
Milward and Y. Yi were concentrating on optimised and advanced compilation software-
tools.

This chapter introduces the instruction-cell based arrays and assesses the
advantages/disadvantages gained by its structure. It also tries to evaluate the costs incurred by
introducing programmability from high-level languages for what practically is a processor-

like reconfigurable architecture.

6.1. Processor-like operation of a reconfigurable array
Assembly representations of programs — or more specifically the control and data flow graphs

generated by compilers — can be regarded as an efficient low-level description of software and
algorithms. This is especially useful due to the existence of compilers that convert high-level
languages such as Java and C/C++ into assembly-instructions. In traditional and simplistic
design of CPUs, the Arithmetic Logic Unit that performs the operations has typically only 2
inputs and one output, and according to the opcode it can perform operations like app, muL or
sus to produces the output.

If each cluster in the DSRA can be made to execute one assembly instruction, then a
computational datapath described in assembly-language can be simply executed in hardware
by connecting the different ‘instructions’ together. An array containing such programmable
clusters along with a mesh of reconfigurable interconnects can be configured to execute the
required datapath. A full software program that includes branching and conditional operations
would then be executed by dynamically re-programming the array to perform the different

basic-blocks of the program. An instruction controller would then be responsible for handling

Page 86

the branching operations. Making the DSRA clusters support assembly instruction would also
be in theory an efficient way to reduce the overhead in interconnects (C-Boxes and S-Boxes)
as the number of inputs and outputs is reduced to a minimum. It also allows the use of
existing and mature compilers that would output suitable netlists of clusters to build datapaths

from a high-level program representation.

6.1.1. Example of Instruction-Level Parallel Processing
The sample C code shown in Table 5-1 requires 19 cycles to execute on a typical sequential

processor. However, if the same code is compiled for a VLIW DSPs, such as the
TMS320C6x, then it would execute in 15 cycles, since the VLIW architecture would try to
concurrently execute up to 8 independent instructions (6 ALUs and 2 multipliers are
available) [113]. At 600MHz, 15 cycles translate to 25ns if we consider the ideal case where
no instruction-pipeline needs to be filled. If 4 simultaneous multiplications and 4 memory
accesses were permitted, then the number of cycles would reduce to 8. This is still high taking
into account the simplicity of the code and when compared to what is achievable using
hardware solutions like FPGAs. This speed limit is created by the presence of dependent
instructions preventing the compiler from scheduling instructions in parallel and hence
resulting in a high number of clock cycles. We can observe that if an architecture supports the
mapping of both dependent and independent datapaths, then we could execute a big block of

instructions in a single clock cycle without limitation.

Table 5-1: Example C-code and its assembled sequential and VLIW code compiled with level-2 optimizations
C Code Sequential ASM

b0 = in_mem[add+0];

bl = in mem[add+1l];

b2 = in_mem[add+2];

b3 = in_mem[add+3]; LD [r3+40] -rll
e =b0 * fO - b2 * £2; LD [r3+48] —r9
f =Dbl * f1 - b3 * £3; MUL rll, rS5-rill
out_mem[add+0]= e + £; LD [r3+12]-rl3
out mem[add+l]= e - £; LD [r3+4] —r3
out mem[add+2]= f + 2*e; MUL r3, r6 —ré6
out mem[add+3]= f - e; MUL r9, r7 —r5
TMS320C6x VLIW ASM MUL rl3, r8-r3

SUB rll, r5-r5
ADD r5, r5 —r7
SUB r6, r3 —r3
SUB r5, r3 —r8
ADD r7, r3 -—rl
ADD r5, r3 —ré
LD r8 —[rd4+12]
SUB r3, r5 —r3
LD r6 —[r4+0]
LD r3 —[rd+4]
LD r7 —-[r4+8]

LDH *+A4(2)-A7
LDH *+A4(6)-A3
LDH *+A4(4)-A0
LDH *A4-A5

MPY A7,B6-B5
MPY A3,B8-B6 || MPY AO,A8-A0
MPY A5,A6-A3
SUB B5,B6-BS
SUB A3,A0-A0
RET B3

MV B5-A3
ADDAH A3,A0-A4
ADD B5,A0-BS |

|| EXT B5,16,16-B5
|| EXT AO,16,16-A0
|| SUB B5,A0-B6

|| STH B6-*+B4 (6)

| STH A4-*+B4 (4)

STH BS5-*B4 || SUB AO,A3-AO
STH AO0-*+B4(2)
15 Cycles (8 cycles if 4 MPY and 4 LD/ST are allowed) 19 Cycles

Page 87

Parallel Processing with limited resources (on RICA)
Cycle 1:
RAM £14 ==t RAM
READ MUL ADD [ADD)| WRITE
[R3+0] IE [R4+8]
m | :
RAM
RS su RS READ
[3+12]
S r13
RAM 'L
READ [7| MUL R6 woL [R
[R3+8]
)L e
RAM | 3 B,
R7 READ MUL J suB | R3
[R3+4] <
Cycle 2:
LN 8 | RAM
RS | sus) wriTE
ﬁ— — [ra+12]
6 | RAM
R3 [— ADD | WRITE
nefles f e [R4+0]
|_ 3 | RAM
|| suB [wRITE
[R4+4]

Figure 5-16: Execution of the 19 instructions in 2 cycles if a specific number of resource is present

We could easily execute the previous C code in énly 2 cycles if the architecture provided 14
operational elements to perform 4xADD, 4xRAM, 4xMUL and 2xREG simultaneously, as
shown in Figure 5-16. However, this would mean that the 4 RAM operations would access
the main shared memory in parallel. This overcomes the Instruction Level Parallelism (ILP)
limitation faced by VLIW processors and enables a higher degree of parallel processing. As
shown in Cycle 1, the longest delay-path is equivalent to 2 RAM accesses, one multiplication
and some simple arithmetic operations. This is not much longer than critical-paths in typical
DSPs when compared to how many more instructions are executed in parallel during the same
cycle. The 2 cycles translate to less than 15ns if typical (non-heavily constrained) DSRA
delay values are used. Hence, an architecture that supports such an instruction arrangement
might be able to achieve similar throughputs as VLIWs but at a lower clock frequency,
depending on the type of computation.

6.1.2. Reconfigurable Core
The concept behind the RICA architecture is to provide a dynamically reconfigurable fabric

that allows building such circuits — mapping the same circuit on the previous DSRA would
require time-costly modifications and manual work that are difficult to automate. However,

by providing DSRAs with clusters that can execute assembly-like instructions similar to the

Page 88

ones in Figure 5-16, a straightforward design-flow resembling CPUs can be easily developed.
The core elements of the RICA architecture are the Instruction Cells (ICs). Like in a DSRA,
the ICs are interconnected together through a network of programmable switches to allow the
creation of datapaths. In order to support the execution of large programs that do not fit into a
single datapath, the configuration of the array should be allowed to change rapidly.
Furthermore, to support conditional-executions that are found abundantly in typical software
systems, the transition between the configuration-streams should be controlled by an
instruction-controller in the same way it is done in normal processors. Similarly to CPU
architectures, the configuration of the ICs and interconnects can be changed on every cycle to
execute different blocks of instructions. Unlike CPUs and more like FPGAs, a circuit can also
be mapped and executed for longer time (i.e. several cycles) if it is part of a loop. As shown in
Figure 5-17, RICA can be implemented as a Harvard-architecture processor where the
program-memory is separate from the data-memory. In the case of RICA, the processing data-
path is a reconfigurable array of ICs and the program-memory contains the configuration bits
(i.e. instructions) that control both the ICs and the switches inside the interconnects. Special

ICs in the core are responsible for controlling the data and program memories.

Ve

Reconfigurable Core W

ADD | |ADD MUL | |MUL REG | [SHIFT| [SHIFT||L MUL | [DIV |REG| [COMP)

Interconnects Network

(Crossbar or island-style switches)

o Vo

MEM| |MEM| | M MEM REG| | REG

i

T
1111 gt
Counter
Config
10 bits
Data Ports Program
RAM RAM

Figure 5-17: Harvard-like structure of the RICA with reconfigurable
core as instruction-cells and programmable interconnects

Although the RICA architecture is similar to CPUs when using program controllers and
dapaths, the use of an IC-based reconfigurable core as a data-path gives important advantages
over DSP and VLIWs, such as more support for parallel processing. A reconfigurable core
can execute a block containing both independent and dependent assembly instructions in the

same clock cycle, which prevents the dependent instructions from limiting the amount of ILP

Page 89

in the program. Other improvements over DSP architectures include reduced memory access
by eliminating the centralized register-file and the use of distributed memory elements to
allow parallel register access.

In a similar way to DSRAs, the characteristics of the reconfigurable RICA core are fully
customizable at design-time and can be set according to the application’s requirements. This
includes options such as the bitwidth of the system, which can be set to anything between 4-
bits and 64-bits, and the flexibility of the array, which is set by the choice of ICs and
interconnects deployed. These parameters also affect the extent of parallelism that can be
achieved and device characteristics such as area, maximum throughput and power-
consumption. Once a chip containing a RICA core has been fabricated, the system can be

easily reprogrammed to execute any code in a similar way to a processor.

6.2. Hardware design

6.2.1. Instruction Cells
In contrast to other reconfigurable architectures (see Chapter 2), the IC-array in RICA is

heterogeneous and each cell is limited to a small number of operations as listed in Table 5-2.
This allows us to increase the overall cell count to do more parallel computations, since the
overhead of adding such small cells is merely related to the extra area occupied by the
interconnects. The use of heterogeneous cells also permits tailoring the array to the
application domain by adding extra ICs for frequent operations. Each IC can have only one
instruction mapped to it. In a similar way to assembly instructions, all cells have only 2 inputs
and 1 output — this facilitates creating a more efficient interconnects structure and reduces the
number of configuration bits needed. The cells initially developed support the standard
instruction-sets found in 32-bit GPPs like the OpenRISC [117] and ARM7 [115]. Hence, with
such an arrangement, RICA could even be made binary compatible with any existing
GPP/DSP system.

As shown in Table 5-2, registers memory-elements are defined as standard instruction-cells
distributed throughout the array, which allows them to operate independently to increase
degree of parallel processing. As seen in the previous example, to program RICA the
assembly code of a software is sliced into blocks of instructions that are executed in a single
clock cycle. Typically, these instructions — that were originally generated for a sequential
GPP — would include access to registers for the temporary storage of intermediate results; in
the case of the RICA these read/write operations are simply transformed into wires to reduce
the registers-use. By using this arrangement of registers RICA also offers a programmable
degree of pipelining operations and hence it easily permits breaking up long combinatorial

computations into several clock cycles.

Page 90

Special ICs include the gume cell which acts as an instruction-controller responsible for
managing the program counter and the interface to the program-memory. The interface with
the data-memory is provided by the mem cells; a number of these cells is available to allow
simultaneous read and write from multiple memory locations during the same clock cycle.
This is achieved by using multiple memory banks to form the data-memory and by clocking it
at a higher speed than the reconfigurable core; this is possible since the core needs a relatively
low clock frequency typically equivalent to around 40MHz (see description of the CLK_DIV
cell for the clock equivalence). Furthermore, some special rec ICs are mapped as 1/O ports to
allow interfacing with the external environment.

This is only an initial division and the scope of the operations of the cells can be expanded in
the future. It is also possible to have a large IC supporting the typical operation of an ALU in

a GPP: arithmetic, shifting, logic and memory.

" Table 5-2: Possible Instruction Cells and their operations

instruction Cell | Supported Operations

ADD Addition, Subtraction

MUL Multiplication (Signed and Unsigned)
DIV Divisions (Signed and Unsigned)

REG Registers

I/1O REG Register with access to external /O ports
MEM Read/Write from Data Memory

SHIFT Shifting operation

LOGIC Logic operation (XOR, AND, OR, etc.)
COMP Data comparison

MUX Multiplexer

JUMP Branches (and sequencer functionality)
ALU Full CPU-like arithmetic logic unit

Data signals that can be routed between two cells or stored in registers consists of N-bit data
and 1 carry bit, e.g., if a 32-bit RICA is designed, the signals would be 33-bit wide with one
carry bit. Using this carry signal we can cascade several cells to achieve high precisions
computations, such as 64-bit additions or multiplicationé. See Appendix A for the details of

the instruction cells in the sample RICA.

ADD

This cell supports addition and subtraction operations. There are 2 input data and one output
signal. In the configuration we can select which bit-precision the cell should use (e.g. 8-bit,
16-bit or 32-bit mode). As will be seen in Section 7.1.2, this cell can also be configured to
support complex addition/subtraction; in this case the input data is split between the real and
imaginary parts (e.g. a 32-bit RICA would have a 16-bit imaginary part and a 16-bit real part).

MUL
This cell support signed and unsigned multiplication. Similar to the ADD cell, it can also

support complex multiplication and cascading to achieve higher precisions.

Page 91

RMIEM
This cell gets as input an address and an offset and reads the content of the Data RAM at the

required location. The reading from the Data RAM currently takes place each time the
address at the input of the cell changes at any time during the step. This is necessary since in
situations where we are accessing an address pointed at by a variable in memory (ie. a
pointer) a cascade of two rvem is created, and hence the second rMem should be reading the
data from the memory only when the first rven has finished outputting the required address. In
the future, time tags can be introduced to detect when (during the execution clock cycle) the
address and offset are ready to start fetching data from the Data RAM; the computation of the

time tag can be done by the compiler [129].

WMEM
This cell gets data and writes it in the Data RAM. The data to be written is latched at the end

of the cycle and is written in the next step that contains any read operation from the Data

RAM.

REG and [/O REG

The rec cells replace the register file found in a processor, with the difference that the
registers are distributed and accessed independently; hence they consume less energy since
there is no need to use a large multiplexer to address them. Each register can have several data
banks inside it. In the sample arra.y described below in Section 6.4 it was decided to use 2
banks for every register, as this helps optimising leaf functions (functions that don’t call any
other functions) by removing the need for saving the used registers in the stack.

Another version of these rec cell is an 1/0 rec cell, which represent an N-bit dataport; when
writing data to the port it would be transferred to the chip’s pins, and when reading the
register’s content it would be coming from the chip’s pins. The 1/0 reG has to be configured

as input or output.

