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ABSTRACT

Data privacy is an ever important aspect of data analyses. Historically, a plethora
of privacy techniques have been introduced to protect data, but few have stood
the test of time. From investigating the overlap between big data research, and
security and privacy research, I have found that differential privacy presents

itself as a promising defender of data privacy.

Differential privacy is a rigorous, mathematical notion of privacy. Neverthe-
less, privacy comes at a cost. In order to achieve differential privacy, we need
to introduce some form of inaccuracy (i.e. error) to our analyses. Hence, prac-
titioners need to engage in a balancing act between accuracy and privacy when
adopting differential privacy. As a consequence, understanding this accura-
cy/privacy trade-off is vital to being able to use differential privacy in real data

analyses.

In this thesis, [ aim to bridge the gap between differential privacy in theory, and
differential privacy in practice. Most notably, I aim to convey a better under-
standing of the accuracy/privacy trade-off, by 1) implementing tools to tweak
accuracy/privacy in a real use case, 2) presenting a methodology for empirically
predicting error, and 3) systematizing and analyzing known accuracy improve-
ment techniques for differentially private algorithms. Additionally, I also put
differential privacy into context by investigating how it can be applied in the
automotive domain. Using the automotive domain as an example, I introduce
the main challenges that constitutes the balancing act, and provide advice for

moving forward.

Keywords: accuracy, accuracy/privacy trade-off, big data, data privacy, differential pri-

vacy, privacy, utility, vehicular data
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Introduction

IG data has been a buzz word for years. Everyone wants it, and with the
B rise of machine learning and artificial intelligence research, there seem to
be many use cases for big data as well. Outside of the research community, data
is also becoming increasingly important. Not only can data be used as decision
support, there are also companies that solely collect and sell data. As such, data

is in high demand.

Still, with great data comes great responsibility. First of all, privacy is a uni-
versal right, recognized both in the Universal Declaration of Human Rights
(UDHR) [1]] and the European Convention on Human Rights (ECHR) [2]. And,
secondly, there are huge ﬁne{] [3] involved with breaking data regulations in the
EU. Despite the clear societal and legal demand for data privacy, data breaches

still occur frequently.

Only over the past few years, data breaches have resulted in the unintentional
disclosure of millions of user’s private information [4}, |5} |6, |7, |8} 9% (10} |11} {12}
13)/14]. To make matters worse, data breaches are irrevocable. Once data has
been released there is no taking it back. In some cases, the effect of a data breach
can be mitigated. For example, suppose my password was leaked — I can easily
change the password. Similarly, I can, with some additional hassle, request a

“yp to 10 000 000 EUR, or in the case of an undertaking, up to 2% of the total worldwide

annual turnover of the preceding financial year, whichever is higher”
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new credit card if my credit card gets stolen. In other cases, data breaches result
in permanent damages. For example, imagine my medical records got stolen,
as in the Brazilian case [14]. There is no way that I can change my medical
diagnoses just because the information has been leaked. As such, data leaks

are forever, and data should be protected with this danger in mind.

Now, do we need to give up our dreams about data analysis in order to preserve
privacy? What if there was a way to protect individual’s privacy, while still get-
ting accurate results? In fact, there exists such a solution, achieved by ensuring
differential privacy. Now, this thesis would not exist if the solution to all pri-
vacy problems was as simple as just applying differential privacy. Of course,
differential privacy comes with its setbacks, and this thesis is dedicated to ad-
dressing some of those setbacks to bring differential privacy one step closer to
being a practical solution for real world data collections.

Additionally, differential privacy is not the first or only proposed solution to
achieve data privacy. In fact, there exits many other approaches. Historically,
many of these privacy-preserving techniques have been introduced in conjunc-
tion with statistical analysis of data in databases. As such, I want start off by
introducing the reader to the origins of data privacy in the context of database

research.

1.1 A Historical Perspective on Database

Privacy

First, let me introduce some terminology that I will use throughout this thesis
that relates to databases. When talking about data, I will use the words database
and data set interchangeably. Using terminology from databases, I will refer to
one row of a database table (Table [I.T) with an individual’s data as a record,
and the columns as parameters or attributes. For example, {€, Boel, Female,
PhD student, Information security, Swedish} is a record, and Salary is an
attribute. I will also use either the word query or algorithm to refer to some

data analysis, such as calculating an average or a sum. To be able to exem-
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plify database queries, I will use my own style of pseudo code that to an extent
reassembles the language SQL. Having established some terminology, we can

now move on to discuss database privacy.

Salary Name Gender Title Division Nationality

€€€  Alice Female Professor Networks Greek
and systems

€€€ Bob Male Professor Information British
security

€ Boel Female PhD student Information Swedish
security

€€ Eve Female Associate Networks Swedish

professor and systems

Table 1.1: Example database with 4 records

Databases have been around for decades, with the CODASYL query language
being introduced in late 1960’s [15]]. Relational databases, that still are popular
today, was introduced by Codd [16] in 1970. Already in the early days, both
security and privacy was studied in the context of databases. One particularly
persistent privacy problem is the inference problem. In fact, this thesis revolves
around solutions to the inference problem, and their application. So, what is

this inference problem, and why is it so hard to solve?

The inference problem states that sensitive data can be inferred through indirect
disclosures. For example, if an adversary wants to learn my salary, directly
running the following query would most likely be disallowed since the name in
this example database is a unique identifier:

SELECT salary FROM employees WHERE name=Boel

In fact, obvious identifiers such as names and social security numbers would
most likely already be removed from the database, since they would cause di-
rect disclosures of sensitive information. So what constitutes an indirect dis-
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closure? Assume that the adversary knows some background data about me,
such as what division I belong to and what nationality I have. Now, using the

background data, the adversary can ask for:

SELECT salary FROM employees WHERE gender=female AND
title=PhD student AND division=information security
AND nationality=Swedish

While this second query may seem like an innocuous query, this query would
in fact only target me, even if the example database contained all staff at my
university. That is, the query would match exactly one record in the database.
At glance, it may seem easy to just disallow queries that returns one record, but

as we will learn, this solution still allows indirect disclosures.

Historically, there have been many attempts to counteract the inference prob-
lem. Specifically, within database research, several inference control techniques
have been proposed. Here, the objective of inference control is to “make the
cost of obtaining confidential information unacceptably high” |[17]]. That is, the
purpose of data privacy has never been to completely stop the flow of informa-
tion, but rather to limit the leakage of confidential information. As Dalenius
[18] recognized, information leakage (disclosure) can happen when releasing
census statistics [[19]. Hence, when releasing data, information leakage is ex-
pected, but the caveat here is that when guaranteeing privacy, we want to be

able to quantify said information leakage.

Initially, the inference problem was addressed by sanitizing before data was re-
leased [20]]. That is, the database itself was sanitized before it could be queried.
Then, in 1970, Hoffman and Miller [21] started investigating the inference prob-
lem in online settings, where the database can be queried dynamically. Studying
this online setting further complicates the inference problem, as it requires us to
also reason about what can be learned when we compose results from multiple
queries. Imagine that we try to block indirect disclosures by restricting queries
that return only one record. How could an adversary still figure out what my
salary is? For example, the adversary can first query the database for everyone’s
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salary:
SELECT salary FROM employees

Which would return €E€EEEEEEE. Then, the adversary runs a query that

asks for everyone’s except my salary:
SELECT salary FROM employees WHERE NOT name=Boel

Which returns €€E€EEEEE. Now, the difference between the two queries
is €, which is my salary. As such, an adversary can use set theory to fig-
ure out which queries to run in order to disclose information of their choice.
Consequently, blocking queries that return only one record does not solve the
inference problem. Instead, we would much rather want a method that prevents

adversaries from comparing queries that differ on only one record.

After some years of new solutions to the inference problems being suggested
Denning and Schlorer [20] systematized the existing inference control tech-
niques in 1983. They identified two types of inference controls: those that put
restrictions on the allowed queries, and those that add noise to data or query re-

sults. Furthermore, they also grouped the inference controls as follows:

* Restriction techniques
— Table restriction (coarse-grained)
— Cell restriction (fine-grained)
* Perturbation techniques
— Record-based perturbation (pre-processing)
— Result-based perturbation (post-processing)

The restriction techniques disallow access either to whole tables or specific
cells. For example, adding the requirement to disallow queries that target a sin-
gle record can be categorized as a restriction technique. In hindsight, I would
like to point out that the restriction techniques has evolved primarily to today’s
research on information flow control and access control. As such, in this thesis
I will not discuss restriction techniques in relation to data privacy. Instead, vari-
ations of the perturbation techniques are what is mainly used to achieve privacy
in data analyses.
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Most notable in the context of differential privacy, is the introduction of ran-
dom disturbances to achieve privacy, which Olsson [22] attribute to Statistics
Canada. This technique falls within the perturbation techniques. Here, Ols-
son [22]] propose using randomness to choose how numbers should be rounded,
and can thus be used either as pre-processing or post-processing. For example,
when a query returns the exact value 1.5, we can post-process the answer to

instead return 2 with probability %, and 1.5 with probability %

Also interesting in the context of differential privacy, is the idea of Random
Sample Query control by Denning [23]]. Here, the records included in the query
are chosen randomly to prevent the adversary from calculating which queries

differ by only one record.

So, did Denning and Schlorer [20] find a clear champion among the existing
techniques? As usual, the answer was it depends. More specifically, Denning
and Schlorer [20]] conclude their survey with an understanding that rings as true

today as when they wrote it:

The best strategy for a particular application will depend on its

objectives and risks. — Denning and Schlorer [20]]

Given the needs for practitioners to identify the best’ strategy for their data, it
is of course important to be able to compare approaches somehow. One such
way is by introducing strategies that comes with privacy metrics. We note that
several researchers have proposed metrics to quantify anonymity [24] 25| [26|
27, 28]]. Still, these metrics are primarily used in communication networks and

not databases. As such, we do not dig further into these specific metrics.

Instead, we focus on another branch of privacy metrics that are directly con-
nected to databases. Here, a series of incremental metrics have appeared, some-
times called syntactic anonymity models [29]]. All of these models leave the
implementation details to the practitioners. Basically, the syntactic anonymity
models capture a property of the database instead of arguing for the use of spe-
cific methods. In my opinion, it is interesting to notice that the research at this

point has moved away from the bottom-up approach of inventing new perturba-
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tion techniques.

First out among the syntactic models was k-anonymity [30]]. The idea behind
k-anonymity is that if there exists k records that look similar it will result in a
hide-in-the-group effect which provides privacy for the individuals. To explain
k-anonymity, we re-use the small example database from before but remove
the names (Table @]) Here, the sensitive attribute that we want to protect
is {Salary}. The example database contains no unique identifier, but instead
has four attributes {gender, title, division, nationality} that together form a
quasi-identifier. A quasi-identifier is a set of parameter that does not on their
own uniquely identify a record, but which together create a unique identifier.
For example, {Female, PhD student, Information security, Swedish} is a
quasi-identifier for Boel.

Salary Gender Title Division Nationality

€€€  Female Professor Networks and systems  Greek

£E€€ Male Professor Information security British

€ Female PhD student Information security Swedish

€€ Female Associate Networks and systems  Swedish
professor

Table 1.2: Example database with 4 records

Now, for the database to have k-anonymity, we need to make sure there are k
records that share the same values for their quasi-identifiers. Basically, we need
to create groups with k similar records in each group. Depending on the data
in one’s database, k-anonymity can be achieved in different ways. Hence, we
will have to make decisions on a case-by-case basis when we make a database
k-anonymous. From our example database, we can for example start by sup-
pressing the attribute nationality to get Table[I.3]
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Salary Gender Title Division Nationality

€€€ Female Professor Networks <redacted>
and systems

€€€ Male Professor Information <redacted>
security

€ Female PhD student Information <redacted>
security

€€ Female Associate Networks <redacted>

professor and systems

Table 1.3: Example database with 4 records, with nationality suppressed

Next, we need to determine which values we want to preserve. For example,
we can take Alice’s and Eve’s record and put them in the same group by gener-
alizing their titles to *faculty’, resulting in Table[I.4] Alice and Eve now belong
to a 2-anonymous group with the quasi-identifier { Female, Faculty, Networks
and systems}. That is, we have & = 2 because there are two records that share

the same values for their quasi-identifier.

Salary Gender Title Division Nationality

€€€  Female Faculty Networks and systems <redacted>
€€ Female Faculty Networks and systems <redacred>

Table 1.4: Example database reduced to 2 records that are 2-anonymous

Still, k-anonymity is sensitive to group disclosure. Suppose Alice and Eve has

the same salary. Then we would have Table[I.5] which is also 2-anonymous.
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Salary Gender Title Division Nationality

€€€ Female Faculty Networks and systems <redacted>
€€€ Female Faculty Networks and systems <redacted>

Table 1.5: Example database that is 2-anonymous, but still leaks the salary of

anyone belonging to the group

Having noticed that k-anonymity results in privacy breaches when all members
of a group share the same value for the sensitive parameter, /-diversitywas in-
troduced [31]. That is, the group described in Table [I.3]is 2-anonymous, but
since everyone has the same salary, we would accidentally leak the salary of
all female faculty in network and systems. As a remedy, /-diversity introduced

requirements for values to be well represented within each group.

Due to similar weaknesses, #-closeness [32] and later (3-likeness [33] was in-
troduced. From this line of research, it becomes clear that it is difficult to
anticipate and protect against all possible attacks. Even though the syntactic
anonymity models do not directly take a bottom-up approach, each improve-
ment assumes a slightly stronger adversary. As such, I would not consider
the syntactic anonymity models strictly top-down approaches. So, perhaps we
would have better luck if we turned the problem around and started with a top-

down approach where we start with the strongest adversary possible?

A privacy definition that does not make any assumptions about the adversary’s
access to background data is differential privacy [34]. Unlike the previous so-
lutions to the inference problem, the foundations of differential privacy does
not rely on the data achieving certain properties. Instead, differential privacy
is a property of the algorithm that runs the data analysis. As such, differential
privacy is fundamentally different in the way it tackles the inference problem
than previous solutions. Accordingly, in my opinion, differential privacy can be
thought of as a top-down solution, whereas previous solutions take a bottom-up

or a mixed approach.
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Still, like the perturbation techniques we introduced before, differential privacy
also relies on adding some sort of “noise” or randomness to the result of a data
analysis. In the end, Denning and Schlérer [20]’s quote on how to achieve data
privacy still summarizes the current position of many researchers, although the

exact techniques to produce “noise” have been updated:

How do you keep John Doe anonymous when reviewing data on
the larger picture? Techniques such as adding “noise” to the data

help protect the privacy of the individual. [20]]

1.2 Putting Privacy into Context

So, what cases do we want to protect against when we talk about data privacy?
Basically, we are interested in protecting an individual’s data from being leaked
during data analysis. Next, I will introduce two possible attackers that we would
like to defend against. We will continue using the example database from the

previous section.

