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Abstract 

Silicon technologies have been conforming to the maxim of Moore's law for the past 40 years 

[131], but, even though production prices per unit have gone down, the NRE costs for making 

new chips keep going up with every new technology. This made a number of application-

sectors discouraged to design new chips and in favour of adopting more generic solutions 

such as FPGAs and high-performance DSPs. These two programmable technologies have also 

evolved dramatically over the past decade providing much larger usable silicon areas and 

higher throughputs at the expense of increased power consumptions. 

New communication standards and the requirements of modem mobile-device's users push 

the silicon towards processing more data in an increasingly shorter time; this is precisely the 

case for new compression formats targeting high-quality low-bandwidth multimedia. This 

presses forward the need for new programmable hardware solutions that intrinsically achieve 

generality, high-performance and, most importantly, low power consumption. 

This work investigates the design of reconfigurable hardware architectures to address these 

issues. Two novel solutions are thus proposed along with the implementations of several 

multimedia applications on them; the first architecture fits as a middle ground between 

FPGAs and ASICs in terms of performance and cost. This is achieved by using coarse-grain 

functional units combined with programmable interconnects to build flexible, high-

performance and low-power circuits. A framework for generating and programming the 

custom domain-specific reconfigurable arrays is also proposed. The tool-flow leverages some 

of the design effort that goes in creating and using the arrays by facilitating the reuse of 

previous design elements. Furthermore, this work proposes novel direction-aware routing 

elements to allow efficient tailoring of interconnect structures to the application. 

The second proposed processing architecture adds the dimension of high-level 

programmability to the reconfigurable arrays. This is achieved by using functional units that 

can be directly matched to elements in a compiler's internal representation of software. By 

using a custom instruction-controller the array can execute control operations in a similar way 

to processors, while at the same time allowing highly efficient mapping of datapath circuits. 

Coupled to the low-power and high-throughput achieved, this creates a viable alternative to 

FPGAs, DSPs and ASICs suitable for deployment in high performance mobile applications 

entirely programmable using languages such as C/C++. 
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(typically 8) that are able to simultaneously execute independent instructions while 
sharing registers and memory. 

Page xvi 



Chapter 1: 

Introduction 

Undoubtedly, the traditional problems of hardwired Application Specific Integrated Circuits 

(ASICs) designs such as inflexibility and very high NRE costs - which have been increasing 

as the technology got smaller - have opened a big opportunity for reconfigurable technology 

to flourish. The typical use of software solutions such as processors and Digital Signals 

Processors (DSPs) for adding flexibility to ASIC designs is nearing its limits as new 

performance-demanding applications emerge. This is particularly true for new complex 

algorithms such as MPEG-4 and Advanced Video Coding (AVC) that require a throughput 

only achievable with high DSP operating-frequencies and high power consumption. Other 

solutions such as Field Programmable Gate Arrays (FPGAs) are able to achieve performance 

unattainable with conventional programmable systems such as (Micro Controller Unit) MCU 

and DSP processors, while providing an enormous margin of reconfigurability compared to 

ASICs. However, this flexibility comes at the cost of very high consumption power and 

silicon area, which makes them unusable in battery-operated devices. Figure 3-1 shows the 

characteristics of these discussed solutions. A current SoC implementation would ideally 

include several combinations of these solutions to meet requirements. 
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To solve this problem a multitude of research projects and commercial solutions have been 

proposed in several directions. One way to deal with these new requirements is to improve the 

performance of current processors and DSPs. This can be achieved by increasing the level of 

pipelining in the instruction issue and execution process, which boosts throughput for 

instructions with a sequential and predictable execution flow. However, this comes at the cost 

of wasting cycles when executing code contains conditional and unpredictable branch 

instructions. Another strategy for increasing performance is to execute several instructions in 

parallel as in Very Large Instruction Word (VLIW) and Superscaler processors. This usually 

gives a good performance enhancement when compared to single-issue processors; however, 

in VLIWs only independent instructions can be executed simultaneously and the problem is 

that typical programs are not abundant in instruction level parallelism (ILP), which creates a 

practical barrier to the extent of achievable performance. Although all these DSP-based 

solutions offer very good flexibility, they usually have much less performance and a lot more 

power consumption than hardwired ASIC solutions. The current ongoing trend for increasing 

performance in processors is to have multiple cores that are able to execute multiple threads 

simultaneously. Although this is a very promising approach, it still requires a lot of effort to 

radically change the way programs are written and compiled so that parallelism is explicitly 

or implicitly defined. 

Power 
consun 

immability 

Figure 3-1: Characteristics diagram of popular solutions and area of interest 

The popular reconfigurable logic and Field Programmable Gate Arrays (FPGAs) today offer 

very high flexibility compared to ASICs and higher performance than DSPs - hence they 
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represent a potential architecture for future implementations. In a similar way to ASICs, the 

high performance of FPGAs comes from the fact that they have the ability to implement a 

large number of parallel operations on their fabric. The main drawback in FPGAs is their very 

high silicon area and power consumption which makes them unusable in portable and battery-

operated devices. Also - similar to ASICs - FPGAs are programmable using a Hardware 

Description Language (HDL) as opposed to processors that use high-level languages such as 

C/C++. In HDLs the parallelism between operations is explicitly defined, where as languages 

such as C have traditionally been used for serial definitions of operations. Nevertheless 

programmability through high-level languages is preferred over HDLs since high-level 

languages are more popular as many existing designs and new standards use them. 

Furthermore, programming at HDL-level requires much more effort for representing 

algorithms in a parallel form. An easy programmability is crucial for the success of any 

hardware architectures as it reduces the design-time and time-to-market. 

As opposed to the single-chip FPGA solutions, embedded FPGAs (eFPGAs) are 

reconfigurable logic cores that can be fitted inside a custom System-on-Chip (SoC) to 

increase its post-fabrication flexibility. Several commercial eFPGAs exists, even though they 

still suffer from high area and power overheads. Their usage is also problematic as it 

complicates the overall chip design tool-flow at the verification and implementation stages. 

While FPGAs are mainly a lump of programmable gates, there is currently a trend of so called 

reconfigurable computers/architectures which recently gained two types of definitions. The 

exact detail of the inside of a reconfigurable computer can be some combination of a 

processor and FPGA fabrics, such as the case where an array implements the processor's 

ALU to effectively allow reconfiguring the processor's instruction-set. Reconfigurable 

computers can also be seen as a fabric with special programmable elements for which 

software can be compiled in a similar way to processors. There are several proposed 

architectures that fall in this category promising high performance gains by using FPGA-like 

parallelism, while at the same time providing the ease of use found in processors. Figure 3-1 

and Figure 3-2 show the different advantages and disadvantages of the existing SoC solutions; 

reconfigurable computers are promising to fill the performance and flexibility triangular gap 

between DSP, FPGAs and ASIC. As detailed in Chapter 2, most of the existing architectures 

suffer from disadvantages in flexibility, performance, programmability or area and power 

overheads. It can also be noted that most architectures were designed to have the highest 

performance possible while maintaining good flexibility and hence there is no solution that 

tackles the power consumption problem specifically. 

Page 3 



Flexibility 

Low NRE Performance I 

Programmability 
	

Low Power 

Low Fbwer Programmability 

Low NRE 

"V 
Programmability' --- 

NRE 

Flexibility 

Performance 

— Low Power 

Flexibility 

Low NRE - - 	- - - - 	- 

Programmability 

Figure 3-2: Estimated relative characteristics of existing  

This thesis explores these reconfigurable technologies and tries to extend the existing 

architectures to find a solution for future portable devices. Here, we are trying to prove that it 

is possible to efficiently exploit the "area-of-interest" highlighted in Figure 3-1 in order to 

find an architecture that gives a better throughput than current programmable technologies, 

while achieving much lower power consumption and/or better programmability. This is 

explored here using two approaches: domain-specific arrays and instruction-cell arrays. The 

comparison of the performance of these approaches with existing and ideal solution is shown 

in Figure 3-3 and Figure 3-4. 
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The domain-specific arrays (DSRA) are based on the observation that in most SoCs the design 

that would be mapped to an eFPGA is chosen at the partitioning stage prior to the design of 

the hardware and that, depending on the application, only a specific portion of the eFPGA is 

usually used completely for random logic. This opens the opportunity to use an eFPGA that is 

more domain-specific to the target application but which has increased performance in power, 

timing and area when compared to generic eFPGA. This is usually achieved by using coarse-

grain programmable elements as opposed to the fine-grain ones in FPGAs. Although such a 

domain-specific solution can be extensively designed for every application encountered, a 

rapid generation of such architectures is essential to have a usable programmability. Hence, 

the initial approach described in Chapters 3, 4 and 5 proposes the so called Domain-Specific 

Reconfigurable Arrays (DSRAs) to semi-automatically create SoC cores that achieve good 

performance, area and power consumptions while at the same time providing a margin of 

flexibility to support post-fabrication changes, as seen in Figure 3-4. The DSRA approach 
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proves that it is indeed a compromise between ASICs and FPGAs as it can achieve up to 3 

times less power and 60% less area than an FPGA, while having 3 and 2.5 times more area 

and power than ASICs. A methodology for creating and using such cores inside an SoC is 

proposed, along with optiniised implementations of multimedia operations. 

However, the DSRA approach inherits the low programmability found in FPGAs, since it 

tries to port ASICs and FPGA designs to the architecture while reducing power and area. 

Chapter 6 introduces the Reconfigurable Instruction Cell Array (RICA) where the design of 

the hardware fabric is in such a way that it can accept a high-level description of a program. 

The RICA can be viewed as a coarse-grain array that can be programmed in a similar way to 

processors. Due to its array structure and abundant processing elements, RICA provides more 

parallel processing than high-end DSPs, while at the same time it consumes lower energy. 

Results show that RICA can be around 10 times faster than VL1W DSPs at a 6 times lower 

power consumption in the datapath. Furthermore, as described in Chapter 7, big systems such 

as full H.264 video-decoders can be quickly and easily mapped to RICA simply by using an 

existing C program description. 
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Chapter 2.0 

Previous 
Reconfigurable and 
low-power 
architectures 

With the high costs of current and future chip design and manufacturing technologies there is 

an urgent economical need to reduce the number of required re-spins in a design and to extend 

the life of manufactured devices. This can generally be achieved by adding flexibility and 

programmability to Application Specific Integrated Circuits (ASICs), which allows making 

changes to the design after manufacturing in order to overcome design errors and/or to 

support new and updated standards. The flexibility also allows dynamic reconfiguration 

which helps the system adapt to run-time constraints to improve the performance. Such 

flexibility is currently achieved using software solutions; however, the use of processors and 

DSPs in performance-critical applications such as portable devices is not beneficial. This is 

particularly true for new complex algorithms such as MPEG-4 and Advanced Video Coding 

(AVC) that require a high throughput only achievable with a high DSP operating frequency 

and high power consumption. 
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On-going work to find better architectures for future devices has led to several novel systems 

upon which the work presented in this thesis is based. Existing and established architectures 

described in the previous chapter like DSPs, FPGAs and ASICs are listed in Table 3-1. The 

rest of this chapter will detail the features of all emerging and researched reconfigurable 

technologies. As will be shown later, only a few of these architectures can potentially provide 

suitable high performance and low-power consumption. The pros and cons of every 

architecture are described to allow drawing a comparison between the solutions. 

Table 3-1: Established solutions 

ASIIC 
Pros: High speed, Low power 
Cons: Low flexibility, high NRE costs, designed using HDL 
FPGA 
Fabric: Fine-grain look-up-tables (LUT) 
Interconnects Symmetrical Mesh 
Pros: Very high flexibility, 
Cons Very high power consumption, programmable using HDL 
DSP, low-power DSP, VL1W, Superscaller, SRMD 
Architecture: ALU-based. Can take advantage of Instruction Level Parallelism 
Pros: Programmability using high-level languages, high flexibility 
Cons: Limited throughput 
Multi-Core and Multi-processor 
Architecture: Multiple cores with multi-threading between core to increase parallelism 
Pros: High throughput, programmability using HLL 
Cons: Synchronisation between the cores currently requires manual work. 

This chapter first examines reconligurable logic structures and reconfigurable computing 

architectures, i.e. systems able to execute a program-like sequence of instructions. Since 

programmable interconnects represent a big contribution to flexibility of reconfigurable 

systems, and consequently a considerable part of this work focused on the interconnects, the 

second section of this chapter overviews the existing programmable interconnects topologies. 

2.1. Recou71fiyIIrJblle arrays and computers 
Reconfigurable arrays can be generally defined as programmable fabrics where a 

circuit/datapath is mapped for execution. Even though the arrays might support partial 

dynamic reconfiguration, we define a reconjIgurable 'array any situation where the datapath 

mapped is fixed temporally; the circuit usually contains its own control and datapath 

elements. Reconfigurable arrays can be further classified into ones based on fine-grain or 

coarse-gain elements as functional units. 

Another class of reconfigurable architectures includes structures programmable to execute 

both control and datapath operations. This can be further split into reconfigurable processors 

which are simply a tight combination of an FPGA and a processor and reconfigurable 
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10 

computing architectures, which are fabrics that can directly execute control and datapath 

operations. 

2.1.1. Fine-Grain arrays 
Commercial FPGA architectures, such as [1] and [2], are fine-grain arrays', as this gives the 

maximum flexibility possible. The operational elements are the Configurable Logic Blocks 

(CLB5) which are mainly Lookup-Up-Tables (LUTs) with 16 single bit inputs. These inputs 

are controlled by the bits from the configuration memory, making it possible to build any 4-

input logic function by changing the content of the SRAM configuration memory [41]. The 

programmable elements also have the ability to register their outputs. Furthermore, a mesh of 

programmable interconnects is available to connect the CLBs together to build bigger circuits. 

The structure of these single-bit level interconnect is described below in Section 2.2. The fine-

grain aspect of FPGAs makes them extremely flexible and suitable for a very wide range of 

application. Hence, FPGA chips are produced in large quantities which makes their usage 

come with very reduced NRE costs. This high flexibility also implies very high power 

consumption which prohibits the deployment of FPGAs in portable applications. In terms of 

performance FPGAs have usually around 10 times longer delays than ASICs. In an FPGA 

chip the energy dissipated in interconnects is about 65% of the total energy consumption, 

while 30% are dissipated in programmable clock-routings and TO blocks [4]. 

Although FPGAs are traditionally homogenous arrays of fine-grain CLBs, some FPGA 

manufacturers recently started adding large application-specific blocks inside the fabric, such 

as multipliers, arithmetic operators and general purpose processors [1]. 

L flCfl L flCD L 

L riCri L flCfl L 

— U 1U - — U L• ! 

Figure 3-5: Example topology of an FPGA showing a simplified 4-to-I LUT. 
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In order to add flexibility to custom ASIC and SoC designs, FPGA technology can also be 

used as embedded FPGA (or eFPGA) cores. As in single-chip FPGAs, eFPGA cores contain 

the same array of programmable LUTs and an interconnect network. Existing commercial 

eFPGAs are described in [5]. They represent a good development towards programmable 

custom SoCs, however, designers are faced with problems due to the difficulty of integrating 

these analogue-level cores into SoC. The existence of a big programmable hard-core in the 

SoC makes tasks such as verifications, timings and power analysis difficult, as the 

characteristics of the core are very dependent on the design mapped on it. Furthermore, the 

existence of such configurable transistor-level IPs in the SoC makes the overall 

implementation tool-flow complex. 

To overcome this problem, embedded synthesisable reconfigurable logic was proposed in [6] 

where synthesisable programmable logic to implement combinatorial functions such as next-

state circuits based on programmable Look-up-tables (LUTs). The elements are spread in the 

circuit and are suitable for small logic functions and glue-logic between the bigger elements 

of the SoC. The area of the circuit in [6] is larger than the area of normal FPGAs due to the 

use of synthesisable cells. 

Table 3-2: Improvements to FPGAs 

Synthesisabile FPGA [6] 
Fabric: Based on LUTs to build small logic functions and glue-logic. 
Performance: The area is larger than FPGA due to the use of synthesisable switching 

circuit elements. 
IFPGA with Dynamic Reconfiguration: DP-F]PGA 171 
Fabric: Similar 	to 	a 	fine-grain 	FPGA, 	but 	supports 	fast 	dynamic 

reconfiguration by storing multiple context in the FPGA memory. 
Performance: The ability to support fast dynamic reconfiguration was found to 

increase the silicon utilisation of an FPGA by 3-4x times. 
Low Power FPGA 141 
Fabric: Fine-grain LUT based fabric, but with modified interconnects and 

clock routing circuits to reduce the power. Very low-level and non- 
synthesisable techniques are employed. 

Performance: This architecture presents an order of magnitude improvement, in 
terms of power, over commercial FPGAs, while still maintaining the 
same speed. 

Another problem with FPGAs is the large number of configuration bits they require (typically 

in the order of 5 MBits for recent devices [1]), which makes the time required to program 

these bits long. This can be a restriction if dynamic reconfiguration is desired in cases where 

parts of the circuit mapped on the FPGA are idle waiting for another part to finish. Dynamic 

reconfiguration of the circuit in this case would lead to better use of the available silicon. To 

enable this, FPGA manufacturers started allowing partial reconfiguration of the device, which 

would take a relatively short time to reprogram as long as the area reconfigured is small. On 

the other hand, the DP-FPGA project [7] proposed an FPGA architecture that can store 
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multiple configurations and switch between them. Even though the memory area needed to 

store the configuration is large, this approach was found to increase the silicon utilisation of 

an FPGA by around 3-4 times. 

An attempt to reduce the power consumption of FPGAs was proposed in [4] and included a 

combination of analogue circuit techniques and interconnect topologies. The approach in [3] 

and [4] was to reduce the power dissipated in interconnects and in the clock-trees. Even 

though the power dissipated in the CLBs is negligible, their structures were slightly modified 

to provide a better overall routing capability to suit the interconnect topology (described later 

in Section 2.2). On the circuit level, low-swing circuits are placed on both ends of an 

interconnect line to reduce the voltage swing to 0.8V, while the rest of the circuit runs at 

1.5V. This reduction in voltage improves power consumption. The power dissipation in the 

global clock distribution networks is reduced by using dual-edge triggered flip-flops in the 

CLB, which halves the operating frequency, however, it puts more constraints on the clock 

signal generator (e.g. correct duty-cycle). A 0.8V voltage swing is also used in the clock trees. 

This architecture presents an order of magnitude improvement, in terms of power, over 

commercial FPGAs, while still maintaining the same speed. The area is only increased a small 

amount due to the added circuits. However; the above-mentioned circuit level techniques 

would be difficultly to implement in an embedded FPGA and hard to integrate into an SoC. 

Such circuit level techniques become very complex especially when trying to create a 

synthesisable core, as that means that new library cells have to be manually created. 

2.1.2. Coarse-Grain I Domain-Specific arrays 
The efficiency of implementing an algorithm on FPGA hardware greatly depends on the 

structure of the basic logic-block used in the array. As described above, commercial FPGA 

implementations provide a fine-grain structure that can be used to implement a wide range of 

hardware. However, this generality adds hardware overheads such as interconnects, which 

affect the power, speed and area efficiency of the implementation. By making hardware 

architectures less generic and more specific to a domain of applications, several 

improvements can be gained in terms of power cfficiency, speed and area. 
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Figure 3-6: Fine grain vs. coarse grain approach 
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As shown in Table 3-3 below, several commercial and academic coarse-grain arrays exist; the 

CHESS architecture from [8] is an array of 4-bit ALUs targeting general multimedia 

applications. The array proposed in [9] is based on 4-bit LUTs with reduced flexibility in 

implementing random logic leading to a smaller area. The commercial D-fabrix from Elixent 

[10] is another attempt to reduce the area and power overhead. Although this approach is 

efficient, it still requires low-level manual coding for mapping the implementations. 

Table 3-3: Coarse-grain arrays 

D-fabrjxJEljxent 1101 (Similar: 181 and 1 91) 
Fabric: 	 Homogeneous grid of 4-bit ALU units. This ALU bit-width is not high 

enough to be defined as coarse-grain, but it is wider than the 1-bit in 
FPGAs. The array works as a coprocessor and the synchronisation 
between the host and the array has to be done manually. 

Programmability 	Programming the array is done at hardware netlist level using Handel- 
C or VHDL. 

Array 	 The array is not synthesisable and hence difficult to port to new 
customisation 	process technologies. 
Performance 	Timing and power comparison to other solutions are not disclosed. 
benefits: 

Another example of efficient domain-specific PLAs has been shown [11]: An FPGA 

architecture is proposed for the implementation of reduced complexity filters using a 

Primitive Operator Filter (POF). POF uses primitive operators such as shifts, additions and 

subtractions in the form of signal flow graphs to replace multiplications in digital filters. 

Thus, different CLB structures are described and compared. The CLBs consist of shifters, 

adders and subtracters to implement POF structures, as well as latches for memory elements 

and multiplexers. The multiplexers are used to route signals inside the CLB and to select the 

output signal of a CLB. Different CLB granularities are investigated and their performance 

compared in terms of speed and area. Since the CLBs are all connected to a single data bus, 

the speed of the output throughput is limited. In [12], a similar PLA architecture is presented, 

but with local reconfigurable interconnects between the CLBs, similar to the ones in 

commercial FPGAs. However, the advantage of using this structure over generic commercial 

ones is that the overall number of interconnects is much lower and, thus, the area and delays 

are reduced. This structure is also more power efficient since less power is dissipated in the 

interconnect. 

2.1.3. High-level FPGA synthesis 
Several attempts have been made to increase the programmability of FPGAs, trying to 

automatically synthesise programs written using high-level languages into FPGA circuitry. 

The first class of such tools use programming languages having a higher description level 

than HDLs; this is the case of the SA-C language provided by the Cameron project [13] and 
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Handel-C provided by Celoxica [14]. Although these languages are easier to use than standard 

Verilog and VH1DL, they still represent only a small subset of the standard ANSI-C and they 

have their own non-standard constructs, which prohibits reusing code written in standard C. 

Table 3-4: High-level synthesis of FPGA circuitry 

FPGA with SA-C [13], Handel-C [14] 
Programmability: SA-C is a subset of ANSI-C without pointer and where variables 

represent wires. In the Cameron project which uses SA-C, VHDL is 
still required to make the control logic. 
Handel-C is also a subset of C and requires existing C program to be 
re-written to explicitly define parallelism between functions. 

Performance: Using 	these 	languages 	typically 	leads 	to 	20% 	performance 
degradation over the manual design of the FPGA circuit in HDL. 

FPGA with FREEDOM [15] and [16] 
Programmability: Compiled binaries (which can be generated from any high-level 

language) are converted into a number of FSMs that are mapped to 
the FPGA. 

Performance: A speedup of 1.3-5x was observed between the FPGA exeution (on 
Xilinx Virtex 2 

) 
and the DSP execution (an TI C64x VL1W). 

The FREEDOM compiler from Binachip [15] [16] is a more successful attempt to create 

FPGA circuitry from existing program binaries, which can be created by compiling a high-

level program source. The program binary, which represents a Control Flow Graph (CFG) of 

scheduled instructions, is converted into a number of Finite State Machines (FSMs) that are 

executed in sequence on the FPGA to achieve the same operation. 

2.1.4. Reconfigurable instructions-set processors 
Reconfigurable instruction-set processors can tailor the possible operations executed each 

cycle by the processors elements (e.g. ALU) according to the application. This can for 

example be the creation of an ADD-SHIFT instruction which combines 2 ALU operations in 

a single cycle, if the application uses this pair of operations frequently. 

Table 3-5: Reconfigurable instruction-set processors 

Configurable instructions (Chimaera [17], ConCise [18], Tensilica [19]) 
Fabric: 	 Processors with reconfigurable fabric embedded into their pipeline 

Which allows creating customised instructions. 
Programmability 	Full ANSI-C, the compiler only has to know about the extra instructions 

added. 
Performance 	The problem in such processors is that they cannot achieve a very high 

throughput, as they are still limited by the typical problems of 

2.1.5. Loosely and tightly coupled arrays and processors 
Reconfigurable processors are a combination,of a processor and a reconfigurable FPGA-like 

structure, where all the compute intensive operations are executed on the FPGA to gain 
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improvements. A large number of such processors exists {20]. Such architectures suffer from 

the fact that a lot of manual work goes into designing the code for the processor and the 

reconfigurable fabric - which in most cases has to be done separately. Furthermore, data and 

time synchronisation between array and the processor requires manual interference. 

Two classes of such systems can be distinguished according to the loose or tight coupling of 

the array with the processor. 

Table 3-6: Loosely coupled processor and a reconfigurable array 

Garp 1211 
Architecture: A fine-grain array with 2-bit CLBs acting as a coprocessor to a DSP. 

The array and the processor communicate using a shared memory 
block. The processor is responsible for configuring the array and for 
synchronising the operations time with the array. The configuration 
time is relatively slow as it requires the transfer of 6 kbytes, however, 
this is still faster than the time needed to configure an FPGA. 

Programmability The program for the array is created using a proprietary netlist 
language, independently of the program running on the processor, 
which takes care of the synchronisation. 

Performance Depending on the application, speedups between 2 and 24 times were 
observed when using this coprocessor, which is quite typical of 
speedups obtained between FPGAs and processors. 

Low-power Not disclosed 
Morphosys 1221 
Fabric: A RISC Processor coupled to a homogenous coarse-grain array of 32- 

bit ALUs (containing a multiplier and a register file). This architecture 
follows the SIMD model, since all the functional units in the same row 
or column execute the same operation but on different data. Hence the 
array is only useful for data-parallel operations, while the rest of the 
(control) operations are executed by the RISC. Its main target is pixel- 
processing where such parallel-data operations are common. 
Data transfer to/from the array is programmed manually into the RISC, 
along with all the required synchronisation between the two. One 
advantage is that the array and the RISC can both be functioning at the 
same time. 

Performance: In operations such as DCT, Motion Estimation and Viterbi-decoding 
around a 5-10 improvements over normal CPUs is observed. 

Programmability Both the RISC and the array are programmed using low-level assembly 
language. 

Customisation Although the core is synthesisable it is not customisable. 
Low-power Lower power over DSPs is claimed, details not disclosed. 

Recore Systems's Chamel!eonlMoinitium [231and [241 
Fabric: The coarse-grain array acts as a co-processor to a general purpose 

processor in order to execute datapath code (no control). Several arrays 
(the proposed example has 4) can be used together through an 
interconnect scheme. The processor is responsible for configuring and 
operating all the arrays. 
It has the potential to achieve high bandwidth through parallel and 
distributed memory access. 

Programmability Proprietary Montium LLL language which is quite low-level. 
Low-power Benchmarks with other solutions are not disclosed. 
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SiliconHive 1251 
Fabric: Arrays of Processing and Storage Elements (PSE) cells built around a 

base processor. The base processor - handles control applications and 
distributes datapath operations to the PSEs. Example PSEs from 
Avispa-CHI (for SDR application) are DSP units supporting complex 
arithmetic. 

Interconnects Done between cells using blocking FIFOs accessed from each cell. 
Programmability All the processors (base processor and PSEs) are programmed using 

standard C language, however, the timing and data synchronisation 
between them has to be coded manually.. 

Array The architecture is synthesisable, scalable and different types of PSEs 
customisation can be used. 
Low-power 	& Not disclosed 
performance 
PACT from XPP Technologies 1261 
Fabric: The XPP64-Al chip is built from an 8 x 8 array of ALU-PAEs 

(Processing Array Elements) with 2 rows of RAM-PAEs at the edges 
(each has 512 x 24 bit). The core supports general-purpose opcodes and 
special operation such as packed complex arithmetic. Programs are 
partitioned into datapaths for the PAE and control operations for the 
host processor 

Programmability Special NML language, which is quite low-level and difficult to 
program. 

Low-power Not disclosed 
REMARC [27] 
Fabric: Coarse gain 8x8 array of 16-bit nanoprocessors. Coupling between 

RISC and fabric is done through registers, with some registers shared 
between both (which can be defined as tight coupling). 

Performance: This approach was compared to the use of a processor with an FPGA 
array, and it was found that a coarse-grain REMARC array of the same 
size gives around 7 time better performance. 
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Table 3-7: Tightly coupled processor and a reconfigurable array 

Matrix 1281 
Fabric: Similar to MorphoSys as being a combination of having a RISC and an 

array, but in this case they share the same configuration memory. Quite 
old, has no multipliers and targets simple operations. Functional units 
are 8-bit ALUs with memory and some control logic. 

Performance 	and Not disclosed 
Low-power 
IPipeRench (29] 
Fabric: The array consists of a series of stripe. each containing programmable 

ALUs that are interconnected using programmable pipeline stages in 
order to implement highly-pipelined datapath circuits. A feature if this 
architecture is the ability to reconfigure every block in one clock (the 
configuration is stored in context memory). Thus, e.g., a computation 
that requires 5 different operations in series can be implemented using 
only 3 blocks by constantly changing the configuration at each cycle in 
a pipelined manner (stages are configured while others are executed). 

Interconnects: Data connections are only present between two consecutive ALUs, in 
such a way that the output of the previous block is fed to the input of 
the next one. The processor and array communication is done through a 
FIFO. 

Programmability Uses a special language which is a subset of C that only supports single 
assignments. When compiled programs are converted into a straight- 
line single-assignments by miming all the functions and loops - hence 
the applications are limited to non-control ones. 

Low-power Not disclosed 
ADRES 130] 
Fabric: A VLIW coupled with a coarse-grain array. Memory and registers are 

shared between the array and VL1W to simplify the programming 
model of this processor/co-processor scheme - the only difference is 
that the register file is shared. A datapath on the array can support 
limited 	control 	operations: 	if a 	loop 	requires 	small 	conditional 
executions 	they 	get 	converted 	into predication 	(i.e. 	conditional 
execution). The configuration RAM stores several contexts to allow 
fast switching between them - this is also extended by the ability to 
load extra configurations from the system's main memory. 

Programmability Through C, since array and VLIW share memory and registers. Loops 
which can be pipelined and fit onto the array are automatically 
identified and mapped to the array. Data communication between the 
array and the VL1W is automatically done through the registers. 

Performance: Around 3x faster than a VLIW when mapping an application such as a 
MPEG-2 video decoder. 

Low-power Not disclosed 
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2.1.6. Reconfigurable computing architecture 
Although some of the architectures described below in Table 3-8 can be seen as yet another 

combination scheme of a processor/microcontroller with an array of Functional Units (FU), 

reconfigurable computing architectures in general are more a solution where both control and 

datapath computations are naturally executed on the same fabric without the need for moving 

a large amount of data or manually synchronising the operation of the different elements. 

Table 3-8: Reconfigurable computing architectures 

RAW 131] 
Fabric: Array of 16 tiles, where each tile is a processor coupled with some 

FPGA-likereconfigurable circuitry. Current RAW architecture targets 
high-end processing architectures as each processor has a Floating 
Point Unit. Each processor has its own instruction memory (and cache) 
and can access several banks of data memory. 

Interconnects Big programmable network of switches to connect each tile to its 
neighbours. 

Programmability On going work on a C compiler that allows high-level programming 
taking advantage of several levels of parallelism such as Instruction and 
Thread 	Level 	Parallelisms. 	However, 	current 	optimised 
implementations require manual low-level coding. 

Performance Hand-written and parallelised code achieved a performance comparable 
to FPGAs [32]. 

Low-power RAW targets high-end processing and power reduction measures are 
not implemented. The area is a massive 255mm 2  on 0.1 5tm. 

Pleiades [35] 1361 
Fabric: Coarse grain satellites (e.g. 167bits) units around a main processor. The 

main processor executes control-dominated sections of the program 
while satellites execute data-dominated computations. The system is 
distributed in a sense that every satellite has its own instruction fetch 
and execute. The satellites communicate between each other through 
dedicated interconnects. The satellite processors could be arithmetic 
modules 	(multipliers, 	MACs, 	etc.), 	memory 	modules, 	address 
generators or reconfigurable arrays. 