DIV
This cell support signed or unsigned division.

LOGIC
The vocic cell can perform standard bit-operations such as AND, OR, NAND, NOR, XOR,

NOT, as well as bit-reversion and 2’s complement negating.

SHIFT
This cell can perform logical and arithmetic left/right shifting.

COMP

The comp cell compares two inputs and output is the result of the comparison generated as a

data signal. This output should be routed to either the mux or gume cell.

Page 92

MUX

This cell receives 3 inputs: Two data signals in; and in; and the result of the comparison
coming from a comp cell. According to the result of the comparison it either routes in; or in; to
the output. Hence it acts as a multiplexer, if seen from the hardware point of view, or a

conditional-move operation if seen from a software point of view.

JUMP

The sume cell acts as the instruction-controller and manages the Program Counter. The
program counter is given to the Program Memory controller to retrieve the configuration of
the cell for the current steps. During the execution of a step, the sume cell computes the value
of the next program counter so that the configuration of the next step would be ready when
needed. The computation of the next location can be conditional by using the output of a come

cell, and hence achieving conditional branching in RICA.

CLK_DIV

The crx prv is responsible for ‘dividing the global clock’ and setting the period for which a
single configuration should be running for. This is needed in RICA since there is a big
variation of delays between different steps of a program. This variation is created by the fact
that we can execute dependent instructions connected together in series, and hence, every
circuit has its own critical-path delay. If this cell was to be omitted, then the maximum
operating frequency of RICA would be limited to the largest longest-path delay in all the
steps of the whole program. With the cix_p1v cell it is possible control the execution time
needed for each step, and hence make this delay only limited to the longest-path delay in the
step itself. The configuration of cik prv is computed at compile-time according extracted
worst-case values.

The cLk p1v outputs an enable signal that goes to all the wwem, rec and sume cells (the only

sequential cells in RICA) to signal the end of the time allocated to the step.

6.2.2. Interconnects
Interconnects allow routing the signals between the instruction cells. As described earlier, the

signals are composed of N-bit data and a carry bit (generated in adders or multipliers). Two
interconnects schemes were investigates for RICA: Interconnects based on crossbar

multiplexers and island-style routing boxes.

Table 5-3: Comparison between cross-bar and island-style interconnects

Interconnects (sample | Area on 0.13pm | Number Delay of one connection (output-
array with 64 cells) (um?) of cfg bits | input, ignoring wire capacitance)
Multiplexers 1,640,495 498 0.7 ns

Island-style 576,062 678 Variable, average of 5 s-boxes is 2.0 ns

Page 93

The programmable switches should perform directional connections between the output and
input ports the cells. The design of the interconnects should take into account that each
instruction-cell has only one output and up to 3 inputs and that in no case will the output of a

cell be looped back to one of its inputs (to avoid combinatorial loops).

3 B
o - :
E - —
o = :
;}_'

Figure 5-18: Multiplexers based interconnects

The multiplexer-based crossbar is shown in Figure 5-18. It is based on a simple design where
each input of each cell has a multiplexer to select which cell’s output should be routed in. In a
typical array (see the sample array in Section 6.4) there are about 64 cells, with around 60
cells having outputs (some cells such as wmem have no outputs), hence the 32-bit multiplexer
would be of size 59-to-1 (the cell itself is not used). Such a multiplexer is very big and
consumes a large area as shown in Table 5-3. The cells in the sample array have 83 inputs
ports each requiring such a multiplexer. In the sample array, multiplexers would consume
around 68% of the array area, i.e. the area of the interconnects is 2.1 times the silicon area of
computational cells themselves. The delay associated with the multiplexer to route the signal
from the output of one cell to the input of another is around 0.7 ns, which is around 20% less
than the delay required for an aop cell (0.9 ns). The delay is formed by passing through 3
levels of 4-to-1 multiplexers from the standard-cell library. It should be noted that this value
ignores the line capacitance associated with the wire and that such a crossbar scheme would
result in long wires.

Another problem with multiplexer-based designs is that the interconnect’s area grows rapidly
when the number cells increases. Figure 5-19 shows the synthesised area of a multiplexer for
different number of input pins. As can be seen there is a rapid change in area for N=32 after

which the area grows somewhat linearly. This linear increase has an exponential effect on the

Page 94

total area occupied by all multiplexers when the number of cells is increased, as shown in
Figure 5-20, The exponential relationship is due to the fact that for each new cell added to the
array we need to increase the size of the multiplexers of all the existing cells. Hence,

multiplexer based interconnects limit the scalability of the architecture.
N-to-1 Multiplex Area
26,000 - --------=====mmmmmmm oo

21,000 - - - === === mm ey
16,000 § -~~~ =~ === === === T oo

Area (um2)

14,000 1 - - - === oo
8,000 -~ -~ 2sf T m oo mmm e m e mmm— oo

1,000 T T T T ,
4 24 44 64 84 104

Area (mm2)

32 48 64 80 96 112 128 144 160 176
Number of Cell

Figure 5-20: Exponential increase of silicon area with number of cells when using multiplexers

The second interconnect scheme considered is the island-style shown in Figure 5-21 and
Figure 5-22. Each cell is surrounded by 4 routing multiplexers, one for each side. The signal
tracks used are unidirectional, and on each side there is one input and one output. The
multiplexer controls the output signal, and according to its configuration it can route signals
that are coming in from other directions to its output. Each multiplexer also receives the
output of the current cell to allow routing it to other cells. Furthermore, each input pin of the
instruction-cell has a 4-to-1 multiplexer to select which of the four sides should be routed
from outside of the box. As can be seen from Table 5-3, the overall area of these routing
elements is 64% smaller than the crossbar multiplexers. In addition, they are much more

scalable and make it realistic to implement arrays with more than 64 cells. On the downside,

Page 95

the number of configuration bits required is increased by 36%. The delay is also increased and
becomes dependent on the routing of the signal and the number of s-boxes it passes through.
However, the value given does not include wire delays, which in this case should be much

less than the crossbar version, as the metal wires are greatly reduced due to the increased
locality.

v

Figure 5-21: Configurable switches around each cell to form an interconnects-box for the island-style mesh

"‘-.----.-.------.-------.--------.-...-..

4 - - e m e Y
P PRy Rt o \
P “..o‘ \ A
L K?
g . [}
?]
.' 2 .
L]]
' '
(- .
:s !]
@ *
' '
$ 3 '
L [)
“: P
L]

Figure 5-22: Mesh of island-style interconnects with torodial interconnects

Another effect of using the island-style scheme is that the correlation in the configuration bits
of different steps is low. In the case of the crossbar, a cell that is active would have its

multiplexer active as well; however, in the case of the island-style mesh a cell might be

Page 96

inactive in the specific step but its associated s-box might be used to route a signal belonging
to a different cell. The effect of this observation has to be taken into account in the future if a
compression scheme based on temporal or spatial redundancy is to be used on the

configuration bitstream.

6.2.3. Data Memory interfaces

The RICA array can have a number of Data RAM access cells, such as 4x rvzm. When a
program is compiled for RICA, the compiler assumes that these rvem cells operate in parallel.
This can be physically achieved by using different and independent memory banks for each of
these cells. However this solution would require the compiler and scheduler to know in which
memory bank each location is stored. Another solution is to use memory banks that are time-
multiplexed between the 4 =vem cells so that only one cell accesses one of these memory
banks at any one time. As described earlier, rueM acts a combinatorial cell and the data is read
from memory each time the input address to ruem changes. The time-multiplexing circuitry
has to keep cycling between all the shared rmem cells to check which one had an address

change so that the data gets read.

6.2.4. Program Memory implementations
One drawback of the proposed cells and interconnects is related to the number of bits required

to store their configuration, which is in the order of 500-800 for the tested case using
multiplexers interconnects. Since the configuration of the cells is changed every step in a
program, we would need to store the configuration of every cell in every step. For example,
the code for an MPEG-2 Layer III audio decoder takes around 1,500 steps. This amounts to
around 1,500 x 700 =~ 1 MBit of program memory. This is quite large considering the fact that
the same code fits into 440 kBit of memory when compiled for a CPU like ARM or
OpenRISC.

This high program memory usage affects the overall power consumption of the design and
might offset any power saving achieved using the datapath. Fortunately, on average only
around 12 cells are active in any step in the largest benchmark MP3 program from Section 7.2
and hence the 1MBit of data contains a lot of redundant information like nop (no-operation)
configuration. The existence of this redundant information can be used to compress this
configuration memory. Several compression techniques were investigated, and an ongoing
project looking at reducing the amount of configuration data using distributed configuration
memory showed promising results. The compression of the configuration memory is beyond
the scope of this document. In this document we implemented only programs small enough to

fit uncompressed in the available memory (See Section 6.4.2).

Page 97

6.3. Design-Tools for RICA

An automatic tool flow has been developed for the generation of RICA arrays based on the
initial tools for generating DSRAs. In a similar way to DSRAs, the tools take the
characteristics of the required array and generate a synthesizable RTL definition of a RICA
core that can be used in standard SoC software-flow for verification, synthesis and layout.
These characteristics include the number of cells, type of interconnects, placements of the
cells in the array and number of rows and columns. If the RICA is implemented using
crossbar multiplexers, then it would be defined by the tools as an array with a single row.

The main advantage of RICA over DSRAs and FPGAs is its ease of programming. The
overall tool-flow needed for this is shown in Figure 5-23. The use of Instruction-Cells greatly
simplifies the overall design effort needed to map high-level programs to the RICA
architecture through a CPU-like programming flow. First, a compiler is required to transform
the input high-level languages, such as C/C++ or Java, into instruction-cells description. The
second step schedules the instructions, according their dependencies, for execution into
multiple steps on RICA. The final step generates the configuration of interconnects and cells
for implementing the desired steps.

It was decided to use the open-source standard GNU C Compiler (gcc) [118] as the front-end
compiler for RICA, since it is highly customisable and currently the best available open-
source compiler. GCC supports different language inputs amongst them C/C++, Java, Fortran
and Ada. In the ideal case, the gcc package would be responsible for the first two steps
described earlier, i.e. compilation and instruction scheduling. This would allow achieving
RICA-specific optimisation at compile time by making gcc aware of the resources available
on RICA. However, at the start time of the project, the gcc version available had limited
support for parallel instruction execution. Independent instructions could be identified by the
compiler for parallel scheduling, however, too much work was required for supporting blocks
of both dependent and independent instructions.

Hence, it was decided to modify gcc to generate instructions for the RICA cells in a serial
format; the compilation is performed by gec with the assumption that the created instructions
will be executed in sequence. This RICA-specific assembly, which describes which ICs need
to be used, is then processed by the RICA scheduler to create a sequence of netlists each
containing a block of instructions that are executed in one clock cycle. The netlists represent
the different steps that have to be executed in sequence, with each step containing several

instructions that are to be executed in parallel and/or series.

Page 98

Figure 5-23: Design-software tool-flow for RICA.

This splitting is not efficient, as gcc would be performing register allocation internally and
passing it to the scheduler. The scheduler has then to execute the instruction scheduling while
being restricted in using the registers previously allocated by gcc for each basic-block. The
effect of this is that some basic blocks would be split in more steps than required, which is
due to the unavailability of temporary registers.

The simple scheduling algorithm used takes into account IC resources, interconnects
resources and timing constraints in the array. It tries to have the highest program throughput
by ensuring that the maximum number of ICs is occupied and that at the same time the
longest-path delay is reduced to a minimum. The instruction scheduling is performed on each
basic-block separately. The first step in the scheduling is to convert the move instructions and
all register operations found in the assembly into wire connections between ICs. This implies

Page 99

that the register allocation carried out by gcc is partially lost. However, the scheduler has to
ensure that no register is used in the resulting steps other than the ones already in use by the
original basic-block. The scheduling algorithm then executes inside a loop that tries to find
which instruction has to be scheduled next. A cost is computed for each unscheduled
instructions which takes into account the following 3 constraints:

= The resources availability

= The availability of temporary registers

* The longest-path delay in the resulting step
The algorithm then selects the cheapest cell to be scheduled, and the loop is started again. If
no instruction could be scheduled, the algorithm will create a new sub-step of the current step
and tries scheduling again. The use of these 3 constraints (they can be used with different
weights) makes the scheduler try to minimise the longest-path by executing more parallel and
independent instructions, while restricting to the available registers and resources.
This simple algorithm works in most cases, however, it fails in some situations due to the lack
of registers in the basic-block. As described earlier, this is caused by the fact that gcc tries to
minimise register usage inside the block. In such cases, a manual modification was needed to
make the assembly output from gcc pass the scheduling. During the course of the work a new
version of gec was released (4.0 and beyond) which improved support for parallel instruction
issuing. An ongoing project is now responsible for integrating a better quality scheduler into
gec for RICA, so that such register allocation problem can be avoided. However, the simple
scheduler was enough to test the performance of RICA when running simple programs as
described in the next section.
After the generation of the netlists, or steps, the configuration data for RICA is created. If
island-style interconnects are used, then the configuration of the multiplexers has to be
computed to make the connections between the cells. As is the case with DSRAS, this step can
be done using VPR [57] tailored to the routing structure. All the cases tested in the
performance evaluation (see below) were routable using VPR. However, in future versions of
the scheduler, the routability of the designs should be included as a constraint when
calculating the cost of scheduling an instruction. If the crossbar interconnects are used, VPR

is not needed and the configuration can be generated directly.

6.4. Performance evaluation of sample RICA
The sample RICA array chosen for comparison contains the cells listed in Table 5-4

interconnected using multiplexer-based switches. The IC selection was done manually as it
was adequate for general applications — as described earlier, although other combinations can
provide better performance depending on the application. These 32-bit cells provide the same

basic functionality as a general 32-bit DSP such as the ARM7. With the selected type of

Page 100

interconnects and ICs the reconfigurable core requires a 738-bit wide instruction word. The

array was implemented using a UMC 0.13um technology.