Salary Name Gender Title Division Nationality

€€€ Alice Female Professor Networks Greek
and systems

€€€ Bob Male Professor Information British
security

€ Boel Female PhD student Information Swedish
security

€€ Eve Female Associate Networks Swedish

professor and systems

Table 1.6: Example database with 4 records, where the highlighted records are

already known to the adversary
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First, imagine a worst case scenario with a malicious adversary that wants to
infer my salary from a database. We assume a strong adversary with access to
arbitrary background data. For example, assume that the adversary has access
to everyone’s salary except mine, i.e. they know all the highlighted information
in Table [I.6] Then, if we allow the adversary to query the database for every-
one’s salary, they can infer what my salary is. Hence, we want to protect indi-
viduals even in cases where the adversary has access to arbitrary background
data.

Now, such a strong adversary might seem uncommon and unrealistic. Does that
mean we do not need to need to protect against the extreme case where all but
one piece of data is known? While the assumption of access to arbitrary back-
ground data might seem too strong, this assumption means we do not need to be
concerned about what other data already exists, or what data may be released
in the future. As such, this assumption will allow us to give privacy guarantees

that do not depend on data outside of our database.

Next, recall the example from Section|l.1| where the adversary can use set the-
ory to construct several queries that target one single record. Unlike before, let
us assume a benign user. This user has no intention of inferring any private
information. However, if the database does not enforce adequate privacy, even
a benign user can accidentally infer information. Imagine that the user wants to
query database for everyone’s salary, but the database only holds my salary. Or,

imagine that the users runs the innocuous query mentioned previously:

SELECT salary FROM employees WHERE gender=female AND
title=PhD student AND division=information security
AND nationality=Swedish

At my university, this particular query would have one unique match, namely
me. Imagine running this query on the small example database in Table
In both these cases, the benign user would unintentionally learn my salary. As
such, there are cases where even a benign user ends up targeting data from a
single user.
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Salary Name Gender Title Division Nationality

€€€ Alice Female Professor Networks Greek
and systems

€€€ Bob Male Professor Information British
security

€ Boel Female PhD student Information Swedish
security

€€ Eve Female Associate Networks Swedish

professor and systems

Table 1.7: Example database with 4 records, where third row is the record acci-

dentally being targeted

Therefore, we would like to protect every record in the database in such a way
that even when a single record is targeted, the released information still pro-
tects the privacy of the single record. That is, we want a notion of privacy that
protects the privacy of each record even when two queries only differ by one
record.

1.3 Differential Privacy

Differential privacy [34] is a rigorous privacy definition with statistical privacy
guarantees. That is, differential privacy allows us to guantify privacy through
a privacy loss parameter . Unlike the & in k-anonymity, € is a measure of

risk.

In addition, differential privacy is a property of an algorithm. That is, in order
to ensure differential privacy, we only need to verify that the algorithm is dif-
ferentially private. The alternative would be a property of data, where for every
possible output, we would need to check that particular output has the prop-
erty. For example, k-anonymity, ¢-diversity, and ¢-closeness are all examples of
property of data.
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Now, recall the different adversaries we discussed in Section [[.2] How can
we make sure each record in a database gets the same level of privacy? We
need to define what it means to differ by one record, which we established in
Section[I.T| was the main reason behind the inference problem. Hence, we start
of by defining neighboring data sets in Definition|[I}

Definition 1 (Neighboring Data Sets). Two data sets, X and X', are neigh-
boring if and only if they differ on at most one element x ;. That is, X' can be

constructed from X by adding or removing one single element x;:
X/ =X+ x]’

To protect against a strong adversary, we want the results from two similar
(neighboring) databases to be almost the same. In other words, if we go back
to the salary example, a differentially private query for everyone’s salary vs
everyone except my salary should return almost the same value with high prob-
ability. That is, the probability distributions for the results should be almost the
same [35]]. Hence, differentially private versions of these two queries should

return almost the same value statistically:

1. SELECT salary FROM employees
2. SELECT salary FROM employees WHERE NOT name=Boel

As such, the results will not let the adversary infer my salary. Now, differential
privacy is a definition (Definition [2) that allows us to quantify how big this

almost the same should be in any given context.

Definition 2 (¢-Differential Privacy). A randomized algorithm [’ gives
e-differential privacy if for all data sets X and X', where X and X' are neigh-
boring, and all S C Range( '),

Prf/(X) € 8] < e x Pr{f'(X') € S]

In addition, differential privacy is also:
* Resistant against arbitrary background data
* Composable
 Safe against any post-processing
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That is, not only does differential privacy protect against the cases I introduced
in Section [T.2] by not making assumptions on the adversary’s access to back-
ground data, differential privacy also has additional benefits. First, differential
privacy is composable, which means that a user can combine results from dif-
ferent queries and we can still calculate the privacy guarantees. That is, we can
execute queries in an online setting as opposed to relying on a pre-sanitized
database. Next, any post-processing of the results from a differentially private
algorithm will not degrade the privacy guarantees. Basically, we can treat data

released by a differentially private algorithm as non-sensitive data.

1.3.1 Centralized vs Local

Seeing as differential privacy is a definition, there are a multitude of ways to
achieve differential privacy. One thing that can be tweaked is where the dif-
ferentially private algorithm is executed. Next, I will introduce two different
modes of differential privacy: centralized differential privacy, and local differ-

ential privacy (LDP).

Centralized differential privacy is what is used in the original paper [34] on
differential privacy. In this mode, all data is stored centrally before the differ-
entially private algorithm is executed, as illustrated in Figure[I.1} For example,
when an analyst collects data in a database and then runs a differentially private

query on the database, this corresponds to the centralized mode.

In contrast, in the local mode (Figure[I.2)) the differentially private algorithm is
executed before the data leaves the participant. For example, when a participant
enters data into a website, and the client runs the differentially private algorithm
before sending the perturbed data to a webserver, this corresponds to the local
mode. As a consequence, with the local mode we do not need to store all sensi-
tive data in one location. That is, we can avoid creating potential honeypots for
hackers by using the local mode. As such, LDP inherently provides a defense

against data breaches.
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Figure 1.1: Participants raw data (x,) is gathered in a centralized database,

and each query (f(X)) on the database is answered under differential privacy

(f"(X))

Figure 1.2: Each participant’s data (x,,) is perturbed by a differentially private

algorithm locally before their data («},) sent to the centralized database

Figure 1.3: The two modes of differential privacy

Basically, choosing between the central or local mode boils down to who can
be trusted with the data. That is, the assumption on trust and potential risk of

storing data is what decides what mode a data collector should choose. Some
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differentially private algorithms are also more suitable for a particular setting.

In the next section, I will introduce one algorithm for each mode.

1.3.2 Differentially Private Algorithms

Many algorithms are differentially private, or can be made differentially private
by adjusting them to adhere to Definition [2| As such, I cannot introduce all
differentially private algorithms. Instead, I will introduce two common differ-
entially private algorithms in this section. First, the Laplace mechanism, which
is typically used in the centralized mode. And next, randomized response which

is typically used in the local mode.

The Laplace Mechanism

The Laplace mechanism was one of the first mechanisms introduced by Dwork
et al. [34]. One can think of the Laplace mechanism as a result-based pertur-

bation technique, where noise is added to a query result. We illustrate this in

Figure

f(X)
f'(X) = F(X)+ noise

Figure 1.4: The Laplace mechanism adds noise drawn from a Laplace distribu-

tion to true result (f (X)) to release an approximate result (f'(X))

That is, the added noise is what ensures Definition E]holds. As a consequence,
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for each implementation of the Laplace mechanism, we need to understand how
big the noise should be to protect our data. Basically, the noise should make
two neighboring data sets X and X’ almost indistinguishable when we execute
the query f’ on them. That is, if my salary is the only record that differs be-
tween two queries, the noise needs to be big enough to hide that difference.
To complicate matters further, my salary needs to be hidden no matter what
other data is present in the database. For example, if we add Bill Gates, who
presumably would require a very high salary, to our database in the future, our
queries need to be able to handle this case too. As such, we need our noise to be
big enough to hide the biggest possible difference between f/(X) and f/'(X’).
Conveniently enough, there already exists such a measurement, namely the ¢,
sensitivity (Definition [3|inspired by [36]]) of an algorithm.

Definition 3 (¢; Sensitivity). Given any algorithm f with numerical output,
with any neighboring data sets X, X' as input, the {1 sensitivity (Af) of the
algorithm f is:

Af = max|[f(X) = f(X")h

Having established how big our noise needs to be, to cover even the worst case
difference between two data sets, we can now define the Laplace mechanism as

follows in Definition 4]

Definition 4 (Laplace Mechanism). Given any algorithm f with numerical out-

put and with sensitivity A f, the Laplace mechanism is defined as:

frap = f+ Lap(Af/e)

Historically, adding noise to data to achieve privacy is a known privacy tech-
nique, as we saw from Denning and Schlorer [20]’s 1983 survey. So, how is the
noise in the Laplace mechanisms different from those techniques that failed in
the past? In particular, how is the randomness in differential privacy different

from the technique used by Olsson [22]]?

First of all, the noise in the Laplace mechanism is drawn from a known Laplace
distribution. As such, we can estimate approximately how big the noise will be.
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Secondly, the magnitude of the noise is based on the sensitivity of the algorithm.
And lastly, we never add the same noise twice. What difference does fresh noise

make? Suppose I first execute the following query:
SELECT salary FROM employees WHERE name=Boel

The database will then answer with salary+noise. Then, I execute a dummy
query which returns no one’s salary, for example SELECT salary WHERE
name=Boel AND NOT name=Boel, which just returns 0+noise. Now,
if the noise is the same in both cases, my salary can be easily deduced by sub-
tracting the noise from the first query. Hence, each query needs to get fresh

noise.

In conclusion, the Laplace mechanism is conceptually similar to the random
noise used historically. Still, the Laplace mechanism is a bit more sophisticated,

since we can reason about how queries compose and estimate the accuracy of a

query.

Randomized Response

Randomized response [37] is a somewhat odd differentially private algorithm in
the sense that it predates the definition of differential privacy by more than 40
years. For that reason, randomized response is an excellent case to exemplify
that differential privacy is merely a property of the algorithm as opposed to a

specific implementation.

In 1965, Warner [37]] designed randomized response as a survey answering tech-
nique to avoid bias in participants’ answers. Basically, when a participant has
to answer a sensitive question, they are more likely to lie. For example, a par-
ticipant may tell us that they never cheated on a test, simply because they are
too embarrassed to admit they cheated. Randomized response was designed to

counteract this answer bias.

The protocol behind randomized response consists of a few simple steps. First,
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the participant is asked a question. Next, the participant decides what to answer

in the following way:

1. Flip a coin
a) If tails, answer truthfully
b) If heads, spin a spinner with all possible answer alternatives to determine

what to answer

During randomized response, we assume that the outcome of the coin-flip and
spinner is only observed by the participant. Consequently, when I respond that
I have cheated on a test, there is no way to tell if that is my true answer or
a randomly chosen answer. That is, I can deny that I have cheated on a test,
and blame my answer on randomized response. As such, randomized response

gives plausible deniability to the participant.

Still, as with the Laplace mechanism, the amount of perturbation introduced by
randomized response is known and controlled. That is, the bias of the coin and
the spinner is known. Hence, we can predict how many of the responses are lies
and how many are truthful in order to estimate the true answer distribution. We

define randomized response in Definition 3]

Definition 5 (Randomized Response). A randomized response for any input

and some probability 1 > p > 0 is defined as:

, x  with probability p
frr =
—x  with probability 1 — p
Having introduced differential privacy, and exemplified with two different algo-
rithms, we can now move on to the heart of this thesis. Namely: the balancing

act of the accuracy/privacy trade-off.

1.3.3 Setting ¢

The privacy of any differentially private algorithm is expressed as privacy loss

through the parameter €. Accordingly, differential privacy does not make any
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claims about data becoming “anonymous”. Instead, € can be thought of as
the additional risk a participant is exposed to by participating in a data analy-

sis.

Consequently, a central part of any differentially private algorithm is setting €.
Deciding on an adequate value of ¢ is an open and unsolved problem. More-
over, what constitutes a good’ value for € is context dependent [38]. There
have been papers written on possible ways of reasoning when setting ¢, such as
using an economic approach [39], calculating the adversary’s advantage [40],
and similarly, calculating the Bayesian posterior belief of the adversary [41].
Generally, there exists a consensus that € should be set to a small value, which
Wood et al. [42] argues should be less than 1. Still, there exists no silver-bullet

for setting €.

Perfect Privacy Perfect Accuracy
(Release no data) (Release all data)

o

Figure 1.5: Abstract view of the trade-off, where the size and placement of the

colored areas depend on context and the actor viewing the spectra

The reason setting € is so difficult is, in my opinion, due to the fact that there are
at least two parties with conflicting interests involved. Participants ideally want
perfect privacy. Simultaneously, data analysts ideally want perfect accuracy.
As such, there will never be a clear cut optimal value to set ¢ to. Basically, the
two parties would need to agree upon which ranges are acceptable (the green
area as illustrated in Figure [I.5). Hence, € needs to be set on a case-by-case

basis.

Adding to the complexity of the problem, privacy is a social construct that is
difficult to reason about without involving real participants. Since this thesis

is written from an engineering perspective, I do not attempt or claim to solve
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the problem of giving participants a *good’ value of . Instead, I think our
best attempt is to tackle the problem from the other end: namely by finding the
worst error a data analyst can tolerate. This gives the participants the highest
privacy the analysts can afford. Accordingly, we will instead focus on giving
participants the lowest € the data analysts can accept, i.e placing € to the leftmost

in the green area in Figure[I.3]

1.3.4 Accuracy

Strongly connected to privacy is of course accuracy. A critique I have often
encountered is that differential privacy is an unrealistically strong notion of pri-
vacy. In particular, a concern is that it may not be possible to achieve adequate
accuracy under differential privacy. That is, until we can provide upfront accu-
racy predictions for all algorithms, differential privacy risk not being a strong
contender in real data collections. In addition, we would also like to be able to

claim that our predicted accuracy is "good’.

Consequently, my particular focus has been on trying to address the balancing
act of differential privacy, i.e. the inherent accuracy/privacy trade-off at the
heart of differential privacy. As with the privacy loss parameter, €, accuracy
is highly context dependent. Therefore, it is important to balance accuracy
and privacy on a case-by-case basis. For example, +10mg may be negligible
when measuring ingredients for your cake mix, but +10mg could be lethal when
measuring medicine. That is, different settings have difference tolerance for
inaccuracy. Consequently, our balancing act needs to be put into context before

we can reason about 'good’ accuracy.