Programmability The design of the architecture and the choice of satellites to use have to 
be done manually. At partitioning stages the designer decides which 
loops of the full high-level program need to speeded-up using 
reconfigurable fabric; then the choice of deployed satellites can be 
made and their design started. This technique can create efficient 
architectures, however, they become too specific to the application. 
Programming the satellites requires writing low-level netlists. 

Interconnects See Section 36.0.5 below. 
Array Interconnects and the type/number of satellites can be made tailored for 
customisation the application. 
Low-power Not disclosed 
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TotemJRaPiD 1331 
Fabric: RaPiD is a linear 1D array of coarse-grain Functional Units (FU). FU 

are of the order of ALUs, multipliers and shifters. It can implement 
dataflow graphs where the result of one FU is forwarded directly to 
other FUs that use it. The intermediate values are stored in distributed 
registers. The hardware allows two levels of configuration switching: A 
fast one that can change every cycle and a slower one (the decision is 
made at programming time by the compiler). A sequencer acts as a 
program controller to 	the array 	for loading 	and 	decoding the 
configuration - a standard RISC ALU is also provided inside the 
sequencer to execute control-like instructions that are. not suitable for 
the FUs. 

Interconnects Pipelined data buses between the functional elements. Data buses 
restricts the scalability, as the number of FUs can only be increased if 
data locality is maintained, which requires a lot of design efforts. 

Programmability Uses RaPiD-C which, despite the name, is an assembly-level language 
that allows describing multiple parallel threads. All the synchronisation 
between threads is manually programmed using signals. However, the 
compiler automatically performs the pipelining and retiming required. 
Programming the RaPiD requires a detailed knowledge about the 
underlying reconfigurable fabric 

Flexibility 	and To achieve high throughputs for certain applications, a new array has to 
array be generated with appropriate FUs, since each RaPiD array is not 
customisation generic enough to support all applications with a high throughput. 

In the Totem project, research is also being carried out for the 
automatic generation of custom FUs, interconnects and VLSI layout of 
the core by specifying the high-level C algorithms [132]. 

Performance: For OFDM [34] application, around 6 times speed improvement over 
VLIW DSPs was observed. 

Low-Power Not disclosed 

TTA 131 1391 
Fabric: 	 Uses general Function Units (FU) such as ALUs and register files 

combined with Special Function Units (SFU) that execute application-
specific computations. Units are all pipelined in order to improve the 
performance of repetitive loops, which is the target application of this 
architecture - the TTA architecture is well suited for small applications 
such as DCT, Viterbi-decoding and encryption. 

Interconnects 	Based on a bus with segmented tracks. Although the design of the bus 
is simple, it limits the scalability of the system: The arrays have to be 
limited to small number of units (in the order of 25). 

Programmability 	Standard ANSI-C is supported. However, as with any processor, some 
manual assembly code is required to achieve high throughput and to 
make sure the timing in highly pipelined loops is met. 

Array 	 The arrays have to be customised to every application, since it is not 
customisation 	possible to create a big array containing enough units to achieve high- 

throughput for every application. 
Performance 	Good ratio of area I throughput is achieved: High speeds can be 

achieved for the amount of silicon area used, however, in some 
applications an ARM9 processor can achieve a higher speed than TTA 
at the cost of higher area, which, in a way, limits the application of 
TTA in future devices. 

Low-power - - - 	- Not disclosed, only area consumption is measured. 
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2.1.7. Generic low-power solutions 

Only a few of the previous research projects specifically target reducing power consumption, 

as the majority are concerned with achieving high performance. Furthermore, only a few of 

the previous works focus on developing generic signal-processing architectures with reduced 

power consumption, since it is easier to achieve power reduction by tailoring the hardware to 

the application. This includes low-power DSP processors such as the Hi-Perion from Fujitsu 

[40], which has the flexibility of normal DSPs but with lower power consumption. To achieve 

this it uses application-independent techniques, such as physical improvements in size and 

circuit capacitance as well as standard methods such as pipelining and parallel MAC 

processing to improve the performance and hence lower the supply voltage / operating 

frequency. 

2.2. Interconnect structures in FPGAs 
In an ideal situation where a reconfigurable system has Functional Units (FUs) operating in 

parallel, every FU would be able to connect to any other FU to exchange data. Although this 

is useful, it is quite often expensive in terms of area and power consumption. Since not all 

FUs need to be connected to each other at any one instance of time or in any single 

application, an interconnect scheme - depending on the FU type/structure/data handling - can 

be used to reduce the overall area and power usage. This section lists interconnect scheme 

used in FPGA devices, which have also been reused in other reconfigurable architectures. 

2.2.1. Symmetrical Mesh 

The symmetrical mesh architecture, which is also referred to as the island-style interconnect, 

is a popular structure found in most commercial FPGAs, which are characterised by a large 

number of homogenous logic-units that are commonly connected 'randomly' together. The 

logic blocks are grouped into clusters of blocks [41], generally containing between 4 to 10 

modules (these clusters are sometimes called slices). Each cluster contains internally another 

layer of interconnects between the modules themselves. As shown in Figure 3-7, the array has 

fixed horizontal and vertical metal tracks run between the clusters and two types of 

configurable switches are present: Connection-boxes permit the connection of a pin from the 

cluster to the metal tracks, and on every crossing of the metal tracks a reconfigurable Switch-

box connects .the tracks together. 
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Figure 3-7: Signal routing between two clusters using switch and connection boxes. 

The internal design of these reconfigurable switches and interconnect elements affects the 

overall flexibility and power consumption of the array. The flexibility of a switch or 

connection box is determined by the number of possible programmable connections as 

defined in [43] [42]. The flexibility of these boxes affects the overall flexibility of the array 

(hence routability) as well as other characteristics such as area and power consumption. As 

shown in [44], the design of the boxes is dependent on the type of logic blocks used. 

In [43] Rose and Brown concluded from place and route experiments with multiple designs 

that FPGA connection blocks need high flexibility to achieve a high percentage of routing 

completion, and that relatively low flexibility is needed in the switch blocks. In commercial 

FPGAs the programmable switching circuits inside the boxes are implemented using pass-

transistors, tn-state buffers or multiplexers. 

Several topologies for the S-Box designs exist and their performance tends to be related to the 

type of the logic cells and the application mapped to the FPGA. The main topologies are the 

Disjoint [52] (used in Xilinx, also called subset), Universal [51] and the Wilton [53]. The 

work in [49] also proposes an s-box topology to support non-rectangular array forms. This 

would particularly be useful for embedded configurable logic, where the shape of the array 

depends on the system. In this work different types of connections inside the S-box are 

evaluated to find the optimum one. 

Segmented trck 

The use of long metal tracks spanning multiple logic blocks was introduced in [50] as 

segmented tracks. It was found to improve speed and reduce delays due to the fact that 
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applications mapped to the FPGA's functional units tend to require long connections. A 

similar approach is used in most of Altera's devices. Several works were focused on finding 

the optimal length and distribution of segments to achieve the best performance in generic 

applications. Furthermore, the work in [49] [48] proposed a switch box design that is more 

suited for segmented tracks where unused connections at the end of a segment are removed. 

Interconnects in heterogeneous array in Pleiades 

In [37] interconnect schemes for heterogeneous arrays are evaluated. The research is focused 

on interconnects between the coarse block elements in the Pleiades architecture (see review 

earlier) and tries to overcome the routing problems caused by having blocks with different 

sizes. 

Global interconnects that can connect any part of the array to another were found to be 

suitable for distant connections, but inefficient for local ones. Furthermore, switching activity 

of the lines is transmitted for long distances. Segmented Mesh architectures improve over 

global interconnects, but they are difficult to adapt for heterogeneous arrays, as a 2D regular 

grid has to be found. The proposed solution is to use a generalised mesh where wiring 

channels are used along the sides of each module, with S-boxes on the crossing between the 

wires, as shown in Figure 3-8. 

Figure 3-8: Generalised mesh for heterogeneous elements with different sizes in Plaides [37] 

The disadvantage is that distant connections go through a lot of switching elements, which 

introduces delays and might increase the power consumption. Another proposed solution is to 

use a hierarchical generalised mesh with 2 levels of mesh: The elements are grouped into 

clusters, and an array is made out of clusters. One generalised mesh is responsible for 

interconnects inside the cluster, and a mesh with larger granularity connects the clusters 

between each other, as show in Figure 3-9. The tracks are segmented at different levels in the 

two arrays. 
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Figure 3-9: Hierarchical generalized mesh in Plaides [37] 

2.2.2. l3anj interconnect frees 

The binary interconnect tree [54] is a useful alternative to the shared bus when cell to cell 

connections are needed; it uses multiplexers arranged as a tree with each programmable-

switch intersection having 3 ports. The advantage of this architecture is that the number of 

switches used to route the signal grows logarithmically with the distance, which means that 

the overall delays introduced by the switches are lower. The disadvantage is that this scheme 

it is not scalable for very high numbers of FUs nor for changes in the number of 110 pins in 

each cluster. 

Figure 3-10: Reconfigurable Binary multiplexer-tree interconnect [54] 

2.2.3. Hierarchical sfrliicta.nres 

Hierarchical interconnect structures are useful in applications where data locality is high 

(neighbouring FUs are making most of the data communication) and only a few signals need 

to be sent across the chip. Several studies were done on such classes of interconnect and were 
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found to be efficient for some types of application [55] [56] - in most cases they can improve 

the speed at the cost of increased area over FPGAs. It should be noted that even though 

Hierarchical structures and Binary-Trees are conceptually the same in terms of switches, the 

only difference is the layout and FU-placement used when implementing on silicon. 

Figure 3-11: Hierarchical FPGA architecture [55] [56] 

2.2.4. Combined structures for low-power from LP-FPGA 

The power reduction measures in the low-power FPGA from [4] are mainly performed by 

combining 3 levels of interconnect: 

Nearest neighbour: High-speed and short lines are present from each functional unit 

to its 8 neighbour. Very low energy is dissipated in those connections. 

Mesh Interconnect: Connections between central functional units that cannot be made 

using nearest-neighbour connections. Those are similar to standard interconnect lines, 

but the difference is that the number of lines used is lower, and hence less power is 

dissipated. This is based on a segmented symmetrical mesh. 

Hierarchical Interconnects: High-delay lines for use between large distant logic 

blocks on the array. The structure is a mix of a symmetrical mesh and binary-tree 

architecture with inverse clustering. 

Furthermore, to reduce the power consumption of interconnects, circuit techniques are used 

such as low-voltage drivers on the tracks to reduce the voltage from 1.5V to 0.8V, and hence 

reduce the power consumed by switching activity. 
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23 Summary 

By surveying the existing solution and the on-going work we can identify two gaps: 

A very large disparity exists between FPGAs and ASICs in terms of cost, power, 

area, delays and flexibility. This forces applications to chose one of the extremes depending 

on requirements. This gap needs to be filled with a general solution, or general platform for 

creating specific solution, as described in Chapter 3, 4 and 5. 

Amongst the large number of existing couplings of processors and reconfigurable-

arrays and the surveyed reconfigurable computing architectu'es there is a lack of a solution 

that supports high-level programming through .0 and at the same time addresses critical issues 

such as low-power and high-flexibility. This is addressed in Chapters 6 and 7. 

Page 24 



Chapter 3.0 

Domain-Specific 

Reconfigurable 

Arrays: 

As described in Chapter 1, there is a need in future portable System-on-Chip designs to 

achieve a higher computational performance than is currently achieved, while keeping the 

power consumption at a minimum. Although custom hardwired ASIC designs are currently 

the choice in such situations, they suffer from a high level of inflexibility and costs not 

suitable for such rapidly changing requirements and markets. At the same time, 

programmable solutions such as FPGAs offer flexibility but suffer from high power 

consumption. Based of the results found in previous work (Chapter 2), the domain-specific 

approach seems to be a promising and extensible solution for achieving a balance between 

ASICs and FPGAs in order to bridge the gaps in cost and performance between these two 

alternatives. 
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The existing domain-specific solutions provide a good cost / performance ratio, however, they 

are tied to only one application. The main problem with the domain-tailored approach is that 

it is too time consuming to design a custom datapath from scratch each time a new 

algorithm/application is encountered in an SoC. Hence, for domain-specific solutions to 

become useful there is a need to make their creation fast and customisable. A platform and 

infrastructure to quickly allow the design of such arrays is required, and, to our knowledge, 

none of the previous works focused on the fast generation of domain-specific architectures. 

Such customisability is important to allow choosing the exact degree of flexibility required in 

the architecture according to system-level constraints such as power, area and delays. 

The work presented in this chapter can be put in perspective with previous research into 

domain-specific silicon compilers carried out at the University of Edinburgh; The FIRST 

Compiler [133] generates VLSI designs based on high-level description of computations. This 

compiler is domain-specific in a sense that it only creates circuits based on bit-serial atomic 

building-blocks; This greatly narrows the range of applications that can be targeted but gives 

very high-performance circuits for computations that can be expressed within the scope of the 

compiler. This compiler can also be coupled with domain-specific standard-cells, as shown in 

the SECOND Compiler [134]. The work presented here takes a similar approach but 

concentrates on a complete algorithm level rather than one computation, and it also adds the 

flexibility criteria to the final design. 

Ideally the platform for generating domain-specific architectures should be completely 

automatic, and its only input would be a description of the application using a high-level 

description language. Another approach is to make the creation of the domain-specific arrays 

semi-automatic, where the designer would have to manually choose the resources required on 

the array before it can be automatically created. Even though the semi-automatic 

methodology gives more responsibility to the designer, it was chosen as a starting target for 

this work as it allows an easy benchmarking of the performance in the domain-specific arrays. 

The methodology proposed gives the option to the designer to choose each element of the 

array from a library of predefined elements. The elements library would be large enough to 

make it possible to customise the array in terms of functionality and degree of flexibility, 

which also affect the timing, silicon-area and power consumption. Furthermore, to have a 

useful platform, the array creation and customisation processes needs to be fast enough to 

allow testing array with a number of if-then-else scenarios to choose the best compromise 

between flexibility and performance. 

According to the results in the previous work described in Chapter 1, it was decided that an 

FPGA-like array arrangement and interconnect structure would be best suited for initial 
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performance testing, as it would allow the reuse of some of the work done on such structures. 

As described earlier, FPGAs are usually composed of functional clusters (in the FPGA case 

these are Configurable Logic Blocks) surrounded by programmable interconnects in an 

island-style fashion to allow connecting the clusters together. Hence, this scheme uses 

independent elements for routing and for data-processing. If such an arrangement is used for 

the Domain-Specific Reconfigurable Arrays (DSRAs), which are composed of programmable 

data-processing clusters and data routing elements, then the elements-library would provide 

different types of inte?connects-circuits and operational clusters that would make it possible to 

generate any array according to the desired functionality and application. 

This customisability makes it possible to choose the desired amount of flexibility according to 

constraints such as performance (i.e. the delays allowed), silicon area and power consumption 

of the final SoC. The generated array has to fit inside the existing SoC software tool-flow as if 

it was a standard core. This can be done by generating a pre-routed silicon layout of the array; 

however the resulting array would not be portable to different fabrication technologies and the 

array-generation tool would need to know the details of the technology used. This is 

impractical as only a limited number of processes and fabrication technologies would be 

supported. The solution used here is to generate the array in a generic synthesisable format so 

that it can be used as a standard block inside the SoC software tool-flow. 

3.2. Proposed reconfigurable System-on-Chip 

Since the proposed reconfigurable arrays are domain-specific, in order to perform multiple 

operations a reconfigurable System-on-Chip would need to contain a number of such arrays 

each targeting one computation (as shown in Figure 3-1). Usually an array would be created 

for each computation that needs to be speeded up and all the arrays would run concurrently to 

achieve a high throughput. The arrangement using a processor and a number of domain-

specific arrays in an SoC can also be seen as a compromise between the two existing solutions 

of using a number of hardwired cores limited to an operation or using a large embedded 

FPGA that could implement all operations. An SoC bus can be used to provide an easy 

integration of the arrays with the processors and DSPs, however, a Network-on-Chip (NoC) 

approach would be more efficient. NoCs are more difficult to implement as currently no 

standard exists for them. In any approach, the processor would make the synchronisation 

between the arrays, configure them, provide them with the input data and read back their 

processed outputs. The array could also have some internal interim buffers, or it could have a 

Direct-Memory-Access (DMA) to the DSP's memory. 
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Figure 3-1: Reconfigurable System-on-Chip with a number of reconfigurable arrays each specific to one operation. 

33. Programmable Clusters 

The proposed arrays contain separate elements for data functionality and data routing. The 

clusters are the main functional elements in the array and they define the operations 

executable on it. The array was chosen to support heterogeneous clusters, as this can 

potentially reduce the area and silicon utilisation of the area when compared to a homogenous 

approach, in case the provided functional units match the required operations. When having a 

number of different clusters each of them would be responsible for one type of operation. In 

such a heterogeneous array it becomes possible to add new functionality to the array by 

augmenting it with new clusters. Individually, a cluster might not be able to perform any 

practical operations on its own; it is only by connecting several clusters together that a useful 

computation can be performed; hence, each cluster has 110 pins connectable to other clusters 

using the programmable switches. 

In the proposed scheme, the array is made specific to one domain of application according to 

the choice of deployed clusters. As will be seen later in Section 4.2, the operation performed 

by the clusters entirely depends on the application and its requirements in terms of flexibility 

and performance; typically, each programmable cluster can perform a small set of operations 

such as add, sub or shift. Clusters usually operate on word-level, e.g. 16-bit or 32-bits. In 

contrast to generic FPGA architectures, the clusters used here are coarse grain. This reduces 

the flexibility but improves performance as fewer interconnects are required as was shown in 

a number of previous architectures. 
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Figure 3-2: Modules, clusters and interconnects in the DSRA 

Making the clusters programmable allows the support of different operations or 

configurations on the same cluster. For example, an ADD cluster could perform additions as 

well as subtractions. Also, an ADD cluster which was designed as a 32-bit adder can be 

programmed to perform either a single 32-bit or two 16-bit addition / subtractions. 

Furthermore, the clusters can be programmable in such a way as to make it possible to select 

whether they should operate combinatorially or have registered outputs. Such an option can 

be used to create dynamically customisable pipelines. 

Once a number of domain-specific arrays have been generated for a number of applications, 

the library of clusters described earlier can be compiled. With such a library, an array for any 

application can be simply created by means of selecting the types, locations and numbers of 

clusters. 

3.4. Interconnects 

The role of interconnects is to allow the transfer of data from the output pins of a cluster to 

the inputs pins of another cluster so that large operational circuits can be formed. Ideally, the 

switching network would allow the routing of signals between any two cluster-pins in the 

array at any time. An implementation of such interconnects can be done by using a large 

multiplexer on each input port of each cluster; this multiplexer would be connected to all the 

output ports of other clusters and allows choosing the data to route. Although such a 

multiplexer implementation would be easy to program, it occupies too much area to be 

economical, and the overhead is not justified since not all the multiplexers would be used at a 

single time. Hence, there is a need for an interconnect structure that reduces the overhead of 
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unused programmable-switches while allowing the routing of a wide range of circuits. The 

programmable switching elements also have to be combinatorial with the minimum delay 

possible, as opposed to other reconfigurable architecture like PipeRench [29] where the 

interconnects are registered. In the DSRA interconnects create combinatorial connections 

between clusters, and any extra implementation details, such as pipelining, would be achieved 

inside the clusters. 

The island-style interconnect scheme used in typical FPGAs fits these requirements, since it 

provides an area efficient scheme to connect the clusters together, as opposed to the 

multiplexers scheme. The interconnect mesh uses connection-boxes to connect the cluster's 

pins to the tracks and switch-boxes to connect the tracks together (see Figure 3-7) to allow 

sharing the programmable switches between different paths. When using this architecture, 

extra effort is required to choose the optimum path between two points. Routing techniques 

have been well developed over the past years and standard routing tools such as VPR [57] can 

be reused in the DSRA. 

Since the clusters are coarse-grain compare to CLBs in FPGAs, the interconnects have to be 

adapted to the word granularity of the array. Due to the potentially large number of both 

single-bit and word-wide lines, it was decided that both levels of bit widths have to be 

supported by using two different levels of interconnect. The word-wide interconnects would 

be wide enough to efficiently route all widths of signals. As in the examples in Section 4.2, a 

combination of single-bit and 8-bits tracks can be efficiently used to route signals with widths 

ranging from 1-bit to 32-bits. When compared to single-bit tracks in FPGAs, using word-wide 

tracks reduces the number of configuration bits required to route signals, however, the 

number of routing elements (i.e. multiplexers and programmable switches) stays the same. 

In conventional generic FPGAs the configurable switches are implemented as pass-

transistors, which allow bidirectional connections between two tracks. To make the generated 

array synthesisable, the configurable switches have to be implemented using tn-state buffers 

if bidirectional wires are needed. Tn-state buffers are usually avoided in designs since they 

may introduce instability in the system. They also increase the area and power consumption 

of the interconnects when compared to pass-transistors. Using tn-state buffers allows having 

longer wires since they can support higher loads [52], but such long distances are not really 

needed in the DSRAs as the data is more local. Two tn-state buffers replacing a bidirectional 

pass-transistor consume 8 times more area and need 2 configuration bits instead of one, hence 

the design of the array should try to reduce the overall number of switches needed. 

It is also possible to use unidirectional tracks which would make it possible to avoid fri-sate 

buffers and reduce the overall area of the array, but it comes at the cost of reducing the 

flexibility of the architecture. The usage of unidirectional tracks depends on the application's 

requirement; such optimisations are examined in Chapter 5. 
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Figure 3-3: Synthesisable equivalent of a bidirectional pass-transistor using 2 in-state buffers, consuming 8 times more area. 

Inline with the remaining elements of the array, interconnects are fully customisable. 

Parameters include the number of tracks, the width of the word tracks, the flexibility of the 

connections and switch-boxes. These options affect the flexibility of the array, the routability 

of designs, the power consumption and area of the final chip; thus they can all be set in 

accordance with the requirements of the application. 

As described later in Section 4.2, the initial sample array was made fully bidirectional and 

with the maximum flexibility possible in the C-Boxes and the S-Boxes (defined in Chapter 2), 

as the purpose of this implementation was to measure the initial performance of DSRA. 

Further optimisations have been later made to the S-Box circuit (Chapter 5). 
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Figure 3-4: Basic island-style interconnect mesh scheme with customisable single bit tracks and word-wide tracks. 

3.4.1. C-Box circuit design 
Connection boxes allow connecting the pins of the clusters to the tracks. Since the tracks used 

are bidirectional, the programmable switches between the tracks and the ports have to be 
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based on u-i-state buffers. This is required for the cluster's output pins, as show in Figure 3-5 

and Figure 3-6. For the cluster's inputs pins, either a multiplexer or tristate buffers can be use, 

in order to select which track needs to be routed to the pin. For bidirectional pins, two tn-state 

buffers have to be used per track. The flexibility measure Fc of a C-Box represents the 

number of tracks the pin can be connected to. For the initial arrays (see next chapter) a high 

flexibility of Fc==number of tracks has been chosen for measuring the initial performance. 

Cluster 

Figure 3-5: Tr-state buffer based C-box 

Cluster 

Figure 3-6: C-Box using a multiplexer for input pins only. 

(a) 
	

(b) 

Figure 3-7: Two possible combinations of the MUX and tn-state buffer for use in C-Boxes. 

To improve the performance of the interconnect inverting tn-states (or multiplexers) are used, 

since they have less area, power and delay than the non-inverting ones. This is possible since 

it is known that each signal between two pins will go through an even number of C-Boxes (in 

this case 2). 
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3.4.2. S-Box circuit design 

Figure 3-8: S-Box using tn-state buffers 

Similarly, ti-i-state buffers or a multiplexer can be used in the Switch-boxes. This is 

investigated later in Chapter 5, as such a choice can be application dependent. Unlike the C-

Boxes, non-inverting elements have to be used, since a signal can go through an undefined 

(odd or even) number of S-Boxes to reach its destination. Future examinations can try to use 

inverting elements while adding a constraint on the routing program to use only an even 

number of S-box connections. 

Again, the initial S-Boxes tested had the highest flexibility of Fs=3, which represents the 

number of different directions that a signal coming to the S-Box can go to [43]. This value 

was chosen here for simplicity and can be configured by the designer according to the 

requirements. The topology used was the subset S-Box (see [52] [11), as this proved useful in 

FPGA interconnects. Other topologies can affect the characteristics of the array. 

35. Configuration Memory 

The configuration bits controlling the clusters and interconnects have to be stored in a 

memory device. The configuration memory contains the settings of all the configurable 

switches and multiplexers in the array. This includes the settings of all the clusters as well as 

the connection- and switch-boxes. Each cluster and its surrounding C-boxes require in the 

order of 100-200 bits of memory. An S-Box needs around 250 bits. The large number of 

configuration bits required is due to the high flexibility of the C- and S-boxes. Reducing this 

flexibility will reduce the required memory and the area of the array. 

3.5.1. Requirements and observations 

The memory needed to store the configuration has the following characteristics which are 

described below: 
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Read latency is unimportant, as no data will change quickly; this actually depends on 

the rate of reconfigurability, however, it would never require changing the 

configuration in a single clock cycle - for the testing purposes at least. 

° The time taken to write to the memory is not crucial, as it again depends on the rate of 

reconfiguration (see below). 

° The data will not be read from the memory (except if debug capabilities are needed); 

hence each bit-cell can have its output connected to the configurable switch. 

All outputs need to be available at all times. 

° The memory should be spread around the chip, since the memory cells should be kept 

next to the switches and clusters to minimise wires lengths. 

The rate of reconfiguration of the array is entirely dependent on the application. It could be 

measured in months, in case the reconfiguration is only part of a firmware update or 

functionality change, or it could be in fractions of a second if the application needs to 

dynamically change the behaviour of the array according to external changes. Thus several 

types of memory elements, such as non-volatile flash or SRAM can be used according to the 

requirements. 

However, the fact that the array is required to be portable to different processes and 

fabrication technologies limits this choice. Flash or SRAM memory cells, as the ones used in 

FPGAs, are not synthesisable. Stable synthesisable memory is restricted to flip-flops and 

latches. In the configuration memory for DSRAs, all the bits of the memory-cells have to be 

available all the time to constantly control the multiplexers and switches. Thus, a standard 

SRAM memory block as the ones provided by foundries such as UMC, might not be suitable 

as a configuration memory, since in usual SRAM block only the output-bits of the currently 

selected row are available at one time. To use SRAM technology, the definition of a single-bit 

SRAM cell and a controller would be needed, which requires circuit level and foundry 

specific designs. Hence, a synthesisable latch or register based memory is more appropriate. 

As with the bidirectional fri-state switches, the use of flip-flops as configuration memory 

increases the area needed per configuration-bit by around 2.7 times when compared to 

SRAM-cells. Hence, the overall number of configuration bits and programmable switches 

used (or saved) in the array has a significant impact on the total chip area. 

To facilitate dynamic reconfiguration of the array, it should be possible to partially change a 

small data-block in the configuration memory at run time. The data change should only affect 

its associated hardware and not the configured circuit for the rest of the array. 

The easiest option for the configuration memory would be to use registers arranged as shift-

registers. The output of each register is connected to the multiplexer or switch it controls. The 

programming of the registers can be done in a bit-serial manner by filling the shift register 

with the configuration bit-stream. Each cluster and its corresponding c-boxes can be grouped 
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together and a wide shift-register is assigned to it. The block would have one bit-input and 

one bit-output pins for configuration. Multiple blocks can be cascaded by connecting the bit-

out of the current block to bit-in of the next block, hence a number of blocks can be 

configured serially, as shown in Figure 3-9 

Figure 3-9: Example of cascading of shift-register based configuration memory. 

In the extreme case, the configuration shift-registers of the whole array can be cascaded so 

that the array can be configured by a single bit-stream. However, to enable quick dynamic 

reconfiguration, the array needs to be split in small regions each region requiring a separate 

configuration bit-stream input. In the initial design it was decided that every row of the array 

has one input bit for configuration. 

3.5.2. Alternatives and improvements to shift-registers 
In typical FPGAs, very high current is drawn by the chip during the configuration process as 

all the programmable elements would be switching on and off while loading the configuration 

bitstream. According to the rate of reconfiguration, this exhibited power can become an 

important factor. As described above, flip-flops arranged as a shift-register are quite simple to 

operate. However, the configuration bits would have to hop between different registers, 

triggering their programmable elements unnecessarily before arriving to its target flip-flop. To 

avoid this needless switching activity, an extra enable signal can be used so that the output of 

the flip-flops is disabled during the writing. 

The other alternative to flip-flop memory cells is latches. As seen in Table 3-1, the area of a 

latch is around 60% that of a register. However, the multitude of latches cannot be simply 

cascaded into shift-register and require a controller to select which individual bit to program, 

which adds an extra area overhead. Such a controller has been tested and designed to allow 

addressing every programmable block (i.e. S-Boxes and clusters with their associated C-

boxes) individually. The controller accepts input configuration data and target block address. 

Since the writing occurs in a word-serial manner, the width of the data line affects the speed 

of writing and the number of decoders needed for the latches circuit (the performance 
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measure below uses widths 1, 4, 8 and 16 bits). On the other hand, the width of the addressing 

line for the controller depends on the number of clusters in the array. Also, internally the 

controller would need to count which word of the configuration bitstream is being received so 

that it can be sent to the correct latches. Since this counting scheme would affect the power 

consumption it was decided to compare both grey-counters and one-hot counters. 

Table 3-I: Area comparison of configuration memory cells. 

Minimum area in 0.1 8im technology 
I 	 I-  — — — — — — — — — — — — — — — — — 

 
 -I  

I 	 I 	 I 
I Register 	i 	 I 	 81 im2  /bit 	 I 
I 	 I 	 I 
I 	

CLK 	
I 

I 	 I 	 I 	 I 

Latch 
48 jim2/bit 

SEL 
without controller 

SRAM cell 
22 1im2/bit 

(for o. 

comparison) 

 
without controller 

The results of the area of the configuration memory (along with the corresponding controller) 

and the configuration power are shown in Table 3-2. The results shown are for programming 

a row of clusters having around 650 configuration bits. It should be noted that the area is for 

UMC 0.1 8tni technology and the power consumption is that consumed if all the writing was 

done at the same speed. By comparing flip-flop implementations 1 with 2 we can see that 

adding a signal to disable the configuration while programming results in a 33% power 

reduction at the cost of 8% increase in total area. For the latches, this is not the same, as seen 

for cases 5 and 8, since the power increases in 8 slightly by 5% (while areas also increases by 

10%). 

Table 3-2: Area and power of different control circuit and configuration memories 

Implementation 
Routed 

Area (pm 2) 

Configuration 

power (jiW) 

1-FF arranged as shift-register 52,867 488 
2-FE, arranged as shift-register, disable while reconf. 57,135 323 
3-Latch, grey counter, 1 bit I cycle 49,306 151 
4-Latch, grey counter, 4 bits I cycle 43,568 96 
5-Latch, grey counter, 8 bits / cycle 42,324 104 
6-Latch, grey counter, 16 bits / cycle 41,824 154 
7-Latch, grey counter, disable while reconf., 8 bits / cycle 46,919 110 
8-Latch, one-hot counter, 8 bits per cycle 45,629 133 
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When comparing implementations 3, 4, 5 and 6 containing latches with grey-counter based 

controllers, we can see that the best power/area performance is achieved for implementations 

4 and 5 based on 4 and 8 bits word-wide data. Also we can see that the one-hot counter based 

controller does not offer any advantages over the grey-code one, as it consumes more power 

and occupies more area. It can be clearly seen that latches based memory is superior to the 

flip-flop based one, as it consumes up to 70% less power and 23% less area (implementations 

4 and 2). However, it should be noted that a shift-register implementation easily allows the 

configuration data to be read back from the array, while the controller for the latch based one 

does not allow this. Such a feature can be useful to verify the programming in applications 

like fault-tolerant circuits. 

