
Domain-specific and Reconfigurable Instruction

Cells based Architectures for Low-Power SoC

Sami Khawam

' v,

0
AA

0 i N

A thesis submitted for the degree of Doctor of Philosophy
The University of Edinburgh

April 2006

Abstract

Silicon technologies have been conforming to the maxim of Moore's law for the past 40 years

[131], but, even though production prices per unit have gone down, the NRE costs for making

new chips keep going up with every new technology. This made a number of application-

sectors discouraged to design new chips and in favour of adopting more generic solutions

such as FPGAs and high-performance DSPs. These two programmable technologies have also

evolved dramatically over the past decade providing much larger usable silicon areas and

higher throughputs at the expense of increased power consumptions.

New communication standards and the requirements of modem mobile-device's users push

the silicon towards processing more data in an increasingly shorter time; this is precisely the

case for new compression formats targeting high-quality low-bandwidth multimedia. This

presses forward the need for new programmable hardware solutions that intrinsically achieve

generality, high-performance and, most importantly, low power consumption.

This work investigates the design of reconfigurable hardware architectures to address these

issues. Two novel solutions are thus proposed along with the implementations of several

multimedia applications on them; the first architecture fits as a middle ground between

FPGAs and ASICs in terms of performance and cost. This is achieved by using coarse-grain

functional units combined with programmable interconnects to build flexible, high-

performance and low-power circuits. A framework for generating and programming the

custom domain-specific reconfigurable arrays is also proposed. The tool-flow leverages some

of the design effort that goes in creating and using the arrays by facilitating the reuse of

previous design elements. Furthermore, this work proposes novel direction-aware routing

elements to allow efficient tailoring of interconnect structures to the application.

The second proposed processing architecture adds the dimension of high-level

programmability to the reconfigurable arrays. This is achieved by using functional units that

can be directly matched to elements in a compiler's internal representation of software. By

using a custom instruction-controller the array can execute control operations in a similar way

to processors, while at the same time allowing highly efficient mapping of datapath circuits.

Coupled to the low-power and high-throughput achieved, this creates a viable alternative to

FPGAs, DSPs and ASICs suitable for deployment in high performance mobile applications

entirely programmable using languages such as C/C++.

Page iii

Acknowledgement

I would like to thank Prof Tugbrul Arsian for his supervision during this project. I am most

grateful for my parents George and Samia, whose support not only made this possible, but

allowed me to actually enjoy my time throughout the process. I would also like to thank my

sisters Lma and Zeina for their encouragement all way long. Special thanks go to my

girlfriend Teresa for making this agreeable and for the tedious proof-reading; bad English

should be blamed on her.

I also thank my examiners. Steve Furber, Ahmed Bouridane and Alan F Murray for their

comments and advices.

Finally, I would like to thank everyone who gave me energy by expending their cooking:

Teresa Kao, Sandy Gulyurtu, Khodor Fawaz and his mum, loannis Nousias, Nardine Osman,

and Mehdi Tassoumt. I hope that this acknowledgement will only encourage every one of

them to invite me more.

Page vi

Table of Contents

Chapter 1: Introduction 	 .1

Chapter 2: 	Previous Reconfigurable and low-power architectures....................7

2.1. 	Reconfigurable arrays and computers ..8
2.1.1. Fine-Grain arrays ...9
2.1.2. Coarse-Grain / Domain-Specific arrays... 11
2.1.3. High-level FPGA synthesis.. 12
2.1.4. Reconfigurable instructions-set processors.. 13
2.1.5. Loosely and tightly coupled arrays and processors .. .13
2.1.6. Reconfigurable computing architecture... 17
2.1.7. Generic low-power solutions ... 19

2.2. 	Interconnect structures in FPGAs ... 19
2.2.1. Symmetrical Mesh ... 19
2.2.2. Binary interconnect trees.. 22
2.2.3. Hierarchical structures ... 22
2.2.4. Combined structures for low-power from LP-FPGA... 23

2.3. Summary 	.. 24

Chapter 3: 	Domain-Specific Reconfigurable Arrays: .. 25

3.1. 	Building Domain-Specific Arrays.. 26
• 	3.2. 	Proposed reconfigurable System-on-Chip.. 27

3.3. 	Programmable Clusters ... 28
3.4. 	Interconnects 	... 29

3.4.1. 	C-Box circuit design .. 31
3.4.2. 	S-Box circuit design... 33

3.5. 	Configuration Memory... 33
3.5.1. 	Requirements and observations.. 33
3.5.2. 	Alternatives and improvements to shift-registers... 35
3.5.3. 	Further improvements ... 37

3.6. 	Design-Tools flow.. 38
3.6.1. 	Design entry and array generation ... 38
3.6.2. 	Array programming and testing... 40
3.6.3. 	Verification .. 41
3.6.4. 	Implementation .. 42

3.7. 	Problems and future work .. 43
3.8. 	Conclusion.. 43

Chapter 4: Domain-specific reconfigurable array for video coding.................45

4.1. 	Overview of the targeted MPEG operations... 46
4.2. 	DSRA for Motion Estimation... 47

4.2.1. 	Algorithm... 47
4.2.2. 	Existing reconfigurable architectures... 49
4.2.3. 	Cluster design... 51
4.2.4. 	Cluster arrangement and interconnect mesh .. 53

4.3. 	DSRA 	for DCT... 55
4.3.1. 	Algorithms 	... 55
4.3.2. 	DCT using Distributed Arithmetic... 59
4.3.3. 	Clusters... 60
4.3.4. 	Clusters arrangement and interconnects mesh ... 64

4.4. 	Performance.. 64

Page vii

4.4. 1. Benchmarks 	 .64
4.4.2. 	Comparison of the DCT implementations ...69
4.4.3. 	Measurement of overhead..69

4.5. 	Conclusion..71

Chapter 5: 	Synthesisablle interconnect customisation for JUSRAs 73

5.1. 	Proposed designs .. 74
5.1.1. Full directions using tn-states .. 75
5.1.2. Full directions using multiplexers.. 76
5.1.3. Full directions using tn-states and compressed configuration memory............. 76
5.1.4. Reduced directions using tn-states ... 76
5.1.5. Reduced directions using tn-states with compression 77
5.1.6. Reduced direction using 2-to-i multiplexers ... 78
5.1.7. Reduced directions using both fri-states and 2-to-I muxes................................ 78

5.2. 	Performance evaluation.. 79
5.2.1. Area.. 79
5.2.2. Pcwer consumption.. 81
5.2.3. Delays 	.. 81
5.2.4. Routabiiity .. 82
5.2.5. Analysis.. 83

5.3. 	Conclusion.. 84

Chapter 6: 	Reconfigurable Instruction Cells Array ..85

6.1. 	Processor-like operation of a reconfigurable array...86
6.1.1. 	Example of Instruction-Level Parallel Processing...87
6.1.2. 	Reconfigurabie Core ..88

6.2. 	Hardware design...90
6.2.1. 	Instruction Cells ... 90
6.2.2. 	Interconnects..93
6.2.3. 	Data Memory interfaces...97
6.2.4. 	Program Memory implementations..97

6.3. 	Design-Tools for RICA..98
6.4. 	Performance evaluation of sample RICA... 100

6.4.1. 	Comparison with DSRA .. 101
6.4.2. 	Comparison with DSP Processors.. 102

6.5. 	Reconfigurability overhead.. 105
6.6. 	Conclusion.. 106

Chapter 7: 	Advanced implementations on R1[CA ... 109

	

7.1. 	Example of manually optimised implementations ...110

	

7.1.1. 	FIR Filter using shift-register...110

	

7.1.2. 	Pipelined 8192-point FFT for OFDM..112

	

7.2. 	Larger systems: MP3 Audio and H264 Video ...116

	

7.3. 	Conclusion..118

Chapter8: 	Conclusion ..121

Sample RJ[CA cells with instruction set ...127

Publications arising from this work...139

References...143

Page viii

List of Figures

Figure 1-1: Characteristics diagram of popular solutions and area of interest2

Figure 1-2: Estimated relative characteristics of existing architectures.....................................4

Figure 1-3: Characteristics of ideal solution.. 5

Figure 1-4: Estimated relative characteristics of the two proposed solutions............................ 5

Figure 2-1: Example topology of an FPGA showing a simplified 4-to-1 LUT. 9

Figure 2-2: Fine grain vs. coarse grain approach...11

Figure 2-3: Signal routing between two clusters using switch and connection boxes.............20

Figure 2-4: Generalised mesh for heterogeneous elements with different sizes in Plaides [37]
.. 21

Figure 2-5: Hierarchical generalized mesh in Plaides [37]..22

Figure 2-6: Reconfigurable Binary multiplexer-tree interconnect [54] 22

Figure 2-7: Hierarchical FPGA architecture [55] [56]... 23

Figure 3-1: Reconfigurable System-on-Chip with a number of reconfigurable arrays each
specific to one operation 28

Figure 3-2: Modules, clusters and interconnects in the DSRA..29

Figure 3-3: Synthesisable equivalent of a bidirectional pass-transistor using 2 tn-state buffers,
consuming 8 times more area...31

Figure 3-4: Basic island-style interconnect mesh scheme with customisable single bit tracks
andword-wide tracks . .. 31

Figure 3-5: Tr-state buffer based C-box ...32

Figure 3-6: C-Box using a multiplexer for input pins only..32

Figure 3-7: Two possible combinations of the MUX and tn-state buffer for use in C-Boxes. 32

Figure 3-8: S-Box using tn-state buffers ...33

Figure 3-9: Example of cascading of shift-register based configuration memory...................35

Figure 3-10: System-on-Chip design-flow when using synthesizable reconfigurable arrays.. 38

Figure 3-11: Inputs and outputs of the array generator ... 39

Figure 3-12: Inputs and outputs of the array configuration program.......................................40

Figure 3-13: Example of placed and routed arrays using Cadence Silicon Ensemble 42

Figure 3-14: Example of plaáed and routed arrays using Cadence Silicon Ensemble showing
theinterconnect wires...43

Figure 4-1: Block Diagram of operations in Encoder and Decoder for rectangular objects from
[130]...47

Figure 4-2: Block-matching between current and previous frames...48

Figure 4-3: Elements for Motion Estimation. Four of these elements are packed into a cluster.

.. 53

Figure 4-4: Possible array arrangement of cluster...54

Figure 4-5:. Array arrangement of cluster, with each cluster composed of 4 modules 54

Figure 4-6: Dataflow graph for 8-points Chen fast DCT algorithm [91].................................56

Figure 4-7: Use of memory in Distributed Arithmetic .. 57

Page ix

Figure 4-8: Simple DCT implementation using distributed arithmetic without memory
reduction... 59

Figure 4-9: Implementation of DCT using odd-even decomposition for memory reduction. .59

Figure 4-10: CORDIC Rotator Based 8-Point DCT Implementation mapped by Sajid Baloch
tothe array [109]..60

Figure 4-11: Example of combining memory-elements together vertically and horizontally. 61

Figure 4-12: S-RAM based memory cluster..61

Figure 4-13: Adder-tree cluster..63

Figure 4-14: Add-Shift cluster . .. 63

Figure 4-15: Arrangement of the clusters in the array. More add-shift clusters are used

	

accordingto the needs.. 	64

	

Figure 4-16: Mapping of a PE from [82] using 7 modules from 3 clusters..................... 	65

	

Figure 4-17: Average performance of DSRA in all benchmarks..................................... 	67

	

Figure 4-18: Relative area comparison of DSRA wit ASIC and FPGAs 	67

Figure 4-19: Relative power comparison of DSRA wit ASIC and FPGAs. 68

Figure 4-20: Relative maximum frequency comparison of DSRA wit ASIC and FPGAs......68

Figure 4-21: Distribution of the average power consumption between an add-shift cluster and
its associated C-box and S-Box..70

Figure 4-22: Area of add-shift cluster and its associated C- and S-boxes. 70

Figure 5-1: S-Box formed out of 6W switch-points arranged in a subset topology 75

Figure 5-2: 6W switch-point using bidirectional tn-state buffers. 8 configuration bits75

Figure 5-3: 6W switch-point with full directions using multiplexers.....................................76

Figure 5-4: Two possible arrangements for the 6W box using tn-states 77

Figure 5-5: Possible arrangements using the two types of 6W boxes77

Figure 5-6: Two possible arrangements for the 6W switch-point using 2-to-1 multiplexers.. 78

Figure 5-7: Directional 6W switch-points using both tn-states and multiplexers 78

Figure 5-8: Area of Switch Boxes with contributions of switches, configuration memory and
metalrouting 79

Figure 5-9: The routed area vs. number of bit in the word tracks...80

Figure 5-10: The typical power consumption per switch-box type ..81

Figure 5-11: The longest path in the DCT implementations using each switch-box type 82

Figure 5-12: The total length of the routings depending on the ratio between the number of
Type 1 blocks and Type 2 blocks in switch-boxes (4) and (7).............................82

Figure 5-13: The total length of the routings depending on the ratio between the number of
Type 1 blocks and Type 2 blocks in switch-box in (6)..82

Figure 5-14: The total wirelength for each switch-box implementations. For (4), (7), (5) and
(6) the ratio of Type l/Type2 with the lowest wirelength is chosen 83

Figure 5-15: Comparison of the different designs in terms of power, area and delays 83

Figure 6-1: Execution of the 19 instructions in 2 cycles if a specific number of resource is
present..88

Figure 6-2: Harvard-like structure of the RICA with reconfigurable core as instruction-cells
and programmable interconnects..89

Page x

Figure 6-3: Multiplexers based interconnects 	 .94

Figure 6-4: Silicon area of N-to-i 	multiplexer ... 95

Figure 6-5: Exponential increase of silicon area with number of cells when using
multiplexers.. 95

Figure 6-6: Configurable switches around each cell to forman interconnects-box for the
island-style mesh 96

Figure 6-7: Mesh of island-style interconnects with torodial interconnects........................... 96

Figure 6-8: Design-software tool-flow for RICA . .. 99

Figure 6-9: Normalised execution time graph of the benchmarks on RICA and other
architectures... 104

Figure 6-10: Normalised energy consumption graph of the benchmarks on RICA and other
architectures... 104

Figure 6-11: Break down of area in RICA using both multiplexers and s-boxes as
interconnects... 105

Figure 6-12: Break down of power consumption in RICA using multiplexers as
interconnects... 106

Figure 7-1: Typical hardware and RICA implementation of an FIR using shift-registers. .. ill

Figure 7-2: Radix-2 complex butterfly computation 	... 113

Figure 7-3: 8-point FFT computation using Radix-2 butterfly... 114

Figure 7-4: Main loop step if compiled from code (counter not shown).............................. 115

Figure 7-5: Main loop in FFT calculation with pipeline registers 116

Figure 7-6: Comparison of the performance fflnpeg H264 decoder on RICA, ARM9 and
ARM7(2 QCIF frames)... 117

Page xi

List of Tables

Table 2-1: Established solutions 	 .8

Table 2-2: Improvements to FPGAs..10

Table 2-3: Coarse-grain arrays...12

Table 2-4: High-level synthesis of FPGA circuitry..13

Table 2-5: Reconfigurable instruction-set processors..13

Table 2-6: Loosely coupled processor and a reconligurable array..14

Table 2-7: Tightly coupled processor and a reconfigurable array ...16

Table 2-8: Reconfigurable computing architectures..17

Table 3-1: Area comparison of configuration memory cells . .. 36

Table 3-2: Area and power of different control circuit and configuration memories..............36

Table 3-3: Options given to array generation tool...39

Table 3-4: Example of mapping a DCI computation to the arrays...41

Table 4-1: Possible geometries achievale by reconfiguring a memory cluster........................62

Table 4-2: Performance of the implementations of one ME processing-element from [82] ... 66

Table 4-3: Performance of the simple DCT implementation on DA array with SRAM66

Table 4-4: Performance of the odd-even DCT implementation on DA array with SRAM and
arraywith Adder-Tree..67

Table 4-5: Advantages and disadvantage of the DSRA to FPGA, ASIC, and DSP71

Table 6-1: Example C-code and its assembled sequential and VLIW code compiled with
level-2 optimizations 87

Table 6-2: Possible Instruction Cells and their operations ..91

Table 6-3: Comparison between cross-bar and island-style interconnects..............................93

Table 6-4: Instruction Cells in the sample array..101

Table 6-5: Comparison of the 8-points DCI on RICA and DSRA101

Table 6-6: Comparison of datapath area on 0.Burn of CPUs excluding variations in program
memory...103

Table 6-7: Comparing RICA with other processor, low-power DSP and VL1Ws using
benchmarks...103

Table 7-1: C code for conventional FIR in software from TI benchmarks [121]110

Table 7-2: C code for FIR with reduces memory access using shift-registers, similar to
hardware implementations . .. III

Table 7-3: Measurement of improvement in shift-register based FIR filter 112

Table 7-4: 8k FF1 computation with the main loop fitting into a single step114

Table 7-5: Comparison of the performance of FFT with and without pipeline 115

Table 7-6: Performance comparison of the libmad mp3 decoder on RICA and ARM9 (2
frames)..117

Table 7-7: Performance comparison of the ffmpeg H264 decoder on RICA, ARM9 and
ARM7(2 QCIF frames) ...117

Table 7-8: Profiling of the fflnpeg H264 decoder on RICA, running through 20 Dl frames 118

Page xiii

Glossary I Acronyms

ASIC 	Application Specific Integrated Circuit and commonly means the use of hardwired
non-programmable silicon

AVC 	Advanced Video Coding, otherwise known as H.264

Basic block 	A block of instructions generated by a compiler where no instruction other than the
first is jumped to, and no instruction other than the last one jumps to other locations

CLB 	Configurable Logic Blocks are usually, in FPGA s, a group of several LUTs

CORDIC 	COordinate Rotation DIgital Computer is an algorithm useful for the efficient
calculation of trigonometric functions using a look-up-table, adds and shifts

DCT 	Discrete Cosine Transform, time-to-frequency transform useful in image coding

Distributed 	Calculation of a matrix-by-vector multiplication using look-up-tables, adds and shifts
Arithmetic

DSP 	A Digital Signal Processor is a processor with instructions useful for signal processing
applications

DSRA 	Domain Specific Reconfigurable-Array, the first fabric proposed in this work

DVB-T 	Terrestrial part of the Digital Video Broadcasting standard for transmitting TV
channels

eFPGA 	Embedded FPGA, which is a programmable FPGA core than can be used as part of an
SoC

FFT 	Fast Fourier Transform, time-to-frequency transform useful in radio application

FPGA 	Field Programmable Gate Array

GPP 	General Purpose Processor

H.264 	Video coding standard also referred to as MPEG-4 Part 10 Advanced Video Coding
(AVC)

HDL 	Hardware Description Language, a low-level programming language that describes
parallelism. Examples: Verilog and VHDL

HLL 	High Level Language usually for programming a processor, e.g. C, C++, Java

IC 	 Instruction Cell, the basic function units in RICA

Lçaf 	A function in a program that does not call any other function
functions

LUT 	Look-Up-Table, usually addressable memory with pre-computed data stored in it. In
FPGAs, LUTs with programmable memory are used to create programmable gates

MCU 	Micro Controller Units, can be seen as simple GPP with low mathematical processing
resources and typically slower operating frequency

Motion 	Calculation to find the temporal redundancy between two blocks in two consecutive

Page xv

Estimation 	video frames

NRE 	Non-Recurring Engineering is the initial design effort and costs spent to allow the
creation of end-units, irrespective of thee total number of units produced

OFDM 	Orthogonal Frequency-Division Multiplexing, a radio modulation technique used in
modern wireless standards such as DVB-T and WiMax

PLA 	Programmable Logic Arrays

RICA 	Reconfigurable Instruction-Cells Array, the second fabric proposed in this work

SDR 	Software Defined Radio, a radio modem where the physical layer executes on a
programmable fabric as opposed to the traditional way of using hardwired silicon

SIIMD 	Single-Instruction Mutliple-Data, a method used in a processor to increase speed in
computations that are data parallel where the same operation is executed on a stream
of data independently

SoC 	System-on-Chip, an integrated circuit containing several cores which can be a
combination of hardwired and programmable elements

VLI[W 	Very Large Instruction Word: a DSP processor with several operational units
(typically 8) that are able to simultaneously execute independent instructions while
sharing registers and memory.

Page xvi

Chapter 1:

Introduction

Undoubtedly, the traditional problems of hardwired Application Specific Integrated Circuits

(ASICs) designs such as inflexibility and very high NRE costs - which have been increasing

as the technology got smaller - have opened a big opportunity for reconfigurable technology

to flourish. The typical use of software solutions such as processors and Digital Signals

Processors (DSPs) for adding flexibility to ASIC designs is nearing its limits as new

performance-demanding applications emerge. This is particularly true for new complex

algorithms such as MPEG-4 and Advanced Video Coding (AVC) that require a throughput

only achievable with high DSP operating-frequencies and high power consumption. Other

solutions such as Field Programmable Gate Arrays (FPGAs) are able to achieve performance

unattainable with conventional programmable systems such as (Micro Controller Unit) MCU

and DSP processors, while providing an enormous margin of reconfigurability compared to

ASICs. However, this flexibility comes at the cost of very high consumption power and

silicon area, which makes them unusable in battery-operated devices. Figure 3-1 shows the

characteristics of these discussed solutions. A current SoC implementation would ideally

include several combinations of these solutions to meet requirements.

Page 1

To solve this problem a multitude of research projects and commercial solutions have been

proposed in several directions. One way to deal with these new requirements is to improve the

performance of current processors and DSPs. This can be achieved by increasing the level of

pipelining in the instruction issue and execution process, which boosts throughput for

instructions with a sequential and predictable execution flow. However, this comes at the cost

of wasting cycles when executing code contains conditional and unpredictable branch

instructions. Another strategy for increasing performance is to execute several instructions in

parallel as in Very Large Instruction Word (VLIW) and Superscaler processors. This usually

gives a good performance enhancement when compared to single-issue processors; however,

in VLIWs only independent instructions can be executed simultaneously and the problem is

that typical programs are not abundant in instruction level parallelism (ILP), which creates a

practical barrier to the extent of achievable performance. Although all these DSP-based

solutions offer very good flexibility, they usually have much less performance and a lot more

power consumption than hardwired ASIC solutions. The current ongoing trend for increasing

performance in processors is to have multiple cores that are able to execute multiple threads

simultaneously. Although this is a very promising approach, it still requires a lot of effort to

radically change the way programs are written and compiled so that parallelism is explicitly

or implicitly defined.

Power
consun

immability

Figure 3-1: Characteristics diagram of popular solutions and area of interest

The popular reconfigurable logic and Field Programmable Gate Arrays (FPGAs) today offer

very high flexibility compared to ASICs and higher performance than DSPs - hence they

Page 2

represent a potential architecture for future implementations. In a similar way to ASICs, the

high performance of FPGAs comes from the fact that they have the ability to implement a

large number of parallel operations on their fabric. The main drawback in FPGAs is their very

high silicon area and power consumption which makes them unusable in portable and battery-

operated devices. Also - similar to ASICs - FPGAs are programmable using a Hardware

Description Language (HDL) as opposed to processors that use high-level languages such as

C/C++. In HDLs the parallelism between operations is explicitly defined, where as languages

such as C have traditionally been used for serial definitions of operations. Nevertheless

programmability through high-level languages is preferred over HDLs since high-level

languages are more popular as many existing designs and new standards use them.

Furthermore, programming at HDL-level requires much more effort for representing

algorithms in a parallel form. An easy programmability is crucial for the success of any

hardware architectures as it reduces the design-time and time-to-market.

As opposed to the single-chip FPGA solutions, embedded FPGAs (eFPGAs) are

reconfigurable logic cores that can be fitted inside a custom System-on-Chip (SoC) to

increase its post-fabrication flexibility. Several commercial eFPGAs exists, even though they

still suffer from high area and power overheads. Their usage is also problematic as it

complicates the overall chip design tool-flow at the verification and implementation stages.

While FPGAs are mainly a lump of programmable gates, there is currently a trend of so called

reconfigurable computers/architectures which recently gained two types of definitions. The

exact detail of the inside of a reconfigurable computer can be some combination of a

processor and FPGA fabrics, such as the case where an array implements the processor's

ALU to effectively allow reconfiguring the processor's instruction-set. Reconfigurable

computers can also be seen as a fabric with special programmable elements for which

software can be compiled in a similar way to processors. There are several proposed

architectures that fall in this category promising high performance gains by using FPGA-like

parallelism, while at the same time providing the ease of use found in processors. Figure 3-1

and Figure 3-2 show the different advantages and disadvantages of the existing SoC solutions;

reconfigurable computers are promising to fill the performance and flexibility triangular gap

between DSP, FPGAs and ASIC. As detailed in Chapter 2, most of the existing architectures

suffer from disadvantages in flexibility, performance, programmability or area and power

overheads. It can also be noted that most architectures were designed to have the highest

performance possible while maintaining good flexibility and hence there is no solution that

tackles the power consumption problem specifically.

Page 3

Flexibility

Low NRE Performance I

Programmability
	

Low Power

Low Fbwer Programmability

Low NRE

"V
Programmability' ---

NRE

Flexibility

Performance

— Low Power

Flexibility

Low NRE - - 	- - - - 	-

Programmability

Figure 3-2: Estimated relative characteristics of existing

This thesis explores these reconfigurable technologies and tries to extend the existing

architectures to find a solution for future portable devices. Here, we are trying to prove that it

is possible to efficiently exploit the "area-of-interest" highlighted in Figure 3-1 in order to

find an architecture that gives a better throughput than current programmable technologies,

while achieving much lower power consumption and/or better programmability. This is

explored here using two approaches: domain-specific arrays and instruction-cell arrays. The

comparison of the performance of these approaches with existing and ideal solution is shown

in Figure 3-3 and Figure 3-4.

Page 4

Flexibility

Low NRE 	- - -' 	- - N 	
N 	

Perforrmnce

c\ lI/i
Aograrmbirity' 	 - Low Fbwer

Fioiire 1-' Characteristics

Flexibility

-- 	N

Low NRE 	-- Performance

ograrTymbWty
	 Low Fbwer Programmability' ... Low Power

34: Estimated relative characteristics of the two proposed

The domain-specific arrays (DSRA) are based on the observation that in most SoCs the design

that would be mapped to an eFPGA is chosen at the partitioning stage prior to the design of

the hardware and that, depending on the application, only a specific portion of the eFPGA is

usually used completely for random logic. This opens the opportunity to use an eFPGA that is

more domain-specific to the target application but which has increased performance in power,

timing and area when compared to generic eFPGA. This is usually achieved by using coarse-

grain programmable elements as opposed to the fine-grain ones in FPGAs. Although such a

domain-specific solution can be extensively designed for every application encountered, a

rapid generation of such architectures is essential to have a usable programmability. Hence,

the initial approach described in Chapters 3, 4 and 5 proposes the so called Domain-Specific

Reconfigurable Arrays (DSRAs) to semi-automatically create SoC cores that achieve good

performance, area and power consumptions while at the same time providing a margin of

flexibility to support post-fabrication changes, as seen in Figure 3-4. The DSRA approach

Page 5

proves that it is indeed a compromise between ASICs and FPGAs as it can achieve up to 3

times less power and 60% less area than an FPGA, while having 3 and 2.5 times more area

and power than ASICs. A methodology for creating and using such cores inside an SoC is

proposed, along with optiniised implementations of multimedia operations.

However, the DSRA approach inherits the low programmability found in FPGAs, since it

tries to port ASICs and FPGA designs to the architecture while reducing power and area.

Chapter 6 introduces the Reconfigurable Instruction Cell Array (RICA) where the design of

the hardware fabric is in such a way that it can accept a high-level description of a program.

The RICA can be viewed as a coarse-grain array that can be programmed in a similar way to

processors. Due to its array structure and abundant processing elements, RICA provides more

parallel processing than high-end DSPs, while at the same time it consumes lower energy.

Results show that RICA can be around 10 times faster than VL1W DSPs at a 6 times lower

power consumption in the datapath. Furthermore, as described in Chapter 7, big systems such

as full H.264 video-decoders can be quickly and easily mapped to RICA simply by using an

existing C program description.

Page 6

Chapter 2.0

Previous
Reconfigurable and
low-power
architectures

With the high costs of current and future chip design and manufacturing technologies there is

an urgent economical need to reduce the number of required re-spins in a design and to extend

the life of manufactured devices. This can generally be achieved by adding flexibility and

programmability to Application Specific Integrated Circuits (ASICs), which allows making

changes to the design after manufacturing in order to overcome design errors and/or to

support new and updated standards. The flexibility also allows dynamic reconfiguration

which helps the system adapt to run-time constraints to improve the performance. Such

flexibility is currently achieved using software solutions; however, the use of processors and

DSPs in performance-critical applications such as portable devices is not beneficial. This is

particularly true for new complex algorithms such as MPEG-4 and Advanced Video Coding

(AVC) that require a high throughput only achievable with a high DSP operating frequency

and high power consumption.

Page 7

On-going work to find better architectures for future devices has led to several novel systems

upon which the work presented in this thesis is based. Existing and established architectures

described in the previous chapter like DSPs, FPGAs and ASICs are listed in Table 3-1. The

rest of this chapter will detail the features of all emerging and researched reconfigurable

technologies. As will be shown later, only a few of these architectures can potentially provide

suitable high performance and low-power consumption. The pros and cons of every

architecture are described to allow drawing a comparison between the solutions.

Table 3-1: Established solutions

ASIIC
Pros: High speed, Low power
Cons: Low flexibility, high NRE costs, designed using HDL
FPGA
Fabric: Fine-grain look-up-tables (LUT)
Interconnects Symmetrical Mesh
Pros: Very high flexibility,
Cons Very high power consumption, programmable using HDL
DSP, low-power DSP, VL1W, Superscaller, SRMD
Architecture: ALU-based. Can take advantage of Instruction Level Parallelism
Pros: Programmability using high-level languages, high flexibility
Cons: Limited throughput
Multi-Core and Multi-processor
Architecture: Multiple cores with multi-threading between core to increase parallelism
Pros: High throughput, programmability using HLL
Cons: Synchronisation between the cores currently requires manual work.

This chapter first examines reconligurable logic structures and reconfigurable computing

architectures, i.e. systems able to execute a program-like sequence of instructions. Since

programmable interconnects represent a big contribution to flexibility of reconfigurable

systems, and consequently a considerable part of this work focused on the interconnects, the

second section of this chapter overviews the existing programmable interconnects topologies.

2.1. Recou71fiyIIrJblle arrays and computers
Reconfigurable arrays can be generally defined as programmable fabrics where a

circuit/datapath is mapped for execution. Even though the arrays might support partial

dynamic reconfiguration, we define a reconjIgurable 'array any situation where the datapath

mapped is fixed temporally; the circuit usually contains its own control and datapath

elements. Reconfigurable arrays can be further classified into ones based on fine-grain or

coarse-gain elements as functional units.

Another class of reconfigurable architectures includes structures programmable to execute

both control and datapath operations. This can be further split into reconfigurable processors

which are simply a tight combination of an FPGA and a processor and reconfigurable

Page 8

10

computing architectures, which are fabrics that can directly execute control and datapath

operations.

2.1.1. Fine-Grain arrays
Commercial FPGA architectures, such as [1] and [2], are fine-grain arrays', as this gives the

maximum flexibility possible. The operational elements are the Configurable Logic Blocks

(CLB5) which are mainly Lookup-Up-Tables (LUTs) with 16 single bit inputs. These inputs

are controlled by the bits from the configuration memory, making it possible to build any 4-

input logic function by changing the content of the SRAM configuration memory [41]. The

programmable elements also have the ability to register their outputs. Furthermore, a mesh of

programmable interconnects is available to connect the CLBs together to build bigger circuits.

The structure of these single-bit level interconnect is described below in Section 2.2. The fine-

grain aspect of FPGAs makes them extremely flexible and suitable for a very wide range of

application. Hence, FPGA chips are produced in large quantities which makes their usage

come with very reduced NRE costs. This high flexibility also implies very high power

consumption which prohibits the deployment of FPGAs in portable applications. In terms of

performance FPGAs have usually around 10 times longer delays than ASICs. In an FPGA

chip the energy dissipated in interconnects is about 65% of the total energy consumption,

while 30% are dissipated in programmable clock-routings and TO blocks [4].

Although FPGAs are traditionally homogenous arrays of fine-grain CLBs, some FPGA

manufacturers recently started adding large application-specific blocks inside the fabric, such

as multipliers, arithmetic operators and general purpose processors [1].

L flCfl L flCD L

L riCri L flCfl L

— U 1U - — U L• !

Figure 3-5: Example topology of an FPGA showing a simplified 4-to-I LUT.

Page 9

In order to add flexibility to custom ASIC and SoC designs, FPGA technology can also be

used as embedded FPGA (or eFPGA) cores. As in single-chip FPGAs, eFPGA cores contain

the same array of programmable LUTs and an interconnect network. Existing commercial

eFPGAs are described in [5]. They represent a good development towards programmable

custom SoCs, however, designers are faced with problems due to the difficulty of integrating

these analogue-level cores into SoC. The existence of a big programmable hard-core in the

SoC makes tasks such as verifications, timings and power analysis difficult, as the

characteristics of the core are very dependent on the design mapped on it. Furthermore, the

existence of such configurable transistor-level IPs in the SoC makes the overall

implementation tool-flow complex.

To overcome this problem, embedded synthesisable reconfigurable logic was proposed in [6]

where synthesisable programmable logic to implement combinatorial functions such as next-

state circuits based on programmable Look-up-tables (LUTs). The elements are spread in the

circuit and are suitable for small logic functions and glue-logic between the bigger elements

of the SoC. The area of the circuit in [6] is larger than the area of normal FPGAs due to the

use of synthesisable cells.

Table 3-2: Improvements to FPGAs

Synthesisabile FPGA [6]
Fabric: Based on LUTs to build small logic functions and glue-logic.
Performance: The area is larger than FPGA due to the use of synthesisable switching

circuit elements.
IFPGA with Dynamic Reconfiguration: DP-F]PGA 171
Fabric: Similar 	to 	a 	fine-grain 	FPGA, 	but 	supports 	fast 	dynamic

reconfiguration by storing multiple context in the FPGA memory.
Performance: The ability to support fast dynamic reconfiguration was found to

increase the silicon utilisation of an FPGA by 3-4x times.
Low Power FPGA 141
Fabric: Fine-grain LUT based fabric, but with modified interconnects and

clock routing circuits to reduce the power. Very low-level and non-
synthesisable techniques are employed.