While there exists techniques to improve accuracy of differentially private al-
gorithms without decreasing privacy (see Paper VI), increasing ¢ is the most
obvious way of improving accuracy. Still, there exists other variables, often
algorithm dependent, that can affect accuracy such as the size of the database.

So, how can we reason about accuracy in this balancing act?
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First, we need to find at least one method to measure error in our setting. There
are of course different ways of predicting the error of a differentially private
algorithm. In this thesis, I have used two fundamentally different methods.
The first method, Chernoff bounds, is an analytical method that predicts the
range the error will fall in. A general Chernoff bound for the accuracy of any

differentially private algorithm [43], is given in Definition [§]

Definition 6 ((«, B)-usefulness). Let f’ be a differentially private algorithm,
and E be a random variable representing the error of the output of f'. Given
two error bounds « and B, the population size n and o, € (0, %), where
8= 2e72° W say that ' is («, B)-useful [44|] if and only if with probability

at least 1 — B, the error K is bounded above by «, i.e.,
PrlE<al>1-p

Secondly, I empirically measure error from experiments. For example, I have
measured mean absolute percentage error (MAPE) empirically. In Paper V,
I present a novel methodology for expressing error by creating a prediction
model from empirical data. For an example with two parameters A and B, this

prediction model y is as follows:
Y= +7 X A+ 2 X B+ 12 X AB + experimental error

Where the constant -y is the intercept, and AB is included to capture the possi-

ble interaction between parameters A and B.

1.4 Thesis Objectives

The original objective of my PhD project was to investigate how privacy can
enable big data analysis. Most of the results do not necessarily require ’big’
data though, although big data can increase the accuracy of the results in some
cases. In particular, I have focused on how to use differential privacy in real data
analyses. Motivated by differential privacy’s rigorous theoretical guarantees, I

set out to encourage the use of differential privacy in real settings. That is, I
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want bridge the gap between theory and practice by making differential privacy
more accessible to practitioners. I have done this by 1) exploring how differ-
ential privacy can be applied in a specific domain and use case, and 2) through
practical tools.

Moreover, making differential privacy accessible is not only about bringing
tools and techniques to potential users. A major caveat to adopting differen-
tial privacy is ensuring adequate accuracy. At the same time, for participants,
the main concern is being guaranteed adequate privacy. These two conflicting
interests leaves us with a trade-off between accuracy and privacy that needs to
be balanced.

In order to bring differential privacy to real systems, adequate levels of accuracy
and privacy must be achieved simultaneously. Hence, I focus on differential
privacy’s inherent privacy-accuracy trade-off in three ways: 1) through tools
where data analysts can tweak the trade-off through tangible parameters, 2)
by systematizing known techniques for achieving accuracy improvements, and
3) through proposing a novel application of a methodology for creating error
prediction models.

In summary, the research questions I address in this thesis are:
> What privacy model(s) are suitable for big data? (Paper I)

> How can differential privacy be achieved in the vehicular domain, and
are there any additional challenges that apply in this domain compared to

existing theoretical research? (Paper II, Paper III)

> How can we create a tool that gathers poll data under differential privacy
by design? (Paper IV)
> Can we use empirical methods to predict error for differentially private

algorithms? (Paper V)

> How can we improve accuracy of differentially private analyses in other

ways than tweaking the privacy parameter €? (Paper VI)
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1.5 Summary and Contributions of Included

Papers

The papers included in this thesis cover several different topics, all related to
data privacy. In Figure[I.6]T have attempted to capture the relationship between
all the included papers and their topics. Paper I (page[d3) is the most general pa-
per since it only briefly touches on the topic of differential privacy. All the other
papers are specifically focused on differential privacy. In Paper II (page [T9) we
explore how differential privacy can be used in the automotive domain, and
what challenges it entails. Paper III (page[T03) is a bridge between the automo-
tive domain and tools for differential privacy that Paper IV (page [123) belongs
to. In Paper V (page [I33), I introduce a methodology for accuracy predic-
tion that may be applicable to any differentially private algorithm. Finally, in
Paper VI (page [I97) we investigate accuracy for two specific data types: his-
tograms and synthetic data.

Differential privacy
Fheh
Big data +
security & privacy Paper
. Paper I
Automotive
Paper|(ll
Tools & Paper (I
applications
P
aper leap@[r Vi

Figure 1.6: Abstract illustration of the relationship between the papers (semi
transparent colored areas to show overlaps) and which research areas they cover.

The size of areas and papers do not necessarily correspond to their real ’size’.
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1.5.1 Paperl

To investigate the intersection between big data research and security and pri-
vacy research, we conducted a systematic literature review (SLR) that created
a snapshot of the current research field. We found that privacy is currently a
popular topic to combine with big data research, and that differential privacy is
particularly often used. Our conclusion is that differential privacy is especially
well-suited for big data analysis, as it provides mathematically proven privacy
guarantees that prevents overfitting of data that would lead to inference of in-
formation about individuals. Additionally, as differential privacy is a property
of the algorithm and not the data, it is easier to check for than checking proper-
ties of the data. Our contribution in this paper is a systematic categorization of
recent research papers that span both research areas. We answer the following

research questions:
> What recent security or privacy papers exists in the big data context?
> How many papers cover security or privacy for big data?
> Which security, privacy and big data topics are represented in the area?

> When a paper covers more than one category, which categories inter-

twine?

Statement of Contribution
My contribution to this paper includes choice of methodology, design of SLR
protocol, reading and analysis of papers. In addition, the paper was written by

me.

1.5.2 Paper Il

In this paper, we connect differential privacy to the automotive domain. Our
main goal with this paper was to bridge the gap between theory and practice, by
establishing the possible role of differential privacy within the context of the au-

tomotive domain, while identifying the challenges of differential privacy bring.
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This paper consists of a comprehensive introduction to differential privacy, and
focus especially on what challenges can arise when implementing differential
privacy in a vehicular setting. Furthermore, we give advice for practitioners as
to where to start when implementing differential privacy in this domain. Lastly,
we highlight the currently open research problems that apply to the entire dif-
ferential privacy research community, and also discuss the specific problems
encountered when dealing with vehicular data. Thus, the contribution of this

paper is as follows:

+ acomprehensible introduction to differential privacy, including what type
of differentially private analyses can be performed in the vehicular do-

main

+ recommendations for how to proceed when implementing differentially

private analyses in the vehicular domain

+ highlights of the challenges involved with implementation of differen-

tially private algorithms in the vehicular domain

Statement of Contribution

My contribution to this paper includes comparisons of differentially private al-
gorithms, advice for practitioners based on interactions with project stakehold-
ers, and an analysis of open challenges. In addition, the paper was written by

me.

1.5.3 Paperlil

Moving on to a particular use case within the automotive domain, we imple-
mented a smartphone app that collects subjective data from drivers. In this
paper we showcase how both subjective and objective data can be collected
from connected cars simultaneously. The idea is to capture how drivers experi-
ence certain scenarios right when it happens, rather than sending a poll in paper
format months later. Consequently, the smartphone app collaborates with the
in-vehicle network in order to send polls to driver’s when interesting scenar-

ios occur. We also discuss what privacy implications our specific use case has
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for users, and propose a privacy architecture that relies on differential privacy
to guarantee privacy. Our contribution is to provide answers to the following

questions:

> How can we design the subjective data capture app in a way that makes

it easy and safe to use in a vehicle, even while driving?

> How can we design a triggering mechanism to decide when a particular
question or set of questions should be posed to a particular user? The
triggering mechanism must be versatile and flexible to be usable for all

relevant use cases.

> How can we cater for follow-up questions that depend on answers to pre-

vious questions?

> How can we protect the privacy of users while at the same time providing
automotive engineers with as powerful data collection and analytic tools

as possible?

Statement of Contribution

My contribution to this paper includes a concept idea for how to add privacy
to a system containing both objective (through sensors) and subjective (through
a smartphone app) data collection. I have written the section on privacy is-
sues (Section @, and contributed to the abstract, introduction, challenges and
conclusion sections. The smartphone app was developed by Frécon, and the

backend system was developed by Johanson and Jalminger.

1.5.4 Paper |V

Generalizing the idea with sending polls to smartphones from Paper III, I wanted
data collectors to be able to send any poll, without worrying about how to guar-
antee differential privacy. Hence, I built RANDORI, a set of tools for design-
ing data collections and collecting data under local differential privacy. Dur-
ing the design phase, I let users analytically investigate the accuracy/privacy
trade-off in their poll. Accuracy is estimated analytically through Chernoff
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bounds. Then, I also investigate what other problems can arise during data
collection, that are not captured by differential privacy itself. In particular, I
identify and address side-channels that arise during data collection. My contri-

butions are:
+ tools for designing polls and collecting data under differential privacy
+ atool for predicting and tuning accuracy of a given poll

+ an end-to-end private implementation of randomized response in a server-

client setting

1.5.5 PaperV

Intrigued by the complex relationship between RANDORT’s polls (Paper IV) and
error, I set out to understand error better. To be able to model arbitrarily complex
relationships between parameters and error I adopt the statistical concept of
factor experiments [45]/46],/47]. Consequently, in this paper, I introduce a novel
application of factor experiments that allows us to create prediction models for
the error of a differentially private algorithm. In Figure [I.7]T have visualized

such a prediction model for an algorithm with two factors (parameters).

Perfect Privacy Perfect Accuracy
(y—) (v=0)

<

V=YotY1 XA+y,XB+p;,XAB

Figure 1.7: A visualization of a linear model with two factors A and B

As a use case for factor experiments, I investigate RANDORI’s polls. Since
RANDORT’s polls can be tweaked by several parameters it is particularly inter-
esting to understand the relationship between each parameter and error. In order

to run the experiments, I extend RANDORI with a simulation environment. In
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the end, I create a prediction model for error and evaluate the model’s validity
in the context of RANDORI’s poll structure.

My contribution is:

+ A method for constructing accuracy/error prediction models

1.5.6 Paper Vi

In Paper VI, we systematize the available body of research on accuracy improv-
ing techniques in differential privacy. In particular, we investigate accuracy
improvement for two common data analyses: histograms and synthetic data. To
accomplish our goal, we conduct a systematic literature review, categorize our

findings and qualitatively summarize the results. Our main contributions are:

+ A technical summary of each algorithms in order to provide a consolidate

view of the state-of-the-art.

+ Categorization that synthesize the evolutionary relationships of the re-
search domain in differential privacy for histogram and synthetic data

publication.

+ Categorization of the state-of-the-art, which is based on the conceptual

relationships of the identified algorithms.

Statement of Contribution
My co-author and I have made an equal contribution to this paper. Both have
contributed to methodology, SLR design, scoping, reading and analysis of pa-

pers.

1.6 Conclusion and Future Work

I started my PhD journey by conducting a systematic literature review (SLR) to
understand the current landscape of security and privacy research in the context
of big data analysis. This SLR resulted in Paper I. Perhaps disappointing, but
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not surprising, the conclusion from Paper I was that security and privacy in big
data analysis is not fundamentally different from security and privacy research
in general. Still, we found that many of the papers included in the SLR worked
with privacy. Here, differential privacy was overrepresented among the privacy-
preserving techniques used. In fact, differential privacy actually benefits from
the use of big data. To clarify, since the definition of differential privacy only
puts constraints on the algorithms, and not on the data, accuracy tends to in-
crease with the size of the data set used. As such, differential privacy seemed

like a particularly interesting topic to continue to investigate.

In Paper II I investigated how differential privacy could be applied to a partic-
ular flavor of big data, namely vehicular data. Vehicular data consists of high
dimensionality, time series data. At this point I had an ongoing collaboration
with a vehicle manufacturer, and in Paper I I tried to address their questions
and concerns about differential privacy. In hindsight, it is apparent to me that
Paper II could have benefited from me suggesting the use of several method-
ologies I learned later on my PhD journey. For example, principal component
analysis (PCA) and factor experiments are two methodologies I believe would
be useful to reduce the dimensionality of vehicular data. Specifically, there ex-
ists differentially private version of PCA [48]] which provides a way to convert
data into fewer dimensions. As for factor experiments, they can be used to
construct a linear model between variables. In other words, factor experiments
help us understand the relationship between different variables in our system.
As such, the linear model can be used to understand which variables are im-
portant to include in an analysis, and which ones are negligible. Consequently,
I believe we could use the linear model to achieve pre-processing similar to
PCA.

Additionally, it would be interesting to investigate which one of PCA and fac-
tor experiments work best in the vehicular domain. That is, is it better to 1)
process the data after applying differentially private PCA, or 2) reduce the in-
puts based on the linear model before processing the data under differential

privacy?
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In parallel with my work with trying to introduce differential privacy in an au-
tomotive context, my collaborators and I investigated a particular use case. This
use case included a smartphone app which would allow us to interact directly
with the drivers. As such, we would be able to access a type of data that was
not high dimensional, and consequently would be easier to reason about than
the vehicular data itself. Still, at this point in time, we never implemented any
differential private mechanism in the smartphone app. Accordingly, it would
be interesting to combine the smartphone app from Paper III with RANDORI
(Paper IV).

The observant reader may already have drawn this conclusion, but the idea be-
hind RANDORI was basically to generalize the smartphone setting to a server-
client setting. Moreover, we used the same data format (JSON) in the smart-
phone app as RANDORI. As such, it should be possible to integrate the client
logic into the smartphone app with relatively little effort. Moreover, combining
Paper III and Paper IV into one smartphone app opens up possibilities to con-
duct user studies with drivers as participants. That is, we could evaluate both
the smartphone app and the effectiveness of RANDORI in one joint study. Simi-
larly, it would be interesting to test the effectiveness of RANDORI from the data

analysts’ perspective.

Moving on, from Paper V, I would like to investigate if, and when, my method-
ology is applicable to predict accuracy in other differentially private algorithms.
For example, I think it would be interesting to take open source differentially
private libraries (e.g. [49, |50L 51} 52} 53] (54} 55 |56} 157, [58}, 159]]) and test the
applicability of my methodology. Also, when working on Paper VI we came
across many algorithms that have several input parameters. As such all of these
algorithms would be particularly interesting to test, as having many input pa-
rameters can make it more difficult to reason about accuracy using Chernoff
bounds. Specifically, I would like to investigate whether the methodology works
better for algorithms with more input parameters than those with only a few.
Seeing as the term e® is exponential and not linear, in which cases will my lin-

ear model provide a good fit? Moreover, in cases where a linear model does not
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work, it would be interesting to extend the methodology to include non-linear

models.

Lastly, in Paper VI we identified many open challenges. In particular, I think
it would be interesting to combine the different accuracy improving techniques
we have categorized, and see which ones actually are composable. In particular,
one question that we posed but left unanswered is “How many techniques from
the same place (Figure[I.8) can we use?”. For example, is it possible combine
several pre-processing techniques and gain more accuracy than when only using

one pre-processing technique?