Table 5-4: Instruction Cells in the sample array

Cell Count Cell Count
ADD 4 LOGIC 2
MUL 4 COMP 1
REG 32 JUMP 1
SHIFT 2 MEM 8
DIV 1

6.4.1. Comparison with DSRA
An 8-point 1-D DCT was implemented on RICA for comparison purposes with the DCT

mapped on the DSRA using Distributed Arithmetic from Chapter 4. It should be noted that
RICA has been implemented using 0.13pm, while the previous DSRA use 0.18um; hence the
performance values shown in Table 5-5 had to be scaled from the ones in Chapter 4'. Also,
the DCT on the DSRA is a 12-bit DCT, while the sample RICA used is 32-bit. A 32-bit DCT
on the DSRA would require 32 cycles to finish (since the DA impie;mentation is bit-serial)
and would need larger accumulators to store 32-bit results. The execution time shown in
Table 5-5 for RICA include just the time needed to run the DCT and no other operation such

as memory initialisation (which is included later on" when RICA is compared with

processors).
Table 5-5: Comparison of the 8-points DCT on RICA and DSRA
RICA DSRA
Area (mm?) 2.1 -
Code size (bytes) 5,621 (Config Stream, FF) | 2,460 (Program Memory, SRAM)
Total area estimate (mm?)- 2.27 0.096
Minimum execution time (us) 0.08 0.13
Energy for 1 DCTs (nJ) 4.1 88

The large differences in the measured performance charachteristics show the difficulty that
exists when comparing hardware and software implementations, as each of the
implementations has been tuned for a specific optimisation. It can be seen that the DSRA is
around 20 times smaller, while it consumes around 20 more energy. Such results are
expected, since the energy was measured while running the simulation at the highest possible
frequency and the contribution of leakage power (which is proportional to the area) was kept
to a minimum. It can be seen that bit-serial DCT implementation on the DSRA is effective in
reducing the area at the expense of an increased switching activity and power consumption. A

bit-parallel DSRA would have been more appropriate for the purpose of this comparison.

' The scaling factors were found by forming an average of the ratios between the datasheets of

the two UMC technologies; this was done for area, delays and energy.

Page 101

Hence, no exact figure can be extracted on the costs of programmability that was brought by
using instruction-cells over programmable clusters. However, it seems as if they both give

similar performance.

6.4.2. Comparison with DSP Processors
The sample RICA was compared to the following DSP architectures: The simple OpenRISC

CPU [117] implemented on UMC 0.13um technology, the ARM7-TDMI-S [115] again on
0.13pm technology, the TI C55X [119] 2-way datapath low-power DSP and the powerful
T164X 8-way VLIW [113]. The benchmarks are mainly based on TI’s benchmarks for the TI
C64X. All the benchmarks are &irect unoptimised C representations of the algorithms — all
optimisations are left for the C compilers (Level-3). The compiler used for the RICA did not
include any advanced techniques like predications or the use of rotating register as compiled
provided by TI does. All benchmarks include memory transfers, stack control and function’s
prologue and epilogue and hence they show a representative evaluation of the architecture’s
performance.
Program size issue
In the results shown here, only the datapath energy consumption is measured for the
execution of the complete benchmark and compared to the architectures. It is important to
note here that the power consumption of the program memory is not included in the
evaluation: In the presented data, the programs used for RICA are raw and have not been
compressed, which means that they arel abundant in redundant zero configurations.
Formatting the program memory in a similar way to VLIW s where the end of each step is
marked using a tag can be easily applied to reduce the program size. However, such a
formatting would not bring the program down to the same size as the VLIWs, since in RICA
the array is heterogeneous and the location of every instruction has to be hard coded. Work
has been done in evaluating the distribution of the program-memory elements to each cell
which helps in removing a section of the redundant information. However, this is beyond the
scope of this thesis. More work has been by other members of the group on compressing the
program as part of a path-encoding scheme useful when used with island-style interconnects
[128].
Measuremenmnts _

For the RICA and OpenRISC the power and area were found using post-layout simulations.
The ARM?7 datasheet [115] provides power and area values of the core in 0.13um technology,
while [120] and [114] allows us to estimate the power consumption of just the datapaths in the
TI C64x and TI C55x. All these power estimations were measured at 1.2V operating voltage.
The area of the datapath in the TI C64x was estimated using scaling from the published die-
photo [111] knowing that the whole chip has 64M transistors (no cache memory was

Page 102

included). No area information was available for the C55x. Table 5-7 also include variations
in program size, as they differ for each architecture and compiler technology used. The size of
the data-RAM is the same for all processors, and hence it is not included in the comparison.
The Dhrystone benchmark, which today has become an outdated measurement, is included
here for reference. As shown in Table 5-7., the fact that the Dhrystone takes more cycles to
run on the highly pipelined TI DSPs than on the ARM7 shows how specific a benchmark it is.
The fact that the Dhrystone compuation requires a large number of non-predictable brach-
operations forces highly pipelined DSPs to frequently flush the instruction execution pipeline
and hence waste time. Using it as a single benchmark hides a lot of the speedups achieved in

modern media and DSP processors.

Results
The results are listed in Table 5-5 Table 5-6, Table 5-7 and shown in Figure 5-24 and Figure

5-25.

Table 5-6: Comparison of datapath area on 0.13um of CPUs excluding variations in program memory.

RICA |OR32 |ARM7 |C55x |C64x
[Datapath Area (mm®) 1.90 [0.25 10.32 N/A |2.01

Table 5-7: Comparing RICA with other processor, low-power DSP and VLIWSs using benchmarks.
OpenRISC CPU (on UMC|ARM7-DTMI-S (Syn. on
0.13pm) - 112MHz 0.13um) - 110 MHz

cLK_piv Min Raw Energy Min Code Energy Min Code Energy
Cy clos Execution Code per Op|Cycles Execution size per Op|Cycles Execution size per Op
Time (us) (bytes) (nJ) Time (us) (bytes) (nJ) Time (us) (bytes) (nJ)

1-DDCT |43 0.12 993 4.7 102 091 402 10.2 |104 0.95 406 9.36
2-DDCT (1351 3.01 1785 159.3 (4972 44.39 516 497 |3760 34.18 508 338
Viterbi 1838 7.78 1286 218.3 [9032 80.64 308 903 |8803 80.03 316 792

RICA

IR 120 0.17 755 16.33 |180 1.61 510 18 176 1.60 464 158
Min Error |5164 11.10 1070 620.1 (9073 81.01 442 907 |8908 80.98 412 802
Dhrystone|798 1.12 1289 52.57 (711 6.35 870 711 |712 6.47 912 641
Tl C64x 8-ways VLIW - 600MHz Tl C55x 2-way low-power DSP - 300 MHz
Min Code Energy Min Code Energy
Cycles Execution size per Op | Cycles Execution size per Op
Time (us) (bytes) (nJ) Time (us) (bytes) (nJ)
1-DDCT 68 0.11 316 34.68 104 0.35 451 26
2-DDCT 1763 2.94 588 899.1 2300 7.67 655 575
Viterbi 3120 5.20 664 1591 3980 13.27 262 995
IIR 39 0.07 160 19.89 139 0.46 436 348
Min Error 1320 7.20 952 673.2 7479 2493 380 1870
Dhrystone | 928 1.55 424 473.3 916 3.05 1021 229

Page 103

W TICS55X
O TICB4x
0O ARM7
& OR32
B RICA

2-DDCT

———
1-DDCT m::mm—'

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Figure 5-24: Normalised execution time graph of the benchmarks on RICA and other architectures

From the tables, we can see that for all the benchmarks we achieve better performance on
RICA that on the conventional OR32 and ARM7 CPUs: We obtain around 1-3.6 times less
energy consumption while achieving around 5-8 times higher maximum throughput. Due to
the increase in program size memory and the increase in the datapath area, the power and
throughput improvements come at the cost of an area increase of around 7 times in area. A
large part of the power reductions achieved over the four DSP systems are savings gained by

eliminating the registers-file and having distributed registers.

Normalised Energy Consumption

Dhrystone ‘
Min Error :
. mTICS5X
IR . @ETIC64x
| OARM7
Viterbi . EOR32
! BRICA

1

0.00 1.00 2.00 3.00 400 5.00 6.00 7.00 8.00

Figure 5-25: Normalised energy consumption graph of the benchmarks on RICA and other architectures

When compared to the low-power C55X DSP, RICA achieves a promising reduction in
energy consumption between 2 to 6 times while achieving a throughput of up to 3 times

higher. RICA achieves similar timing performances to the VLIW for applications containing

Page 104

significant datapath operations like DCT, while faster operation is seen for Dhrystone. For
benchmarks containing a large number of independent blocks and control parts (i.e. small
loops and comparisons) like Minimum Error, RICA is around 50% slower than the 600MHz
VLIW - this is expected as the TI compiler can optimise such code by using techniques such
as predication (i.e. conditional execution) in a better way than gcc. For the Viterbi and IIR,
RICA was around 20%-30% slower with the bottleneck being memory access. However, for
the case of the Viterbi, the gcc compiler was able to correctly identify the use of multiplexers
which improved the operating speeds and reduced branching. It should also be noted that
RICA is built from synthesisable standard-cell libraries while the circuits in the VLIW have
been manually laidout to achieve the 600MHz operating frequency. In terms of energy,
around 6 times less power is consumed for DCT, Viterbi and Dhrystone; this is caused by the
fact that on RICA less time is spent with large ALUs idel but consuming pouwer. The power
reductions for the Minimum Error and IIR benchmarks were lower at around 17%. In terms of
area, the datapaths of the RICA and VLIW are similar.

6.5. Reconfigurability overhead

As expected, the relative area occupancy of interconnects varies depending on the
interconnects type used (shown in Figure 5-26) which represents the average values measured
for the different application. The multiplexer-based interconnects occupy 78% of total core
area; this is quite a large overhead, however, it is still less than the 90% figure found in
normal FPGAs and the DSRAs. If island-style s-box interconnects are used, then the total

contribution of the interconnects to the area comes down to around 40%.

Area breakdown using Muxes and S-Boxes

2.500 1
2.000 -
E 1.500 -
't
£ 1.000 -
| Logic
0.000 s
S-Boxes Muxes

Figure 5-26: Break down of area in RICA using both multiplexers and s-boxes as interconnects

Page 105

For the power consumption, the detailed measurement was only done for multiplexer-based
interconnects, as no layout for an array with s-boxes was done. The breakdown is shown in
Figure 5-27. On the UMC 130nm technology used the leakage power was measured to be
around 10% of the total power consumption. The contribution of the interconnects to the total
power consumption was found to be on average 11%. This low overhead signifies that the
chosen granularity and breakdown of functional units is efficient.

Breakdown of Power consumption

3.0E-03

2.56-03 i

2.0E-03 -
@ Dynamic

1.56-03 | @ Leackage

Power (W)

1.0E-03

5.0E-04 -

0.0E+00 - -

Logic Interconnection
Multiplexers

Figure 5-27: Break down of power consumption in RICA using multiplexers as interconnects.

6.6. Conclusion
The table below compares the proposed RICA architecture to DSRAs, FPGAs, DSP and

VLIW technologies. The performance measured demonstrates attractive results regarding the
four important requirements for future systems: low cost, low power-consumption, high
flexibility and simple design-flow. When compared to current technologies, RICA
outperforms low-power DSP architectures such as the TI C55x with up to a 3 times higher
throughput and with 2-6 times less power consumption. It should be noted that the degree of
power savings depends on the amount of control operations in the program. When compared
to current VLIW processors, RICA considerably reduces the number of required clock cycles
in applications containing numerous dependent instructions since it allows the execution of
both dependent and independent instructions concurrently, which solves the problem of
statistical ILP-limit faced by VLIW. In terms of timing performance, RICA achieves similar
timing to the VLIW for datapath application, while being ul; to 50% slower in control
intensive application. This is due to the fact that the VLIW circuitry has been handcrafted to
achieve 600MHz operating frequency [113]. Nevertheless, RICA can achieve up to 6 times
less power than the VLIW.

Page 106

RICA vs. DSRA

* Programmable using a high-level C language.

= DSRAs allow better lower-level tuning.

» RICA is easier to interface with other SoC elements using the data-memory and
direct-memory-access (DMA).

e Lower area,

» Less configuration bits

* Dynamic reconfiguration

RICA vs. DSP/RISC

* Distributed registers, and hence lower power than centralised register file.
* Distributed Data memory access.
= Temporary register/memory access becomes wires between cells.
‘= Lower-power
= Higher throughput
= Larger program size

RICA vs. VLIW

» Faster for datapath computations, similar throughput for control.

» Similar datapath area

= Much lower power consumption

= Performance not limited by the presence of dependent instructions, no ILP limit.
* Distributed registers, and hence lower power than centralised register file.

= Distributed Data memory access.

= Temporary register/memory access becomes wires between cells.

= Larger program size when uncompressed

RICA vs. FPGA

= Less flexible since coarse-grain

= Much lower power consumption

= Lower area

= FPGAs should be able to achieve a higher degree of parallelism since there are no
area limits. :

* Programmable using a high-level C language

' Dynamic reconfiguration

RICA vs. ASIC

* Much more flexible

= . Higher power consumption

= Larger area

= ASICs should be able to achieve a higher degree of parallelism since there are no
area limits.

= Programmable using a high-level C language

= IfRICA is replacing several hardwired IPs, then its distributed memory removes
the need for a shared bus to communicate data between the IPs, and hence reduces
power.

The measured performance of the initial array is encouraging; however, more tuning can be
done on the compiler level, such as making the scheduling occurs inside gcc, to greatly boost
the performance. Furthermore, due to the limitations of the currently used compiler, some
arithmetic operations have to be optimized manually. This is especially true for applications
which software implementation is completely different from the hardware one, as seen in the
next chapter. ’

One problem in the proposed RICA architecture lacking compression is the large program

memory requirements compared to other processors. Since memory consumes much power,

Page 107

this can potentially affect any power saving achieved in the datapath. However, work is
currently being carried on in this area to determine an efficient compression scheme to reduce
the required number of program-bits while having a fast decoding time essential for dynamic
reconfiguration. This can be achieved by distributing the program memory to each cell and
allowing the use local program-indices to determine the activity of the cell. The compression
of the program memory is also being investigated at the same time as the interconnects
structure in order to find a suitable program coding format usable in an S-Box based

interconnects scheme [128].