3.5.3. Further improvements 

Several techniques that are employed in existing reconfigurable systems for improving the 

performance of the configuration memory can be used in the proposed architecture. For 

example, fast dynamic reconfiguration can be enabled like in DP-FPGA (See Chapter 2) by 

using a large RAM that temporarily stores a number of configuration-bits. The processor 

could send multiple configuration bit-streams in parallel to the RAM and then one 

configuration can be uploaded to the array. The transfer of the configuration from RAM to the 

array occurs much faster than if the configuration was sent serially from the processor to the 

array directly. With the RAM storing multiple configurations, a dynamic switch between 

configurations can be made quickly and efficiently without much data transfer between the 

processor and the array. Furthermore, the processor is free during the reconfiguration from the 

RAM, and hence it can be used to execute other computations. 

In reconfigurable architectures like Xilinx Virtex 4 [[1]] it is possible to reuse the 

configuration registers as general purpose variable shift-register. In our array, it would be 

possible to make the shift-registers of unused blocks configured to be used in the application. 

However, several issues have to be solved, like having special configuration bits that sets 

whether the configuration shift-register of the block is used or not and having c-boxes to 

connect the configuration bit-in and configuration bit-out of the block to the routing tracks. 

Another issue would be to make the size of the shift-register programmable and to be able to 

read the value at each register. 
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In contrast to embedded FPGAs, the proposed domain-specific reconfigurable arrays are 

integrated with the SoC as a normal core since the DSRAs are provided as synthesisable code. 

However, the use of these reconfigurable cores adds extra steps to the design-flow as shown 

in Figure 3-10. The arrays are designed in such as way that the overall SoC design-flow is 

kept the same and only a small number of new tools is used. The new steps are described 

below for the design-entry, verification and implementation stages. 

3.61. Design entry and array generation 

As with standard SoC system, early in the design stages of the system a vague partitioning 

between hardware and software implementations can be achieved by identifying the compute 

intensive computations of the target application. Regardless of the flexibility required in these 

computations, they can be implemented efficiently on a reconfigurable array with the cost of 

an added area overhead to the chip. Hence, depending on the area constraints a decision has to 

be made on the algorithms to target, the number of arrays to be used and the flexibility of 

each array. Since the arrays provide a flexibility margin, the initial partitioning can be 

modified later in the design. 

Netlistol 
clusters 

Clusters I, 

Parameters__/ 

Behaviors 
Simulation 

Array 
Generato; 

C 
bitstrearr 

P&R / 	 RTL - Array 
lnfc 	/ 

RTI. 
Simulation 

Synthesis 

Hierarchical 	GL -Array L__- Gate-leve 
P&R 	 - Simulation 

Parasitica 
and 

Powet 
Estimation 

Figure 3-10: System-on-Chip design-flow when using synthesizable reconfigurable arrays. 
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The programmable clusters used in the array define the application of the array and its 

flexibility. The clusters can be chosen from an existing library or defined as synthesisable 

HDL by the designer. The use of a library of clusters improves design-reuse and reduces the 

design time. To correctly design the clusters, the algorithm has to be analyzed and the basic 

operations extracted. Another approach to the cluster design is to analyse the existing 

hardware implementations of the algorithm and identify the common basic operators; 

designing the clusters to support all the possible implementations allows controlling the 

flexibility of the clusters. 

Table 3-3: Options given to array generation tool 

Number of rows, columns 
HDL definition of clusters 
Position of each routable pin (North, South, East, West) 
Placement and number of each type of cluster 
Type of Interconnects 
Number of bit-wide and word-wide Tracks 

The heterogeneous array of clusters is generated automatically from the clusters definition. A 

tool was developed to read and analyse a Verilog HDL code defining the clusters in order to 

generate the required connection-boxes and switch-boxes around the clusters. The array 

generation program is given the parameters of the required array, such as its size, the cluster's 

arrangement inside it, the locations of the pins on the cluster, the number of tracks and the 

type of interconnects (as shown in Table 3-3 and Figure 3-11). The array is generated as a 

synthesisable RTL code. 

c1t.r1 	odu1. c1u.t.r 
pin2, pin. pi 	) 	pini, pin, pin.) 

Parameters 
-Array size 
-Area & Timing constraint 	 Array 

-Clusters disbibutior 	 Generator 

-Interconnects type 	 - 
-etc.. 

	

odule  array_4__Py_Ei track 1. track 	track!  

clu.t.nl  1p2.nl • P1fl • Pifl. - 
c_bo1 (p1n1_1 pin1_, pin1_. .1 
cboz (pu2_1 	 pin_. 

.1"t..2 1pi.11, pu12  pin13, 4; 
c_boa (pin3 pin_. pin_i. -) 
cboxl (pinl_1, pin4_2, pir4_, I 

_boa1 Ipu1_1 pin?_2 pin_. .1 

Figure 3-I1: Inputs and outputs of the array generator 
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3.6.2. Array programming and testing 

Mapping a design to an array is done manually by writing an HDL netlist of interconnected 

and programmed clusters. This task is simple since a useful datapath is usually built using a 

dozen of clusters; the number of clusters in typical circuits does not exceed 64, which does 

not lead to a large netlist. The designer needs only to connect the clusters together, since the 

configuration of the switch-boxes and connection-boxes is done automatically, as described in 

the next section. The placement of the module, i.e. the choice of which physical cluster to use 

if more than one clusters of the required type exists, is also done manually. 

OCI( IC, ii, , OC, 01, 	) 

.hft_r.9i.t.r1 IC, bit_outi, 
•hift_r.g.t.rI (II. bit_eutl, 

L01_1 ddr...I, d.t_eutI, 1; 
L011 (.ddr...1, data_outl, 

SAC_I Idatuoutl, OC, 
8501 data_eut1, 01, 

Parameters 	
Array 

-Component placement> 	
Configuration -etc.. 	

File 

 mod,l.  DCT( IC, 11, 	OC, 02, 	 Configuration 

Figure 3-12: Inputs and outputs of the array configuration program 

The routing program, which is based on the routing engine provided in VPR [57], generates 

the required configuration of the connection-boxes and switch-boxes to correctly map the 

netlist to the array. VPR was modified to allow it to create a configuration bitstream for the 

interconnects in the array to build the input circuit. This bitstream is then used to configure 

the array in order to establish. VPR was also augmented with the ability to generate the 

configuration bits as scripts usable at the different stages of the design, like HDL scripts to 

test the configured array (both at RTL and gate levels) and scripts for timing-analysis of the 

mapped configuration (e.g. using PrineTime from Synopsys). The original VPR was also 

limited to homogenous CLBs and has been modified to support heterogeneous clusters that 

can each have a different number of I/O ports. 
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Table 3-4: Example of mapping a DCT computation to the arrays 

module one_d_idct_seq_elements(I0, 	Ii, 	12, 	13, 	14, 	15, 	16, 	17, 
00, 	01, 	02, 	03, 	04, 	05, 06, 	07, 
cik, 	rst, 
load sregs, 	en_sregs, add sub, dr_sac ); 

input 	 cik, 	rst; 
input 	(11:01 	10, 	11, 12, 	13, 	14, 	15, 16, 	17; 
output 	[11:0) 	00, 	01, 02, 	03, 	04, 	05, 06, 	07; 
input 	 load sregs, en_sregs, add sub, dr_sac; 

wire 	[7:0) dO, 	dl, 	d2, 	d3, d4, 	d5, 	d6, 	d7; 1/ Output of Ra 
wire 	 data sr0, data sri, 	data sr2, data_sr3; 
wire 	 data sr4, data sr5, 	data_sr6, data sr7; II Output of shift-r.g 
wire 	(11:0) 	10_a, 	ha, 12_a, 	13_a, 10 	s, 	us, 	12s, 	13s; 

add sub 12b addl 	(cik, rst, 	l'bO, 	10, 	17, 10_a); 
add sub 12b add2 	(cik, rst, 	l'bO, 	Ii, 	16, 	ha); 
add-sub- 12b add3 	(cik, rst, 	l'bO, 	12 1 	IS, 	12-a); 
add-sub-12b add4 	(cik, rst, 	I'M, 	13, 	14, 13_a); 
add-sub- 12b subi 	(cik, rst, 	1b1, 	10, 	17, lOs); 
add sub i2b sub2 	(cik, rst, 	l'bl, 	Ii, 	16, 	us); 
add-sub-12b sub3 	(cik, rst, 	i'bi, 	12, 	15, 	12s); 
add-sub-- 12b sub4 	(cik, rst, 	i'bl, 	13, 	14, 13s); 
// P.a, output is 8-bits 
coef odd even romO lutO (dO, 	(data sr6, data sr4, 	data sr2, data sr0)(; 
coef odd even rom2 lut2 (d2, 	(data sr6, data sr4, 	data sr2, data sr0)); 
coefodd_even_rom4 lut4 (d4, 	(data sr6, data sr4, 	data sr2, 	data srO)); 
coef_odd_even_rornt lut6 (d6, 	(data sr6, data sr4, 	data sr2, 	data srOH; 
coef odd even romi luti (dl, 	(data sr7, data sr5, 	data sr3, 	data_sri)); 
coef_odd_even_rom3 iut3 (0, 	(data sr7, data_sr5, 	data_sr3, 	data_sri)); 
coef odd even rom5 lutS (d5, 	(data sr7, data sr5, 	data sr3, 	data_sri)); 
coef odd even rom7 lut7 (d7, 	(data sr7, data sr5, 	data_sr3, 	data_sri)); 

Input Shift-registers 
sr_12b insro(clk, 	rst, JO_a, 	datasrO, load sregs, 	ensregs ); 
sr12b insr2(clk, 	rst, his, 	data sr2, load sregs, 	ensregs ); 
sr_12b insr4(clk, 	rst, 12_a, 	data sr4, load_sregs, 	ensregs ); 
sr-12b insrt(clk, 	rst, 13_a, 	data sr6, load sregs, en_sregs 
sr_12b insrl(clk, 	rst, lOs, 	datasri, load_sregs, 	ensregs 
sr-12b insr3(dlk, 	rst, us, 	data sr3, load sregs, ensregs 
sr_12b insr5(clk, 	rst, 12s, 	data sr5, load sregs, ensregs 
sr12b insr7)clk, 	rst, 13s, 	data sr7, load sregs, en_sregs 	; 

sac 16b sacO(clk, 	rst, dO, 00, 	add_sub, ensregs, dr_sac); 
sac 16b saci(clk, 	r5t, dl, 	01, 	add sub, ensregs, 	dr_sac); 
sac 16b sac2(clk, 	rat, 02, 	add sub, ensregs, 	dr sac); 
sac 16b sac3(clk, 	rat, 03, 	add sub, en_sregs, 	dr_sac); 
sac -16b sac4(dlk, 	rst, 04, 	add sub, en_sregs, 	dr sac); 
sac 16b sac5(clk, 	rst, 05, 	add sub, ensregs, 	dir sac); 
sac 16b sac6(clk, 	rat, 06, 	add sub, en_sregs, dr sac); 
sac _16b sac7(clk, 	rst, 07, 	addsub, en_sregs, 	dr sac); 

L endsodule 

3.6.3. Verification 

Three levels of simulations can be achieved with the synthesisable arrays: Behavioral, RTL 

and Gate-level. With the HDL definitions of the clusters and the design to be mapped to the 

array in netlist format an early behavioural simulation can be used to verify and debug the 

functionality of the netlist of clusters. 

This netlist is then passed to the VPR-based routing program along with the placement 

information that describes where each cluster is placed on the array. The configuration bits 

generated after routing can be loaded onto the array for simulation of the validity of the 

routing both at RTL and gate level definitions of the array. Similarly, the configuration bits 

for the array can be used to perform accurate timing analysis that depends on the 

configuration loaded on the array. The gate-level simulation is useful to make estimation of 

power consumption. 

Page 41 



It should be noted that the verification, performance evaluation and analysis processes are 

done using the existing SoC tools, unlike commercial embedded FPGA architecture where 

new tools need to be used. Furthermore, the synthesisable reconfigurable array does not 

require extra design domains such as mixed-mode design; another advantage is that the 

verification process can include the whole integrated SoC for accurate simulation, unlike 

embedded hard-cores. 

3.6.4. Implementation 

The array is implemented as any soft-core with typical synthesis, placement and routing 

software. Better performance is achieved if the synthesis of the elements of the array and their 

placement and routing is performed using a hierarchical methodology. The array generation 

program outputs guideline files for the place and route software to efficiently perform 

floorplaning and routing of tracks. The same hierarchical methodology is used to implement 

the full SoC design. Having a routed SoC allows the extraction of typical parasitic and delay 

data for the array which permits having an accurate timing and power estimations of the SoC; 

this also allows comparing the performance of different scenarios and configurations for the 

array, which helps aRLile the overhead consumed by the added flexibility.  
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Figure 3-13: Example of placed and routed arrays using Cadence Silicon Ensemble. 
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Figure 3-14: Example of placed and routed arrays using Cadence Silicon Ensemble showing the interconnect wires. 

3.7. Problems and future work 

As can be seen in Figure 3-14, one potential problem is the fact that different clusters can 

have different sizes, which might lead to wasted silicon area. To overcome this, the designer 

has to ensure that all the clusters and their associated C-Boxes have a similar height and 

width. If this is not possible, large clusters can be split into two smaller ones, or it can also be 

floorplanned in a rectangular shape to reduce the wasted area. 

If the proposed architecture proves to provide good performance benefits, then a future 

improvement would be to allow automatic mapping of applications to the array. This can be 

done from an HDL definition of a circuit where a synthesiser would convert it to the coarse-

grain clusters. Ideally, such an operation would also be done from a higher description level 

like C/C-H-. 

3.8. Conclusion 

The architecture introduced uses heterogeneous coarse-grain clusters with an interconnect 

structure similar to that used in commercial FPGAs. Also, the proposed methodology 

integrates well with existing SoC tool-flows. In order to create a DSRA targeting a new 

application, the designer has to identify the repetitive basic operations in the algorithm and 

create a programmable cluster in HDL to provide that operation. Eventually, once a number 
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of DSRAs have been designed for several applications a library of clusters can be built; at 

such a stage, creating an array for a new application becomes as simple and time-effective as 

choosing the clusters from the library. The array generator uses the HDL definitions of the 

cells and creates the appropriate DSRA. The designer can customise the type of interconnect 

used, the positions and number of the clusters as well as the locations of the pins of each 

cluster. Since the generated arrays are synthesisable, this software flow fits well with the 

existing SoC design tools. 

Programming the DSRA takes the same effort as typical ASIC design: The design to be 

mapped has to be written as a netlist of connected clusters before a configuration can be 

generated for the array. Similar to FPGAs, automatic routing tools are used to hide the 

interconnect infrastructure from the designer to simplify programming. The performance of 

sample DSRA arrays generated using the proposed technique is presented in the next chapter. 
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Chapter 4.0 

Domain-specific 

reconfigurable array 

for video coding 

The main applications that would immediately benefit from reduced power, increased 

throughput and increased flexibility are audio and video applications as well as 

implementations of Software Defined Radios (SDRs). Standards such as MPEG-4, H.263 and 

H.264 contain complex video algorithms such as Motion Estimation and DCT that require a 

high data throughput. Current implementations of these algorithms on DSPs need a high 

operating frequency and hence consume a high power. A dedicated ASIC hardware solution is 

not appropriate for such applications, as these standards keep changing and a re-spin of the 

chip is not cost-effective. Thus, such algorithms represent a good target for the use of domain-

specific reconfigurable arrays. The use of DSRAs for these applications should provide 

enough flexibility to support a number of implementations while at the same time they should 

offer a lower area and power consumption than FPGAs. To measure this, experimental arrays 

were designed for the two main computationally intensive parts of low-profile MPEG-4 

encoding: Motion Estimation and the Discrete Cosine Transform. 
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The two arrays are only sample unoptimised arrays to help prove the concept of DSRAs and 

to measure any potential performance improvements over DSPs and FPGAs. It should noted 

that the proposed framework provides a generic solution, even though these chosen examples 

are specific applications, the The array design and evaluation process includes first the 

analysis of the target algorithm to identify the required operations, and then the creation of 

clusters, which can be also composed of subclusters to perform the basic operations of the 

application. These clusters are then combined together through reconfigurable interconnects. 

To measure the performance of a generated DSRA, benchmarks are mapped to the clusters 

making the array and the performance is compared to other technologies such as FPGA and 

ASIC. 

In MPEG video, the moving images are composed of consecutive frames. Each colour image 

is composed of 3 elements: The luminance (Y) and two chrominance (CB and CR)  parts. The 

images are divided into small 1 6x 16 pixels blocks. Each block consists of one 8x8 CB pixels 

blocks, one 8x8 CR pixels block and four 8x8 Y pixels blocks (which can be considered as 

one large 16x16 Y pixels block). 

The general structure for a frame encoder and decoder is shown in Figure 4-1. The encoder 

computes the motion information and texture information. These data are multiplexed to form 

the compressed bitstream; using which the decoder is able to reconstruct the frame. In MPEG-

4, the actual compression of video data is done at 3 different levels: 

• Motion Estimation (ME) is used to reduce temporal redundancy in the image sequence, as 

the consecutive frames of a video sequence tend to be highly correlated. Hence the motion 

information contains the movement data between the current frame and the previous 

frame. 

• Transform-domain coding, here Discrete Cosine Transform (DCT), and quantisation are 

used to reduce the spatial redundancy found in a single frame. 

• Finally, Bitstream compression is used to compress further the generated data. 

Motion Compensation (MC) is the operation of reconstructing a frame from a previously 

constructed frame knowing the motion information. This is used at the decoder to reconstruct 

the video. However, as shown in Figure 4-1, the encoder also requires this operation so that it 

knows the previous reconstructed frame that the decoder is using. The decoder needs only to 

know the motion information and the error between two pixel-blocks in order to reconstruct 

the current block, and hence the full frame. 
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Figure 4-1: Block Diagram of operations in Encoder and Decoder for rectangular objects from [130]. 

The MPEG-4 standard only specifies how the MPEG bitstream data needs to be formatted and 

how the decoder should use the information contained in the bitstream. The standard leaves 

the choice open for the algorithms used to make specific computations, hence the existence of 

multiple coding algorithms with different characteristics in terms performance and cost. 

4.2. DSRA for Motion Estimation 

4.2.1. Algorithm 
Motion Estimation (ME) is the process of matching the current block to be coded (in the 

current frame) with a similar block from the previous frame. As video sequences tend to be 

highly correlated, it is easier to transmit the movement of a block between 2 frames rather 

than transmitting the completely coded block. 

In general a ME algorithm uses a cost criterion to compare the current block to some blocks 

in the previous frame (limited within a search area) and selects the best suited one where the 

error between the two blocks is the smallest. This is shown in Figure 4-2, where an area is 

searched for an NxN block matching the block in the current frame. The Motion Vector (MV) 

represents the 2D movement vector between the current block and the most suitable previous 

block found. 

Page 47 



Frame n 

YT 

Figure 4-2: Block-matching between current and previous frames. 

A criterion function suitable for fmding the best motion vector is the sum of Mean Squared 

Error (MSE) of all the pixels of the two blocks compared. However, to reduce the 

computational needs nearly all algorithms use the Sum of Absolute Difference (SAD) 

function. The SAD between two blocks is the sum of absolute differences between pixels 

from the current block and their corresponding pixels in the previous block. For a MV of 

coordinates (x,y) the SAD is: 

SAD, (x,y) = 	originai(i,j)— previous(i + x,j + 4 	(4.1) 

Where N is the size of the block (which could be 8, 16 or 32). 

A number of motion estimation algorithms exist based on the SAD calculation and differ by 

the order, number and size of blocks compared as well as by the bit-width of the pixels. The 

basic ME uses the Full Search Block Matching Algorithm (FSBMA, in which the SADs for 

all the possible blocks in the search area are calculated and the motion vector giving the 

minimum SAD is selected. This gives the best results and has a simple structure when 

implemented. However, the FSBMA consumes a long computational time when compared to 

other algorithms. If NxN is the size of the block and (N+P+Q)x(N+P+Q) the size of the 

search area, then there are (P+Q+1)x(P+Q+1) candidate blocks to be tested. The loop needed 

for the calculation of the motion vector for only one block is: 

For m = -p top 
For n = -p to p 

For k = 1 to N 
For 1 = 1 to N 

SAD(m,n) = SAD(m,n) + I x(k,1) - y(k+m, j+n) I 
End 1 

End k 
If SAD < SADmin 

SAD,.nin = SAD 
MV = (m, n) 

End if 
End n 

End m 
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Most of the existing algorithms for speeding-up the computation are based on reducing the 

number of tested motion vectors. One such popular algorithm is the Three Step Search (TSS) 

[60] where the first step of the search evaluates 9 uniformly located candidate points and 

selects a winner with minimum SAD. In the second step, the search is refined at the area 

around the winner of the previous step. Again, 9 candidates are evaluated, but this time the 

distance between candidates is halved. Finally, in the third step the 9 blocks around the 

winner in step 2 are evaluated and a final motion vector is chosen. A large number of other 

algorithms exists tho reduce the number of tested points further, usually at the cost of a 

quality degradation; for example: The New TTS [61], Fast ITS [62], Diamond Search [63], 

Spiral Search [64] (where the search moves spirally around the vector predictor location till a 

threshold is passed, thus having a dynamically changing search area), M-IBOS [65], 2SMWS 

[66] and hierarchical Search. Another technique to speedup the blocks comparison is to 

change the tested blocks themselves, such as using size-downsampled blocks of 8x8 or 4x4 

instead of 16x16 [67] or bit-downsampled of 4-bits or 2-bits instead of 16-bit [68]. 

4.2.2. Existing reconfigurable architectures 
An architecture targeting ME with flexibility would ideally support all the search algorithms 

listed earlier. Pervious work on motion estimation has lead to architectures providing 

flexibility in the supported algorithms, however, it is very limited and not adequate to allow 

changing between different coding standards. E.g., the hardwired elements proposed in [69] 

can be configured at run-time to support 3 different bit-widths to save power; however, only 

one basic algorithm is supported. Similarly, [70] and [71] present architectures supporting 

only one algorithm but having flexibility in the size of blocks and search area. The hardware 

in [72] and [73] offer reconfigurable elements that can switch between two algorithms 

differing by the number and the order of blocks searched. 

Processor solution 
Most previous flexible solutions for implementing ME are based on processors; in such 

solutions the processor supports specific instructions that help in rapidly performing the ME 

computation. This includes instructions such as absolute-difference calculation and 

instructions for min and max calculation as in [74]. The absolute-accumulate instruction is 

sometimes provided [75] to allow an easier calculation of the total SAD. 

Another method for improving a processor's performance in video applications that has a 

benefit to ME is the increase of data parallelism: In [76] sub-word parallelism allows the 

execution of four 16-bit operations on a 64-bit datapath simultaneously. This same Single 

Instruction Multiple Data (SIMD) concept is used in the multimedia tailored ARMv6 

architecture [77] which performs four 8-bit SAD calculations in one cycle. This reduces the 

total processing time of 4 pixels down to 3 cycles. 
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Norni-recrrn11iguiiraffle array stnuctuRres for T'STMA 
Basic systolic-array architectures for motion estimation have been presented in [82] and [78]. 

A large number of newer architectures are improved version of these designs. Since the 

computation for calculating the SAD of one candidate block consists of 4 loops, the different 

systolic arrays proposed attenmpts to calculate two or more of these loops in parallel. 

The work in [81] presents the four systolic arrays for the FSBMA algorithm where each array 

has a different dimension and different variable projection. The processing elements (PE) of 

the arrays compute subtraction, absolute computation and addition. The elements have 3 

inputs (sum from previous PE, current pixel and reference pixel) and one output (sum). The 

output feeds to the next PE or an adder array that computes the final SAD. The arrays 

presented are used in conjunction with a local-memory that stores the current and search data 

frames and a controller that controls the array and generates the address for the memory. 

In [82], two systolic arrays are presented to support two data-flow techniques: One array 

broadcasts the previous-block data to all the elements in the array while the current-block data 

is propagated. The other array broadcasts the current-block data and propagates the previous-

block data. The 16 Processing Elements (PE) used consist each of a subtractor, an absolute 

value calculator and an accumulator. Each PE computes the SAD for one candidate vector. 

Registers are used to propagate data and a large comparator is used to select the best SAD of 

the 16 ones found at the output of each PE. Finally, a controller and an address generator are 

used to control the operation of the PE and to feed data into them. If a change in the block 

size is required, without changing the search-area, then the same array can be used as the 

computations carried out remain unchanged, since only the address generator requires 

modification. On the other hand, if the search area is changed, then multiple arrays can be 

cascaded to support this (allocate one area for each array) 

Similarly, [79] and [80] present another set of array architectures where the k and I loops 

shown earlier in the code are parallelised; all absolute difference values for the SAD of one 

candidate block are computed concurrently and the SAD is computed using an adder tree. The 

previous-frame data is input sequentially, through shift registers and fed to the PEs after 

appropriate reordering to replace the address-generator used in the previous architectures. The 

shifting network of the registers is changed dynamically. Each PE has a register for storing 

the previous and current data and for storing interim AD. The PE has three inputs for the 

previous data pixels (delayed from adjacent PE, from registers, etc.) and a multiplexer to 

select between them. The current data is also propagated between PEs. 

Airchftectuires targetliinig other flgorfith1m 
Special hardware exists for running specific ME algorithms, such as the one proposed in [83] 

for the TTS algorithm. In this technique, 9 PEs are used each to compute the SADs of the 9 
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candidate MV concurrently. A column of 9 comparators is then used to select the best MV 

from the 9 SAD. The array described in [89] is targeted for the NTTS algorithm where 3 

check-points (i.e. candidate MV) are used for the search, thus three columns of PE are used, 

and each column calculating the SAD of one check-point. The previous data is broadcast to 

every row, while the current data is propagated horizontally using programmable-delay-

elements, which is required by the NTTS algorithm. 

In [84] the same architecture presented in [78] is used, but a programmable address generator 

and control unit allow supporting alternative sub-sampling algorithms, where the pixels of the 

block are alternatively sub-sampled to make a N12xN12 block size. Similarly in [69], the 

architecture from [78] is modified to enable dynamic change of the bit-width of the ME 

operation in order to save power. This is achieved by using different (4) clocks to the latches 

and flip-flops. 

4.2.3. Cluster design 

A flexible reconfigurable motion estimation array would support a larger number of different 

SAD-based motion estimation algorithms and would provide a selection of bit-width, 

performance, quality, power consumption and speed. This flexibility can be used at design-

time as well as run-time to adapt the system to real time constrains. By examining previous 

hardware implementations of ME we can identify the following operations and elements in all 

the implementations: 

Absolute-differences (AD) calculation.. 

• Additions, subtractions and accumulation. Addition and accumulation are required to 

compute the sum-of-absolute-differences (SAD). Adders can be used alongside the AD 

calculators to calculate the interim SAD as in the case of the architectures given in [81]. 

In [81] and [82] accumulators are used to find the final SAD. Finally, in [78] [85] [69], 

adders are used to form an adder-tree for calculating the SAD. 

• Comparison operators to select the motion-vector with minimum SAD value. The 

comparators can be global for the whole SAD calculator ([81]), or local for each PE 

module in the array ([87], [86], and [83]). The comparator should be flexible enough to 

support maximum/minimum calculations and general comparison (greater-than, greater-

than-or-equal, equal-to). 

• Registers to store the calculated AD and interim SAD values. These are useful to 

implement pipelined and systolic arrangement [81], [82], [71]. 

• In systolic implementations [82], [88] and [89], the broadcasting of data using 

interconnects is essential. 

• Cascading of elements and modules to change the bit-width, search area and other details 

of the calculation. 
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Multiplexing of signals to enable selecting between multiple data input signals as in the 

arrangements in [82]. 

Allowing the array to perform all the operations would allow us to implement all these 

different implementations. Each implementation has different characteristics in terms of 

throughput, area usage, bit-width and search area size, which can affect the final image 

quality and power consumption. 

From these constrains, the following four basic elements have been designed: 

Multiplexers: 2-to-i multiplexers with optional register at the output. Using interconnects 

the multiplexers can be cascaded to create larger input sizes. They also can be configured 

to implement a two input multiplexer, a register or a connect-through wire. Figure 4-3 (a) 

Adders: Modules supporting combinatorial 2-input additions and subtractions. An 

optional combinatorial absolute-difference calculators, useful for SAD based motion 

estimation, is also available at the output of the module. AD calculation, the difference 

between the two inputs can be calculated and the absolute value can be optionally 

selected. The output can be configured as a registered or a combinatorial circuit. Figure 

4-3 (b) 

Accumulators: Sequential accumulators which can also be configured as simple 

combinatorial adder/subtracters. The accumulator contains an internal register. ADD, 

SUB, ACC, the element can be configured as adders or subtractors (combinatorial or 

registered) to help calculating intermediate SADs. It can also be configured as an 

accumulator. Figure 4-3 (c) 

Comparators: Modules enabling the comparison of two numbers producing greater-than 

and equal signal. Registers and logic are also available for finding and storing the 

minimum/maximum value useful for the minimum SAD selection. This element can 

compare two numbers or the input SAD with the value stored in the register, which is 

helpful for determining minimum and maximum values. Figure 4-3 (d) 

In typical image data 8-bit values are used for representing one colour of a pixel. Hence, the 

adders and multiplexers are 8-bits wide and can be cascaded to produce higher bit count, in 

case the pixels bit-width changes. The accumulators and comparators are 16-bits wide and can 

also be cascaded. 
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Figure 4-3: Elements for Motion Estimation. Four of these elements are packed into a cluster. 

The 4 elements described above are too small to justify the overhead in interconnects needed 

if each element became a cluster, i.e. the area of these elements would be too small compared 

to the area of the additional s-boxes and c-boxes that would be built around the 110 pins (the 

overhead due to interconnects for typical FPGAs has been reproted to be around 90%). 

Hence, it was decided that 4 elements can be packed into each cluster. The main reason is that 

the cluster has 4 sides, and with such an arrangement all the 1/0 pins belonging to an element 

can be made avaialble on the same side. This manually created organization makes the array 

easier to debug, however, it might be possible to achieve better results by having a different 

choice of elements inside the clusters and the sides of the 110 pins. Three clusters were 

created as follows: 

• MUM Has 4 multiplexer elements. 

• AD/ACC: Has 2 Absolute Difference and 2 Accumulator elements 

• MUX/COMP: Has 2 multiplexer and 2 Compare elements 

4.2.4. Cluster arrangement and interconnect mesh 
The clusters were initially arranged in an array as shown in Figure 4-4 and Figure 4-5 . This 

arrangement follows the dataflow between the cluster from left to right, although the 

interconnects are bidirectional. Other array arrangements in order to provide speed and area 
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improvements are possible. However for the purpose of manually generated array 

configuration this uniform cluster arrangement was chosen. The interconnects used are based 

on fri-state buffers and have the full flexibility described in Chapter 2, with Fc6 (since there 

are six tracks) and Fs--3. Two types of tracks are provided: Six 8-bit wide tracks for data and 

six 1-bit tracks for control lines. It should be noted that the multiplexers inside the clusters 

connecting the different elements together can be seen as a different type of interconnects. 