®

o ' [l

Reply

Figure 1.8: The different places we identified in Paper VI where accuracy im-
proving techniques can be applied: (A) altering the query, (B) post-processing,
(C) changes in the release mechanism, and (D) pre-processing

In addition, potential future work can be identified by looking at the family
tree (Figure [[.9) we created to illustrate the relationships between the algo-
rithms. For example, IHP and SORTaki are both descendants from AHP, indicat-
ing that they should be applicable to similar problems. As such, it might be
possible to combine the ideas of both IHP and SORTaki to achieve even higher

accuracy.
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Figure 1.9: Algorithms encountered in Paper VI and their relationships

To conclude, knowing that with great data comes great responsibility, we need
to make techniques that ensure data privacy accessible. Differential privacy is
only one flavor of privacy-preserving techniques, and as such may not be suit-
able to apply in all cases. Still, differential privacy is enticing for many reasons,
for example due to its rigorous mathematical foundation and its ability to protect
against strong adversaries. Consequently, I have dedicated this thesis to explor-
ing when and how differential privacy can be used in real settings. Moreover,
I realized that the accuracy loss imposed by differential privacy is particularly
important for practitioners to understand before they can adopt differential pri-

vacy.

Finally, I would like to add that there still exists many open challenges to ad-

dress to further contribute bridge the gap between differential privacy in theory
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and practice. My main interest has been to provide a better understanding of the
accuracy/privacy trade-off, i.e. the balancing act, of differential privacy. In the
end, the papers included in this thesis have allowed me to investigate different

ways of bringing differential privacy closer to end-users by:
+ providing advice for practitioners (Paper II)

+ conducting a case study where we would like to introduce differential

privacy (Paper III)

+ providing a set of tools for aiding practitioners when gathering poll data
under local differential privacy (Paper IV)

+ providing a methodology to empirically evaluate the accuracy of differ-

entially private algorithms (Paper V)

+ providing a systematization of knowledge (SoK) of accuracy improving
techniques for differentially private histograms and synthetic data (Pa-
per VI)
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Security and Privacy for Big
Data: A Systematic Literature
Review

Abstract

Big data is currently a hot research topic, with four million hits on Google
scholar in October 2016. One reason for the popularity of big data re-
search is the knowledge that can be extracted from analyzing these large
data sets. However, data can contain sensitive information, and data must
therefore be sufficiently protected as it is stored and processed. Further-
more, it might also be required to provide meaningful, proven, privacy
guarantees if the data can be linked to individuals.

To the best of our knowledge, there exists no systematic overview of
the overlap between big data and the area of security and privacy. Conse-
quently, this review aims to explore security and privacy research within
big data, by outlining and providing structure to what research currently
exists. Moreover, we investigate which papers connect security and pri-
vacy with big data, and which categories these papers cover. Ultimately,
is security and privacy research for big data different from the rest of the
research within the security and privacy domain?

To answer these questions, we perform a systematic literature review
(SLR), where we collect recent papers from top conferences, and cate-
gorize them in order to provide an overview of the security and privacy

topics present within the context of big data. Within each category we also

43
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present a qualitative analysis of papers representative for that specific area.
Furthermore, we explore and visualize the relationship between the cate-
gories. Thus, the objective of this review is to provide a snapshot of the
current state of security and privacy research for big data, and to discover

where further research is required.

2.1 Introduction

Big data processing presents new opportunities due to its analytic powers. Busi-
ness areas that can benefit from analyzing big data include the automotive in-
dustry, the energy distribution industry, health care and retail. Examples from
these areas include analyzing driving patterns to discover anomalies in driving
behaviour [1]], making use of smart grid data to create energy load forecasts [2]],
analyzing search engine queries to detect influenza epidemics [3] and utilizing
customers’ purchase history to generate recommendations [4]. However, all of
these examples include data linked to individuals, which makes the underlying

data potentially sensitive.

Furthermore, while big data provides analytic support, big data in itself is diffi-
cult to store, manage and process efficiently due to the inherent characteristics
of big data [5]. These characteristics were originally divided into three dimen-
sions referred to as the three Vs [[0], but are today often divided into four or even
five Vs [2,|5,(7]]. The original three Vs are volume, variety and velocity, and the
newer V’s are veracity and value. Volume refers to the amount of data, which
Kaisler et al. [5]] define to be in the range of 10*® bytes to be considered big data.
Variety denotes the problem of big data being able to consist of different for-
mats of data, such as text, numbers, videos and images. Velocity represents the
speed at which the data grows, that is, at what speed new data is generated. Fur-
thermore, veracity concerns the accuracy and trustworthiness of data. Lastly,
value corresponds to the usefulness of data, indicating that some data points, or
a combination of points, may be more valuable than others. Due to the potential

large scale data processing of big data, there exists a need for efficient, scalable
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solutions, that also take security and privacy into consideration.

To the best of our knowledge, there exists no peer-reviewed articles that system-
atically review big data papers with a security and privacy perspective. Hence,
we aim to fill that gap by conducting a systematic literature review (SLR) of
recent big data papers with a security and privacy focus. While this review does
not cover the entire, vast, landscape of security and privacy for big data, it pro-
vides an insight into the field, by presenting a snapshot of what problems and

solutions exists within the area.

In this paper, we select papers from top security and privacy conferences, as
well as top conferences on data format and machine learning for further anal-
ysis. The papers are recent publications, published between 2012 and 2015,
which we manually categorize to provide an overview of security and privacy
papers in a big data context. The categories are chosen to be relevant for big
data, security or privacy respectively. Furthermore, we investigate and visual-
ize what categories relate to each other in each reviewed paper, to show what
connections exists and which ones are still unexplored. We also visualize the
proportion of papers belonging to each category, and the proportion of papers
published in each conference. Lastly we analyze and present a representative

subset of papers from each of the categories.

The paper is organized as follows. First, the method for gathering and reviewing
papers is explained in Section[2.2] Then, the quantitative and qualitative results
are presented in Section[2.3] where each of the categories and their correspond-
ing papers are further analyzed in the subsection with their corresponding name.
A discussion of the findings and directions for future work is presented in Sec-
tion[2.4] Lastly, a conclusion follows in Section [2.5]



46 CHAPTER 1. PAPERI

2.2 Methodology

In this paper, we perform a systematic literature review (SLR) to document
what security and privacy research exists within the big data area, and identify
possible areas where further research is needed. The purpose of this review is
to categorize and analyze, both in a quantitative and a qualitative way, big data
papers related to security or privacy. Therefore, in accordance with SLR, we

define the following research questions the review should answer:

> What recent security or privacy papers exists in the big data context?

> How many papers cover security or privacy for big data?

> Which security, privacy and big data topics are represented in the area?
> When a paper covers more than one category, which categories inter-

twine?

SLRs originate from medical research, but has been adapted for computer sci-
ence, and in particular software engineering, by Kitchenham [J8]] in 2004. More
specifically, a SLR is useful for summarizing empirical evidence concerning an
existing technology as well as for identifying gaps in current research [§]]. We
answer our research questions by performing the steps in the review protocol

we have constructed, in accordance with Kitchenham’s guidelines, displayed in

Table 211

1. Data sources and search strategy: Collect papers

2. Study selection/study quality assessment: Filter papers

3. Data extraction: Categorize papers, extract the novelty of the papers’
scientific contribution

4. Data synthesis: Visualize papers and highlight the contributions

Table 2.1: Review protocol

As the data source, we have used papers from top conferences, ranked A* by
the Computing Research and Education Association of Australasia (CORE

lihttp://portal.core.edu.au/conf-ranks/
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in 2014. In total, twelve relevant conferences have been chosen, including all
three of CORE’s top ranked security and privacy conferences. There also ex-
ists several new, promising conferences in big data. However, none of these
big data specific conferences are ranked yet, and thus they are not included
in this review. Arguably, the highest quality papers should appear in the A*
ranked conferences, instead of in a not proven venue. Furthermore, it is our be-
lief that new ideas hit conferences before journals, and thus journals have been
excluded from the review. Consequently, we have chosen top conferences for
closely related topics: machine learning and data forma Thus, the big data
conferences are represented by seven conferences from the field of data format
and two from machine learning. The chosen conferences are presented in Table

[2.2] and we further discuss the consequences of choosing these conferences in

Section2.4]

» Step 1  To perform the first step from Table[2.1] the collection of papers, we
have constructed the following two queries:

* Query A: allintitle: privacy OR private OR security OR secure
Sources: DCC, ICDE, ICDM, SIGKDD, SIDMOD, VLDB, WSDM,
ICML and NIPS
Timespan: 2012-2015

* Query B: allintitle: “big data”

Sources: DCC, ICDE, ICDM, SIGKDD, SIDMOD, VLDB, WSDM,
ICML, NIPS, CCS, S&P and USENIX Security
Timespan: 2012-2015

Acronym | Conference Name Field(s) of Research™
DCC Data Compression Conference | Data Format
ICDE International Conference on | Data Format
Data Engineering

fiiField of research code 0804: http://www.abs.gov.au/Ausstats/abs @ .nsf/
0/206700786BSEA3EDCA257418000473E3?0pendocument
¥ As labeled by CORE
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Acronym Conference Name Field(s) of Research™
ICDM IEEE International Confer- | Data Format
ence on Data Mining
SIGKDD Association for Computing | Data Format
Machinery’s Special Interest
Group on Knowledge Dis-
covery and Data Mining
SIGMOD | Association for Computing | Data Format
Machinery’s Special Interest
Group on Management of
Data
VLDB International Conference on | Data Format
Very Large Databases
WSDM ACM International Confer- | Data Format, Distributed
ence on Web Search and | Computing, Library and
Data Mining Information Studies
ICML International Conference on | Artificial Intelligence and
Machine Learning Image Processing
NIPS Neural Information Process- | Artificial Intelligence and
ing System Conference Image Processing
CCS ACM Conference on Com- | Computer Software
puter and Communications
Security
S&P IEEE Symposium on Secu- | Computation Theory and
rity and Privacy Mathematics, Computer
Software
USENIX . . .
) Usenix Security Symposium | Computer Software
Security

Table 2.2: Conferences the papers were collected from, including acronym and

field of research
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Note that only the title of a paper is used to match on a keyword. The reason
for this is to reduce the amount of false positives. For example, if the search is
not limited to the title, a paper might discuss the keyword in the introduction or
as related work, but it might not otherwise be included in the paper. Since the
review is performed manually, it would require a labor intensive analysis just
to eliminate those irrelevant papers. Furthermore, we believe that the papers
related to security or privacy would mention this in their title. Thus, we have

focused on a smaller, relevant, subset.

Query A focuses on finding papers related to security or privacy in one of the
big data conferences. This query is intentionally constructed to catch a wide
range of security and privacy papers, including relevant papers that have omit-
ted ’big data’ from the title. Furthermore, query B is designed to find big data
papers in any of the conferences, unlike query A. The reason to also include
query B is foremost to capture big data papers in security and privacy confer-
ences. Query B will also be able to find big data papers in the other conferences,
which provides the opportunity to catch security or privacy papers that were not

already captured by query A.

» Step 2 After the papers have been collected, we manually filter them to per-
form both a selection and a quality assessment, in accordance with the guide-
lines for a SLR. First, we filter away talks, tutorials, panel discussions and pa-
pers only containing abstracts from the collected papers. We also verify that no
papers are duplicates to ensure that the data is not skewed. Then, as a quality
assessment we analyze the papers’ full corpora to determine if they belong to
security or privacy. Papers that do not discuss security or privacy are excluded.
Thus, the irrelevant papers, mainly captured by query B, and other potential

false positives, are eliminated.

To further assess the quality of the papers, we investigate each papers’ relevance
for big data. To determine if it is a big data paper we include the entire corpus
of the paper, and look for evidence of scalability in the proposed solution by

examining if the paper relates to the five V’s. The full list of included and ex-
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cluded papers is omitted in this paper due to space restrictions, but it is available

from the authors upon request.

» Step 3 Then, each paper is categorized into one or more of the categories
shown in Table [2.3] These categories were chosen based on the five V’s, with
additional security and privacy categories added to the set. Thus the categories

capture both the inherent characteristics of big data, as well as security and

privacy.
Category \% Security or Privacy
Confidentiality' v
Data Analysis Value
Data Format Variety, Volume
Data Integrity Veracity v
Privacy” v
Stream Processing | Velocity, Volume
Visualization Value, Volume

Table 2.3: Categories used in the review, chosen based on the five V’s. A
checkmark in the third column means that the category is a security or privacy

category.

In total, 208 papers match the search criteria when we run both queries in
Google Scholar. After filtering away papers and performing the quality assess-
ment, 82 papers remain. Query A results in 78 papers, and query B contributes
with four unique papers that were not already found by query A. In Table 2.4]
the number of papers from each conference is shown for query A and query B

respectively.

¥ A5 defined by ISO 27000:2016 [9]
VAnonymization as defined by ISO 29100:2011 [10]
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Conference Acronym Query A Query B
Number Percentage | Number Percentage
of Papers | of Papers | of Papers | of Papers
DCC 0 0% 0 0%

ICDE 22 28% 0 0%

ICDM 4 5% 0 0%
SIGKDD 0 0% 0 0%
SIGMOD 21 26% 1 25%

VLDB 25 31% 1 25%

WSDM 0 0% 0 0%
ICML 5 6.3% 0 0%
NIPS 1.3% 0 0%

S&P - - 1 25%
USENIX Security - - 0 0%

CCS - - 25%

Total: 78 100% 4 100%

Table 2.4: The number, and percentage, of papers picked from each conference,

for query A and query B

» Step 4 Then, as part of the data synthesis which is the last step in the

review protocol in Table 2.1] the quantitative results from the queries are visu-

alized. Both as circle packing diagrams, where the proportion of papers and

conferences is visualized, and as a circular network diagram where relation-

ships between categories are visualized. Thereafter a qualitative analysis is

performed on the papers, where the novel idea and the specific topics covered

are extracted from the papers’ corpora. A representative set of the papers are

then presented.
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2.3 Results

In this section, we quantitatively and qualitatively analyze the 82 papers. Fig-
ure[2.1] (a) visualizes where each paper originates from, using circle packing di-
agrams. The size of each circle corresponds to the proportion of papers picked
from a conference. As can be seen, most papers have been published in ICDE,
SIGMOD or VLDB. Furthermore, the distribution of the different categories is
illustrated in Figure [2.1] (b), where the size of a circle represents the amount of
papers covering that category. Prominent categories are privacy, data analysis

and confidentiality.