Page 108

Chapter 7:

Advanced
implementations on
RICA

The RICA fabric can be large enough to allow making circuits containing multiple functional
elements as is the case in ASIC and FPGAs. This enables us to use design techniques and
optimisations that are conventional in hardware circuit designs. Since such methodologies are
uncommon in normal processors, they are not automatically identified and applied by the
existing gcc compiler. This chapter shows two examples of such optimisations: First the use
of registers to implement propagation/broadcasting schemes and second the use of multilevel
pipelining for increasing throughput.

Additionally, since RICA is programmable using a high-level language and it can execute
both control and datapath oriented operations, it becomes possible to rapidly run large
applications on the architecture: In the second part of this chapter, an mp3 audio and H.264
video codecs (which otherwise are too time-consuming and too difficult to implement on

ASICs, FPGAs or DSRAs) are used to prove this programmability of RICA.

Page 109

7.1. Example of manually optimised implementations

7.1.1. FIR Filter using shift-register
The conventional method of designing an FIR filter in software is to use the data-memory to

store the input and the coefficients and to go through the input array multiplying each element
with a coefficient. This is shown in Table 5-8 which is taken from TI’s benchmarks for the
TI62x [121]. In this code for a 10-tap FIR filter, which was originally designed for the 8-way
VLIW, the inner-loop can be unrolled automatically by the compiler. However, the unrolled
output will be abundant of dependent instructions (the sum variable) and it would not be
possible to use any of the 8 ALUs of the VLIW in parallel, hence it is very inefficient for
VLIW.

Table 5-8: C code for conventional FIR in software from TI benchmarks [121]

__

¢ void A_fir_vselp u(const short * iPtr, const short * coefPtr, short *oPtr)

oA

! for (iPtr += 10, int i=0; i < N; i++) {

. int sum = 0;

. for (int j = 1; § <= 10; Jj++) // This is a 10-tap filter

5 sum += (int) (short)coefPtr(j~-1} * (int) (short)iPtr{i-j];

) oPtr[i] = ((sum + iPtr[i]) >> 15);

S S J

If this cbde is compiled for RICA, then no ILP-limit problem is faced due to dependent-
instructions and it executes more efﬁciéntly than on a VLIW, however there is still more
room for improvement. Most of the execution time is spent in the ruem cell for accessing the
coefficients and the input data, and the same coefficients and memory locations get read
several times during the full loop. A more efficient implementation can be achieved by using
a hardware-like FIR filter that uses shift-registers to store the previous input values. Since
conventional DSP processors.do not allow implementing shift-registers, most of the existing
code has been tailored for replacing such hardware-structures with memory access. However,
since the RICA fabric enables mapping circuits such as shift-register, the code can be re-
written to execute faster and with less RAM access, as shown in Table 5-9. The proposed
code only reads an input value once and puts it through 10-shift registers (to represent the 10-
taps), and in each inner-loop only one coefficient is read and multiplied by the appropriate

value. In the example shown this gives an immediate 43% speed-up.

Page 110

Table 5-9: C code for FIR with reduces memory access using shift-registers, similar to hardware implementations.

void fir with sr(const short * iPtr, const short * coefPtr, short *oPtr)

{

for (j = 0; 3 < 10; j++) { // 10-tap filter
r22 = (int)iPtr([(i-j)1; // Read the input mem value
coef j = coefPtrijl; // Read the coef
sum9 += (int) (short)coef j * r22; // Do the calculation
sum8 += (int) (short)coef j * r23;
sum7 += (int) (short)coef j * r24;
sumé += (int) (short)coef j * r25;
sum5 += (int) (short)coef j * r26;
sum4 += (int) (short)coef j * r27;
sum3 += (int) (short)coef_ j * r28;
sum2 += (int) (short)coef j * r29;
suml += (int) (short)coef_j * r30;
sum0 += (int) (short)coef_j * r3l;

// Do the shifting (it is a 10-tap filter)

r31 = r30; r30 = r29;
r29 = r28; r28 = r27;
r27 = r26; r26 = r25;
r25 = r24; r24 = r23;
r23 = r22;

}

for (3 = 0; j < 10; j++) // Write the 10 outputs
oPtr{i-j1 = ((sum0 + iPtr[i-Jj])):

4 Reg Reg | Reg Reg Reg Reg

If we had more than 10-taps, then we would need more registers to do the shifting. In this case
we either add more rec cells to the array, or we can use the 2™ bank of each rec cell. The

other solution is to use the data-memory (i.e. wvem/rMeM cells). Also, if the number of taps was

for

int i,3;

short coef j;

register int r22, r23, r24, r25, r26, r27, r28, r29, r30, r31;
int sum0, suml, sum2, sum3, sum4, sum5, sum6, sum7, sum8, sum9;

r23= r24= r25= r26= r27= r28= r29= r30= r3l= 0; // Initialise

(i=N-1; i >= 9; i=i-10) {
sum0= suml= sum2= sum3= sum4= sum5= sumé6= sum7= sum8= sum9 = 0;

x) C2 X C3 X C4 X C5 X C6 X C7

A

Figure 5-28: Typical hardware and RICA implementation of an FIR using shift-registers.

fewer than 10, of if we had 12 mur and 12 app we could have fitted it inside a single step and

used a pipelined scheme (like the one described below for the FFT) to improve the throughput

further. Staying in the same step also reduces the time need to fetch the new configuration for

the next step.

Page 111

Table 5-10: Measurement of improvement in shift-register based FIR filter.

Cycles Total time (us)
FIR w/o SR 1 481 3.61
FIR using SR 339 2.04

7.1.2. Pipelined 8192-point FFT for OFDM
The 8192-point FFT (or 8k FFT) was chosen for implementation on RICA as it is a highly

computational part of the Digital Video Broadcasting (DVB) standard. Here we take the
example of the DVB-T standard targeting terrestrial digital broadcast; a DVB-T compliant
High Definition TV (HDTV) set uses OFDM (Orthogonal Frequency Division Multiplexing)
signalling to achieve the required high bandwidths[122]. As described in the DVB-T standard,
the OFDM receiver uses an 8192-point FFT transform which needs to be performed within
924ps.

This FFT is usually implemented pn FPGA or ASICs, as DSP implementations are complex
[123] [124]. Having this FFT implemented on a software programmable architecture would
be a great advantage towards the implementation of a Software Defined Radio (SDR) on
RICA. '

An N-point FFT operation is defined as:

N-1
X[k]=> xnl W, k=0LA N-1

n=0
Where the twiddle factor W is:

Wnk _e—jZMk/N
N =

The main FFT computation requires a large number of operations, however, due to the nature
of the twiddle factor W several algorithms have been designed to reduce the number of
computations required; the algorithm chosen to be implemented on RICA is the Cooley-
Tukey Decimation-in-Time (DIT) Radix-2 algorithm [125]; to compute the FFT for 8192
points 13 stages are required. In each stage 4096 radix-2 butterfly operations need to be
carried. The input to each stage is the output of the previous stage, hence one advantage of
this algorithm is that there is no need to use intermediate memory buffers for the FFT, as it
can bé placed on the memory location as the input.

In order to reduce the complexity of the algorithm further, the 8192-points can be divided into
6 radix-4 stages followed by one radix-2 stage. However, 13 radix-2 stages were chosen to
reduce the program size and to make it easier to implement the pipeline (described below). A
Radix-2 butterfly is in effect a 2-point FFT computation; it has 2 inputs xy and x; and 2
outputs y, and y;, and uses the twiddle factor Wy :

Page 112

.X(; yﬁ
Yo=Xot+ x;- Wy

Yi=Xi- X1 Wy

Figure 5-29: Radix-2 complex butterfly computation.

All these operations are complex operations, and hence the numbers have imaginary and real
parts. A complex multiplication can be implemented using 4 real multipliers and 2 real
adders. Hence, each radix-2 butterfly has 1 complex multiplication and 2 complex additions
which comes down to 10 real operations.

In order to speed-up the executio’n of the FFT, it was decided to add the complex arithmetic
functionality to the mur and app cells themselves and not to do it in software. With this
approach, the 32-bit app cell can also perform a 16-bit complex addition. The 16-bit real and
imaginai‘y part of each complex number would be combined into the 32 bits used to represent
real numbers. This gives the FFT a 16-bit precision which is enough for OFDM applications,
as typical FFTs for DVB-T use 12-bit processing.

The Decimation-in-Time (DIT) FFT algorithm also requires a bit-reversing operation to be
performed on the 8k input either before or after the 13 stages of radix-2. The bit-reversing
ability simply converts input data such as 0001101..0 to 0..1011000, and is used to modify the
addressed of the 8129 input samples. This generic bit-reversing ability has been added to the
rocic cell, as it would be very time costly to implement it in software. With this approach the
extra rogzc cell would be used after the address-generator in the first stage when the input
data is accessed for the first time.

The address-generator needed to read and write between two stages has to follow the
addressing needed for the decimation-in-time algorithm. This is shown as an example for the
8-point FFT in Figure 5-30. The details for this addressing can be found in the code in Table

5-11, where the address is calculated using the variables point and stride.

Page 113

Radix-2 Radix-2 Radix-2
W' Wy Wy
4 o—> . i
2 O—0~ 2
Radix-2 Radix-2 Radix-2
Wy Wy wy'

6 o—> 30— 3
1 o—nu O 4
Radix-2 Radix-2 -Radix-2
Wy Wy Wy
5 N - N - N 5
3 o, 6
Radix-2 Radix-2 Radix-2
Wyt Wy Wy
7 o— o po— —0 7
Figure 5-30: 8-point FFT computation using Radix-2 butterfly
Table 5-11: 8k FFT computation with the main loop fitting into a single step
; for (stride=1; stride != n_points; stride *=2) //For 8192, 13 stages of Radix-2 E
) { .

; point = 0;
. counter = 0;
f do {

' twiddle = twiddle_table[counter];

in0
inl

data[point];
data[point+stride];

5 CPLX_MUL (temp val, inl, twiddle);

. CPLX ADD(temp0O, in0O, temp_val);
CPLX SUB(templ, inl, temp_val);
data([point] = temp0;
data[point+stride] = templ;
temp mux2 = temp_muxl - n_points + 1;

point = (temp muxl >= n_points) ? temp_mux2 : temp_muxl;

counter++;
} while (counter < half n);

temp muxl = point + stride*2;
If the code of Table 5-11 is compiled, then we can fit the main loop calculation into a single
step if we have the following resources in the array: 8x apbp, 2x mur and 2x surer. This is
shown in Figure 5-31. As it can be seen, the longest-path delay in this step would the path
rMEM-MUL-ADD-wMEM, Which is around 27 ns. Since this loop is executed 13-4096 = 53,248
times, it would takes 1437ps to finish the 8k FFT calculation. As described earlier, this is too
long for the DVB-T standard.

Page 114

Figure 5-31: Main loop step if compiled from code (counter not shown)

To improve the throughput we can employ a 3 stage pipe: between the rvem and the arithmetic

operation, and between the arithmetic operation and the wwem. In this case, the longest path

becomes 10 ns, which reduces the time needed to compute the whole FFT to 530us, making

the implementation compatible with DVB-T. To make this work we would need to execute 2

extra cycles to fill the pipeline and 2 cycles to empty it.

The fact that the whole loops fits into a single step and that this step loops back to itself

allows achieving this high performance; in this case the configuration for the array does not

change and there is no need to fetch a new instruction from the program memory. This gives

near ASIC-like speed since the only overhead compared to ASICs are the relatively light

interconnects between the cells.

Table 5-12: Comparison of the performance of FFT with and without pipeline.

Cycles Longest-path (ns) Total time (ps)
FFT w/o pipeline 53248 27 1437
FFT w pipeline 53248 + 4 10 530

Page 115

Figure 5-32: Main loop in FFT calculation with pipeline registers.

When running the pipelined FFT the datapath exhibits an energy consumption of 5.2 mW.
The same 8k FFT would required around 200,000 cycles to run on a TIC62x VLIW — hence
an operating frequency of 377MHz would be required to complete the calculation in 530ps,
which means that the datapath would consume 192mW, as it is characterised at 0.51
mW/MHz. This means that RICA’s datapath is around 37 time more energy efficient that the
VLIW.

For the purpose of this experiment, this modification and the addition of the pipeline registers
was manual. However, in the future the scheduler should identify loops that fit into single
steps and should try to add the pipeline automatically.

7.2. Larger systems: MP3 Audio and H264 Video

Large systems that are impractical to design using HDL such as multimedia applications like
mp3 audio and H.264 video decoding; these applications contain large amounts of conditional
execution and operations that make it a requirement to use a high-level description language
to program and maintain the code as well as to reduce the design cycle since these standards

Page 116

keep changing. To demonstrate the programmability of RICA, the open-source mp3 decoder
libmad [126] and the open-source H.264 decoding module from ffimpeg [127] were compiled
and profiled. The untouched code was compiled with no modifications to the actual
audio/video decoding elements were done — only some output printing functions were
disabled as they are not support on the RICA hardware. The performance values shown are
for the same 64-cell sample RICA described in the previous chapter. The same code was also
compiled for ARM9TDMI, which is a processor specially tailored for multimedia
applications. The speed and energy consumptions of the solutions are shown in the tables
below; the values shown for ARM9TDMI assume that it is running at its maximum frequency
of 250MHz and that it consumes 0.25 mW/MHz [116] (cache is disabled and ideal situation is
supposed), while the ARM7TDMI-S runs at its maximum frequency of 110MHz.

For the mp3 benchmark, a two-frames long stereo 64kbps sample input was used. The time
and energy consumption shown are the ones measured for the duration of recoding the 2
frames. The results (Table 5-13) show that RICA decodes the frames 3.4 times faster than
ARM9 with a datapath energy consumption 10.8 times lower.

Equally attractive results are measured for decoding H.264 frames (Table 5-13 and Figure
5-33) where RICA is 13.8 times faster than ARM?7 and having 6.7 times less energy. The
sample video used contains two QCIF (177x144) frames at 460 kbps data rate.