Performance: This architecture presents an order of magnitude improvement, in
terms of power, over commercial FPGAs, while still maintaining the
same speed.

Another problem with FPGAs is the large number of configuration bits they require (typically

in the order of 5 MBits for recent devices [1]), which makes the time required to program

these bits long. This can be a restriction if dynamic reconfiguration is desired in cases where

parts of the circuit mapped on the FPGA are idle waiting for another part to finish. Dynamic

reconfiguration of the circuit in this case would lead to better use of the available silicon. To

enable this, FPGA manufacturers started allowing partial reconfiguration of the device, which

would take a relatively short time to reprogram as long as the area reconfigured is small. On

the other hand, the DP-FPGA project [7] proposed an FPGA architecture that can store

Page 10

multiple configurations and switch between them. Even though the memory area needed to

store the configuration is large, this approach was found to increase the silicon utilisation of

an FPGA by around 3-4 times.

An attempt to reduce the power consumption of FPGAs was proposed in [4] and included a

combination of analogue circuit techniques and interconnect topologies. The approach in [3]

and [4] was to reduce the power dissipated in interconnects and in the clock-trees. Even

though the power dissipated in the CLBs is negligible, their structures were slightly modified

to provide a better overall routing capability to suit the interconnect topology (described later

in Section 2.2). On the circuit level, low-swing circuits are placed on both ends of an

interconnect line to reduce the voltage swing to 0.8V, while the rest of the circuit runs at

1.5V. This reduction in voltage improves power consumption. The power dissipation in the

global clock distribution networks is reduced by using dual-edge triggered flip-flops in the

CLB, which halves the operating frequency, however, it puts more constraints on the clock

signal generator (e.g. correct duty-cycle). A 0.8V voltage swing is also used in the clock trees.

This architecture presents an order of magnitude improvement, in terms of power, over

commercial FPGAs, while still maintaining the same speed. The area is only increased a small

amount due to the added circuits. However; the above-mentioned circuit level techniques

would be difficultly to implement in an embedded FPGA and hard to integrate into an SoC.

Such circuit level techniques become very complex especially when trying to create a

synthesisable core, as that means that new library cells have to be manually created.

2.1.2. Coarse-Grain I Domain-Specific arrays
The efficiency of implementing an algorithm on FPGA hardware greatly depends on the

structure of the basic logic-block used in the array. As described above, commercial FPGA

implementations provide a fine-grain structure that can be used to implement a wide range of

hardware. However, this generality adds hardware overheads such as interconnects, which

affect the power, speed and area efficiency of the implementation. By making hardware

architectures less generic and more specific to a domain of applications, several

improvements can be gained in terms of power cfficiency, speed and area.

	

FCLS 	

CLB 	CLB 	

AOO 	ACC
H

	

CLB 	CLB 	ct.a

MEN

El
Fine-Grain 	 Coarse-Grain

Figure 3-6: Fine grain vs. coarse grain approach

Page 11

As shown in Table 3-3 below, several commercial and academic coarse-grain arrays exist; the

CHESS architecture from [8] is an array of 4-bit ALUs targeting general multimedia

applications. The array proposed in [9] is based on 4-bit LUTs with reduced flexibility in

implementing random logic leading to a smaller area. The commercial D-fabrix from Elixent

[10] is another attempt to reduce the area and power overhead. Although this approach is

efficient, it still requires low-level manual coding for mapping the implementations.

Table 3-3: Coarse-grain arrays

D-fabrjxJEljxent 1101 (Similar: 181 and 1 91)
Fabric: 	 Homogeneous grid of 4-bit ALU units. This ALU bit-width is not high

enough to be defined as coarse-grain, but it is wider than the 1-bit in
FPGAs. The array works as a coprocessor and the synchronisation
between the host and the array has to be done manually.

Programmability 	Programming the array is done at hardware netlist level using Handel-
C or VHDL.

Array 	 The array is not synthesisable and hence difficult to port to new
customisation 	process technologies.
Performance 	Timing and power comparison to other solutions are not disclosed.
benefits:

Another example of efficient domain-specific PLAs has been shown [11]: An FPGA

architecture is proposed for the implementation of reduced complexity filters using a

Primitive Operator Filter (POF). POF uses primitive operators such as shifts, additions and

subtractions in the form of signal flow graphs to replace multiplications in digital filters.

Thus, different CLB structures are described and compared. The CLBs consist of shifters,

adders and subtracters to implement POF structures, as well as latches for memory elements

and multiplexers. The multiplexers are used to route signals inside the CLB and to select the

output signal of a CLB. Different CLB granularities are investigated and their performance

compared in terms of speed and area. Since the CLBs are all connected to a single data bus,

the speed of the output throughput is limited. In [12], a similar PLA architecture is presented,

but with local reconfigurable interconnects between the CLBs, similar to the ones in

commercial FPGAs. However, the advantage of using this structure over generic commercial

ones is that the overall number of interconnects is much lower and, thus, the area and delays

are reduced. This structure is also more power efficient since less power is dissipated in the

interconnect.

2.1.3. High-level FPGA synthesis
Several attempts have been made to increase the programmability of FPGAs, trying to

automatically synthesise programs written using high-level languages into FPGA circuitry.

The first class of such tools use programming languages having a higher description level

than HDLs; this is the case of the SA-C language provided by the Cameron project [13] and

Page 12

Handel-C provided by Celoxica [14]. Although these languages are easier to use than standard

Verilog and VH1DL, they still represent only a small subset of the standard ANSI-C and they

have their own non-standard constructs, which prohibits reusing code written in standard C.

Table 3-4: High-level synthesis of FPGA circuitry

FPGA with SA-C [13], Handel-C [14]
Programmability: SA-C is a subset of ANSI-C without pointer and where variables

represent wires. In the Cameron project which uses SA-C, VHDL is
still required to make the control logic.
Handel-C is also a subset of C and requires existing C program to be
re-written to explicitly define parallelism between functions.

Performance: Using 	these 	languages 	typically 	leads 	to 	20% 	performance
degradation over the manual design of the FPGA circuit in HDL.

FPGA with FREEDOM [15] and [16]
Programmability: Compiled binaries (which can be generated from any high-level

language) are converted into a number of FSMs that are mapped to
the FPGA.

Performance: A speedup of 1.3-5x was observed between the FPGA exeution (on
Xilinx Virtex 2

)
and the DSP execution (an TI C64x VL1W).

The FREEDOM compiler from Binachip [15] [16] is a more successful attempt to create

FPGA circuitry from existing program binaries, which can be created by compiling a high-

level program source. The program binary, which represents a Control Flow Graph (CFG) of

scheduled instructions, is converted into a number of Finite State Machines (FSMs) that are

executed in sequence on the FPGA to achieve the same operation.

2.1.4. Reconfigurable instructions-set processors
Reconfigurable instruction-set processors can tailor the possible operations executed each

cycle by the processors elements (e.g. ALU) according to the application. This can for

example be the creation of an ADD-SHIFT instruction which combines 2 ALU operations in

a single cycle, if the application uses this pair of operations frequently.

Table 3-5: Reconfigurable instruction-set processors

Configurable instructions (Chimaera [17], ConCise [18], Tensilica [19])
Fabric: 	 Processors with reconfigurable fabric embedded into their pipeline

Which allows creating customised instructions.
Programmability 	Full ANSI-C, the compiler only has to know about the extra instructions

added.
Performance 	The problem in such processors is that they cannot achieve a very high

throughput, as they are still limited by the typical problems of

2.1.5. Loosely and tightly coupled arrays and processors
Reconfigurable processors are a combination,of a processor and a reconfigurable FPGA-like

structure, where all the compute intensive operations are executed on the FPGA to gain

Page 13

improvements. A large number of such processors exists {20]. Such architectures suffer from

the fact that a lot of manual work goes into designing the code for the processor and the

reconfigurable fabric - which in most cases has to be done separately. Furthermore, data and

time synchronisation between array and the processor requires manual interference.

Two classes of such systems can be distinguished according to the loose or tight coupling of

the array with the processor.

Table 3-6: Loosely coupled processor and a reconfigurable array

Garp 1211
Architecture: A fine-grain array with 2-bit CLBs acting as a coprocessor to a DSP.

The array and the processor communicate using a shared memory
block. The processor is responsible for configuring the array and for
synchronising the operations time with the array. The configuration
time is relatively slow as it requires the transfer of 6 kbytes, however,
this is still faster than the time needed to configure an FPGA.

Programmability The program for the array is created using a proprietary netlist
language, independently of the program running on the processor,
which takes care of the synchronisation.

Performance Depending on the application, speedups between 2 and 24 times were
observed when using this coprocessor, which is quite typical of
speedups obtained between FPGAs and processors.

Low-power Not disclosed
Morphosys 1221
Fabric: A RISC Processor coupled to a homogenous coarse-grain array of 32-

bit ALUs (containing a multiplier and a register file). This architecture
follows the SIMD model, since all the functional units in the same row
or column execute the same operation but on different data. Hence the
array is only useful for data-parallel operations, while the rest of the
(control) operations are executed by the RISC. Its main target is pixel-
processing where such parallel-data operations are common.
Data transfer to/from the array is programmed manually into the RISC,
along with all the required synchronisation between the two. One
advantage is that the array and the RISC can both be functioning at the
same time.

Performance: In operations such as DCT, Motion Estimation and Viterbi-decoding
around a 5-10 improvements over normal CPUs is observed.

Programmability Both the RISC and the array are programmed using low-level assembly
language.

Customisation Although the core is synthesisable it is not customisable.
Low-power Lower power over DSPs is claimed, details not disclosed.

Recore Systems's Chamel!eonlMoinitium [231and [241
Fabric: The coarse-grain array acts as a co-processor to a general purpose

processor in order to execute datapath code (no control). Several arrays
(the proposed example has 4) can be used together through an
interconnect scheme. The processor is responsible for configuring and
operating all the arrays.
It has the potential to achieve high bandwidth through parallel and
distributed memory access.

Programmability Proprietary Montium LLL language which is quite low-level.
Low-power Benchmarks with other solutions are not disclosed.

Page 14

SiliconHive 1251
Fabric: Arrays of Processing and Storage Elements (PSE) cells built around a

base processor. The base processor - handles control applications and
distributes datapath operations to the PSEs. Example PSEs from
Avispa-CHI (for SDR application) are DSP units supporting complex
arithmetic.

Interconnects Done between cells using blocking FIFOs accessed from each cell.
Programmability All the processors (base processor and PSEs) are programmed using

standard C language, however, the timing and data synchronisation
between them has to be coded manually..

Array The architecture is synthesisable, scalable and different types of PSEs
customisation can be used.
Low-power 	& Not disclosed
performance
PACT from XPP Technologies 1261
Fabric: The XPP64-Al chip is built from an 8 x 8 array of ALU-PAEs

(Processing Array Elements) with 2 rows of RAM-PAEs at the edges
(each has 512 x 24 bit). The core supports general-purpose opcodes and
special operation such as packed complex arithmetic. Programs are
partitioned into datapaths for the PAE and control operations for the
host processor

Programmability Special NML language, which is quite low-level and difficult to
program.

Low-power Not disclosed
REMARC [27]
Fabric: Coarse gain 8x8 array of 16-bit nanoprocessors. Coupling between

RISC and fabric is done through registers, with some registers shared
between both (which can be defined as tight coupling).

Performance: This approach was compared to the use of a processor with an FPGA
array, and it was found that a coarse-grain REMARC array of the same
size gives around 7 time better performance.

Page 15

Table 3-7: Tightly coupled processor and a reconfigurable array

Matrix 1281
Fabric: Similar to MorphoSys as being a combination of having a RISC and an

array, but in this case they share the same configuration memory. Quite
old, has no multipliers and targets simple operations. Functional units
are 8-bit ALUs with memory and some control logic.

Performance 	and Not disclosed
Low-power
IPipeRench (29]
Fabric: The array consists of a series of stripe. each containing programmable

ALUs that are interconnected using programmable pipeline stages in
order to implement highly-pipelined datapath circuits. A feature if this
architecture is the ability to reconfigure every block in one clock (the
configuration is stored in context memory). Thus, e.g., a computation
that requires 5 different operations in series can be implemented using
only 3 blocks by constantly changing the configuration at each cycle in
a pipelined manner (stages are configured while others are executed).

Interconnects: Data connections are only present between two consecutive ALUs, in
such a way that the output of the previous block is fed to the input of
the next one. The processor and array communication is done through a
FIFO.

Programmability Uses a special language which is a subset of C that only supports single
assignments. When compiled programs are converted into a straight-
line single-assignments by miming all the functions and loops - hence
the applications are limited to non-control ones.

Low-power Not disclosed
ADRES 130]
Fabric: A VLIW coupled with a coarse-grain array. Memory and registers are

shared between the array and VL1W to simplify the programming
model of this processor/co-processor scheme - the only difference is
that the register file is shared. A datapath on the array can support
limited 	control 	operations: 	if a 	loop 	requires 	small 	conditional
executions 	they 	get 	converted 	into predication 	(i.e. 	conditional
execution). The configuration RAM stores several contexts to allow
fast switching between them - this is also extended by the ability to
load extra configurations from the system's main memory.

Programmability Through C, since array and VLIW share memory and registers. Loops
which can be pipelined and fit onto the array are automatically
identified and mapped to the array. Data communication between the
array and the VL1W is automatically done through the registers.

Performance: Around 3x faster than a VLIW when mapping an application such as a
MPEG-2 video decoder.

Low-power Not disclosed

Page 16

2.1.6. Reconfigurable computing architecture
Although some of the architectures described below in Table 3-8 can be seen as yet another

combination scheme of a processor/microcontroller with an array of Functional Units (FU),

reconfigurable computing architectures in general are more a solution where both control and

datapath computations are naturally executed on the same fabric without the need for moving

a large amount of data or manually synchronising the operation of the different elements.

Table 3-8: Reconfigurable computing architectures

RAW 131]
Fabric: Array of 16 tiles, where each tile is a processor coupled with some

FPGA-likereconfigurable circuitry. Current RAW architecture targets
high-end processing architectures as each processor has a Floating
Point Unit. Each processor has its own instruction memory (and cache)
and can access several banks of data memory.

Interconnects Big programmable network of switches to connect each tile to its
neighbours.

Programmability On going work on a C compiler that allows high-level programming
taking advantage of several levels of parallelism such as Instruction and
Thread 	Level 	Parallelisms. 	However, 	current 	optimised
implementations require manual low-level coding.

Performance Hand-written and parallelised code achieved a performance comparable
to FPGAs [32].

Low-power RAW targets high-end processing and power reduction measures are
not implemented. The area is a massive 255mm 2 on 0.1 5tm.

Pleiades [35] 1361
Fabric: Coarse grain satellites (e.g. 167bits) units around a main processor. The

main processor executes control-dominated sections of the program
while satellites execute data-dominated computations. The system is
distributed in a sense that every satellite has its own instruction fetch
and execute. The satellites communicate between each other through
dedicated interconnects. The satellite processors could be arithmetic
modules 	(multipliers, 	MACs, 	etc.), 	memory 	modules, 	address
generators or reconfigurable arrays.

Programmability The design of the architecture and the choice of satellites to use have to
be done manually. At partitioning stages the designer decides which
loops of the full high-level program need to speeded-up using
reconfigurable fabric; then the choice of deployed satellites can be
made and their design started. This technique can create efficient
architectures, however, they become too specific to the application.
Programming the satellites requires writing low-level netlists.

Interconnects See Section 36.0.5 below.
Array Interconnects and the type/number of satellites can be made tailored for
customisation the application.
Low-power Not disclosed

Page 17

TotemJRaPiD 1331
Fabric: RaPiD is a linear 1D array of coarse-grain Functional Units (FU). FU

are of the order of ALUs, multipliers and shifters. It can implement
dataflow graphs where the result of one FU is forwarded directly to
other FUs that use it. The intermediate values are stored in distributed
registers. The hardware allows two levels of configuration switching: A
fast one that can change every cycle and a slower one (the decision is
made at programming time by the compiler). A sequencer acts as a
program controller to 	the array 	for loading 	and 	decoding the
configuration - a standard RISC ALU is also provided inside the
sequencer to execute control-like instructions that are. not suitable for
the FUs.

Interconnects Pipelined data buses between the functional elements. Data buses
restricts the scalability, as the number of FUs can only be increased if
data locality is maintained, which requires a lot of design efforts.

Programmability Uses RaPiD-C which, despite the name, is an assembly-level language
that allows describing multiple parallel threads. All the synchronisation
between threads is manually programmed using signals. However, the
compiler automatically performs the pipelining and retiming required.
Programming the RaPiD requires a detailed knowledge about the
underlying reconfigurable fabric

Flexibility 	and To achieve high throughputs for certain applications, a new array has to
array be generated with appropriate FUs, since each RaPiD array is not
customisation generic enough to support all applications with a high throughput.

In the Totem project, research is also being carried out for the
automatic generation of custom FUs, interconnects and VLSI layout of
the core by specifying the high-level C algorithms [132].

Performance: For OFDM [34] application, around 6 times speed improvement over
VLIW DSPs was observed.

Low-Power Not disclosed

TTA 131 1391
Fabric: 	 Uses general Function Units (FU) such as ALUs and register files

combined with Special Function Units (SFU) that execute application-
specific computations. Units are all pipelined in order to improve the
performance of repetitive loops, which is the target application of this
architecture - the TTA architecture is well suited for small applications
such as DCT, Viterbi-decoding and encryption.

Interconnects 	Based on a bus with segmented tracks. Although the design of the bus
is simple, it limits the scalability of the system: The arrays have to be
limited to small number of units (in the order of 25).

Programmability 	Standard ANSI-C is supported. However, as with any processor, some
manual assembly code is required to achieve high throughput and to
make sure the timing in highly pipelined loops is met.

Array 	 The arrays have to be customised to every application, since it is not
customisation 	possible to create a big array containing enough units to achieve high-

throughput for every application.
Performance 	Good ratio of area I throughput is achieved: High speeds can be

achieved for the amount of silicon area used, however, in some
applications an ARM9 processor can achieve a higher speed than TTA
at the cost of higher area, which, in a way, limits the application of
TTA in future devices.

Low-power - - - 	- Not disclosed, only area consumption is measured.

Page 18

2.1.7. Generic low-power solutions

Only a few of the previous research projects specifically target reducing power consumption,

as the majority are concerned with achieving high performance. Furthermore, only a few of

the previous works focus on developing generic signal-processing architectures with reduced

power consumption, since it is easier to achieve power reduction by tailoring the hardware to

the application. This includes low-power DSP processors such as the Hi-Perion from Fujitsu

[40], which has the flexibility of normal DSPs but with lower power consumption. To achieve

this it uses application-independent techniques, such as physical improvements in size and

circuit capacitance as well as standard methods such as pipelining and parallel MAC

processing to improve the performance and hence lower the supply voltage / operating

frequency.

2.2. Interconnect structures in FPGAs
In an ideal situation where a reconfigurable system has Functional Units (FUs) operating in

parallel, every FU would be able to connect to any other FU to exchange data. Although this

is useful, it is quite often expensive in terms of area and power consumption. Since not all

FUs need to be connected to each other at any one instance of time or in any single

application, an interconnect scheme - depending on the FU type/structure/data handling - can

be used to reduce the overall area and power usage. This section lists interconnect scheme

used in FPGA devices, which have also been reused in other reconfigurable architectures.

2.2.1. Symmetrical Mesh

The symmetrical mesh architecture, which is also referred to as the island-style interconnect,

is a popular structure found in most commercial FPGAs, which are characterised by a large

number of homogenous logic-units that are commonly connected 'randomly' together. The

logic blocks are grouped into clusters of blocks [41], generally containing between 4 to 10

modules (these clusters are sometimes called slices). Each cluster contains internally another

layer of interconnects between the modules themselves. As shown in Figure 3-7, the array has

fixed horizontal and vertical metal tracks run between the clusters and two types of

configurable switches are present: Connection-boxes permit the connection of a pin from the

cluster to the metal tracks, and on every crossing of the metal tracks a reconfigurable Switch-

box connects .the tracks together.

Page 19

Figure 3-7: Signal routing between two clusters using switch and connection boxes.

The internal design of these reconfigurable switches and interconnect elements affects the

overall flexibility and power consumption of the array. The flexibility of a switch or

connection box is determined by the number of possible programmable connections as

defined in [43] [42]. The flexibility of these boxes affects the overall flexibility of the array

(hence routability) as well as other characteristics such as area and power consumption. As

shown in [44], the design of the boxes is dependent on the type of logic blocks used.

In [43] Rose and Brown concluded from place and route experiments with multiple designs

that FPGA connection blocks need high flexibility to achieve a high percentage of routing

completion, and that relatively low flexibility is needed in the switch blocks. In commercial

FPGAs the programmable switching circuits inside the boxes are implemented using pass-

transistors, tn-state buffers or multiplexers.

Several topologies for the S-Box designs exist and their performance tends to be related to the

type of the logic cells and the application mapped to the FPGA. The main topologies are the

Disjoint [52] (used in Xilinx, also called subset), Universal [51] and the Wilton [53]. The

work in [49] also proposes an s-box topology to support non-rectangular array forms. This

would particularly be useful for embedded configurable logic, where the shape of the array

depends on the system. In this work different types of connections inside the S-box are

evaluated to find the optimum one.

Segmented trck

The use of long metal tracks spanning multiple logic blocks was introduced in [50] as

segmented tracks. It was found to improve speed and reduce delays due to the fact that

Page 20

applications mapped to the FPGA's functional units tend to require long connections. A

similar approach is used in most of Altera's devices. Several works were focused on finding

the optimal length and distribution of segments to achieve the best performance in generic

applications. Furthermore, the work in [49] [48] proposed a switch box design that is more

suited for segmented tracks where unused connections at the end of a segment are removed.

Interconnects in heterogeneous array in Pleiades

In [37] interconnect schemes for heterogeneous arrays are evaluated. The research is focused

on interconnects between the coarse block elements in the Pleiades architecture (see review

earlier) and tries to overcome the routing problems caused by having blocks with different

sizes.

Global interconnects that can connect any part of the array to another were found to be

suitable for distant connections, but inefficient for local ones. Furthermore, switching activity

of the lines is transmitted for long distances. Segmented Mesh architectures improve over

global interconnects, but they are difficult to adapt for heterogeneous arrays, as a 2D regular

grid has to be found. The proposed solution is to use a generalised mesh where wiring

channels are used along the sides of each module, with S-boxes on the crossing between the

wires, as shown in Figure 3-8.

Figure 3-8: Generalised mesh for heterogeneous elements with different sizes in Plaides [37]

The disadvantage is that distant connections go through a lot of switching elements, which

introduces delays and might increase the power consumption. Another proposed solution is to

use a hierarchical generalised mesh with 2 levels of mesh: The elements are grouped into

clusters, and an array is made out of clusters. One generalised mesh is responsible for

interconnects inside the cluster, and a mesh with larger granularity connects the clusters

between each other, as show in Figure 3-9. The tracks are segmented at different levels in the

two arrays.

Page 21

Figure 3-9: Hierarchical generalized mesh in Plaides [37]

2.2.2. l3anj interconnect frees

The binary interconnect tree [54] is a useful alternative to the shared bus when cell to cell

connections are needed; it uses multiplexers arranged as a tree with each programmable-

switch intersection having 3 ports. The advantage of this architecture is that the number of

switches used to route the signal grows logarithmically with the distance, which means that

the overall delays introduced by the switches are lower. The disadvantage is that this scheme

it is not scalable for very high numbers of FUs nor for changes in the number of 110 pins in

each cluster.

Figure 3-10: Reconfigurable Binary multiplexer-tree interconnect [54]

2.2.3. Hierarchical sfrliicta.nres

Hierarchical interconnect structures are useful in applications where data locality is high

(neighbouring FUs are making most of the data communication) and only a few signals need

to be sent across the chip. Several studies were done on such classes of interconnect and were

Page 22

found to be efficient for some types of application [55] [56] - in most cases they can improve

the speed at the cost of increased area over FPGAs. It should be noted that even though

Hierarchical structures and Binary-Trees are conceptually the same in terms of switches, the

only difference is the layout and FU-placement used when implementing on silicon.

Figure 3-11: Hierarchical FPGA architecture [55] [56]

2.2.4. Combined structures for low-power from LP-FPGA

The power reduction measures in the low-power FPGA from [4] are mainly performed by

combining 3 levels of interconnect:

Nearest neighbour: High-speed and short lines are present from each functional unit

to its 8 neighbour. Very low energy is dissipated in those connections.

Mesh Interconnect: Connections between central functional units that cannot be made

using nearest-neighbour connections. Those are similar to standard interconnect lines,

but the difference is that the number of lines used is lower, and hence less power is

dissipated. This is based on a segmented symmetrical mesh.

Hierarchical Interconnects: High-delay lines for use between large distant logic

blocks on the array. The structure is a mix of a symmetrical mesh and binary-tree

architecture with inverse clustering.

Furthermore, to reduce the power consumption of interconnects, circuit techniques are used

such as low-voltage drivers on the tracks to reduce the voltage from 1.5V to 0.8V, and hence

reduce the power consumed by switching activity.

Page 23

23 Summary

By surveying the existing solution and the on-going work we can identify two gaps:

A very large disparity exists between FPGAs and ASICs in terms of cost, power,

area, delays and flexibility. This forces applications to chose one of the extremes depending

on requirements. This gap needs to be filled with a general solution, or general platform for

creating specific solution, as described in Chapter 3, 4 and 5.

Amongst the large number of existing couplings of processors and reconfigurable-

arrays and the surveyed reconfigurable computing architectu'es there is a lack of a solution

that supports high-level programming through .0 and at the same time addresses critical issues

such as low-power and high-flexibility. This is addressed in Chapters 6 and 7.

Page 24

Chapter 3.0

Domain-Specific

Reconfigurable

Arrays:

As described in Chapter 1, there is a need in future portable System-on-Chip designs to

achieve a higher computational performance than is currently achieved, while keeping the

power consumption at a minimum. Although custom hardwired ASIC designs are currently

the choice in such situations, they suffer from a high level of inflexibility and costs not

suitable for such rapidly changing requirements and markets. At the same time,

programmable solutions such as FPGAs offer flexibility but suffer from high power

consumption. Based of the results found in previous work (Chapter 2), the domain-specific

approach seems to be a promising and extensible solution for achieving a balance between

ASICs and FPGAs in order to bridge the gaps in cost and performance between these two

alternatives.

Page 25

The existing domain-specific solutions provide a good cost / performance ratio, however, they

are tied to only one application. The main problem with the domain-tailored approach is that

it is too time consuming to design a custom datapath from scratch each time a new

algorithm/application is encountered in an SoC. Hence, for domain-specific solutions to

become useful there is a need to make their creation fast and customisable. A platform and

infrastructure to quickly allow the design of such arrays is required, and, to our knowledge,

none of the previous works focused on the fast generation of domain-specific architectures.

Such customisability is important to allow choosing the exact degree of flexibility required in

the architecture according to system-level constraints such as power, area and delays.

The work presented in this chapter can be put in perspective with previous research into

domain-specific silicon compilers carried out at the University of Edinburgh; The FIRST

Compiler [133] generates VLSI designs based on high-level description of computations. This

compiler is domain-specific in a sense that it only creates circuits based on bit-serial atomic

building-blocks; This greatly narrows the range of applications that can be targeted but gives

very high-performance circuits for computations that can be expressed within the scope of the

compiler. This compiler can also be coupled with domain-specific standard-cells, as shown in

the SECOND Compiler [134]. The work presented here takes a similar approach but

concentrates on a complete algorithm level rather than one computation, and it also adds the

flexibility criteria to the final design.

Ideally the platform for generating domain-specific architectures should be completely

automatic, and its only input would be a description of the application using a high-level

description language. Another approach is to make the creation of the domain-specific arrays

semi-automatic, where the designer would have to manually choose the resources required on

the array before it can be automatically created. Even though the semi-automatic

methodology gives more responsibility to the designer, it was chosen as a starting target for

this work as it allows an easy benchmarking of the performance in the domain-specific arrays.

The methodology proposed gives the option to the designer to choose each element of the

array from a library of predefined elements. The elements library would be large enough to

make it possible to customise the array in terms of functionality and degree of flexibility,

which also affect the timing, silicon-area and power consumption. Furthermore, to have a

useful platform, the array creation and customisation processes needs to be fast enough to

allow testing array with a number of if-then-else scenarios to choose the best compromise

between flexibility and performance.

According to the results in the previous work described in Chapter 1, it was decided that an

FPGA-like array arrangement and interconnect structure would be best suited for initial

Page 26

performance testing, as it would allow the reuse of some of the work done on such structures.

As described earlier, FPGAs are usually composed of functional clusters (in the FPGA case

these are Configurable Logic Blocks) surrounded by programmable interconnects in an

island-style fashion to allow connecting the clusters together. Hence, this scheme uses

independent elements for routing and for data-processing. If such an arrangement is used for

the Domain-Specific Reconfigurable Arrays (DSRAs), which are composed of programmable

data-processing clusters and data routing elements, then the elements-library would provide

different types of inte?connects-circuits and operational clusters that would make it possible to

generate any array according to the desired functionality and application.

This customisability makes it possible to choose the desired amount of flexibility according to

constraints such as performance (i.e. the delays allowed), silicon area and power consumption

of the final SoC. The generated array has to fit inside the existing SoC software tool-flow as if

it was a standard core. This can be done by generating a pre-routed silicon layout of the array;

however the resulting array would not be portable to different fabrication technologies and the

array-generation tool would need to know the details of the technology used. This is

impractical as only a limited number of processes and fabrication technologies would be

supported. The solution used here is to generate the array in a generic synthesisable format so

that it can be used as a standard block inside the SoC software tool-flow.

3.2. Proposed reconfigurable System-on-Chip

Since the proposed reconfigurable arrays are domain-specific, in order to perform multiple

operations a reconfigurable System-on-Chip would need to contain a number of such arrays

each targeting one computation (as shown in Figure 3-1). Usually an array would be created

for each computation that needs to be speeded up and all the arrays would run concurrently to

achieve a high throughput. The arrangement using a processor and a number of domain-

specific arrays in an SoC can also be seen as a compromise between the two existing solutions

of using a number of hardwired cores limited to an operation or using a large embedded

FPGA that could implement all operations. An SoC bus can be used to provide an easy

integration of the arrays with the processors and DSPs, however, a Network-on-Chip (NoC)

approach would be more efficient. NoCs are more difficult to implement as currently no

standard exists for them. In any approach, the processor would make the synchronisation

between the arrays, configure them, provide them with the input data and read back their

processed outputs. The array could also have some internal interim buffers, or it could have a

Direct-Memory-Access (DMA) to the DSP's memory.

Page 27

Figure 3-1: Reconfigurable System-on-Chip with a number of reconfigurable arrays each specific to one operation.

33. Programmable Clusters

The proposed arrays contain separate elements for data functionality and data routing. The

clusters are the main functional elements in the array and they define the operations

executable on it. The array was chosen to support heterogeneous clusters, as this can

potentially reduce the area and silicon utilisation of the area when compared to a homogenous

approach, in case the provided functional units match the required operations. When having a

number of different clusters each of them would be responsible for one type of operation. In

such a heterogeneous array it becomes possible to add new functionality to the array by

augmenting it with new clusters. Individually, a cluster might not be able to perform any

practical operations on its own; it is only by connecting several clusters together that a useful

computation can be performed; hence, each cluster has 110 pins connectable to other clusters

using the programmable switches.

In the proposed scheme, the array is made specific to one domain of application according to

the choice of deployed clusters. As will be seen later in Section 4.2, the operation performed

by the clusters entirely depends on the application and its requirements in terms of flexibility

and performance; typically, each programmable cluster can perform a small set of operations

such as add, sub or shift. Clusters usually operate on word-level, e.g. 16-bit or 32-bits. In

contrast to generic FPGA architectures, the clusters used here are coarse grain. This reduces

the flexibility but improves performance as fewer interconnects are required as was shown in

a number of previous architectures.

Page 28

IIIIIIt!.hII

Figure 3-2: Modules, clusters and interconnects in the DSRA

Making the clusters programmable allows the support of different operations or

configurations on the same cluster. For example, an ADD cluster could perform additions as

well as subtractions. Also, an ADD cluster which was designed as a 32-bit adder can be

programmed to perform either a single 32-bit or two 16-bit addition / subtractions.

Furthermore, the clusters can be programmable in such a way as to make it possible to select

whether they should operate combinatorially or have registered outputs. Such an option can

be used to create dynamically customisable pipelines.

Once a number of domain-specific arrays have been generated for a number of applications,

the library of clusters described earlier can be compiled. With such a library, an array for any

application can be simply created by means of selecting the types, locations and numbers of

clusters.

3.4. Interconnects

The role of interconnects is to allow the transfer of data from the output pins of a cluster to

the inputs pins of another cluster so that large operational circuits can be formed. Ideally, the

switching network would allow the routing of signals between any two cluster-pins in the

array at any time. An implementation of such interconnects can be done by using a large

multiplexer on each input port of each cluster; this multiplexer would be connected to all the

output ports of other clusters and allows choosing the data to route. Although such a

multiplexer implementation would be easy to program, it occupies too much area to be

economical, and the overhead is not justified since not all the multiplexers would be used at a

single time. Hence, there is a need for an interconnect structure that reduces the overhead of

Page 29

unused programmable-switches while allowing the routing of a wide range of circuits. The

programmable switching elements also have to be combinatorial with the minimum delay

possible, as opposed to other reconfigurable architecture like PipeRench [29] where the

interconnects are registered. In the DSRA interconnects create combinatorial connections

between clusters, and any extra implementation details, such as pipelining, would be achieved

inside the clusters.