Security.
and Privacy

Privacy
SIGMOD

Confidentiality

ICDE

VLDB ICDM Data Integrity~—
S Analysis
Data
MPS— =S~achine Steam F(?fr;:\t Analytics
Jra— CCS—~L ICML | Learning Processing
ecurity
and-Privacy
S&p Access/Storage Visualization

(a) Conferences, grouped by research field (b) Categories, grouped by similarity

Figure 2.1: Circle packing diagrams, showing the proportion of papers belong-

ing to conferences (a) and categories (b)

Furthermore, some papers discuss more than one category and therefore belong
to more than one category. Therefore, the total number of papers when all cat-
egories are summed will exceed 82. To illustrate this overlap of categories, the
relationship between the categories is visualized as a circular network diagram
in Figure[2.2] Each line between two categories means that there exists at least

one paper that discusses both categories. The thickness of the line reflects the
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amount of papers that contain the two categories connected by the line. Privacy
and data analytics as well as confidentiality and data format are popular combi-
nations. Stream processing and visualization are only connected by one paper,

respectively, to privacy.

e“éo‘o

>
9
[
2
=
o

Figure 2.2: Connections between categories, where the thickness of the link

represents the amount of papers that connect the two categories

Since there is not enough room to describe each paper in the qualitative analysis,
we have chosen a representative set for each category. This representative set is
chosen to give an overview of the papers for each category. Each selected paper
is then presented in a table to show which categories it belongs to. An overview

of the rest of the papers are shown in Table[2.3]

Author Short Title C|A|DFDI|P |SP|V

Akcora et al. Privacy in Social v
Networks

Allard et al. Chiaroscuro v |/ v
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Author Short Title DF| DI SP| V
Bonomi and | Mining Frequent Pat-
Xiong terns with Differen-
tial Privacy
Bonomi etal. | LinkIT
Cao et al. A hybrid private
record linkage
scheme
Chen and | Recursive = Mecha- v
Zhou nism
Dev Privacy  Preserving
Social Graphs for
High Precision Com-
munity Detection
Dong et al. When Private Set In-
tersection Meets Big
Data
Fan et al. FAST
Gaboardi et | Dual Query
al.
Guarnieri and | Optimal  Security- v
Basin aware Query Pro-
cessing
Guerraoui et | D2P
al.
Haney et al. Design of Policy-
aware Differentially
Private Algorithms
He et al. Blowfish Privacy
He et al. DPT
He et al. SDB v




anism for Accurate
Query
Under

Privacy

Answering
Differential
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Author Short Title DF| DI SP|V
Hu et al. Authenticating

Location-based
Services Without
Compromising
Location Privacy
Hu et al. Private search on
key-value stores with
hierarchical indexes
Hu et al. VERDICT v
Jain and | (Near) Dimension
Thakurta Independent  Risk
Bounds for Dif-
ferentially  Private
Learning
Jorgensen and | Conservative or lib-
Cormode eral?
Kellaris and Practical differential
Papadopou- privacy via grouping
los and smoothing
Khayyat et al. | BigDansing |/
Kozak  and | Efficiency and Se-
Zezula curity in Similarity
Cloud Services
Li and Miklau | An Adaptive Mech-
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Author Short Title C|A | DFDI|P |SPV

Liet al. A Data- and v
Workload-aware

Algorithm for Range
Queries Under

Differential Privacy

Lietal. DPSynthesizer v
Liet al. Fast Range Query v
Processing with

Strong Privacy Pro-

tection for Cloud

Computing
Lietal. PrivBasis v v
Lin and Kifer | Information Preser- v

vation in  Statis-
tical Privacy and
Bayesian  Estima-
tion of Unattributed
Histograms

Luetal. Generating  private v v
synthetic  databases

for untrusted system

evaluation
Mohan et al. GUPT v v
Nock et al. Rademacher obser- v v

vations, private data,

and boosting

Oktay et al. SEMROD v v
Pattuk et al. Privacy-aware v v
dynamic feature

selection
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Author Short Title DF| DI SP|V
Potluru et al. CometCloudCare v

(C3)

Qardaji et al.

Differentially private
grids for geospatial
data

Qardaji et al.

PriView

Qardaji et al.

Understanding Hier-
archical Methods for
Differentially Private

Histograms

Rahman et al.

Privacy Implications

of Database Ranking

Rana et al.

Differentially Private
Random Forest with
High Utility

Ryu et al.

Curso

Sen et al.

Bootstrapping  Pri-
vacy Compliance in
Big Data Systems

Shen and Jin

Privacy-Preserving
Personalized Recom-

mendation

Terrovitis et

al.

Privacy Preservation

by Disassociation

To et al.

A Framework for
Worker

Location Privacy in

Protecting

Spatial Crowdsourc-

ing
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Author Short Title C|A | DFDI|P |SPV

Wong et al. Secure Query Pro- | v/ v
cessing with Data
Interoperability  in
a Cloud Database

Environment
Xiao et al. DPCube v v
Xu et al. Differentially private v v

frequent  sequence

mining via sampling-

based candidate
pruning
Xue et al. Destination predic- v v

tion by sub-trajectory
synthesis and privacy
protection  against

such prediction

Yang et al. Bayesian Differ- v
ential Privacy on
Correlated Data

Yaroslavtsev Accurate and effi- v
et al. cient private release
of datacubes and

contingency tables

Yi et al. Practical k nearest | v | vV
neighbor queries
with location privacy
Yuan et al. Low-rank  Mecha- v

nism
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Author Short Title C|A |DFDI|P |SPV
Zeng et al. On Differentially Pri- v v

vate Frequent Itemset

Mining
Zhang et al. Functional Mecha- v v

nism

Zhang et al. Lightweight privacy- | v/
preserving  peer-to-
peer data integration

Zhang et al. Private Release v
of Graph  Statis-
tics Using Ladder

Functions
Zhang et al. PrivBayes v
Zhang et al. PrivGene v v

Table 2.5: The reviewed papers omitted from the reference list, showing cat-
egories covered by each paper. C = Confidentiality, DA = Data Analysis, DF
= Data Format, DI= Data Integrity, P = Privacy, SP = Stream Processing, V =

Visualization.

2.3.1 Confidentiality

Confidentiality is a key attribute to guarantee when sensitive data is handled,
especially since being able to store and process data while guaranteeing con-
fidentiality could be an incentive to get permission to gather data. In total, 23
papers were categorized as confidentiality papers. Most papers used different
types of encryption, but there was no specific topic that had a majority of pa-
pers. Instead, the papers were spread across a few different topics. In Table[2.6]

an overview of all papers presented in this section is given.
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Five papers use homomorphic encryption, which is a technique that allows cer-
tain arithmetic operations to be performed on encrypted data. Of those five
papers, one uses fully homomorphic encryption which supports any arithmetic
operation, whereas the rest use partial homomorphic encryption which supports
given arithmetic operations. Liu et al. [11]] propose a secure method for com-
paring trajectories, for example to compare different routes using GPS data, by
using partial homomorphic encryption. Furthermore, Chu et al. [[12] use fully

homomorphic encryption to provide a protocol for similarity ranking.

Another topic covered by several papers is access control. In total, four pa-
pers discuss access control. For example, Bender et al. [[13]] proposed a secu-
rity model where policies must be explainable. By explainable in this setting
Bender et al. refers to the fact that every time a query is denied due to miss-
ing privileges, an explanation as to what additional privileges are needed is
returned. This security model is an attempt to make it easier to implement the
principle of least privilege, rather than giving users too generous privileges.
Additionally, Meacham and Shasha [|14] propose an application that provides
access control in a database, where all records are encrypted if the user does not
have the appropriate privileges. Even though the solutions by Bender et al. and
Meacham and Shasha use SQL, traditionally not associated with big data, their
main ideas are still applicable since it only requires changing the database to a
RDBMS for big data that have been proposed earlier, such as Vertica [15] or
Zhu et al’s [|16] distributed query engine.

Other topics covered were secure multiparty computation, a concept where mul-
tiple entities perform a computation while keeping each entity’s input confiden-
tial, oblivious transfer, where a sender may or may not transfer a piece of infor-
mation to the receiver without knowing which piece is sent, as well as different
encrypted indexes used for improving search time efficiency. In total, three pa-
pers use secure multiparty computation, two use oblivious transfer and two use

encrypted indexes.
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Author C|DA|DF | DI |P|SP |V
Bender et al. [13]] v

Chu et al. [|12] |/ v

Liuetal. [11] | v/

Meacham and Shasha [[14]] |/

Table 2.6: A set of confidentiality papers, showing categories covered by each

paper. A checkmark indicates the paper on that row contains the category.

2.3.2 Data Integrity

Data integrity is the validity and quality of data. It is therefore strongly con-
nected to veracity, one of the five V’s. In total, five papers covered data integrity.
Since there is only a small set of data integrity papers, no apparent topic trend
was spotted. Nonetheless, one paper shows an atfack on integrity, two papers
are on error correction and data cleansing and two papers use tamper-proof
hardware to guarantee integrity of the data. An overview of all papers covered

in this section are shown in Table 2.7

Xiao et al. [[17] shows that it is enough to poison 5% of the training values, a
data set used solely to train a machine learning algorithm, in order for feature
selection to fail. Feature selection is the step where relevant attributes are being
decided, and it is therefore an important step since the rest of the algorithm will
depend on these features. Thus, Xiao et al. show that feature selection is not
secure unless the integrity of the data can be verified.

Furthermore, Arasu et al. [[18]] implemented a SQL database called Cipherbase
that focuses on confidentiality of data as well as integrity in the cloud. To
maintain the integrity of the cryptographic keys, they use FPGA based custom
hardware to provide tamper-proof storage. Lallali et al. [|19] also used tamper-
resistant hardware where they enforce confidentiality for queries performed in

personal clouds. The tamper-resistant hardware is in the form of a secure to-
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ken which prevents any data disclosure during the execution of a query. While
the secure tokens ensures a closed execution environment, they posses limited

processing power due to the hardware constraints which adds to the technical

challenge.
Author C|DA|DF|DI|P|SP|V
Arasu et al. [18]] v v Ve
Lallali et al. [19]] v |/
Xiao et al. [[17] v v

Table 2.7: A set of data integrity papers, showing categories covered by each

paper

2.3.3 Privacy

An important notion is privacy for big data, since it can potentially contain
sensitive data about individuals. To mitigate the privacy problem, data can be
de-identified by removing attributes that would identify an individual. This is an
approach that works, if done correctly, both when data is managed and when re-
leased. However, under certain conditions it is still possible to re-identify indi-
viduals even when some attributes have been removed [20} 21}, 22]]. Lu et al. [7]]
also point out that the risk of re-identification can increase with big data, as
more external data from other sources than the set at hand can be used to cross-

reference and infer additional information about individuals.

Several privacy models, such as k-anonymity [23], [-diversity [24], -
closeness [25] and differential privacy [26], can be used to anonymize data.
The first three are techniques for releasing entire sets of data through privacy-
preserving data publishing (PPDP), whereas differential privacy is used for
privacy-preserving data mining (PPDM). Thus, differential privacy is obtained
without processing the entire data set, unlike the others. Therefore, anonymiz-

ing larger data sets can be difficult from an efficiency perspective. How-
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ever, larger sets have greater potential to hide individual data points within the
set [27]].

Out of a total of 61 privacy papers, one paper [28|] uses k-anonymity, and an-
other paper [29]] uses [-diversity and t-closeness but also differential privacy to
anonymize data. Furthermore, Cao and Karras [30] introduce a successor to
t-closeness, called [-likeness which they claim is more informative and com-
prehensible. In comparison, a large portion, 46 papers, of the privacy oriented
papers focuses only on differential privacy as their privacy model. Most of them
propose methods for releasing differentially private data structures. Among
these are differentially private histograms [31]] and different data structures for

differentially private multidimensional data [32].

An interesting observation by Hu et al. [33]] is that differential privacy can have
a large impact on accuracy of the result. When Hu et al. enforced differential
privacy on their telecommunications platform, they got between 15% to 30%
accuracy loss. In fact, guaranteeing differential privacy while maintaining high
utility of the data is not trivial. From the reviewed papers, 15 of them investi-

gated utility in combination with differential privacy.

One example of a paper that investigates the utility of differentially private
results, and how to improve it is Proserpio et al. [34]. The work of Pros-
erpio et al. is a continuation of the differentially private querying language
PINQ [35], which they enhance by decreasing the importance of challeng-
ing entries, which induce high noise, in order to improve accuracy of the re-

sults.

The papers reviewed in this section can be seen in Table[2.8]

2.3.4 Data Analysis

Data analysis is the act of extracting knowledge from data. It includes both

general algorithms for knowledge discovery, and machine learning. Out of 26
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Author C|DA|DF |DI|P|SP |V
Acs et al.[31] v
Cao and Karr¥[30] v
Cormode et al.[32]] v
Huetal. [33] v v
Jurczyk et alj29] v v
Proserpio et al. [34] v Ve
v

Wang and Zheng [28]

Table 2.8: A set of privacy papers, showing categories covered by each paper

papers categorized as data analysis papers, 15 use machine learning. Apart
from machine learning, other topics included frequent sequence mining, where
reoccurring patterns are detected, and different versions of the k-nearest neigh-
bor (kNN) algorithm, that finds the k closest points given a point of reference.
All papers from this section are shown in Table [2.9]

Jain and Thakurta [36] implemented differentially private learning using ker-
nels. The problem investigated by Jain and Thakurta is keeping the features,
which are different attributes of an entity, of a learning set private while still

providing useful information.

Furthermore, Elmehdwi et al. [[37] implemented a secure kNN algorithm, based
on partial homomorphic encryption. Here, Elmehdwi et al. propose a method
for performing kNN in the cloud, where both the query and the database are
encrypted. Similarly, Yao et al. [38]] investigated the secure nearest neighbour
(SNN) problem which asks a third party to find the point closest to a given
point, without revealing any of the points to the third party. They show attacks
for existing methods for SNN, and design a new SNN method that withstand
the attacks.
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Author C|DA|DF | DI|P|SP |V
Elmehdwi et al. [37]] |/ v

Jain and Thakurta [36]] v v

Yao et al. [38]] I/

Table 2.9: A set of data analysis papers, showing categories covered by each

paper

2.3.5 Visualization

Visualization of big data provides a quick overview of the data points. It is an
important technique, especially while exploring a new data set. However, it is
not trivial to implement for big data. Gordov and Gubarev [39] point out visual
noise, large image perception, information loss, high performance requirements
and high rate of image change as the main challenges when visualizing big
data.

One paper, by To et al. [40]], shown in Table 2.10] was categorized as a visu-
alization paper. To et al. implemented a toolbox for visualizing and assigning
tasks based on an individuals’ location. In this toolbox, location privacy is pro-
vided while at the same time allowing for allocation strategies of tasks to be
analyzed. Thus, it presents a privacy-preserving way of analyzing how param-
eters in a system should be tuned to result in a satisfactory trade-off between

privacy and accuracy.