Table 5-13: Performance comparison of the libmad mp3 decoder on RICA and ARM9 (2 frames)

ARM9TDMI (250MHz) | RICA
Datapath energy Consumption (uJ) 127.60 11.80
Decoding speed (ms) 2.06 0.60

Table 5-14: Performance comparison of the ffmpeg H264 decoder on RICA, ARM9 and ARM7 (2 QCIF frames)

ARMOTDMI (250MHz) | ARM7TDMI (110 MHZ) | RICA

Energy Consumption (mJ) 2.15 0.74 0.1

Decoding speed (ms) 39.60 111 8.03
Sa—— : Decoding Time (ms)

RICA RICA
: 2158 6
| ARM9 (250MHz) ' ARMS (250MHz)
E E m
! ARMT (110MHz) | ARM7 (110MHz)
0 05 1 15 2 25 0 2 40)) 100 120

..

Page 117

The performance shown is for directly-compiled and unoptimised code. Important speed-ups
(around 24 times) should be achievable using similar techniques to the ones described earlier
such as shift-registers and pipelining, which would make RICA to easily support future H.264
decoding of large frames (e.g. D1 720x480) at real time — such an implementation is
impossible today using a programmable solution that is usable in portable applications. The
list in Table 5-15 shows the percentage of time spent in each function while decoding two
different video sequences of 20 D1 frames (one with CABAC coding and the other with
CAVLC). Such a profiling gives an idea of which functions have a priority in being optimised
and optionally hand-coded to increase the performance. In this case these functions would the
filtering ones (_decode residual, _decode_cabac_residual, _filter mb,
h264? loop filter luma c, _put h264 gpel8 ? lowpas). It can also be seen that the
initialisation function memset occupies quite a large percentage — this is only the case because
the hardware has only decoded 20 frames and running the decoder for a longer time would
reduce the relative percentage of this function. Nevertheless, the memset function used
operates on a byte level. Since RICA has multiple memory banks that can allow simultaneous
memory writing, a direct 4 times speed-up can be achieved by rewriting memset to

simultaneously write 4 bytes.

Table 5-15: Profiling of the ffmpeg H264 decoder on RICA, running through 20 D1 frames

D1 720x480, 20 Frames, CAVLC, 13.6 fps D1 720x480, 20 Frames, CABAC, 19.6 fps
_memset 14.17% _decode_cabac_residual 10.52%
_put_h264 _gpel8_h_lowpass 13.58% _filter _mb 10.08%
_put_h264_gpel8_v_lowpass 10.82% _memset 8.88%
_decode_residual 9.22% _put_h264_gpel8_h_ lowpass 7.92%
_put_h264_gpel8_hv_lowpass 7.05% _h264_v_loop_filter luma c | 6.06%
_ff h264_idct8_add_c 6.36% _put_h264_gpel8_v_lowpass 5.99%
_ff h264_idct_add_c 5.92% _put_h264_gpel8_hv_lowpass | 5.55%
_put_h264_chroma_mc8_c 5.49% _h264_h_loop_filter luma_c | 5.44%
_decode_mb_cavlc 4.85% _ff h264_idct_add c 5.27%
_memcpy 4.78% _decode_mb_cabac 4.14%
_hl decode_mb 3.20% _put_h264_chroma_mc8_c 3.56%
fill caches 2.28% hl decode mb 3.01%

7.3. Conclusion
Due to the limitations of the compiler some arithmetic operations have to be optimised

manually. This is especially true for applications for which the software implementation is
completely different from the hardware one, e.g. FIR, where in hardware we would naturally
use shift-registers, while existing software implementations use memory copying and access.
This use of shift-registers was demonstrated for an FIR filter and showed a 43% speed up on
RICA as memory access got reduced. The modification was done on a C-language level.

The second hardware-like technique tested is programmable pipelines. The example used is a

compute intensive 8k FFT calculation. Pipeline-optimisation was performed on a single step

Page 118

level by manually changing the scheduled code to add registers between the instruction cells
or long paths. This resulted in 2.5-3 times throughput increase over the non-pipelined version.
These useful hardware design techniques can be easily added in the future to the compiler to
make their usage automatic, and hence there would be no need for manual low-level coding.

Furthermore, since RICA is programmable in C, it was possible to compile large and complex
systems to demonstrate its programmability feature. An open-source MP3 audio decoder and
H.264 video decoder were directly compiled in a straightforward way in a week time. The
measured perfor‘manée and power consumption dn ‘RICA compares favourably to other
solutions: RICA is around 10x faster and more power efficient than ARM9. However, as with
any CPU processor, there is more room for improvemcnts by manually writing critical
operations in assembly/netlist level. Future versions of the compiler and scheduler should

help making this type of optimisations more automatic.

Page 119

Chapter 8

Conclusion

In this work, the initial approach to develop a solution for the flexibility problem in System-
on-Chip architectures was to focus on coarse-grain Domain-Specific Reconfigurable Arrays
(DSRASs) as a mean to provide a solution with high throughput and low power-consumption
when compared to other alternatives such as embedded FPGAs and DSP processors. To make
any domain-specific scheme usable for a large number of applications, a framework for
creating such arrays was designed. The generated DSRAs have an FPGA-like structure as this
provides a reasonable uniformity and allows the reuse of existing software. From a structure

point of view, the DSRAs differ from FPGAs in that they are coarse grain heterogeneous

arrays.

Page 121

Two sample DSRAs were generated for video coding applications; the measured performance
indicates that DSRAs can indeed be classified as a compromise between FPGAs and ASICs in
terms of flexibility, power, area and delays. It was also found that the performance of a DSRA
can be optimised further by tailoring the directivity and the circuit design of interconnects;
this gives improvements in power and area at the cost of increased delays and lower
routability.

To generate a DSRA, the designer has to manually identify the algorithms targeted and the
operations needed in order to create the clusters for the array. In the future, once several
applications have been designed using DSRAs, a library of clusters can be created to reduce
this lengthy DSRA design-time. In short, the rapid deployment of DSRAs depends on the
existence of such a library. Another limitation to DSRAs is the fact that in the same way as
ASICs and FPGAs, they have to be programmed at low-level using a time-consuming

Hardware Description Language.

DSRA vs. FPGA DSRA vs. ASIC
o Lower area @ Much higher flexibility
@ Much lower power consumption o Higher power consumption
o Higher frequency o Higher area

"= Less flexibility = More delays

To overcome these problems, the second proposed approach was to use an architecture called
the Reconfigurable Instruction Cell Array (RICA). By using so called instruction-cells that
accept processor-like instructions, it becomes possible to map a compiled software
representation of an algorithm directly to the reconfigurable fabric. Coupled with the ability to
dynamically and rapidly reconfigure the array, running complete software programs on RICA
is feasible. The open-source gcc C compiler was modified to compile software to RICA.
Several C benchmark algorithms were tested, and RICA demonstrated attractive results
compared to other architectures. RICA outperformed current low-power DSP architectures
such as the TI C55x by providing up to a 3 times higher throughputs and with 2-6 times less
power consumption in the data-path. When compared to current high-end VLIW processors
RICA achieves similar timing for datapath applications, while being up to 50% slower in
control intensive applications. This is due to the fact that the VLIW circuitry has been
handcrafted to achieve high operating frequencies. Nevertheless, RICA achieved up to 6 times
less power than the VLIW using standard code, and up to 37 times less in the case of the
pipelined FFT.

The straightforward programmability of RICA made it also possible to run existing large
systems such as an mp3 audio decoder and an H.264 video decoder only after a few days

design-time. It was also demonstrated that by manually programming RICA at low-level it

Page 122

becomes possible to use hardware-like optimisations that are not usually found in processors,
mainly due to the limitations of the used compiler. This included the use of elements such as

multiplexers, shift-registers and pipeline registers to increase throughput and reduce memory

accCess.
RICA vs. DSRA RICA vs. DSP/RISC

= Programmable using a high-level C = Distributed registe'rs, and .hence lower
language power than centralised register file

= DSRAs allow better lower-level tuning * Distributed Data memory access

= RICA is easier to interface with other * Temporary register/memory access
SoC elements using the data-memory becomes wires between cells
and direct-memory-access (DMA) . L(?wer-power

= Lower area = Higher throughpu_t

= Less configuration bits *= Larger program size

= Dynamic reconfiguration

RICA vs VLIW RICA vs FPGA

» Faster for datapath computations,
similar throughput for control = Less flexible since coarse-grain

* Similar datapath area) = Much lower power consumption

= Much lower power consumption s Lower area

* Performance not limited by the = FPGAs should be able to achieve a
presence of dependent instructions, no higher degree of parallelism since there
ILP 1¥mlt) - are no area limits.

= Distributed reglste.rs, and .hence lower * Programmable using a high-level C
power than centralised register file language

= Distributed Data memory access = Dynamic reconfiguration

= Temporary register/memory access
becomes wires between cells

.= Larger program size

RICA vs. ASIC

Much more flexible

Higher power consumption

Larger area

ASICs should be able to achieve a higher degree of parallelism due to reduced area limits
Programmable using a high-level C language

If RICA is replacing several hardwired IPs, then its distributed memory removes the need
for a shared bus to communicate data between the IPs, and hence reduces power

Future work in the RICA domain would need to mainly focus on two aspects: First, the
improvements of the software-tool flow to optimise further the design. This includes using
improved instruction scheduling algorithms, integrating the scheduling as part of the
compilation phase and allowing the compiler to identify hardware-like optimisations that are
possible on RICA. The second aspect would concentrate on the hardware design of the
interconnects to allow a better scalability of the array (i.e. allow the usage of 500+ cells)
along with the design of methods for reducing the program memory usage, as this has
considerable part of the total power and area consumption on the chip. Several program-

memory compression schemes are possible, including the use of distributed memories and

Page 123

local program-counters to remove redundant data, as well as the use of path-encoding
methods [128].

In the future, the current architecture can be heavily optimised by adding asynchronous logic
capabilities to the Instruction-Cells. Completion-detection signals can be created at the output
of each Instruction-Cells to signal when the next cell in sequence should start operation. This
would completely eliminate any need for the cik_p1v cell as each step would only take the
exact time it needs to finish the calculation. This helps in further reducing the program size as
no configuration data is needed for cLx_piv.

In terms of silicon utilisation, adding multithreading capabilities to the architecture would
dramatically increase it along with increasses in the degree of parallel operations that can be
executed. Having multiple sump cells and multiple program-counters coupled with the ability
to dynamic schedule the silicon resources between multiple tasks woﬁld create an ideal
system architecture with a very high degree of scalability, flexibility and an extremely high

performance per silicon area, unachievable in any other architecture.

Achievements

Domain-specific reconfigurable arrays

o Hardware design of DSRA programmable fabric

o Framework and tools to generate arrays according to defined clusters

o Tools to program (including routing) and test the arrays at various stages of the SoC
design-flow

o Library of interconnect structures that can be used to tailor the arrays towards the
application

o Optimised clusters useful in video coding and filtering applications

o Hardware design of two arrays targeting MPEG video decompression

Reconfigurable Instruction Cell Array architecture

o Hardware design of RICA system composed of heterogeneous instruction-cells,
programmable interconnects and memory interfaces

o Tool to generate RICA arrays with customisable numbers and functionalities of
Instruction Cells

o Modified gec compiler for generating RICA-specific assembly

© Scheduling tool to extract instruction parallelism from assembly

o Optimised software implementations of DSP operations on RICA

Page 124

Contribution to kno-wl‘edge

This study was aimed at providing a deeper understanding of practices for achieving
optimised SoC design in terms performance and costs. Tackling this issue from the point-of-
view of flexibility and the generality provided by hardware verified the existing conception
that the more specific the hardware, the higher the costs and the higher the performance are,
and vice-versa. This study showed that in order to create realistic designs at a domain-specific
level — a hybrid level between the extreme general FPGAs and the extreme hardwired
solutions ASICs — another general layer is required, which consists of a software-framework
to generate these domain-specific hardware desfgns.

The presented work concentrated also on finding middle-grounds between existing extremes
of reconfigurable architectures from the point-of-view of reconfiguration time; i.e. somewhere
between the extremely infrequent FPGA reconfiguration and the single-cycle reconfiguration
in DSPs. It was proven that efficient silicon architectures can be achieved by combining a
reconfigurable fabric interconnected in an FPGA-style along with an atomic granularity
similar to ALUs in DSPs and coupled to an instruction execution and control mechanism
similar to processors. This resulting architecture can execute both control and datapath
intensive code at performances currently separately obtainable using DSPs (for control) énd
FPGA (for datapath).

Furthermore, with this approach the hardware-design flow stays at high-level C-language. It
can be seen as if the hardware design methodology becomes a mix between C and HDL: Big
functional loops can be conceptually thought of as HDL (being described in C), while the
program flow and control operations are done in the easy aﬁd conventional way in C. This
solves an enormous problem faced today in terms of finding new ways to program parallel

systems.