The island-style interconnect scheme used in typical FPGAs fits these requirements, since it

provides an area efficient scheme to connect the clusters together, as opposed to the

multiplexers scheme. The interconnect mesh uses connection-boxes to connect the cluster's

pins to the tracks and switch-boxes to connect the tracks together (see Figure 3-7) to allow

sharing the programmable switches between different paths. When using this architecture,

extra effort is required to choose the optimum path between two points. Routing techniques

have been well developed over the past years and standard routing tools such as VPR [57] can

be reused in the DSRA.

Since the clusters are coarse-grain compare to CLBs in FPGAs, the interconnects have to be

adapted to the word granularity of the array. Due to the potentially large number of both

single-bit and word-wide lines, it was decided that both levels of bit widths have to be

supported by using two different levels of interconnect. The word-wide interconnects would

be wide enough to efficiently route all widths of signals. As in the examples in Section 4.2, a

combination of single-bit and 8-bits tracks can be efficiently used to route signals with widths

ranging from 1-bit to 32-bits. When compared to single-bit tracks in FPGAs, using word-wide

tracks reduces the number of configuration bits required to route signals, however, the

number of routing elements (i.e. multiplexers and programmable switches) stays the same.

In conventional generic FPGAs the configurable switches are implemented as pass-

transistors, which allow bidirectional connections between two tracks. To make the generated

array synthesisable, the configurable switches have to be implemented using tn-state buffers

if bidirectional wires are needed. Tn-state buffers are usually avoided in designs since they

may introduce instability in the system. They also increase the area and power consumption

of the interconnects when compared to pass-transistors. Using tn-state buffers allows having

longer wires since they can support higher loads [52], but such long distances are not really

needed in the DSRAs as the data is more local. Two tn-state buffers replacing a bidirectional

pass-transistor consume 8 times more area and need 2 configuration bits instead of one, hence

the design of the array should try to reduce the overall number of switches needed.

It is also possible to use unidirectional tracks which would make it possible to avoid fri-sate

buffers and reduce the overall area of the array, but it comes at the cost of reducing the

flexibility of the architecture. The usage of unidirectional tracks depends on the application's

requirement; such optimisations are examined in Chapter 5.

Page 30

Stored cfg bit

Stored 1 cfg bit

OLUICU LI Wit

Figure 3-3: Synthesisable equivalent of a bidirectional pass-transistor using 2 in-state buffers, consuming 8 times more area.

Inline with the remaining elements of the array, interconnects are fully customisable.

Parameters include the number of tracks, the width of the word tracks, the flexibility of the

connections and switch-boxes. These options affect the flexibility of the array, the routability

of designs, the power consumption and area of the final chip; thus they can all be set in

accordance with the requirements of the application.

As described later in Section 4.2, the initial sample array was made fully bidirectional and

with the maximum flexibility possible in the C-Boxes and the S-Boxes (defined in Chapter 2),

as the purpose of this implementation was to measure the initial performance of DSRA.

Further optimisations have been later made to the S-Box circuit (Chapter 5).

C.Box 	 5Box

I.try

I
I.

llhI1IIIIII. •iiii•iiuui
I 	=IlIIUlI iWEIREZZE

llIItNNNN•iIE.4

•iiuuui
III ii•••••
o.uuuuiI.

MEN" NINON

MENEM

..i- 	iii•u•• I 	IlIU]

NU1

iIIZIzzzzz iiii•••iu

."IIL. •WUlIII•

MENEM

iiii•u••••
iiiiRIKEZZZ

Figure 3-4: Basic island-style interconnect mesh scheme with customisable single bit tracks and word-wide tracks.

3.4.1. C-Box circuit design
Connection boxes allow connecting the pins of the clusters to the tracks. Since the tracks used

are bidirectional, the programmable switches between the tracks and the ports have to be

Page 31

based on u-i-state buffers. This is required for the cluster's output pins, as show in Figure 3-5

and Figure 3-6. For the cluster's inputs pins, either a multiplexer or tristate buffers can be use,

in order to select which track needs to be routed to the pin. For bidirectional pins, two tn-state

buffers have to be used per track. The flexibility measure Fc of a C-Box represents the

number of tracks the pin can be connected to. For the initial arrays (see next chapter) a high

flexibility of Fc==number of tracks has been chosen for measuring the initial performance.

Cluster

Figure 3-5: Tr-state buffer based C-box

Cluster

Figure 3-6: C-Box using a multiplexer for input pins only.

(a)
	

(b)

Figure 3-7: Two possible combinations of the MUX and tn-state buffer for use in C-Boxes.

To improve the performance of the interconnect inverting tn-states (or multiplexers) are used,

since they have less area, power and delay than the non-inverting ones. This is possible since

it is known that each signal between two pins will go through an even number of C-Boxes (in

this case 2).

Page 32

3.4.2. S-Box circuit design

Figure 3-8: S-Box using tn-state buffers

Similarly, ti-i-state buffers or a multiplexer can be used in the Switch-boxes. This is

investigated later in Chapter 5, as such a choice can be application dependent. Unlike the C-

Boxes, non-inverting elements have to be used, since a signal can go through an undefined

(odd or even) number of S-Boxes to reach its destination. Future examinations can try to use

inverting elements while adding a constraint on the routing program to use only an even

number of S-box connections.

Again, the initial S-Boxes tested had the highest flexibility of Fs=3, which represents the

number of different directions that a signal coming to the S-Box can go to [43]. This value

was chosen here for simplicity and can be configured by the designer according to the

requirements. The topology used was the subset S-Box (see [52] [11), as this proved useful in

FPGA interconnects. Other topologies can affect the characteristics of the array.

35. Configuration Memory

The configuration bits controlling the clusters and interconnects have to be stored in a

memory device. The configuration memory contains the settings of all the configurable

switches and multiplexers in the array. This includes the settings of all the clusters as well as

the connection- and switch-boxes. Each cluster and its surrounding C-boxes require in the

order of 100-200 bits of memory. An S-Box needs around 250 bits. The large number of

configuration bits required is due to the high flexibility of the C- and S-boxes. Reducing this

flexibility will reduce the required memory and the area of the array.

3.5.1. Requirements and observations

The memory needed to store the configuration has the following characteristics which are

described below:

Page 33

Read latency is unimportant, as no data will change quickly; this actually depends on

the rate of reconfigurability, however, it would never require changing the

configuration in a single clock cycle - for the testing purposes at least.

° The time taken to write to the memory is not crucial, as it again depends on the rate of

reconfiguration (see below).

° The data will not be read from the memory (except if debug capabilities are needed);

hence each bit-cell can have its output connected to the configurable switch.

All outputs need to be available at all times.

° The memory should be spread around the chip, since the memory cells should be kept

next to the switches and clusters to minimise wires lengths.

The rate of reconfiguration of the array is entirely dependent on the application. It could be

measured in months, in case the reconfiguration is only part of a firmware update or

functionality change, or it could be in fractions of a second if the application needs to

dynamically change the behaviour of the array according to external changes. Thus several

types of memory elements, such as non-volatile flash or SRAM can be used according to the

requirements.

However, the fact that the array is required to be portable to different processes and

fabrication technologies limits this choice. Flash or SRAM memory cells, as the ones used in

FPGAs, are not synthesisable. Stable synthesisable memory is restricted to flip-flops and

latches. In the configuration memory for DSRAs, all the bits of the memory-cells have to be

available all the time to constantly control the multiplexers and switches. Thus, a standard

SRAM memory block as the ones provided by foundries such as UMC, might not be suitable

as a configuration memory, since in usual SRAM block only the output-bits of the currently

selected row are available at one time. To use SRAM technology, the definition of a single-bit

SRAM cell and a controller would be needed, which requires circuit level and foundry

specific designs. Hence, a synthesisable latch or register based memory is more appropriate.

As with the bidirectional fri-state switches, the use of flip-flops as configuration memory

increases the area needed per configuration-bit by around 2.7 times when compared to

SRAM-cells. Hence, the overall number of configuration bits and programmable switches

used (or saved) in the array has a significant impact on the total chip area.

To facilitate dynamic reconfiguration of the array, it should be possible to partially change a

small data-block in the configuration memory at run time. The data change should only affect

its associated hardware and not the configured circuit for the rest of the array.

The easiest option for the configuration memory would be to use registers arranged as shift-

registers. The output of each register is connected to the multiplexer or switch it controls. The

programming of the registers can be done in a bit-serial manner by filling the shift register

with the configuration bit-stream. Each cluster and its corresponding c-boxes can be grouped

Page 34

together and a wide shift-register is assigned to it. The block would have one bit-input and

one bit-output pins for configuration. Multiple blocks can be cascaded by connecting the bit-

out of the current block to bit-in of the next block, hence a number of blocks can be

configured serially, as shown in Figure 3-9

Figure 3-9: Example of cascading of shift-register based configuration memory.

In the extreme case, the configuration shift-registers of the whole array can be cascaded so

that the array can be configured by a single bit-stream. However, to enable quick dynamic

reconfiguration, the array needs to be split in small regions each region requiring a separate

configuration bit-stream input. In the initial design it was decided that every row of the array

has one input bit for configuration.

3.5.2. Alternatives and improvements to shift-registers
In typical FPGAs, very high current is drawn by the chip during the configuration process as

all the programmable elements would be switching on and off while loading the configuration

bitstream. According to the rate of reconfiguration, this exhibited power can become an

important factor. As described above, flip-flops arranged as a shift-register are quite simple to

operate. However, the configuration bits would have to hop between different registers,

triggering their programmable elements unnecessarily before arriving to its target flip-flop. To

avoid this needless switching activity, an extra enable signal can be used so that the output of

the flip-flops is disabled during the writing.

The other alternative to flip-flop memory cells is latches. As seen in Table 3-1, the area of a

latch is around 60% that of a register. However, the multitude of latches cannot be simply

cascaded into shift-register and require a controller to select which individual bit to program,

which adds an extra area overhead. Such a controller has been tested and designed to allow

addressing every programmable block (i.e. S-Boxes and clusters with their associated C-

boxes) individually. The controller accepts input configuration data and target block address.

Since the writing occurs in a word-serial manner, the width of the data line affects the speed

of writing and the number of decoders needed for the latches circuit (the performance

Page 35

measure below uses widths 1, 4, 8 and 16 bits). On the other hand, the width of the addressing

line for the controller depends on the number of clusters in the array. Also, internally the

controller would need to count which word of the configuration bitstream is being received so

that it can be sent to the correct latches. Since this counting scheme would affect the power

consumption it was decided to compare both grey-counters and one-hot counters.

Table 3-I: Area comparison of configuration memory cells.

Minimum area in 0.1 8im technology
I 	 I- — — — — — — — — — — — — — — — — —

 -I

I 	 I 	 I
I Register 	i 	 I 	 81 im2 /bit 	 I
I 	 I 	 I
I 	

CLK 	
I

I 	 I 	 I 	 I

Latch
48 jim2/bit

SEL
without controller

SRAM cell
22 1im2/bit

(for o.

comparison)

without controller

The results of the area of the configuration memory (along with the corresponding controller)

and the configuration power are shown in Table 3-2. The results shown are for programming

a row of clusters having around 650 configuration bits. It should be noted that the area is for

UMC 0.1 8tni technology and the power consumption is that consumed if all the writing was

done at the same speed. By comparing flip-flop implementations 1 with 2 we can see that

adding a signal to disable the configuration while programming results in a 33% power

reduction at the cost of 8% increase in total area. For the latches, this is not the same, as seen

for cases 5 and 8, since the power increases in 8 slightly by 5% (while areas also increases by

10%).

Table 3-2: Area and power of different control circuit and configuration memories

Implementation
Routed

Area (pm 2)

Configuration

power (jiW)

1-FF arranged as shift-register 52,867 488
2-FE, arranged as shift-register, disable while reconf. 57,135 323
3-Latch, grey counter, 1 bit I cycle 49,306 151
4-Latch, grey counter, 4 bits I cycle 43,568 96
5-Latch, grey counter, 8 bits / cycle 42,324 104
6-Latch, grey counter, 16 bits / cycle 41,824 154
7-Latch, grey counter, disable while reconf., 8 bits / cycle 46,919 110
8-Latch, one-hot counter, 8 bits per cycle 45,629 133

Page 36

When comparing implementations 3, 4, 5 and 6 containing latches with grey-counter based

controllers, we can see that the best power/area performance is achieved for implementations

4 and 5 based on 4 and 8 bits word-wide data. Also we can see that the one-hot counter based

controller does not offer any advantages over the grey-code one, as it consumes more power

and occupies more area. It can be clearly seen that latches based memory is superior to the

flip-flop based one, as it consumes up to 70% less power and 23% less area (implementations

4 and 2). However, it should be noted that a shift-register implementation easily allows the

configuration data to be read back from the array, while the controller for the latch based one

does not allow this. Such a feature can be useful to verify the programming in applications

like fault-tolerant circuits.

3.5.3. Further improvements

Several techniques that are employed in existing reconfigurable systems for improving the

performance of the configuration memory can be used in the proposed architecture. For

example, fast dynamic reconfiguration can be enabled like in DP-FPGA (See Chapter 2) by

using a large RAM that temporarily stores a number of configuration-bits. The processor

could send multiple configuration bit-streams in parallel to the RAM and then one

configuration can be uploaded to the array. The transfer of the configuration from RAM to the

array occurs much faster than if the configuration was sent serially from the processor to the

array directly. With the RAM storing multiple configurations, a dynamic switch between

configurations can be made quickly and efficiently without much data transfer between the

processor and the array. Furthermore, the processor is free during the reconfiguration from the

RAM, and hence it can be used to execute other computations.

In reconfigurable architectures like Xilinx Virtex 4 [[1]] it is possible to reuse the

configuration registers as general purpose variable shift-register. In our array, it would be

possible to make the shift-registers of unused blocks configured to be used in the application.

However, several issues have to be solved, like having special configuration bits that sets

whether the configuration shift-register of the block is used or not and having c-boxes to

connect the configuration bit-in and configuration bit-out of the block to the routing tracks.

Another issue would be to make the size of the shift-register programmable and to be able to

read the value at each register.

Page 37

In contrast to embedded FPGAs, the proposed domain-specific reconfigurable arrays are

integrated with the SoC as a normal core since the DSRAs are provided as synthesisable code.

However, the use of these reconfigurable cores adds extra steps to the design-flow as shown

in Figure 3-10. The arrays are designed in such as way that the overall SoC design-flow is

kept the same and only a small number of new tools is used. The new steps are described

below for the design-entry, verification and implementation stages.

3.61. Design entry and array generation

As with standard SoC system, early in the design stages of the system a vague partitioning

between hardware and software implementations can be achieved by identifying the compute

intensive computations of the target application. Regardless of the flexibility required in these

computations, they can be implemented efficiently on a reconfigurable array with the cost of

an added area overhead to the chip. Hence, depending on the area constraints a decision has to

be made on the algorithms to target, the number of arrays to be used and the flexibility of

each array. Since the arrays provide a flexibility margin, the initial partitioning can be

modified later in the design.

Netlistol
clusters

Clusters I,

Parameters__/

Behaviors
Simulation

Array
Generato;

C
bitstrearr

P&R / 	 RTL - Array
lnfc 	/

RTI.
Simulation

Synthesis

Hierarchical 	GL -Array L__- Gate-leve
P&R 	 - Simulation

Parasitica
and

Powet
Estimation

Figure 3-10: System-on-Chip design-flow when using synthesizable reconfigurable arrays.

Page 38

The programmable clusters used in the array define the application of the array and its

flexibility. The clusters can be chosen from an existing library or defined as synthesisable

HDL by the designer. The use of a library of clusters improves design-reuse and reduces the

design time. To correctly design the clusters, the algorithm has to be analyzed and the basic

operations extracted. Another approach to the cluster design is to analyse the existing

hardware implementations of the algorithm and identify the common basic operators;

designing the clusters to support all the possible implementations allows controlling the

flexibility of the clusters.

Table 3-3: Options given to array generation tool

Number of rows, columns
HDL definition of clusters
Position of each routable pin (North, South, East, West)
Placement and number of each type of cluster
Type of Interconnects
Number of bit-wide and word-wide Tracks

The heterogeneous array of clusters is generated automatically from the clusters definition. A

tool was developed to read and analyse a Verilog HDL code defining the clusters in order to

generate the required connection-boxes and switch-boxes around the clusters. The array

generation program is given the parameters of the required array, such as its size, the cluster's

arrangement inside it, the locations of the pins on the cluster, the number of tracks and the

type of interconnects (as shown in Table 3-3 and Figure 3-11). The array is generated as a

synthesisable RTL code.

c1t.r1 	odu1. c1u.t.r
pin2, pin. pi) 	pini, pin, pin.)

Parameters
-Array size
-Area & Timing constraint 	 Array

-Clusters disbibutior 	 Generator

-Interconnects type 	 -
-etc..

	

odule array_4__Py_Ei track 1. track 	track!

clu.t.nl 1p2.nl • P1fl • Pifl. -
c_bo1 (p1n1_1 pin1_, pin1_. .1
cboz (pu2_1 	 pin_.

.1"t..2 1pi.11, pu12 pin13, 4;
c_boa (pin3 pin_. pin_i. -)
cboxl (pinl_1, pin4_2, pir4_, I

_boa1 Ipu1_1 pin?_2 pin_. .1

Figure 3-I1: Inputs and outputs of the array generator

Page 39

3.6.2. Array programming and testing

Mapping a design to an array is done manually by writing an HDL netlist of interconnected

and programmed clusters. This task is simple since a useful datapath is usually built using a

dozen of clusters; the number of clusters in typical circuits does not exceed 64, which does

not lead to a large netlist. The designer needs only to connect the clusters together, since the

configuration of the switch-boxes and connection-boxes is done automatically, as described in

the next section. The placement of the module, i.e. the choice of which physical cluster to use

if more than one clusters of the required type exists, is also done manually.

OCI(IC, ii, , OC, 01,)

.hft_r.9i.t.r1 IC, bit_outi,
•hift_r.g.t.rI (II. bit_eutl,

L01_1 ddr...I, d.t_eutI, 1;
L011 (.ddr...1, data_outl,

SAC_I Idatuoutl, OC,
8501 data_eut1, 01,

Parameters 	
Array

-Component placement> 	
Configuration -etc.. 	

File

 mod,l. DCT(IC, 11, 	OC, 02, 	 Configuration

Figure 3-12: Inputs and outputs of the array configuration program

The routing program, which is based on the routing engine provided in VPR [57], generates

the required configuration of the connection-boxes and switch-boxes to correctly map the

netlist to the array. VPR was modified to allow it to create a configuration bitstream for the

interconnects in the array to build the input circuit. This bitstream is then used to configure

the array in order to establish. VPR was also augmented with the ability to generate the

configuration bits as scripts usable at the different stages of the design, like HDL scripts to

test the configured array (both at RTL and gate levels) and scripts for timing-analysis of the

mapped configuration (e.g. using PrineTime from Synopsys). The original VPR was also

limited to homogenous CLBs and has been modified to support heterogeneous clusters that

can each have a different number of I/O ports.

Page 40

Table 3-4: Example of mapping a DCT computation to the arrays

module one_d_idct_seq_elements(I0, 	Ii, 	12, 	13, 	14, 	15, 	16, 	17,
00, 	01, 	02, 	03, 	04, 	05, 06, 	07,
cik, 	rst,
load sregs, 	en_sregs, add sub, dr_sac);

input 	 cik, 	rst;
input 	(11:01 	10, 	11, 12, 	13, 	14, 	15, 16, 	17;
output 	[11:0) 	00, 	01, 02, 	03, 	04, 	05, 06, 	07;
input 	 load sregs, en_sregs, add sub, dr_sac;

wire 	[7:0) dO, 	dl, 	d2, 	d3, d4, 	d5, 	d6, 	d7; 1/ Output of Ra
wire 	 data sr0, data sri, 	data sr2, data_sr3;
wire 	 data sr4, data sr5, 	data_sr6, data sr7; II Output of shift-r.g
wire 	(11:0) 	10_a, 	ha, 12_a, 	13_a, 10 	s, 	us, 	12s, 	13s;

add sub 12b addl 	(cik, rst, 	l'bO, 	10, 	17, 10_a);
add sub 12b add2 	(cik, rst, 	l'bO, 	Ii, 	16, 	ha);
add-sub- 12b add3 	(cik, rst, 	l'bO, 	12 1 	IS, 	12-a);
add-sub-12b add4 	(cik, rst, 	I'M, 	13, 	14, 13_a);
add-sub- 12b subi 	(cik, rst, 	1b1, 	10, 	17, lOs);
add sub i2b sub2 	(cik, rst, 	l'bl, 	Ii, 	16, 	us);
add-sub-12b sub3 	(cik, rst, 	i'bi, 	12, 	15, 	12s);
add-sub-- 12b sub4 	(cik, rst, 	i'bl, 	13, 	14, 13s);
// P.a, output is 8-bits
coef odd even romO lutO (dO, 	(data sr6, data sr4, 	data sr2, data sr0)(;
coef odd even rom2 lut2 (d2, 	(data sr6, data sr4, 	data sr2, data sr0));
coefodd_even_rom4 lut4 (d4, 	(data sr6, data sr4, 	data sr2, 	data srO));
coef_odd_even_rornt lut6 (d6, 	(data sr6, data sr4, 	data sr2, 	data srOH;
coef odd even romi luti (dl, 	(data sr7, data sr5, 	data sr3, 	data_sri));
coef_odd_even_rom3 iut3 (0, 	(data sr7, data_sr5, 	data_sr3, 	data_sri));
coef odd even rom5 lutS (d5, 	(data sr7, data sr5, 	data sr3, 	data_sri));
coef odd even rom7 lut7 (d7, 	(data sr7, data sr5, 	data_sr3, 	data_sri));

Input Shift-registers
sr_12b insro(clk, 	rst, JO_a, 	datasrO, load sregs, 	ensregs);
sr12b insr2(clk, 	rst, his, 	data sr2, load sregs, 	ensregs);
sr_12b insr4(clk, 	rst, 12_a, 	data sr4, load_sregs, 	ensregs);
sr-12b insrt(clk, 	rst, 13_a, 	data sr6, load sregs, en_sregs
sr_12b insrl(clk, 	rst, lOs, 	datasri, load_sregs, 	ensregs
sr-12b insr3(dlk, 	rst, us, 	data sr3, load sregs, ensregs
sr_12b insr5(clk, 	rst, 12s, 	data sr5, load sregs, ensregs
sr12b insr7)clk, 	rst, 13s, 	data sr7, load sregs, en_sregs 	;

sac 16b sacO(clk, 	rst, dO, 00, 	add_sub, ensregs, dr_sac);
sac 16b saci(clk, 	r5t, dl, 	01, 	add sub, ensregs, 	dr_sac);
sac 16b sac2(clk, 	rat, 02, 	add sub, ensregs, 	dr sac);
sac 16b sac3(clk, 	rat, 03, 	add sub, en_sregs, 	dr_sac);
sac -16b sac4(dlk, 	rst, 04, 	add sub, en_sregs, 	dr sac);
sac 16b sac5(clk, 	rst, 05, 	add sub, ensregs, 	dir sac);
sac 16b sac6(clk, 	rat, 06, 	add sub, en_sregs, dr sac);
sac _16b sac7(clk, 	rst, 07, 	addsub, en_sregs, 	dr sac);

L endsodule

3.6.3. Verification

Three levels of simulations can be achieved with the synthesisable arrays: Behavioral, RTL

and Gate-level. With the HDL definitions of the clusters and the design to be mapped to the

array in netlist format an early behavioural simulation can be used to verify and debug the

functionality of the netlist of clusters.

This netlist is then passed to the VPR-based routing program along with the placement

information that describes where each cluster is placed on the array. The configuration bits

generated after routing can be loaded onto the array for simulation of the validity of the

routing both at RTL and gate level definitions of the array. Similarly, the configuration bits

for the array can be used to perform accurate timing analysis that depends on the

configuration loaded on the array. The gate-level simulation is useful to make estimation of

power consumption.

Page 41

It should be noted that the verification, performance evaluation and analysis processes are

done using the existing SoC tools, unlike commercial embedded FPGA architecture where

new tools need to be used. Furthermore, the synthesisable reconfigurable array does not

require extra design domains such as mixed-mode design; another advantage is that the

verification process can include the whole integrated SoC for accurate simulation, unlike

embedded hard-cores.

3.6.4. Implementation

The array is implemented as any soft-core with typical synthesis, placement and routing

software. Better performance is achieved if the synthesis of the elements of the array and their

placement and routing is performed using a hierarchical methodology. The array generation

program outputs guideline files for the place and route software to efficiently perform

floorplaning and routing of tracks. The same hierarchical methodology is used to implement

the full SoC design. Having a routed SoC allows the extraction of typical parasitic and delay

data for the array which permits having an accurate timing and power estimations of the SoC;

this also allows comparing the performance of different scenarios and configurations for the

array, which helps aRLile the overhead consumed by the added flexibility.

AM-

411

11 Itt

4 	 :

b V

ca
': J 	H

IL - 	--- 	 --- 	 I

Figure 3-13: Example of placed and routed arrays using Cadence Silicon Ensemble.

Page 42

ide FII

st

Ste Bg

ject S1 V.

Region

Group •
J Cell

Net

I
-,

	

H 	'1

£

4

V 4

	

lTh 	2 +

90

s.

!!qUW H.po.i w..n

-I.'.'

•'!v1?!!-

	

lflhlI II1I 	1 1 lIiiiij$ji 	 !hIIIII IIIIl

ii UU
iIl

	

I IIlII 	ii 	IIIiINl 	' 	J'fl 'JIll iIi 	-

	

i 	! I 	Ih1iI!l 	 !

	

ji H11 	 111
= 	-.-. 	- ---1-, --- - -

	

-204 	 : 	 31 4 	 - 	919 	0

II 	 I

Figure 3-14: Example of placed and routed arrays using Cadence Silicon Ensemble showing the interconnect wires.

3.7. Problems and future work

As can be seen in Figure 3-14, one potential problem is the fact that different clusters can

have different sizes, which might lead to wasted silicon area. To overcome this, the designer

has to ensure that all the clusters and their associated C-Boxes have a similar height and

width. If this is not possible, large clusters can be split into two smaller ones, or it can also be

floorplanned in a rectangular shape to reduce the wasted area.

If the proposed architecture proves to provide good performance benefits, then a future

improvement would be to allow automatic mapping of applications to the array. This can be

done from an HDL definition of a circuit where a synthesiser would convert it to the coarse-

grain clusters. Ideally, such an operation would also be done from a higher description level

like C/C-H-.

3.8. Conclusion

The architecture introduced uses heterogeneous coarse-grain clusters with an interconnect

structure similar to that used in commercial FPGAs. Also, the proposed methodology

integrates well with existing SoC tool-flows. In order to create a DSRA targeting a new

application, the designer has to identify the repetitive basic operations in the algorithm and

create a programmable cluster in HDL to provide that operation. Eventually, once a number

Page 43

of DSRAs have been designed for several applications a library of clusters can be built; at

such a stage, creating an array for a new application becomes as simple and time-effective as

choosing the clusters from the library. The array generator uses the HDL definitions of the

cells and creates the appropriate DSRA. The designer can customise the type of interconnect

used, the positions and number of the clusters as well as the locations of the pins of each

cluster. Since the generated arrays are synthesisable, this software flow fits well with the

existing SoC design tools.

Programming the DSRA takes the same effort as typical ASIC design: The design to be

mapped has to be written as a netlist of connected clusters before a configuration can be

generated for the array. Similar to FPGAs, automatic routing tools are used to hide the

interconnect infrastructure from the designer to simplify programming. The performance of

sample DSRA arrays generated using the proposed technique is presented in the next chapter.

Page 44

Chapter 4.0

Domain-specific

reconfigurable array

for video coding

The main applications that would immediately benefit from reduced power, increased

throughput and increased flexibility are audio and video applications as well as

implementations of Software Defined Radios (SDRs). Standards such as MPEG-4, H.263 and

H.264 contain complex video algorithms such as Motion Estimation and DCT that require a

high data throughput. Current implementations of these algorithms on DSPs need a high

operating frequency and hence consume a high power. A dedicated ASIC hardware solution is

not appropriate for such applications, as these standards keep changing and a re-spin of the

chip is not cost-effective. Thus, such algorithms represent a good target for the use of domain-

specific reconfigurable arrays. The use of DSRAs for these applications should provide

enough flexibility to support a number of implementations while at the same time they should

offer a lower area and power consumption than FPGAs. To measure this, experimental arrays

were designed for the two main computationally intensive parts of low-profile MPEG-4

encoding: Motion Estimation and the Discrete Cosine Transform.

Page 45

The two arrays are only sample unoptimised arrays to help prove the concept of DSRAs and

to measure any potential performance improvements over DSPs and FPGAs. It should noted

that the proposed framework provides a generic solution, even though these chosen examples

are specific applications, the The array design and evaluation process includes first the

analysis of the target algorithm to identify the required operations, and then the creation of

clusters, which can be also composed of subclusters to perform the basic operations of the

application. These clusters are then combined together through reconfigurable interconnects.

To measure the performance of a generated DSRA, benchmarks are mapped to the clusters

making the array and the performance is compared to other technologies such as FPGA and

ASIC.

In MPEG video, the moving images are composed of consecutive frames. Each colour image

is composed of 3 elements: The luminance (Y) and two chrominance (CB and CR) parts. The

images are divided into small 1 6x 16 pixels blocks. Each block consists of one 8x8 CB pixels

blocks, one 8x8 CR pixels block and four 8x8 Y pixels blocks (which can be considered as

one large 16x16 Y pixels block).

The general structure for a frame encoder and decoder is shown in Figure 4-1. The encoder

computes the motion information and texture information. These data are multiplexed to form

the compressed bitstream; using which the decoder is able to reconstruct the frame. In MPEG-

4, the actual compression of video data is done at 3 different levels:

• Motion Estimation (ME) is used to reduce temporal redundancy in the image sequence, as

the consecutive frames of a video sequence tend to be highly correlated. Hence the motion

information contains the movement data between the current frame and the previous

frame.

• Transform-domain coding, here Discrete Cosine Transform (DCT), and quantisation are

used to reduce the spatial redundancy found in a single frame.

• Finally, Bitstream compression is used to compress further the generated data.

Motion Compensation (MC) is the operation of reconstructing a frame from a previously

constructed frame knowing the motion information. This is used at the decoder to reconstruct

the video. However, as shown in Figure 4-1, the encoder also requires this operation so that it

knows the previous reconstructed frame that the decoder is using. The decoder needs only to

know the motion information and the error between two pixel-blocks in order to reconstruct

the current block, and hence the full frame.

Page 46

Residue

DCT I-I Quantisation I-e-(Coding 	Texture

Information

Prediction 	
I IQ

for x(n)
IDCT

Residue

Motion

IIQI

IDCT

z-I
frame

£...e.......e........u..Ø.

IMV
Motion 	revious 	 Motion

reconstructed 	 Vectors
Estimation 	frame

Encoder 	 Decoder

Figure 4-1: Block Diagram of operations in Encoder and Decoder for rectangular objects from [130].

The MPEG-4 standard only specifies how the MPEG bitstream data needs to be formatted and

how the decoder should use the information contained in the bitstream. The standard leaves

the choice open for the algorithms used to make specific computations, hence the existence of

multiple coding algorithms with different characteristics in terms performance and cost.

4.2. DSRA for Motion Estimation

4.2.1. Algorithm
Motion Estimation (ME) is the process of matching the current block to be coded (in the

current frame) with a similar block from the previous frame. As video sequences tend to be

highly correlated, it is easier to transmit the movement of a block between 2 frames rather

than transmitting the completely coded block.

In general a ME algorithm uses a cost criterion to compare the current block to some blocks

in the previous frame (limited within a search area) and selects the best suited one where the

error between the two blocks is the smallest. This is shown in Figure 4-2, where an area is

searched for an NxN block matching the block in the current frame. The Motion Vector (MV)

represents the 2D movement vector between the current block and the most suitable previous

block found.

Page 47

Frame n

YT

Figure 4-2: Block-matching between current and previous frames.

A criterion function suitable for fmding the best motion vector is the sum of Mean Squared

Error (MSE) of all the pixels of the two blocks compared. However, to reduce the

computational needs nearly all algorithms use the Sum of Absolute Difference (SAD)

function. The SAD between two blocks is the sum of absolute differences between pixels

from the current block and their corresponding pixels in the previous block. For a MV of

coordinates (x,y) the SAD is:

SAD, (x,y) = 	originai(i,j)— previous(i + x,j + 4 	(4.1)

Where N is the size of the block (which could be 8, 16 or 32).

A number of motion estimation algorithms exist based on the SAD calculation and differ by

the order, number and size of blocks compared as well as by the bit-width of the pixels. The

basic ME uses the Full Search Block Matching Algorithm (FSBMA, in which the SADs for

all the possible blocks in the search area are calculated and the motion vector giving the

minimum SAD is selected. This gives the best results and has a simple structure when

implemented. However, the FSBMA consumes a long computational time when compared to

other algorithms. If NxN is the size of the block and (N+P+Q)x(N+P+Q) the size of the

search area, then there are (P+Q+1)x(P+Q+1) candidate blocks to be tested. The loop needed

for the calculation of the motion vector for only one block is:

For m = -p top
For n = -p to p

For k = 1 to N
For 1 = 1 to N

SAD(m,n) = SAD(m,n) + I x(k,1) - y(k+m, j+n) I
End 1

End k
If SAD < SADmin

SAD,.nin = SAD
MV = (m, n)

End if
End n

End m

Page 48

Most of the existing algorithms for speeding-up the computation are based on reducing the

number of tested motion vectors. One such popular algorithm is the Three Step Search (TSS)

[60] where the first step of the search evaluates 9 uniformly located candidate points and

selects a winner with minimum SAD. In the second step, the search is refined at the area

around the winner of the previous step. Again, 9 candidates are evaluated, but this time the

distance between candidates is halved. Finally, in the third step the 9 blocks around the

winner in step 2 are evaluated and a final motion vector is chosen. A large number of other

algorithms exists tho reduce the number of tested points further, usually at the cost of a

quality degradation; for example: The New TTS [61], Fast ITS [62], Diamond Search [63],

Spiral Search [64] (where the search moves spirally around the vector predictor location till a

threshold is passed, thus having a dynamically changing search area), M-IBOS [65], 2SMWS

[66] and hierarchical Search. Another technique to speedup the blocks comparison is to

change the tested blocks themselves, such as using size-downsampled blocks of 8x8 or 4x4

instead of 16x16 [67] or bit-downsampled of 4-bits or 2-bits instead of 16-bit [68].