Author C|DA|DF|DI|P |SP|V
To et al. [40] v v v

Table 2.10: All visualization papers, showing categories covered by each paper
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2.3.6 Stream Processing

Stream processing is an alternative to the traditional store-then-process approach,
which can allow processing of data in real-time. The main idea is to perform
analysis on data as it is being gathered, to directly address the issue of data
velocity. Processing streamed data also allows an analyst to only save the re-
sults from the analysis, thus requiring less storage capacity in comparison with
saving the entire data set. Furthermore, stream processing can also completely
remove the bottleneck of first writing data to disk and then reading it back in

order to process it if it is carried out in real-time.

One paper, by Kellaris et al. [41]] shown in Table 2.T1] combines stream pro-
cessing with a privacy, and provides a differentially private way of querying
streamed data. Their approach enforces w event-level based privacy rather than
user-level privacy, which makes each event in the stream private, rather than
the user that continuously produces events. Event-level based privacy, origi-
nally introduced by Dwork et al. [42], is more suitable in this case due to the
fact that differential privacy requires the number of queries connected to the
same individual to be known in order to provide user-level based privacy. In
the case of streaming however, data is gathered continuously, making it impos-

sible to estimate how many times a certain individual will produce events in the

future.
Author C|DA|DF|DI|P|SP |V
Kellaris et al. [41] |V

Table 2.11: All stream processing papers, showing categories covered by each

paper
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2.3.7 Data Format

In order to store and access big data, it can be structured in different ways.
Out of the 19 papers labeled as data format papers, most used a distributed file
system, database or cloud that made them qualify in this category. An overview
of all papers from this section can be found in Table[2.12]

One example of combining data format and privacy is the work by Peng et al. [43]]
that focuses on query optimization under differential privacy. The main chal-
lenge faced when enforcing differential privacy on databases is the interactive
nature of the database where new queries are issued in real-time. An unspec-
ified number of queries makes it difficult to wisely spend the privacy budget,
which essentially keeps track of how many queries can be asked, used to guar-
antee differential privacy, to still provide high utility of query answers. There-
fore, Peng et al. implemented the query optimizer Pioneer, that makes use of
old query replies when possible in order to consume as little as possible of the

remaining privacy budget.

Furthermore, Sathiamoorthy et al. [44] focus on data integrity, and present an
alternative to standard Reed-Solomon codes, which are erasure codes used for
error-correction, that are more efficient and offer higher reliability. They im-
plemented their erasure codes in the Hadoop’s distributed file system, HDFS,
and were able to show that the network traffic could be reduced, but instead
their erasure codes required more storage space than traditional Reed-Solomon

codes.

Lastly, Wang and Ravishankar [45]] point out that providing both efficient and
confidential queries in databases is challenging. Inherently, the problem stems
from the fact that indexes invented to increase performance of queries also leak
information that can allow adversaries to reconstruct the plaintext, as Wang and
Ravishankar show. Consequently, Wang and Ravishankar present an encrypted
index that provides both confidentiality and efficiency for range queries, tack-

ling the usual trade-off between security and performance.
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Author C|DA|DF | DI|P|SP |V
Peng et al. [43]] v v
Sathiamoorthy et al. [44] |/

Wang and Ravishankar [45]] v v

Table 2.12: A set of data format papers, showing categories covered by each

paper

2.4 Discussion and Future Work

While this review investigates security and privacy for big data, it does not cover
all papers available within the topic, since it would be infeasible to manually re-
view them all. Instead, the focus of this review is to explore recent papers and
to provide both a qualitative and a quantitative analysis, in order to create a
snapshot of the current state-of-the-art. By selecting papers from top confer-
ences and assessing their quality manually before selecting them, we include

only papers relevant for big data, security and privacy.

A potential problem with only picking papers from top conferences is that,
while the quality of the papers is good, the conferences might only accept pa-
pers with ground breaking ideas. After conducting this review, however, we
believe most big data solutions with respect to security and privacy are not nec-
essarily ground breaking ideas, but rather new twists on existing ideas. From
the papers collected for this review, none of the topics covered are specific for
big data, rather the papers present new combinations of existing topics. Thus, it
seems that security and privacy for big data is not different from other security

and privacy research, as the ideas seem to scale well.

Another part of the methodology that can be discussed is the two queries used
to collect papers. Query A was constructed to cover a wide range of papers, and
query B was set to only include big data papers. Unfortunately, query A con-
tributed with far more hits than query B after the filtering step from Table [2.1]
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This means that most papers might not have been initially intended for big data,
but they were included after the quality assessment step, since the methods used
were deemed scalable. Consequently, widening the scope of query B might in-
clude papers that present security or privacy solutions solely intended for big
data.

Regarding the categories, confidentiality was covered by almost a third of the
papers, but had no dominating topic. Rather, it contained a wide spread of dif-
ferent cryptographic techniques and access control. Furthermore, privacy was
well represented, with 61 papers in the review. A large portion of these pa-
pers used differential privacy, the main reason probably being the fact that most
differentially private algorithms are independent of the data set’s size, which

makes it beneficial for large data sets.

While privacy was covered by a large portion of papers, only two papers use an
existing privacy-preserving data publishing (PPDP) technique. Moreover, one
paper introduces a new PPDP technique called 8-likeness. A reason for why
this topic might not be getting a lot of attention is the fact that PPDP is depen-
dent on the size of the data set. Thus PPDP is harder to apply to big data, since
the entire data set must be processed in order to anonymize it. Consequently,
further work may be required in this area to see how PPDP can be applied to
big data.

We have also detected a gap in the knowledge considering stream processing
and visualization in combination with either data integrity or confidentiality, as
no papers covered two of these topics. Data integrity is also one of the topics
that were underrepresented, with five papers out of 82 papers in total, which
is significantly lower than the number of confidentiality and privacy papers.
However, it might be explained by the fact that the word ’integrity’ was not part

of any of the queries. This is a possible expansion of the review.
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2.5 Conclusion

There are several interesting ideas for addressing security and privacy issues
within the context of big data. In this paper, 208 recent papers have been col-
lected from A* conferences, to provide an overview of the current state-of-the-
art. In the end, 82 were categorized after passing the filtering and quality assess-

ment stage. All reviewed papers can be found in tables in Section [2.3]

Conclusively, since papers can belong to more than one category, 61 papers
investigate privacy, 25 data analysis, 23 confidentiality, 19 data format, 5 data
integrity, one stream processing and one visualization. Prominent topics were
differential privacy, machine learning and homomorphic encryption. None of

the identified topics are unique for big data.

Categories such as privacy and data analysis are covered in a large portion of
the reviewed papers, and 20 of them investigate the combination of privacy and
data analysis. However, there are certain categories where interesting connec-
tions could be made that do not yet exist. For example, one combination that
is not yet represented is stream processing with either confidentiality or data
integrity. Visualization is another category that was only covered by one pa-

per.

In the end, we find that the security and privacy for big data, based on the
reviewed papers, is not different from security and privacy research in gen-

eral.
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Introducing Differential
Privacy to the Automotive
Domain: Opportunities and
Challenges

Abstract
Privacy research is attracting increasingly more attention, especially with
the upcoming general data protection regulation (GDPR) which will im-
pose stricter rules on storing and managing personally identifiable infor-
mation (PII) in Europe. For vehicle manufacturers, gathering data from
connected vehicles presents new analytic opportunities, but if the data also
contains PII, the data comes at a higher price when it must either be prop-

erly de-identified or gathered with contracted consent from the drivers.

One option is to establish contracts with every driver, but the more
tempting alternative is to simply de-identify data before it is gathered, to
avoid handling PII altogether. However, several real-world examples have
previously shown cases where re-identification of supposedly anonymized
data was possible, and it has also been pointed out that PII has no techni-
cal meaning. Additionally, in some cases the manufacturer might want to
release statistics either publicly or to an original equipment manufacturer
(OEM). Given the challenges with properly de-identifying data, structured

methods for performing de-identification should be used, rather than arbi-
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trary removal of attributes believed to be sensitive.

A promising research area to help mitigate the re-identification prob-
lem is differential privacy, a privacy model that unlike most privacy mod-
els gives mathematically rigorous privacy guarantees. Although the re-
search interest is large, the amount of real-world implementations is still
small, since understanding differential privacy and being able to imple-
ment it correctly is not trivial. Therefore, in this position paper, we set
out to answer the questions of how and when to use differential privacy
in the automotive industry, in order to bridge the gap between theory and
practice. Furthermore, we elaborate on the challenges of using differential
privacy in the automotive industry, and conclude with our recommenda-

tions for moving forward.

3.1 Introduction

The ability to collect data from modern connected vehicles presents opportu-
nities for increased analysis, which enables vehicle manufacturers to both im-
prove existing as well as develop new services. For example, investigating driv-
ing behaviour would make it possible to learn more about the drivers’ needs
and preferences, allowing manufacturers to better cater to customers’ needs.
Especially, using machine learning on large data sets could result in interesting

correlations that were previously unknown.

However, gathering data from vehicles is not only an opportunity for further
analysis, but also a possible privacy risk to the individual drivers. A recent
survey show that drivers’ privacy concerns include disclosure of private infor-
mation, car vehicle tracking and commercial use of their personal data [1]]. See-
ing as privacy is a concern for drivers when it comes to connected vehicles,
the problem needs to be addressed by the manufacturers in order to maintain
the drivers’ trust. Moreover, the upcoming general data protection regulation
(GDPR) [2] will soon enforce stricter handling of personally identifiable infor-
mation (PII). Failure to comply with the GDPR may result in fines of up to
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either €20,000,000 or 4% of the total worldwide annual turnover of the preced-
ing financial year [2]. Even though the GDPR is a European law, it will affect
all companies that sell vehicles to Europe, as this is where the data will be col-
lected. It is therefore important that PII is handled with care in order to protect
the company’s brand, maintain the customers’ trust as well as to meet the new

legislation.

A common pitfall when de-identifying data is to only remove attributes than can
obviously be classified as PII, such as VIN numbers. However, as pointed out
by Narayanan and Shmatikov [J3], defining and identifying PII is surprisingly
difficult, and in fact, PII has no technical meaning. A vehicle has approxi-
mately 7700 unique signals [4], and while these signals may seem to be sepa-
rate from PII, even observing a driver’s behaviour for as short as 15 minutes is
enough to fingerprint and identify a driver with high accuracy [5]. Furthermore,
Gao et al. [6] showed that the driving speed in combination with an external
road map is enough to trace the location of a vehicle with high accuracy, even
though GPS data has been removed. In addition, Tockar [7]] demonstrated that
an “anonymized” version of NYC cab data, in combination with public data,
contained enough information to track celebrities and identify passengers that
visited sensitive locations in the city. Thus, all data should be treated as PII,
since auxiliary data might be available to re-identify individuals. For example,
the position of the car seat might not seem to be PII, but it is likely enough to

distinguish between two drivers of the same car.

A promising privacy model with rigorous, mathematical privacy guarantees that
could solve the previously mentioned problems is differential privacy |8} 9]l
Intuitively, for an individual, the best privacy is achieved by not participating in
a survey, as their data will not affect any statistics released from such a survey.
Consequently, differential privacy aims to approximate one individual not being
in the data set. Furthermore, differential privacy’s privacy guarantees are robust
and does not change over time, as it is backward and forward proof. That is,
any current or future data set cannot affect the privacy guarantees offered by

differential privacy.
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As claimed by Dwork, differential privacy is able to provide high utility, accu-
racy, as well as high privacy in many cases [9]]. This is a very desirable property,
as there exists a trade-off between privacy and utility that is difficult to balance.
Intuitively, this trade-off can be explained by investigating two extreme cases.
Without utility, privacy makes little sense, as privacy without utility is satisfied
when no data is gathered. However, full utility is achieved by publishing a raw
data set, which does not give any privacy guarantees. As neither of these two
cases are desirable, a trade-off between the two must be made.

While differential privacy shows promise, it can be challenging to use in real-
world cases, as the utility is affected by different parameters. The most promi-
nent real-world cases that use differential privacy have been presented by large
companies, such as Apple [10] and Google [11]], and only cover very limited
use cases. In particular, for vehicular data, differential privacy has so far only
been investigated for floating car data (FCD) [12]. Since differential privacy has
not yet been established in the automotive domain, although there is a need for
privacy-preserving analyses, we believe that differential privacy is a future trend
that this paper will aid in paving the way forward for. Hence, the contribution of
this position paper is a comprehensible introduction to differential privacy (Sec-
tion [3.2] [3.3] and [3.4), where we investigate what type of differentially private
analyses can be performed in the vehicular domain from a holistic perspective,
not only for one specific data type. Furthermore, we provide recommendations
(Section[3.3)) for how to proceed when implementing differentially private anal-
yses in the vehicle domain, and highlight the challenges (Section [3.6) involved
with the implementation.

3.2 Differential Privacy

Differential privacy originates from statistical research and examples used often
include queries on databases. It is important to note that differential privacy is
designed to suit statistical queries that make predictions for large populations,
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as it prevents inference of information about an entity. As has been pointed out,
any meaningful privacy guarantees for differential privacy are not achievable
when specific individuals in a data set should be identified [13]. For example,
differential privacy will not return any useful information when we ask if Bob

uses his company car on weekends.

The differential privacy definition, shown in Definition E] [9], states that when
the same query is run on two neighboring data sets, differing in at most one
element, the difference between the probability of getting the same outcome of
both queries is essentially negligible. In other words, the presence or absence of
one single record does not affect the outcome of a query noticeably. Intuitively,
the idea behind differential privacy is to produce a result to a statistical query
that is almost indistinguishable whether or not one record is present or absent

in the data set.

Definition 1 (e-differential privacy). A randomized function IC gives
e-differential privacy if for all data sets D1 and D» differing on at most one
element, and all S C Range(KC),

Pri(Dy) € S] < exp(e) x Pr[K(Dz) € 5]

Two of the main properties of differential privacy are query composability and
post-processing of data [14]. Being composable means that any results of differ-
entially private analyses can be combined, in which case privacy degrades addi-
tively. Composability also allows several queries to target the same data. Other
privacy models, such as k-anonymity [15]], fails under composition [[16]], even
with itself. Lastly, any post-processing conducted on data released under dif-
ferential privacy can be included in any additional analyses, without increased

risk to an entity [13].

The risk incurred on an individual is monitored by €, which is sometimes also
referred to as the privacy guarantee. When € is set to a low value, it gives higher
privacy at the cost of reduced utility, whereas a high € gives lower privacy and
higher utility. Thus, setting e appropriately is a trade-off between utility and
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privacy and should be carried out by an expert in the domain.