Page 125

A. Sample RICA cells

with instruction set

The supported Cells/Instructions are shown in the following table:

Cell Supported Configurations Inputs Outputs
ADD {ADD, SUB}+{SI, HI, QI} 2: A, B 1: O
comp {EQ, NE, GTS, GES, LTS, LES, GTU, GEU, LTU, 2: A, B 0
LEU} + {SI, HI, QI}
CONST { #Num} 0 1: O
DIV {DIV SIG, DIV UNSIG} + {SI, HI, QI} 2: A, B 1: O
JUMP {IF T, IF F, ALLWAYS} 1: ADDR 1: NL
LOGIC {SE, ZE, AND, OR, XOR, NOT, NEG} + {SI, HI, 2: A, B 1: O
QI}
MUL {MUL SIG, MUL UNSIG} + {SI, HI, QI} 2: A, B 1: O
REG {WRITE, READ} 1: I 1: O
RMEM {NO OFF} + {SE, ZE} + {SI, HI, QI} 2: ADDR, OFFSET 1: DATA
SHIFT {SLL, SRA, SRL} + {SI, HI, QI} 2: A, B 1: O
WMEM {Enable} + {NO OFF}{SI, HI, QI} 3: ADDR, DATA, OFFSET 0

These are the same operations supported on the OR32 implementation of the OpenRISC,

hence anything that compiles and runs on the OR32 can be converted to this architecture. This

is similar to the instruction set provided in the ARM7,

The sz, 11, o1 option specify the width of the data operated on:

SI : Single Integer = 32-bits’
HI : Half Integer = l6-bits
QI : Quarter Integer = 8-bits

Page 127

8.1. ADD

Configuration bits: 3 bits

i
o mem———

co Cl-Cc2
0: Addition 00: SI1
1: Subtraction 01: HI

10: QI

I/O Pin Dir Size Description
A In 32-Bit Input 1 operand
B In 32-Bit Input 2 operand
o] out 32-Bit Result of Add/sub operation

Simplified operation:

O =C0 ? A-B

Commennts:

: A+B

o Standard Addition and Subtraction

o Combinatorial cell

Page 128

8.2. COMP_MUX

Number of configuration bits: 6

——

Configuration bits: 6 bits

C0-C3 C4-C5
0000: EQ (Equal) 00: SI
0001: GTS (Greater Than - Signed) 01l: HI
0010: GES (Greater than or Equal to - Signed) 10: Q1
0011: GTU (Greater Than - Unsigned)
0100: GEU (Greater than or Equal to - Unsigned)
1000: ZERO (Compare to Zero)
1001: GTZS (Compare to Zero)
1010: GEZS (Compare to Zero)
1011: GTZU (Compare to Zero)
1100: GEZU (Compare to Zero)

I/0 Pin Dir Size Description

MUX A In 32-Bit Multiplexer Input 1
MUX B In 32-Bit Multiplexer Input 2
COMP A In 32-Bit Comparator input 1
COMP_B In 32-Bit Comparator input 2
DATA OUT Out 32-Bit Multiplexer Output

Simplified operation:

DATA OUT = (COMP_A § COMP_B) ? MUX_A : MUX_B

Comments:

MUX B is set to Zero when compare to Zero selected

Combinatorial cell

Page 129

8.3. CONST

Configuration bits: 32 bits

C0-C31

The required 32-bit output constant

@
o
Z
[
=

I/O Pin

Dir

Size

Description

Out

32-Bit

Output constant

Simplified operation:

O = Constant

Commenmnts:

o Provides constant value through configuration program memory

o Combinatorial cell

Page 130

8.4. DIV

Number of configuration bits: 3

Configuration bits: 3 bits

DIV

co Cl-c2
0: Singed Division 00: SI
1: Unsigned Division 01l: HI
’ 10: QI

1/0 Pin Dir Size Description
A In 32-Bit Input 1 operand
B In 32-Bit Input 2 operand
o] Out 32-Bit Result of division

Simplified Operation:

0= A/ B

[y Gy s yound

Page 131

8.5. COMP_JUMP

Number of configuration bits: 9

cf¢

b

JUMP

Configuration bits: 3 bits
co0-C1 c2 C3-C6 C7-C8
00: GO TO NEXT STEP 0: Relative 0000: comp_Eq 00: sI
01: JUMP ALWAYS Address 0001: comp_GTS 01l: HI
10: JUMP IF FLAG IS 1: Absolute 0010: comp_GES 10: QI
HIGH Address 0011: comp_GTU
11: JUMP IF COND IS 0100: comp_GEU
Low 1000: comp_ZERO
1001: comp_GTZS
1010: comp_GEZS
1011: comp_GTZU
1100: comp_GEZU
I/0 Pin Dir Size Description
ADDR In 32-Bit Input Address
COMP A In 32-Bit Comp In
COMP B In 32-Bit Comp In
NL out 32-Bit Address of Next Location
Operation:

C3-C6 performs a cdmparison operation on COMP_A and COMP_B

C2 indicates if the address is in absolute or relative mode

L Do

COmP | COMP

A B
ADDR NL

CO0-C1 bits decide what sort of jump operation to perform. The flag is given from the output
of COMP-A and COMP-B

Commenmnts:

o NL output is the address that would occur if the jump is not executed. This would be
the return address from a function; usually stored in the Link Register.

o The PC output goes into a decoder and then it gets converted into an address for the
Program RAM.

o When nothing is connected to the cell, it acts as an instruction controller and keeps
incrementing the program counter (i.e. GO TO NEXT STEP)

o Cell clocked by the CLK_DIV

Page 132

8.6. LOGIC

Number of configuration bits:-6

cfc

Configuration bits: 6 bits

LO(NCM—J

0011: OR (Bitwise OR operation)

0100: XOR (Bitwise XOR operation)
0101: NOT (Bitwise Inverse operation)
0110: NEG (2 Complement negation)

co0-C3 C4-C5
0000: SE (Sign Extend) 00: SI
0001: ZE (Zero Extend) 01: HI
0010: AND (Bitwise AND operation) 10: QI

I/O Pin Dir Size Description
A In 32-Bit Input 1 operand
B In 32-Bit Input 2 operand
0 Out 32~Bit Result of operation
Simplified operation:
0o = A (Bitwise operation) B
- Comments:

= Bitwise logic operations.

s Combinatorial cell

A B O

Page 133

8.7. MUL

Number of configuration bits: 3

cfc

Configuration bits: 3 bits

MUL

0: Signed Multiplication

1: Unsigned Multiplication

Cil-C2
00: SI
01l: HI
10: QI

/O Pin Dir Size

Description

A In 32-Bit Input 1 operand
B In 32-Bit Input 2 operand
0 Out 32-Bit Result of multiplication

Simplified operation:

0= A XxXxB

Comments:

o Signed and unsigned multiplication

o Combinatorial cell

Page 134

8.8. REG

Number of configuration bits: 3

Simplified operation:

Read

0 = Reg_Bank[C2]

Write

Reg Bank[CO] = I

Comments:

* Cell clocked by the CLK_DIV

= Each cell contains 2 32-bit registers, bank 1 and bank2. Only one of
these bank is accessible for reading or writing at any particular step.

The possible combinations achievable are:

READ_B1
READ B2

READ Bl WRITE Bl
READ Bl WRITE B2
READ B2 WRITE Bl
READ B2 WRITE_ B2

Configuration bits: 3 bits REG
co Cl1 c2
0: Write Bank 1 0: Read Only 0: Read Bank 1
1l: Write Bank 2 1l: Write on the next 1: Read Bank 2
positive clock edge
[¢)

1/0 Pin Dir Size Description

I In 32-Bit Data Input to write
0 Out 32-Bit Output of register content

Page 135

8.9. RMEM

Number of configuration bits: 4

cfc

b

RMEM

Configuration bits: 4 bits
co Cl c2-C3
0: Use Zero Offset 0: Zero Extend 00: ST
1l: Use OFFSET 1: Sign Extend 01: HI
10: QI
1/0 Pin Dir Size Description

ADDR In 32-Bit Address input
DATA Out 32-Bit Data from memory
OFFSET In 32-Bit Offset

Simplified operation:

DATA = DATA RAM [ADDR + OFFSET]

Comments:

o Read interface to the Data RAM banks.
o Cell clocked by the CLK_DIV

o ——d

offse!
ADDR DATA

Page 136

8.10. SHIFT

Number of configuration bits: 4

cfe

SHIFT

Configuration bits: 4 bits

c0-C1 c2-C3
00: SLL (Shift Left Logical) 00: SI
0l1: SRA (Shift Right Arithmetic) 01: HI
10: SRL (Shift Right Logical) 10: QI

/O Pin Dir Size Description
A In 32-Bit Input 1 operand
B In 32-Bit Input 2 operand
[¢] Out 32-Bit Result of shifting

Simplified operation:

0 = [CO0-C1l] ?

Comments:

= Logical Shift Left, Logical Shift Right and Arithmetic Right Shift

supported

A >> (B % 32)

= Combinatorial cell

: A << (B % 32)

[Ry Yy

A B O

Page 137

8.11. WIMIEWM

Number of configuration bits: 4

cfc

b

WMEM
|

Configuration bits: 4 bits

(o) C1 Cc2-C3
0: Write Disable 0: Use no Offset 00: SI
1l: Write Enable 1: Use Offset 01: HI
10: QT
O Pin Dir Size Description

ADDR in 32-Bit Address input
DATA In 32-Bit Data from memory
OFFSET In 32-Bit Offset
Simplified operation:

If(CO == 1) RAM([ADDR + OFFSET] = - DATA

Commenmnts:

o Write interface to the Data RAM banks
o Cell clocked by RRC

,7f“_J

Offset

ADDR DATA

Page 138

B. Publications

arising from this

work

Publications from this work

Under Review

S. Khawam, T. Arslan, “Frame for the design and implementation of Domain Specific
Reconfigurable Arrays”, Submitted to IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, April 2006

S. Khawam, 1. Nousias, M. Milward. Y. Ying, T. Arslan; “The Reconfigurable Instruction

Cell Array”, Submitted to IEEE Transactions on VLSI Systems Special Section on

Configurable Computing Design, May 2006

Published

S. Khawam, 1. Nousias, M. Milward. Y. Ying, T. Arslan, “Reconfigurable Instruction
Cell Array”, UK Patent Office, UK Patent Application Number 0508589.9, April 2005

S. Khawam, S. Baloch, A. Pai, I. Ahmed; N. Aydin; T. Arslan; F. Westall; “Efficient
Implementations of Mobile Video Computations on Domain-Specific Reconfigurable
Arrays”, Design, Automation and Test in Europe Conference and Exhibition (DATE),
2004. Proceedings Volume 2, 16-20 Feb. 2004

S. Khawam, T. Arslan, F. Westall; “Embedded reconfigurable array targeting motion
estimation applications” Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003
International Symposium on Volume 2, 25-28 May 2003 Page(s):11-760 - 1I-763 vol.2

S. Khawam, T. Arslan; “Switch-box design for synthesizable coarse-grain arrays for
system-on-chip applications”, Field-Programmable = Technology (FPT), 2004.
Proceedings. 2004 IEEE International Conference on, 2004 Page(s):465 — 468

Page 139

=)

S. Khawam, T. Arslan, F. Westall; “Domain-specific reconfigurable array for Distributed
Arithmetic”, 13th International Conference on Field Programmable Logic and
Applications (FPL) 2003

S. Khawam, T. Arslan, F. Westall; “Synthesizable reconfigurable array targeting
distributed arithmetic for system-on-chip applications”, Parallel and Distributed
Processing Symposium (PDPS / RAW), 2004. Proceedings. 18th International 26-30
April 2004 Page(s):150

S. Khawam, T. Arslan, F. Westall, “Unidirectional switch-boxes for synthesizable
reconfigurable arrays”, Field-Programmable Custom Computing Machines, 2004. F' CCM
2004. 12th Annual IEEE Symposium on 20-23 April 2004 Page(s):293 — 295

Publications influenced by this worlk

o

Y. Ying, I. Nousias, M. Milward. S. Khawam, T. Arslan; “System-level Scheduling on
Instruction Cell Based Reconfigurable Systems”, Automation and Test in Europe
Conference and Exhibition (DATE), 2006. Proceedings Volume 3, 6-10 March 2006

Cheng Zhan; T. Arslan, S. Khawam, I. Lindsay; “A domain specific reconfigurable
Viterbi fabric for system-on-chip applications”, Design Automation Conference, 2005.
Proceedings of the ASP-DAC 2005. Asia and South Pacific, Volume 2, 18-21 Jan. 2005
Page(s):916 - 919 Vol. 2

Zhenyu Liu; T. Arslan, S. Khawam, L. Lindsay; “A high performance synthesisable
unsymmetrical reconfigurable fabric for heterogeneous finite state machines”, Design
Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and South
Pacific, Volume 1, 18-21 Jan. 2005 Page(s):639 - 644 Vol. 1

A. Olugbon, S. Khawam, T. Arslan, I. Nousias, I. Lindsay; “An AMBA AHB-based
reconfigurable SoC architecture ‘using multiplicity of dedicated flyby DMA blocks”,
Design Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and
South Pacific Volume 2, 18-21 Jan. 2005 Page(s):1256 - 1259 Vol. 2

K. Katsoulakis, T. Arslan, T. Kirkham; Khawam S.; “A Low-Power Reconfigurable
Datapath for Advanced Speech Coding Algorithms”, Parallel and Distributed Processing
Symposium, (PDPS / RAW) 2005. Proceedings. 19th IEEE International 04-08 April 2005
Page(s):147b - 147b

L. Zhenyu, S. Khawam, T. Arslan, A. Erdogan,; “A Low Power Heterogeneous
Reconfigurable Architecture For Embedded Generic Finite State Machines™; Proceedings
of SOC Conference, 2005. IEEE International 25-28 Sept. 2005 Page(s):113 — 114

Z. Cheng, S. Khawam, T. Arslan, I. Lindsay; “Architecture and design methodology for
synthesizable reconfigurable array targeting wireless system-on-chip applications”,

Page 140

Proceedings of SOC Conference, 2005.. IEEE International, 25-28 Sept. 2005 Page(s):93
-94

Z. Cheng, S. Khawam, T. Arslan, I. Lindsay; “Efficient implementation of trace-back unit
in a reconfigurable Viterbi decoder fabric”; Circuits and Systems, 2005. ISCAS 2005.
IEEE International Symposium on 23-26 May 2005 Page(s):1048 - 1050 Vol. 2

Z. Cheng, S. Khawam, T. Arslan; “Domain specific reconfigurable fabric targeting
Viterbi algorithm”, Field-Programmable Technology, 2004. Proceedings. 2004 IEEE
International Conference on, 2004 Page(s):363 — 366

I. Ahmed, T. Arslan, S. Khawam; “Video transmission through domain specific
reconfigurable architectures over short distance wireless medium utilizing Bluetooth
IEEE 802.15.1 standard”, SOC Conference, 2004. Proceedings. IEEE International, 12-
15 Sept. 2004 Page(s):7 - 10

Page 141

C. References

(1]
(2]
(3]

[4]

[7]

(8]

[10]
[11]

[14]
[15]

“Virtex-4 User Guide 1.5”, Xilinx, San Jose, 2006
“Stratix—H”, Altera, Altera San Jose, 2005