Unused elements are disabled in order to reduce power consumption. The performance of this 

array is measured in section 4.4. 
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Figure 4-4: Possible array arrangement of cluster 

Figure 4-5: Array arrangement of cluster, with each cluster composed of 4 modules. 
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4.3. DSRA for DCT 

4.3.1. Algorithms 

Once motion estimation is calculated, the colour difference between the pixels of the two 

blocks is coded and transmitted. To reduce the spatial redundancy further, difference data is 

coded in a transform-domain. (DCT is also used to code a block that has no reference to a 

previous frame, in so-called INTRA frames). Thus, by applying a Discrete Cosine Transform 

(DCT) [90] to the 8x8 pixels blocks, the distribution of the data coefficients is changed in 

such a way that it is easier to quantise the data without losing much quality. The enerjy of the 

resulting DCT coefficients tends to be concentrated around the DC coefficient (at location 

(0,0)), and a large number of small coefficients can be effectively quantised to zero. The 2-D 

DCT operation is done using the following equation: 

F = c(m)c(n) N_IN_Ir 	( (2m+l).ur 	((2n+l).vrl 

	

fmn COS 	
2N 	 2N Jj m=On=O[ 

A N-point 1-D DCT of the input x[] is defined as: 

N—I 	((2i+l).u7r' 

	

X U  =c(u).x(i).cos 	
) 	

(4.2) 
2N  

Which consists of a vector by matrix multiplication. Thus for N=8, it can be written as: 

YO Co  Co  Co  Co  Co  Co  Co  Co  X 0  

C 1  c3  c5  c7  c7  c5  
- 

_ C1 x, 

Y2' C2 C6  —C6  —C2  —C2  —C6  C6  C2  X2  

= c(u). 
C3  - C7 _ C1 _C5  - C5  C1  C7  - C3 

x 
Y4  C4  —C 4  —C 4  C4  C4  —C 4  —C 4  C4  X 4  

Y5  C5 _ C1 C7  C3  _C3 _C7 C 1  _ C 5  X 5  

,Y6  C6  —C 2  C2  —C 2  —C 2  C2  —C 2  C6  X 6  

_Y7  C7 _C5 C3  - C1  C1  - C3  C5 _C7-  x7 

Equation (4.3) can be seen as N parallel FIR filters with common input data X 

1-D DCT Implementation 
Different popular techniques exist for implementing a 1 D DCT. These techniques can also be 

mixed together as described below. 

Dataflow Graph 
A direct parallel implementation of equation (4.2) would require 64 multiplications and 56 

additions (for N=8). Various schemes exist to reduce the complexity required to carry this 

calculation; these schemes usually reorder the input data in such a way that the computation is 
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simplified. This is the basis of fast DCT algorithms. These algorithms also rely on the fact 

that some output coefficient can be computed recursively using previously computed outputs. 

The dataflow presented in [91] requires 16 multiplications and 26 additions. The dataflow 

graph is shown in Figure 4-6, where an arrow (-) represents a subtraction and a circle 

corresponds to a multiplication. Similarly, the dataflow presented in [92] uses 11 

multiplications and 29 additions. 

Figure 4-6: Dataflow graph for 8-points Chen fast DCT algorithm [9 11 

As the DCT is usually followed by quantisation (Q), it is possible to further simplify the DCT 

computation such that each output of the DCT is scaled by a factor. This factor is 

compensated for in the quantisation process and hence the name of such a DCT is as scaled-

DCT. The work in [108] presented a flowgraph for a scaled DCT which reduces the number 

of multiplications to 5 and 25 additions. 

Distributed arithpneitic 
In Distributed Arithmetic (DA) multiplications by fixed coefficients are carried out using a set 

of shift accumulates to reduce the complexity. The computation is distributed in the sense that 

the b-th bits from all of the input variables are processed simultaneously and not, as in 

conventional multiplications, where all the bits from one input variable are processed at a 

time. This becomes very efficient for situations where a set of input data is multiplied by 

several constant coefficients, as is the case in DCT and constant matrix multiplication. By 

using the bit representation of the input signals Xk,  the following vector multiplication: 

This equation can be reorganised and written as the following, where XNM is bit M of input xr: 
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—x10  .A +x20  •A 2  ±A +XKO 

= + 	A1 +X21  A 2  +A + XKI AK] 2' 	
(4.4) 

M 

+ [x lB  A + x28  A + A + xKB AK] 

As it can be seen in (4.4), the multiplication is written as bit-level AND, addition (OR) and 

shift operations. Each term: 

Ib = Xlb A + X2b A +A + XKb AK 

can be calculated using AND operators and an adder-tree. However, this is usually performed 

using a memory containing the pre-computed values, as shown in Figure 4-7. A fully parallel 

implementation of an N-point DCT using equation (4.4) would require N memory elements, 

each containing 2K  words. The outputs of the ROM is fed to an adder-tree with integrated 

shifting (done using interconnects). Several techniques and algorithms exist for reducing the 

amount of storage needed [93]. 
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16 

Address 
Figure 4-7: Use of memory in Distributed Arithmetic 

Systolic arrays 
The DCT computation can be rewritten as a recursive relationship between the DCT 

coefficients as described in [94]. This leads to a systolic implementation using processing 

elements (PEs) array, where each PE takes the result of the previous PE and applies twiddle 

factors multiplications and additions to get the new output. The l-D array involves 2N 

multipliers and requires N cycles to compute a l-D N-point DCT. 

In [95], the previous recursive algorithm is merged with a fast DCT algorithm to generate an 

array that contains only log2N multipliers, while maintaining the same throughput. 
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Digit-serial and bit serial arithmetic 
To reduce the area used by bit-parallel arithmetic units, bit-serial adders and multipliers can 

be used. The logic used is minimised, however, B cycles are need to perform a B-bit 

computation. The wiring overhead and interconnects are also minimised, as only 1 or 2 wires 

need to be routed per interconnect. This reduces the power consumption, but prevents the 

exploitation of signal correlations possible in bit-parallel implementations. The Digit-serial 

technique is a trade-off between bit-serial and bit-parallel, where computation is carried out 

on several bits at a time and the required clock cycles are reduced. 

Digit and bit serial arithmetic can be applied to any implementation, such as dataflow or 

distributed arithmetic. Bit-serial is well suited for DA, as the input data is processed at one bit 

from each input variable at a time (see above). When using bit-serial with DA, the adder-tree 

in DA becomes an accumulator. 

Other techniques and combinations 
Other techniques include replacing the multipliers by CORDIC calculators [96], [97], [98], 

which is a cost-effective method to perform rotations on vectors in the 2-D plane. This can be 

combined with DA as in [99]. 

The combination of a fast dataflow algorithm and distributed arithmetic to replace fixed-

coefficient multipliers is used in [100] and [93]. This permits the implementation of a DCT 

with low ROM requirements. 

The implementation in [101] uses 3-bit digit-serial arithmetic and DA along with a fast DCT 

algorithm based on the dataflow reduction. This implementation finishes the computation in 3 

times fewer cycles than the bit-serial implementation, however, in terms of DA LUT memory 

3 times the size is required. 

2-D DCT 
The computation of a 2-D DCT is generally derived from the 1-D DCT calculation. Using the 

row-column decomposition technique where a NxN 2D DCT calculation can be computed 

using two N-point 1D DCT calculations: 

[YN  ]= [CNXN ].[x].[CNXN ] 

The CNXNX[]  calculation is done on the N rows in x[], and the second DCT is done on the N 

columns of the intermediate result. Thus, the 2D DCT is implemented using 2N 1D DCT 

calculations and a transpose operation. Usually, two DCT modules are used. However, in 

some implementation only one module is implemented in order to save area, as in [102] and 

[101]. 

In other techniques only one DCT module is used to compute N 1-D DCTs, and the second 

DCT module is replaced by simple add and shift operations on the intermediate output result, 
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as in the polynomial transform technique [103], [104] and [105], the second DCT module can 

be replaced by simple additions and shift operation. 

Alternatively, a systolic implementation can be derived by using a recursive algorithm [106]. 

The number of multipliers is log2N, and no transpose memory is needed. 

Amongst the implementations listed in this section, DCTs based on Distributed Arithmetic 

(DA) are the most promising in terms of flexibility, since DA can be adapted for other 

algorithms such as the Discrete Wavelet Transform (DWT); hence the DSRA designed was 

chosen to target DA implementations. 

4.3.2. DCT using Distributed Arithmetic 

A 1 -D N-point DCT bit-serial DA implementation would consist of N shift-registers for 

parallel-to-serial conversion, N LUT memories and N shift-accumulators. All the N memories 

receive the same address. The 8-point l-D DCT is shown in Figure 4-8 and Figure 4-9. 

Re 

12 bd 
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Regie, 

25E 	 1~6411 

Figure 4-8: Simple DCT implementation using distributed arithmetic without memory reduction. 

Figure 4-9: Implementation of DCT using odd-even decomposition for memory reduction. 

Other DA-based implementations that the DSRA should support include a numberof possible 

DCT implementations using DA, such as the one presented in [107] where COordinate 

Rotation DIgital Computer (CORDIC) computations are used to reduce the memory size, and 

in [101] where 3-bit digit serial arithmetic is used to improve the throughput of the array. The 

odd-even decomposition technique also described in [101] and shown in Figure 4-10 can be 

used to reduce the memory size by using adders and subtracters at the input. More details can 

be found in [109]. 
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Figure 4-10: CORDIC Rotator Based 8-Point DCT Implementation mapped by Sajid Baloch to the array [109] 

4.3.3. Ckiisterrs 

General DA implementations require shift-registers, memory elements and shift-

accumulators. Additionally, to accommodate for a wider range of algorithms such as odd-

even DCT or reduced-memory DA, adders and subtracters are needed. Hence, two types of 

clusters have been identified and used in the proposed DSRA: Memory clusters for LUTs and 

add-shift clusters for making add/sub/shift and accumulation. 

As described in section 9.5 12.5, the memory cluster is responsible for performing the pre-

computed addition from Figure 4-7. The idea in DA is to make this computation pre-

computed using a Look-up-table (LUT) to speed up the calculation. This is useful in ASIC 

designs, as the fixed LUT is translated into simple gates. However, to make this LUT 

programmable in the DSRA hardware, we need to use a programmable memory such as 

SRAM, which occupies a large area. Hence, we decided to also test the performance of a 

DSRA array with an adder-tree cluster that provides the same functionality as the memory-

cluster by directly performing the addiction operation. In FPGAs, the LUT gets translated into 

a connection of fine-grain programmable gates; such a programmable logic is another 

potential implementation for the LUT. This was not tested, however, in theory the adder-tree 

solution can be seen as a more tailored (hence more efficient) version of such programmable 

logic that supports random fine-grain datapaths. 

Memory duster using SRAM 

The memory clusters are used to implement the LUTs in the DA using SRAM. A dual-port 

512-bit SRAM, organized as 64 words 8-bits per word, is used as the basic memory element. 

Four such memory elements are grouped together to form a 2K-bit memory cluster. The 

grouping is performed using logic to enable the configuration of the cluster as a memory with 
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all the possible geometries listed in Table 4-1. The logic used is similar to the one presented 

in [58]. It should be noted that each memory element can be turned off and on separately; 

hence, allowing the lower sized memories of Table 4-1. Each of the modules can be accessed 

separately, or all the 4 ones can be combined to form a big memory. In such a case, only one 

port needs to be used. This also reduces power consumption in unused memory. 
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EP 

} " 

 I 
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Figure 4-11: Example of combining memory-elements together vertically and horizontally. 
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Figure 4-12: S-RAM based memory cluster 

Having elements with these memory sizes enables the realization of basic DA 

implementations, as well as those with reduced memory described above. Clusters of memory 

can be further combined together using interconnects to make wider memories. Dual-port 

memories were chosen due to the easier configuration: Data is written during configuration on 

one port and read during operation on the other port. The initial content of the RAM (which 

reflects the coefficients) is part of the configuration data. 
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Table 4-I: Possible geometries achievale by reconfiguring a memory cluster. 

Bits per word 
Word Size 8-bits 16-bits 24-bits 32-bits 
64 .7 .7 

128 V 1 

192 1 

256 1 

The fact that this cluster uses SRAM makes it very flexible in terms of possible applications 

and not specific to DA. For comparison to the adder-tree cluster below, this cluster has an 

area of 0.1 MM2
on IJMC 0. 1 8.tm. Also, the SRAM from IJMC can be clocked at a maximum 

frequency of 250MHz, which gives a response time of 4ns. 

Adder-tree cluster 

This cluster implements the same operation as the previous one, i.e. the computation from 

Figure 4-7, but using an adder-tree without precomputing the values in a table. The coefficient 

values A0, A 1 .. .Ak are part of the configuration stream. As shown in Figure 4-13, each cluster 

contains four independent sub-modules, each summing having 8 inputs. The internal 

configuration to each cluster allows combining these sub-modules together. Also, in a similar 

way to other clusters, adder-tree clusters can be cascaded together to make bigger trees. The 

output can be optionally registered. Registering the output is useful in this clusters, since the 

output of the adder-tree has more intermediate switching activity than other clusters; the 

register in this case would prevent this useless activity from propagating. Also, the register 

would make the operation of this cluster compatible with the previous SRAM based one. 

Unlike the previous SRAM-based clusters, the use of this cluster is very limited to distributed 

arithmetic implementations, as this is the only application that would benefit from such an 

arrangement. However, on UMC 0.1 8Am, the adder-tree cluster has an area of 47,258 j.tm 2 , i.e. 

2.13 times smaller than the SRAM based alternative. However, in terms of delays it is slower 

(as expected) than SRAM: If several sub-clusters are used to make an 8-input adder tree the 

delay was measure to be I 4.O2ns, which is around 3.5 times that of the above SRAM-based 

cluster. 
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Figure 4-13: Adder-tree cluster. 

Add and shift cluster 

The add-shift modules provided can be configured as: 

• Parallel, digit-serial or bit-serial adders/subtractors. 

• Shift registers that can be used for parallel-to-serial conversion. Right and left shifts 

are supported. 

• Accumulators with optional shift-accumulation. 

Each module is 4-bit wide; four modules are grouped into a cluster and configurable switches 

are provided between them to support cascading to get wider bit ranges (up to 16-bits) in a 

similar way to the clusters used for ME. Wider operations are possible by cascading multiple 

clusters. 

In 
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A 

Figure 4-14: Add-Shift cluster. 
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4.3.4. Clusters arrangement and interconnects mesh 
Again, the columns were manually arranged according to the dataflow as shown in Figure 

4-15. As can be seen, the number of add-shift clusters used is three times more than that of 

memory clusters. This allows the mapping of a wide range of applications. The arrangement 

of the clusters in the array is performed at design-time and according to the required 

application and flexibility. The array containing the adder-tree clusters would have them in 

place of the memory clusters shown. 

Add- 
Men, Add- 	Add- Mem Add- 

Add- 
Shift 

Add- 
Shift 

M_  
ShdI 

Add- 	Add- 	
Men, Shift 	Shift 

Add- 
Shift 

Add. 
Sh Shill 

Ad 	Ad1 

L 	
Mem 

 h~~] 

Add 
Shift 

Add- 

L LMem 
Add. 
Shill 

dd-' 	Add- 
Me m Shill 	Shill_j 

 Add. 

Figure 4-15: Arrangement of the clusters in the array. More add-shift clusters are used according to the needs. 

The interconnects used are based on six 8-bit tracks and six 1-bit tracks provided for both data 

and control lines. As with the array for ME, the full flexibility interconnects from Section 

4.2.4 are used, with C-boxes having Fc=6 and S-boxes having Fs--3. 

4.4. Performance 

4.4.1. Benchmarks 
The motion-estimation architecture from [82] shown in Figure 4-16 was implemented using 

the module described above. In this implementation, 16 PEs are used simultaneously to 

compute the SAD values of 16 candidate motion-blocks. The block size is 16x16 and the 

search area is 3202 pixels wide. The current motion-block data is propagated through the 

PEs (signal c), while two pixels from the search-area are broadcasted to the PEs (signals p and 

p ). Each PE is composed of a multiplexer, a register for propagation, an absolute-difference 

calculator, an accumulator and a comparator for selecting the minimum SAD calculated on 

that PE, as shown in Figure 4-16. Thus, one PE can be mapped to 3 clusters; this was 

manually done as follows: 

A cluster of four multiplexers and registers for implementing one multiplexer and one 

register. 

• A cluster of two absolute-difference calculators and two accumulators for implementing 

one of each. 

A cluster of two comparators and registers and two multiplexers to implement one 

minimum-value finder. 
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Clearly, the mapping of elements is not the most efficient in terms of area usage since it was 

performed manually. An intelligent automatic mapping process, similar to the ones found in 

current FPGA implementation software would have produced better results in terms of area 

and timing. 

To implement a full ME hardware, further clusters for implementing the generic control 

functions such as counters and state machines are needed for the purpose of this benchmark; 

these controller has been simulated as hardware. The ultimate goal of the project is to provide 

a library of clusters that include elements for executing Finite State Machines (FSMs) as 

described in the derived project [110]. 

C 

.S... 	 Local min SAD 
PE 

MUX 
ABS 

PE 	
Local mm SAD 

Minimum SAC 

-- 	 ACC 

[REG1 
m,r SAD 	

Local min SA cow 
F 	 PE 

.................................... 

Figure 4-16: Mapping of aPE from [82] using 7 modules from 3 clusters. 

The simple 8-point l-D DCT calculation without memory compression and the DCT with 

odd-even decomposition described in Figure 4-8 and Figure 4-9 were implemented on the 

RA. The DCT is implemented using 12-bits input coefficients and 8-bits output coefficients 

from the LUT, which results in a 16-bit output values. The first DCT without memory 

compression has been manually mapped such that: 

• A 12-bits shift register is mapped to three add-and-shift elements part of one cluster. 

• A 2-Kbit memory is mapped to four memory elements found in one cluster. 

A 16-bit shift accumulator is mapped to four add-shift modules part of one cluster. 

In the second DCT implementation with odd-even decomposition the mapping was similar to 

the previous one but with the following differences: 

• The 8-bit adder/subtractor at the input is mapped to two add-and-shift elements part 

of one cluster. 

• The 32x8 bit memory is mapped to one 256x8 bits memory element found in one 

cluster. 
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Both implementations were carried out using the Memory-LUT and Adder-tree version of the 

array. Other DCTs and DWTs were implemented by Sajid Baloch on the same array as part of 

his work [109]. However, the performance of these implementations were not measured and 

not listed here. 

The same benchmarks were also implemented using standard hardwired ASIC and using a 

commercial Xjlinx Virtex-E FPGA. ASIC and Virtex-E: All of these systems use a 0.1 8im 

CMOS technology and are powered at 1.8V. In the case of the DCT, they all run at 10MHz, 

and for the ME, the operating frequency is 30MHz. The power, area and timing 

measurements for the hardwired and the DSRAs implementations are done using post-layout 

simulations vectors with typical switching activity and accurate parasitic and load 

information. Synthesis was performed with Synopsys DesignCompiler, the layout with 

Cadence Silicon Ensemble, power estimation with Synopsvs PrimePower and timing 

evaluation with Synopsys Prime Time. 

The area estimation on the Xilinx Virtex-E FPGA is based on the estimate that the area of one 

slice, its surrounding routings (C-boxes and S-boxes) and its belonging configuration memory 

occupies 3303 I.tm 2 . This estimation was found by taking the approximate area of the Virtex-E 

core without 110 pads, memory blocks and clock buffers (from a die photo[l 11]) and dividing 

it by the total number of slices in the chip. The power measurement of the FPGA's logic was 

made using Xilinx XPower. The power includes only the logic cell and its belonging 

configuration memory, but not any 110 port, clocking buffers or other memory elements. 

The performance in terms of area, power consumption and maximum frequency is shown in 

Table 4-2 for the ME implementation and in Table 4-3 and Table 4-4 for the DCTs. In the 

case of the DCTs, the values are measured for one row only of the array; the result for a full 

1 D DCT or a 2D DCT would be similar. 

Table 4-2: Performance of the imniementations of one ME orocessine-element from ItO] 

.18pm ASIC DSR.4 Minx's Virtex-E 
Area (pm2) 8,594 32,207 178,362 
Power consumption (mW) 0.68 1.08 4.37 
Max Freq. (MHz) 440 111 90 

Table 4-3: Performance of the simnie DCT ininlementation on DA array with SRAM 

.1 8pm 
ASIC 

DSRA & 
SRAM 

DSRA 	& 
Adder-tree 

Xilinx's 
Virtex-E 

Area (pm) 17,483 212,135 172,212 234,510 
Power consumption. (mW) 0.52 1.922 1.531 3.2 
Max Frequency (MHz) 210 77 68 50 
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Thl- 4-4' P,-rfnrn.r.c-, nf the Md-even DUT ininlementation on DA array with SRAM and array with Adder-Tree 
.18pm 
ASIC 

DSRA & 
SRAM 

DSRA 	& 
Adder-tree 

Xilinx's 
Virtex-E 

Area (pm') 10,518 235,234 143,872 267.725 
Power consumption. (mW) 0.48 1.50 1.28 2.9 
Max Frequency (MHz) 250 77 68 66 

Normalised Average Performance 

- 	•ASC 

o0SR 

D Virtex-E 1 

rvx aiim Freq Area 	 Fbw er 

Figure 4-17: Average performance of DSRA in all benchmarks 

Area 
From Figure 4-18 below, it can be seen that the relative area of the DSRA compared to ASICs 

and FPGAs greatly depends on the application running and design of the clusters in the 

DSRA. On average (see Figure 4-17) the area of the DSRA is 12 times that of the ASIC, 

while being around 60% of the FPGA's occupied area. The relative performance figures are 

better in the case of the motion-estimation implementation, as they are closer to the ASICs 

one than the FPGA (the DSRA is only 3.7 times larger than the ASIC). 

Relative Area 

• ASC 

0 DSR 

0 V1ex-E 

KE 	DCT-1 	DCI- 1 AT DCT-2 DCT-2 AT 
SRAM 	 SRAM 

Figure 4-18: Relative area comparison of DSRA wit ASIC and FPGAs. 
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Power consumption 
When examining the power consumption we can see that the power consumed by the DSRA 

is indeed a middle-ground between ASICs and FPGA: It is on average 3 times lower than 

FPGAs while 2.5 times larger than ASICs. Again, this also depends on the DSRA and 

implementation - in the case of DCTs with SRAM-based clusters, the power consumption is 

only 40% less than in FPGA; this is caused by the fact that using SRAMs for implementing 

such tables is not much more efficient than using the LUTs in the FPGA. 

Relative Power Consumption 

•ASC 

o DSRA 

C3 Virtex-E 

KE 	OCT-i 	OCT-i AT OCT-2 	DCT-2 AT 
SRAM 	 SRAM 

Figure 4-19: Relative power comparison of DSRA wit ASIC and FPGAs. 

Timing 
From a timing perspective, the implemented DSRAs are on average 20% faster than the 

FPGA, while being 3 times slower than ASICs. The best speed is observer for the DCT with 

SRAM case where the DSRA achieve around 40% the speed of ASIC. This increase in delays 

comes as a price for the increased flexibility due to the extra over head introduced in the 

reconfigurable switches and the higher-loads and longer routings. 

Relative Maximum Frequency 

• ASC 

o DSRA 

o Virtex-E 

P,E 	OCT-i 	OCT-i AT DCT-2 OCT-2 AT 
SRAM 	 SRAM 

Figure 4-20: Relative maximum frequency comparison of DSRA wit ASIC and FPGAS. 
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4.42. Comparison of the DCT implementations 

When comparing the DCT with adder-tree cluster and the DCT with SRAM-based clusters, it 

can be clearly seen that the SRAM achieves slightly higher speeds (13% higher) at the cost of 

much higher area (increases between 25% and 60%) and higher power consumption (20% 

higher). The higher area in the case of the SRAM is not only caused by the large space 

occupied by memories, but also due to the fact that the size and dimensions of the SRAM 

cluster are larger than the add-shift clusters. Hence, organising them uniformly into an array 

leads to wasted area. This is not the case for the adder-tree cells, as they have a similar area to 

the add-shift clusters. 

The odd-even decomposition in the DCT requires less memory due to the smaller LUTs; 

however, an extra adder/subtractor is required per row. This is reflected in the area used by 

the second implementation, which is 10% higher than the first one. 

Power consumption is reduced by 22% in the second implementation due to the fact that the 

adder/subtractor consumes less power than the large memory. The maximum frequency is the 

same in both implementations, due to the fact that the largest delay is between the output of 

the shift-registers and the output of the shift-accumulator, and not at the input. It is also 

possible to implement the adder/subtractor as bit-serial elements after the shift-register, but 

this may introduce extra delay. 

Similar results are found when comparing the ASIC and the Virtex-E implementations of both 

DCTs. 

4.4.3. Measurement of overhead 

When compared to hardwired solutions, the added programmability comes at the expense of 

an overhead in power and area consumption. In this case this overhead can be effectively seen 

as the average contribution of the interconnects (C-Boxes and S-Boxes) and the configuration 

bits is to the total area and power of the array. 

Power overhead 

When modules and clusters are unconfigured and if there is no activity at their inputs, they 

exhibit only static power consumption. In the case of unconfigured C-boxes, some switching 

power is dissipated when the output of the cluster connected to the C-box is switching. 

The total static power consumption of the array was measured to be only 0.03% of the total 

power consumption. Hence we can consider that static power consumption of unconfigured 

fabric to be negligible when compared to the total power consumption. This assumption is 

only valid for 0.1 3um technology and above, as smaller technologies would have a larger 

value of leakage power. 	 - 
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Figure 4-21 shows the total power consumption of one add-shift cluster and its associated C-

Box and S-Box. The values shown are the average of both the shift-register and shift-

accumulator used in one row of DCT. Highly similar values are found when examining other 

clusters in the DCT or ME array, except the Memory clusters in the DA array, since SRAM 

consumes a high energy compared to logic. 
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Figure 4-21: Distribution of the average power consumption between an add-shift cluster and its associated C-box and S-Box. 

From the graph it can also be concluded that the power consumed by the cluster is only 9% of 

the total power, while the C-Box consumes 50% and the S-Box 41%. This is expected due to 

the high number of switches and buffers introduced in the signals and due to the long routing. 

This could be improved by reducing the flexibility of the boxes taking into consideration that 

the flexibility is not decreased greatly [43]. Hence, the next step in future power reductions 

would be in optimizing the interconnects. 

Area overhead  

Similarly, Figure 4-22 shows the area overhead used to make the hardware reconfigurable. 

The add-shift cluster occupies only 6% of the total area while the C- and S-boxes occupy 50% 

and 44% respectively. As it can be seen from the graph these area values include the area 

occupied by the configuration registers, which represents a large percentage of the area of the 

boxes. The total area can be reduced considerably if the flexibility of the C- and S-boxes is 

lowered: this would reduce the size of the configuration memory as well as area switches. 
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6.E+04 

5.E+04 
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Figure 4-22: Area of add-shift cluster and its associated C- and S-boxes. 
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Using a data coding style to compress the bit-stream in the configuration registers, e.g. usage 

of a decoder in the C-Boxes to allow connecting a pin to one track only would reduce 

substantially the number of configuration registers required, while maintaining the same 

number of configurable switches. This would reduce the area at the expense of removing the 

option of connecting a pm to multiple tracks. 

4.5. Conclusion 

In this chapter, two DSRAs for multimedia application were designed and several benchmark-

circuits mapped to them. The first array targets the Motion Estimation computation, while the 

second is for the Discrete Cosine Transform and Distributed Arithmetic applications. Initial 

results showed that the proposed technique of building-up reconfigurable arrays by creating 

application-specific clusters and combining them with an interconnects mesh provides a good 

compromise between hardwired and FPGA solutions: The DSRA was assessed to provide on 

average 3 times less power, 60% less area and 20% less delays than FPGAs, while having 

consecutively 2.5, 12 and 3 times more power, area and delays than ASIC. The flexibility 

provided by the array is limited between the boundaries of the application it was designed for, 

which makes its flexibility somewhere between FPGAs and ASICs. 

A . 	 nFf) flR A tn VPflA A1C nnd flSP 

DSRA vs. FPGA 
• Lower area 
• Much lower power consumption 
• Higher frequency 
• Less flexibility 

DSRA vs. ASIC 
• Much higher flexibility 
• Higher power consumption 
• Higher area 
• More delays 

DSRA vs. DSP 
• Better performance 
• More difficult to program, integrate and debug than processors 

However, DSRAs have several limits which could curb their chance of becoming the ultimate 

architecture for future mobile devices. The most important limitation is the way the 

implementations are designed, i.e. through a HIDL netlist; to implement an algorithm the 

designer is required to have knowledge in hardware design. Since it takes a long time to 

design on a hardware level, a better solution for future architectures would be to provide a 

solution that can be easily programmed through a high-level language such as C/C++. 
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On another level, the way the configuration memory was implemented as a shift-register 

makes the whole reconfiguration process time-consuming and limits the dynamic 

reconfiguration ability of the array. This is due to the high number of configuration bits 

required. Finally, as measured, the reconfigurable interconnects consume around 90% of the 

total power and area of the array. This high overhead in flexibility is acceptable in FPGAs, 

but it should be lower on domain-specific architectures. Some of these limitations are 

addressed in the following chapters. 
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Chapter 5:0 

Synthesisable 
interconnect 
customisation for 
DSRAs 

As seen in the previous chapter, further performance improvements in the DSRA's 

interconnect and configuration memory need to be investigated in order to allow further 

reductions in area and power consumption. Such performance improvements can be achieved 

by making the interconnect and its configuration memory more tailored to the application, in 

a similar way the clusters were designed. 

In the previous chapter it was measured that the island-style non-segmented programmable 

interconnects used occupied up to 91% of the total array area and power consumption. Such 

high ratios are usual for generic fine-grain FPGAs, however this is too high for the purpose of 

embedded coarse-grain arrays. The C-Boxes and S-Boxes making the interconnects share the 

total area and power between them by around 50% and 41%, respectively. 

The main inefficiency occurs when trying to build synthesisable interconnects and 

configuration memories having the same functionality as the ones found in typical FPGAs. 
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The use of standard-cells libraries limits the possible circuit designs of the programmable 

switches, since the pass-transistors used in typical FPGAs [46] have to be replaced by 

synthesizable cells such as tn-state buffers or multiplexers. This significantly increases the 

area, power consumption and delays: two tn-state buffers forming a bidirectional switch have 

nearly 8 times the area of a single pass-transistor. This is similar to synthesisable memory; 

synthesisable alternative for SRAM-cells such as flip-flops or latches can occupy up to 2.7 

times more area. As described in [59], a possible solution is to augment the standard-cell 

library with handcrafted FPGA-friendly cells. However, this reduces the portability of the 

array between different fabrication technologies. 

The approach in this chapter is to change the design of interconnects so that they become 

customised to the application in order to reduce the area and power requirements. To verify 

the validity and performance gained by such a strategy, the DSRA created for the DCT 

computation is taken as an example. 

5. 1. Proposed designs 
S-Boxes designed using pass-transistors take advantage of the fact that that pass-transistors 

act as bidirectional programmable switches. To design such a synthesizable bidirectional 

switch (see Figure 3-3 and Figure 3-8), two tn-state buffers are needed. A single tn-state 

buffer is a urn-directional switch. A similar uni-directional switch can be implemented using 

multiplexers. 

In this work, only the design of the 6W switch-point [42] from which the switch-box is made 

up is investigated. The 6W switch-points are connected together using the standard Subset s-

box topology shown in Figure 5-1, as this was initially measured to provide better routability 

results than other topologies such as the Universal and Wilton ones [51] [53]. The boxes with 

full directions have a flexibility of Fs=3. This value was initially chosen for simplicity and for 

creating interconnects that have the same functionality as the ones found in standard FPGAs. 