4.2.2. Existing reconfigurable architectures
An architecture targeting ME with flexibility would ideally support all the search algorithms

listed earlier. Pervious work on motion estimation has lead to architectures providing

flexibility in the supported algorithms, however, it is very limited and not adequate to allow

changing between different coding standards. E.g., the hardwired elements proposed in [69]

can be configured at run-time to support 3 different bit-widths to save power; however, only

one basic algorithm is supported. Similarly, [70] and [71] present architectures supporting

only one algorithm but having flexibility in the size of blocks and search area. The hardware

in [72] and [73] offer reconfigurable elements that can switch between two algorithms

differing by the number and the order of blocks searched.

Processor solution
Most previous flexible solutions for implementing ME are based on processors; in such

solutions the processor supports specific instructions that help in rapidly performing the ME

computation. This includes instructions such as absolute-difference calculation and

instructions for min and max calculation as in [74]. The absolute-accumulate instruction is

sometimes provided [75] to allow an easier calculation of the total SAD.

Another method for improving a processor's performance in video applications that has a

benefit to ME is the increase of data parallelism: In [76] sub-word parallelism allows the

execution of four 16-bit operations on a 64-bit datapath simultaneously. This same Single

Instruction Multiple Data (SIMD) concept is used in the multimedia tailored ARMv6

architecture [77] which performs four 8-bit SAD calculations in one cycle. This reduces the

total processing time of 4 pixels down to 3 cycles.

Page 49

Norni-recrrn11iguiiraffle array stnuctuRres for T'STMA
Basic systolic-array architectures for motion estimation have been presented in [82] and [78].

A large number of newer architectures are improved version of these designs. Since the

computation for calculating the SAD of one candidate block consists of 4 loops, the different

systolic arrays proposed attenmpts to calculate two or more of these loops in parallel.

The work in [81] presents the four systolic arrays for the FSBMA algorithm where each array

has a different dimension and different variable projection. The processing elements (PE) of

the arrays compute subtraction, absolute computation and addition. The elements have 3

inputs (sum from previous PE, current pixel and reference pixel) and one output (sum). The

output feeds to the next PE or an adder array that computes the final SAD. The arrays

presented are used in conjunction with a local-memory that stores the current and search data

frames and a controller that controls the array and generates the address for the memory.

In [82], two systolic arrays are presented to support two data-flow techniques: One array

broadcasts the previous-block data to all the elements in the array while the current-block data

is propagated. The other array broadcasts the current-block data and propagates the previous-

block data. The 16 Processing Elements (PE) used consist each of a subtractor, an absolute

value calculator and an accumulator. Each PE computes the SAD for one candidate vector.

Registers are used to propagate data and a large comparator is used to select the best SAD of

the 16 ones found at the output of each PE. Finally, a controller and an address generator are

used to control the operation of the PE and to feed data into them. If a change in the block

size is required, without changing the search-area, then the same array can be used as the

computations carried out remain unchanged, since only the address generator requires

modification. On the other hand, if the search area is changed, then multiple arrays can be

cascaded to support this (allocate one area for each array)

Similarly, [79] and [80] present another set of array architectures where the k and I loops

shown earlier in the code are parallelised; all absolute difference values for the SAD of one

candidate block are computed concurrently and the SAD is computed using an adder tree. The

previous-frame data is input sequentially, through shift registers and fed to the PEs after

appropriate reordering to replace the address-generator used in the previous architectures. The

shifting network of the registers is changed dynamically. Each PE has a register for storing

the previous and current data and for storing interim AD. The PE has three inputs for the

previous data pixels (delayed from adjacent PE, from registers, etc.) and a multiplexer to

select between them. The current data is also propagated between PEs.

Airchftectuires targetliinig other flgorfith1m
Special hardware exists for running specific ME algorithms, such as the one proposed in [83]

for the TTS algorithm. In this technique, 9 PEs are used each to compute the SADs of the 9

Page 50

candidate MV concurrently. A column of 9 comparators is then used to select the best MV

from the 9 SAD. The array described in [89] is targeted for the NTTS algorithm where 3

check-points (i.e. candidate MV) are used for the search, thus three columns of PE are used,

and each column calculating the SAD of one check-point. The previous data is broadcast to

every row, while the current data is propagated horizontally using programmable-delay-

elements, which is required by the NTTS algorithm.

In [84] the same architecture presented in [78] is used, but a programmable address generator

and control unit allow supporting alternative sub-sampling algorithms, where the pixels of the

block are alternatively sub-sampled to make a N12xN12 block size. Similarly in [69], the

architecture from [78] is modified to enable dynamic change of the bit-width of the ME

operation in order to save power. This is achieved by using different (4) clocks to the latches

and flip-flops.

4.2.3. Cluster design

A flexible reconfigurable motion estimation array would support a larger number of different

SAD-based motion estimation algorithms and would provide a selection of bit-width,

performance, quality, power consumption and speed. This flexibility can be used at design-

time as well as run-time to adapt the system to real time constrains. By examining previous

hardware implementations of ME we can identify the following operations and elements in all

the implementations:

Absolute-differences (AD) calculation..

• Additions, subtractions and accumulation. Addition and accumulation are required to

compute the sum-of-absolute-differences (SAD). Adders can be used alongside the AD

calculators to calculate the interim SAD as in the case of the architectures given in [81].

In [81] and [82] accumulators are used to find the final SAD. Finally, in [78] [85] [69],

adders are used to form an adder-tree for calculating the SAD.

• Comparison operators to select the motion-vector with minimum SAD value. The

comparators can be global for the whole SAD calculator ([81]), or local for each PE

module in the array ([87], [86], and [83]). The comparator should be flexible enough to

support maximum/minimum calculations and general comparison (greater-than, greater-

than-or-equal, equal-to).

• Registers to store the calculated AD and interim SAD values. These are useful to

implement pipelined and systolic arrangement [81], [82], [71].

• In systolic implementations [82], [88] and [89], the broadcasting of data using

interconnects is essential.

• Cascading of elements and modules to change the bit-width, search area and other details

of the calculation.

Page 51

Multiplexing of signals to enable selecting between multiple data input signals as in the

arrangements in [82].

Allowing the array to perform all the operations would allow us to implement all these

different implementations. Each implementation has different characteristics in terms of

throughput, area usage, bit-width and search area size, which can affect the final image

quality and power consumption.

From these constrains, the following four basic elements have been designed:

Multiplexers: 2-to-i multiplexers with optional register at the output. Using interconnects

the multiplexers can be cascaded to create larger input sizes. They also can be configured

to implement a two input multiplexer, a register or a connect-through wire. Figure 4-3 (a)

Adders: Modules supporting combinatorial 2-input additions and subtractions. An

optional combinatorial absolute-difference calculators, useful for SAD based motion

estimation, is also available at the output of the module. AD calculation, the difference

between the two inputs can be calculated and the absolute value can be optionally

selected. The output can be configured as a registered or a combinatorial circuit. Figure

4-3 (b)

Accumulators: Sequential accumulators which can also be configured as simple

combinatorial adder/subtracters. The accumulator contains an internal register. ADD,

SUB, ACC, the element can be configured as adders or subtractors (combinatorial or

registered) to help calculating intermediate SADs. It can also be configured as an

accumulator. Figure 4-3 (c)

Comparators: Modules enabling the comparison of two numbers producing greater-than

and equal signal. Registers and logic are also available for finding and storing the

minimum/maximum value useful for the minimum SAD selection. This element can

compare two numbers or the input SAD with the value stored in the register, which is

helpful for determining minimum and maximum values. Figure 4-3 (d)

In typical image data 8-bit values are used for representing one colour of a pixel. Hence, the

adders and multiplexers are 8-bits wide and can be cascaded to produce higher bit count, in

case the pixels bit-width changes. The accumulators and comparators are 16-bits wide and can

also be cascaded.

Page 52

F 	 CON

SUB 	A-B
Out

ABS_IA-B I
Set

SUBI 	
B-A 	 NO REG

ADD
SUE

COTMFJJ

(d)
Figure 4-3: Elements for Motion Estimation. Four of these elements are packed into a cluster.

The 4 elements described above are too small to justify the overhead in interconnects needed

if each element became a cluster, i.e. the area of these elements would be too small compared

to the area of the additional s-boxes and c-boxes that would be built around the 110 pins (the

overhead due to interconnects for typical FPGAs has been reproted to be around 90%).

Hence, it was decided that 4 elements can be packed into each cluster. The main reason is that

the cluster has 4 sides, and with such an arrangement all the 1/0 pins belonging to an element

can be made avaialble on the same side. This manually created organization makes the array

easier to debug, however, it might be possible to achieve better results by having a different

choice of elements inside the clusters and the sides of the 110 pins. Three clusters were

created as follows:

• MUM Has 4 multiplexer elements.

• AD/ACC: Has 2 Absolute Difference and 2 Accumulator elements

• MUX/COMP: Has 2 multiplexer and 2 Compare elements

4.2.4. Cluster arrangement and interconnect mesh
The clusters were initially arranged in an array as shown in Figure 4-4 and Figure 4-5 . This

arrangement follows the dataflow between the cluster from left to right, although the

interconnects are bidirectional. Other array arrangements in order to provide speed and area

Page 53

improvements are possible. However for the purpose of manually generated array

configuration this uniform cluster arrangement was chosen. The interconnects used are based

on fri-state buffers and have the full flexibility described in Chapter 2, with Fc6 (since there

are six tracks) and Fs--3. Two types of tracks are provided: Six 8-bit wide tracks for data and

six 1-bit tracks for control lines. It should be noted that the multiplexers inside the clusters

connecting the different elements together can be seen as a different type of interconnects.

Unused elements are disabled in order to reduce power consumption. The performance of this

array is measured in section 4.4.

MUX 	HI1MUXI I ACC M ___IHMUXJ

	

LI I '°' 	MUX/ 	MUX

	

ACC 	COMP MUX 	 MUXJ I
 COMPI 	

MUX __

MUXI I ftII MUX !
MUXJII 	I IMUXI 	AiICOMPlIMUxI

MUX] 	
_____ _____ ACC I H MUX 	1 MUXI 	MUX

1M1IIIIL!i IMUXfl'M/HMUXI Ic0MPI 	I ____ ____ 	____

	

MUX 	AD! II MUX!I 	MUX

	

_ 	ACC_IICOMPII ___ I

____ ____

MUX 	 MUXACC I _ ____
ACC MUX JIII]I MUX l 1 MUX HHH MUX I

I MUXI
AD!
ACC Rm-2u4d' I 	I

__ MUX_f MUX 	I LI 	MUX

Figure 4-4: Possible array arrangement of cluster

Figure 4-5: Array arrangement of cluster, with each cluster composed of 4 modules.

Page 54

4.3. DSRA for DCT

4.3.1. Algorithms

Once motion estimation is calculated, the colour difference between the pixels of the two

blocks is coded and transmitted. To reduce the spatial redundancy further, difference data is

coded in a transform-domain. (DCT is also used to code a block that has no reference to a

previous frame, in so-called INTRA frames). Thus, by applying a Discrete Cosine Transform

(DCT) [90] to the 8x8 pixels blocks, the distribution of the data coefficients is changed in

such a way that it is easier to quantise the data without losing much quality. The enerjy of the

resulting DCT coefficients tends to be concentrated around the DC coefficient (at location

(0,0)), and a large number of small coefficients can be effectively quantised to zero. The 2-D

DCT operation is done using the following equation:

F = c(m)c(n) N_IN_Ir 	((2m+l).ur 	((2n+l).vrl

	

fmn COS 	
2N 	 2N Jj m=On=O[

A N-point 1-D DCT of the input x[] is defined as:

N—I 	((2i+l).u7r'

	

X U =c(u).x(i).cos 	
) 	

(4.2)
2N

Which consists of a vector by matrix multiplication. Thus for N=8, it can be written as:

YO Co Co Co Co Co Co Co Co X 0

C 1 c3 c5 c7 c7 c5
-

_ C1 x,

Y2' C2 C6 —C6 —C2 —C2 —C6 C6 C2 X2

= c(u).
C3 - C7 _ C1 _C5 - C5 C1 C7 - C3

x
Y4 C4 —C 4 —C 4 C4 C4 —C 4 —C 4 C4 X 4

Y5 C5 _ C1 C7 C3 _C3 _C7 C 1 _ C 5 X 5

,Y6 C6 —C 2 C2 —C 2 —C 2 C2 —C 2 C6 X 6

_Y7 C7 _C5 C3 - C1 C1 - C3 C5 _C7- x7

Equation (4.3) can be seen as N parallel FIR filters with common input data X

1-D DCT Implementation
Different popular techniques exist for implementing a 1 D DCT. These techniques can also be

mixed together as described below.

Dataflow Graph
A direct parallel implementation of equation (4.2) would require 64 multiplications and 56

additions (for N=8). Various schemes exist to reduce the complexity required to carry this

calculation; these schemes usually reorder the input data in such a way that the computation is

Page 55

simplified. This is the basis of fast DCT algorithms. These algorithms also rely on the fact

that some output coefficient can be computed recursively using previously computed outputs.

The dataflow presented in [91] requires 16 multiplications and 26 additions. The dataflow

graph is shown in Figure 4-6, where an arrow (-) represents a subtraction and a circle

corresponds to a multiplication. Similarly, the dataflow presented in [92] uses 11

multiplications and 29 additions.

Figure 4-6: Dataflow graph for 8-points Chen fast DCT algorithm [9 11

As the DCT is usually followed by quantisation (Q), it is possible to further simplify the DCT

computation such that each output of the DCT is scaled by a factor. This factor is

compensated for in the quantisation process and hence the name of such a DCT is as scaled-

DCT. The work in [108] presented a flowgraph for a scaled DCT which reduces the number

of multiplications to 5 and 25 additions.

Distributed arithpneitic
In Distributed Arithmetic (DA) multiplications by fixed coefficients are carried out using a set

of shift accumulates to reduce the complexity. The computation is distributed in the sense that

the b-th bits from all of the input variables are processed simultaneously and not, as in

conventional multiplications, where all the bits from one input variable are processed at a

time. This becomes very efficient for situations where a set of input data is multiplied by

several constant coefficients, as is the case in DCT and constant matrix multiplication. By

using the bit representation of the input signals Xk, the following vector multiplication:

This equation can be reorganised and written as the following, where XNM is bit M of input xr:

Page 56

—x10 .A +x20 •A 2 ±A +XKO

= + 	A1 +X21 A 2 +A + XKI AK] 2' 	
(4.4)

M

+ [x lB A + x28 A + A + xKB AK]

As it can be seen in (4.4), the multiplication is written as bit-level AND, addition (OR) and

shift operations. Each term:

Ib = Xlb A + X2b A +A + XKb AK

can be calculated using AND operators and an adder-tree. However, this is usually performed

using a memory containing the pre-computed values, as shown in Figure 4-7. A fully parallel

implementation of an N-point DCT using equation (4.4) would require N memory elements,

each containing 2K words. The outputs of the ROM is fed to an adder-tree with integrated

shifting (done using interconnects). Several techniques and algorithms exist for reducing the

amount of storage needed [93].

2
K word

Data Address

C
Ac 0000001

Aj 000001C
0000011

A: 0000IOC
Ac 4,k 0000101

000011C
A-fA -fk 0000111
Ai 000100C

14 	I 	I
x1t Xt X 	XK

k

16

Address
Figure 4-7: Use of memory in Distributed Arithmetic

Systolic arrays
The DCT computation can be rewritten as a recursive relationship between the DCT

coefficients as described in [94]. This leads to a systolic implementation using processing

elements (PEs) array, where each PE takes the result of the previous PE and applies twiddle

factors multiplications and additions to get the new output. The l-D array involves 2N

multipliers and requires N cycles to compute a l-D N-point DCT.

In [95], the previous recursive algorithm is merged with a fast DCT algorithm to generate an

array that contains only log2N multipliers, while maintaining the same throughput.

Page 57

Digit-serial and bit serial arithmetic
To reduce the area used by bit-parallel arithmetic units, bit-serial adders and multipliers can

be used. The logic used is minimised, however, B cycles are need to perform a B-bit

computation. The wiring overhead and interconnects are also minimised, as only 1 or 2 wires

need to be routed per interconnect. This reduces the power consumption, but prevents the

exploitation of signal correlations possible in bit-parallel implementations. The Digit-serial

technique is a trade-off between bit-serial and bit-parallel, where computation is carried out

on several bits at a time and the required clock cycles are reduced.

Digit and bit serial arithmetic can be applied to any implementation, such as dataflow or

distributed arithmetic. Bit-serial is well suited for DA, as the input data is processed at one bit

from each input variable at a time (see above). When using bit-serial with DA, the adder-tree

in DA becomes an accumulator.

Other techniques and combinations
Other techniques include replacing the multipliers by CORDIC calculators [96], [97], [98],

which is a cost-effective method to perform rotations on vectors in the 2-D plane. This can be

combined with DA as in [99].

The combination of a fast dataflow algorithm and distributed arithmetic to replace fixed-

coefficient multipliers is used in [100] and [93]. This permits the implementation of a DCT

with low ROM requirements.

The implementation in [101] uses 3-bit digit-serial arithmetic and DA along with a fast DCT

algorithm based on the dataflow reduction. This implementation finishes the computation in 3

times fewer cycles than the bit-serial implementation, however, in terms of DA LUT memory

3 times the size is required.

2-D DCT
The computation of a 2-D DCT is generally derived from the 1-D DCT calculation. Using the

row-column decomposition technique where a NxN 2D DCT calculation can be computed

using two N-point 1D DCT calculations:

[YN]= [CNXN].[x].[CNXN]

The CNXNX[] calculation is done on the N rows in x[], and the second DCT is done on the N

columns of the intermediate result. Thus, the 2D DCT is implemented using 2N 1D DCT

calculations and a transpose operation. Usually, two DCT modules are used. However, in

some implementation only one module is implemented in order to save area, as in [102] and

[101].

In other techniques only one DCT module is used to compute N 1-D DCTs, and the second

DCT module is replaced by simple add and shift operations on the intermediate output result,

Page 58

as in the polynomial transform technique [103], [104] and [105], the second DCT module can

be replaced by simple additions and shift operation.

Alternatively, a systolic implementation can be derived by using a recursive algorithm [106].

The number of multipliers is log2N, and no transpose memory is needed.

Amongst the implementations listed in this section, DCTs based on Distributed Arithmetic

(DA) are the most promising in terms of flexibility, since DA can be adapted for other

algorithms such as the Discrete Wavelet Transform (DWT); hence the DSRA designed was

chosen to target DA implementations.

4.3.2. DCT using Distributed Arithmetic

A 1 -D N-point DCT bit-serial DA implementation would consist of N shift-registers for

parallel-to-serial conversion, N LUT memories and N shift-accumulators. All the N memories

receive the same address. The 8-point l-D DCT is shown in Figure 4-8 and Figure 4-9.

Re

12 bd
Shif

Regie,

25E 	 1~6411

Figure 4-8: Simple DCT implementation using distributed arithmetic without memory reduction.

Figure 4-9: Implementation of DCT using odd-even decomposition for memory reduction.

Other DA-based implementations that the DSRA should support include a numberof possible

DCT implementations using DA, such as the one presented in [107] where COordinate

Rotation DIgital Computer (CORDIC) computations are used to reduce the memory size, and

in [101] where 3-bit digit serial arithmetic is used to improve the throughput of the array. The

odd-even decomposition technique also described in [101] and shown in Figure 4-10 can be

used to reduce the memory size by using adders and subtracters at the input. More details can

be found in [109].

Page 59

2J
: hr:: \ \4IjJII °
X4 _\ Y / 	i I2BIT I t/'{1____J I2 	i_j.

I.ft R 	J
CORDDC

1251T I2FT I2b, 	I, Y6

X7 	2Brr 12b, I 'i COKDIC

r'
I7rr ,,iib1

12 BIT 12b. 1 	LI-I-I_I CORDIC
S~kn -

Xl 	 •2 BIT

Figure 4-10: CORDIC Rotator Based 8-Point DCT Implementation mapped by Sajid Baloch to the array [109]

4.3.3. Ckiisterrs

General DA implementations require shift-registers, memory elements and shift-

accumulators. Additionally, to accommodate for a wider range of algorithms such as odd-

even DCT or reduced-memory DA, adders and subtracters are needed. Hence, two types of

clusters have been identified and used in the proposed DSRA: Memory clusters for LUTs and

add-shift clusters for making add/sub/shift and accumulation.

As described in section 9.5 12.5, the memory cluster is responsible for performing the pre-

computed addition from Figure 4-7. The idea in DA is to make this computation pre-

computed using a Look-up-table (LUT) to speed up the calculation. This is useful in ASIC

designs, as the fixed LUT is translated into simple gates. However, to make this LUT

programmable in the DSRA hardware, we need to use a programmable memory such as

SRAM, which occupies a large area. Hence, we decided to also test the performance of a

DSRA array with an adder-tree cluster that provides the same functionality as the memory-

cluster by directly performing the addiction operation. In FPGAs, the LUT gets translated into

a connection of fine-grain programmable gates; such a programmable logic is another

potential implementation for the LUT. This was not tested, however, in theory the adder-tree

solution can be seen as a more tailored (hence more efficient) version of such programmable

logic that supports random fine-grain datapaths.

Memory duster using SRAM

The memory clusters are used to implement the LUTs in the DA using SRAM. A dual-port

512-bit SRAM, organized as 64 words 8-bits per word, is used as the basic memory element.

Four such memory elements are grouped together to form a 2K-bit memory cluster. The

grouping is performed using logic to enable the configuration of the cluster as a memory with

Page 60

all the possible geometries listed in Table 4-1. The logic used is similar to the one presented

in [58]. It should be noted that each memory element can be turned off and on separately;

hence, allowing the lower sized memories of Table 4-1. Each of the modules can be accessed

separately, or all the 4 ones can be combined to form a big memory. In such a case, only one

port needs to be used. This also reduces power consumption in unused memory.

Address [C 7 1
EP

} "

 I

Mdr

Figure 4-11: Example of combining memory-elements together vertically and horizontally.

I
Da.
W 1° I;

' a

	

I 	I 	Address i ii I
j 	

Address
512.blt I i 512blt I

Address I 	 I Address 	 J I 	I
2070 -bit

Dais I Memory 	
(1 	 I 	 I 	I

Data
Cluster II)

512- bit I 	512-bit 	ats Dais 	 I

-
SRAM SRAM] -

IcrJ

4 a

Figure 4-12: S-RAM based memory cluster

Having elements with these memory sizes enables the realization of basic DA

implementations, as well as those with reduced memory described above. Clusters of memory

can be further combined together using interconnects to make wider memories. Dual-port

memories were chosen due to the easier configuration: Data is written during configuration on

one port and read during operation on the other port. The initial content of the RAM (which

reflects the coefficients) is part of the configuration data.

Page 61

Table 4-I: Possible geometries achievale by reconfiguring a memory cluster.

Bits per word
Word Size 8-bits 16-bits 24-bits 32-bits
64 .7 .7

128 V 1

192 1

256 1

The fact that this cluster uses SRAM makes it very flexible in terms of possible applications

and not specific to DA. For comparison to the adder-tree cluster below, this cluster has an

area of 0.1 MM2
on IJMC 0. 1 8.tm. Also, the SRAM from IJMC can be clocked at a maximum

frequency of 250MHz, which gives a response time of 4ns.

Adder-tree cluster

This cluster implements the same operation as the previous one, i.e. the computation from

Figure 4-7, but using an adder-tree without precomputing the values in a table. The coefficient

values A0, A 1 .. .Ak are part of the configuration stream. As shown in Figure 4-13, each cluster

contains four independent sub-modules, each summing having 8 inputs. The internal

configuration to each cluster allows combining these sub-modules together. Also, in a similar

way to other clusters, adder-tree clusters can be cascaded together to make bigger trees. The

output can be optionally registered. Registering the output is useful in this clusters, since the

output of the adder-tree has more intermediate switching activity than other clusters; the

register in this case would prevent this useless activity from propagating. Also, the register

would make the operation of this cluster compatible with the previous SRAM based one.

Unlike the previous SRAM-based clusters, the use of this cluster is very limited to distributed

arithmetic implementations, as this is the only application that would benefit from such an

arrangement. However, on UMC 0.1 8Am, the adder-tree cluster has an area of 47,258 j.tm 2 , i.e.

2.13 times smaller than the SRAM based alternative. However, in terms of delays it is slower

(as expected) than SRAM: If several sub-clusters are used to make an 8-input adder tree the

delay was measure to be I 4.O2ns, which is around 3.5 times that of the above SRAM-based

cluster.

Page 62

0 0

U)
cb

a

Seleci
Add-Tree

Sum 	Cluster

E
U)

Coef

Seleci 	 Coef_2

Sum 	 /coeL3

Coef...4

Coef

Coef.2

Coef_3

Coef_4

C) 	C) 	C) 	C)
g

' 	 ': 	 ':

Figure 4-13: Adder-tree cluster.

Add and shift cluster

The add-shift modules provided can be configured as:

• Parallel, digit-serial or bit-serial adders/subtractors.

• Shift registers that can be used for parallel-to-serial conversion. Right and left shifts

are supported.

• Accumulators with optional shift-accumulation.

Each module is 4-bit wide; four modules are grouped into a cluster and configurable switches

are provided between them to support cascading to get wider bit ranges (up to 16-bits) in a

similar way to the clusters used for ME. Wider operations are possible by cascading multiple

clusters.

In

Add-Shift
Cluster 	Out

Out 	un

:tJ1

A

Figure 4-14: Add-Shift cluster.

Page 63

4.3.4. Clusters arrangement and interconnects mesh
Again, the columns were manually arranged according to the dataflow as shown in Figure

4-15. As can be seen, the number of add-shift clusters used is three times more than that of

memory clusters. This allows the mapping of a wide range of applications. The arrangement

of the clusters in the array is performed at design-time and according to the required

application and flexibility. The array containing the adder-tree clusters would have them in

place of the memory clusters shown.

Add-
Men, Add- 	Add- Mem Add-

Add-
Shift

Add-
Shift

M_
ShdI

Add- 	Add- 	
Men, Shift 	Shift

Add-
Shift

Add.
Sh Shill

Ad 	Ad1

L 	
Mem

 h~~]

Add
Shift

Add-

L LMem
Add.
Shill

dd-' 	Add-
Me m Shill 	Shill_j

 Add.

Figure 4-15: Arrangement of the clusters in the array. More add-shift clusters are used according to the needs.

The interconnects used are based on six 8-bit tracks and six 1-bit tracks provided for both data

and control lines. As with the array for ME, the full flexibility interconnects from Section

4.2.4 are used, with C-boxes having Fc=6 and S-boxes having Fs--3.

4.4. Performance

4.4.1. Benchmarks
The motion-estimation architecture from [82] shown in Figure 4-16 was implemented using

the module described above. In this implementation, 16 PEs are used simultaneously to

compute the SAD values of 16 candidate motion-blocks. The block size is 16x16 and the

search area is 3202 pixels wide. The current motion-block data is propagated through the

PEs (signal c), while two pixels from the search-area are broadcasted to the PEs (signals p and

p). Each PE is composed of a multiplexer, a register for propagation, an absolute-difference

calculator, an accumulator and a comparator for selecting the minimum SAD calculated on

that PE, as shown in Figure 4-16. Thus, one PE can be mapped to 3 clusters; this was

manually done as follows:

A cluster of four multiplexers and registers for implementing one multiplexer and one

register.

• A cluster of two absolute-difference calculators and two accumulators for implementing

one of each.

A cluster of two comparators and registers and two multiplexers to implement one

minimum-value finder.

Page 64

Clearly, the mapping of elements is not the most efficient in terms of area usage since it was

performed manually. An intelligent automatic mapping process, similar to the ones found in

current FPGA implementation software would have produced better results in terms of area

and timing.

To implement a full ME hardware, further clusters for implementing the generic control

functions such as counters and state machines are needed for the purpose of this benchmark;

these controller has been simulated as hardware. The ultimate goal of the project is to provide

a library of clusters that include elements for executing Finite State Machines (FSMs) as

described in the derived project [110].

C

.S... 	 Local min SAD
PE

MUX
ABS

PE 	
Local mm SAD

Minimum SAC

-- 	 ACC

[REG1
m,r SAD 	

Local min SA cow
F 	 PE

....................................

Figure 4-16: Mapping of aPE from [82] using 7 modules from 3 clusters.

The simple 8-point l-D DCT calculation without memory compression and the DCT with

odd-even decomposition described in Figure 4-8 and Figure 4-9 were implemented on the

RA. The DCT is implemented using 12-bits input coefficients and 8-bits output coefficients

from the LUT, which results in a 16-bit output values. The first DCT without memory

compression has been manually mapped such that:

• A 12-bits shift register is mapped to three add-and-shift elements part of one cluster.

• A 2-Kbit memory is mapped to four memory elements found in one cluster.

A 16-bit shift accumulator is mapped to four add-shift modules part of one cluster.

In the second DCT implementation with odd-even decomposition the mapping was similar to

the previous one but with the following differences:

• The 8-bit adder/subtractor at the input is mapped to two add-and-shift elements part

of one cluster.

• The 32x8 bit memory is mapped to one 256x8 bits memory element found in one

cluster.

Page 65

Both implementations were carried out using the Memory-LUT and Adder-tree version of the

array. Other DCTs and DWTs were implemented by Sajid Baloch on the same array as part of

his work [109]. However, the performance of these implementations were not measured and

not listed here.

The same benchmarks were also implemented using standard hardwired ASIC and using a

commercial Xjlinx Virtex-E FPGA. ASIC and Virtex-E: All of these systems use a 0.1 8im

CMOS technology and are powered at 1.8V. In the case of the DCT, they all run at 10MHz,

and for the ME, the operating frequency is 30MHz. The power, area and timing

measurements for the hardwired and the DSRAs implementations are done using post-layout

simulations vectors with typical switching activity and accurate parasitic and load

information. Synthesis was performed with Synopsys DesignCompiler, the layout with

Cadence Silicon Ensemble, power estimation with Synopsvs PrimePower and timing

evaluation with Synopsys Prime Time.

The area estimation on the Xilinx Virtex-E FPGA is based on the estimate that the area of one

slice, its surrounding routings (C-boxes and S-boxes) and its belonging configuration memory

occupies 3303 I.tm 2 . This estimation was found by taking the approximate area of the Virtex-E

core without 110 pads, memory blocks and clock buffers (from a die photo[l 11]) and dividing

it by the total number of slices in the chip. The power measurement of the FPGA's logic was

made using Xilinx XPower. The power includes only the logic cell and its belonging

configuration memory, but not any 110 port, clocking buffers or other memory elements.

The performance in terms of area, power consumption and maximum frequency is shown in

Table 4-2 for the ME implementation and in Table 4-3 and Table 4-4 for the DCTs. In the

case of the DCTs, the values are measured for one row only of the array; the result for a full

1 D DCT or a 2D DCT would be similar.

Table 4-2: Performance of the imniementations of one ME orocessine-element from ItO]

.18pm ASIC DSR.4 Minx's Virtex-E
Area (pm2) 8,594 32,207 178,362
Power consumption (mW) 0.68 1.08 4.37
Max Freq. (MHz) 440 111 90

Table 4-3: Performance of the simnie DCT ininlementation on DA array with SRAM

.1 8pm
ASIC

DSRA &
SRAM

DSRA 	&
Adder-tree

Xilinx's
Virtex-E

Area (pm) 17,483 212,135 172,212 234,510
Power consumption. (mW) 0.52 1.922 1.531 3.2
Max Frequency (MHz) 210 77 68 50

Page 66

Thl- 4-4' P,-rfnrn.r.c-, nf the Md-even DUT ininlementation on DA array with SRAM and array with Adder-Tree
.18pm
ASIC

DSRA &
SRAM

DSRA 	&
Adder-tree

Xilinx's
Virtex-E

Area (pm') 10,518 235,234 143,872 267.725
Power consumption. (mW) 0.48 1.50 1.28 2.9
Max Frequency (MHz) 250 77 68 66

Normalised Average Performance

- 	•ASC

o0SR

D Virtex-E 1

rvx aiim Freq Area 	 Fbw er

Figure 4-17: Average performance of DSRA in all benchmarks

Area
From Figure 4-18 below, it can be seen that the relative area of the DSRA compared to ASICs

and FPGAs greatly depends on the application running and design of the clusters in the

DSRA. On average (see Figure 4-17) the area of the DSRA is 12 times that of the ASIC,

while being around 60% of the FPGA's occupied area. The relative performance figures are

better in the case of the motion-estimation implementation, as they are closer to the ASICs

one than the FPGA (the DSRA is only 3.7 times larger than the ASIC).

Relative Area

• ASC

0 DSR

0 V1ex-E

KE 	DCT-1 	DCI- 1 AT DCT-2 DCT-2 AT
SRAM 	 SRAM

Figure 4-18: Relative area comparison of DSRA wit ASIC and FPGAs.

Page 67

Power consumption
When examining the power consumption we can see that the power consumed by the DSRA

is indeed a middle-ground between ASICs and FPGA: It is on average 3 times lower than

FPGAs while 2.5 times larger than ASICs. Again, this also depends on the DSRA and

implementation - in the case of DCTs with SRAM-based clusters, the power consumption is

only 40% less than in FPGA; this is caused by the fact that using SRAMs for implementing

such tables is not much more efficient than using the LUTs in the FPGA.

Relative Power Consumption

•ASC

o DSRA

C3 Virtex-E

KE 	OCT-i 	OCT-i AT OCT-2 	DCT-2 AT
SRAM 	 SRAM

Figure 4-19: Relative power comparison of DSRA wit ASIC and FPGAs.