Another parameter involved is the privacy budget, which is a global parameter
from which € is deducted when a query is run. The privacy budget is being
consumed by querying the database in order to maintain privacy, and the more
queries the higher noise the answers receive. This response can intuitively be
explained by an example including the game of twenty questions. In the game
of twenty questions, the more questions that are answered, the closer the contes-
tants get to the real answer. To counteract anyone from finding the real answer
under differential privacy, the privacy budget enforces that each consecutive an-
swer gets more vague. When the privacy budget is depleted, e can only be set to
zero, which means answers will no longer return any meaningful information
about the data.

There are many different ways of achieving differential privacy, as any func-
tion K that fulfills Definition |1| is differentially private. The reason for why
there are many different algorithms is that they are data dependent, and the
utility from a differentially private algorithm changes depending on its input
data [[17]. Consequently, researchers are constantly inventing new algorithms
that are optimized for their analysis, resulting in a vast number of differentially
private algorithms with varying complexity and utility.

3.3 Release Mechanisms

The basic idea of a release mechanism, K from Definition (1} is to add proba-
bilistic noise to the real query result. Different release mechanisms are better
suited for different data types, such as numerical or categorical data. The lower
bound of the accuracy of each release mechanism can also be proven mathe-
matically in order to determine which mechanism is most likely to yield high

utility.

Release mechanisms can also be deployed in two different modes: centralized
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or local. In the centralized mode differential privacy is guaranteed by a trusted
party, usually at the time when the database is queried. For local differential pri-
vacy on the other hand, each data point is collected under differential privacy in
a distributed manner, meaning that noise is added locally. In this section we will
describe the Laplace mechanism, the exponential mechanism and randomized

response. Figure[3.1shows an overview of the mechanisms and their respective

characteristics.
Mechanism Name Deployment Mode | Answer Data Type
. Centralized .
Laplace Mechanism Numerical
(Oft-board)
Exponential Centralized .
. Categorical
Mechanism (Off-board)
Randomized Response | Local (On-board) Categorical

Table 3.1: Comparison between the characteristics of three common differen-
tially private mechanisms

3.3.1 The Laplace Mechanism

The Laplace mechanism, illustrated in Figure [3.1] works by adding controlled
numerical noise drawn from a Laplace distribution to a query answer. To be able
to hide changes in the data set, the query sensitivity, A f, in combination with
the privacy budget, ¢, is used when generating the noise. The query sensitivity
is the maximum impact removing or adding any record to the data set has on

the query result.

Since the Laplace mechanism produces continuous numerical noise, it is suit-
able for queries that are also numerical. Queries can be either continuous or
discrete, as differential privacy allows post-processing. In case of a discrete
query, the output will be continuous, but can be rounded up to a discrete value
without violating differential privacy.
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fz) +

f(z)? noise

differentially private result
query

Figure 3.1: An illustration of a database with a Laplace mechanism that is used

to release differentially private query answers

The Laplace mechanism is applied centrally by a trusted party. Thus, all raw
data is kept in a database off-board, where each query result is released under

differential privacy.

3.3.2 Exponential Mechanism

The exponential mechanism [18] is designed for categorical data, so the added
noise is not numerical. Rather, the analyst provides a utility function that spec-
ifies the distance between the different categories. For example, the analyst
might want to specify the distance between colors, where shades of the same
color are closer than a different color. The exponential mechanism then uses the
utility function to output a good answer to the query with higher probability than
outputting an answer further from the truth. Thus, the exponential mechanism
favors answers that have high utility for a given query input. Like the Laplace

mechanism, the exponential mechanism is also applied centrally.

3.3.3 Randomized Response

Randomized response [[19] was originally invented in 1965 to estimate the amount
of people in the population that belong to a sensitive group. Since membership
of the group is sensitive, the respondent has an incentive to lie if he or she is

part of the group, which can cause a skewed distribution of answers. Therefore,
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randomized response provides a protocol which gives the respondents plausible
deniability, meaning that an analyst cannot tell if a given respondent lied or not

while still being able to make predictions about the population.

Answer
truthfully

nead®

Figure 3.2: Randomized response, in this example following the protocol to

answer the question “Do you text and drive?”

Randomized response enforces local differential privacy, and each driver fol-
lows the protocol in Figure [3.2]in order to respond under differential privacy.
In order to interpret the results from randomized response, the analyst has to
extract the number of people that where telling the truth using Bayes’ theo-

rem.

3.4 Privacy Guarantees

In order to utilize the privacy budget well, making it last longer than when
using a naive approach, privacy can be applied at event-level [20] rather than
user-level. Event-level privacy protects a single event, such as a single data
point where a driver is speeding, whereas user-level privacy typically protects
an individual or an object such as a vehicle. The analyst defines what an event
is, for example a reading of one single signal or something that happens after
a certain condition is met. For example, one event might be that the airbag has
been triggered, but it could also be one single reading of the engine tempera-

ture.
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Essentially, the privacy level determines what or who should be protected by
differential privacy, by determining what data points are considered to belong
to one entity. In other words, if we choose user-level privacy for a car, all 7700
signals belong to that entity, whereas if we decide on event-level privacy, we

can decide on a subset of those signals.

3.5 Advice

In theory, any query can be answered under differential privacy. In practice,
however, some queries are better suited, since they offer a better trade-off be-
tween privacy and utility. Hence, in this section we will present some advice
regarding how to proceed when creating a differentially private analysis for ve-

hicular data.

3.5.1 Model the Domain

1) Decide the privacy level: Before starting to implement anything, it is impor-
tant to define who or what privacy should be provided for. For example, if the
driver’s identity should be protected, user-level privacy needs to be used. Also,
since a driver can drive more than one vehicle, this needs to be accounted for in

the model.

In some cases, to improve the utility of the answer, the analyst might settle
for only hiding certain events, such as speeding, in which case the analyst can
choose to only provide privacy for the speed of the car. On the other hand, the
analyst can also choose to hide only the time a driver was driving at a certain
speed. In the case where only the time is hidden, the driver can deny that he or
she was speeding since it is impossible to infer where the driver was driving.
In other words, an analyst can choose to hide events of different sizes, such as
only the time something happened or an entire driving pattern, and it is vital to
define in advance what those events are.
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Thus, modeling the kind of privacy that should be given and to whom needs to
be done first, in order to decide the privacy level as well as finding a suitable

value for €.

3.5.2 Trusted Party or Not?

1) Decide deployment mode: The main advantage of local differential privacy
is that each driver adds their own noise, as opposed to centralized differen-
tial privacy. Thus, local differential privacy, which can be implemented using
randomized response, is carried out on-board whereas centralized differential
privacy must be implemented off-board. Since randomized response is local,
no trusted party is needed to gather all data, which also means companies never
have to store or even get in contact with any sensitive data as it will be kept
in the vehicle. Furthermore, on-board algorithms can also result in data mini-
mization, meaning that less data is gathered from the driver, which is a property
that is being promoted by the upcoming GDPR. However, the downside of local
mechanisms is that achieving an adequate trade-off between privacy and utility

is difficult in real-world cases [21]].

3.5.3 Using the Privacy Budget

In order to get a good balance between utility and privacy, the privacy budget
needs to be used with care. We believe there are certain techniques that could
make the budget last longer, such as personalized budgets [22] (as opposed to a
global budget) and random sampling. /) Personalized budgets: First, personal-
ized budgets for differential privacy allows each record to keep its own budget,
which means all records are not affected by queries that do not concern them.
Using personalized budgets thus allows an analyst to keep the budget from be-
ing spent unnecessary, as he or she can query all vehicles of a certain model

without also spending the budget for vehicles of other models.
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From a data management perspective, another benefit of using personalized
budgets is that even if there is no centrally controlled database gathering all
the data, deductions to a global budget do not have to be communicated across
databases as long as all data belonging to one entity remains in one database.
Thus, a company can still keep several databases for different kinds of data

without introducing dependencies between the databases.

2) Random sampling: Secondly, random sampling allows us to select a subset
of records to query, and thus together with personalized budgets only spend the
budget of that subset. Random sampling is especially appealing for big data
sets, where a subset of the entire population still gives a good prediction. We

believe that vehicular data fits this description.

3) Streaming data: Furthermore, we also believe the vehicle industry could
benefit from enforcing differential privacy on streaming data instead of storing
raw data in an off-board database, as all stored data would be sanitized. That
is, vehicles could be selected to be part of a query, and then their replies could
be released under differential privacy where the data is aggregated. In this way
only the results from differentially private queries could be saved, and raw data
thrown away. Since differential privacy offers post-processing, the data kept
could then be used in any analysis. Apart from preserving privacy, this approach
could also save storage space on the server side, and could also decrease the

traffic used to upload data when queries only are issued on demand.

In the case of the streaming paradigm where vehicles are queried, each vehicle
would have to keep track of its own budget and communicate it to the server,
which would be possible when we use personalized budgets. Even though local
differential privacy inherently is better suited for this setting, we believe this

provides an alternative where local algorithms offer low utility.
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3.5.4 Population Statistics, Never Individual Data

Differential privacy is designed to answer statistical queries that make pre-
dictions about the population, not for inferring information about individuals.
Thus, if an analyst were to ask how often Bob uses the parking brake per week,

the result would not be useful as the noise would likely be too high.

The accuracy of results can be vital if safety-critical functionality is to be de-
veloped from an analysis. In such cases, the upper-bound and lower-bound
accuracy of a differentially private algorithm needs to be calculated before the
analysis is carried out. If the differentially private algorithm does not provide a
tight upper- and lower-bound on accuracy, the safety-critical functionality could

be at risk by using data under differential privacy.

In these cases, there are two options: either the differentially private algorithm
is modified (for example by rephrasing the query, see Section [3.5.3)) to achieve
higher accuracy, or the analysis is carried out without guaranteeing differential
privacy on the company’s own vehicles. For example, a case where differential
privacy is not suitable is for function testing using high-resolution data from

few vehicles.

3.5.5 Rephrase Queries

Rephrasing a query might result in better utility. /) Target the population: In
some cases an inappropriate query, that targets individuals, can be rephrased
into a query that targets the entire population. For example, if we want to find
out when an engine is running outside of its specification, asking for in which
vehicles this occurs would be a bad idea. On the other hand, what we are really
interested in might not be which those cars are, but rather how many they are, to
determine if it is common or not. In such a case it is possible to turn a bad query
into a prediction about the population, a counting query in this case, which

would provide a better answer to, approximately, the original query.
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2) Change the query type: In other cases, the problem might not be that one
individual is targeted, but that the query itself is prone to result in high noise.
As an example, instead of asking for the average speed, the speed can be inves-
tigated from a histogram from which heavy-hitters can be identified. In other
words, when the query sensitivity is high, transforming the query into a less
noisy one is advisable, unless the difference between the query result and the

proportional noise is small.

3.5.6 Dealing with Query Sensitivity

One issue with query sensitivity is that in practice it can be hard to define.
Therefore, in some cases, the query sensitivity needs to be set to the physical

maximum of a parameter, which is unlikely but necessary.

1) Query a large data set: Some queries, such as sums and averages, tend to
have high query sensitivity. For vehicles, the analyst might then when defining
the query sensitivity refer to the maximum value that can be held in a certain
register in the vehicle. While these queries can still be used, the noise will be
easier to hide when a larger data set is queried. Thus, the data set’s size is more
important in cases where the query sensitivity is high rather than in cases where

it is constant, such as counting queries and histograms.

2) Fixed sensitivity through cropped ranges: The way we suggest for dealing
with high query sensitivity is to crop the ranges and set a fixed max and min
value. All values outside of range must not be used in the analysis, as they
would not be protected in this case. The chosen range itself also leaks infor-
mation about what range is expected to be normal. When the range itself is

sensitive data, the range must be decided under differential privacy.

However, if the range is not well-known, it is possible to accidentally set the
range to an interval which a large part of the values fall outside of. To be able
tweak an incorrectly set range in a differentially private manner, we suggest
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creating one bin on each side of the range that catches all outside values. When
the side-bins are fuller than a certain threshold, it indicates a problem with the

chosen range, which then needs to be redefined.

3.5.7 Applicable Analyses

1) Histograms and counting queries: Histograms and counting queries are par-
ticularly suited for the Laplace mechanism, as pointed out by Dwork [23]]. The
reason for this is that histograms and counting queries have a fixed sensitiv-
ity, which generally results in low noise that is independent of the data set’s
size. Consequently, when the data set queried is small, histogram and counting

queries are especially appropriate.

2) Numerical queries: Any other numerical query is also possible to implement
under differential privacy using the Laplace mechanism. However, the Laplace
mechanism is highly dependent on the type of query being asked, as each query
type has its own sensitivity, A f. For example, if we want to calculate the av-
erage speed of a vehicle, we need to account for the largest possible change
adding or removing any data point to the set can have on the average. Conse-
quently, we must assume the worst case, which in this case is adding the highest
possible speed to the data set. Thus, the sensitivity is the difference between the
maximum and minimum speed possible. The sensitivity will then affect the pro-
portion of noise that is added to the query result, and thus we suggest choosing
a query which has lower sensitivity as it generally will yield lower noise than a

high sensitivity query.

3) Categorical queries: For data where adding noise makes little sense, such
as categorical data, the exponential mechanism can be used. One such example
is when asking for the most popular car colors, as adding numerical noise to
colors does not make sense. Another example would be if we want to find out

what button on the dashboard is pushed the most times.
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3.6 Challenges

There are many challenges with properly implementing a differentially private
analysis in real-world cases. In this section we point out some of the most

prominent ones for vehicular data.

3.6.1 Setting the Privacy Budget

To reason about €, the domain must first be modeled in such a way that the en-
tity to protect has been defined through setting the privacy level. e is then the
factor of indistinguishability between any two entities. Consequently, setting €
to a meaningful value is difficult, as € is a relative measure of privacy risk [[24].
In other words, the appropriate value of ¢ is affected by the type of data be-
ing released. Thus, the risk of two differentially private algorithms cannot be
compared by their value of €. This problem is not unique to vehicular data, but

follows inherently from the definition of differential privacy.

While how to choose € appropriately remains an open research question, Lee
and Clifton as well as Hsu et al. propose practical solutions to the problem.
Lee and Clifton suggests choosing € based on the individual’s risk of being re-
identified [24], whereas Hsu et al. [|25] propose that € should be chosen based
on an economic model. While no approach is clearly better than the other, both
solutions provide an interpretation of what the privacy guarantees mean to a

participant, making it possible to communicate the risk accordingly.

3.6.2 Multidimensional Time Series Data

Compared to other systems, preserving the privacy of vehicles is particularly
difficult since they are highly complex systems that generates vast amounts of
data from thousands of signals. To make matters worse, vehicle signals can
be gathered continuously over time. Consequently, as the amount of available
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data simplifies identifying a particular vehicle, hiding the presence of a specific
vehicle in the data set becomes more difficult than hiding fewer connected data

points.