(It should be noted that this flexibility measure does not apply to the s-boxes with reduced 

directions explained below, as these would have different values for each side.) 
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Figure 5-1: S-Box formed out of 6W switch-points arranged in a subset topology. 

The following 7 variations of s-boxes designs are compared together. They use both fri-state 

buffers and multiplexers inside their switch-points: 

All directions, fri-state 
All directions, multiplexers 
All directions, tn-state with reduced cfg memory 
Reduced directions, tn-state 
Reduced directions, tn-state with reduced cfg memory 
Reduced directions, multiplexers 
Reduced directions, multiplexers and tn-state 

The performance of these designs is compared later in section 5.2. 

5.1.1. Full directions using tn-states 
As was shown in Figure 5-2, this design attempts to create bi-directional switches that 

connect any two sides together by using tri-state buffers. The switch-points shown have the 

same functionality as the basic switch made using pass-transistors in generic FPGAs; hence 

this switch has the relatively highest flexibility when compared to the rest of the proposed 

below. 

One switch point requires 12 configuration bits. 

Figure 5-2: 6W switch-point using bidirectional tn-state buffers. 8 configuration bits 
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5.1.2. FDD directions using muKipDexers 
This switch has the same functionality and flexibility as the previous one but uses a 3-to-I 

multiplexer and one tn-state buffer per port to implement this. A similar design was presented 

in [112]. The tn-state buffers at the outputs are still needed since the track is driven by 

multiple sources. 

One switch point requires 8 configuration bits. 

Figure 5-3: 6W switch-point with full directions using multiplexers 

5.1.3. Fugg directions using frstates and compressed configuration  
memory 

Since the area cost per configuration memory bit is high, area optimizations might be 

achieved by compressing the memory content: e.g. the number of configuration bits needed in 

switch (1) can be reduced by compressing the redundant states, since only 2 bits are required 

per side to select which of the 3 other sides, if any, has to be routed through. Hence, decoders 

are used in here to reduce the number of configuration bits from 12 to 8 configuiratinini bits. 

5.1.4. Reduced directions using 	 aes 
Depending on the placement of the components on the array the data flow can be more 

intense in some directions than others. This is especially true when routing for our case of 

coarse-grain circuits where the direction of the data-flow is predictable, unlike the case of 

random logic circuits in FPGAs. Hence, switches (4)-(7) favor some directions over others. It 

should be noted that switch-points with reduced directions are still able to perform all the 

possible connections between two sides by using two fri-state buffers in a row, but this 

requires more resources and creates more switching activity in the wires, as measured in 

section 5.2. 

As shown below in Figure 5-4 for this switch, two types of switch-point are proposed, each 

allowing connections only in specific directions. The two types of switch-point are both used 
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in different ratios inside the switch-box as shown in Figure 5-5, which allows the creation an 

overall switch-box that accepts more connections from left-to-right and top-to-bottom. 

One switch point requires 6 configuration bits. 

Type 1 Type 2 

Figure 5-4: Two possible arrangements for the 6W box using tn-states 

Figure 5-5: Possible arrangements using the two types of 6W boxes 

5.1.5. Reduced directions using tn-states with compression 
In a similar way to switch (3), this switch reduces the configuration bits required in switch (4) 

from 8 down to 4 configuration bits. However, the flexibility is reduced as only two tn-state 

buffers are allowed to be on at the same time, which also decreases the routability of the 

design. 
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5.1.6. Reduced directionusing 24o1 mtpOees 

As seen below in Figure 5-6, the use of 2-to-I multiplexers allows the switch to have a larger 

flexibility than the buffer-based switch (4). Each multiplexer is followed by a tn-state to 

allow disabling the connection. 

One switch point requires 8 configuration bits. 

Type 1 Type 2 

Figure 5-6: Two possible arrangements for the 6W switch-point using 2-to-I multiplexers 

5.1.7. Reduced directions using both h1ses an 24o1 tririws 
This switch uses both multiplexers and tn-state buffers to create a switch with the same 

functionality as (4), as shown in Figure 5-7. One switch point requires 6 configuration bits. 

Type 1 Type 2 

Figure 5-7: Directional 6W switch-points using both tn-states and multiplexers. 
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5.2. Performance evaluation 
In order to identify the most suitable 6W switch-point design, the performance of each circuit 

is measured in terms of area, power, delays and routings overhead. An array with each type of 

switch-box was generated and a sample circuit was mapped on it. The benchmark circuit used 

is the DCT implementations mapped to the DSRA designed for Distributed Arithmetic 

(Section 4.3). The test conditions are slightly different from the ones in the earlier in chapter: 

A UMC 0.131.tm technology is used as opposed to UMC 0.18j.tm . The 0.131tm technology has 

a higher leakage power consumption which should provide an evaluation better suited to 

future technologies with high leakage power. 

5.2.1. Area 
The area of the switch-boxes can be split in two parts: The area needed for the actual switches 

and the area required by the configuration memory. The total area of these switch-boxes and 

the contribution of the switches and configuration memory are shown in Figure 5-8. The 

values shown are for a switch box containing 12 1-bit tracks and 12 word-wide tracks. The 

configuration memory used is based on flip-flops; other alternatives such as latches would 

require slightly less area as described in Section 3.5. The area measurements also include the 

overhead in the metal routing required, which varies due to changes in the number of wires 

inside each box. 
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Figure 5-8: Area of Switch Boxes with contributions of switches, configuration memory and metal routing. 

As expected the highest areas are consumed by the switch-boxes having full directions (1), (2) 

and (3). Implementation (2) with the 3-to-1 multiplexers has the highest area, which is 5.2% 

more than that of (1). Implementation (3) shows that no gain is achieved by compressing the 

configuration memory, as the area in (3) is 2.8% higher than in (1), due to the area occupied 

by the decoding circuit which is higher than what would have been taken by configuration 
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memory. These results depend on the number of bits in the word track of the array as 

explained at the end of this section. The result also depends on the design library and cell-

geometries used: other libraries used (IJMC 0.18tm) showed results where (2) had up to 11% 

lower area than (1) for the same widths of tracks. 

The switch-boxes with reduced directions have considerably less area than the full directions 

ones. Implementation (4) has half the area used by (I) since the number of switches and 

configuration bits is halved. In (5), for the chosen number of tracks, the area savings in 

configuration memory is less than the area occupied by the decoding circuit used, and hence 

(5) is 18% larger than (4). The use of 2-to-I multiplexers in (6) reduces the area taken by 

switches when compared to tn-state buffers in (4); however, more configuration bits are 

needed which make the overall area of (6) 8% higher than (4). Finally, implementation (7) has 

the lowest area, which is 20% smaller than (4), since the switches area is reduced by using 2-  

to- I multiplexers and the number of configuration bits is kept the same. 
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Figure 5-9: The routed area vs. number of bit in the word tracks. 

The graph in Figure 5-9 shows the relationship between the area of the boxes and the number 

of bits in the word-tracks. It should be noted that when the bit-width of the word track is 

increased, the number of configuration bits remains constant and only the area occupied by 

the switches is increased. It can be seen that the use of compressed configuration memory as 

in (3) and (5) only offers area advantages for bit-widths below 8 and 4 respectively. The 

implementations with reduced directions have always a lower area; switch-box (7) has the 

smallest area for all bit-widths of the word-track. 
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5.2.2. Power consumption 

The total power consumption measured for each type of switch-box is shown in Figure 5-10. 

It can be clearly seen that the introduction of the multiplexers in implementation (2) increases 

the total power consumed by 29%. Similarly, implementation (3) has a slight increase of 3% 

in power due to the presence of the decoders, even though the decoders are not in the data 

path and hence do not get as much switching. This increase is due higher leacker power cause 

by the larger area. The same slight increase can be observed between (4) and (5). 

(7) 

(6) 

(5) 

(4) 

(3) 

(2) ] 

0.00E+00 	5.00E-06 	1 OOE-05 

Power Consumption (W) 

Figure 5-10: The typical power consumption per switch-box type 

The power consumption in (4) is reduced by 27% when compared to the one in (I) since the 

load on the input lines has been reduced. It should be also noted that when using the switches 

with reduced directions extra routing is required on the array, and hence more power is 

dissipated in other switches-boxes on the array (the values measured is the average of all the 

switch-boxes). Switch-boxes (6) and (7) consume 8% to 12% more power than (4), while 

having around 20% less power than (1). 

5.2.3. Delays 
The delays in implementation (1) are the lowest as the switch has a high flexibility which 

generates short routed interconnects (see Figure 5-11). Switches (1) and (3) have both the 

same delays since the decoding circuit in (3) does not affect the data path signals. The use of 

3-to-I multiplexers in the data path in switch (2) increases the delays considerably by 37% 

when compared to tn-state buffers. The switch-boxes with reduced directions only show 

between 7% and 14% more delays than the full switch box due to the longer routings created. 

Furthermore, the use of 2-to-I multiplexers in (6) does not add as much delay as the 3-to-1 

multiplexers in (2). 

Page 81 



(7) 

(6) 

(5) 

(4) 

(3) 

(2) 

10 20 30 40 50 

Longest path In DCI (ns) 

Figure 5-11: The longest path in the DCT implementations using each switch-box type. 

5.2.4. Routability 
The ratio of Type 1 and Type 2 blocks in switch-boxes with reduced directions 

(implementations (4), (5), (6) and (7)) has an effect on the routability of the design depending 

on the data-flow. Changing this ratio has an effect on the total wirelength of the routed design, 

as measured and shown in Figure 5-12 for switches (4) and (7) and in Figure 5-13 for switch 

(6). It can be seen that for implementations (4) and (7) the lowest wirelength is achievable 

when around 65% of the switch blocks are of Type 1. For switch (6) the minimum wirelength 

occurs when around 60% of the blocks are of Type 2. 

The routability of each switch-box type is shown in Figure 5-14. Implementations (4), (5) and 

(7) with optimized ratios have a wirelength around 12% higher than the implementations with 

full-directions. Using switch (6) with the optimized ratio we observe only a 2% increase in 

wirelength over the full switch-boxes. These values greatly depend on the implementation and 

the data-flow used; however, they represent what can be achieved when typical designs are 

mapped to coarse-gram architecture. 
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5.2.5. Analysis 
From the above evaluations we can deduce that the compression of configuration data (as in 

(3) and (5)) only provides some area reductions for low widths of word-tracks. The use of 3- 

to-1 multiplexers (as in (2)) to implements full four-side switch blocks is inefficient as it 

increases the area, power and delays when compared to the use of tn-state buffers. Attractive 

results were achieved using switch-box with reduced directions ((4), (6) and (7)) when 

compared to full-directions switches. 

The half-box based on tn-state buffers (implementation (4)) has low area, power consumption 

and delays but a large wirelength. Using 2-to-1 multiplexers (as in (6)) allows big 

improvements in routability at a price of a slightly larger area, longer delays and higher power 

consumption. Finally, the lowest area is achieved by combining multiplexers and tn-state 

buffers in the box (as in (7)) which give low-power consumption but slightly lower routabiiity 

and longer delays (see Figure 5-15). 
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Figure 5-15: Comparison of the different designs in terms of power, area and delays. 

Page 83 



5.3. Conclusion 

It has been shown that the DSRA arrays can be further optimised to the application by 

tailoring the interconnects further to suit the application. In the given example, several 

directivities of the switch boxes were tested and the performance (area, power and timing) 

was measured. It was found that by making directivities of the programmable switches follow 

the intended data flow in the array, saving by up to 50% and 27% can be achieved in area and 

power, at the expense of only increasing the delays by 7%. On the circuit level, it was found 

that the lowest area and power were achieved by using a combination of 2-to-I multiplexers 

and tn-state buffers in the 6W switch-point of the subset S-Box; the reason is that the total 

area of the S-Box depends on both the switching element used and the number of 

configuration bits required. The improvement in this type of S-Box comes at a price of 

increased delays and a lowered routability. 
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Chapter 6.0 

Reconfigurable 
Instruction Cells 
Array 

In the previous chapters, the domain-specific reconfigurable arrays designed provided a good 

compromise between high-flexibility, high-power and high-area FPGAs on one side and low-

flexibility and low-power ASICs on the other side. The DSRAs showed a throughput higher 

than FPGAs (and DSP processors), not very far from the level achieved in ASIC, while 

providing a good degree of flexibility. However, the two major drawbacks in the proposed 

DSRAs are, first, the long time required to design the DSRA itself according to the 

application, and second, the long design-time needed to map and program new algorithms on 

the array. As described earlier, programming the array occurs in a similar way to 

programming FPGAs using an HDL to represent netlists of programmed clusters. Ideally, a 

reconfigurable architecture would be programmable using a high-level (C/C++) programming 

language. Based on this, another limitation which emerges in DSRAs is the difficulty to 

automatically create an array tailored to the application starting from a high-level definition of 

the application, since the programming happens manually at low-level. Even though the 
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silicon-area usage of DSRAs was found to be lower than FPGA, it is still regarded as elevated 

when compared to the area occupied by ASICs or to the area of datapaths in typical CPU and 

DSP processors. This is mainly caused by the fact that 90% of the silicon is consumed by 

interconnects. Finally, the large number of configuration bits needed to configure a 'useful' 

section of the DSRA is too large (around 3000 bits) to permit dynamic re-configuration of 

that section, and hence it limits the possible rate of reconfigurability. 

This chapter proposes a solution to overcome these limitations by changing the structure of 

the initial DSRA design. This is mainly earned out by moving from the previously described 

type of clusters into a cluster type that can directly execute assembly-like instructions 

commonly found in software implementations. Such clusters are called here Instruction Cells 

(ICs). The basic ideas presented in this section come from elaborations with other members of 

the research-group, mainly loannis Nousias along with Mark Milward and Ying Yi, who are 

working on the same project, namely the Reconfigurable Instruction Cell Array (RICA). I. 

Nousia's further work was to efficiently implement the data and program memory sub-

systems along with coding of paths in the program memory using small foot-prints. M. 

Milward and Y. Yi were concentrating on optimised and advanced compilation software-

tools. 

This chapter introduces the instruction-cell based arrays and assesses the 

advantages/disadvantages gained by its structure. It also tries to evaluate the costs incurred by 

introducing programmability from high-level languages for what practically is a processor-

like reconfigurable architecture. 

. 1. processor-fike operion of a rconfiguriblle array 
Assembly representations of programs - or more specifically the control and data flow graphs 

generated by compilers - can be regarded as an efficient low-level description of software and 

algorithms. This is especially useful due to the existence of compilers that convert high-level 

languages such as Java and C/C++ into assembly-instructions. In traditional and simplistic 

design of CPUs, the Arithmetic Logic Unit that performs the operations has typically only 2 

inputs and one output, and according to the opcode it can perform operations like ADD, MUL or 

suu to produces the output. 

If each cluster in the DSRA can be made to execute one assembly instruction, then a 

computational datapath described in assembly-language can be simply executed in hardware 

by connecting the different 'instructions' together. An array containing such programmable 

clusters along with a mesh of reconfigurable interconnects can be configured to execute the 

required datapath. A full software program that includes branching and conditional operations 

would then be executed by dynamically re-programming the array to perform the different 

basic-blocks of the program. An instruction controller would then be responsible for handling 
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the branching operations. Making the DSRA clusters support assembly instruction would also 

be in theory an efficient way to reduce the overhead in interconnects (C-Boxes and S-Boxes) 

as the number of inputs and outputs is reduced to a minimum. It also allows the use of 

existing and mature compilers that would output suitable netlists of clusters to build datapaths 

from a high-level program representation. 

6.1.1. Example of Instruction-Level Parallel Processing 
The sample C code shown in Table 5-I requires 19 cycles to execute on a typical sequential 

processor. However, if the same code is compiled for a VLIW DSPs, such as the 

TMS320C6x, then it would execute in 15 cycles, since the VLIW architecture would try to 

concurrently execute up to 8 independent instructions (6 ALUs and 2 multipliers are 

available) [113]. At 600MHz, 15 cycles translate to 25ns if we consider the ideal case where 

no instruction-pipeline needs to be filled. If 4 simultaneous multiplications and 4 memory 

accesses were permitted, then the number of cycles would reduce to 8. This is still high taking 

into account the simplicity of the code and when compared to what is achievable using 

hardware solutions like FPGAs. This speed limit is created by the presence of dependent 

instructions preventing the compiler from scheduling instructions in parallel and hence 

resulting in a high number of clock cycles. We can observe that if an architecture supports the 

mapping of both dependent and independent datapaths, then we could execute a big block of 

instructions in a single clock cycle without limitation. 

C Code Sequential ASM 

bO = inmem[add+O}; 
bi = inmem[add+1]; 
b2 = inmem[add+2]; 
b3 = inmem[add+3]; LD [r3+0] 	-.rll 
e = bO * fO - b2 * f2; LD [r3+8] 	-.r9 
f = bi * U - b3 * MUL ru, 	r5—r11 
out mem[add+O]= e + f; LD 1r3+121-.r13 
out memfadd+11= e - LD [r3+41 	-.r3 
out mem[add+2 	f + 2e; MUL r3, 	r6 -.r6 
Out mem[add+31= f - e; MUL 

MUL 
r9, 	r7 	-.r5 
r13, 	r8—r3 TMS320C6xVLIWASM 

SUB ru, 	r5-.r5 
LDH 	*+A4(2)A7 
LDH *+A4(6)_.A3 

ADD r5 -.r7 

LDH *+A4(4)_AO 
SUB r3 -.r3 

LDH *A4 A5 SUB r5, 	r3 -.r8 

ME'? A7,B6-.B5 
ADD r3 	r7 

MPY A3,B8-.B6 	11 	ME'? 	AO,A8-.AO 
ADD r5, 	r3 -.r6 

ME'? A5,A6-.A3 
LD r8 	-.[r4+12] 

SUB B5,B6-.B5 
SUB r3, 	r5 -.r3 

SUB A3,AO-.AO 	11 	EXT B5,16,16-.B5 
LD r6 _[r4+01  

RET B3 	II 	EXT AO,16,16-.AO 
LD r3 -.1r4+4] 

MV B5-.A3 	II 	SUB B5,AO-.B6 
LD r7 	-.[r4+8] 

ADDAR A3,AO-.A4] I 	STH B6_.*+B4  (6) 
ADD B5,AO-.B5 	11 	STH A4_.*+84  (4) 
STH B5.*B4 	H 	SUB AO,A3-.AO 
STH AO.*+B4(2)  

15 Cycles (8 cycles 114 MPY and 4 LDIST are allowed) 19 Cycles 

Table S-I Example  C-code and its assembled sequential and VLIW code compiled with level-2 optimizations 
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Parallel Processing with limited resources (on RICA) 
Cycle 1:  

I RAM I ri 1 	4 I  I 	1 
I READ I MUL ADD I  I J 

ADT::~  n[R4+8] 
 Jfl 

j IRAMI 
R5 

 
sue  I IREAD 

[r3+121 
 

I RAM 

 

r13  

1R81 READ f 	r7 	MUL __ 
R6 MULJ I [R3+8] Jf_.l 

RAM r3 
Ri READ MUL SUB 

Cycle 2: 
'RAM' I R5 

_________

r3 

RRAM

WRITE 
1r4+121 

WRITE [R4+0J I 
RAM 

SUB WRITE I 

Figure 5-16: Execution of the 19 instructions in 2 cycles if a specific number of resource is present 

We could easily execute the previous C code in only 2 cycles if the architecture provided 14 

operational elements to perform 4xADD, 4xRAM, 4xMUL and 2xREG simultaneously, as 

shown in Figure 5-16. However, this would mean that the 4 RAM operations would access 

the main shared memory in parallel. This overcomes the Instruction Level Parallelism (ILP) 

limitation faced by VLIW processors and enables a higher degree of parallel processing. As 

shown in Cycle 1, the longest delay-path is equivalent to 2 RAM accesses, one multiplication 

and some simple arithmetic operations. This is not much longer than critical-paths in typical 

DSPs when compared to how many more instructions are executed in parallel during the same 

cycle. The 2 cycles translate to less than 1 Sns if typical (non-heavily constrained) DSRA 

delay values are used. Hence, an architecture that supports such an instruction arrangement 

might be able to achieve similar throughputs as VLIWs but at a lower clock frequency, 

depending on the type of computation. 

6.12. Reconfigurable Core 
The concept behind the RICA architecture is to provide a dynamically reconfigurable fabric 

that allows building such circuits - mapping the same circuit on the previous DSRA would 

require time-costly modifications and manual work that are difficult to automate. However, 

by providing DSRAs with clusters that can execute assembly-like instructions similar to the 
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ones in Figure 5-16, a straightforward design-flow resembling CPUs can be easily developed. 

The core elements of the RICA architecture are the Instruction Cells (ICs). Like in a DSRA, 

the ICs are interconnected together through a network of programmable switches to allow the 

creation of datapaths. In order to support the execution of large programs that do not fit into a 

single datapath, the configuration of the array should be allowed to change rapidly. 

Furthermore, to support conditional-executions that are found abundantly in typical software 

systems, the transition between the configuration-streams should be controlled by an 

instruction-controller in the same way it is done in normal processors. Similarly to CPU 

architectures, the configuration of the ICs and interconnects can be changed on every cycle to 

execute different blocks of instructions. Unlike CPUs and more like FPGAs, a circuit can also 

be mapped and executed for longer time (i.e. several cycles) if it is part of a loop. As shown in 

Figure 5-17, RICA can be implemented as a Harvard-architecture processor where the 

program-memory is separate from the data-memory. In the case of RICA, the processing data-

path is a reconfigurable array of ICs and the program-memory contains the configuration bits 

(i.e. instructions) that control both the ICs and the switches inside the interconnects. Special 

ICs in the core are responsible for controlling the data and program memories. 

Reconfigurable Core 

ADD II ADD I I MULl IMULI IREG 	 MULII Dlv HREG 

Interconnects Network 
(Crossbar or island-style switches) 

J EMEM RE REG 

Program 

Jj ,  J 	I J 	 Counter 

Ports:9

i PEm  

Figure 5-17: Harvard-like structure of the RICA with reconfigurable 
core as instruction-cells and programmable interconnects 

Although the RICA architecture is similar to CPUs when using program controllers and 

dapaths, the use of an IC-based reconfigurable core as a data-path gives important advantages 

over DSP and VLIWs, such as more support for parallel processing. A reconfigurable core 

can execute a block containing both independent and dependent assembly instructions in the 

same clock cycle, which prevents the dependent instructions from limiting the amount of ILP 
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in the program. Other improvements over DSP architectures include reduced memory access 

by eliminating the centralized register-file and the use of distributed memory elements to 

allow parallel register access. 

In a similar way to DSRAs, the characteristics of the reconfigurable RICA core are fully 

customizable at design-time and can be set according to the application's requirements. This 

includes options such as the bitwidth of the system, which can be set to anything between 4-

bits and 64-bits, and the flexibility of the array, which is set by the choice of ICs and 

interconnects deployed. These parameters also affect the extent of parallelism that can be 

achieved and device characteristics such as area, maximum throughput and power-

consumption. Once a chip containing a RICA core has been fabricated, the system can be 

easily reprogrammed to execute any code in a similar way to a processor. 

6.2. Hardware design 

6.2.1. Instruction Cells 
In contrast to other reconfigurable architectures (see Chapter 2), the IC-array in RICA is 

heterogeneous and each cell is limited to a small number of operations as listed in Table 5-2. 

This allows us to increase the overall cell count to do more parallel computations, since the 

overhead of adding such small cells is merely related to the extra area occupied by the 

interconnects. The use of heterogeneous cells also permits tailoring the array to the 

application domain by adding extra ICs for frequent operations. Each IC can have only one 

instruction mapped to it. In a similar way to assembly instructions, all cells have only 2 inputs 

and 1 output this facilitates creating a more efficient interconnects structure and reduces the 

number of configuration bits needed. The cells initially developed support the standard 

instruction-sets found in 32-bit GPPs like the OpenRISC [117] and ARM7 [115]. Hence, with 

such an arrangement, RICA could even be made binary compatible with any existing 

GPP/DSP system. 

As shown in Table 5-2, registers memory-elements are defined as standard instruction-cells 

distributed throughout the array, which allows them to operate independently to increase 

degree of parallel processing. As seen in the previous example, to program RICA the 

assembly code of a software is sliced into blocks of instructions that are executed in a single 

clock cycle. Typically, these instructions - that were originally generated for a sequential 

GPP - would include access to registers for the temporary storage of intermediate results; in 

the case of the RICA these read/write operations are simply transformed into wires to reduce 

the registers-use. By using this arrangement of registers RICA also offers a programmable 

degree of pipelining operations and hence it easily permits breaking up long combinatorial 

computations into several clock cycles. 
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Special ICs include the JUMP cell which acts as an instruction-controller responsible for 

managing the program counter and the interface to the program-memory. The interface with 

the data-memory is provided by the MEM cells; a number of these cells is available to allow 

simultaneous read and write from multiple memory locations during the same clock cycle. 

This is achieved by using multiple memory banks to form the data-memory and by clobking it 

at a higher speed than the reconfigurable core; this is possible since the core needs a relatively 

low clock frequency typically equivalent to around 40MHz (see description of the CLK_DIV 

cell for the clock equivalence). Furthermore, some special REG ICs are mapped as 110 ports to 

allow interfacing with the external environment. 

This is only an initial division and the scope of the operations of the cells can be expanded in 

the future. It is also possible to have a large IC supporting the typical operation of an ALU in 

a GPP: arithmetic, shifting, logic and memory. 

Thhl. S- Possible Instniction Cells and their onerations 

Instruction Cell Supported Operations 
ADD Addition, Subtraction 
MUL Multiplication (Signed and Unsigned) 
DIV Divisions (Signed and Unsigned) 
REG Registers 
I/O REG Register with access to external I/O ports 
MEM Read/Write from Data Memory 
SHIFT hifting operation 
LOGIC Logic operation (XOR, AND, OR, etc.) 
COMP Data comparison 
MUX Multiplexer 
JUMP Branches (and sequencer functionality) 
ALU Full CPU-like arithmetic logic unit 

Data signals that can be routed between two cells or stored in registers consists of N-bit data 

and 1 carry bit, e.g., if a 32-bit RICA is designed, the signals would be 33-bit wide with one 

carry bit. Using this carry signal we can cascade several cells to achieve high precisions 

computations, such as 64-bit additions or multiplications. See Appendix A for the details of 

the instruction cells in the sample RICA. 

ADD 
This cell supports addition and subtraction operations. There are 2 input data and one output 

signal. In the configuration we can select which bit-precision the cell should use (e.g. 8-bit, 

16-bit or 32-bit mode). As will be seen in Section 7.1.2, this cell can also be configured to 

support complex addition/subtraction; in this case the input data is split between the real and 

imaginary parts (e.g. a 32-bit RICA would have a 16-bit imaginary part and a 16-bit real part). 

MUL 
This cell support signed and unsigned multiplication. Similar to the ADD cell, it can also 

support complex multiplication and cascading to achieve higher precisions. 
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IItIiiI 

This cell gets as input an address and an offset and reads the content of the Data RAM at the 

required location. The reading from the Data RAM currently takes place each time the 

address at the input of the cell changes at any time during the step. This is necessary since in 

situations where we are accessing an address pointed at by a variable in memory (i.e. a 

pointer) a cascade of two RmEm is created, and hence the second RNEM should be reading the 

data from the memory only when the first RNEM has finished outputting the required address. In 

the future, time tags can be introduced to detect when (during the execution clock cycle) the 

address and offset are ready to start fetching data from the Data RAM; the computation of the 

time tag can be done by the compiler [129]. 

WMIEM 
This cell gets data and writes it in the Data RAM. The data to be written is latched at the end 

of the cycle and is written in the next step that contains any read operation from the Data 

RAM. 

RTFJG and /O RFJG 
The REG cells replace the register file found in a processor, with the difference that the 

registers are distributed and accessed independently; hence they consume less energy since 

there is no need to use a large multiplexer to address them. Each register can have several data 

banks inside it. In the sample array described below in Section 6.4 it was decided to use 2 

banks for every register, as this helps optimising leaf functions (functions that don't call any 

other functions) by removing the need for saving the used registers in the stack. 

Another version of these REG cell is an i/o REG cell, which represent an N-bit dataport; when 

writing data to the port it would be transferred to the chip's pins, and when reading the 

register's content it would be coming from the chip's pins. The i/o REG has to be configured 

as input or output. 

DT[V 
This cell support signed or unsigned division. 

LOGIC 
The LOGIC cell can perform standard bit-operations such as AND, OR, NAND, NOR, XOR, 

NOT, as well as bit-reversion and 2's complement negating. 

§IFIIFT 
This cell can perform logical and arithmetic left/right shifting. 

COME 
The COMP cell compares two inputs and output is the result of the comparison generated as a 

data signal. This output should be routed to either the MUX or JUMP cell. 
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10 11)1 
This cell receives 3 inputs: Two data signals in l  and in, and the result of the comparison 

coming from a COMP cell. According to the result of the comparison it either routes in 1  or in-, to 

the output. Hence it acts as a multiplexer, if seen from the hardware point of view, or a 

conditional-move operation if seen from a software point of view. 

JUMP 
The JUMP cell acts as the instruction-controller and manages the Program Counter. The 

program counter is given to the Program Memory controller to retrieve the configuration of 

the cell for the current steps. During the execution of a step, the JUMP cell computes the value 

of the next program counter so that the configuration of the next step would be ready when 

needed. The computation of the next location can be conditional by using the output of a COMP 

cell, and hence achieving conditional branching in RICA. 

CLK_D!V 
The CLX DIV is responsible for 'dividing the global clock' and setting the period for which a 

single configuration should be running for. This is needed in RICA since there is a big 

variation of delays between different steps of a program. This variation is created by the fact 

that we can execute dependent instructions connected together in series, and hence, every 

circuit has its own critical-path delay. If this cell was to be omitted, then the maximum 

operating frequency of RICA would be limited to the largest longest-path delay in all the 

steps of the whole program. With the CLX DIV cell it is possible control the execution time 

needed for each step, and hence make this delay only limited to the longest-path delay in the 

step itself. The configuration of CLK_DIV is computed at compile-time according extracted 

worst-case values. 

The CLK_DIV outputs an enable signal that goes to all the WMEM, RED and JUMP cells (the only 

sequential cells in RICA) to signal the end of the time allocated to the step. 

6.2.2. Interconnects 
Interconnects allow routing the signals between the instruction cells. As described earlier, the 

signals are composed of N-bit data and a carry bit (generated in adders or multipliers). Two 

interconnects schemes were investigates for RICA: Interconnects based on crossbar 

multiplexers and island-style routing boxes. 

Table 5-3: Comparison between cross-bar and island-style interconnects 

Interconnects (sample Area on 0.131im Number Delay of one 	connection (output- 
array with 64 cells) (pm 2 ) of cfg bits input, ignoring wire capacitance) 

Multiplexers 1,640,495 498 0.7 ns 

Island-style 576,062 678 Variable, average of 5 s-boxes is 2.0 ns 
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The programmable switches should perform directional connections between the output and 

input ports the cells. The design of the interconnects should take into account that each 

instruction-cell has only one output and up to 3 inputs and that in no case will the output of a 

cell be looped back to one of its inputs (to avoid combinatorial loops). 