Timing
From a timing perspective, the implemented DSRAs are on average 20% faster than the

FPGA, while being 3 times slower than ASICs. The best speed is observer for the DCT with

SRAM case where the DSRA achieve around 40% the speed of ASIC. This increase in delays

comes as a price for the increased flexibility due to the extra over head introduced in the

reconfigurable switches and the higher-loads and longer routings.

Relative Maximum Frequency

• ASC

o DSRA

o Virtex-E

P,E 	OCT-i 	OCT-i AT DCT-2 OCT-2 AT
SRAM 	 SRAM

Figure 4-20: Relative maximum frequency comparison of DSRA wit ASIC and FPGAS.

Page 68

4.42. Comparison of the DCT implementations

When comparing the DCT with adder-tree cluster and the DCT with SRAM-based clusters, it

can be clearly seen that the SRAM achieves slightly higher speeds (13% higher) at the cost of

much higher area (increases between 25% and 60%) and higher power consumption (20%

higher). The higher area in the case of the SRAM is not only caused by the large space

occupied by memories, but also due to the fact that the size and dimensions of the SRAM

cluster are larger than the add-shift clusters. Hence, organising them uniformly into an array

leads to wasted area. This is not the case for the adder-tree cells, as they have a similar area to

the add-shift clusters.

The odd-even decomposition in the DCT requires less memory due to the smaller LUTs;

however, an extra adder/subtractor is required per row. This is reflected in the area used by

the second implementation, which is 10% higher than the first one.

Power consumption is reduced by 22% in the second implementation due to the fact that the

adder/subtractor consumes less power than the large memory. The maximum frequency is the

same in both implementations, due to the fact that the largest delay is between the output of

the shift-registers and the output of the shift-accumulator, and not at the input. It is also

possible to implement the adder/subtractor as bit-serial elements after the shift-register, but

this may introduce extra delay.

Similar results are found when comparing the ASIC and the Virtex-E implementations of both

DCTs.

4.4.3. Measurement of overhead

When compared to hardwired solutions, the added programmability comes at the expense of

an overhead in power and area consumption. In this case this overhead can be effectively seen

as the average contribution of the interconnects (C-Boxes and S-Boxes) and the configuration

bits is to the total area and power of the array.

Power overhead

When modules and clusters are unconfigured and if there is no activity at their inputs, they

exhibit only static power consumption. In the case of unconfigured C-boxes, some switching

power is dissipated when the output of the cluster connected to the C-box is switching.

The total static power consumption of the array was measured to be only 0.03% of the total

power consumption. Hence we can consider that static power consumption of unconfigured

fabric to be negligible when compared to the total power consumption. This assumption is

only valid for 0.1 3um technology and above, as smaller technologies would have a larger

value of leakage power. 	 -

Page 69

D Configuration
registers

O Configurable
switches

0 Logic

Cluster C-Box S-Box

Figure 4-21 shows the total power consumption of one add-shift cluster and its associated C-

Box and S-Box. The values shown are the average of both the shift-register and shift-

accumulator used in one row of DCT. Highly similar values are found when examining other

clusters in the DCT or ME array, except the Memory clusters in the DA array, since SRAM

consumes a high energy compared to logic.

c 6.E+05

5.E+05

& 4.E+05
a
E 3.E+05

2.E+05

• 1.E+05

a O.E+OO
4-
(5
4-

(I)
Cluster 	C-Box 	S-Box

Figure 4-21: Distribution of the average power consumption between an add-shift cluster and its associated C-box and S-Box.

From the graph it can also be concluded that the power consumed by the cluster is only 9% of

the total power, while the C-Box consumes 50% and the S-Box 41%. This is expected due to

the high number of switches and buffers introduced in the signals and due to the long routing.

This could be improved by reducing the flexibility of the boxes taking into consideration that

the flexibility is not decreased greatly [43]. Hence, the next step in future power reductions

would be in optimizing the interconnects.

Area overhead

Similarly, Figure 4-22 shows the area overhead used to make the hardware reconfigurable.

The add-shift cluster occupies only 6% of the total area while the C- and S-boxes occupy 50%

and 44% respectively. As it can be seen from the graph these area values include the area

occupied by the configuration registers, which represents a large percentage of the area of the

boxes. The total area can be reduced considerably if the flexibility of the C- and S-boxes is

lowered: this would reduce the size of the configuration memory as well as area switches.

7.E+04

6.E+04

5.E+04

4.E+04

cc 3.E+04

2.E+04

1.E+04

O.E+OO

Figure 4-22: Area of add-shift cluster and its associated C- and S-boxes.

Page 70

Using a data coding style to compress the bit-stream in the configuration registers, e.g. usage

of a decoder in the C-Boxes to allow connecting a pin to one track only would reduce

substantially the number of configuration registers required, while maintaining the same

number of configurable switches. This would reduce the area at the expense of removing the

option of connecting a pm to multiple tracks.

4.5. Conclusion

In this chapter, two DSRAs for multimedia application were designed and several benchmark-

circuits mapped to them. The first array targets the Motion Estimation computation, while the

second is for the Discrete Cosine Transform and Distributed Arithmetic applications. Initial

results showed that the proposed technique of building-up reconfigurable arrays by creating

application-specific clusters and combining them with an interconnects mesh provides a good

compromise between hardwired and FPGA solutions: The DSRA was assessed to provide on

average 3 times less power, 60% less area and 20% less delays than FPGAs, while having

consecutively 2.5, 12 and 3 times more power, area and delays than ASIC. The flexibility

provided by the array is limited between the boundaries of the application it was designed for,

which makes its flexibility somewhere between FPGAs and ASICs.

A . 	 nFf) flR A tn VPflA A1C nnd flSP

DSRA vs. FPGA
• Lower area
• Much lower power consumption
• Higher frequency
• Less flexibility

DSRA vs. ASIC
• Much higher flexibility
• Higher power consumption
• Higher area
• More delays

DSRA vs. DSP
• Better performance
• More difficult to program, integrate and debug than processors

However, DSRAs have several limits which could curb their chance of becoming the ultimate

architecture for future mobile devices. The most important limitation is the way the

implementations are designed, i.e. through a HIDL netlist; to implement an algorithm the

designer is required to have knowledge in hardware design. Since it takes a long time to

design on a hardware level, a better solution for future architectures would be to provide a

solution that can be easily programmed through a high-level language such as C/C++.

Page 71

On another level, the way the configuration memory was implemented as a shift-register

makes the whole reconfiguration process time-consuming and limits the dynamic

reconfiguration ability of the array. This is due to the high number of configuration bits

required. Finally, as measured, the reconfigurable interconnects consume around 90% of the

total power and area of the array. This high overhead in flexibility is acceptable in FPGAs,

but it should be lower on domain-specific architectures. Some of these limitations are

addressed in the following chapters.

Page 72

Chapter 5:0

Synthesisable
interconnect
customisation for
DSRAs

As seen in the previous chapter, further performance improvements in the DSRA's

interconnect and configuration memory need to be investigated in order to allow further

reductions in area and power consumption. Such performance improvements can be achieved

by making the interconnect and its configuration memory more tailored to the application, in

a similar way the clusters were designed.

In the previous chapter it was measured that the island-style non-segmented programmable

interconnects used occupied up to 91% of the total array area and power consumption. Such

high ratios are usual for generic fine-grain FPGAs, however this is too high for the purpose of

embedded coarse-grain arrays. The C-Boxes and S-Boxes making the interconnects share the

total area and power between them by around 50% and 41%, respectively.

The main inefficiency occurs when trying to build synthesisable interconnects and

configuration memories having the same functionality as the ones found in typical FPGAs.

Page 73

The use of standard-cells libraries limits the possible circuit designs of the programmable

switches, since the pass-transistors used in typical FPGAs [46] have to be replaced by

synthesizable cells such as tn-state buffers or multiplexers. This significantly increases the

area, power consumption and delays: two tn-state buffers forming a bidirectional switch have

nearly 8 times the area of a single pass-transistor. This is similar to synthesisable memory;

synthesisable alternative for SRAM-cells such as flip-flops or latches can occupy up to 2.7

times more area. As described in [59], a possible solution is to augment the standard-cell

library with handcrafted FPGA-friendly cells. However, this reduces the portability of the

array between different fabrication technologies.

The approach in this chapter is to change the design of interconnects so that they become

customised to the application in order to reduce the area and power requirements. To verify

the validity and performance gained by such a strategy, the DSRA created for the DCT

computation is taken as an example.

5. 1. Proposed designs
S-Boxes designed using pass-transistors take advantage of the fact that that pass-transistors

act as bidirectional programmable switches. To design such a synthesizable bidirectional

switch (see Figure 3-3 and Figure 3-8), two tn-state buffers are needed. A single tn-state

buffer is a urn-directional switch. A similar uni-directional switch can be implemented using

multiplexers.

In this work, only the design of the 6W switch-point [42] from which the switch-box is made

up is investigated. The 6W switch-points are connected together using the standard Subset s-

box topology shown in Figure 5-1, as this was initially measured to provide better routability

results than other topologies such as the Universal and Wilton ones [51] [53]. The boxes with

full directions have a flexibility of Fs=3. This value was initially chosen for simplicity and for

creating interconnects that have the same functionality as the ones found in standard FPGAs.

(It should be noted that this flexibility measure does not apply to the s-boxes with reduced

directions explained below, as these would have different values for each side.)

Page 74

Figure 5-1: S-Box formed out of 6W switch-points arranged in a subset topology.

The following 7 variations of s-boxes designs are compared together. They use both fri-state

buffers and multiplexers inside their switch-points:

All directions, fri-state
All directions, multiplexers
All directions, tn-state with reduced cfg memory
Reduced directions, tn-state
Reduced directions, tn-state with reduced cfg memory
Reduced directions, multiplexers
Reduced directions, multiplexers and tn-state

The performance of these designs is compared later in section 5.2.

5.1.1. Full directions using tn-states
As was shown in Figure 5-2, this design attempts to create bi-directional switches that

connect any two sides together by using tri-state buffers. The switch-points shown have the

same functionality as the basic switch made using pass-transistors in generic FPGAs; hence

this switch has the relatively highest flexibility when compared to the rest of the proposed

below.

One switch point requires 12 configuration bits.

Figure 5-2: 6W switch-point using bidirectional tn-state buffers. 8 configuration bits

Page 75

5.1.2. FDD directions using muKipDexers
This switch has the same functionality and flexibility as the previous one but uses a 3-to-I

multiplexer and one tn-state buffer per port to implement this. A similar design was presented

in [112]. The tn-state buffers at the outputs are still needed since the track is driven by

multiple sources.

One switch point requires 8 configuration bits.

Figure 5-3: 6W switch-point with full directions using multiplexers

5.1.3. Fugg directions using frstates and compressed configuration
memory

Since the area cost per configuration memory bit is high, area optimizations might be

achieved by compressing the memory content: e.g. the number of configuration bits needed in

switch (1) can be reduced by compressing the redundant states, since only 2 bits are required

per side to select which of the 3 other sides, if any, has to be routed through. Hence, decoders

are used in here to reduce the number of configuration bits from 12 to 8 configuiratinini bits.

5.1.4. Reduced directions using 	 aes
Depending on the placement of the components on the array the data flow can be more

intense in some directions than others. This is especially true when routing for our case of

coarse-grain circuits where the direction of the data-flow is predictable, unlike the case of

random logic circuits in FPGAs. Hence, switches (4)-(7) favor some directions over others. It

should be noted that switch-points with reduced directions are still able to perform all the

possible connections between two sides by using two fri-state buffers in a row, but this

requires more resources and creates more switching activity in the wires, as measured in

section 5.2.

As shown below in Figure 5-4 for this switch, two types of switch-point are proposed, each

allowing connections only in specific directions. The two types of switch-point are both used

Page 76

in different ratios inside the switch-box as shown in Figure 5-5, which allows the creation an

overall switch-box that accepts more connections from left-to-right and top-to-bottom.

One switch point requires 6 configuration bits.

Type 1 Type 2

Figure 5-4: Two possible arrangements for the 6W box using tn-states

Figure 5-5: Possible arrangements using the two types of 6W boxes

5.1.5. Reduced directions using tn-states with compression
In a similar way to switch (3), this switch reduces the configuration bits required in switch (4)

from 8 down to 4 configuration bits. However, the flexibility is reduced as only two tn-state

buffers are allowed to be on at the same time, which also decreases the routability of the

design.

Page 77

5.1.6. Reduced directionusing 24o1 mtpOees

As seen below in Figure 5-6, the use of 2-to-I multiplexers allows the switch to have a larger

flexibility than the buffer-based switch (4). Each multiplexer is followed by a tn-state to

allow disabling the connection.

One switch point requires 8 configuration bits.

Type 1 Type 2

Figure 5-6: Two possible arrangements for the 6W switch-point using 2-to-I multiplexers

5.1.7. Reduced directions using both h1ses an 24o1 tririws
This switch uses both multiplexers and tn-state buffers to create a switch with the same

functionality as (4), as shown in Figure 5-7. One switch point requires 6 configuration bits.

Type 1 Type 2

Figure 5-7: Directional 6W switch-points using both tn-states and multiplexers.

Page 78

5.2. Performance evaluation
In order to identify the most suitable 6W switch-point design, the performance of each circuit

is measured in terms of area, power, delays and routings overhead. An array with each type of

switch-box was generated and a sample circuit was mapped on it. The benchmark circuit used

is the DCT implementations mapped to the DSRA designed for Distributed Arithmetic

(Section 4.3). The test conditions are slightly different from the ones in the earlier in chapter:

A UMC 0.131.tm technology is used as opposed to UMC 0.18j.tm . The 0.131tm technology has

a higher leakage power consumption which should provide an evaluation better suited to

future technologies with high leakage power.

5.2.1. Area
The area of the switch-boxes can be split in two parts: The area needed for the actual switches

and the area required by the configuration memory. The total area of these switch-boxes and

the contribution of the switches and configuration memory are shown in Figure 5-8. The

values shown are for a switch box containing 12 1-bit tracks and 12 word-wide tracks. The

configuration memory used is based on flip-flops; other alternatives such as latches would

require slightly less area as described in Section 3.5. The area measurements also include the

overhead in the metal routing required, which varies due to changes in the number of wires

inside each box.

	

(7) 1 	- 	 0 Switches

	

(6)] 	I 	 DCfg Area

C (5) 	 • Routing Overhead
0)

	

(3)1 	 I

(2)

	

0 	 10,000 	20,000

Area (pm2)

Figure 5-8: Area of Switch Boxes with contributions of switches, configuration memory and metal routing.

As expected the highest areas are consumed by the switch-boxes having full directions (1), (2)

and (3). Implementation (2) with the 3-to-1 multiplexers has the highest area, which is 5.2%

more than that of (1). Implementation (3) shows that no gain is achieved by compressing the

configuration memory, as the area in (3) is 2.8% higher than in (1), due to the area occupied

by the decoding circuit which is higher than what would have been taken by configuration

Page 79

memory. These results depend on the number of bits in the word track of the array as

explained at the end of this section. The result also depends on the design library and cell-

geometries used: other libraries used (IJMC 0.18tm) showed results where (2) had up to 11%

lower area than (1) for the same widths of tracks.

The switch-boxes with reduced directions have considerably less area than the full directions

ones. Implementation (4) has half the area used by (I) since the number of switches and

configuration bits is halved. In (5), for the chosen number of tracks, the area savings in

configuration memory is less than the area occupied by the decoding circuit used, and hence

(5) is 18% larger than (4). The use of 2-to-I multiplexers in (6) reduces the area taken by

switches when compared to tn-state buffers in (4); however, more configuration bits are

needed which make the overall area of (6) 8% higher than (4). Finally, implementation (7) has

the lowest area, which is 20% smaller than (4), since the switches area is reduced by using 2-

to- I multiplexers and the number of configuration bits is kept the same.

5.E+04

5.E+04
-- (3)

4.E+04

4.E+04 -

jZ 3.E+04
E

3.E+04
a,

2.E+04

1.E+04

5.E+03 1
0.E+00

1 	 2 	 4 	6 	 8 	10 	12

Number of bits in word-track

Figure 5-9: The routed area vs. number of bit in the word tracks.

The graph in Figure 5-9 shows the relationship between the area of the boxes and the number

of bits in the word-tracks. It should be noted that when the bit-width of the word track is

increased, the number of configuration bits remains constant and only the area occupied by

the switches is increased. It can be seen that the use of compressed configuration memory as

in (3) and (5) only offers area advantages for bit-widths below 8 and 4 respectively. The

implementations with reduced directions have always a lower area; switch-box (7) has the

smallest area for all bit-widths of the word-track.

Page 80

5.2.2. Power consumption

The total power consumption measured for each type of switch-box is shown in Figure 5-10.

It can be clearly seen that the introduction of the multiplexers in implementation (2) increases

the total power consumed by 29%. Similarly, implementation (3) has a slight increase of 3%

in power due to the presence of the decoders, even though the decoders are not in the data

path and hence do not get as much switching. This increase is due higher leacker power cause

by the larger area. The same slight increase can be observed between (4) and (5).

(7)

(6)

(5)

(4)

(3)

(2)]

0.00E+00 	5.00E-06 	1 OOE-05

Power Consumption (W)

Figure 5-10: The typical power consumption per switch-box type

The power consumption in (4) is reduced by 27% when compared to the one in (I) since the

load on the input lines has been reduced. It should be also noted that when using the switches

with reduced directions extra routing is required on the array, and hence more power is

dissipated in other switches-boxes on the array (the values measured is the average of all the

switch-boxes). Switch-boxes (6) and (7) consume 8% to 12% more power than (4), while

having around 20% less power than (1).

5.2.3. Delays
The delays in implementation (1) are the lowest as the switch has a high flexibility which

generates short routed interconnects (see Figure 5-11). Switches (1) and (3) have both the

same delays since the decoding circuit in (3) does not affect the data path signals. The use of

3-to-I multiplexers in the data path in switch (2) increases the delays considerably by 37%

when compared to tn-state buffers. The switch-boxes with reduced directions only show

between 7% and 14% more delays than the full switch box due to the longer routings created.

Furthermore, the use of 2-to-I multiplexers in (6) does not add as much delay as the 3-to-1

multiplexers in (2).

Page 81

(7)

(6)

(5)

(4)

(3)

(2)

10 20 30 40 50

Longest path In DCI (ns)

Figure 5-11: The longest path in the DCT implementations using each switch-box type.

5.2.4. Routability
The ratio of Type 1 and Type 2 blocks in switch-boxes with reduced directions

(implementations (4), (5), (6) and (7)) has an effect on the routability of the design depending

on the data-flow. Changing this ratio has an effect on the total wirelength of the routed design,

as measured and shown in Figure 5-12 for switches (4) and (7) and in Figure 5-13 for switch

(6). It can be seen that for implementations (4) and (7) the lowest wirelength is achievable

when around 65% of the switch blocks are of Type 1. For switch (6) the minimum wirelength

occurs when around 60% of the blocks are of Type 2.

The routability of each switch-box type is shown in Figure 5-14. Implementations (4), (5) and

(7) with optimized ratios have a wirelength around 12% higher than the implementations with

full-directions. Using switch (6) with the optimized ratio we observe only a 2% increase in

wirelength over the full switch-boxes. These values greatly depend on the implementation and

the data-flow used; however, they represent what can be achieved when typical designs are

mapped to coarse-gram architecture.

440
4301

420

4101

400 11k1111 390

380
370 1
360

4/12 5/12 6112 7/12 8/12 9/12 10/12 11/12

Ratio In Implementations (4), (7)

385
380
375
370
365

C
.! 360

365
350
345
340
335

4112 5/12 6112 7/12 8112 9112 10/12 11/12

Ratio In Implementation (6)

Figure 5-12: The total length of the routings depending on 	Figure 5-13: The total length of the routings
the ratio between the number of Type I blocks and Type 2 depending on the ratio between the number of Type I

blocks in switch-boxes (4) and (7). 	 blocks and Type 2 blocks in switch-box in (6).

Page 82

400

390

380 1
370

!360

350

340

330 -

320

(1), (2),(3) 	(4),(7) 	(5) 	(6)

Im pie me me ntatlon

Figure 5-14: The total wireiength for each switch-box implementations. For (4), (7), (5) and (6) the ratio of

Type I 11'ype2 with the lowest wirelength is chosen.

5.2.5. Analysis
From the above evaluations we can deduce that the compression of configuration data (as in

(3) and (5)) only provides some area reductions for low widths of word-tracks. The use of 3-

to-1 multiplexers (as in (2)) to implements full four-side switch blocks is inefficient as it

increases the area, power and delays when compared to the use of tn-state buffers. Attractive

results were achieved using switch-box with reduced directions ((4), (6) and (7)) when

compared to full-directions switches.

The half-box based on tn-state buffers (implementation (4)) has low area, power consumption

and delays but a large wirelength. Using 2-to-1 multiplexers (as in (6)) allows big

improvements in routability at a price of a slightly larger area, longer delays and higher power

consumption. Finally, the lowest area is achieved by combining multiplexers and tn-state

buffers in the box (as in (7)) which give low-power consumption but slightly lower routabiiity

and longer delays (see Figure 5-15).

1.6
1.4
1.2 Power

	

1.0 	 Consumption >

0.8 i•

	

z u.4 - 	l I ni r'r r1 •
Longest Path

	

g0.6 	U
0 Area o,

	

0.2 	1
0.0

	

(1) 	(2) 	(3) 	(4) 	(5) 	(6) 	(7)
Implementation

Figure 5-15: Comparison of the different designs in terms of power, area and delays.

Page 83

5.3. Conclusion

It has been shown that the DSRA arrays can be further optimised to the application by

tailoring the interconnects further to suit the application. In the given example, several

directivities of the switch boxes were tested and the performance (area, power and timing)

was measured. It was found that by making directivities of the programmable switches follow

the intended data flow in the array, saving by up to 50% and 27% can be achieved in area and

power, at the expense of only increasing the delays by 7%. On the circuit level, it was found

that the lowest area and power were achieved by using a combination of 2-to-I multiplexers

and tn-state buffers in the 6W switch-point of the subset S-Box; the reason is that the total

area of the S-Box depends on both the switching element used and the number of

configuration bits required. The improvement in this type of S-Box comes at a price of

increased delays and a lowered routability.

Page 84

Chapter 6.0

Reconfigurable
Instruction Cells
Array

In the previous chapters, the domain-specific reconfigurable arrays designed provided a good

compromise between high-flexibility, high-power and high-area FPGAs on one side and low-

flexibility and low-power ASICs on the other side. The DSRAs showed a throughput higher

than FPGAs (and DSP processors), not very far from the level achieved in ASIC, while

providing a good degree of flexibility. However, the two major drawbacks in the proposed

DSRAs are, first, the long time required to design the DSRA itself according to the

application, and second, the long design-time needed to map and program new algorithms on

the array. As described earlier, programming the array occurs in a similar way to

programming FPGAs using an HDL to represent netlists of programmed clusters. Ideally, a

reconfigurable architecture would be programmable using a high-level (C/C++) programming

language. Based on this, another limitation which emerges in DSRAs is the difficulty to

automatically create an array tailored to the application starting from a high-level definition of

the application, since the programming happens manually at low-level. Even though the

Page 85

silicon-area usage of DSRAs was found to be lower than FPGA, it is still regarded as elevated

when compared to the area occupied by ASICs or to the area of datapaths in typical CPU and

DSP processors. This is mainly caused by the fact that 90% of the silicon is consumed by

interconnects. Finally, the large number of configuration bits needed to configure a 'useful'

section of the DSRA is too large (around 3000 bits) to permit dynamic re-configuration of

that section, and hence it limits the possible rate of reconfigurability.

This chapter proposes a solution to overcome these limitations by changing the structure of

the initial DSRA design. This is mainly earned out by moving from the previously described

type of clusters into a cluster type that can directly execute assembly-like instructions

commonly found in software implementations. Such clusters are called here Instruction Cells

(ICs). The basic ideas presented in this section come from elaborations with other members of

the research-group, mainly loannis Nousias along with Mark Milward and Ying Yi, who are

working on the same project, namely the Reconfigurable Instruction Cell Array (RICA). I.

Nousia's further work was to efficiently implement the data and program memory sub-

systems along with coding of paths in the program memory using small foot-prints. M.

Milward and Y. Yi were concentrating on optimised and advanced compilation software-

tools.

This chapter introduces the instruction-cell based arrays and assesses the

advantages/disadvantages gained by its structure. It also tries to evaluate the costs incurred by

introducing programmability from high-level languages for what practically is a processor-

like reconfigurable architecture.

. 1. processor-fike operion of a rconfiguriblle array
Assembly representations of programs - or more specifically the control and data flow graphs

generated by compilers - can be regarded as an efficient low-level description of software and

algorithms. This is especially useful due to the existence of compilers that convert high-level

languages such as Java and C/C++ into assembly-instructions. In traditional and simplistic

design of CPUs, the Arithmetic Logic Unit that performs the operations has typically only 2

inputs and one output, and according to the opcode it can perform operations like ADD, MUL or

suu to produces the output.

If each cluster in the DSRA can be made to execute one assembly instruction, then a

computational datapath described in assembly-language can be simply executed in hardware

by connecting the different 'instructions' together. An array containing such programmable

clusters along with a mesh of reconfigurable interconnects can be configured to execute the

required datapath. A full software program that includes branching and conditional operations

would then be executed by dynamically re-programming the array to perform the different

basic-blocks of the program. An instruction controller would then be responsible for handling

Page 86

the branching operations. Making the DSRA clusters support assembly instruction would also

be in theory an efficient way to reduce the overhead in interconnects (C-Boxes and S-Boxes)

as the number of inputs and outputs is reduced to a minimum. It also allows the use of

existing and mature compilers that would output suitable netlists of clusters to build datapaths

from a high-level program representation.

6.1.1. Example of Instruction-Level Parallel Processing
The sample C code shown in Table 5-I requires 19 cycles to execute on a typical sequential

processor. However, if the same code is compiled for a VLIW DSPs, such as the

TMS320C6x, then it would execute in 15 cycles, since the VLIW architecture would try to

concurrently execute up to 8 independent instructions (6 ALUs and 2 multipliers are

available) [113]. At 600MHz, 15 cycles translate to 25ns if we consider the ideal case where

no instruction-pipeline needs to be filled. If 4 simultaneous multiplications and 4 memory

accesses were permitted, then the number of cycles would reduce to 8. This is still high taking

into account the simplicity of the code and when compared to what is achievable using

hardware solutions like FPGAs. This speed limit is created by the presence of dependent

instructions preventing the compiler from scheduling instructions in parallel and hence

resulting in a high number of clock cycles. We can observe that if an architecture supports the

mapping of both dependent and independent datapaths, then we could execute a big block of

instructions in a single clock cycle without limitation.

C Code Sequential ASM

bO = inmem[add+O};
bi = inmem[add+1];
b2 = inmem[add+2];
b3 = inmem[add+3]; LD [r3+0] 	-.rll
e = bO * fO - b2 * f2; LD [r3+8] 	-.r9
f = bi * U - b3 * MUL ru, 	r5—r11
out mem[add+O]= e + f; LD 1r3+121-.r13
out memfadd+11= e - LD [r3+41 	-.r3
out mem[add+2 	f + 2e; MUL r3, 	r6 -.r6
Out mem[add+31= f - e; MUL

MUL
r9, 	r7 	-.r5
r13, 	r8—r3 TMS320C6xVLIWASM

SUB ru, 	r5-.r5
LDH 	*+A4(2)A7
LDH *+A4(6)_.A3

ADD r5 -.r7

LDH *+A4(4)_AO
SUB r3 -.r3

LDH *A4 A5 SUB r5, 	r3 -.r8

ME'? A7,B6-.B5
ADD r3 	r7

MPY A3,B8-.B6 	11 	ME'? 	AO,A8-.AO
ADD r5, 	r3 -.r6

ME'? A5,A6-.A3
LD r8 	-.[r4+12]

SUB B5,B6-.B5
SUB r3, 	r5 -.r3

SUB A3,AO-.AO 	11 	EXT B5,16,16-.B5
LD r6 _[r4+01

RET B3 	II 	EXT AO,16,16-.AO
LD r3 -.1r4+4]

MV B5-.A3 	II 	SUB B5,AO-.B6
LD r7 	-.[r4+8]

ADDAR A3,AO-.A4] I 	STH B6_.*+B4 (6)
ADD B5,AO-.B5 	11 	STH A4_.*+84 (4)
STH B5.*B4 	H 	SUB AO,A3-.AO
STH AO.*+B4(2)

15 Cycles (8 cycles 114 MPY and 4 LDIST are allowed) 19 Cycles

Table S-I Example C-code and its assembled sequential and VLIW code compiled with level-2 optimizations

Page 87

Parallel Processing with limited resources (on RICA)
Cycle 1:

I RAM I ri 1 	4 I I 	1
I READ I MUL ADD I I J

ADT::~ n[R4+8]
 Jfl

j IRAMI
R5

sue I IREAD

[r3+121

I RAM

r13

1R81 READ f 	r7 	MUL __
R6 MULJ I [R3+8] Jf_.l

RAM r3
Ri READ MUL SUB

Cycle 2:
'RAM' I R5

r3

RRAM

WRITE
1r4+121

WRITE [R4+0J I
RAM

SUB WRITE I

Figure 5-16: Execution of the 19 instructions in 2 cycles if a specific number of resource is present

We could easily execute the previous C code in only 2 cycles if the architecture provided 14

operational elements to perform 4xADD, 4xRAM, 4xMUL and 2xREG simultaneously, as

shown in Figure 5-16. However, this would mean that the 4 RAM operations would access

the main shared memory in parallel. This overcomes the Instruction Level Parallelism (ILP)

limitation faced by VLIW processors and enables a higher degree of parallel processing. As

shown in Cycle 1, the longest delay-path is equivalent to 2 RAM accesses, one multiplication

and some simple arithmetic operations. This is not much longer than critical-paths in typical

DSPs when compared to how many more instructions are executed in parallel during the same

cycle. The 2 cycles translate to less than 1 Sns if typical (non-heavily constrained) DSRA

delay values are used. Hence, an architecture that supports such an instruction arrangement

might be able to achieve similar throughputs as VLIWs but at a lower clock frequency,

depending on the type of computation.

6.12. Reconfigurable Core
The concept behind the RICA architecture is to provide a dynamically reconfigurable fabric

that allows building such circuits - mapping the same circuit on the previous DSRA would

require time-costly modifications and manual work that are difficult to automate. However,

by providing DSRAs with clusters that can execute assembly-like instructions similar to the

Page 88

ones in Figure 5-16, a straightforward design-flow resembling CPUs can be easily developed.

The core elements of the RICA architecture are the Instruction Cells (ICs). Like in a DSRA,

the ICs are interconnected together through a network of programmable switches to allow the

creation of datapaths. In order to support the execution of large programs that do not fit into a

single datapath, the configuration of the array should be allowed to change rapidly.

Furthermore, to support conditional-executions that are found abundantly in typical software

systems, the transition between the configuration-streams should be controlled by an

instruction-controller in the same way it is done in normal processors. Similarly to CPU

architectures, the configuration of the ICs and interconnects can be changed on every cycle to

execute different blocks of instructions. Unlike CPUs and more like FPGAs, a circuit can also

be mapped and executed for longer time (i.e. several cycles) if it is part of a loop. As shown in

Figure 5-17, RICA can be implemented as a Harvard-architecture processor where the

program-memory is separate from the data-memory. In the case of RICA, the processing data-

path is a reconfigurable array of ICs and the program-memory contains the configuration bits

(i.e. instructions) that control both the ICs and the switches inside the interconnects. Special

ICs in the core are responsible for controlling the data and program memories.

Reconfigurable Core

ADD II ADD I I MULl IMULI IREG 	 MULII Dlv HREG

Interconnects Network
(Crossbar or island-style switches)

J EMEM RE REG

Program

Jj , J 	I J 	 Counter

Ports:9

i PEm

Figure 5-17: Harvard-like structure of the RICA with reconfigurable
core as instruction-cells and programmable interconnects

Although the RICA architecture is similar to CPUs when using program controllers and

dapaths, the use of an IC-based reconfigurable core as a data-path gives important advantages

over DSP and VLIWs, such as more support for parallel processing. A reconfigurable core

can execute a block containing both independent and dependent assembly instructions in the

same clock cycle, which prevents the dependent instructions from limiting the amount of ILP

Page 89

in the program. Other improvements over DSP architectures include reduced memory access

by eliminating the centralized register-file and the use of distributed memory elements to

allow parallel register access.

In a similar way to DSRAs, the characteristics of the reconfigurable RICA core are fully

customizable at design-time and can be set according to the application's requirements. This

includes options such as the bitwidth of the system, which can be set to anything between 4-

bits and 64-bits, and the flexibility of the array, which is set by the choice of ICs and

interconnects deployed. These parameters also affect the extent of parallelism that can be

achieved and device characteristics such as area, maximum throughput and power-

consumption. Once a chip containing a RICA core has been fabricated, the system can be

easily reprogrammed to execute any code in a similar way to a processor.

6.2. Hardware design

6.2.1. Instruction Cells
In contrast to other reconfigurable architectures (see Chapter 2), the IC-array in RICA is

heterogeneous and each cell is limited to a small number of operations as listed in Table 5-2.

This allows us to increase the overall cell count to do more parallel computations, since the

overhead of adding such small cells is merely related to the extra area occupied by the

interconnects. The use of heterogeneous cells also permits tailoring the array to the

application domain by adding extra ICs for frequent operations. Each IC can have only one

instruction mapped to it. In a similar way to assembly instructions, all cells have only 2 inputs

and 1 output this facilitates creating a more efficient interconnects structure and reduces the

number of configuration bits needed. The cells initially developed support the standard

instruction-sets found in 32-bit GPPs like the OpenRISC [117] and ARM7 [115]. Hence, with

such an arrangement, RICA could even be made binary compatible with any existing

GPP/DSP system.

As shown in Table 5-2, registers memory-elements are defined as standard instruction-cells

distributed throughout the array, which allows them to operate independently to increase

degree of parallel processing. As seen in the previous example, to program RICA the

assembly code of a software is sliced into blocks of instructions that are executed in a single

clock cycle. Typically, these instructions - that were originally generated for a sequential

GPP - would include access to registers for the temporary storage of intermediate results; in

the case of the RICA these read/write operations are simply transformed into wires to reduce

the registers-use. By using this arrangement of registers RICA also offers a programmable

degree of pipelining operations and hence it easily permits breaking up long combinatorial

computations into several clock cycles.