V. George, H. Zhang J. Rabaey; “The design of low energy FPGA”, Proceedings. 1999
International Symposium on Low Power Electronics and Design, pp. 188-193. 1999

V. George, “Low Energy Field-Programmable Gate Array”, PhD Thesis, Univeristy of
California, Berkeley . 2000 :

I. Bryant, Y. Tanurhan, “The Actel Embeddable FPGA Core”, Actel Corporation, 2001

N. Kafafi, K. Bozman, S.J.E. Wilton, “Architectures and Algorithms for Synthesizable
Embedded Programmable Logic Cores”, om3

E. Tau, D. Chen, 1. Eslick, J. Brown, and A. DeHon, “A First Generation DPGA
Implementation,” FPD’95, Canadian Workshop of Field-Programmable Devices, May
1995. '

A. Marshall, J. Vuillemin, B. Hutchings; “A Reconfigurable Arithmetic Array for
Multimedia Applications”; ACM International Symposium on FPGA, Monterey, CA,

" Feb 1999

K. Leijten-Nowak, A. Katoch; “Architecture and implementation of an embedded
reconfigurable logic core in CMOS 0.13pum”, ASIC/SOC Conference, 2002. 15th Annual
IEEE International , pp. 3 -7

“D-Fabrix array”, Elixent Ltd, Bristol, 2003

T. Arslan, H. 1. Eskikurt, D.H. Horrocks; “Configurable Structures for a primitive
operator digital filter FPGA. IEEE Workshop Signal Processing Systems” SIPS-97 .
1997

B. Hounsell, T. Arslan, “Programmable multiplierless digital filter array for embedded
SoC applications”, IEE Electronics Letters. 2001

J. Hammes, B. Rinker, W. Bohm, W. Najjar, B. Draper, R. Beveridge, “Cameron: high
level language compilation for reconfigurable systems,; Parallel Architectures and
Compilation Techniques”, 1999. Proceedings. 1999 International Conference on 12-16
Oct. 1999 Page(s):236 — 244

“Handel-C for Hardware Design”, White Paper, Celoxica Ltd, August 2002
“BINACHIP-FPGA Datasheet”, Binachip Inc., 2005

Page 143

[16]

[17]

[18]

(19]
(20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

D. Zaretsky, G. Mittal, X. Tang, P. Banerjee, “Overview of the FREEDOM Compiler
for Mapping DSP Software to FPGAs,” 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM'04), pp. 37-46, 2004

S. Hauck, T.W. Fry, M.M Hosler, J.P. Kao, “The Chimaera reconfigurable functional
unit”, Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, Volume 12,
Issue 2, Feb. 2004 Page(s):206 — 217

B. Kastrup, “Automatic Synthesis of Reconfigurable Instruction Set Accelerations”,
PhD Thesis, Eindhoven University of Technology, 2003

“Xtensa LX Microprocessor, Overview Handbook”, Tensilica, Santa Clara, 2004

R. Hartenstein, “Coarse Grain Reconfigurable Architectures”, Proceedings of ASP-
DAC, Asia and South Pacific, 2001

T.J. Callahan, J.R. Hauser, J. Wawrzynek J, “The Garp architecture and C compiler”,
IEEE Trans. on Computer, Volume 33, Issue 4, Page(s):62 — 69, April 2000

H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. C. Filho.,
“Morphosys: an integrated reconfigurable system for data-parallel and computation-
intensive applications”, IEEE Trans. on Computers, 49(5):465—481, May 2000.

P.M. Heysters, GK. Rauwerda, T. Lodewijk, G.J.M. Smit, “A Flexible, Low Power,
High Performance DSP IP Core for Programmable Systems-on-Chip”, proceedings
IP/SOC 2005, December 7-8, 2005, Grenoble, France

P.M. Heysters, G.K. Rauwerda, G.J. M. Smit, “Implementation of a HiperLAN/2
receiver on the reconfigurable Montium architecture”; Parallel and Distributed
Processing Symposium, 2004. Proceedings. 18th International, 26-30 April 2004
Page(s): 147

“Avispa-CH1, Communication Signal Processor”, databrief, SiliconHive, Eindhoven,
2005

“XPP64-A1 Reconfigurable Processor”, Preliminary Datasheet, PACT XPP
Technologies, Munich, 2003.

T. Miyamori, U. Olukotun, “REMARC: Reconfigurable Multimedia array coprocessor”,
ACM International Symposium on FPGA, Monterey, CA, Feb 1998

E. Mirsky and A. DeHon, “MATRIX: A Reconfigurable Computing Architecture with
Configurable Instruction Distribution and Deployable Resources,” IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM'96), pp. 157—-166, 1996.

H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. R. Taylor, “PipeRench: A
virtualized programmable datapath in 0.18 micron technology”, In Proc. of IEEE
Custom Integrated Circuits Conference, 2002

B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins, “ADRES: An
architecture with tightly coupled VLIW processor and coarse-grained reconfigurable
matrix,” Proc.of Field-Programmable Logic and Applications, 2003, pp. 61-70.

J. Babb, M. Frank, V. Lee, E.Waingold, R. Barua, M. Taylor, J. Kim, S. Devabhaktuni,
and A. Agrawal, “The RAW Benchmark Suite: Computation Structures for General-

Page 144

[32]

[33]

(34]

[35) -

[36]

[37]

[38]

(391

(40]

(41]

[42]

[43]

[44]

»

Purpose Computing, ”, Proc. IEEE Symposium on Field-Programmable Custom
Computing Machines, FCCM 97, 1997, pp. 134-143.

D. Wentzlaff , A. Agarwal , “A Quantitative Comparison of Reconfigurable, Tiled, and
Conventional Architectures on Bit-level Computation”, MIT/LCS Technical Report
LCS-TR-944, April 2004 '

D. C. Cronquist, P. Franklin C. Fisher M. Figueroa and C. Ebeling, "Architecture
Design of Reconfigurable Pipelined Datapaths”, Twentieth Anniversary Conference on
Advanced Research in VLSI, 1999

Ebeling, C.; Fisher, C.; Guanbin Xing; Manyuan Shen; Hui Liu, “Implementing an
OFDM receiver on the RaPiD reconfigurable architecture”, Computers, IEEE
Transactions on Volume 53, Issue 11, Nov. 2004 Page(s):1436 — 1448

A. Abnous, J. M. Rabaey. “Ultra-low-power domain-specific multimedia processors”,
IEEE Transactions on VLSI Signal Processing, 1996

H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, J. M. Rabaey, “A 1-V
Heterogeneous Reconfigurable DSP IC for Wireless Baseband Digital Signal
Processing”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, November 2000

H. Zhang, M. Wan, V. George, J. Rabaey, "Interconnect architecture exploration for
low-energy configurable single-chip DSPs," [EEE Computer Society Workshop on
VLSI, pp. 2-8, 1999. 24 ’

P. Hamalainen, J. Heikkinen, M. Hannikainen, T.D. Hamalainen, “Design of Transport
Triggered Architecture Processors for Wireless Encryption”, Digital System Design,
2005. Proceedings. 8th Euromicro Conference on 30 Aug.-3 Sept. 2005 Page(s):144 —
152

J. Heikkinen, J. Sertamo, T. Rautiaineﬁ, J. Takala, “Design of transport triggered
architecture processor for discrete cosine transform”; ASIC/SOC Conference, 2002. 15th
Annual IEEE International 25-28 Sept. 2002 Page(s):87 — 91

T. Ishihara, S. Kondou, H. Fukuda, “Low Power Consumption Digital Signal Processor:
Hi-Perion”, FUJITSU Science and Technology vol. 36, pp. 56-62. 2000

D. Lewis, V. Betz, D. Jefferson, A. Lee, C. Lane, P. Leventis, S. Marquardt, C.
McClintock, B. Pedersen, G. Powell, S. Reddy, C. Wysocki, R. Cliff and J. Rose, “The
Stratix Routing and Logic Architecture,” ACM/Sigda International Symposium on
Field-Programmable Gate Arrays, February 2003, pp. 12 - 20

Betz V., Rose J., and Marquardt A., “Architecture and CAD for Deep-Submicron
FPGASs”, Kluwer Academic Publishers, 1999. ISBN 0-7923-8460-1

Rose J., Brown S., “Flexibility of interconnection structures for field-programmable
gate arrays”, Solid-State Circuits, IEEE Journal of , Vol.26, Iss.3, 1990, Pages: 277-
282

J. Rose, R.J. Francis, D. Lewis, and P.Chow, “Architecture of Field-Programmable Gate
Arrays: The Effect of Logic Block Functionality on Area of Efficiency,” IEEE Journal
of Solid-State Circuits, Vol. 25 No. 5, October 1990, pp. 1217-1225

Page 145

(45]

[46]

(47]

[48]

[49]

[50]

(51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

H. Schmit, V. Chandra, “FPGA switch block layout and evaluation”, ACM International
Symposium on FPGA, Monterey, CA, Feb 2002.

G. Lemieux, D. Lewis, “Circuit Design of Routing Switches”, ACM International
Symposium on FPGA, Monterey, CA, Feb 2002

E. S. Ochotta, P. J. Crotty, C. R. Erickson, C.-T. Huang et al, “A novel predictable
segmented FPGA routing architecture”, ACM International Symposium on FPGA,
Monterey, CA, Feb 1998

M. Imran Masud, “FPGA Routing Structures: A novel Switch block and depopulated
interconnects matrix architecture”, MASc Thesis, The University of British Columbia,
1999

M. Imran Masud, S. J.E. Wilton, “A New Switch Block for Segmented FPGAs"™,
International Workshop on Field Programmable Logic and Applications, Aug. 1999

A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. A. El-ayat, A. Mohsen, “An
architecture for electrically configurable gate arrays,” IEEE Journal of Solid-State
Circuits, Vol. 24, April 1989, pp.394-398.

Y. W. Chang, D. Wong, and C. Wong, “Universal Switch modules for FPGA design,”
ACM Transactions on Design Automation of Electronic Systems, Vol. 1, January, 1996,
pp- 80-101.

G. Lemieux, S.D. Brown, “A detailed router for allocating wire segments in field
programmable gate arrays,” Proceedings of the ACM Physical Design Workshop, April
1993. '

S. Wilton, “Architecture and Algorithms for Field-Programmable Gate Arrays with
Embedded Memory”, PhD thesis, University of Toronto, 1997

Y. Lai, C. Kao, T. Chang, and K. Chen, “A Field Programmable Gate Array Chip with
Hierarchical Interconnection Structure,” Proceedings of the 1998 IEEE International
Symposium on Circuits and Systems, Monterey, California, 1998, pp. 402-405.

A.A. Aggarwal, DM. Lewis, “Routing Architectures for Hierarchical Field
Programmable Gate Arrays,” Proceedings IEEE International Conference on Computer
Design: VLSI in Computers and Processors, Cambridge, Massachusetts, 1994, pp. 475-
478.

V.C. Chan , D.M. Lewis, “Area-Speed Tradeoffs for Hierarchical Field-Programmable
Gate Arrays,” ACM Fourth International Symposium on Field-Programmable Gate
Arrays, New York, 1996, pp.51-57

V. Betz, J. Rose, "VPR: A New Packing, Placement and Routing Tool for FPGA
Research", International Conference on Field Programmable Logic and Applications
(FPL) 1997, pp. 213-222

S.JE. Wilton, “Embedded memory in FPGAs: recent research resuits”,
Communications, Computers and Signal Processing, 1999 IEEE Pacific Rim
Conference on , 1999 , Page(s): 292 -296

Page 146

[59] S. Philips, S. Hauck, “Automatic layout of domain-specific reconfigurable subsystems
for system-on-a-chip”, ACM International Symposium on FPGA, Monterey, CA, Feb
2002

ISO/IEC, “MPEG-4 Standard - Visual”, ISO/IEC 14496-2, Geneva,

[60] Li Reoxiang Li, Bing Zeng, M.L Liou, “A new three-step search algorithm for block
motion estimation”, Circuits and Systems for Video Technology, IEEE Transactions on,
Volume 4, Issue 4, Aug. 1994 Page(s):438 - 442

[61] K.R. Namuduri, Ji Aiyuan, “Computation and performance trade-offs in motion
estimation algorithms”, Information Technology: Coding and Computing, 2001.
Proceedings. International Conference on, 2-4 April 2001 Page(s):263 - 267

[62] T. Zahariadis, D. Kalivas, “Fast algorithms for the estimation of block motion vectors”,
Electronics, Circuits, and Systems, 1996. ICECS '96., Proceedings of the Third IEEE
International Conference on, Volume 2, 13-16 Oct. 1996 Page(s):716 - 719 vol.2'

[63] Shan Zhu, Kai-Kuang Ma, “A new diamond search algorithm for fast block matching
motion estimation”, Information, Communications and Signal Processing, 1997.
ICICS., Proceedings of 1997 International Conference on, Volume 1, 9-12 Sept. 1997
Page(s):292 - 296 vol.1

[64] T. Zahariadis, D. Kalivas, “Fast algorithms for the estimation of block motion vectors”,
Electronics, Circuits, and Systems, 1996. ICECS '96., Proceedings of the Third IEEE
International Conference on, Volume 2, 13-16 Oct. 1996 Page(s):716 - 719 vol.2

[65] T. Enomoto, A. Kotabe, “A fast motion estimation algorithm and low-power 0.13-um
CMOS motion estimation circuits”, Circuits and Systems, 2001. ISCAS 2001. The 2001
IEEE International Symposium on, Volume 2, 6-9 May 2001 Page(s):449 - 452 vol. 2

[66] ' Hsien-Hsi Hsieh, Yong-Kang Lai, “A novel fast motion estimation algorithm using
fixed subsampling pattern and multiple local winners search”, Circuits and Systems,
2001. ISCAS 2001. The 2001 IEEE International Symposium on, Volume 2, 6-9 May
2001 Page(s):241 - 244 vol. 2

[67] J.W. Suh, Jechang Jeong, “Fast sub-pixel motion estimation techniques having lower
computational complexity”, Consumer Electronics, IEEE Transactions on, Volume 50,
Issue 3, Aug. 2004 Page(s):968 - 973