Figure 5-18: Multiplexers based interconnects 

The multiplexer-based crossbar is shown in Figure 5-18. It is based on a simple design where 

each input of each cell has a multiplexer to select which cell's output should be routed in. In a 

typical array (see the sample array in Section 6.4) there are about 64 cells, with around 60 

cells having outputs (some cells such as WMEM have no outputs), hence the 32-bit multiplexer 

would be of size 59-to-I (the cell itself is not used). Such a multiplexer is very big and 

consumes a large area as shown in Table 5-3. The cells in the sample array have 83 inputs 

ports each requiring such a multiplexer. In the sample array, multiplexers would consume 

around 68% of the array area, i.e. the area of the interconnects is 2.1 times the silicon area of 

computational cells themselves. The delay associated with the multiplexer to route the signal 

from the output of one cell to the input of another is around 0.7 ns, which is around 20% less 

than the delay required for an ADD cell (0.9 ns). The delay is formed by passing through 3 

levels of 4-to-1 multiplexers from the standard-cell library. It should be noted that this value 

ignores the line capacitance associated with the wire and that such a crossbar scheme would 

result in long wires. 

Another problem with multiplexer-based designs is that the interconnect's area grows rapidly 

when the number cells increases. Figure 5-19 shows the synthesised area of a multiplexer for 

different number of input pins. As can be seen there is a rapid change in area for N=32 after 

which the area grows somewhat linearly. This linear increase has an exponential effect on the 
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total area occupied by all multiplexers when the number of cells is increased, as shown in 

Figure 5-20, The exponential relationship is due to the fact that for each new cell added to the 

array we need to increase the size of the multiplexers of all the existing cells. Hence, 

multiplexer based interconnects limit the scalability of the architecture. 

N-to-I Multiplex Area 

26,000—--- 

J yrTT1T 
4 	24 	44 	64 	84 	104 

N 

Figure 5-19: Silicon area of N-to-I multiplexer 
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Figure 5-20: Exponential increase of silicon area with number of cells when using multiplexers 

The second interconnect scheme considered is the island-style shown in Figure 5-21 and 

Figure 5-22. Each cell is surrounded by 4 routing multiplexers, one for each side. The signal 

tracks used are unidirectional, and on each side there is one input and one output. The 

multiplexer controls the output signal, and according to its configuration it can route signals 

that are coming in from other directions to its output. Each multiplexer also receives the 

output of the current cell to allow routing it to other cells. Furthermore, each input pin of the 

instruction-cell has a 4-to-1 multiplexer to select which of the four sides should be routed 

from outside of the box. As can be seen from Table 5-3, the overall area of these routing 

elements is 64% smaller than the crossbar multiplexers. In addition, they are much more 

scalable and make it realistic to implement arrays with more than 64 cells. On the downside, 
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the number of configuration bits required is increased by 36%. The delay is also increased and 

becomes dependent on the routing of the signal and the number of s-boxes it passes through. 

However, the value given does not include wire delays, which in this case should be much 

less than the crossbar version, as the metal wires are greatly reduced due to the increased 

locality. 

Figure 5-21: Configurable switches around each cell to form an interconnects-box for the island-style mesh. 
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Figure 5-22: Mesh of island-style interconnects with torodial interconnects 

Another effect of using the island-style scheme is that the correlation in the configuration bits 

of different steps is low. In the case of the crossbar, a cell that is active would have its 

multiplexer active as well however, in the case of the island-style mesh a cell might be 
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inactive in the specific step but its associated s-box might be used to route a signal belonging 

to a different cell. The effect of this observation has to be taken into account in the future if a 

compression scheme based on temporal or spatial redundancy is to be used on the 

configuration bitstream. 

6.2.3. Data Memory interfaces 
The RICA array can have a number of Data RAM access cells, such as 4x PJ1EM. When a 

program is compiled for RICA, the compiler assumes that these RMEM cells operate in parallel. 

This can be physically achieved by using different and independent memory banks for each of 

these cells. However this solution would require the compiler and scheduler to know in which 

memory bank each location is stored. Another solution is to use memory banks that are time-

multiplexed between the 4 RNEM cells so that only one cell accesses one of these memory 

banks at any one time. As described earlier, RNEM acts a combinatorial cell and the data is read 

from memory each time the input address to RMEM changes. The time-multiplexing circuitry 

has to keep cycling between all the shared RMEM cells to check which one had an address 

change so that the data gets read. 

6.2.4. Program Memory implementations 
One drawback of the proposed cells and interconnects is related to the number of bits required 

to store their configuration, which is in the order of 500-800 for the tested case using 

multiplexers interconnects. Since the configuration of the cells is changed every step in a 

program, we would need to store the configuration of every cell in every step. For example, 

the code for an MPEG-2 Layer III audio decoder takes around 1,500 steps. This amounts to 

around 1,500 x 700 z 1 MBit of program memory. This is quite large considering the fact that 

the same code fits into 440 kBit of memory when compiled for a CPU like ARM or 

OpenRISC. 

This high program memory usage affects the overall power consumption of the design and 

might offset any power saving achieved using the datapath. Fortunately, on average only 

around 12 cells are active in any step in the largest benchmark MP3 program from Section 7.2 

and hence the lMBit of data contains a lot of redundant information like nop (no-operation) 

configuration. The existence of this redundant information can be used to compress this 

configuration memory. Several compression techniques were investigated, and an ongoing 

project looking at reducing the amount of configuration data using distributed configuration 

memory showed promising results. The compression of the configuration memory is beyond 

the scope of this document. In this document we implemented only programs small enough to 

fit uncompressed in the available memory (See Section 6.4.2). 
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6.3. Design-Tools for RICA 
An automatic tool flow has been developed for the generation of RICA arrays based on th 

initial tools for generating DSRAs. In a similar way to DSRAs, the tools take thc 

characteristics of the required array and generate a synthesizable RTL definition of a RI( A 

core that can be used in standard SoC software-flow for verification, synthesis and layout 

These characteristics include the number of cells, type of interconnects, placements of the 

cells in the array and number of rows and columns. If the RICA is implemented using 

crossbar multiplexers, then it would be defined by the tools as an array with a single row. 

The main advantage of RICA over DSRAs and FPGAs is its ease of programming. The 

overall tool-flow needed for this is shown in Figure 5-23. The use of Instruction-Cells greatly 

simplifies the overall design effort needed to map high-level programs to the RICA 

architecture through a CPU-like programming flow. First, a compiler is required to transform 

the input high-level languages, such as C/C++ or Java, into instruction-cells description. The 

second step schedules the instructions, according their dependencies, for execution into 

multiple steps on RICA. The final step generates the configuration of interconnects and cells 

for implementing the desired steps. 

It was decided to use the open-source standard GNU C Compiler (gcc) [118] as the front-end 

compiler for RICA, since it is highly customisable and currently the best available open-

source compiler. GCC supports different language inputs amongst them C/C++, Java, Fortran 

and Ada. In the ideal case, the gcc package would be responsible for the first two steps 

described earlier, i.e. compilation and instruction scheduling. This would allow achieving 

RICA-specific optimisation at compile time by making gcc aware of the resources available 

on RICA. However, at the start time of the project, the gcc version available had limited 

support for parallel instruction execution. Independent instructions could be identified by the 

compiler for parallel scheduling, however, too much work was required for supporting blocks 

of both dependent and independent instructions. 

Hence, it was decided to modify gcc to generate instructions for the RICA cells in a serial 

format; the compilation is performed by gcc with the assumption that the created instructions 

will be executed in sequence. This RICA-specific assembly, which describes which ICs need 

to be used, is then processed by the RICA scheduler to create a sequence of netlists each 

containing a block of instructions that are executed in one clock cycle. The netlists represent 

the different steps that have to be executed in sequence, with each step containing several 

instructions that are to be executed in parallel and/or series. 
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Figure 5-23: Design-software tool-flow for RICA. 

This splitting is not efficient, as gcc would be performing register allocation internally and 

passing it to the scheduler. The scheduler has then to execute the instruction scheduling while 

being restricted in using the registers previously allocated by gcc for each basic-block. The 

effect of this is that some basic blocks would be split in more steps than required, which is 

due to the unavailability of temporary registers. 

The simple scheduling algorithm used takes into account IC resources, interconnects 

resources and timing constraints in the array. It tries to have the highest program throughput 

by ensuring that the maximum number of ICs is occupied and that at the same time the 

longest-path delay is reduced to a minimum. The instruction scheduling is performed on each 

basic-block separately. The first step in the scheduling is to convert the move instructions and 

all register operations found in the assembly into wire connections between ICs. This implies 
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that the register allocation carried out by gcc is partially lost. However, the scheduler has to 

ensure that no register is used in the resulting steps other than the ones already in use by the 

original basic-block. The scheduling algorithm then executes inside a loop that tries to find 

which instruction has to be scheduled next. A cost is computed for each unscheduled 

instructions which takes into account the following 3 constraints: 

The resources availability 

The availability of temporary registers 

- The longest-path delay in the resulting step 

The algorithm then selects the cheapest cell to be scheduled, and the loop is started again. If 

no instruction could be scheduled, the algorithm will create a new sub-step of the current step 

and tries scheduling again. The use of these 3 constraints (they can be used with different 

weights) makes the scheduler try to minimise the longest-path by executing more parallel and 

independent instructions, while restricting to the available registers and resources. 

This simple algorithm works in most cases, however, it fails in some situations due to the lack 

of registers in the basic-block. As described earlier, this is caused by the fact that gcc tries to 

minimise register usage inside the block. In such cases, a manual modification was needed to 

make the assembly output from gcc pass the scheduling. During the course of the work a new 

version of gcc was released (4.0 and beyond) which improved support for parallel instruction 

issuing. An ongoing project is now responsible for integrating a better quality scheduler into 

gcc for RICA, so that such register allocation problem can be avoided. However, the simple 

scheduler was enough to test the performance of RICA when running simple programs as 

described in the next section. 

After the generation of the netlists, or steps, the configuration data for RICA is created. If 

island-style interconnects are used, then the configuration of the multiplexers has to be 

computed to make the connections between the cells. As is the case with DSRAs, this step can 

be done using VPR [57] tailored to the routing structure. All the cases tested in the 

performance evaluation (see below) were routable using VPR. However, in future versions of 

the scheduler, the routability of the designs should be included as a constraint when 

calculating the cost of scheduling an instruction. If the crossbar interconnects are used, VPR 

is not needed and the configuration can be generated directly. 

6.4. Performance evaluation of sample RICA 
The sample RICA array chosen for comparison contains the cells listed in Table 54 

interconnected using multiplexer-based switches. The IC selection was done manually as it 

was adequate for general applications - as described earlier, although other combinations can 

provide better performance depending on the application. These 32-bit cells provide the same 

basic functionality as a general 32-bit DSP such as the ARM7. With the selected type of 
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interconnects and ICs the reconfigurable core requires a 738-bit wide instruction word. The 

array was implemented using a UIMC 0. 13 jim technology. 

Table 5-4: Instruction Cells in the sample array 

Cell Count 
ADD 4 
MUL 4 
REG 32 
SHIFT 2 
DIV 1 

Cell Count 
LOGIC 2 
COMP 1 
JUMP 1 
MEM 

6.4.1. Comparison with DSRA 
An 8-point l-D DCT was implemented on RICA for comparison purposes with the DCT 

mapped on the DSRA using Distributed Arithmetic from Chapter 4. It should be noted that 

RICA has been implemented using 0.131tm, while the previous DSRA use O.18gm; hence the 

performance values shown in Table 5-5 had to be scaled from the ones in Chapter 41•  Also, 

the DCT on the DSRA is a 12-bit DCT, while the sample RICA used is 32-bit. A 32-bit DCT 

on the DSRA would require 32 cycles to finish (since the DA implementation is bit-serial) 

and would need larger accumulators to store 32-bit results. The execution time shown in 

Table 5-5 for RICA include just the time needed to run the DCT and no other operation such 

as memory initialisation (which is included later on when RICA is compared with 

processors). 

Table 5-5: Comparison of the 8-points DCT on RICA and DSRA 

RICA DSRA 

Area (mm') 2.1 - 

Code size (bytes) 5,621 (Config Stream, FF) 2,460 (Program Memory, SRAM) 
Total area estimate (mm2 ) 2.27 0.096 
Minimum execution time (ps) 0.08 0.13 
Energy for 1 DCTs (nJ) 1 	 4.1 1 	 88 

The large differences in the measured performance charachteristics show the difficulty that 

exists when comparing hardware and software implementations, as each of the 

implementations has been tuned for a specific optimisation. It can be seen that the DSRA is 

around 20 times smaller, while it consumes around 20 more energy. Such results are 

expected, since the energy was measured while running the simulation at the highest possible 

frequency and the contribution of leakage power (which is proportional to the area) was kept 

to a minimum. It can be seen that bit-serial DCT implementation on the DSRA is effective in 

reducing the area at the expense of an increased switching activity and power consumption. A 

bit-parallel DSRA would have been more appropriate for the purpose of this comparison. 

'The scaling factors were found by forming an average of the ratios between the datasheets of 

the two IJMC technologies; this was done for area, delays and energy. 
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Hence, no exact figure can be extracted on the costs of programmability that was brought by 

using instruction-cells over programmable clusters. However, it seems as if they both give 

similar performance. 

6.4.2. Comparon wth IP Processors 
The sample RICA was compared to the following DSP architectures: The simple OpenRTSC 

CPU [117] implemented on UIMC 0.13gin technology, the ARM7-TDMI-S [115] again on 

0.13j.tm  technology, the TI C55X [119] 2-way datapath low-power DSP and the powerful 

T164X 8-way VLIW [113]. The benchmarks are mainly based on TI's benchmarks for the TI 

C64X. All the benchmarks are direct unoptimised C representations of the algorithms - all 

optimisations are left for the C compilers (Level-3). The compiler used for the RICA did not 

include any advanced techniques like predications or the use of rotating register as compiled 

provided by TI does. All benchmarks include memory transfers, stack control and function's 

prologue and epilogue and hence they show a representative evaluation of the architecture's 

performance. 

Program sae issbe 
In the results shown here, only the datapath energy consumption is measured for the 

execution of the complete benchmark and compared to the architectures. It is important to 

note here that the power consumption of the program memory is not included in the 

evaluation; In the presented data, the programs used for RICA are raw and have not been 

compressed, which means that they are abundant in redundant zero configurations. 

Formatting the program memory in a similar way to VL1Ws where the end of each step is 

marked using a tag can be easily applied to reduce the program size. However, such a 

formatting would not bring the program down to the same size as the VL1Ws, since in RICA 

the array is heterogeneous and the location of every instruction has to be hard coded. Work 

has been done in evaluating the distribution of the program-memory elements to each cell 

which helps in removing a section of the redundant information. However, this is beyond the 

scope of this thesis. More work has been by other members of the group on compressing the 

program as part of a path-encoding scheme useful when used with island-style interconnects 

[128]. 

Mearemdllh1ts 
For the RICA and OpenRISC the power and area were found using post-layout simulations. 

The ARM7 datasheet [115] provides power and area values of the core in 0. Bum technology, 

while [120] and [114] allows us to estimate the power consumption of just the datapaths in the 

TI C64x and TI C55x. All these power estimations were measured at 1.2V operating voltage. 

The area of the datapath in the TI C64x was estimated using scaling from the published die-

photo [111] knowing that the whole chip has 64M transistors (no cache memory was 
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included). No area information was available for the C55x. Table 5-7 also include variations 

in program size, as they differ for each architecture and compiler technology used. The size of 

the data-RAM is the same for all processors, and hence it is not included in the comparison. 

The Dhrystone benchmark, which today has become an outdated measurement, is included 

here for reference. As shown in Table 5-7., the fact that the Dhrystone takes more cycles to 

run on the highly pipelined TI DSPs than on the ARM7 shows how specific a benchmark it is. 

The fact that the Dhrystone compuation requires a large number of non-predictable brach-

operations forces highly pipelined DSPs to frequently flush the instruction execution pipeline 

and hence waste time. Using it as a single benchmark hides a lot of the speedups achieved in 

modern media and DSP processors. 

Results 
The results are listed in Table 5-5 Table 5-6, Table 5-7 and shown in Figure 5-24 and Figure 

5-25 

Table 5-6: Comparison of datapath area on 0.13um of CPUs excluding variations in program memory. 

RICA 0R32 JARM7 JC55xjC64x 

IDatapath Area (mm2) 	1.90 	0.25 	0.32 	N/A 	2.01 

Table 5-7: Comparing RICA with other processor, low-power DSP and VLIWs using benchmarks. 

RICA 
OpenRISC 	CPU 	(on 
0.131im) - 112MHz 

UMC ARM7-DTMI-S 	(Syn. 
0.131Jm) -110 MHz 

on 

CLK DIV Min 
Raw Energy Min 	Code Energy Min 	Code Energy 

Execution Code per Op Cycles Execution size per Op Cycles Execution size per Op 
Cycles Time (us) (bytes) (nJ) Time (us) (bytes) (nJ) Time (us) (bytes) (nJ) 

1-D DCT 43 0.12 993 4.7 102 	0.91 	402 10.2 104 	0.95 	406 9.36 

2-DDCT 1351 3.01 1785 159.3 4972 	44.39 	516 497 3760 	3418 	508 338 

Viterbi 1838 7.78 1286 218.3 9032 	80.64 	308 903 8803 	80.03 	316 792 

IIR 120 0.17 755 16.33 180 	1.61 	510 18 176 	1.60 	464 15.8 

Min Error 5164 11,10 1070 620.1 9073 	81.01 	442 907 8908 	80.98 	412 802 

Dhrystone 798 1.12 1289 52.57 711 	6.35 	870 71.1 712 	6.47 	912 64.1 

TI CMX 8-ways VLIW - 600MHz TI C55x 2-way low-power DSP - 300 MHz 

Min Code Energy Min Code Energy 
Cycles Execution size per Op Cycles Execution size per Op 

Time (us) (bytes) (nJ) Time (us) (bytes) (nJ) 

1-DDCT 68 0.11 316 34.68 104 0.35 451 26 

2-0 DCT 1763 2.94 588 899.1 2300 7.67 655 575 

Viterbi 3120 5.20 664 1591 3980 13.27 262 995 

IIR 39 0.07 160 19.89 139 0.46 436 34.8 

Min Error 1320 7.20 952 673.2 7479 24.93 380 1870 

Dhrystone 928 1.55 424 473.3 916 3.05 1021 229 
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Normalised Execution Thn. 

Figure 5-24: Normalised execution time graph of the benchmarks on RICA and other architectures 

From the tables, we can see that for all the benchmarks we achieve better performance on 

RICA that on the conventional 0R32 and ARM7 CPUs: We obtain around 1-3.6 times less 

energy consumption while achieving around 5-8 times higher maximum throughput. Due to 

the increase in program size memory and the increase in the datapath area, the power and 

throughput improvements come at the cost of an area increase of around 7 times in area. A 

large part of the power reductions achieved over the four DSP systems are savings gained by 

eliminating the registers-file and having distributed registers. 

Normallsed Energy Consumption 
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Figure 5-25: Normalised energy consumption graph of the benchmarks on RICA and other architectures 

When compared to the low-power C55X DSP, RICA achieves a promising reduction in 

energy consumption between 2 to 6 times while achieving a throughput of up to 3 times 

higher. RICA achieves similar timing performances to the VLIW for applications containing 
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significant datapath operations like DCT, while faster operation is seen for Dhrystone. For 

benchmarks containing a large number of independent blocks and control parts (i.e. small 

loops and comparisons) like Minimum Error, RICA is around 50% slower than the 600MHz 

VLIW - this is expected as the TI compiler can optimise such code by using techniques such 

as predication (i.e. conditional execution) in a better way than gcc. For the Viterbi and hR. 

RICA was around 20%-30% slower with the bottleneck being memory access. However, for 

the case of the Viterbi, the gcc compiler was able to correctly identify the use of multiplexers 

which improved the operating speeds and reduced branching. It should also be noted that 

RICA is built from synthesisable standard-cell libraries while the circuits in the VLIW have 

been manually laidout to achieve the 600MHz operating frequency. In terms of energy, 

around 6 times less power is consumed for DCT, Viterbi and Dhrystone; this is caused by the 

fact that on RICA less time is spent with large ALUs idel but consuming pouwer. The power 

reductions for the Minimum Error and hR benchmarks were lower at around 17%. In terms of 

area, the datapaths of the RICA and VLIW are similar. 

6.5. Reconfigurability overhead 

As expected, the relative area occupancy of interconnects varies depending on the 

interconnects type used (shown in Figure 5-26) which represents the average values measured 

for the different application. The multiplexer-based interconnects occupy 78% of total core 

area; this is quite a large overhead, however, it is still less than the 90% figure found in 

normal FPGAs and the DSRAs. If island-style s-box interconnects are used, then the total 

contribution of the interconnects to the area comes down to around 40%. 

Area breakdown using Muxes and S-Boxes 

2.500 

S-Boxes 	 Muxes 

Figure 5-26: Break down of area in RICA using both multiplexers and s-boxes as interconnects 

Page 105 



For the power consumption, the detailed measurement was only done for multiplexer-based 

interconnects, as no layout for an array with s-boxes was done. The breakdown is shown in 

Figure 5-27. On the UMC 130nm technology used the leakage power was measured to be 

around 10% of the total power consumption. The contribution of the interconnects to the total 

power consumption was found to be on average 11%. This low overhead signifies that the 

chosen granularity and breakdown of functional units is efficient. 

Breakdown of Power consumption 
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Figure 5-27: Break down of power consumption in RICA using multiplexers as interconnects. 

6.6. Conclusion 
The table below compares the proposed RICA architecture to DSRAs, FPGAs, DSP and 

VLIW technologies. The performance measured demonstrates attractive results regarding the 

four important requirements for future systems: low cost, low power-consumption, high 

flexibility and simple design-flow. When compared to current technologies, RICA 

outperforms low-power DSP architectures such as the TI C55x with up to a 3 times higher 

throughput and with 2-6 times less power consumption. It should be noted that the degree of 

power savings depends on the amount of control operations in the program. When compared 

to current VLIW processors, RICA considerably reduces the number of required clock cycles 

in applications containing numerous dependent instructions since it allows the execution of 

both dependent and independent instructions concurrently, which solves the problem of 

statistical ILP-limit faced by VLIW. In terms of timing performance, RICA achieves similar 

timing to the VLIW for datapath application, while being up to 50% slower in control 

intensive application. This is due to the fact that the VLIW circuitry has been handcrafted to 

achieve 600MHz operating frequency [113]. Nevertheless, RICA can achieve up to 6 times 

less power than the VLIW. 
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RICA vs. DSRA 
• Programmable using a high-level C language. 
• DSRAs allow better lower-level tuning. 
• RICA is easier to interface with other SoC elements using the data-memory and 

direct-memory-access (DMA). 
• Lower area, 
• Less configuration bits 
• Dynamic reconfiguration 

RICA vs. DSP/RISC 
• Distributed registers, and hence lower power than centralised register file. 
• Distributed Data memory access. 
• Temporary register/memory access becomes wires between cells. 
• Lower-power 
• Higher throughput 
• Larger program size 

RICA vs. VLIW 
• Faster for datapath computations, similar throughput for control. 
• Similar datapath area 
• Much lower power consumption 
• Performance not limited by the presence of dependent instructions, no ILP limit. 
• Distributed registers, and hence lower power than centralised register file. 
• Distributed Data memory access. 
• Temporary register/memory access becomes wires between cells. 
• Larger program size when uncompressed 

RICA vs. FPGA 
• Less flexible since coarse-grain 
• Much lower power consumption 
• Lower area 
• FPGAs should be able to achieve a higher degree of parallelism since there are no 

area limits. 
• Programmable using a high-level C language 

Dynamic reconfiguration 
RICA vs. ASIC 

• Much more flexible 
• Higher power consumption 
• Larger area 
• ASICs should be able to achieve a higher degree of parallelism since there are no 

area limits. 
• Programmable using a high-level C language 
• If RICA is replacing several hardwired IPs, then its distributed memory removes 

the need for a shared bus to communicate data between the IPs, and hence reduces 
power. 

The measured performance of the initial array is encouraging; however, more tuning can be 

done on the compiler level, such as making the scheduling occurs inside gcc, to greatly boost 

the performance. Furthermore, due to the limitations of the currently used compiler, some 

arithmetic operations have to be optimized manually. This is especially true for applications 

which software implementation is completely different from the hardware one, as seen in the 

next chapter. 

One problem in the proposed RICA architecture lacking compression is the large program 

memory requirements compared to other processors. Since memory consumes much power, 
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this can potentially affect any power saving achieved in the datapath. However, work is 

currently being carried on in this area to determine an efficient compression scheme to reduce 

the required number of program-bits while having a fast decoding time essential for dynamic 

reconfiguration. This can be achieved by distributing the program memory to each cell and 

allowing the use local program-indices to determine the activity of the cell. The compression 

of the program memory is also being investigated at the same time as the interconnects 

structure in order to find a suitable program coding format usable in an S-Box based 

interconnects scheme [128]. 
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Chapter 7.0 

Advanded 
implementations on 
RICA 

The RICA fabric can be large enough to allow making circuits containing multiple functional 

elements as is the case in ASIC and FPGAs. This enables us to use design techniques and 

optimisations that are conventional in hardware circuit designs. Since such methodologies are 

uncommon in normal processors, they are not automatically identified and applied by the 

existing gcc compiler. This chapter shows two examples of such optimisations: First the use 

of registers to implement propagation/broadcasting schemes and second the use of multilevel 

pipelining for increasing throughput. 

Additionally, since RICA is programmable using a high-level language and it can execute 

both control and datapath oriented operations, it becomes possible to rapidly run large 

applications on the architecture: In the second part of this chapter, an mp3 audio and H.264 - 

video codecs (which otherwise are too time-consuming and too difficult to implement on 

ASICs, FPGAs or DSRAs) are used to prove this programmability of RICA. 
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7 1. Emampie of uminueilllly opillTJ71isd in'vpllement'rarriou7Js 

7.1.1. RR IFDter using shift-register 
The conventional method of designing an FIR filter in software is to use the data-memory to 

store the input and the coefficients and to go through the input array multiplying each element 

with a coefficient. This is shown in Table 5-8 which is taken from TI's benchmarks for the 

T162x [121]. In this code for a 10-tap FIR filter, which was originally designed for the 8-way 

VL1W, the inner-loop can be unrolled automatically by the compiler. However, the unrolled 

output will be abundant of dependent instructions (the sum variable) and it would not be 

possible to use any of the 8 ALUs of the VLIW in parallel, hence it is very inefficient for 

VLIW. 

Table 5-8: C code for conventional FIR in software from TI benchmarks [121] 

void A f17  r vselp u(const short * iPtr, const short * coefptr, short *optr) 
for (iPtr += 10, mt i=0; i < N; i++) 

int sum =0; 
for (mt j = 1; j <= 10; j++) 	 1/ This is a 10-tap filter 

sum += (int) (short)coefptr[j-1] * (int) (short)iPtr[i - j]; 
oPtr[i] = ((sum + ittr[i]) >> 15); 

If this code is compiled for RICA, then no ILP-limit problem is faced due to dependent-

instructions and it executes more efficiently than on a VLIW, however there is still more 

room for improvement. Most of the execution time' is spent in the RNEM cell for accessing the 

coefficients and the input data, and the same coefficients and memory locations get read 

several times during the full loop. A more efficient implementation can be achieved by using 

a hardware-like FIR filter that uses shift-registers to store the previous input values. Since 

conventional DSP processors do not allow implementing shift-registers, most of the existing 

code has been tailored for replacing such hardware-structures with memory access. However, 

since the RICA fabric enables mapping circuits such as shift-register, the code can be re-

written to execute faster and with less RAM access, as shown in Table 5-9. The proposed 

code only reads an input value once and puts it through 10-shift registers (to represent the 10-

taps), and in each inner-loop only one coefficient is read and multiplied by the appropriate 

value. In the example shown this gives an immediate 43% speed-up. 
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Table 5-9: C code for FIR with reduces memory access using shift-registers, similar to hardware implementations. 

void fir_with_sr (const short * iPtr, const short * coefPtr, short *optr) 

mt i,j; 
short coefj; 
register in 	r22, r23, r24, r25, 	r26, r27, r28, r29, 	r30, r31; 
mt sum0, sumi, sum2, sum3, sum4, sum5, sum6, sum7, sum8, sum9; 

r23= r24= r25= r26= r27= r28= r29= r30= r31= 0; II Initialise 

for (i=N-1; i >= 9; i=i-10) 
sum0= suml= sum2= sum3= sum4= sum5= sum6= sum7= sum8= sum9 = 0; 

for (j = 0; j < 10; j++) 	 { 	 // 10-tap filter 
r22 = (int)iPtr[(i - j) 1; 	 II Read the input mem value 
coefj = coefPtr[j); 	 II Read the coef 

sum9 += (int) (short)coef_j * r22; 	II Do the calculation 
sum8 += (int) (short)coefj * r23; 
sum7 += (int) (short)coefj * r24; 
sum6 += (int) (short)coef_j * r25; 
sum5 += (int) (short)coefj * r26; 
surn4 += (int) (short)coefj * r27; 
sum3 += (int) (short)coefj * r28; 
sum2 += (int) (short)coef_j * r29; 
sumi += (int) (short)coefj * r30; 
sumO += (int) (short)coefj * r31; 

7/ Do the shifting (it is a 10-tap filter) 
r31 = r30; 	 r30 = r29; 
r29 = r28; 	 r28 = r27; 
r27 = r26; 	 r26 = r25; 
r25 = r24; 	 r24 = r23; 
r23=r22; 

for (j = 0; j < 10; j++) 	 II Write the 10 outputs 
optr[i -j] = ((sumO + iPtr[i -jfl); 

Figure 5-28: Typical hardware and RICA implementation of an FIR using shift-registers. 

If we had more than 10-taps, then we would need more registers to do the shifting. In this case 

we either add more REG cells to the array, or we can use the 2I  bank of each REG cell. The 

other solution is to use the data-memory (i.e. WMEM/RNEM cells). Also, if the number of taps was 

fewer than 10, of if we had 12 MUL and 12 ADD we could have fitted it inside a single step and 

used a pipelined scheme (like the one described below for the FFT) to improve the throughput 

further. Staying in the same step also reduces the time need to fetch the new configuration for 

the next step. 
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Table 5-10: Measurement of improvement in shift-register based FIR filter. 

7.1.2. Pipeflned W92-point FF1 for OFID 
The 8192-point FFT (or 8k FFT) was chosen for implementation on RICA as it is a highly 

computational part of the Digital Video Broadcasting (DVB) standard. Here we take the 

example of the DVB-T standard targeting terrestrial digital broadcast; a DVB-T compliant 

High Definition TV (HDTV) set uses OFDM (Orthogonal Frequency Division Multiplexing) 

signalling to achieve the required high bandwidths[ 122]. As described in the DVB-T standard, 

the OFDM receiver uses an 8192-point FFT transform which needs to be performed within 

924ps. 

This FFT is usually implemented pn FPGA or ASICs, as DSP implementations are complex 

[123] [124]. Having this FFT implemented on a software programmable architecture would 

be a great advantage towards the implementation of a Software Defined Radio (SDR) on 

RICA. 

An N-point FFT operation is defined as: 

Wnk 	k=O,i,A N—i 

Where the twiddle factor Wis: 

jyn
N 

 k - e m —j2k/N 

The main FFT computation requires a large number of operations, however, due to the nature 

of the twiddle factor W several algorithms have been designed to reduce the number of 

computations required; the algorithm chosen to be implemented on RICA is the Cooley-

Tukey Decimation-in-Time (DIT) Radix-2 algorithm [125]; to compute the FFT for 8192 

points 13 stages are required. In each stage 4096 radix-2 butterfly operations need to be 

carried. The input to each stage is the output of the previous stage, hence one advantage of 

this algorithm is that there is no need to use intermediate memory buffers for the FFT, as it 

can be placed on the memory location as the input. 

In order to reduce the complexity of the algorithm further, the 8192-points can be divided into 

6 radix-4 stages followed by one radix-2 stage. However, 13 radix-2 stages were chosen to 

reduce the program size and to make it easier to implement the pipeline (described below). A 

Radix-2 butterfly is in effect a 2-point FFT computation; it has 2 inputs x 0  and x 1  and 2 

outputs yo and y, and uses the twiddle factor WNt : 
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Figure 5-29: Radix-2 complex butterfly computation. 