Page 90

Special ICs include the JUMP cell which acts as an instruction-controller responsible for

managing the program counter and the interface to the program-memory. The interface with

the data-memory is provided by the MEM cells; a number of these cells is available to allow

simultaneous read and write from multiple memory locations during the same clock cycle.

This is achieved by using multiple memory banks to form the data-memory and by clobking it

at a higher speed than the reconfigurable core; this is possible since the core needs a relatively

low clock frequency typically equivalent to around 40MHz (see description of the CLK_DIV

cell for the clock equivalence). Furthermore, some special REG ICs are mapped as 110 ports to

allow interfacing with the external environment.

This is only an initial division and the scope of the operations of the cells can be expanded in

the future. It is also possible to have a large IC supporting the typical operation of an ALU in

a GPP: arithmetic, shifting, logic and memory.

Thhl. S- Possible Instniction Cells and their onerations

Instruction Cell Supported Operations
ADD Addition, Subtraction
MUL Multiplication (Signed and Unsigned)
DIV Divisions (Signed and Unsigned)
REG Registers
I/O REG Register with access to external I/O ports
MEM Read/Write from Data Memory
SHIFT hifting operation
LOGIC Logic operation (XOR, AND, OR, etc.)
COMP Data comparison
MUX Multiplexer
JUMP Branches (and sequencer functionality)
ALU Full CPU-like arithmetic logic unit

Data signals that can be routed between two cells or stored in registers consists of N-bit data

and 1 carry bit, e.g., if a 32-bit RICA is designed, the signals would be 33-bit wide with one

carry bit. Using this carry signal we can cascade several cells to achieve high precisions

computations, such as 64-bit additions or multiplications. See Appendix A for the details of

the instruction cells in the sample RICA.

ADD
This cell supports addition and subtraction operations. There are 2 input data and one output

signal. In the configuration we can select which bit-precision the cell should use (e.g. 8-bit,

16-bit or 32-bit mode). As will be seen in Section 7.1.2, this cell can also be configured to

support complex addition/subtraction; in this case the input data is split between the real and

imaginary parts (e.g. a 32-bit RICA would have a 16-bit imaginary part and a 16-bit real part).

MUL
This cell support signed and unsigned multiplication. Similar to the ADD cell, it can also

support complex multiplication and cascading to achieve higher precisions.

Page 91

IItIiiI

This cell gets as input an address and an offset and reads the content of the Data RAM at the

required location. The reading from the Data RAM currently takes place each time the

address at the input of the cell changes at any time during the step. This is necessary since in

situations where we are accessing an address pointed at by a variable in memory (i.e. a

pointer) a cascade of two RmEm is created, and hence the second RNEM should be reading the

data from the memory only when the first RNEM has finished outputting the required address. In

the future, time tags can be introduced to detect when (during the execution clock cycle) the

address and offset are ready to start fetching data from the Data RAM; the computation of the

time tag can be done by the compiler [129].

WMIEM
This cell gets data and writes it in the Data RAM. The data to be written is latched at the end

of the cycle and is written in the next step that contains any read operation from the Data

RAM.

RTFJG and /O RFJG
The REG cells replace the register file found in a processor, with the difference that the

registers are distributed and accessed independently; hence they consume less energy since

there is no need to use a large multiplexer to address them. Each register can have several data

banks inside it. In the sample array described below in Section 6.4 it was decided to use 2

banks for every register, as this helps optimising leaf functions (functions that don't call any

other functions) by removing the need for saving the used registers in the stack.

Another version of these REG cell is an i/o REG cell, which represent an N-bit dataport; when

writing data to the port it would be transferred to the chip's pins, and when reading the

register's content it would be coming from the chip's pins. The i/o REG has to be configured

as input or output.

DT[V
This cell support signed or unsigned division.

LOGIC
The LOGIC cell can perform standard bit-operations such as AND, OR, NAND, NOR, XOR,

NOT, as well as bit-reversion and 2's complement negating.

§IFIIFT
This cell can perform logical and arithmetic left/right shifting.

COME
The COMP cell compares two inputs and output is the result of the comparison generated as a

data signal. This output should be routed to either the MUX or JUMP cell.

Page 92

10 11)1
This cell receives 3 inputs: Two data signals in l and in, and the result of the comparison

coming from a COMP cell. According to the result of the comparison it either routes in 1 or in-, to

the output. Hence it acts as a multiplexer, if seen from the hardware point of view, or a

conditional-move operation if seen from a software point of view.

JUMP
The JUMP cell acts as the instruction-controller and manages the Program Counter. The

program counter is given to the Program Memory controller to retrieve the configuration of

the cell for the current steps. During the execution of a step, the JUMP cell computes the value

of the next program counter so that the configuration of the next step would be ready when

needed. The computation of the next location can be conditional by using the output of a COMP

cell, and hence achieving conditional branching in RICA.

CLK_D!V
The CLX DIV is responsible for 'dividing the global clock' and setting the period for which a

single configuration should be running for. This is needed in RICA since there is a big

variation of delays between different steps of a program. This variation is created by the fact

that we can execute dependent instructions connected together in series, and hence, every

circuit has its own critical-path delay. If this cell was to be omitted, then the maximum

operating frequency of RICA would be limited to the largest longest-path delay in all the

steps of the whole program. With the CLX DIV cell it is possible control the execution time

needed for each step, and hence make this delay only limited to the longest-path delay in the

step itself. The configuration of CLK_DIV is computed at compile-time according extracted

worst-case values.

The CLK_DIV outputs an enable signal that goes to all the WMEM, RED and JUMP cells (the only

sequential cells in RICA) to signal the end of the time allocated to the step.

6.2.2. Interconnects
Interconnects allow routing the signals between the instruction cells. As described earlier, the

signals are composed of N-bit data and a carry bit (generated in adders or multipliers). Two

interconnects schemes were investigates for RICA: Interconnects based on crossbar

multiplexers and island-style routing boxes.

Table 5-3: Comparison between cross-bar and island-style interconnects

Interconnects (sample Area on 0.131im Number Delay of one 	connection (output-
array with 64 cells) (pm 2) of cfg bits input, ignoring wire capacitance)

Multiplexers 1,640,495 498 0.7 ns

Island-style 576,062 678 Variable, average of 5 s-boxes is 2.0 ns

Page 93

The programmable switches should perform directional connections between the output and

input ports the cells. The design of the interconnects should take into account that each

instruction-cell has only one output and up to 3 inputs and that in no case will the output of a

cell be looped back to one of its inputs (to avoid combinatorial loops).

Figure 5-18: Multiplexers based interconnects

The multiplexer-based crossbar is shown in Figure 5-18. It is based on a simple design where

each input of each cell has a multiplexer to select which cell's output should be routed in. In a

typical array (see the sample array in Section 6.4) there are about 64 cells, with around 60

cells having outputs (some cells such as WMEM have no outputs), hence the 32-bit multiplexer

would be of size 59-to-I (the cell itself is not used). Such a multiplexer is very big and

consumes a large area as shown in Table 5-3. The cells in the sample array have 83 inputs

ports each requiring such a multiplexer. In the sample array, multiplexers would consume

around 68% of the array area, i.e. the area of the interconnects is 2.1 times the silicon area of

computational cells themselves. The delay associated with the multiplexer to route the signal

from the output of one cell to the input of another is around 0.7 ns, which is around 20% less

than the delay required for an ADD cell (0.9 ns). The delay is formed by passing through 3

levels of 4-to-1 multiplexers from the standard-cell library. It should be noted that this value

ignores the line capacitance associated with the wire and that such a crossbar scheme would

result in long wires.

Another problem with multiplexer-based designs is that the interconnect's area grows rapidly

when the number cells increases. Figure 5-19 shows the synthesised area of a multiplexer for

different number of input pins. As can be seen there is a rapid change in area for N=32 after

which the area grows somewhat linearly. This linear increase has an exponential effect on the

Page 94

N
E 8 	--
E

-

total area occupied by all multiplexers when the number of cells is increased, as shown in

Figure 5-20, The exponential relationship is due to the fact that for each new cell added to the

array we need to increase the size of the multiplexers of all the existing cells. Hence,

multiplexer based interconnects limit the scalability of the architecture.

N-to-I Multiplex Area

26,000—---

J yrTT1T
4 	24 	44 	64 	84 	104

N

Figure 5-19: Silicon area of N-to-I multiplexer

14 -

12 --

10+ - — -------

4 + --

2---------- --

0

32 	48 	64 	80 	96 	112 	128 	144 	160 	176

Number of Cell

Figure 5-20: Exponential increase of silicon area with number of cells when using multiplexers

The second interconnect scheme considered is the island-style shown in Figure 5-21 and

Figure 5-22. Each cell is surrounded by 4 routing multiplexers, one for each side. The signal

tracks used are unidirectional, and on each side there is one input and one output. The

multiplexer controls the output signal, and according to its configuration it can route signals

that are coming in from other directions to its output. Each multiplexer also receives the

output of the current cell to allow routing it to other cells. Furthermore, each input pin of the

instruction-cell has a 4-to-1 multiplexer to select which of the four sides should be routed

from outside of the box. As can be seen from Table 5-3, the overall area of these routing

elements is 64% smaller than the crossbar multiplexers. In addition, they are much more

scalable and make it realistic to implement arrays with more than 64 cells. On the downside,

Page 95

the number of configuration bits required is increased by 36%. The delay is also increased and

becomes dependent on the routing of the signal and the number of s-boxes it passes through.

However, the value given does not include wire delays, which in this case should be much

less than the crossbar version, as the metal wires are greatly reduced due to the increased

locality.

Figure 5-21: Configurable switches around each cell to form an interconnects-box for the island-style mesh.

S., _ • — - - -

Cell 	 Cell 	 Call 	 Call

with box 	 with box 	 with box 	 with box

cell 	 Gell 	 Cell
I 	

- Cell 1=> F 1
with box 	 with box 	 with box 	 with box 	 th boJ 	

-

with box 	 with box
Cell 	 Call 	 Call

Figure 5-22: Mesh of island-style interconnects with torodial interconnects

Another effect of using the island-style scheme is that the correlation in the configuration bits

of different steps is low. In the case of the crossbar, a cell that is active would have its

multiplexer active as well however, in the case of the island-style mesh a cell might be

Page 96

inactive in the specific step but its associated s-box might be used to route a signal belonging

to a different cell. The effect of this observation has to be taken into account in the future if a

compression scheme based on temporal or spatial redundancy is to be used on the

configuration bitstream.

6.2.3. Data Memory interfaces
The RICA array can have a number of Data RAM access cells, such as 4x PJ1EM. When a

program is compiled for RICA, the compiler assumes that these RMEM cells operate in parallel.

This can be physically achieved by using different and independent memory banks for each of

these cells. However this solution would require the compiler and scheduler to know in which

memory bank each location is stored. Another solution is to use memory banks that are time-

multiplexed between the 4 RNEM cells so that only one cell accesses one of these memory

banks at any one time. As described earlier, RNEM acts a combinatorial cell and the data is read

from memory each time the input address to RMEM changes. The time-multiplexing circuitry

has to keep cycling between all the shared RMEM cells to check which one had an address

change so that the data gets read.

6.2.4. Program Memory implementations
One drawback of the proposed cells and interconnects is related to the number of bits required

to store their configuration, which is in the order of 500-800 for the tested case using

multiplexers interconnects. Since the configuration of the cells is changed every step in a

program, we would need to store the configuration of every cell in every step. For example,

the code for an MPEG-2 Layer III audio decoder takes around 1,500 steps. This amounts to

around 1,500 x 700 z 1 MBit of program memory. This is quite large considering the fact that

the same code fits into 440 kBit of memory when compiled for a CPU like ARM or

OpenRISC.

This high program memory usage affects the overall power consumption of the design and

might offset any power saving achieved using the datapath. Fortunately, on average only

around 12 cells are active in any step in the largest benchmark MP3 program from Section 7.2

and hence the lMBit of data contains a lot of redundant information like nop (no-operation)

configuration. The existence of this redundant information can be used to compress this

configuration memory. Several compression techniques were investigated, and an ongoing

project looking at reducing the amount of configuration data using distributed configuration

memory showed promising results. The compression of the configuration memory is beyond

the scope of this document. In this document we implemented only programs small enough to

fit uncompressed in the available memory (See Section 6.4.2).

Page 97

6.3. Design-Tools for RICA
An automatic tool flow has been developed for the generation of RICA arrays based on th

initial tools for generating DSRAs. In a similar way to DSRAs, the tools take thc

characteristics of the required array and generate a synthesizable RTL definition of a RI(A

core that can be used in standard SoC software-flow for verification, synthesis and layout

These characteristics include the number of cells, type of interconnects, placements of the

cells in the array and number of rows and columns. If the RICA is implemented using

crossbar multiplexers, then it would be defined by the tools as an array with a single row.

The main advantage of RICA over DSRAs and FPGAs is its ease of programming. The

overall tool-flow needed for this is shown in Figure 5-23. The use of Instruction-Cells greatly

simplifies the overall design effort needed to map high-level programs to the RICA

architecture through a CPU-like programming flow. First, a compiler is required to transform

the input high-level languages, such as C/C++ or Java, into instruction-cells description. The

second step schedules the instructions, according their dependencies, for execution into

multiple steps on RICA. The final step generates the configuration of interconnects and cells

for implementing the desired steps.

It was decided to use the open-source standard GNU C Compiler (gcc) [118] as the front-end

compiler for RICA, since it is highly customisable and currently the best available open-

source compiler. GCC supports different language inputs amongst them C/C++, Java, Fortran

and Ada. In the ideal case, the gcc package would be responsible for the first two steps

described earlier, i.e. compilation and instruction scheduling. This would allow achieving

RICA-specific optimisation at compile time by making gcc aware of the resources available

on RICA. However, at the start time of the project, the gcc version available had limited

support for parallel instruction execution. Independent instructions could be identified by the

compiler for parallel scheduling, however, too much work was required for supporting blocks

of both dependent and independent instructions.

Hence, it was decided to modify gcc to generate instructions for the RICA cells in a serial

format; the compilation is performed by gcc with the assumption that the created instructions

will be executed in sequence. This RICA-specific assembly, which describes which ICs need

to be used, is then processed by the RICA scheduler to create a sequence of netlists each

containing a block of instructions that are executed in one clock cycle. The netlists represent

the different steps that have to be executed in sequence, with each step containing several

instructions that are to be executed in parallel and/or series.

Page 98

C cods

bC - in_(.dd,C];
bi -
b7 -

in_o.o(.dd.3];
• - bC * fC - b •
f = ii • fi - b3 *
out_Idd'CJ. • • f;
out_tdd,IJ= • -
out_n [.dd'7] f • 2*.;

out_..1nt.ddj f - .;

r ComplIa-gcc

O14E1 	Out. ri on.ddr*. tCO jnoff. OPEN o*tf HD4_OC_RXEb_ZE_S)
CIS1 out- ri conf. d2
SRI FT Out. rI ml- r2 *nl *4 oonf SHIFI_SLL_S3
ADD 	out- *2 ml- *2 702= rE of- ADD ADD_SI
ADD 	o**t *4 	,l- *7 in2 rt 000f 3.DD SUE SI
qSI out =33 conf- dl

7EIEH 	in- *4 jn_.ddr rI in off- *33 ­f- MN_OE_WX_S7

EStEE 	out- *2 7n_.ddr. *10 in-off- 0555 coof. 1EE_0f_RSZZ_SI

cossi cut. *4 conf AD
SHIFt out- *2 oni. *2 702- *1 conf- 55255_ALL_3I

ADD 	cut. *2 mi. *2 ml. rf conf. ADD_ADD_A]

Configuration

Cy132142004E

(1FAABE004E

C12BG92004E

Routing and
configuration

generatior

Scheduled N.tII.ts

RMEN
UL EEOC

R5 	

UE

ISE

.3]

J

E

l 	 .III 	RI 	 EM

EM

RJ Lii

SUE

Figure 5-23: Design-software tool-flow for RICA.

This splitting is not efficient, as gcc would be performing register allocation internally and

passing it to the scheduler. The scheduler has then to execute the instruction scheduling while

being restricted in using the registers previously allocated by gcc for each basic-block. The

effect of this is that some basic blocks would be split in more steps than required, which is

due to the unavailability of temporary registers.

The simple scheduling algorithm used takes into account IC resources, interconnects

resources and timing constraints in the array. It tries to have the highest program throughput

by ensuring that the maximum number of ICs is occupied and that at the same time the

longest-path delay is reduced to a minimum. The instruction scheduling is performed on each

basic-block separately. The first step in the scheduling is to convert the move instructions and

all register operations found in the assembly into wire connections between ICs. This implies

Page 99

that the register allocation carried out by gcc is partially lost. However, the scheduler has to

ensure that no register is used in the resulting steps other than the ones already in use by the

original basic-block. The scheduling algorithm then executes inside a loop that tries to find

which instruction has to be scheduled next. A cost is computed for each unscheduled

instructions which takes into account the following 3 constraints:

The resources availability

The availability of temporary registers

- The longest-path delay in the resulting step

The algorithm then selects the cheapest cell to be scheduled, and the loop is started again. If

no instruction could be scheduled, the algorithm will create a new sub-step of the current step

and tries scheduling again. The use of these 3 constraints (they can be used with different

weights) makes the scheduler try to minimise the longest-path by executing more parallel and

independent instructions, while restricting to the available registers and resources.

This simple algorithm works in most cases, however, it fails in some situations due to the lack

of registers in the basic-block. As described earlier, this is caused by the fact that gcc tries to

minimise register usage inside the block. In such cases, a manual modification was needed to

make the assembly output from gcc pass the scheduling. During the course of the work a new

version of gcc was released (4.0 and beyond) which improved support for parallel instruction

issuing. An ongoing project is now responsible for integrating a better quality scheduler into

gcc for RICA, so that such register allocation problem can be avoided. However, the simple

scheduler was enough to test the performance of RICA when running simple programs as

described in the next section.

After the generation of the netlists, or steps, the configuration data for RICA is created. If

island-style interconnects are used, then the configuration of the multiplexers has to be

computed to make the connections between the cells. As is the case with DSRAs, this step can

be done using VPR [57] tailored to the routing structure. All the cases tested in the

performance evaluation (see below) were routable using VPR. However, in future versions of

the scheduler, the routability of the designs should be included as a constraint when

calculating the cost of scheduling an instruction. If the crossbar interconnects are used, VPR

is not needed and the configuration can be generated directly.

6.4. Performance evaluation of sample RICA
The sample RICA array chosen for comparison contains the cells listed in Table 54

interconnected using multiplexer-based switches. The IC selection was done manually as it

was adequate for general applications - as described earlier, although other combinations can

provide better performance depending on the application. These 32-bit cells provide the same

basic functionality as a general 32-bit DSP such as the ARM7. With the selected type of

Page 100

interconnects and ICs the reconfigurable core requires a 738-bit wide instruction word. The

array was implemented using a UIMC 0. 13 jim technology.

Table 5-4: Instruction Cells in the sample array

Cell Count
ADD 4
MUL 4
REG 32
SHIFT 2
DIV 1

Cell Count
LOGIC 2
COMP 1
JUMP 1
MEM

6.4.1. Comparison with DSRA
An 8-point l-D DCT was implemented on RICA for comparison purposes with the DCT

mapped on the DSRA using Distributed Arithmetic from Chapter 4. It should be noted that

RICA has been implemented using 0.131tm, while the previous DSRA use O.18gm; hence the

performance values shown in Table 5-5 had to be scaled from the ones in Chapter 41• Also,

the DCT on the DSRA is a 12-bit DCT, while the sample RICA used is 32-bit. A 32-bit DCT

on the DSRA would require 32 cycles to finish (since the DA implementation is bit-serial)

and would need larger accumulators to store 32-bit results. The execution time shown in

Table 5-5 for RICA include just the time needed to run the DCT and no other operation such

as memory initialisation (which is included later on when RICA is compared with

processors).

Table 5-5: Comparison of the 8-points DCT on RICA and DSRA

RICA DSRA

Area (mm') 2.1 -

Code size (bytes) 5,621 (Config Stream, FF) 2,460 (Program Memory, SRAM)
Total area estimate (mm2) 2.27 0.096
Minimum execution time (ps) 0.08 0.13
Energy for 1 DCTs (nJ) 1 	 4.1 1 	 88

The large differences in the measured performance charachteristics show the difficulty that

exists when comparing hardware and software implementations, as each of the

implementations has been tuned for a specific optimisation. It can be seen that the DSRA is

around 20 times smaller, while it consumes around 20 more energy. Such results are

expected, since the energy was measured while running the simulation at the highest possible

frequency and the contribution of leakage power (which is proportional to the area) was kept

to a minimum. It can be seen that bit-serial DCT implementation on the DSRA is effective in

reducing the area at the expense of an increased switching activity and power consumption. A

bit-parallel DSRA would have been more appropriate for the purpose of this comparison.

'The scaling factors were found by forming an average of the ratios between the datasheets of

the two IJMC technologies; this was done for area, delays and energy.

Page 101

Hence, no exact figure can be extracted on the costs of programmability that was brought by

using instruction-cells over programmable clusters. However, it seems as if they both give

similar performance.

6.4.2. Comparon wth IP Processors
The sample RICA was compared to the following DSP architectures: The simple OpenRTSC

CPU [117] implemented on UIMC 0.13gin technology, the ARM7-TDMI-S [115] again on

0.13j.tm technology, the TI C55X [119] 2-way datapath low-power DSP and the powerful

T164X 8-way VLIW [113]. The benchmarks are mainly based on TI's benchmarks for the TI

C64X. All the benchmarks are direct unoptimised C representations of the algorithms - all

optimisations are left for the C compilers (Level-3). The compiler used for the RICA did not

include any advanced techniques like predications or the use of rotating register as compiled

provided by TI does. All benchmarks include memory transfers, stack control and function's

prologue and epilogue and hence they show a representative evaluation of the architecture's

performance.

Program sae issbe
In the results shown here, only the datapath energy consumption is measured for the

execution of the complete benchmark and compared to the architectures. It is important to

note here that the power consumption of the program memory is not included in the

evaluation; In the presented data, the programs used for RICA are raw and have not been

compressed, which means that they are abundant in redundant zero configurations.

Formatting the program memory in a similar way to VL1Ws where the end of each step is

marked using a tag can be easily applied to reduce the program size. However, such a

formatting would not bring the program down to the same size as the VL1Ws, since in RICA

the array is heterogeneous and the location of every instruction has to be hard coded. Work

has been done in evaluating the distribution of the program-memory elements to each cell

which helps in removing a section of the redundant information. However, this is beyond the

scope of this thesis. More work has been by other members of the group on compressing the

program as part of a path-encoding scheme useful when used with island-style interconnects

[128].

Mearemdllh1ts
For the RICA and OpenRISC the power and area were found using post-layout simulations.

The ARM7 datasheet [115] provides power and area values of the core in 0. Bum technology,

while [120] and [114] allows us to estimate the power consumption of just the datapaths in the

TI C64x and TI C55x. All these power estimations were measured at 1.2V operating voltage.

The area of the datapath in the TI C64x was estimated using scaling from the published die-

photo [111] knowing that the whole chip has 64M transistors (no cache memory was

Page 102

included). No area information was available for the C55x. Table 5-7 also include variations

in program size, as they differ for each architecture and compiler technology used. The size of

the data-RAM is the same for all processors, and hence it is not included in the comparison.

The Dhrystone benchmark, which today has become an outdated measurement, is included

here for reference. As shown in Table 5-7., the fact that the Dhrystone takes more cycles to

run on the highly pipelined TI DSPs than on the ARM7 shows how specific a benchmark it is.

The fact that the Dhrystone compuation requires a large number of non-predictable brach-

operations forces highly pipelined DSPs to frequently flush the instruction execution pipeline

and hence waste time. Using it as a single benchmark hides a lot of the speedups achieved in

modern media and DSP processors.

Results
The results are listed in Table 5-5 Table 5-6, Table 5-7 and shown in Figure 5-24 and Figure

5-25

Table 5-6: Comparison of datapath area on 0.13um of CPUs excluding variations in program memory.

RICA 0R32 JARM7 JC55xjC64x

IDatapath Area (mm2) 	1.90 	0.25 	0.32 	N/A 	2.01

Table 5-7: Comparing RICA with other processor, low-power DSP and VLIWs using benchmarks.

RICA
OpenRISC 	CPU 	(on
0.131im) - 112MHz

UMC ARM7-DTMI-S 	(Syn.
0.131Jm) -110 MHz

on

CLK DIV Min
Raw Energy Min 	Code Energy Min 	Code Energy

Execution Code per Op Cycles Execution size per Op Cycles Execution size per Op
Cycles Time (us) (bytes) (nJ) Time (us) (bytes) (nJ) Time (us) (bytes) (nJ)

1-D DCT 43 0.12 993 4.7 102 	0.91 	402 10.2 104 	0.95 	406 9.36

2-DDCT 1351 3.01 1785 159.3 4972 	44.39 	516 497 3760 	3418 	508 338

Viterbi 1838 7.78 1286 218.3 9032 	80.64 	308 903 8803 	80.03 	316 792

IIR 120 0.17 755 16.33 180 	1.61 	510 18 176 	1.60 	464 15.8

Min Error 5164 11,10 1070 620.1 9073 	81.01 	442 907 8908 	80.98 	412 802

Dhrystone 798 1.12 1289 52.57 711 	6.35 	870 71.1 712 	6.47 	912 64.1

TI CMX 8-ways VLIW - 600MHz TI C55x 2-way low-power DSP - 300 MHz

Min Code Energy Min Code Energy
Cycles Execution size per Op Cycles Execution size per Op

Time (us) (bytes) (nJ) Time (us) (bytes) (nJ)

1-DDCT 68 0.11 316 34.68 104 0.35 451 26

2-0 DCT 1763 2.94 588 899.1 2300 7.67 655 575

Viterbi 3120 5.20 664 1591 3980 13.27 262 995

IIR 39 0.07 160 19.89 139 0.46 436 34.8

Min Error 1320 7.20 952 673.2 7479 24.93 380 1870

Dhrystone 928 1.55 424 473.3 916 3.05 1021 229

Page 103

Normalised Execution Thn.

Figure 5-24: Normalised execution time graph of the benchmarks on RICA and other architectures

From the tables, we can see that for all the benchmarks we achieve better performance on

RICA that on the conventional 0R32 and ARM7 CPUs: We obtain around 1-3.6 times less

energy consumption while achieving around 5-8 times higher maximum throughput. Due to

the increase in program size memory and the increase in the datapath area, the power and

throughput improvements come at the cost of an area increase of around 7 times in area. A

large part of the power reductions achieved over the four DSP systems are savings gained by

eliminating the registers-file and having distributed registers.

Normallsed Energy Consumption

DIwystone

Min Error f1 •

_______ 	 •TIC55X
hR 	 0 TIC64x

0ARM7

Viterbi 19 0R32
• 	 •RICA

2-DDCT

1-0 DCT

0.00 	1.00 	2.00 	3.00 	4.00 	5.00 	6.00 	7.00 	8.00

Figure 5-25: Normalised energy consumption graph of the benchmarks on RICA and other architectures

When compared to the low-power C55X DSP, RICA achieves a promising reduction in

energy consumption between 2 to 6 times while achieving a throughput of up to 3 times

higher. RICA achieves similar timing performances to the VLIW for applications containing

Page 104

2000-.

ic

Bmonnects

1.500

E

1.000

0.500

0.000

significant datapath operations like DCT, while faster operation is seen for Dhrystone. For

benchmarks containing a large number of independent blocks and control parts (i.e. small

loops and comparisons) like Minimum Error, RICA is around 50% slower than the 600MHz

VLIW - this is expected as the TI compiler can optimise such code by using techniques such

as predication (i.e. conditional execution) in a better way than gcc. For the Viterbi and hR.

RICA was around 20%-30% slower with the bottleneck being memory access. However, for

the case of the Viterbi, the gcc compiler was able to correctly identify the use of multiplexers

which improved the operating speeds and reduced branching. It should also be noted that

RICA is built from synthesisable standard-cell libraries while the circuits in the VLIW have

been manually laidout to achieve the 600MHz operating frequency. In terms of energy,

around 6 times less power is consumed for DCT, Viterbi and Dhrystone; this is caused by the

fact that on RICA less time is spent with large ALUs idel but consuming pouwer. The power

reductions for the Minimum Error and hR benchmarks were lower at around 17%. In terms of

area, the datapaths of the RICA and VLIW are similar.

6.5. Reconfigurability overhead

As expected, the relative area occupancy of interconnects varies depending on the

interconnects type used (shown in Figure 5-26) which represents the average values measured

for the different application. The multiplexer-based interconnects occupy 78% of total core

area; this is quite a large overhead, however, it is still less than the 90% figure found in

normal FPGAs and the DSRAs. If island-style s-box interconnects are used, then the total

contribution of the interconnects to the area comes down to around 40%.

Area breakdown using Muxes and S-Boxes

2.500

S-Boxes 	 Muxes

Figure 5-26: Break down of area in RICA using both multiplexers and s-boxes as interconnects

Page 105

For the power consumption, the detailed measurement was only done for multiplexer-based

interconnects, as no layout for an array with s-boxes was done. The breakdown is shown in

Figure 5-27. On the UMC 130nm technology used the leakage power was measured to be

around 10% of the total power consumption. The contribution of the interconnects to the total

power consumption was found to be on average 11%. This low overhead signifies that the

chosen granularity and breakdown of functional units is efficient.

Breakdown of Power consumption

3.OE-03 T 	- - - - - - 	- 	-- - -

25E-03

2.OE-03
U Dynarric

1.5E-03 	 U Leackage

0
0.

1.OE-03

5.OE-04

Logic 	 hterconnectn

tiltipexers

Figure 5-27: Break down of power consumption in RICA using multiplexers as interconnects.

6.6. Conclusion
The table below compares the proposed RICA architecture to DSRAs, FPGAs, DSP and

VLIW technologies. The performance measured demonstrates attractive results regarding the

four important requirements for future systems: low cost, low power-consumption, high

flexibility and simple design-flow. When compared to current technologies, RICA

outperforms low-power DSP architectures such as the TI C55x with up to a 3 times higher

throughput and with 2-6 times less power consumption. It should be noted that the degree of

power savings depends on the amount of control operations in the program. When compared

to current VLIW processors, RICA considerably reduces the number of required clock cycles

in applications containing numerous dependent instructions since it allows the execution of

both dependent and independent instructions concurrently, which solves the problem of

statistical ILP-limit faced by VLIW. In terms of timing performance, RICA achieves similar

timing to the VLIW for datapath application, while being up to 50% slower in control

intensive application. This is due to the fact that the VLIW circuitry has been handcrafted to

achieve 600MHz operating frequency [113]. Nevertheless, RICA can achieve up to 6 times

less power than the VLIW.

Page 106

RICA vs. DSRA
• Programmable using a high-level C language.
• DSRAs allow better lower-level tuning.
• RICA is easier to interface with other SoC elements using the data-memory and

direct-memory-access (DMA).
• Lower area,
• Less configuration bits
• Dynamic reconfiguration

RICA vs. DSP/RISC
• Distributed registers, and hence lower power than centralised register file.
• Distributed Data memory access.
• Temporary register/memory access becomes wires between cells.
• Lower-power
• Higher throughput
• Larger program size

RICA vs. VLIW
• Faster for datapath computations, similar throughput for control.
• Similar datapath area
• Much lower power consumption
• Performance not limited by the presence of dependent instructions, no ILP limit.
• Distributed registers, and hence lower power than centralised register file.
• Distributed Data memory access.
• Temporary register/memory access becomes wires between cells.
• Larger program size when uncompressed

RICA vs. FPGA
• Less flexible since coarse-grain
• Much lower power consumption
• Lower area
• FPGAs should be able to achieve a higher degree of parallelism since there are no

area limits.
• Programmable using a high-level C language

Dynamic reconfiguration
RICA vs. ASIC

• Much more flexible
• Higher power consumption
• Larger area
• ASICs should be able to achieve a higher degree of parallelism since there are no

area limits.
• Programmable using a high-level C language
• If RICA is replacing several hardwired IPs, then its distributed memory removes

the need for a shared bus to communicate data between the IPs, and hence reduces
power.

The measured performance of the initial array is encouraging; however, more tuning can be

done on the compiler level, such as making the scheduling occurs inside gcc, to greatly boost

the performance. Furthermore, due to the limitations of the currently used compiler, some

arithmetic operations have to be optimized manually. This is especially true for applications

which software implementation is completely different from the hardware one, as seen in the

next chapter.

One problem in the proposed RICA architecture lacking compression is the large program

memory requirements compared to other processors. Since memory consumes much power,

Page 107

this can potentially affect any power saving achieved in the datapath. However, work is

currently being carried on in this area to determine an efficient compression scheme to reduce

the required number of program-bits while having a fast decoding time essential for dynamic

reconfiguration. This can be achieved by distributing the program memory to each cell and

allowing the use local program-indices to determine the activity of the cell. The compression

of the program memory is also being investigated at the same time as the interconnects

structure in order to find a suitable program coding format usable in an S-Box based

interconnects scheme [128].

Page 108

Chapter 7.0

Advanded
implementations on
RICA

The RICA fabric can be large enough to allow making circuits containing multiple functional

elements as is the case in ASIC and FPGAs. This enables us to use design techniques and

optimisations that are conventional in hardware circuit designs. Since such methodologies are

uncommon in normal processors, they are not automatically identified and applied by the

existing gcc compiler. This chapter shows two examples of such optimisations: First the use

of registers to implement propagation/broadcasting schemes and second the use of multilevel

pipelining for increasing throughput.

Additionally, since RICA is programmable using a high-level language and it can execute

both control and datapath oriented operations, it becomes possible to rapidly run large

applications on the architecture: In the second part of this chapter, an mp3 audio and H.264 -

video codecs (which otherwise are too time-consuming and too difficult to implement on

ASICs, FPGAs or DSRAs) are used to prove this programmability of RICA.