[68] Zhong-Li He; Kai-Keung Chen; Chi-Ying Tsui; N.L. Liou, “Low power motion
estimation design using adaptive pixel truncation”, Low Power Electronics and Design,
1997. Proceedings., 1997 International Symposium on, 18-20 Aug 1997 Page(s):167 -
172

[69] A. Takagi, S. Muramatsu, H. Kiya, “Motion estimation with power scalability and its
VHDL model”, Image Processing, 2000. Proceedings. 2000 International Conference
on, Vol.3, 2000, Pages: 118- 121 vol.3

[70] L. Fanucci, R. Saletti, L. Bertini, P. Moio, S. Saponara, “High-Throughput, Low
Complexity, Parametrizable VLSI Architecture for Full Search Block Matching
Algorithm”, Electronics, Circuits and Systems, 1999. Proceedings of ICECS '99. The
6th IEEE International Conference on , Vol.3, 1999, Pages: 1479- 1482 vol.3

Page 147

(71]

[72]

(73]

(74]

[75]

[76]

[77]

[78]

[79]

[80]

(81]

[82]

[83]

Yuan-Hau Yeh; Chen-Yi Lee, “Scalable VLSI Architectures For Full-Search Block
Matching Algorithms”, Image Processing, 1996. Proceedings., International
Conference on , Vol.1, 1996, Pages: 1035- 1038 vol.2

Xiao-Dong Zhang; Chi-Ying Tsui, “An Efficient And Reconfigurable VLSI
Architecture For Different Block Matching Motion Estimation Algorithms”, Acoustics,
Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference
on, Vol.1, 1997, Pages: 603- 606 vol.1

W. Burleson, P. Jain, S. Venkatraman, “Dynamically parameterized architectures for
power-aware video coding: motion estimation and DCT”, Digital and Computational
Video, 2001. Proceedings. Second International Workshop on , Vol., 2001, Pages: 4- 12

H.-J. Stolberg, M. Berekovic, P. Pirsch, H. Runge, H. Moller, J. Kneip, “The M-PIRE
MPEG-4 codec DSP and its macroblock engine”, Circuits and Systems, 2000.
Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on,
Volume 2, 28-31 May 2000 Page(s):192 - 195 vol.2,

T. Kumura, D. Ishii, M. Ikekawa, I. Kuroda, M. Yoshida, “A low-power programmable
DSP core architecture for 3G mobile terminals”, Acoustics, Speech, and Signal
Processing, 2001. Proceedings. (ICASSP '01). 2001 IEEE International Conference on,
Volume 2, 7-11 May 2001 Page(s):1017 - 1020 vol.2

M. Berekovic, H.-J. Stolberg, P. Pirsch, H. Runge, “A programmable co-porcessor for
MPEG-4 video”, Acoustics, Speech, and Signal Processing, 2001. Proceedings.
(ICASSP '01). 2001 IEEE International Conference on, Volume 2, 7-11 May 2001
Page(s):1021 - 1024 vol.2

D. Brash, "The ARM Architecture Version 6 (ARMv6)", White paper, ARM Ltd,
January 2002

L. De Vos, M. Stegherr, “Parameterizable VLSI architectures for the full-search block-
matching algorithm”, IEEE Transactions on Circuits and Systems, Vol.36 Issue: 10,
Oct. 1989

L. De Vos, M. Stegherr, T.G. Noll, “VLSI architectures for the full-search
blockmatching algorithm,” Acoustics, Speech, and Signal Processing, 1989. ICASSP-
89., 1989 International Conference on, 23-26 May 1989 Page(s):1687 - 1690 vol.3

L. De Vos, M. Schobinger, “VLSI architecture for a flexible block matching processor”,
Circuits and Systems for Video Technology, IEEE Transactions on, Volume 5, Issue 5,
Oct. 1995 Page(s):417 - 428

T. Komarek, P. Pirsch, “Array architectures for block matching algorithms”, IEEE
Transactions on Circuits and Systems, Vol. 36 Issue: 10, Oct. 1989

K.-M. Yang, M.-T. Sun, L. Wu, “A family of VLSI designs for the motion
compensation block-matching algorithm”, IEEE Transactions on Circuits and Systems,
Vol. 36 Issue: 10, Oct. 1989

H. Yeo, Y.H. Hu, “A novel matching criterion and low power architecture for real-time
block based motion estimation”, Application Specific Systems, Architectures and

Page 148

[84]
(85]

[86]

(87]

[88]

[89]

[90]

[91]

[92]
[93]

[94]
[95]

[96]

Processors, 1996. ASAP 96. Proceedings of International Conference on, 19-21 Aug.
1996 Page(s):122 - 130

Hae-Kwan Jung, Chun-Pyo Hong, Jin-Soo Choi, Yeong-Ho Ha, “A VLSI architecture
for the alternative subsampling-based block matching algorithm”, Consumer
Electronics, IEEE Transactions on, Volume 41, Issue 2, May 1995 Page(s):239 - 247

D. Xu, J.M. Noras, W. Booth, “A simple and efficient VLSI architecture for a very fast
high performance three step search algorithm”, High Performance Architectures for
Real-Time Image Processing, IEE Colloquium on, 12 Feb. 1998 Page(s):6/1 - 6/6

Hangu Yeo, Yu Hen Hu, “A novel modular systolic array architecture for full-search
block matching motion estimation”, Acoustics, Speech, and Signal Processing, 1995.
ICASSP-95., 1995 International Conference on, Volume 5, 9-12 May 1995
Page(s):3303 - 3306 vol.5

Bo-Sung Kim, Jun-Dong Cho, “VLSI architecture for low power motion estimation
using high data access reuse”, ASICs, 1999. AP-ASIC '99. The First IEEE Asia Pacific
Conference on, 23-25 Aug. 1999 Page(s):162 - 165

Sung Bum Pan, Seung Soo, Chae Rae-Hong Park, “A novel VLSI architecture for the
full search block matching algorithm using systolic array”, Circuits and Systems, 1996.
ISCAS '96., 'Connecting the World', 1996 IEEE International Symposium on, Volume
2, 12-15 May 1996 Page(s):750 - 753 vol.2

S. Kittitornkun, Hu Yu Hen, “Frame-level pipelined motion estimation array processor”,
Circuits and Systems for Video Technology, IEEE Transactions on, Volume 11, Issue 2,
Feb 2001 Page(s):248 - 251

N. Ahmed, T. Natarjan, K.R. Rao, "Discrete Cosine Transform", /JEEE Transactions on
Computers, vol. 23, 1974, pp .90-93

W. Chen, C. H. Smith, S. Fralick, “A fast computation algorithm for the discrete cosine
transform”, IEEE Transactions on Communications, vol. 25, pp. 1004-1009, September
1977

C. Loffer, A. Ligtenberg, G. S. Moschytz, “Practical fast 1-D DCT algorithm with 11
multiplications”, Proceedings of ICASSP, vol.2 pp. 988-991, 1989

Sungwook Yu; Swartziander, E.E., Jr., “DCT implementation with distributed
arithmetic”, IEEFE Transactions on Computers , Vol. 50 Issue 9 , Sept. 2001

Chin-Liang Wang; Chang-Yu Chen, “High-throughput VLSI architectures for the 1-D
and 2-D discrete cosine transforms”, /EEE Transactions on Circuits and Systems for
Video Technology, Volume: 5 Issue: 1, Feb. 1995

Yu-Tai Chang; Chin-Liang Wang; Ching-Hsien Chang, “A new systolic architecture for
fast DCT computation’, IEEE International Symposium on Circuits and Systems, 1996.
ISCAS '96., vol. 2, 1996

JE Volder, “The CORDIC trigonometric computing technique”, IRE Trans. On
Electronic Computers, Sept. 1959

Page 149

[97]

(98]

(99]

[100]

[101]

[102]
[103]

[104]

[105]

[106]

[107]

[108]
[109]

[110]

[111]

[112]

" Feng Zhou, P. Komerup, “High speed DCT/IDCT using a pipelined CORDIC

algorithm”, Proceedings of the 12th Symposium on Computer Arithmetic, 1995

E. P. Mariatos, D. E. Metafas, J.A. Hallas, C.E. Goutis, “A fast DCT processor, based
on special purpose CORDIC rotators”, Proc. IEEE Int. Symposium. Circuits Systems,
vol. 4, 1994

Yang, K.-M.; Sun, M.-T.; Wu, L. , “A family of VLSI designs for the motion
compensation block-matching algorithm”, IEEE Transactions on Circuits and Systems,
Vol. 36 Issue: 10, Oct. 1989

M.A. BenAyed, L. Dulau, P. Nouel, Y. Berthournieu, N. Masmoudi, P. Kadionik, L.
Kamoun, “New design using a VHDL description for DCT based circuits”, Proceedings
of the Tenth International Conference on Microelectronics, ICM '98. , 1998

Kyeounsoo Kim; Jong-Seog Koh, “An area efficient DCT architecture for MPEG-2
video encoder”, Consumer Electronics, IEEE Transactions on , vol. 45 Issue: 1 , Feb.
1999)

B.L. Jian, Z. Xuan, T.J. Rong, L. Yue, “An efficient VLSI architecture for 2D-DCT
using direct method”, Proceedings. 4th International Conference on ASIC, 2001

J. Prado, P. Duhamel, “A polynomial transform based computation of the 2D DCT with
minimum multiplicative complexity”, /CASSP 1996

Nam Ik Cho; San Uk Lee, “Fast algorithm and implementation of 2-D discrete cosine
transform”, IEEE Transactions on Circuits and Systems, Volume: 38 Issue: 3 , March
1991

E. Feig, S. Winograd, “Fast algorithms for the discrete cosine transform”, IEEE
Transactions on Signal Processing, Volume: 40 Issue: 9, Sept. 1992

Shen-Fu Hsiao; Wei-Ren Shiue, “A new hardware-efficient algorithm and architecture
for computation of 2-D DCTs on a linear array”, IEEE Transactions on Circuits and
Systems for Video Technology, Volume: 11 Issue: 11 , Nov. 2001

Yi Yang; Chunyan Wang; Omair Ahmad, M.; Swamy, M.N.S., “An on-line CORDIC
based 2-D IDCT implementation using distributed arithmetic”, Sixth International
Symposium on Signal Processing and its Applications,. 2001 , Vol. 1

Y. Arai, T. Agui, and M. Nakajima, “A fast DCT-SQ scheme for images”, The
Transactions of the IEICE, vol. E71, pp. 1095-1097, November 1988.

S. Baloch, “High Performance, Reconfigurable Low Power SoC Architectures For
Mobile Platforms”, MSc Thesis, ISLI/University of Edinburgh, Livingston, 2003

L. Zhenyu, S. Khawam, T. Arslan, A. Erdogan,; “A Low Power Heterogeneous
Reconfigurable Architecture For Embedded Generic Finite State Machines™,
Proceedings of SOC Conference, 2005. IEEE International 25-28 Sept. 2005

D. Wentzlaff, "Architectural Implications of Bit-level Computation in Communication
Applications", MSc Thesis, Massachusetts Institute of Technology 2002

G. Lemieux, D. M. Lewis, “Circuit design of routing switches”, ACM International
Symposium on FPGA, Monterey, CA, Feb 2002: 19-28

Page 150

[113]

[114]

[115]
[116]
[117]
[118]
[119]

[120]

[121]
[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]
[131]

[132]

[133]

S. Agarwala, et al, “A 600-MHz VLIW DSP”, IEEE Journal of Solid-State Circuits,
Vol. 37, Iss. 11, Nov. 2002, pp. 1532-1544

G. Martinez, “TMS320VC5501/02 Power Consumption Summary”, Application Report,
TI, SPRAAA4S, July 2004

“ARM7 Thumb Family Datasheet”, ARM DOI 0035-3/02.02, ARM Ltd, 2002
“ARM?9 Family Datasheet”, ARM DOI 0034-4/06.02, ARM Ltd, 2002

OpenRISC, http://www.opencores.org/proiects.cgi/web/drl k
GNU C compiler, 4.0, http://gcc.gnu.org/ 2005

“TMS320C5000 CPU and Instruction Set Reference Guide”, Texas Instruments,
October 2000

G. Martinez, “TMS320VC64010/13 Power Consumption Summary”, Application
Report, TI, SPRAASO0, September 2002

“TIC6000 Compiler Benchmarks”, Texas Instruments, 2004

"Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television",
DVB Document A012, DVB Projeét Office, Geneva, Switzerland, June 1996

“Z1L10353 Datasheet Fully Compliant NorDig Unified COFDM Digital Terrestrial TV .
(DTV) Demodulator”, Datasheet, Zarlink, Ottawa, 2005

Wang, Chua-Chiri; Huang, Jian-Ming; Cheng, Hsian-Chang , “A 2K/8K Mode Small-
Area FFT Processor for OFDM Demodulation of DVB-T Receivers”, Consumer
Electronics, IEEE Transactions on, Volume 51, Issue 1, Feb. 2005 Page(s):28 - 32

J.W. Cooley, J.W. Tukey, “An algorithm for the machine calculation of complex

- Fourier series”, Math. Comput. 19:297-301, 1965

“MAD: MPEG Audio Decoder”, libmad, Underbit Technologies, San Diego, 2005,
http://www.underbit.com/products/mad/

ffmpeg library, http://ffmpeg.sourceforge.net/

I. Nousias, “Path-Encoding. An efficient representation of netlists and code compression
technique for Direct Network-based RCs”, Internal Document, University of Edinburgh,
August, 2005

I. Nousias, “Reducing data-memory access by using sub-step time tags”, Internal
Document, University of Edinburgh, April, 2005

ISO/IEC, “MPEG-4 Standard - Visual”, Specification, ISO/IEC 14496-2, Geneva

G. E. Moore, “Cramming more components onto integrated circuits”, Electornics, vol.
38, pp. 114-117, 1965

K. Compton, S. Hauck. Totem, “Custom Reconfigurable Array Generation”, 9th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'01).

Murray, A.F.; Denyer, P.B., “A CMOS Design Strategy for Bit-Serial Signal
Processing”, Solid-State Circuits, IEEE Journal of Volume 20, Issue 3, Jun 1985
Page(s):746 — 753

Page 151