All these operations are complex operations, and hence the numbers have imaginary and real 

parts. A complex multiplication can be implemented using 4 real multipliers and 2 real 

adders. Hence, each radix-2 butterfly has 1 complex multiplication and 2 complex additions 

which comes down to 10 real operations. 

In order to speed-up the execution of the FFT, it was decided to add the complex arithmetic 

functionality to the MUL and ADD cells themselves and not to do it in software. With this 

approach, the 32-bit ADD cell can also perform a 16-bit complex addition. The 16-bit real and 

imaginary part of each complex number would be combined into the 32 bits used to represent 

real numbers. This gives the FFT a 16-bit precision which is enough for OFDM applications, 

as typical FFTs for DVB-T use 12-bit processing. 

The Decimation-in-Time (DIT) FFT algorithm also requires a bit-reversing operation to be 

performed on the 8k input either before or after the 13 stages of radix-2. The bit-reversing 

ability simply converts input data such as 000iioi...o to o...ioii000, and is used to modify the 

addressed of the 8129 input samples. This generic bit-reversing ability has been added to the 

LOGIC cell, as it would be very time costly to implement it in software. With this approach the 

extra LOGIC cell would be used after the address-generator in the first stage when the input 

data is accessed for the first time. 

The address-generator needed to read and write between two stages has to follow the 

addressing needed for the decimation-in-time algorithm. This is shown as an example for the 

8-point FFT in Figure 5-30. The details for this addressing can be found in the code in Table 

5-11, where the address is calculated using the variables point and stride. 
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Figure 5-30: 8-point FFT computation using Radix-2 butterfly 

Table 5-11: 8k FFT computation with the main loop fitting into a single step 

for(stride=l; stride 	n_points; stride *=2)  //For 8192, 13 stages of Radix-2 

point = 0; 
counter = 0; 

do{ 
twiddle = twiddle table[counter]; 

mO = data [point); 
in]. = data[pomnt+stride]; 

CPLXMtJL(tempval, ml, twiddle); 
CPLXADD(tempO, mO, temp val); 
CPLXSUB(templ, in]., temp val); 

data [point] = tempO; 
data[pomnt+stride] = templ; 

temp muxl = point + s t ride*2 ;  
temp mux2 = temp muxl - n_points + 1; 
point = (temp muxi >= n_points) ? temp mux2 	temp muxi; 

counter++; 
while (counter < half—n); 

-- 

If the code of Table 5-11 is compiled, then we can fit the main loop calculation into a single 

step if we have the following resources in the array: 8x ADD, 2x MDL and 2x SHIFT. This is 

shown in Figure 5-31. As it can be seen, the longest-path delay in this step would the path 

RMEM-MUL-ADD-WMEM, which is around 27 ns. Since this loop is executed 134096 = 53,248 

times, it would takes 1437jms to finish the 8k FFT calculation. As described earlier, this is too 

long for the DVB-T standard. 
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Not ppeItned 

Figure 5-31: Main loop step if compiled from code (counter not shown) 

To improve the throughput we can employ a 3 stage pipe: between the uM and the arithmetic 

operation, and between the arithmetic operation and the WMEM. In this case, the longest path 

becomes 10 ns, which reduces the time needed to compute the whole FFT to 53011s, making 

the implementation compatible with DVB-T. To make this work we would need to execute 2 

extra cycles to fill the pipeline and 2 cycles to empty it. 

The fact that the whole loops fits into a single step and that this step loops back to itself 

allows achieving this high performance; in this case the configuration for the array does not 

change and there is no need to fetch a new instruction from the program memory. This gives 

near ASIC-like speed since the only overhead compared to ASICs are the relatively light 

interconnects between the cells. 

Table 5-12: Comparison of the performance of FFT with and without pipeline. 

Cycles Longest-path (ns) Total time (ps) 
FFTw/o pipeline 53248 27 1437 
FFT w pipeline 53248+4 10 530 
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Figure 5-32: Main loop in FFT calculation with pipeline registers. 

When running the pipelined FFT the datapath exhibits an energy consumption of 5.2 mW. 

The same 8k FFT would required around 200,000 cycles to run on a TIC62x VLIW - hence 

an operating frequency of 377MHz would be required to complete the calculation in 530ts, 

which means that the datapath would consume 192mW, as it is characterised at 0.51 

mW/MHz. This means that RICA's datapath is around 37 time more energy efficient that the 

VLIW. 

For the purpose of this experiment, this modification and the addition of the pipeline registers 

was manual. However, in the future the scheduler should identify loops that fit into single 

steps and should try to add the pipeline automatically. 

7.2. Larger systems: MP3 Audio and H264 Video 
Large systems that are impractical to design using HDL such as multimedia applications like 

mp3 audio and H.264 video decoding; these applications contain large amounts of conditional 

execution and operations that make it a requirement to use a high-level description language 

to program and maintain the code as well as to reduce the design cycle since these standards 
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keep changing. To demonstrate the programmability of RICA, the open-source mp3 decoder 

libmad [126] and the open-source H.264 decoding module from ffmpeg [127] were compiled 

and profiled. The untouched code was compiled with no modifications to the actual 

audio/video decoding elements were done - only some output printing functions were 

disabled as they are not support on the RICA hardware. The performance values shown are 

for the same 64-cell sample RICA described in the previous chapter. The same code was also 

compiled for ARM9TDMI, which is a processor specially tailored for multimedia 

applications. The speed and energy consumptions of the solutions are shown in the tables 

below; the values shown for ARM9TDMI assume that it is running at its maximum frequency 

of 250MHz and that it consumes 0.25 mW/MHz [116] (cache is disabled and ideal situation is 

supposed), while the ARM7TDMI-S runs at its maximum frequency of 110MHz. 

For the mp3 benchmark, a two-frames long stereo 64kbps sample input was used. The time 

and energy consumption shown are the ones measured for the duration of recoding the 2 

frames. The results (Table 5-13) show that RICA decodes the frames 3.4 times faster than 

ARM9 with a datapath energy consumption 10.8 times lower. 

Equally attractive results are measured for decoding H.264 frames (Table 5-13 and Figure 

5-33) where RICA is 13.8 times faster than ARM7 and having 6.7 times less energy. The 

sample video used contains two QCIF (I 77x 144) frames at 460 kbps data rate. 

Table 5-13: Performance comparison of the libmad mp3 decoder on RICA and ARM9 (2 frames) 

ARM9TDMI (250MHz) RICA 
Datapath energy Consumption (uJ) 127.60 11.80 
Decoding speed (ms) 2.06 0.60 

Table 5-14: Performance comparison of the ffmpeg H264 decoder on RICA, ARM9 and ARM7 (2 QCIF frames) 

ARM9TDMI (250MHz) ARM7TDMI (110 MHZ) RICA 
Energy Consumption (mJ) 2.15 0.74 0.11 
Decoding speed (ms) 39.60 111 8.03 

En.rgy(mJ) 	
DedIgTkne(ms) 

RICA 011 
	

RICAL3. 
Z159

ARM (250Mlz) _________________________________ 	AR (2501&lz) 
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Figure 5-33: Comparison of the performance ffmpeg H264 decoder on RICA. ARM9 and ARM7 (2 QCIF frames) 
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The performance shown is for directly-compiled and unoptimised code. Important speed-ups 

(around 2-4 times) should be achievable using similar techniques to the ones described earlier 

such as shift-registers and pipelining, which would make RICA to easily support future H.264 

decoding of large frames (e.g. Dl 720x480) at real time - such an implementation is 

impossible today using a programmable solution that is usable in portable applications. The 

list in Table 5-15 shows the percentage of time spent in each function while decoding two 

different video sequences of 20 Dl frames (one with CABAC coding and the other with 

CAVLC). Such a profiling gives an idea of which functions have a priority in being optimised 

and optionally hand-coded to increase the performance. In this case these functions would the 

filtering 	ones 	(_decode_residual, 	decode cabac residual, 	filter_mb, 

_h264_?1oop_fi1ter_1uma_c, 	put h264 qpel8?lowpas). It can also be seen that the 

initialisation function _memset occupies quite a large percentage - this is only the case because 

the hardware has only decoded 20 frames and running the decoder for a longer time would 

reduce the relative percentage of this function. Nevertheless, the _memset function used 

operates on a byte level. Since RICA has multiple memory banks that can allow simultaneous 

memory writing, a direct 4 times speed-up can be achieved by rewriting _memset to 

simultaneously write 4 bytes. 

Table 5-15: Profiling of the ffmpeg H264 decoder on RICA, running through 20 DI frames 

DI 720x480, 20 Frames, CAVLC, 13.6 fps 

memset 14.17% 
put h264 qpel8hlowpass 13.58% 
put h264 qpell8vlowpass 10.82% 
decode residual 9.22% 
puth264qpel8hvlowpass 7.05% 

6.36% ffh264idct8 add c 
ffh264idctaddc 5.92% 
put_h264_chroma_mc8c 5.49% 
decode mb cavlc 4.85% 
memcpy 4.78% 

decode mb _hl 3.20% 
fill caches 2.28% 

Dl 720x480, 20 Frames, CABAC, 19.6 fps 

decode cabac residual 10.52% 
filtermb 10.08% 
memset 8.88% 
put h264 qpel8hlowpass 7.92%  
h264vloop_filterluma_c 6.06% 
put h264 qpel8vlowpass 5.99% 
puth264qpel8hvlowpass 5.55% 

5.44% h264h loop filter lumac 
ffh264idctaddc 5.27% 
decodembcabac 4.14% 
put h264_chroma_mc8_c 3.56% 
hldecodemb 3.01% 

7.3. Conclusion 
Due to the limitations of the compiler some arithmetic operations have to be optimised 

manually. This is especially true for applications for which the software implementation is 

completely different from the hardware one, e.g. FIR, where in hardware we would naturally 

use shift-registers, while existing software implementations use memory copying and access. 

This use of shift-registers was demonstrated for an FIR filter and showed a 43% speed up on 

RICA as memory access got reduced. The modification was done on a C-language level. 

The second hardware-like technique tested is programmable pipelines. The example used is a 

compute intensive 8k FF1 calculation. Pipeline-optimisation was performed on a single step 
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level by manually changing the scheduled code to add registers between the instruction cells 

or long paths. This resulted in 2.5-3 times throughput increase over the non-pipelined version. 

These useful hardware design techniques can be easily added in the future to the compiler to 

make their usage automatic, and hence there would be no need for manual low-level coding. 

Furthermore, since RICA is programmable in C, it was possible to compile large and complex 

systems to demonstrate its programmability feature. An open-source MP3 audio decoder and 

H.264 video decoder were directly compiled in a straightforward way in a week time. The 

measured performance and power consumption on RICA compares favourably to other 

solutions: RICA is around lOx faster and more power efficient than ARM9. However, as with 

any CPU processor, there is more room for improvements by manually writing critical 

operations in assembly/netlist level. Future versions of the compiler and scheduler should 

help making this type of optimisations more automatic. 
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Chapter 8.0 

Conclusion 

In this work, the initial approach to develop a solution for the flexibility problem in System-

on-Chip architectures was to focus on coarse-grain Domain-Specific Reconfigurable Arrays 

(DSRAs) as a mean to provide a solution with high throughput and low power-consumption 

when compared to other alternatives such as embedded FPGAs and DSP processors. To make 

any domain-specific scheme usable for a large number of applications, a framework for 

creating such arrays was designed. The generated DSRAs have an FPGA-like structure as this 

provides a reasonable uniformity and allows the reuse of existing software. From a structure 

point of view, the DSRAs differ from FPGAs in that they are coarse grain heterogeneous 

arrays. 
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Two sample DSRAs were generated for video coding applications; the measured performance 

indicates that DSRAs can indeed be classified as a compromise between FPGAs and ASICs in 

terms of flexibility, power, area and delays. It was also found that the performance of a DSR.A 

can be optimised further by tailoring the directivity and the circuit design of interconnects; 

this gives improvements in power and area at the cost of increased delays and lower 

routability. 

To generate a DSRA, the designer has to manually identify the algorithms targeted and the 

operations needed in order to create the clusters for the array. In the future, once several 

applications have been designed using DSRAs, a library of clusters can be created to reduce 

this lengthy DSRA design-time. In short, the rapid deployment of DSRAs depends on the 

existence of such a library. Another limitation to DSRAs is the fact that in the same way as 

ASICs and FPGAs, they have to be programmed at low-level using a time-consuming 

Hardware Description Language. 

DSRA vs. FPGA DSRA vs. ASIC 
• 	Lower area ° 	Much higher flexibility 
• 	Much lower power consumption 13 	Higher power consumption 
• 	Higher frequency o 	Higher area 

Less flexibility o 	More delays 

To overcome these problems, the second proposed approach was to use an architecture called 

the Reconfigurable Instruction Cell Array (RICA). By using so called instruction-cells that 

accept processor-like instructions, it becomes possible to map a compiled software 

representation of an algorithm directly to the reconfigurable fabric. Coupled with the ability to 

dynamically and rapidly reconfigure the array, running complete software programs on RICA 

is feasible. The open-source gcc C compiler was modified to compile software to RICA. 

Several C benchmark algorithms were tested, and RICA demonstrated attractive results 

compared to other architectures. RICA outperformed current low-power DSP architectures 

such as the TI C55x by providing up to a 3 times higher throughputs and with 2-6 times less 

power consumption in the data-path. When compared to current high-end VLIW processors 

RICA achieves similar timing for datapath applications, while being up to 50% slower in 

control intensive applications. This is due to the fact that the VLIW circuitry has been 

handcrafted to achieve high operating frequencies. Nevertheless, RICA achieved up to 6 times 

less power than the VLIW using standard code, and up to 37 times less in the case of the 

pipelined FFT. 

The straightforward programmability of RICA made it also possible to run existing large 

systems such as an mp3 audio decoder and an H.264 video decoder only after a few days 

design-time. It was also demonstrated that by manually programming RICA at low-level it 
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becomes possible to use hardware-like optimisations that are not usually found in processors, 

mainly due to the limitations of the used compiler. This included the use of elements such as 

multiplexers, shift-registers and pipeline registers to increase throughput and reduce memory 

access. 

RICA vs. DSRA RICA vs. DSPIRISC 

• 	Programmable using a high-level C • 	Distributed registers, and hence lower 
language power than centralised register file 

• 	DSRAs allow better lower-level tuning • 	Distributed Data memory access 
• 	RICA is easier to interface with other • 	Temporary 	register/memory 	access 

SoC elements using the data-memory becomes wires between cells 

and direct-memory-access (DMA) • 	Lower-power 

• 	Lower area Higher throughput 

• 	Less configuration bits • 	Larger program size 

• 	Dynamic reconfiguration 

RICA vs VLIW RICA vs FPGA 
• 	Faster 	for 	datapath 	computations, 

similar throughput for control • 	Less flexible since coarse-grain 
• 	Similar datapath area • 	Much lower power consumption 
• 	Much lower power consumption • 	Lower area 
• 	Performance 	not 	limited 	by 	the a 	FPGAs should be able to achieve a 

presence of dependent instructions, no higher degree of parallelism since there 
ILP limit are no area limits. 

• 	Distributed registers, and hence lower • 	Programmable using a high-level C 
power than centralised register file language 

• 	Distributed Data memory access • 	Dynamic reconfiguration 
• 	Temporary 	register/memory 	access 

becomes wires between cells 
.• 	Larger program size 

RICA vs. ASIC 
• Much more flexible 
• Higher power consumption 
• Larger area 
• ASICs should be able to achieve a higher degree of parallelism due to reduced area limits 
• Programmable using a high-level C language 
• If RICA is replacing several hardwired IPs, then its distributed memory removes the need 

for a shared bus to communicate data between the IPs, and hence reduces power 

Future work in the RICA domain would need to mainly focus on two aspects: First, the 

improvements of the software-tool flow to optimise further the design. This includes using 

improved instruction scheduling algorithms, integrating the scheduling as part of the 

compilation phase and allowing the compiler to identify hardware-like optimisations that are 

possible on RICA. The second aspect would concentrate on the hardware design of the 

interconnects to allow a better scalability of the array (i.e. allow the usage of 500+ cells) 

along with the design of methods for reducing the program memory usage, as this has 

considerable part of the total power and area consumption on the chip. Several program-

memory compression schemes are possible, including the use of distributed memories and 
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local program-counters to remove redundant data, as well as the use of path-encoding 

methods [128]. 

In the future, the current architecture can be heavily optimised by adding asynchronous logic 

capabilities to the Instruction-Cells. Completion-detection signals can be created at the output 

of each Instruction-Cells to signal when the next cell in sequence should start operation. This 

would completely eliminate any need for the CLK_DIV cell as each step would only take the 

exact time it needs to finish the calculation. This helps in further reducing the program size as 

no configuration data is needed for CLK_DIV. 

In terms of silicon utilisation, adding multithreading capabilities to the architecture would 

dramatically increase it along with increasses in the degree of parallel operations that can be 

executed. Having multiple JUMP cells and multiple program-counters coupled with the ability 

to dynamic schedule the silicon resources between multiple tasks would create an ideal 

system architecture with a very high degree of scalability, flexibility and an extremely high 

performance per silicon area, unachievable in any other architecture. 

Achievements 

reconfiguraWe arrays 

o Hardware design of DSRA programmable fabric 

o Framework and tools to generate arrays according to defined clusters 

o Tools to program (including routing) and test the arrays at various stages of the SoC 

design-flow 

o Library of interconnect structures that can be used to tailor the arrays towards the 

application 

o Optimised clusters useful in video coding and filtering applications 

o Hardware design of two arrays targeting MPEG video decompression 

courabDe Dtcon CeDII Array archRecture 

13 Hardware design of RICA system composed of heterogeneous instruction-cells, 

programmable interconnects and memory interfaces 

° Tool to generate RICA arrays with customisable numbers and functionalities of 

Instruction Cells 

• Modified gcc compiler for generating RICA-specific assembly 

• Scheduling tool to extract instruction parallelism from assembly 

Optimised software implementations of DSP operations on RICA 
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Contribution to knowledge 

This study was aimed at providing a deeper understanding of practices for achieving 

optimised SoC design in terms performance and costs. Tackling this issue from the point-of-

view of flexibility and the generality provided by hardware verified the existing conception 

that the more specific the hardware, the higher the costs and the higher the performance are, 

and vice-versa. This study showed that in order to create realistic designs at a domain-specific 

level - a hybrid level between the extreme general FPGAs and the extreme hardwired 

solutions ASICs - another general layer is required, which consists of a sothvare-framework 

to generate these domain-specific hardware designs. 

The presented work concentrated also on finding middle-grounds between existing extremes 

of reconfigurable architectures from the point-of-view of reconfiguration time; i.e. somewhere 

between the extremely infrequent FPGA reconfiguration and the single-cycle reconfiguration 

in DSPs. It was proven that efficient silicon architectures can be achieved by combining a 

reconfigurable fabric interconnected in an FPGA-style along with an atomic granularity 

similar to 
I 
ALUs in DSPs and coupled to an instruction execution and control mechanism 

similar to processors. This resulting architecture can execute both control and datapath 

intensive code at performances currently separately obtainable using DSPs (for control) and 

FPGA (for datapath). 

Furthermore, with this approach the hardware-design flow stays at high-level C-language. It 

can be seen as if the hardware design methodology becomes a mix between C and HDL: Big 

functional loops can be conceptually thought of as HDL (being described in C), while the 

program flow and control operations are done in the easy and conventional way in C. This 

solves an enormous problem faced today in terms of finding new ways to program parallel 

systems. 
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A. Sample RICA cells 

with instruction set 

The supported Cells/Instructions are shown in the following table: 

Cell Supported Configurations Inputs Outputs 

ADD (ADD, 	SUB)+{SI, 	HI, 	01) 2: A, 	B 1: 0 

COMP {EQ, 	NE, 	GTS, 	GES, 	LTS, 	LES, 	GTU, 	GEU, 	LTU, 
LEU} 	+ 	(SI, 	HI, 	QI}  

2: A, 	B 0 

CONST #Num} - 0 1: 0 

DIV [DIV SIG, 	DIV UNSIG} 	+ 	{SI, HI, 	QI} 2: A, 	B 1: 0 

JUMP IF T, 	IF F. 	ALLWAYS}  ADDR :1 : NL 

LOGIC ISE, 	ZE, 	AND, 	OR, 	XOR, 	NOT, 

QI}  

NEG) 	+ 	{SI, 	HI,  A, 	B 1: 0 

MUL (MUL SIG, 	MUL UNSIG} 	+ 	{SI, HI, 	QI} 2: A, 	B 1: 0 

REG (WRITE,READ}  I 1: 0 

RMEM (NO OFF} 	+ 	(SE, 	ZE} 	+ 	(SI, HI, 	QI)  ADDR, OFFSET 1: DATA 

SHIFT (SLL, 	SEA, 	SRL) 	+ 	{SI, 	HI, QI} 2: A, 	B :1 : 0 

WMEM (Enable} 	+ 	(NO OFF}(SI, 	HI, QI}  ADDR, DATA, OFFSET 0 

These are the same operations supported on the 0R32 implementation of the OpenRISC, 

hence anything that compiles and runs on the 0R32 can be converted to this architecture. This 

is similar to the instruction set provided in the ARM7, 

The si, HI, QI option specify the width of the data operated on: 

SI : Single Integer = 32-bits 
HI : Half Integer = 16-bits 
QI : Quarter Integer = 8-bits 
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cfc 

ADD ] 

ITT 
Configuration bits: 3 bits 

Co C1-C2 

0: Addition 00: 	SI 

1: 	Subtraction 01: 	HI 
10: 	QI 

110 Pin Dir Size Description 

A In 32-Bit Input 1 operand 

B In 32-Bit Input 2 operand 

O Out 32-Bit Result of Add/sub operation 

Simplified operation: 

0 = CO ? A-B : A+B 

(Comments: 

Standard Addition and Subtraction 

13 Combinatorial cell 
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8.2. COMP_MUX 

Number of configuration bits: 6 

cfg 

I Comp_Mux  I 

Configuration bits: 6 bits  
CO-C3 C4-05 

0000: EQ (Equal) 00: 	SI 
0001: GTS (Greater Than - Signed) 01: 	HI 
0010: GES (Greater than or Equal to - Signed) 10: 	01 
0011: GTU (Greater Than - Unsigned) 
0100: GEU (Greater than or Equal to - Unsigned) 
1000: ZERO(Compare to Zero) 
1001: GTZS (Compare to Zero) 
1010: GEZS (Compare to Zero) 
1011: GTZU (Compare to Zero) 
1100: GEZU (Compare to Zero) 

110 Pin Dir Size Description 
MDX A In 32-Bit Multiplexer Input 1 
MUX B In 32-Bit Multiplexer Input 2 
COMP A In 32-Bit Comparator input 1 
COMP B In 32-Bit Comparator input 2 
DATA OUT Out 32-Bit Multiplexer Output 

Simplified operation: 

DATA—OUT = (COMPA § COMP—B) ? MUX_A : MUX_B 

Comments: 

MIJXB is set to Zero when compare to Zero selected 

Combinatorial cell 

M MC C D 
° 0 A 

X X  	MT 
A B P P A 

AB 
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171 

Ck 

CONST Configuration bits: 32 bits 
CO-C31 

The required 32-bit output constant 

110 Pin Dir Size Description 
0 Out 32-Bit Output constant 

Simplified operation: 

0 = Constant 

Comments: 

Provides constant value through configuration program memory 

Combinatorial cell 
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8.4. DIV 

Number of configuration bits: 3 

Configuration bits: 3 bits 
CO C1-C2 

0: Singed Division 00: 	SI 
1: Unsigned Division 01: 	HI 

10: 	QI 

110 Pin Dir Size I 	Description 
A In 32-Bit Input 1 operand 
B In 32-Bit Input 2 operand 
0 Out 32-Bit Result of division 

Simplified Operation: 

0= A/B 

DV 

-T 
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PC 

Configuration bits: 3 bits  
CO-C]. C2 C3-C6 C7-C8 

00: GO TO NEXT STEP 0: Relative 0000: compEq 00: 	SI 

01: JUMP ALWAYS Address 0001: comp_GTS 01: 	HI 

 JUMP IF FLAG IS 1: Absolute 0010: comp GES 10: 	QI 

HIGH Address 0011: compGTU 
 JUMP IF COND IS 0100: compGEU 

LOW 1000: camp_ZERO 
1001: comp_GTZS 
1010: comp_GEZS 
1011: compGTZU 
1100: camp GEZU 

JUMP 

COMP I COMP 
A 	B 

ADDR 	NL 

8.5. COI41P_JUWIP 

Number of configuration bits: 9 

110 Pin Dir Size Description 
ADDR In 32-Bit Input Address 
COMP A In 32-Bit Comp In 
COMP B In 32-Bit Comp In 
NL Out 32-Bit Address of Next Location 

Operation: 

C3-C6 performs a comparison operation on COMP_A and COMPB 

C2 indicates if the address is in absolute or relative mode 

CO-CI bits decide what sort of jump operation to perform. The flag is given from the output 
of COMP-A and COMP-B 

Comments: 

o NL output is the address that would occur if the jump is not executed. This would be 
the return address from a function; usually stored in the Link Register. 

a The PC output goes into a decoder and then it gets converted into an address for the 
Program RAM. 

o When nothing is connected to the cell, it acts as an instruction controller and keeps 
incrementing the program counter (i.e. GO TO NEXT STEP) 

13 Cell clocked by the CLK_DJV 
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8.6. LOGIC 

dc  

LOGIC 

Number of configuration bits: 6 

Configuration bits: 6 bits  
CO-C3 C4-05 

0000: SE (Sign Extend) 00: 	SI 
0001: ZE (Zero Extend) 01: 	HI 
0010: AND (Bitwise AND operation) 10: 	QI 
0011: OR (Bitwise OR operation) 
0100: XOR (Bitwise XOR operation) 
0101: NOT (Bitwise Inverse operation) 
0110: NEG_(2_  Complement _negation)  

110 Pin Dir Size I 	Description 
A In 32-Bit Input 1 operand 
B In 32-Bit Input 2 operand 
0 Out 32-Bit Result of operation 

Simplified operation: 

0 = A (Bitwise operation) B 

Comments: 

Bitwise logic operations. 

• Combinatorial cell 
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CfC 

MUJ 

A r 
Number of configuration bits: 3 

Configuration bits: 3 bits 
CO C1-C2 

0: Signed Multiplication 00: 	SI 
1: Unsigned Multiplication 01: 	HI 

10: 	QI 

110 Pin Dir Size I 	Description 
A In 32-Bit Input 1 operand 
B In 32-Bit Input 2 operand 
0 Out 32-Bit Result of multiplication 

Simplified operation: 

0= A x B 

Comments: 

11 Signed and unsigned multiplication 

13 Combinatorial cell 
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8.8. REG 

Number of configuration bits: 3 

Configuration bits: 3 bits 
co ci C2 

0: Write Bank 1 0: Read Only 0: Read Bank 1 
1: Write Bank 2 1: Write on the next 1: Read Bank 2 

positive clock edge 

110 Pin Dir Size I 	Description 
I In 32-Bit Data Input to write 
0 Out 32-Bit Output of register content 

Simplified operation: 

Read 

0 = RegBank[C2] 

Write 

Reg Bank[C0] = I 

Comments: 

ff Cell clocked by the CLK_DJV 

• Each cell contains 2 32-bit registers, bank 1 and bank2. Only one of 
these bank is accessible for reading or writing at any particular step. 
The possible combinations achievable are: 

READB1 
READ_B2 
READ El WRITE Bi 
READ B1 WRI TE_B2 
READB2WRITEB1 
READB2WRITEB2 

cfc 

REG 
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&L 

cfc 

RMEM 

loffsel 

ADDR DATA 

Number of configuration bits: 4 

Configuration bits: 4 bits  
Co Cl C2-C3 

0: Use Zero Offset 0: 	Zero Extend 00: 	SI 
1: 	Use OFFSET 1: Sign Extend 01: 	HI 

10: 	QI 

110 Pin Dir Size Description 
ADDR In 32-Bit Address input 
DATA Out 32-Bit Data from memory 
OFFSET In 32-Bit Offset 

Simplified operation: 

DATA = DATA RAM [ ADDR + OFFSET] 

Comments: 

Read interface to the Data RAM banks. 

13 Cell clocked by the CLK_DIV 
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8.10. SHIFT 

Number of configuration bits: 4 

Configuration bits: 4 bits 
CO-Cl C2-C3 

00: 	SLL 	(Shift Left Logical) 00: 	Si 
01: SRA (Shift Right Arithmetic) 01: 	HI 
10: SRL 	(Shift Right Logical) 10: 	QI 

1/0 Pin Dir Size I 	Description 
A In 32-Bit Input 1 operand 
B In 32-Bit Input 2 operand 
0 Out 32-Bit Result of shifting 

Simplified operation: 

0 	[CO-Cl] ? A>> (B % 32) : A << (B % 32) 

Comments: 

• Logical Shift Left, Logical Shift Right and Arithmetic Right Shift 
supported 

• Combinatorial cell 

SHIFTj 

'IT 
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8. 11. WIYiJEIYII 

CfE 

WMEM 

Offset 

ADDR DATA 

Number of configuration bits: 4 

Configuration bits: 4 bits 
Co Cl C2-C3 

0: Write Disable 0: Use no Offset 00: 	SI 
1: Write Enable 1: Use Offset 01: 	HI 

10: 	QI 

I/O Pin Dir Size Description 
ADDR In 32-Bit Address input 
DATA In 32-Bit Data from memory 
OFFSET In 32-Bit Offset 

Simplified operation: 

If(C0 == 1) RAM[ ADDR + OFFSET] = DATA 

Comments: 

Write interface to the Data RAM banks 

13 Cell clocked by RRC 

Page 138 



B. Publications 

arising from this 

work 

Publications from this work 

Under Review 

• S. Khawam, T. Arsian, "Frame for the design and implementation of Domain Specific 
Reconfigurable Arrays", Submitted to IEEE Transactions on Very Large Scale 

Integration (VLSI) Systems, April 2006 

• S. Khawam, I. Nousias, M. Milward. Y. Ying, T. Arsian; "The Reconfigurable Instruction 
.Cell Array", Submitted to IEEE Transactions on VLSI Systems Special Section on 

Configurable Computing Design, May 2006 

Published 

• S. Khawam, I. Nousias, M. Milward. Y. Ying, T. Arsian, "Reconfigurable Instruction 

Cell Array", UK Patent Office, UK Patent Application Number 05085 89.9, April 2005 

• S. Khawam, S. Baloch, A. Pai, I. Ahmed; N. Aydin; T. Arsian; F. Westall; "Efficient 
Implementations of Mobile Video Computations on Domain-Specific Reconfigurable 

Arrays", Design, Automation and Test in Europe Conference and Exhibition (DATE), 

2004. Proceedings Volume 2, 16-20 Feb. 2004 

• S. Khawam, T. Arsian, F. Westall; "Embedded reconfigurable array targeting motion 
estimation applications" Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003 

International Symposium on Volume 2, 25-28 May 2003 Page(s):II-760 - 11-763 vol.2 

• S. Khawam, T. Arsian; "Switch-box design for synthesizable coarse-grain arrays for 
system-on-chip applications", Field-Programmable Technology (FPT), 2004. 