Page 109

7 1. Emampie of uminueilllly opillTJ71isd in'vpllement'rarriou7Js

7.1.1. RR IFDter using shift-register
The conventional method of designing an FIR filter in software is to use the data-memory to

store the input and the coefficients and to go through the input array multiplying each element

with a coefficient. This is shown in Table 5-8 which is taken from TI's benchmarks for the

T162x [121]. In this code for a 10-tap FIR filter, which was originally designed for the 8-way

VL1W, the inner-loop can be unrolled automatically by the compiler. However, the unrolled

output will be abundant of dependent instructions (the sum variable) and it would not be

possible to use any of the 8 ALUs of the VLIW in parallel, hence it is very inefficient for

VLIW.

Table 5-8: C code for conventional FIR in software from TI benchmarks [121]

void A f17 r vselp u(const short * iPtr, const short * coefptr, short *optr)
for (iPtr += 10, mt i=0; i < N; i++)

int sum =0;
for (mt j = 1; j <= 10; j++) 	 1/ This is a 10-tap filter

sum += (int) (short)coefptr[j-1] * (int) (short)iPtr[i - j];
oPtr[i] = ((sum + ittr[i]) >> 15);

If this code is compiled for RICA, then no ILP-limit problem is faced due to dependent-

instructions and it executes more efficiently than on a VLIW, however there is still more

room for improvement. Most of the execution time' is spent in the RNEM cell for accessing the

coefficients and the input data, and the same coefficients and memory locations get read

several times during the full loop. A more efficient implementation can be achieved by using

a hardware-like FIR filter that uses shift-registers to store the previous input values. Since

conventional DSP processors do not allow implementing shift-registers, most of the existing

code has been tailored for replacing such hardware-structures with memory access. However,

since the RICA fabric enables mapping circuits such as shift-register, the code can be re-

written to execute faster and with less RAM access, as shown in Table 5-9. The proposed

code only reads an input value once and puts it through 10-shift registers (to represent the 10-

taps), and in each inner-loop only one coefficient is read and multiplied by the appropriate

value. In the example shown this gives an immediate 43% speed-up.

Page 110

Table 5-9: C code for FIR with reduces memory access using shift-registers, similar to hardware implementations.

void fir_with_sr (const short * iPtr, const short * coefPtr, short *optr)

mt i,j;
short coefj;
register in 	r22, r23, r24, r25, 	r26, r27, r28, r29, 	r30, r31;
mt sum0, sumi, sum2, sum3, sum4, sum5, sum6, sum7, sum8, sum9;

r23= r24= r25= r26= r27= r28= r29= r30= r31= 0; II Initialise

for (i=N-1; i >= 9; i=i-10)
sum0= suml= sum2= sum3= sum4= sum5= sum6= sum7= sum8= sum9 = 0;

for (j = 0; j < 10; j++) 	 { 	 // 10-tap filter
r22 = (int)iPtr[(i - j) 1; 	 II Read the input mem value
coefj = coefPtr[j); 	 II Read the coef

sum9 += (int) (short)coef_j * r22; 	II Do the calculation
sum8 += (int) (short)coefj * r23;
sum7 += (int) (short)coefj * r24;
sum6 += (int) (short)coef_j * r25;
sum5 += (int) (short)coefj * r26;
surn4 += (int) (short)coefj * r27;
sum3 += (int) (short)coefj * r28;
sum2 += (int) (short)coef_j * r29;
sumi += (int) (short)coefj * r30;
sumO += (int) (short)coefj * r31;

7/ Do the shifting (it is a 10-tap filter)
r31 = r30; 	 r30 = r29;
r29 = r28; 	 r28 = r27;
r27 = r26; 	 r26 = r25;
r25 = r24; 	 r24 = r23;
r23=r22;

for (j = 0; j < 10; j++) 	 II Write the 10 outputs
optr[i -j] = ((sumO + iPtr[i -jfl);

Figure 5-28: Typical hardware and RICA implementation of an FIR using shift-registers.

If we had more than 10-taps, then we would need more registers to do the shifting. In this case

we either add more REG cells to the array, or we can use the 2I bank of each REG cell. The

other solution is to use the data-memory (i.e. WMEM/RNEM cells). Also, if the number of taps was

fewer than 10, of if we had 12 MUL and 12 ADD we could have fitted it inside a single step and

used a pipelined scheme (like the one described below for the FFT) to improve the throughput

further. Staying in the same step also reduces the time need to fetch the new configuration for

the next step.

Page 111

Table 5-10: Measurement of improvement in shift-register based FIR filter.

7.1.2. Pipeflned W92-point FF1 for OFID
The 8192-point FFT (or 8k FFT) was chosen for implementation on RICA as it is a highly

computational part of the Digital Video Broadcasting (DVB) standard. Here we take the

example of the DVB-T standard targeting terrestrial digital broadcast; a DVB-T compliant

High Definition TV (HDTV) set uses OFDM (Orthogonal Frequency Division Multiplexing)

signalling to achieve the required high bandwidths[122]. As described in the DVB-T standard,

the OFDM receiver uses an 8192-point FFT transform which needs to be performed within

924ps.

This FFT is usually implemented pn FPGA or ASICs, as DSP implementations are complex

[123] [124]. Having this FFT implemented on a software programmable architecture would

be a great advantage towards the implementation of a Software Defined Radio (SDR) on

RICA.

An N-point FFT operation is defined as:

Wnk 	k=O,i,A N—i

Where the twiddle factor Wis:

jyn
N

 k - e m —j2k/N

The main FFT computation requires a large number of operations, however, due to the nature

of the twiddle factor W several algorithms have been designed to reduce the number of

computations required; the algorithm chosen to be implemented on RICA is the Cooley-

Tukey Decimation-in-Time (DIT) Radix-2 algorithm [125]; to compute the FFT for 8192

points 13 stages are required. In each stage 4096 radix-2 butterfly operations need to be

carried. The input to each stage is the output of the previous stage, hence one advantage of

this algorithm is that there is no need to use intermediate memory buffers for the FFT, as it

can be placed on the memory location as the input.

In order to reduce the complexity of the algorithm further, the 8192-points can be divided into

6 radix-4 stages followed by one radix-2 stage. However, 13 radix-2 stages were chosen to

reduce the program size and to make it easier to implement the pipeline (described below). A

Radix-2 butterfly is in effect a 2-point FFT computation; it has 2 inputs x 0 and x 1 and 2

outputs yo and y, and uses the twiddle factor WNt :

Page 112

X(•

yO=XO+ x1 WW

yI= ' W XI X1 	Nr
yi XI S

WN r -1

Figure 5-29: Radix-2 complex butterfly computation.

All these operations are complex operations, and hence the numbers have imaginary and real

parts. A complex multiplication can be implemented using 4 real multipliers and 2 real

adders. Hence, each radix-2 butterfly has 1 complex multiplication and 2 complex additions

which comes down to 10 real operations.

In order to speed-up the execution of the FFT, it was decided to add the complex arithmetic

functionality to the MUL and ADD cells themselves and not to do it in software. With this

approach, the 32-bit ADD cell can also perform a 16-bit complex addition. The 16-bit real and

imaginary part of each complex number would be combined into the 32 bits used to represent

real numbers. This gives the FFT a 16-bit precision which is enough for OFDM applications,

as typical FFTs for DVB-T use 12-bit processing.

The Decimation-in-Time (DIT) FFT algorithm also requires a bit-reversing operation to be

performed on the 8k input either before or after the 13 stages of radix-2. The bit-reversing

ability simply converts input data such as 000iioi...o to o...ioii000, and is used to modify the

addressed of the 8129 input samples. This generic bit-reversing ability has been added to the

LOGIC cell, as it would be very time costly to implement it in software. With this approach the

extra LOGIC cell would be used after the address-generator in the first stage when the input

data is accessed for the first time.

The address-generator needed to read and write between two stages has to follow the

addressing needed for the decimation-in-time algorithm. This is shown as an example for the

8-point FFT in Figure 5-30. The details for this addressing can be found in the code in Table

5-11, where the address is calculated using the variables point and stride.

Page 113

0 0
Radix-2 Radix-2 	 Radix-2

WY"
4

2 2
Radix-2 Radix-2 	 Radix-2

WNt WY 	 WY' 	
3 6

Radix-2 Radix-2 	 Radix-2

WN ' WN ' 	 WY 	
5 5

6
Radix-2 Radix-2 	 Radix-2

WAI WN 	
7 7

Figure 5-30: 8-point FFT computation using Radix-2 butterfly

Table 5-11: 8k FFT computation with the main loop fitting into a single step

for(stride=l; stride 	n_points; stride *=2) //For 8192, 13 stages of Radix-2

point = 0;
counter = 0;

do{
twiddle = twiddle table[counter];

mO = data [point);
in]. = data[pomnt+stride];

CPLXMtJL(tempval, ml, twiddle);
CPLXADD(tempO, mO, temp val);
CPLXSUB(templ, in]., temp val);

data [point] = tempO;
data[pomnt+stride] = templ;

temp muxl = point + s t ride*2 ;
temp mux2 = temp muxl - n_points + 1;
point = (temp muxi >= n_points) ? temp mux2 	temp muxi;

counter++;
while (counter < half—n);

--

If the code of Table 5-11 is compiled, then we can fit the main loop calculation into a single

step if we have the following resources in the array: 8x ADD, 2x MDL and 2x SHIFT. This is

shown in Figure 5-31. As it can be seen, the longest-path delay in this step would the path

RMEM-MUL-ADD-WMEM, which is around 27 ns. Since this loop is executed 134096 = 53,248

times, it would takes 1437jms to finish the 8k FFT calculation. As described earlier, this is too

long for the DVB-T standard.

Page 114

Not ppeItned

Figure 5-31: Main loop step if compiled from code (counter not shown)

To improve the throughput we can employ a 3 stage pipe: between the uM and the arithmetic

operation, and between the arithmetic operation and the WMEM. In this case, the longest path

becomes 10 ns, which reduces the time needed to compute the whole FFT to 53011s, making

the implementation compatible with DVB-T. To make this work we would need to execute 2

extra cycles to fill the pipeline and 2 cycles to empty it.

The fact that the whole loops fits into a single step and that this step loops back to itself

allows achieving this high performance; in this case the configuration for the array does not

change and there is no need to fetch a new instruction from the program memory. This gives

near ASIC-like speed since the only overhead compared to ASICs are the relatively light

interconnects between the cells.

Table 5-12: Comparison of the performance of FFT with and without pipeline.

Cycles Longest-path (ns) Total time (ps)
FFTw/o pipeline 53248 27 1437
FFT w pipeline 53248+4 10 530

Page 115

ns1p)1 	Irmrl]
	

Hi 	iI

Arm.mmerr(CI

IM(C)

in

Irl24fl 1 1ec 1291 ! 1-0311 jr%IM

t\
Stage

tS] mu]C]

add(6] 1 1 conslic) I I cIcf4) I I adolf]

-anII I 	'°I IIr
in 	in- add 	 rLad*

Stage

wmerrlC]I 	
wTel'[)

Figure 5-32: Main loop in FFT calculation with pipeline registers.

When running the pipelined FFT the datapath exhibits an energy consumption of 5.2 mW.

The same 8k FFT would required around 200,000 cycles to run on a TIC62x VLIW - hence

an operating frequency of 377MHz would be required to complete the calculation in 530ts,

which means that the datapath would consume 192mW, as it is characterised at 0.51

mW/MHz. This means that RICA's datapath is around 37 time more energy efficient that the

VLIW.

For the purpose of this experiment, this modification and the addition of the pipeline registers

was manual. However, in the future the scheduler should identify loops that fit into single

steps and should try to add the pipeline automatically.

7.2. Larger systems: MP3 Audio and H264 Video
Large systems that are impractical to design using HDL such as multimedia applications like

mp3 audio and H.264 video decoding; these applications contain large amounts of conditional

execution and operations that make it a requirement to use a high-level description language

to program and maintain the code as well as to reduce the design cycle since these standards

Page 116

keep changing. To demonstrate the programmability of RICA, the open-source mp3 decoder

libmad [126] and the open-source H.264 decoding module from ffmpeg [127] were compiled

and profiled. The untouched code was compiled with no modifications to the actual

audio/video decoding elements were done - only some output printing functions were

disabled as they are not support on the RICA hardware. The performance values shown are

for the same 64-cell sample RICA described in the previous chapter. The same code was also

compiled for ARM9TDMI, which is a processor specially tailored for multimedia

applications. The speed and energy consumptions of the solutions are shown in the tables

below; the values shown for ARM9TDMI assume that it is running at its maximum frequency

of 250MHz and that it consumes 0.25 mW/MHz [116] (cache is disabled and ideal situation is

supposed), while the ARM7TDMI-S runs at its maximum frequency of 110MHz.

For the mp3 benchmark, a two-frames long stereo 64kbps sample input was used. The time

and energy consumption shown are the ones measured for the duration of recoding the 2

frames. The results (Table 5-13) show that RICA decodes the frames 3.4 times faster than

ARM9 with a datapath energy consumption 10.8 times lower.

Equally attractive results are measured for decoding H.264 frames (Table 5-13 and Figure

5-33) where RICA is 13.8 times faster than ARM7 and having 6.7 times less energy. The

sample video used contains two QCIF (I 77x 144) frames at 460 kbps data rate.

Table 5-13: Performance comparison of the libmad mp3 decoder on RICA and ARM9 (2 frames)

ARM9TDMI (250MHz) RICA
Datapath energy Consumption (uJ) 127.60 11.80
Decoding speed (ms) 2.06 0.60

Table 5-14: Performance comparison of the ffmpeg H264 decoder on RICA, ARM9 and ARM7 (2 QCIF frames)

ARM9TDMI (250MHz) ARM7TDMI (110 MHZ) RICA
Energy Consumption (mJ) 2.15 0.74 0.11
Decoding speed (ms) 39.60 111 8.03

En.rgy(mJ) 	
DedIgTkne(ms)

RICA 011
	

RICAL3.
Z159

ARM (250Mlz) _________________________________ 	AR (2501&lz)

0.739

	

ARM? (11O4z) 	 ARM? (11O&4z)

	

0 	05 	1 - 	1.5 	2 	25 	
1 00 	1200 	20 	40 	80 	90

Figure 5-33: Comparison of the performance ffmpeg H264 decoder on RICA. ARM9 and ARM7 (2 QCIF frames)

Page 117

The performance shown is for directly-compiled and unoptimised code. Important speed-ups

(around 2-4 times) should be achievable using similar techniques to the ones described earlier

such as shift-registers and pipelining, which would make RICA to easily support future H.264

decoding of large frames (e.g. Dl 720x480) at real time - such an implementation is

impossible today using a programmable solution that is usable in portable applications. The

list in Table 5-15 shows the percentage of time spent in each function while decoding two

different video sequences of 20 Dl frames (one with CABAC coding and the other with

CAVLC). Such a profiling gives an idea of which functions have a priority in being optimised

and optionally hand-coded to increase the performance. In this case these functions would the

filtering 	ones 	(_decode_residual, 	decode cabac residual, 	filter_mb,

h264?1oop_fi1ter_1uma_c, 	put h264 qpel8?lowpas). It can also be seen that the

initialisation function _memset occupies quite a large percentage - this is only the case because

the hardware has only decoded 20 frames and running the decoder for a longer time would

reduce the relative percentage of this function. Nevertheless, the _memset function used

operates on a byte level. Since RICA has multiple memory banks that can allow simultaneous

memory writing, a direct 4 times speed-up can be achieved by rewriting _memset to

simultaneously write 4 bytes.

Table 5-15: Profiling of the ffmpeg H264 decoder on RICA, running through 20 DI frames

DI 720x480, 20 Frames, CAVLC, 13.6 fps

memset 14.17%
put h264 qpel8hlowpass 13.58%
put h264 qpell8vlowpass 10.82%
decode residual 9.22%
puth264qpel8hvlowpass 7.05%

6.36% ffh264idct8 add c
ffh264idctaddc 5.92%
put_h264_chroma_mc8c 5.49%
decode mb cavlc 4.85%
memcpy 4.78%

decode mb _hl 3.20%
fill caches 2.28%

Dl 720x480, 20 Frames, CABAC, 19.6 fps

decode cabac residual 10.52%
filtermb 10.08%
memset 8.88%
put h264 qpel8hlowpass 7.92%
h264vloop_filterluma_c 6.06%
put h264 qpel8vlowpass 5.99%
puth264qpel8hvlowpass 5.55%

5.44% h264h loop filter lumac
ffh264idctaddc 5.27%
decodembcabac 4.14%
put h264_chroma_mc8_c 3.56%
hldecodemb 3.01%

7.3. Conclusion
Due to the limitations of the compiler some arithmetic operations have to be optimised

manually. This is especially true for applications for which the software implementation is

completely different from the hardware one, e.g. FIR, where in hardware we would naturally

use shift-registers, while existing software implementations use memory copying and access.

This use of shift-registers was demonstrated for an FIR filter and showed a 43% speed up on

RICA as memory access got reduced. The modification was done on a C-language level.

The second hardware-like technique tested is programmable pipelines. The example used is a

compute intensive 8k FF1 calculation. Pipeline-optimisation was performed on a single step

Page 118

level by manually changing the scheduled code to add registers between the instruction cells

or long paths. This resulted in 2.5-3 times throughput increase over the non-pipelined version.

These useful hardware design techniques can be easily added in the future to the compiler to

make their usage automatic, and hence there would be no need for manual low-level coding.

Furthermore, since RICA is programmable in C, it was possible to compile large and complex

systems to demonstrate its programmability feature. An open-source MP3 audio decoder and

H.264 video decoder were directly compiled in a straightforward way in a week time. The

measured performance and power consumption on RICA compares favourably to other

solutions: RICA is around lOx faster and more power efficient than ARM9. However, as with

any CPU processor, there is more room for improvements by manually writing critical

operations in assembly/netlist level. Future versions of the compiler and scheduler should

help making this type of optimisations more automatic.

Page 119

Chapter 8.0

Conclusion

In this work, the initial approach to develop a solution for the flexibility problem in System-

on-Chip architectures was to focus on coarse-grain Domain-Specific Reconfigurable Arrays

(DSRAs) as a mean to provide a solution with high throughput and low power-consumption

when compared to other alternatives such as embedded FPGAs and DSP processors. To make

any domain-specific scheme usable for a large number of applications, a framework for

creating such arrays was designed. The generated DSRAs have an FPGA-like structure as this

provides a reasonable uniformity and allows the reuse of existing software. From a structure

point of view, the DSRAs differ from FPGAs in that they are coarse grain heterogeneous

arrays.

Page 121

Two sample DSRAs were generated for video coding applications; the measured performance

indicates that DSRAs can indeed be classified as a compromise between FPGAs and ASICs in

terms of flexibility, power, area and delays. It was also found that the performance of a DSR.A

can be optimised further by tailoring the directivity and the circuit design of interconnects;

this gives improvements in power and area at the cost of increased delays and lower

routability.

To generate a DSRA, the designer has to manually identify the algorithms targeted and the

operations needed in order to create the clusters for the array. In the future, once several

applications have been designed using DSRAs, a library of clusters can be created to reduce

this lengthy DSRA design-time. In short, the rapid deployment of DSRAs depends on the

existence of such a library. Another limitation to DSRAs is the fact that in the same way as

ASICs and FPGAs, they have to be programmed at low-level using a time-consuming

Hardware Description Language.

DSRA vs. FPGA DSRA vs. ASIC
• 	Lower area ° 	Much higher flexibility
• 	Much lower power consumption 13 	Higher power consumption
• 	Higher frequency o 	Higher area

Less flexibility o 	More delays

To overcome these problems, the second proposed approach was to use an architecture called

the Reconfigurable Instruction Cell Array (RICA). By using so called instruction-cells that

accept processor-like instructions, it becomes possible to map a compiled software

representation of an algorithm directly to the reconfigurable fabric. Coupled with the ability to

dynamically and rapidly reconfigure the array, running complete software programs on RICA

is feasible. The open-source gcc C compiler was modified to compile software to RICA.

Several C benchmark algorithms were tested, and RICA demonstrated attractive results

compared to other architectures. RICA outperformed current low-power DSP architectures

such as the TI C55x by providing up to a 3 times higher throughputs and with 2-6 times less

power consumption in the data-path. When compared to current high-end VLIW processors

RICA achieves similar timing for datapath applications, while being up to 50% slower in

control intensive applications. This is due to the fact that the VLIW circuitry has been

handcrafted to achieve high operating frequencies. Nevertheless, RICA achieved up to 6 times

less power than the VLIW using standard code, and up to 37 times less in the case of the

pipelined FFT.

The straightforward programmability of RICA made it also possible to run existing large

systems such as an mp3 audio decoder and an H.264 video decoder only after a few days

design-time. It was also demonstrated that by manually programming RICA at low-level it

Page 122

becomes possible to use hardware-like optimisations that are not usually found in processors,

mainly due to the limitations of the used compiler. This included the use of elements such as

multiplexers, shift-registers and pipeline registers to increase throughput and reduce memory

access.

RICA vs. DSRA RICA vs. DSPIRISC

• 	Programmable using a high-level C • 	Distributed registers, and hence lower
language power than centralised register file

• 	DSRAs allow better lower-level tuning • 	Distributed Data memory access
• 	RICA is easier to interface with other • 	Temporary 	register/memory 	access

SoC elements using the data-memory becomes wires between cells

and direct-memory-access (DMA) • 	Lower-power

• 	Lower area Higher throughput

• 	Less configuration bits • 	Larger program size

• 	Dynamic reconfiguration

RICA vs VLIW RICA vs FPGA
• 	Faster 	for 	datapath 	computations,

similar throughput for control • 	Less flexible since coarse-grain
• 	Similar datapath area • 	Much lower power consumption
• 	Much lower power consumption • 	Lower area
• 	Performance 	not 	limited 	by 	the a 	FPGAs should be able to achieve a

presence of dependent instructions, no higher degree of parallelism since there
ILP limit are no area limits.

• 	Distributed registers, and hence lower • 	Programmable using a high-level C
power than centralised register file language

• 	Distributed Data memory access • 	Dynamic reconfiguration
• 	Temporary 	register/memory 	access

becomes wires between cells
.• 	Larger program size

RICA vs. ASIC
• Much more flexible
• Higher power consumption
• Larger area
• ASICs should be able to achieve a higher degree of parallelism due to reduced area limits
• Programmable using a high-level C language
• If RICA is replacing several hardwired IPs, then its distributed memory removes the need

for a shared bus to communicate data between the IPs, and hence reduces power

Future work in the RICA domain would need to mainly focus on two aspects: First, the

improvements of the software-tool flow to optimise further the design. This includes using

improved instruction scheduling algorithms, integrating the scheduling as part of the

compilation phase and allowing the compiler to identify hardware-like optimisations that are

possible on RICA. The second aspect would concentrate on the hardware design of the

interconnects to allow a better scalability of the array (i.e. allow the usage of 500+ cells)

along with the design of methods for reducing the program memory usage, as this has

considerable part of the total power and area consumption on the chip. Several program-

memory compression schemes are possible, including the use of distributed memories and

Page 123

local program-counters to remove redundant data, as well as the use of path-encoding

methods [128].

In the future, the current architecture can be heavily optimised by adding asynchronous logic

capabilities to the Instruction-Cells. Completion-detection signals can be created at the output

of each Instruction-Cells to signal when the next cell in sequence should start operation. This

would completely eliminate any need for the CLK_DIV cell as each step would only take the

exact time it needs to finish the calculation. This helps in further reducing the program size as

no configuration data is needed for CLK_DIV.

In terms of silicon utilisation, adding multithreading capabilities to the architecture would

dramatically increase it along with increasses in the degree of parallel operations that can be

executed. Having multiple JUMP cells and multiple program-counters coupled with the ability

to dynamic schedule the silicon resources between multiple tasks would create an ideal

system architecture with a very high degree of scalability, flexibility and an extremely high

performance per silicon area, unachievable in any other architecture.

Achievements

reconfiguraWe arrays

o Hardware design of DSRA programmable fabric

o Framework and tools to generate arrays according to defined clusters

o Tools to program (including routing) and test the arrays at various stages of the SoC

design-flow

o Library of interconnect structures that can be used to tailor the arrays towards the

application

o Optimised clusters useful in video coding and filtering applications

o Hardware design of two arrays targeting MPEG video decompression

courabDe Dtcon CeDII Array archRecture

13 Hardware design of RICA system composed of heterogeneous instruction-cells,

programmable interconnects and memory interfaces

° Tool to generate RICA arrays with customisable numbers and functionalities of

Instruction Cells

• Modified gcc compiler for generating RICA-specific assembly

• Scheduling tool to extract instruction parallelism from assembly

Optimised software implementations of DSP operations on RICA

Page 124

Contribution to knowledge

This study was aimed at providing a deeper understanding of practices for achieving

optimised SoC design in terms performance and costs. Tackling this issue from the point-of-

view of flexibility and the generality provided by hardware verified the existing conception

that the more specific the hardware, the higher the costs and the higher the performance are,

and vice-versa. This study showed that in order to create realistic designs at a domain-specific

level - a hybrid level between the extreme general FPGAs and the extreme hardwired

solutions ASICs - another general layer is required, which consists of a sothvare-framework

to generate these domain-specific hardware designs.

The presented work concentrated also on finding middle-grounds between existing extremes

of reconfigurable architectures from the point-of-view of reconfiguration time; i.e. somewhere

between the extremely infrequent FPGA reconfiguration and the single-cycle reconfiguration

in DSPs. It was proven that efficient silicon architectures can be achieved by combining a

reconfigurable fabric interconnected in an FPGA-style along with an atomic granularity

similar to
I
ALUs in DSPs and coupled to an instruction execution and control mechanism

similar to processors. This resulting architecture can execute both control and datapath

intensive code at performances currently separately obtainable using DSPs (for control) and

FPGA (for datapath).

Furthermore, with this approach the hardware-design flow stays at high-level C-language. It

can be seen as if the hardware design methodology becomes a mix between C and HDL: Big

functional loops can be conceptually thought of as HDL (being described in C), while the

program flow and control operations are done in the easy and conventional way in C. This

solves an enormous problem faced today in terms of finding new ways to program parallel

systems.

Page 125

A. Sample RICA cells

with instruction set

The supported Cells/Instructions are shown in the following table:

Cell Supported Configurations Inputs Outputs

ADD (ADD, 	SUB)+{SI, 	HI, 	01) 2: A, 	B 1: 0

COMP {EQ, 	NE, 	GTS, 	GES, 	LTS, 	LES, 	GTU, 	GEU, 	LTU,
LEU} 	+ 	(SI, 	HI, 	QI}

2: A, 	B 0

CONST #Num} - 0 1: 0

DIV [DIV SIG, 	DIV UNSIG} 	+ 	{SI, HI, 	QI} 2: A, 	B 1: 0

JUMP IF T, 	IF F. 	ALLWAYS} ADDR :1 : NL

LOGIC ISE, 	ZE, 	AND, 	OR, 	XOR, 	NOT,

QI}

NEG) 	+ 	{SI, 	HI, A, 	B 1: 0

MUL (MUL SIG, 	MUL UNSIG} 	+ 	{SI, HI, 	QI} 2: A, 	B 1: 0

REG (WRITE,READ} I 1: 0

RMEM (NO OFF} 	+ 	(SE, 	ZE} 	+ 	(SI, HI, 	QI) ADDR, OFFSET 1: DATA

SHIFT (SLL, 	SEA, 	SRL) 	+ 	{SI, 	HI, QI} 2: A, 	B :1 : 0

WMEM (Enable} 	+ 	(NO OFF}(SI, 	HI, QI} ADDR, DATA, OFFSET 0

These are the same operations supported on the 0R32 implementation of the OpenRISC,

hence anything that compiles and runs on the 0R32 can be converted to this architecture. This

is similar to the instruction set provided in the ARM7,

The si, HI, QI option specify the width of the data operated on:

SI : Single Integer = 32-bits
HI : Half Integer = 16-bits
QI : Quarter Integer = 8-bits

Page 127

cfc

ADD]

ITT
Configuration bits: 3 bits

Co C1-C2

0: Addition 00: 	SI

1: 	Subtraction 01: 	HI
10: 	QI

110 Pin Dir Size Description

A In 32-Bit Input 1 operand

B In 32-Bit Input 2 operand

O Out 32-Bit Result of Add/sub operation

Simplified operation:

0 = CO ? A-B : A+B

(Comments:

Standard Addition and Subtraction

13 Combinatorial cell

Page 128

8.2. COMP_MUX

Number of configuration bits: 6

cfg

I Comp_Mux I

Configuration bits: 6 bits
CO-C3 C4-05

0000: EQ (Equal) 00: 	SI
0001: GTS (Greater Than - Signed) 01: 	HI
0010: GES (Greater than or Equal to - Signed) 10: 	01
0011: GTU (Greater Than - Unsigned)
0100: GEU (Greater than or Equal to - Unsigned)
1000: ZERO(Compare to Zero)
1001: GTZS (Compare to Zero)
1010: GEZS (Compare to Zero)
1011: GTZU (Compare to Zero)
1100: GEZU (Compare to Zero)

110 Pin Dir Size Description
MDX A In 32-Bit Multiplexer Input 1
MUX B In 32-Bit Multiplexer Input 2
COMP A In 32-Bit Comparator input 1
COMP B In 32-Bit Comparator input 2
DATA OUT Out 32-Bit Multiplexer Output

Simplified operation:

DATA—OUT = (COMPA § COMP—B) ? MUX_A : MUX_B

Comments:

MIJXB is set to Zero when compare to Zero selected

Combinatorial cell

M MC C D
° 0 A

X X 	MT
A B P P A

AB

Page 129

171

Ck

CONST Configuration bits: 32 bits
CO-C31

The required 32-bit output constant

110 Pin Dir Size Description
0 Out 32-Bit Output constant

Simplified operation:

0 = Constant

Comments:

Provides constant value through configuration program memory

Combinatorial cell

Page 130

8.4. DIV

Number of configuration bits: 3

Configuration bits: 3 bits
CO C1-C2

0: Singed Division 00: 	SI
1: Unsigned Division 01: 	HI

10: 	QI

110 Pin Dir Size I 	Description
A In 32-Bit Input 1 operand
B In 32-Bit Input 2 operand
0 Out 32-Bit Result of division

Simplified Operation:

0= A/B

DV

-T

Page 131

PC

Configuration bits: 3 bits
CO-C]. C2 C3-C6 C7-C8

00: GO TO NEXT STEP 0: Relative 0000: compEq 00: 	SI

01: JUMP ALWAYS Address 0001: comp_GTS 01: 	HI

 JUMP IF FLAG IS 1: Absolute 0010: comp GES 10: 	QI

HIGH Address 0011: compGTU
 JUMP IF COND IS 0100: compGEU

LOW 1000: camp_ZERO
1001: comp_GTZS
1010: comp_GEZS
1011: compGTZU
1100: camp GEZU

JUMP

COMP I COMP
A 	B

ADDR 	NL

8.5. COI41P_JUWIP

Number of configuration bits: 9

110 Pin Dir Size Description
ADDR In 32-Bit Input Address
COMP A In 32-Bit Comp In
COMP B In 32-Bit Comp In
NL Out 32-Bit Address of Next Location

Operation:

C3-C6 performs a comparison operation on COMP_A and COMPB

C2 indicates if the address is in absolute or relative mode

CO-CI bits decide what sort of jump operation to perform. The flag is given from the output
of COMP-A and COMP-B

Comments:

o NL output is the address that would occur if the jump is not executed. This would be
the return address from a function; usually stored in the Link Register.

a The PC output goes into a decoder and then it gets converted into an address for the
Program RAM.

o When nothing is connected to the cell, it acts as an instruction controller and keeps
incrementing the program counter (i.e. GO TO NEXT STEP)

13 Cell clocked by the CLK_DJV

Page 132

8.6. LOGIC

dc

LOGIC

Number of configuration bits: 6

Configuration bits: 6 bits
CO-C3 C4-05

0000: SE (Sign Extend) 00: 	SI
0001: ZE (Zero Extend) 01: 	HI
0010: AND (Bitwise AND operation) 10: 	QI
0011: OR (Bitwise OR operation)
0100: XOR (Bitwise XOR operation)
0101: NOT (Bitwise Inverse operation)
0110: NEG_(2_ Complement _negation)

110 Pin Dir Size I 	Description
A In 32-Bit Input 1 operand
B In 32-Bit Input 2 operand
0 Out 32-Bit Result of operation

Simplified operation:

0 = A (Bitwise operation) B

Comments:

Bitwise logic operations.

• Combinatorial cell

Page 133

CfC

MUJ

A r
Number of configuration bits: 3

Configuration bits: 3 bits
CO C1-C2

0: Signed Multiplication 00: 	SI
1: Unsigned Multiplication 01: 	HI

10: 	QI

110 Pin Dir Size I 	Description
A In 32-Bit Input 1 operand
B In 32-Bit Input 2 operand
0 Out 32-Bit Result of multiplication

Simplified operation:

0= A x B

Comments:

11 Signed and unsigned multiplication

13 Combinatorial cell

Page 134

8.8. REG

Number of configuration bits: 3

Configuration bits: 3 bits
co ci C2

0: Write Bank 1 0: Read Only 0: Read Bank 1
1: Write Bank 2 1: Write on the next 1: Read Bank 2

positive clock edge

110 Pin Dir Size I 	Description
I In 32-Bit Data Input to write
0 Out 32-Bit Output of register content

Simplified operation:

Read

0 = RegBank[C2]

Write

Reg Bank[C0] = I

Comments:

ff Cell clocked by the CLK_DJV

• Each cell contains 2 32-bit registers, bank 1 and bank2. Only one of
these bank is accessible for reading or writing at any particular step.
The possible combinations achievable are:

READB1
READ_B2
READ El WRITE Bi
READ B1 WRI TE_B2
READB2WRITEB1
READB2WRITEB2

cfc

REG

Page 135

&L

cfc

RMEM

loffsel

ADDR DATA

Number of configuration bits: 4

Configuration bits: 4 bits
Co Cl C2-C3

0: Use Zero Offset 0: 	Zero Extend 00: 	SI
1: 	Use OFFSET 1: Sign Extend 01: 	HI

10: 	QI

110 Pin Dir Size Description
ADDR In 32-Bit Address input
DATA Out 32-Bit Data from memory
OFFSET In 32-Bit Offset

Simplified operation:

DATA = DATA RAM [ADDR + OFFSET]

Comments:

Read interface to the Data RAM banks.

13 Cell clocked by the CLK_DIV

Page 136

8.10. SHIFT

Number of configuration bits: 4

Configuration bits: 4 bits
CO-Cl C2-C3

00: 	SLL 	(Shift Left Logical) 00: 	Si
01: SRA (Shift Right Arithmetic) 01: 	HI
10: SRL 	(Shift Right Logical) 10: 	QI

1/0 Pin Dir Size I 	Description
A In 32-Bit Input 1 operand
B In 32-Bit Input 2 operand
0 Out 32-Bit Result of shifting

Simplified operation:

0 	[CO-Cl] ? A>> (B % 32) : A << (B % 32)

Comments:

• Logical Shift Left, Logical Shift Right and Arithmetic Right Shift
supported

• Combinatorial cell

SHIFTj

'IT

Page 137

8. 11. WIYiJEIYII

CfE

WMEM

Offset

ADDR DATA

Number of configuration bits: 4

Configuration bits: 4 bits
Co Cl C2-C3

0: Write Disable 0: Use no Offset 00: 	SI
1: Write Enable 1: Use Offset 01: 	HI

10: 	QI

I/O Pin Dir Size Description
ADDR In 32-Bit Address input
DATA In 32-Bit Data from memory
OFFSET In 32-Bit Offset

Simplified operation:

If(C0 == 1) RAM[ADDR + OFFSET] = DATA

Comments:

Write interface to the Data RAM banks

13 Cell clocked by RRC

Page 138

B. Publications

arising from this

work

Publications from this work

Under Review

• S. Khawam, T. Arsian, "Frame for the design and implementation of Domain Specific
Reconfigurable Arrays", Submitted to IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, April 2006

• S. Khawam, I. Nousias, M. Milward. Y. Ying, T. Arsian; "The Reconfigurable Instruction
.Cell Array", Submitted to IEEE Transactions on VLSI Systems Special Section on

Configurable Computing Design, May 2006

Published

• S. Khawam, I. Nousias, M. Milward. Y. Ying, T. Arsian, "Reconfigurable Instruction

Cell Array", UK Patent Office, UK Patent Application Number 05085 89.9, April 2005

• S. Khawam, S. Baloch, A. Pai, I. Ahmed; N. Aydin; T. Arsian; F. Westall; "Efficient
Implementations of Mobile Video Computations on Domain-Specific Reconfigurable

Arrays", Design, Automation and Test in Europe Conference and Exhibition (DATE),

2004. Proceedings Volume 2, 16-20 Feb. 2004

• S. Khawam, T. Arsian, F. Westall; "Embedded reconfigurable array targeting motion
estimation applications" Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003

International Symposium on Volume 2, 25-28 May 2003 Page(s):II-760 - 11-763 vol.2

• S. Khawam, T. Arsian; "Switch-box design for synthesizable coarse-grain arrays for
system-on-chip applications", Field-Programmable Technology (FPT), 2004.

Proceedings. 2004 IEEE International Conference on, 2004 Page(s):465 - 468

Page 139

• S. Khawam, T. Arslan, F. Westall; "Domain-specific reconfigurable array for Distributed

Arithmetic", 13th International Conference on Field Programmable Logic and

Applications (FPL) 2003

• S. Khawam, T. Arslan, F. Westall; "Synthesizable reconfigurable array targeting

distributed arithmetic for system-on-chip applications", Parallel and Distributed

Processing Symposium (PDPS / RA J49, 2004. Proceedings. 18th International 26-30

April 2004 Page(s):150

• S. Khawam, T. Arsian, F. Westall; "Unidirectional switch-boxes for synthesizable

reconfigurable arrays", Field-Programmable Custom Computing Machines, 2004. FCCM

2004. 12th Annual IEEE Symposium on 20-23 April 2004 Page(s):293 - 295

Public irions influenced by this w©u*

13 Y. Ying, I. Nousias, M. Milward. S. Khawam, T. Arslan; "System-level Scheduling on

Instruction Cell Based Reconfigurable Systems", Automation and Test in Europe

Conference and Exhibition (DATE), 2006. Proceedings Volume 3, 6-10 March 2006

o Cheng Zhan; T. Arsian, S. Khawam, I. Lindsay; "A domain specific reconfigurable

Viterbi fabric for system-on-chip applications", Design Automation Conference, 2005.

Proceedings of the ASP-DAC 2005. Asia and South Pacific, Volume 2, 18-21 Jan. 2005

Page(s):916 - 919 Vol. 2

o Zhenyu Liu; T. Arsian, S. Khawam, I. Lindsay; "A high performance synthesisable

unsymmetrical reconfigurable fabric for heterogeneous finite state machines", Design

Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and South

Pacific, Volume 1, 18-21 Jan. 2005 Page(s):639 - 644 Vol. 1

• A. Olugbon, S. Khawam, T. Arsian, I. Nousias, I. Lindsay; "An AMBA AHB-based

reconfigurable SoC architecture using multiplicity of dedicated flyby DMA blocks",
Design Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and

South Pacific Volume 2, 18-21 Jan. 2005 Page(s):1256 - 1259 Vol. 2

Katsoulakis, T. Arsian, T. Kirkham; Khawam S.; "A Low-Power Reconfigurable

Datapath for Advanced Speech Coding Algorithms", Parallel and Distributed Processing

Symposium, (PDPS / RA 149 2005. Proceedings. 19th IEEE International 04-08 April 2005

Page(s): 147b - 147b

Zhenyu, S. Khawam, T. Arsian, A. Erdogan,; "A Low Power Heterogeneous

Reconfigurable Architecture For Embedded Generic Finite State Machines"; Proceedings

of SOC Conference, 2005. IEEE International 25-28 Sept. 2005 Page(s): 113 - 114

• z Cheng, S. Khawam, T. Arsian, I. Lindsay; "Architecture and design methodology for

synthesizable reconfigurable array targeting wireless system-on-chip applications",

Page 140

Proceedings of SOC Conference, 2005.. IEEE International, 25-28 Sept. 2005 Page(s):93

- 94

• Z. Cheng, S. Khawam, T. Arsian, I. Lindsay; "Efficient implementation of trace-back unit

in a reconfigurable Viterbi decoder fabric"; Circuits and Systems, 2005. ISCAS 2005.

IEEE International Symposium on 23-26 May 2005 Page(s): 1048 - 1050 Vol. 2

• Z. Cheng, S. Khawam, T. Arsian; "Domain specific reconfigurable fabric targeting

Viterbi algorithm", Field-Programmable Technology, 2004. Proceedings. 2004 IEEE

International Conference on, 2004 Page(s):363 - 366

• I. Ahmed, T. Arsian, S. Khawam; "Video transmission through domain specific
reconfigurable architectures over short distance wireless medium utilizing Bluetooth

IEEE 802.15.1 standard", SOC Conference, 2004. Proceedings. IEEE International, 12-

15 Sept. 2004 Page(s):7 - 10

Page 141

C. References

"Virtex-4 User Guide 1.5", Xilinx, San Jose, 2006

"Stratix-11", Altera, Altera San Jose, 2005

V. George, H. Zhang J. Rabaey; "The design of low energy FPGA", Proceedings. 1999

International Symposium on Low Power Electronics and Design, pp. 188-193. 1999

V. George, "Low Energy Field-Programmable Gate Array", PhD Thesis, Univeristy of

California, Berkeley. 2000

I. Bryant, Y. Tanurhan, "The Actel Embeddable FPGA Core", Actel Corporation, 2001

N. Kafafi, K. Bozman, S.J.E. Wilton, "Architectures and Algorithms for Synthesizable

Embedded Programmable Logic Cores", om3

E. Tau, D. Chen, I. Eslick, J. Brown, and A. DeHon, "A First Generation DPGA
Implementation," FPD '95, Canadian Workshop of Field-Programmable Devices, May

1995.

A. Marshall, J. Vuillemin, B. Hutchings; "A Reconfigurable Arithmetic Array for

Multimedia Applications"; ACM International Symposium on FPGA, Monterey, CA,

Feb 1999

K. Leijten-Nowak, A. Katoch; "Architecture and implementation of an embedded
reconfigurable logic core in CMOS 0.13gm", ASIC/SOC Conference, 2002. 15th Annual

IEEE International, pp. 3 -7

"D-Fabrix array", Elixent Ltd, Bristol, 2003

T. Arslan, H. I. Eskikurt, D.H. Horrocks; "Configurable Structures for a primitive

operator digital filter FPGA. IEEE Workshop Signal Processing Systems" SIPS-97

1997

B. Hounsell, T. Arslan, "Programmable multiplierless digital filter array for embedded

SoC applications", lEE Electronics Letters. 2001

J. Hammes, B. Rinker, W. Bohm, W. Najjar, B. Draper, R. Beveridge, "Cameron: high

level language compilation for reconfigurable systems,; Parallel Architectures and
Compilation Techniques ' 1999. Proceedings. 1999 International Conference on 12-16

Oct. 1999 Page(s):236 - 244

"Handel-C for Hardware Design", White Paper, Celoxica Ltd, August 2002

"BINACHIP-FPGA Datasheet", Binachip Inc., 2005

Page 143

D. Zaretsky, G. Mittal, X. Tang, P. Banerjee, "Overview of the FREEDOM Compiler
for Mapping DSP Software to FPGAs," 12th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM'04), pp. 37-46, 2004

S. Hauck, T.W. Fry, M.M Hosler, J.P. Kao, "The Chimaera reconfigurable functional

unit", Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, Volume 12,

Issue 2, Feb. 2004 Page(s):206 —217

B. Kastrup, "Automatic Synthesis of Reconfigurable Instruction Set Accelerations",
PhD Thesis, Eindhoven University of Technology, 2003

"Xtensa LX Microprocessor, Overview Handbook", Tenilica, Santa Clara, 2004

R. Hartenstein, "Coarse Grain Reconfigurable Architectures", Proceedings of ASP-

DA C, Asia and South Pacific, 2001

T.J. Callahan, J.R. Hauser, J. Wawrzynek J, "The Garp architecture and C compiler",
IEEE Trans. on Computer, Volume 33, Issue 4, Page(s):62 - 69, April 2000

H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. C. Filho.,

"Morphosys: an integrated reconfigurable system for data-parallel and computation-
intensive applications", IEEE Trans. on Computers, 49(5):465-481, May 2000.

P.M. Heysters, G.K. Rauwerda, T. Lodewijk, G.J.M. Smit, "A Flexible, Low Power,
High Performance DSP IP Core for Programmable Systems-on-Chip", proceedings

IP/SOC 2005, December 7-8, 2005, Grenoble, France

P.M. Heysters, G.K. Rauwerda, G.J.M. Smit, "Implementation of a HiperLAN/2
receiver on the reconfigurable Montium architecture"; Parallel and Distributed

Processing Symposium, 2004. Proceedings. 18th International, 26-30 April 2004

Page(s): 147

"Avispa-CH 1, Communication Signal Processor", databrief, SiliconHive, Eindhoven,

2005

"XPP64-A1 Reconfigurable Processor", Preliminary Datasheet, PACT XPP

Technologies, Munich, 2003.

T. Miyamori, U. Olukotun, "REM-ARC: Reconfigurable Multimedia array coprocessor",

ACM International Symposium on FPGA, Monterey, CA, Feb 1998

E. Mirsky and A. DeHon, "MATRIX: A Reconfigurable Computing Architecture with

Configurable Instruction Distribution and Deployable Resources," IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM'96), pp. 157-166, 1996.

H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. R. Taylor, "PipeRench: A
virtualized programmable datapath in 0.18 micron technology", In Proc. of IEEE

Custom Integrated Circuits Conference, 2002

B. Mci, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins, "ADRES: An

architecture with tightly coupled VL1W processor and coarse-grained reconfigurable
matrix," Proc. of Field-Programmable Logic and Applications, 2003, pp. 61-70.

J. Babb, M. Frank, V. Lee, E.Waingold, R. Barua, M. Taylor, J. Kim, S. Devabhaktuni,
and A. Agrawal, "The RAW Benchmark Suite: Computation Structures for General-

Page 144

Purpose Computing, ", Proc. IEEE Symposium on Field-Programmable Custom

Computing Machines, FCCM97, 1997, pp. 134-143.

D. Wentzlaff, A. Agarwal , "A Quantitative Comparison of Reconfigurable, Tiled, and

Conventional Architectures on Bit-level Computation", MIT/LCS Technical Report

LCS-TR-944, April 2004

D. C. Cronquist, P. Franklin C. Fisher M. Figueroa and C. Ebeling, "Architecture

Design of Reconfigurable Pipelined Datapaths", Twentieth Anniversary Conference on

Advanced Research in VLSI, 1999

Ebeling, C.; Fisher, C.; Guanbin Xing; Manyuan Shen; Hui Liu, "Implementing an
OFDM receiver on the RaPiD reconfigurable architecture", Computers, IEEE

Transactions on Volume 53, Issue 11, Nov. 2004 Page(s): 1436 - 1448

A. Abnous, J. M. Rabaey. "Ultra-low-power domain-specific multimedia processors",

IEEE Transactions on VLSI Signal Processing, 1996

H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, J. M. Rabaey, "A 1-V
Heterogeneous Reconfgurable DSP IC for Wireless Baseband Digital Signal
Processing", IEEE JOURNAL OF SOLID-STATE CIRCUITS, November 2000

H. Zhang, M. Wan, V. George, J. Rabaey, "Interconnect architecture exploration for
low-energy configurable single-chip DSPs," IEEE Computer Society Workshop on

VLSI, pp. 2-8, 1999. 24

P. Hamalainen, J. Heikkinen, M. Hannikainen, T.D. Hamalainen, "Design of Transport
Triggered Architecture Processors for Wireless Encryption", Digital System Design,
2005. Proceedings. 8th Euromicro Conference on 30 Aug.-3 Sept. 2005 Page(s): 144 -

152

J. Heilddnen, J. Sertamo, T. Rautiainen, J. Takala, "Design of transport triggered

architecture processor for discrete cosine transform"; ASIC/SOC Conference, 2002. 15th

Annual IEEE International 25-28 Sept. 2002 Page(s):87 —91

T. Ishihara, S. Kondou, H. Fukuda, "Low Power Consumption Digital Signal Processor:

Hi-Perion", FUJI TSU Science and Technology vol. 36, pp. 56-62. 2000

D. Lewis, V. Betz, D. Jefferson, A. Lee, C. Lane, P. Leventis, S. Marquardt, C.

McClintock, B. Pedersen, G. Powell, S. Reddy, C. Wysocki, R. Cliff and J. Rose, "The

Stratix Routing and Logic Architecture," ACMISigda International Symposium on

Field-Programmable Gate Arrays, February 2003, pp. 12 - 20

Betz V., Rose J., and Marquardt A., "Architecture and CAD for Deep-Submicron

FPGAs", Kluwer Academic Publishers, 1999. ISBN 0-7923-8460-1

Rose J., Brown S., "Flexibility of interconnection structures for field-programmable

gate arrays", Solid-State Circuits, IEEE Journal of, Vol.26, Iss.3, 1990, Pages: 277-

282

J. Rose, R.J. Francis, D. Lewis, and P.Chow, "Architecture of Field-Programmable Gate

Arrays: The Effect of Logic Block Functionality on Area of Efficiency," IEEE Journal

of Solid-State Circuits, Vol. 25 No. 5, October 1990, pp. 1217-1225

Page 145

H. Schmit, V. Chandra, "FPGA switch block layout and evaluation", ACM International

Symposium on FPGA, Monterey, CA, Feb 2002.

G. Lemieux, D. Lewis, "Circuit Design of Routing Switches", ACM International

Symposium on FPGA, Monterey, CA, Feb 2002

E. S. Ochotta, P. J. Crotty, C. R. Erickson, C.-T. Huang et al, "A novel predictable

segmented FPGA routing architecture", ACM International Symposium on FPGA,

Monterey, CA, Feb 1998

M. Imran Masud, "FPGA Routing Structures: A novel Switch block and depopulated

interconnects matrix architecture", M4Sc Thesis, The University of British Columbia,

1999

M. Imran Masud, S. J.E. Wilton, "A New Switch Block for Segmented FPGAs",

International Workshop on Field Programmable Logic and Applications, Aug. 1999

A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. A. El-ayat, A. Mohsen, "An

architecture for electrically configurable gate arrays," IEEE Journal of Solid-State

Circuits, Vol. 24, April 1989, pp. 394-398 .

Y. W. Chang, D. Wong, and C. Wong, "Universal Switch modules for FPGA design,"

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, January, 1996,

pp. 80-101.

G. Lemieux, S.D. Brown, "A detailed router for allocating wire segments in field

programmable gate arrays," Proceedings of the ACM Physical Design Workshop, April

1993.

S. Wilton, "Architecture and Algorithms for Field-Programmable Gate Arrays with

Embedded Memory", PhD thesis, University of Toronto, 1997

Y. Lai, C. Kao, T. Chang, and K. Chen, "A Field Programmable Gate Array Chip with

Hierarchical Interconnection Structure," Proceedings of the 1998 IEEE International

Symposium on Circuits and Systems, Monterey, California, 1998, pp. 402-405.

A.A. Aggarwal, D.M. Lewis, "Routing Architectures for Hierarchical Field

Programmable Gate Arrays," Proceedings IEEE International Conference on Computer

Design: VLSI in Computers and Processors, Cambridge, Massachusetts, 1994, pp. 475-

478.

V.C. Chan , D.M. Lewis, "Area-Speed Tradeoffs for Hierarchical Field-Programmable

Gate Arrays," ACM Fourth International Symposium on Field-Programmable Gate

Arrays, New York, 1996, pp. 51-57

V. Betz, J. Rose, "VPR: A New Packing, Placement and Routing Tool for FPGA
Research", International Conference on Field Programmable Logic and Applications

(FPL) 1997, pp. 213-222

S.J.E. Wilton, "Embedded memory in FPGAs: recent research results",

Communications, Computers and Signal Processing, 1999 IEEE Pacific Rim

Conference on, 1999, Page(s): 292 -296

Page 146

S. Philips, S. Hauck, "Automatic layout of domain-specific reconfigurable subsystems

for system-on-a-chip", ACM International Symposium on FPGA, Monterey, CA, Feb

2002

ISO/IEC, "MPEG-4 Standard - Visual", ISO/IEC 14496-2, Geneva,

Li Reoxiang Li, Bing Zeng, M.L Liou, "A new three-step search algorithm for block
motion estimation", Circuits and Systems for Video Technology, IEEE Transactions on,

Volume 4, Issue 4, Aug. 1994 Page(s):438 - 442

K.R. Namuduri, Ji Aiyuan, "Computation and performance trade-offs in motion

estimation algorithms", Information Technology: Coding and Computing, 2001.

Proceedings. International Conference on, 2-4 April 2001 Page(s):263 - 267

T. Zahariadis, D. Kalivas, "Fast algorithms for the estimation of block motion vectors",

Electronics, Circuits, and Systems, 1996. ICECS '96., Proceedings of the Third IEEE

International Conference on, Volume 2, 13-16 Oct. 1996 Page(s):716 - 719 vol.2

Shan Zhu, Kai-Kuang Ma, "A new diamond search algorithm for fast block matching

motion estimation", Information, Communications and Signal Processing, 1997.
ICICS., Proceedings of 1997 International Conference on, Volume 1, 9-12 Sept. 1997

Page(s):292 - 296 vol.1

T. Zahariadis, D. Kalivas, "Fast algorithms for the estimation of block motion vectors",

Electronics, Circuits, and Systems, 1996. ICECS '96, Proceedings of the Third IEEE

International Conference on, Volume 2, 13-16 Oct. 1996 Page(s):716 - 719 vol.2

T. Enomoto, A. Kotabe, "A fast motion estimation algorithm and low-power 0.13-gm
CMOS motion estimation circuits", Circuits and Systems, 2001. ISCAS 2001. The 2001

IEEE International Symposium on, Volume 2, 6-9 May 2001 Page(s):449 -452 vol. 2

Hsien-Hsi Hsieh, Yong-Kang Lai, "A novel fast motion estimation algorithm using

fixed subsampling pattern and multiple local winners search", Circuits and Systems,

2001. ISCAS 2001. The 2001 IEEE International Symposium on, Volume 2, 6-9 May

2001 Page(s):241 - 244 vol. 2

J.W. Suh, Jechang Jeong, "Fast sub-pixel motion estimation techniques having lower

computational complexity", Consumer Electronics, IEEE Transactions on, Volume 50,

Issue 3, Aug. 2004 Page(s):968 - 973

Zhong-Li He; Kai-Keung Chen; Chi-Ying Tsui; N.L. Liou, "Low power motion

estimation design using adaptive pixel truncation", Low Power Electronics and Design,

1997. Proceedings., 1997 International Symposium on, 18-20 Aug 1997 Page(s):167 -

172

A. Takagi, S. Muramatsu, H. Kiya, "Motion estimation with power scalability and its

VHDL model", Image Processing, 2000. Proceedings. 2000 International Conference

on, Vol.3, 2000, Pages: 118- 121 vol.3

L. Fanucci, R. Saletti, L. Bertini, P. Moio, S. Saponara, "High-Throughput, Low

Complexity, Parametrizable VLSI Architecture for Full Search Block Matching
Algorithm", Electronics, Circuits and Systems, 1999. Proceedings of ICE CS '99. The

6th IEEE International Conference on, Vol.3, 1999, Pages: 1479- 1482 vol.3

Page 147

Yuan-Hau Yeh; Chen-Yi Lee, "Scalable VLSI Architectures For Full-Search Block

Matching Algorithms", Image Processing, 1996. Proceedings., International

Conference on, Vol. 1, 1996, Pages: 1035- 1038 vol.2

Xiao-Dong Zhang; Chi-Ying Tsui, "An Efficient And Reconfigurable VLSI

Architecture For Different Block Matching Motion Estimation Algorithms", Acoustics,

Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference

on, Vol. 1, 1997, Pages: 603- 606 vol.1

W. Burleson, P. Jam, S. Venkatraman, "Dynamically parameterized architectures for

power-aware video coding: motion estimation and DCT", Digital and Computational

Video, 2001. Proceedings. Second International Workshop on, Vol., 2001, Pages: 4- 12

H.-J. Stolberg, M. Berekovic, P. Pirsch, H. Runge, H. Moller, J. Kneip, "The M-PTRE

MPEG-4 codec DSP and its macroblock engine", Circuits and Systems, 2000.

Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on,

Volume 2, 28-31 May 2000 Page(s):192 - 195 vol.2,

T. Kumura, D. Ishii, M. Ikekawa, I. Kuroda, M. Yoshida, "A low-power programmable

DSP core architecture for 3G mobile terminals", Acoustics, Speech, and Signal

Processing, 2001. Proceedings. (JCASSP '01). 2001 IEEE International Conference on,

Volume 2, 7-11 May 2001 Page(s): 1017 - 1020 vol.2

M. Berekovic, H.-J. Stolberg, P. Pirsch, H. Runge, "A programmable co-porcessor for

MPEG-4 video", Acoustics, Speech, and Signal Processing, 2001. Proceedings.

(ICASSP '01). 2001 IEEE International Conference on, Volume 2, 7-11 May 2001

Page(s):1021 - 1024 vol.2

D. Brash, "The ARM Architecture Version 6 (ARMv6)", White paper, ARM Ltd,

January 2002

L. De Vos, M. Stegherr, "Parameterizable VLSI architectures for the full-search block-

matching algorithm", IEEE Transactions on Circuits and Systems, Vol.36 Issue: 10

Oct. 1989

L. De Vos, M. Stegherr, T.G. Noll, "VLSI architectures for the full-search

blockmatching algorithm," Acoustics, Speech, and Signal Processing, 1989. ICASSP-

89., 1989 International Conference on, 23-26 May 1989 Page(s): 1687 - 1690 vol.3

L. De Vos, M. Schobinger, "VLSI architecture for a flexible block matching processor",
Circuits and Systems for Video Technology, IEEE Transactions on, Volume 5, Issue 5,

Oct. 1995 Page(s):417 - 428

T. Komarek, P. Pirsch, "Array architectures for block matching algorithms", IEEE

Transactions on Circuits and Systems, Vol. 36 Issue: 10, Oct. 1989

K.-M. Yang, M.-T. Sun, L. Wu, "A family of VLSI designs for the motion

compensation block-matching algorithm", IEEE Transactions on Circuits and Systems,

Vol. 36 Issue: 10, Oct. 1989

H. Yeo, Y.H. Hu, "A novel matching criterion and low power architecture for real-time
block based motion estimation", Application Specific Systems, Architectures and

Page 148

Processors, 1996 ASAP 96. Proceedings of International Conference on, 19-21 Aug.
1996 Page(s):122 - 130

Hae-Kwan Jung, Chun-Pyo Hong, Jin-Soo Choi, Yeong-Ho Ha, "A VLSI architecture
for the alternative subsampling-based block matching algorithm", Consumer

Electronics, IEEE Transactions on, Volume 41, Issue 2, May 1995 Page(s):239 - 247

D. Xu, J.M. Noras, W. Booth, "A simple and efficient VLSI architecture for a very fast
high performance three step search algorithm", High Performance Architectures for

Real-Time Image Processing, lEE Colloquium on, 12 Feb. 1998 Page(s):6/1 - 6/6

Hangu Yeo, Yu Hen Hu, "A novel modular systolic array architecture for full-search
block matching motion estimation", Acoustics, Speech, and Signal Processing, 1995.
ICASSP-95., 1995 International Conference on, Volume 5, 9-12 May 1995

Page(s):3303 - 3306 vol.5

Bo-Sung Kim, Jun-Dong Cho, "VLSI architecture for low power motion estimation
using high data access reuse", ASICs, 1999. AP-ASIC '99. The First IEEE Asia Pacific

Conference on, 23-25 Aug. 1999 Page(s):162 - 165

Sung Bum Pan, Seung Soo, Chae Rae-Hong Park, "A novel VLSI architecture for the
full search block matching algorithm using systolic array", Circuits and Systems, 1996
ISCAS '96., 'Connecting the World'., 1996 IEEE International Symposium on, Volume

2, 12-15 May 1996 Page(s):750 - 753 vol.2

S. Kittitornkun, Hu Yu Hen, "Frame-level pipelined motion estimation array processor",
Circuits and Systems for Video Technology, IEEE Transactions on, Volume 11, Issue 2,
Feb 2001 Page(s):248 - 251

N. Ahmed, T. Natarjan, K.R. Rao, "Discrete Cosine Transform", IEEE Transactions on

Computers, vol. 23, 1974, pp .90-93

W. Chen, C. H. Smith, S. Fralick, "A fast computation algorithm for the discrete cosine
transform", IEEE Transactions on Communications, vol. 25, pp. 1004-1009, September

1977

C. Loffer, A. Ligtenberg, G. S. Moschytz, "Practical fast 1-D DCT algorithm with 11
multiplications", Proceedings ofICASSP, vol.2 pp. 988-991, 1989

Sungwook Yu; Swartziander, E.E., Jr., "DCT implementation with distributed
arithmetic", IEEE Transactions on Computers, Vol. 50 Issue 9 , Sept. 2001

Chin-Liang Wang; Chang-Yu Chen, "High-throughput VLSI architectures for the 1-D
and 2-D discrete cosine transforms", IEEE Transactions on Circuits and Systems for

Video Technology, Volume: 5 Issue: 1 , Feb. 1995

Yu-Tai Chang; Chin-Liang Wang; Ching-Hsien Chang, "A new systolic architecture for

fast DCT computation', IEEE International Symposium on Circuits and Systems, 1996.

ISCAS '96., vol. 2, 1996

J.E Voider, "The CORDIC trigonometric computing technique", IRE Trans. On

Electronic Computers, Sept. 1959

Page 149

Feng Zhou, P. Kornerup, "High speed DCTIIDCT using a pipelined CORDIC

algorithm", Proceedings of the 12th Symposium on Computer Arithmetic, 1995

E. P. Mariatos, D. E. Metafas, J.A. Hallas, C.E. Goutis, "A fast DCT processor, based
on special purpose CORDIC rotators", Proc. IEEE mt. Symposium. Circuits Systems,

vol. 4, 1994

Yang, K.-M.; Sun, M.-T.; Wu, L. , "A family of VLSI designs for the motion

compensation block-matching algorithm", IEEE Transactions on Circuits and Systems,

Vol. 36 Issue: 10 , Oct. 1989

M.A. BenAyed, L. Dulau, P. Nouel, Y. Berthournieu, N. Masmoudi, P. Kadionik, L.
Kamoun, "New design using a VHDL description for DCT based circuits", Proceedings

of the Tenth International Conference on Microelectronics, 1CM '98., 1998

Kyeounsoo Kim; Jong-Seog Koh, "An area efficient DCT architecture for MPEG-2

video encoder", Consumer Electronics, IEEE Transactions on , vol. 45 Issue: 1 , Feb.

1999

B.L. Jian, Z. Xuan, T.J. Rong, L. Yue, "An efficient VLSI architecture for 2D-DCT

using direct method", Proceedings. 4th International Conference on ASIC, 2001

J. Prado, P. Duhamel, "A polynomial transform based computation of the 2D DCT with

minimum multiplicative complexity", ICASSP 1996

Nam 1k Cho; San Uk Lee, "Fast algorithm and implementation of 2-D discrete cosine

transform", IEEE Transactions on Circuits and Systems, Volume: 38 Issue: 3 , March

1991

E. Feig, S. Winograd, "Fast algorithms for the discrete cosine transform", IEEE

Transactions on Signal Processing, Volume: 40 Issue: 9, Sept. 1992

Shen-Fu Hsiao; Wei-Ren Shiue, "A new hardware-efficient algorithm and architecture

for computation of 2-D DCTs on a linear array", IEEE Transactions on Circuits and

Systems for Video Technology, Volume: 11 Issue: 11 ,Nov. 2001

Yi Yang; Chunyan Wang; Omair Ahmad, M.; Swamy, M.N.S., "An on-line CORDIC

based 2-D IDCT implementation using distributed arithmetic", Sixth International

Symposium on Signal Processing and its Applications,. 2001 ,Vol. 1

Y. Arai, T. Agui, and M. Nakajima, "A fast DCT-SQ scheme for images", The

Transactions of the MICE, vol. E71, pp. 1095-1097, November 1988.

S. Baloch, "High Performance, Reconfigurable Low Power SoC Architectures For

Mobile Platforms", MSc Thesis, ISLlfUniversity of Edinburgh, Livingston, 2003

L. Zhenyu, S. Khawam, T. Arsian, A. Erdogan,; "A Low Power Heterogeneous

Reconfigurable Architecture For Embedded Generic Finite State Machines";

Proceedings of SOC Conference, 2005. IEEE International 25-28 Sept. 2005

D. Wentzlaff, "Architectural Implications of Bit-level Computation in Communication

Applications", MSc Thesis, Massachusetts Institute of Technology 2002

G. Lemieux, D. M. Lewis, "Circuit design of routing switches", ACM International

Symposium on FPGA, Monterey, CA, Feb 2002: 19-28

Page 150

S. Agarwala, et al, "A 600-MHz VLIW DSP", IEEE Journal of Solid-State Circuits,

Vol. 37, Iss. 11, Nov. 2002, PP. 1532-1544

G. Martinez, "TMS320VC5501/02 Power Consumption Summary", Application Report,

TI, SPRAA48, July 2004

"ARM7 Thumb Family Datasheet", ARMDOI 0035-3102.02, ARM Ltd, 2002

"ARM9 Family Datasheet", ARM DOl 0034-4/06.02, ARM Ltd, 2002

OpenRISC, hqp://www.opencores.org/i)rojects.cgi/web/orlk

GNU C compiler, 4.0, http://gcc.gnu.org/ 2005

"TMS320C5000 CPU and Instruction Set Reference Guide", Texas Instruments,

October 2000

G. Martinez, "TMS320VC64010/13 Power Consumption Summary", Application

Report, TI, SPRAA50, September 2002

"TIC6000 Compiler Benchmarks", Texas Instruments, 2004

"Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television",

DVB Document A 012, DVB Project Office, Geneva, Switzerland, June 1996

"ZL10353 Datasheet Fully Compliant NorDig Unified COFDM Digital Terrestrial TV.

(DTV) Demodulator", Datasheet, Zarlink, Ottawa, 2005

Wang, Chua-Chin; Huang, Jian-Ming; Cheng, Hsian-Chang , "A 2K/8K Mode Small-
Area FFT Processor for OFDM Demodulation of DVB-T Receivers", Consumer

Electronics, IEEE Transactions on, Volume 51, Issue 1, Feb. 2005 Page(s):28 - 32

J.W. Cooley, J.W. Tukey, "An algorithm for the machine calculation of complex

Fourier series", Math. Comput. 19:297-301, 1965

"MAD: MPEG Audio Decoder", libmad, Underbit Technologies, San Diego, 2005,
http://www.underbit.com/products/madl

ffmpeg library, http://fflnpeg.sourceforge.net/

I. Nousias, "Path-Encoding. An efficient representation of netlists and code compression

technique for Direct Network-based RCs", Internal Document, University of Edinburgh,

August, 2005

I. Nousias, "Reducing data-memory access by using sub-step time tags", Internal

Document, University of Edinburgh, April, 2005

ISO/EEC, "MPEG-4 Standard - Visual", Specification, ISO/EEC 14496-2, Geneva

G. E. Moore, "Cramming more components onto integrated circuits", Electornics, vol.

38, pp. 114-117, 1965

K. Compton, S. Hauck. Totem, "Custom Reconfigurable Array Generation", 9th Annual

IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'Ol).

Murray, A.F.; Denyer, P.B., "A CMOS Design Strategy for Bit-Serial Signal

Processing", Solid-State Circuits, IEEE Journal of Volume 20, Issue 3, Jun 1985

Page(s):746 - 753

Page 151