Proceedings. 2004 IEEE International Conference on, 2004 Page(s):465 - 468 

Page 139 



• S. Khawam, T. Arslan, F. Westall; "Domain-specific reconfigurable array for Distributed 

Arithmetic", 13th International Conference on Field Programmable Logic and 

Applications (FPL) 2003 

• S. Khawam, T. Arslan, F. Westall; "Synthesizable reconfigurable array targeting 

distributed arithmetic for system-on-chip applications", Parallel and Distributed 

Processing Symposium (PDPS / RA J49, 2004. Proceedings. 18th International 26-30 

April 2004 Page(s):150 

• S. Khawam, T. Arsian, F. Westall; "Unidirectional switch-boxes for synthesizable 

reconfigurable arrays", Field-Programmable Custom Computing Machines, 2004. FCCM 

2004. 12th Annual IEEE Symposium on 20-23 April 2004 Page(s):293 - 295 

Public irions influenced by this w©u* 

13 Y. Ying, I. Nousias, M. Milward. S. Khawam, T. Arslan; "System-level Scheduling on 

Instruction Cell Based Reconfigurable Systems", Automation and Test in Europe 

Conference and Exhibition (DATE), 2006. Proceedings Volume 3, 6-10 March 2006 

o Cheng Zhan; T. Arsian, S. Khawam, I. Lindsay; "A domain specific reconfigurable 

Viterbi fabric for system-on-chip applications", Design Automation Conference, 2005. 

Proceedings of the ASP-DAC 2005. Asia and South Pacific, Volume 2, 18-21 Jan. 2005 

Page(s):916 - 919 Vol. 2 

o Zhenyu Liu; T. Arsian, S. Khawam, I. Lindsay; "A high performance synthesisable 

unsymmetrical reconfigurable fabric for heterogeneous finite state machines", Design 

Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and South 

Pacific, Volume 1, 18-21 Jan. 2005 Page(s):639 - 644 Vol. 1 

• A. Olugbon, S. Khawam, T. Arsian, I. Nousias, I. Lindsay; "An AMBA AHB-based 

reconfigurable SoC architecture using multiplicity of dedicated flyby DMA blocks", 
Design Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and 

South Pacific Volume 2, 18-21 Jan. 2005 Page(s):1256 - 1259 Vol. 2 

Katsoulakis, T. Arsian, T. Kirkham; Khawam S.; "A Low-Power Reconfigurable 

Datapath for Advanced Speech Coding Algorithms", Parallel and Distributed Processing 

Symposium, (PDPS / RA 149 2005. Proceedings. 19th IEEE International 04-08 April 2005 

Page(s): 147b - 147b 

Zhenyu, S. Khawam, T. Arsian, A. Erdogan,; "A Low Power Heterogeneous 

Reconfigurable Architecture For Embedded Generic Finite State Machines"; Proceedings 

of SOC Conference, 2005. IEEE International 25-28 Sept. 2005 Page(s): 113 - 114 

• z Cheng, S. Khawam, T. Arsian, I. Lindsay; "Architecture and design methodology for 

synthesizable reconfigurable array targeting wireless system-on-chip applications", 

Page 140 



Proceedings of SOC Conference, 2005.. IEEE International, 25-28 Sept. 2005 Page(s):93 

- 94 

• Z. Cheng, S. Khawam, T. Arsian, I. Lindsay; "Efficient implementation of trace-back unit 

in a reconfigurable Viterbi decoder fabric"; Circuits and Systems, 2005. ISCAS 2005. 

IEEE International Symposium on 23-26 May 2005 Page(s): 1048 - 1050 Vol. 2 

• Z. Cheng, S. Khawam, T. Arsian; "Domain specific reconfigurable fabric targeting 

Viterbi algorithm", Field-Programmable Technology, 2004. Proceedings. 2004 IEEE 

International Conference on, 2004 Page(s):363 - 366 

• I. Ahmed, T. Arsian, S. Khawam; "Video transmission through domain specific 
reconfigurable architectures over short distance wireless medium utilizing Bluetooth 

IEEE 802.15.1 standard", SOC Conference, 2004. Proceedings. IEEE International, 12-

15 Sept. 2004 Page(s):7 - 10 

Page 141 



C. References 

"Virtex-4 User Guide 1.5", Xilinx, San Jose, 2006 

"Stratix-11", Altera, Altera San Jose, 2005 

V. George, H. Zhang J. Rabaey; "The design of low energy FPGA", Proceedings. 1999 

International Symposium on Low Power Electronics and Design, pp. 188-193. 1999 

V. George, "Low Energy Field-Programmable Gate Array", PhD Thesis, Univeristy of 

California, Berkeley. 2000 

I. Bryant, Y. Tanurhan, "The Actel Embeddable FPGA Core", Actel Corporation, 2001 

N. Kafafi, K. Bozman, S.J.E. Wilton, "Architectures and Algorithms for Synthesizable 

Embedded Programmable Logic Cores", om3 

E. Tau, D. Chen, I. Eslick, J. Brown, and A. DeHon, "A First Generation DPGA 
Implementation," FPD '95, Canadian Workshop of Field-Programmable Devices, May 

1995. 

A. Marshall, J. Vuillemin, B. Hutchings; "A Reconfigurable Arithmetic Array for 

Multimedia Applications"; ACM International Symposium on FPGA, Monterey, CA, 

Feb 1999 

K. Leijten-Nowak, A. Katoch; "Architecture and implementation of an embedded 
reconfigurable logic core in CMOS 0.13gm", ASIC/SOC Conference, 2002. 15th Annual 

IEEE International, pp.  3 -7 

"D-Fabrix array", Elixent Ltd, Bristol, 2003 

T. Arslan, H. I. Eskikurt, D.H. Horrocks; "Configurable Structures for a primitive 

operator digital filter FPGA. IEEE Workshop Signal Processing Systems" SIPS-97 

1997 

B. Hounsell, T. Arslan, "Programmable multiplierless digital filter array for embedded 

SoC applications", lEE Electronics Letters. 2001 

J. Hammes, B. Rinker, W. Bohm, W. Najjar, B. Draper, R. Beveridge, "Cameron: high 

level language compilation for reconfigurable systems,; Parallel Architectures and 
Compilation Techniques ' 1999. Proceedings. 1999 International Conference on 12-16 

Oct. 1999 Page(s):236 - 244 

"Handel-C for Hardware Design", White Paper, Celoxica Ltd, August 2002 

"BINACHIP-FPGA Datasheet", Binachip Inc., 2005 

Page 143 



D. Zaretsky, G. Mittal, X. Tang, P. Banerjee, "Overview of the FREEDOM Compiler 
for Mapping DSP Software to FPGAs," 12th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM'04), pp.  37-46, 2004 

S. Hauck, T.W. Fry, M.M Hosler, J.P. Kao, "The Chimaera reconfigurable functional 

unit", Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, Volume 12, 

Issue 2, Feb. 2004 Page(s):206 —217 

B. Kastrup, "Automatic Synthesis of Reconfigurable Instruction Set Accelerations", 
PhD Thesis, Eindhoven University of Technology, 2003 

"Xtensa LX Microprocessor, Overview Handbook", Tenilica, Santa Clara, 2004 

R. Hartenstein, "Coarse Grain Reconfigurable Architectures", Proceedings of ASP-

DA C, Asia and South Pacific, 2001 

T.J. Callahan, J.R. Hauser, J. Wawrzynek J, "The Garp architecture and C compiler", 
IEEE Trans. on Computer, Volume 33, Issue 4, Page(s):62 - 69, April 2000 

H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. C. Filho., 

"Morphosys: an integrated reconfigurable system for data-parallel and computation-
intensive applications", IEEE Trans. on Computers, 49(5):465-481, May 2000. 

P.M. Heysters, G.K. Rauwerda, T. Lodewijk, G.J.M. Smit, "A Flexible, Low Power, 
High Performance DSP IP Core for Programmable Systems-on-Chip", proceedings 

IP/SOC 2005, December 7-8, 2005, Grenoble, France 

P.M. Heysters, G.K. Rauwerda, G.J.M. Smit, "Implementation of a HiperLAN/2 
receiver on the reconfigurable Montium architecture"; Parallel and Distributed 

Processing Symposium, 2004. Proceedings. 18th International, 26-30 April 2004 

Page(s): 147 

"Avispa-CH 1, Communication Signal Processor", databrief, SiliconHive, Eindhoven, 

2005 

"XPP64-A1 Reconfigurable Processor", Preliminary Datasheet, PACT XPP 

Technologies, Munich, 2003. 

T. Miyamori, U. Olukotun, "REM-ARC: Reconfigurable Multimedia array coprocessor", 

ACM International Symposium on FPGA, Monterey, CA, Feb 1998 

E. Mirsky and A. DeHon, "MATRIX: A Reconfigurable Computing Architecture with 

Configurable Instruction Distribution and Deployable Resources," IEEE Symposium on 

Field-Programmable Custom Computing Machines (FCCM'96), pp.  157-166, 1996. 

H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. R. Taylor, "PipeRench: A 
virtualized programmable datapath in 0.18 micron technology", In Proc. of IEEE 

Custom Integrated Circuits Conference, 2002 

B. Mci, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins, "ADRES: An 

architecture with tightly coupled VL1W processor and coarse-grained reconfigurable 
matrix," Proc. of Field-Programmable Logic and Applications, 2003, pp.  61-70. 

J. Babb, M. Frank, V. Lee, E.Waingold, R. Barua, M. Taylor, J. Kim, S. Devabhaktuni, 
and A. Agrawal, "The RAW Benchmark Suite: Computation Structures for General- 

Page 144 



Purpose Computing, ", Proc. IEEE Symposium on Field-Programmable Custom 

Computing Machines, FCCM97, 1997, pp.  134-143. 

D. Wentzlaff, A. Agarwal , "A Quantitative Comparison of Reconfigurable, Tiled, and 

Conventional Architectures on Bit-level Computation", MIT/LCS Technical Report 

LCS-TR-944, April 2004 

D. C. Cronquist, P. Franklin C. Fisher M. Figueroa and C. Ebeling, "Architecture 

Design of Reconfigurable Pipelined Datapaths", Twentieth Anniversary Conference on 

Advanced Research in VLSI, 1999 

Ebeling, C.; Fisher, C.; Guanbin Xing; Manyuan Shen; Hui Liu, "Implementing an 
OFDM receiver on the RaPiD reconfigurable architecture", Computers, IEEE 

Transactions on Volume 53, Issue 11, Nov. 2004 Page(s): 1436 - 1448 

A. Abnous, J. M. Rabaey. "Ultra-low-power domain-specific multimedia processors", 

IEEE Transactions on VLSI Signal Processing, 1996 

H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, J. M. Rabaey, "A 1-V 
Heterogeneous Reconfgurable DSP IC for Wireless Baseband Digital Signal 
Processing", IEEE JOURNAL OF SOLID-STATE CIRCUITS, November 2000 

H. Zhang, M. Wan, V. George, J. Rabaey, "Interconnect architecture exploration for 
low-energy configurable single-chip DSPs," IEEE Computer Society Workshop on 

VLSI, pp.  2-8, 1999. 24 

P. Hamalainen, J. Heikkinen, M. Hannikainen, T.D. Hamalainen, "Design of Transport 
Triggered Architecture Processors for Wireless Encryption", Digital System Design, 
2005. Proceedings. 8th Euromicro Conference on 30 Aug.-3 Sept. 2005 Page(s): 144 - 

152 

J. Heilddnen, J. Sertamo, T. Rautiainen, J. Takala, "Design of transport triggered 

architecture processor for discrete cosine transform"; ASIC/SOC Conference, 2002. 15th 

Annual IEEE International 25-28 Sept. 2002 Page(s):87 —91 

T. Ishihara, S. Kondou, H. Fukuda, "Low Power Consumption Digital Signal Processor: 

Hi-Perion", FUJI TSU Science and Technology vol. 36, pp.  56-62. 2000 

D. Lewis, V. Betz, D. Jefferson, A. Lee, C. Lane, P. Leventis, S. Marquardt, C. 

McClintock, B. Pedersen, G. Powell, S. Reddy, C. Wysocki, R. Cliff and J. Rose, "The 

Stratix Routing and Logic Architecture," ACMISigda International Symposium on 

Field-Programmable Gate Arrays, February 2003, pp.  12 - 20 

Betz V., Rose J., and Marquardt A., "Architecture and CAD for Deep-Submicron 

FPGAs", Kluwer Academic Publishers, 1999. ISBN 0-7923-8460-1 

Rose J., Brown S., "Flexibility of interconnection structures for field-programmable 

gate arrays", Solid-State Circuits, IEEE Journal of, Vol.26, Iss.3, 1990, Pages: 277-

282 

J. Rose, R.J. Francis, D. Lewis, and P.Chow, "Architecture of Field-Programmable Gate 

Arrays: The Effect of Logic Block Functionality on Area of Efficiency," IEEE Journal 

of Solid-State Circuits, Vol. 25 No. 5, October 1990, pp.  1217-1225 

Page 145 



H. Schmit, V. Chandra, "FPGA switch block layout and evaluation", ACM International 

Symposium on FPGA, Monterey, CA, Feb 2002. 

G. Lemieux, D. Lewis, "Circuit Design of Routing Switches", ACM International 

Symposium on FPGA, Monterey, CA, Feb 2002 

E. S. Ochotta, P. J. Crotty, C. R. Erickson, C.-T. Huang et al, "A novel predictable 

segmented FPGA routing architecture", ACM International Symposium on FPGA, 

Monterey, CA, Feb 1998 

M. Imran Masud, "FPGA Routing Structures: A novel Switch block and depopulated 

interconnects matrix architecture", M4Sc Thesis, The University of British Columbia, 

1999 

M. Imran Masud, S. J.E. Wilton, "A New Switch Block for Segmented FPGAs", 

International Workshop on Field Programmable Logic and Applications, Aug. 1999 

A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. A. El-ayat, A. Mohsen, "An 

architecture for electrically configurable gate arrays," IEEE Journal of Solid-State 

Circuits, Vol. 24, April 1989, pp. 394-398 . 

Y. W. Chang, D. Wong, and C. Wong, "Universal Switch modules for FPGA design," 

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, January, 1996, 

pp. 80-101. 

G. Lemieux, S.D. Brown, "A detailed router for allocating wire segments in field 

programmable gate arrays," Proceedings of the ACM Physical Design Workshop, April 

1993. 

S. Wilton, "Architecture and Algorithms for Field-Programmable Gate Arrays with 

Embedded Memory", PhD thesis, University of Toronto, 1997 

Y. Lai, C. Kao, T. Chang, and K. Chen, "A Field Programmable Gate Array Chip with 

Hierarchical Interconnection Structure," Proceedings of the 1998 IEEE International 

Symposium on Circuits and Systems, Monterey, California, 1998, pp.  402-405. 

A.A. Aggarwal, D.M. Lewis, "Routing Architectures for Hierarchical Field 

Programmable Gate Arrays," Proceedings IEEE International Conference on Computer 

Design: VLSI in Computers and Processors, Cambridge, Massachusetts, 1994, pp.  475-

478. 

V.C. Chan , D.M. Lewis, "Area-Speed Tradeoffs for Hierarchical Field-Programmable 

Gate Arrays," ACM Fourth International Symposium on Field-Programmable Gate 

Arrays, New York, 1996, pp. 51-57  

V. Betz, J. Rose, "VPR: A New Packing, Placement and Routing Tool for FPGA 
Research", International Conference on Field Programmable Logic and Applications 

(FPL) 1997, pp.  213-222 

S.J.E. Wilton, "Embedded memory in FPGAs: recent research results", 

Communications, Computers and Signal Processing, 1999 IEEE Pacific Rim 

Conference on, 1999,   Page(s): 292 -296 

Page 146 



S. Philips, S. Hauck, "Automatic layout of domain-specific reconfigurable subsystems 

for system-on-a-chip", ACM International Symposium on FPGA, Monterey, CA, Feb 

2002 

ISO/IEC, "MPEG-4 Standard - Visual", ISO/IEC 14496-2, Geneva, 

Li Reoxiang Li, Bing Zeng, M.L Liou, "A new three-step search algorithm for block 
motion estimation", Circuits and Systems for Video Technology, IEEE Transactions on, 

Volume 4, Issue 4, Aug. 1994 Page(s):438 - 442 

K.R. Namuduri, Ji Aiyuan, "Computation and performance trade-offs in motion 

estimation algorithms", Information Technology: Coding and Computing, 2001. 

Proceedings. International Conference on, 2-4 April 2001 Page(s):263 - 267 

T. Zahariadis, D. Kalivas, "Fast algorithms for the estimation of block motion vectors", 

Electronics, Circuits, and Systems, 1996. ICECS '96., Proceedings of the Third IEEE 

International Conference on, Volume 2, 13-16 Oct. 1996 Page(s):716 - 719 vol.2 

Shan Zhu, Kai-Kuang Ma, "A new diamond search algorithm for fast block matching 

motion estimation", Information, Communications and Signal Processing, 1997. 
ICICS., Proceedings of 1997 International Conference on, Volume 1, 9-12 Sept. 1997 

Page(s):292 - 296 vol.1 

T. Zahariadis, D. Kalivas, "Fast algorithms for the estimation of block motion vectors", 

Electronics, Circuits, and Systems, 1996. ICECS '96, Proceedings of the Third IEEE 

International Conference on, Volume 2, 13-16 Oct. 1996 Page(s):716 - 719 vol.2 

T. Enomoto, A. Kotabe, "A fast motion estimation algorithm and low-power 0.13-gm 
CMOS motion estimation circuits", Circuits and Systems, 2001. ISCAS 2001. The 2001 

IEEE International Symposium on, Volume 2, 6-9 May 2001 Page(s):449 -452 vol. 2 

Hsien-Hsi Hsieh, Yong-Kang Lai, "A novel fast motion estimation algorithm using 

fixed subsampling pattern and multiple local winners search", Circuits and Systems, 

2001. ISCAS 2001. The 2001 IEEE International Symposium on, Volume 2, 6-9 May 

2001 Page(s):241 - 244 vol. 2 

J.W. Suh, Jechang Jeong, "Fast sub-pixel motion estimation techniques having lower 

computational complexity", Consumer Electronics, IEEE Transactions on, Volume 50, 

Issue 3, Aug. 2004 Page(s):968 - 973 

Zhong-Li He; Kai-Keung Chen; Chi-Ying Tsui; N.L. Liou, "Low power motion 

estimation design using adaptive pixel truncation", Low Power Electronics and Design, 

1997. Proceedings., 1997 International Symposium on, 18-20 Aug 1997 Page(s):167 - 

172 

A. Takagi, S. Muramatsu, H. Kiya, "Motion estimation with power scalability and its 

VHDL model", Image Processing, 2000. Proceedings. 2000 International Conference 

on, Vol.3, 2000, Pages: 118- 121 vol.3 

L. Fanucci, R. Saletti, L. Bertini, P. Moio, S. Saponara, "High-Throughput, Low 

Complexity, Parametrizable VLSI Architecture for Full Search Block Matching 
Algorithm", Electronics, Circuits and Systems, 1999. Proceedings of ICE CS '99. The 

6th IEEE International Conference on, Vol.3, 1999, Pages: 1479- 1482 vol.3 

Page 147 



Yuan-Hau Yeh; Chen-Yi Lee, "Scalable VLSI Architectures For Full-Search Block 

Matching Algorithms", Image Processing, 1996. Proceedings., International 

Conference on, Vol. 1, 1996, Pages: 1035- 1038 vol.2 

Xiao-Dong Zhang; Chi-Ying Tsui, "An Efficient And Reconfigurable VLSI 

Architecture For Different Block Matching Motion Estimation Algorithms", Acoustics, 

Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference 

on, Vol. 1, 1997, Pages: 603- 606 vol.1 

W. Burleson, P. Jam, S. Venkatraman, "Dynamically parameterized architectures for 

power-aware video coding: motion estimation and DCT", Digital and Computational 

Video, 2001. Proceedings. Second International Workshop on, Vol., 2001, Pages: 4- 12 

H.-J. Stolberg, M. Berekovic, P. Pirsch, H. Runge, H. Moller, J. Kneip, "The M-PTRE 

MPEG-4 codec DSP and its macroblock engine", Circuits and Systems, 2000. 

Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on, 

Volume 2, 28-31 May 2000 Page(s):192 - 195 vol.2, 

T. Kumura, D. Ishii, M. Ikekawa, I. Kuroda, M. Yoshida, "A low-power programmable 

DSP core architecture for 3G mobile terminals", Acoustics, Speech, and Signal 

Processing, 2001. Proceedings. (JCASSP '01). 2001 IEEE International Conference on, 

Volume 2, 7-11 May 2001 Page(s): 1017 - 1020 vol.2 

M. Berekovic, H.-J. Stolberg, P. Pirsch, H. Runge, "A programmable co-porcessor for 

MPEG-4 video", Acoustics, Speech, and Signal Processing, 2001. Proceedings. 

(ICASSP '01). 2001 IEEE International Conference on, Volume 2, 7-11 May 2001 

Page(s):1021 - 1024 vol.2 

D. Brash, "The ARM Architecture Version 6 (ARMv6)", White paper, ARM Ltd, 

January 2002 

L. De Vos, M. Stegherr, "Parameterizable VLSI architectures for the full-search block-

matching algorithm", IEEE Transactions on Circuits and Systems, Vol.36 Issue: 10 

Oct. 1989 

L. De Vos, M. Stegherr, T.G. Noll, "VLSI architectures for the full-search 

blockmatching algorithm," Acoustics, Speech, and Signal Processing, 1989. ICASSP-

89., 1989 International Conference on, 23-26 May 1989 Page(s): 1687 - 1690 vol.3 

L. De Vos, M. Schobinger, "VLSI architecture for a flexible block matching processor", 
Circuits and Systems for Video Technology, IEEE Transactions on, Volume 5, Issue 5, 

Oct. 1995 Page(s):417 - 428 

T. Komarek, P. Pirsch, "Array architectures for block matching algorithms", IEEE 

Transactions on Circuits and Systems, Vol. 36 Issue: 10, Oct. 1989 

K.-M. Yang, M.-T. Sun, L. Wu, "A family of VLSI designs for the motion 

compensation block-matching algorithm", IEEE Transactions on Circuits and Systems, 

Vol. 36 Issue: 10, Oct. 1989 

H. Yeo, Y.H. Hu, "A novel matching criterion and low power architecture for real-time 
block based motion estimation", Application Specific Systems, Architectures and 

Page 148 



Processors, 1996 ASAP 96. Proceedings of International Conference on, 19-21 Aug. 
1996 Page(s):122 - 130 

Hae-Kwan Jung, Chun-Pyo Hong, Jin-Soo Choi, Yeong-Ho Ha, "A VLSI architecture 
for the alternative subsampling-based block matching algorithm", Consumer 

Electronics, IEEE Transactions on, Volume 41, Issue 2, May 1995 Page(s):239 - 247 

D. Xu, J.M. Noras, W. Booth, "A simple and efficient VLSI architecture for a very fast 
high performance three step search algorithm", High Performance Architectures for 

Real-Time Image Processing, lEE Colloquium on, 12 Feb. 1998 Page(s):6/1 - 6/6 

Hangu Yeo, Yu Hen Hu, "A novel modular systolic array architecture for full-search 
block matching motion estimation", Acoustics, Speech, and Signal Processing, 1995. 
ICASSP-95., 1995 International Conference on, Volume 5, 9-12 May 1995 

Page(s):3303 - 3306 vol.5 

Bo-Sung Kim, Jun-Dong Cho, "VLSI architecture for low power motion estimation 
using high data access reuse", ASICs, 1999. AP-ASIC '99. The First IEEE Asia Pacific 

Conference on, 23-25 Aug. 1999 Page(s):162 - 165 

Sung Bum Pan, Seung Soo, Chae Rae-Hong Park, "A novel VLSI architecture for the 
full search block matching algorithm using systolic array", Circuits and Systems, 1996 
ISCAS '96., 'Connecting the World'., 1996 IEEE International Symposium on, Volume 

2, 12-15 May 1996 Page(s):750 - 753 vol.2 

S. Kittitornkun, Hu Yu Hen, "Frame-level pipelined motion estimation array processor", 
Circuits and Systems for Video Technology, IEEE Transactions on, Volume 11, Issue 2, 
Feb 2001 Page(s):248 - 251 

N. Ahmed, T. Natarjan, K.R. Rao, "Discrete Cosine Transform", IEEE Transactions on 

Computers, vol. 23, 1974, pp  .90-93 

W. Chen, C. H. Smith, S. Fralick, "A fast computation algorithm for the discrete cosine 
transform", IEEE Transactions on Communications, vol. 25, pp.  1004-1009, September 

1977 

C. Loffer, A. Ligtenberg, G. S. Moschytz, "Practical fast 1-D DCT algorithm with 11 
multiplications", Proceedings ofICASSP, vol.2 pp.  988-991, 1989 

Sungwook Yu; Swartziander, E.E., Jr., "DCT implementation with distributed 
arithmetic", IEEE Transactions on Computers, Vol. 50 Issue 9 , Sept. 2001 

Chin-Liang Wang; Chang-Yu Chen, "High-throughput VLSI architectures for the 1-D 
and 2-D discrete cosine transforms", IEEE Transactions on Circuits and Systems for 

Video Technology, Volume: 5 Issue: 1 , Feb. 1995 

Yu-Tai Chang; Chin-Liang Wang; Ching-Hsien Chang, "A new systolic architecture for 

fast DCT computation', IEEE International Symposium on Circuits and Systems, 1996. 

ISCAS '96., vol. 2, 1996 

J.E Voider, "The CORDIC trigonometric computing technique", IRE Trans. On 

Electronic Computers, Sept. 1959 

Page 149 



Feng Zhou, P. Kornerup, "High speed DCTIIDCT using a pipelined CORDIC 

algorithm", Proceedings of the 12th Symposium on Computer Arithmetic, 1995 

E. P. Mariatos, D. E. Metafas, J.A. Hallas, C.E. Goutis, "A fast DCT processor, based 
on special purpose CORDIC rotators", Proc. IEEE mt. Symposium. Circuits Systems, 

vol. 4, 1994 

Yang, K.-M.; Sun, M.-T.; Wu, L. , "A family of VLSI designs for the motion 

compensation block-matching algorithm", IEEE Transactions on Circuits and Systems, 

Vol. 36 Issue: 10 , Oct. 1989 

M.A. BenAyed, L. Dulau, P. Nouel, Y. Berthournieu, N. Masmoudi, P. Kadionik, L. 
Kamoun, "New design using a VHDL description for DCT based circuits", Proceedings 

of the Tenth International Conference on Microelectronics, 1CM '98., 1998 

Kyeounsoo Kim; Jong-Seog Koh, "An area efficient DCT architecture for MPEG-2 

video encoder", Consumer Electronics, IEEE Transactions on , vol. 45 Issue: 1 , Feb. 

1999 

B.L. Jian, Z. Xuan, T.J. Rong, L. Yue, "An efficient VLSI architecture for 2D-DCT 

using direct method", Proceedings. 4th International Conference on ASIC, 2001 

J. Prado, P. Duhamel, "A polynomial transform based computation of the 2D DCT with 

minimum multiplicative complexity", ICASSP 1996 

Nam 1k Cho; San Uk Lee, "Fast algorithm and implementation of 2-D discrete cosine 

transform", IEEE Transactions on Circuits and Systems, Volume: 38 Issue: 3 , March 

1991 

E. Feig, S. Winograd, "Fast algorithms for the discrete cosine transform", IEEE 

Transactions on Signal Processing, Volume: 40 Issue: 9, Sept. 1992 

Shen-Fu Hsiao; Wei-Ren Shiue, "A new hardware-efficient algorithm and architecture 

for computation of 2-D DCTs on a linear array", IEEE Transactions on Circuits and 

Systems for Video Technology, Volume: 11 Issue: 11 ,Nov. 2001 

Yi Yang; Chunyan Wang; Omair Ahmad, M.; Swamy, M.N.S., "An on-line CORDIC 

based 2-D IDCT implementation using distributed arithmetic", Sixth International 

Symposium on Signal Processing and its Applications,. 2001 ,Vol. 1 

Y. Arai, T. Agui, and M. Nakajima, "A fast DCT-SQ scheme for images", The 

Transactions of the MICE, vol. E71, pp.  1095-1097, November 1988. 

S. Baloch, "High Performance, Reconfigurable Low Power SoC Architectures For 

Mobile Platforms", MSc Thesis, ISLlfUniversity of Edinburgh, Livingston, 2003 

L. Zhenyu, S. Khawam, T. Arsian, A. Erdogan,; "A Low Power Heterogeneous 

Reconfigurable Architecture For Embedded Generic Finite State Machines"; 

Proceedings of SOC Conference, 2005. IEEE International 25-28 Sept. 2005 

D. Wentzlaff, "Architectural Implications of Bit-level Computation in Communication 

Applications", MSc Thesis, Massachusetts Institute of Technology 2002 

G. Lemieux, D. M. Lewis, "Circuit design of routing switches", ACM International 

Symposium on FPGA, Monterey, CA, Feb 2002: 19-28 

Page 150 



S. Agarwala, et al, "A 600-MHz VLIW DSP", IEEE Journal of Solid-State Circuits, 

Vol. 37, Iss. 11, Nov. 2002, PP.  1532-1544 

G. Martinez, "TMS320VC5501/02 Power Consumption Summary", Application Report, 

TI, SPRAA48, July 2004 

"ARM7 Thumb Family Datasheet", ARMDOI 0035-3102.02, ARM Ltd, 2002 

"ARM9 Family Datasheet", ARM DOl 0034-4/06.02, ARM Ltd, 2002 

OpenRISC, hqp://www.opencores.org/i)rojects.cgi/web/orlk  

GNU C compiler, 4.0, http://gcc.gnu.org/ 2005 

"TMS320C5000 CPU and Instruction Set Reference Guide", Texas Instruments, 

October 2000 

G. Martinez, "TMS320VC64010/13 Power Consumption Summary", Application 

Report, TI, SPRAA50, September 2002 

"TIC6000 Compiler Benchmarks", Texas Instruments, 2004 

"Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television", 

DVB Document A 012, DVB Project Office, Geneva, Switzerland, June 1996 

"ZL10353 Datasheet Fully Compliant NorDig Unified COFDM Digital Terrestrial TV. 

(DTV) Demodulator", Datasheet, Zarlink, Ottawa, 2005 

Wang, Chua-Chin; Huang, Jian-Ming; Cheng, Hsian-Chang , "A 2K/8K Mode Small-
Area FFT Processor for OFDM Demodulation of DVB-T Receivers", Consumer 

Electronics, IEEE Transactions on, Volume 51, Issue 1, Feb. 2005 Page(s):28 - 32 

J.W. Cooley, J.W. Tukey, "An algorithm for the machine calculation of complex 

Fourier series", Math. Comput. 19:297-301, 1965 

"MAD: MPEG Audio Decoder", libmad, Underbit Technologies, San Diego, 2005, 
http://www.underbit.com/products/madl  

ffmpeg library, http://fflnpeg.sourceforge.net/ 

I. Nousias, "Path-Encoding. An efficient representation of netlists and code compression 

technique for Direct Network-based RCs", Internal Document, University of Edinburgh, 

August, 2005 

I. Nousias, "Reducing data-memory access by using sub-step time tags", Internal 

Document, University of Edinburgh, April, 2005 

ISO/EEC, "MPEG-4 Standard - Visual", Specification, ISO/EEC 14496-2, Geneva 

G. E. Moore, "Cramming more components onto integrated circuits", Electornics, vol. 

38, pp. 114-117, 1965 

K. Compton, S. Hauck. Totem, "Custom Reconfigurable Array Generation", 9th Annual 

IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'Ol). 

Murray, A.F.; Denyer, P.B., "A CMOS Design Strategy for Bit-Serial Signal 

Processing", Solid-State Circuits, IEEE Journal of Volume 20, Issue 3, Jun 1985 

Page(s):746 - 753 

Page 151 