Because of the multidimensional time series nature of the data, performing
more than one analysis with high utility that guarantees user-level privacy be-
comes infeasible. User-level privacy would also not allow the analyst to reset
the budget, not even after years of using the same budget. Consequently, we
believe that in order to maintain utility, analyses can only provide event-level

privacy.

On a positive note, providing event-level privacy can save the manufacturer
the trouble of maintaining the privacy budget between different systems, as it

results in separate privacy budgets for each system.

An open issue that we need to solve in this area is interpreting what event-
level differential privacy means for a driver, as it is an individual that ultimately
wants the privacy. For example, what does it mean from a privacy perspective
if we only hide at what point in time the battery had a certain temperature?
Event-level privacy might be more feasible than user-level privacy from a util-
ity perspective, but every case must be investigated to make sure the privacy

guarantees in such a situation makes sense to an individual as well.

3.7 Conclusion

For vehicular data, differential privacy can be especially tricky to enforce due
to the fact that vehicles contain a system of thousands of dependent signals
collected over time. Consequently, the automotive domain is very complex
from a privacy perspective. However, as differential privacy is the only pri-
vacy model that provides provable privacy guarantees, this is currently the only
robust way of mitigating re-identification attacks on data while maintaining util-

ity. Thus, we believe that the automotive industry will benefit from carrying out
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their privacy-preserving analyses under differential privacy.

In order to properly implement differential privacy, it is vital that the company
first model the privacy within their domain, to determine what they are trying
to protect. From the model, the company can then define what signals an event
should consist of, and the model also makes it possible to reason about a suitable
value for €. Only after the modeling has been done can the implementation

details of the analysis be decided.

Differential privacy should be used to answer statistical questions about a pop-
ulation. Since differential privacy aims to protect the privacy of each entity,
it is not suitable for detecting anomalies. Because of this, analyses on high-
resolution data from few vehicles, such as when performing function testing,
should not be carried out under differential privacy. Any other statistical queries
can be answered under differential privacy, but we believe that one of the main
problems with introducing differential privacy in the automotive domain is main-
taining high utility for the analyses. Thus, we have investigated ways of being
able to spend the privacy budget wisely.

We believe that in order to enforce differential privacy for vehicular data in a
sustainable way, personalized budgets, random sampling as well as event-level
privacy are key to high utility. Rephrasing queries as well as cropping ranges
of queries is also something that can make differential privacy more applicable.
Furthermore, we believe that by issuing queries to vehicles on the go using the
streaming paradigm or local differential privacy, there is potential to save both

storage space and bandwidth while preserving privacy at the same time.

In the end, we believe differential privacy shows promise for the vehicle indus-
try. However, more work still needs to be put into interpreting the meaning of
e as well as event-level privacy from a customer’s perspective, as the meaning

will differ on a case-by-case basis.
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Joint Subjective and
Objective Data Capture and
Analytics for Automotive
Applications

Abstract
In this paper we describe a novel technological framework for capture and
analysis of both objective measurement data and subjective user experi-
ence data for automotive applications. We also investigate how the frame-
work can be extended to address privacy issues by enforcing a rigorous
privacy model called differential privacy. The system under development
integrates a telematics system with a smartphone app service architecture
and a data-driven analytics framework. The hypothesis is that the frame-
work will improve the opportunities of conducting large scale user trials
of automotive functions and services, while improving the quality of col-
lected data. To achieve this, a number of challenges are addressed in the
paper, including how to design the subjective data capture mechanisms to
be both simple to use yet powerful, how to correlate subjective data with

objective measurement data, and how to protect the privacy of users.
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4.1 Introduction

A key to competitiveness in the automotive industry is to be highly respon-
sive to customer needs and expectations as well as market trends. One way
to achieve this is to collect and analyze data from connected vehicles to find
out how the customers use the product and how the product performs in dif-
ferent situations. The opportunities to employ data capture and analytics for
knowledge-driven product development, whereby engineering and design deci-
sions are made based on hard facts rather than best practices and tacit knowl-
edge is gaining strong momentum in the automotive industry [1]. Sophisti-
cated telematics systems and cloud-based analytics frameworks are emerging
for these types of applications [2]], but what is generally missing is a good way to
couple the collected vehicular data and usage data to customer experience data.
How the vehicle and user behaves is only one side of the story, the other being
how the user experiences the product or would like to experience the product.
The objective data being collected through telematics services therefore need
to be complemented with subjective data about the customers’ experiences of

using the product.

The traditional approach to subjective data collection in the automotive industry
is through surveys based on questionnaires and interviews with selected cus-
tomers. However, this type of subjective data collection is time consuming and
the collected data sets are typically difficult to correlate with objective measure-
ment data. What the customer says about the way he or she uses a product does
not necessarily correspond to how he or she actually uses the product, nor with
how the user would like to use the product or what new features and services are
desired. Furthermore, subjective data quality is commonly low since there is a
considerable separation in time and space between actually using a product and
responding to a traditional questionnaire. The experience the user had while
using the product is easily dimmed, forgotten or altered by the passing of time
and change of locale. Moreover, when it comes to advanced active safety and

autonomous driving services, the volume and complexity of data that need to
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be collected is high, so a scalable architecture with a high level of automation

is needed for capture and analysis of data.

To overcome these problems, we suggest an approach based on a technological
framework for coordinated capture and analysis of both objective and subjective
data — the latter through the use of a smartphone app which can present tai-
lored questions to selected users to capture specific information about particular
events triggered by conditions detected in each user’s vehicle during usage. The
subjective data submitted through the app is uploaded to a cloud-based analytics
framework where objective data, collected from in-vehicle measurement sys-
tems are also available for combined analytics. Since the collected data might
be privacy sensitive to users, we also investigate how the data can be collected
in a privacy-preserving way. This gives the opportunity to carry out large-scale
collection of data and automated data-driven analysis, with much higher infor-
mation quality and in shorter time compared to traditional approaches, reducing
the time to market for new product features and customized service offerings.
The concept is illustrated in Figure 4.1}

4.1.1 Target Applications

To explore the opportunities of joint subjective and objective data collection,
we have developed a proof-of-concept system targeting primarily active safety
applications, but with a great potential to be used for many other automotive
applications where subjective user data is important, including climate comfort,
noise-vibration-harshness (NVH) and ergonomics.

Since active safety and autonomous driving functions increasingly rely on ma-
chine learning algorithms that typically require large volumes of training data,
systems that can facilitate the collection of relevant training data sets are very
important. Finding the relevant training data sets typically requires human in-
tervention, e.g. to tag or classify whether a given situation belongs to a given
category. With the user in the loop through the smartphone app, our approach
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Figure 4.1: Joint subjective/objective data capture and analytics concept

gives tremendous opportunities to build up a large database of training data.
Since the sensor data input to active safety systems typically include complex
data types such as video and radar/lidar images, this also affects the design and
configuration of the onboard logging devices and corresponding telematics ser-

vices used to capture and communicate measurement data.

4.2 Challenges

In the design of the technological framework we have identified a number of
challenges that need to be addressed. Some of the more demanding challenges

are:

> How can we design the subjective data capture app in a way that makes
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it easy and safe to use in a vehicle, even while driving?

> How can we design a triggering mechanism to decide when a particular
question or set of questions should be posed to a particular user? The
triggering mechanism must be versatile and flexible to be usable for all
relevant use cases.

> How can we cater for follow-up questions that depend on answers to pre-
vious questions?

> How can we protect the privacy of users while at the same time providing
automotive engineers with as powerful data collection and analytics tools

as possible?

Each of the listed challenges are discussed in the text in the upcoming sec-

tions.

4.3 A Framework for Joint
Subjective-Objective Data Capture and

Analytics

The proof-of-concept framework is composed of the following main compo-

nents:

+ An in-vehicle data capture and telematics system, making it possible to
monitor and transmit in-vehicle (CAN bus) signals,

+ A cloud-based server infrastructure, including database storage, web-
based user interface front-end, and application programming interfaces
to provide controlled access to the information resources and framework
services,

+ A smartphone app to which questions to vehicle users can be pushed
from the server infrastructure, and answers recorded and uploaded to the
database,

+ An analytics service architecture, enabling automated data-driven analy-
sis of data originating from connected vehicles and smartphone apps,
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+ A app questionnaire authoring tool for designing the questions to be sent
to users of the smartphone app,
+ A concept for a privacy-preserving framework based on differential pri-

vacy.
An overview of the software architecture of the system is shown in Figure[4.2]
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Figure 4.2: Software Architecture of the framework for joint subjective/objec-

tive data capture and analytics

4.3.1 Telematics System

The core component of the telematics system (called WICE) is a Linux-based
data capture and communication unit installed in vehicles. The unit executes
measurement tasks that support data capture both by passive in-vehicle com-

munication bus monitoring and active diagnostic services. The captured data
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is uploaded to a cloud-based server infrastructure using 2G, 3G or 4G wire-
less mobile data communication. The telematics unit also provides additional

services such as GPS-based positioning and fleet management.

The communication architecture can handle both bulk upload of data and real-
time streaming of data without the need to store it on the solid state disks of the
telematics units. For most data capture services, measurement data is stored to
disk while a data logging task is running, and then pre-processed and uploaded
at the end of the vehicle’s driving cycle (i.e at ignition-off). The streaming mode
is used for time-sensitive applications, such as positioning services where it is
important to show the current location of moving vehicles.

4.3.2 Smartphone App and App Service Architecture

The Smartphone App (see Figure[d.3)) is implemented on top of the Ionic Frame-
work [3]] in order to target the most common mobile ecosystems from a single
code base. This was deemed necessary in order to rapidly iterate the design
throughout the life of the project. Ionic is one of the frameworks making it pos-
sible to use regular Web technologies (JavaScript, HTML, CSS, etc.) to develop
native-looking apps. A number of specific libraries allow access to local hard-
ware in a manner that hides most of the differences between iOS and Android.

There are three major functions provided by the app:

+ Registering cars to app user accounts. Car registration is made through
manual entry of the car’s unique VIN, or through scanning a barcode
representing this same identifier and usually printed onto the car’s front
window.

+ Each user account carries a few profile details in order to be able to target
specific driver details: persons of above/below average height, in specific
age categories, etc.

+ Receive and respond to “polls” in order to collect subjective information
whenever the back-end has discovered a set of matching metrics that re-
quire complementary details for a deeper understanding.
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Figure 4.3: The screenshot to the left shows the landing page of the smartphone
app, listing all cars that are registered to a given account. Note the “hamburger”
menu in the top-left corner to access the rest of the app’s functions, and the “+”

floating button to trigger car registration. The screenshot to the right shows the

profile screen aimed at collecting anthropomorphic data.

Care has been taken to minimize the size and intrusion of the polls as much
as possible. Most polls will only contain a few questions, and questions can
be conditional, i.e. only asked depending on previous answers within the same
poll. The app accepts remote polls even under driving circumstances. However,
polls are then read out loud using the mobile platform specific Text-to-Speech
(TTS) functions and speech recognition is used to collect answers. Whenever
alternatives are offered, small meaningful pieces of these sentences can be used
to acknowledge the specific alternative. TTS is also used to inform about errors
and progression, so as to engage the driver in a hands-free dialog. All ques-
tions and polls are also present on the smartphone screen, making it possible
to answer using touch if necessary or preferred (see Figure f.4). The UI uses
large, clean and colour-coded buttons to facilitate interaction in all situations,
including a bumpy road.
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Sometimes it is desirable for polls to be sent in several steps. For example, first
as soon as a telematics function has triggered (in order to capture the driver’s
answer in the heat of the action), but also later once the car has come to a stop
(in order to capture further details about the specific event). These chains are not
handled by the polls themselves, but rather through information exchange with
the back-end system. Typically, two (or more) polls will be sent by the back-
end, possibly conditionally, to capture these situations appropriately. However,
the current implementation of the app collects phone position data to approxi-
mate speed, and in order to be able to cover these cases without back-end inter-

vention, should that turn out to be necessary in future versions.

v .4 m1229

< Polls Polls
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Driver Alert
.. Driver Alert 2 question(s)
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Figure 4.4: The screenshot to the left shows the list of polls as seen from the
app. Upon answer, polls automatically get sorted into a separate list, shown at
the bottom of the screen in order to provide some progress and history feedback.
The screenshot to the right shows a typical yes/no question from a poll; the app
also supports more elaborate questions with several alternatives. The “coffee

cup” is a direct reference to how fatigue alerts are mediated to drivers in the car.

Several drivers/passengers can declare ownership of a single car. At present,

relevant polls are sent to all registered users. However, this could be alleviated
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through automatically detecting which of the registered users is currently (or has
just) visited the car. We intend future versions of the app to communicate with
the car’s infotainment system as the main source of this type of information.
This will also bring the possibility to offer an option that automatically turns on
speech recognition (and TTS) when the phone is used in the car. This would
prevent polls to be read out loud once the driver has stepped out of the car

(which might be disturbing or embarrassing).

4.3.3 Back-end Server Architecture and Analytics Framework

The back-end architecture consists of two frameworks. One is the subjective
data capture framework described in this paper which handles the polls and the
other is the telematics and analytics framework called WICE [2] which delivers
the signals from the car to the back-end data processing framework and provides
data processing functions to analyze and visualize the captured data. In order for
polls to be delivered to users the person creating the questionnaire must decide
upon which set of vehicles should receive the poll when a certain condition
occurs and this is done through a web-based tool for creating and managing
polls.

The following takes place when a vehicle delivers data to the back-end.

1. In-vehicle signals are streamed in real time by the telematics system from
connected vehicles to the back-end processing framework. Which signals
are streamed is defined in a pre-configured measurement set-up.

2. Configurable trigger conditions are evaluated to find whether an event
that is of interest has occurred. The trigger conditions are boolean expres-
sions involving signals being streamed, for example VehicleSpeed
>50 AND Gear=3. When a trigger condition specified for a specific
poll evaluates to true, a service is called which sends the poll to the
app which has been registered for the vehicle originating the data stream

wherein the interesting event occurred.
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3. Once the user has answered the poll, the answer is uploaded to the back-
end framework and stored in a database, for subsequent analytical pro-

cessing.

In some cases it is desirable that follow-up questions are posed when the user
has responded in a specific fashion. Therefore the back-end framework must be
able to evaluate trigger conditions that also include answers to previous polls in

order to able to trigger follow-up polls.

The analytics framework, which is under development, is based on a data-driven
approach, whereby data sets uploaded from connected vehicles and apps are au-
tomatically analyzed. Analysis result are stored in a knowledge base and made

available for visualization, typically as histograms, pie charts or similar.

4.4 Case Studies and User Trials

The technological framework under development will be tested and evaluated
in a case study at Volvo Cars wherein two different active safety features are
focused: Driver Alert Control (DAC) and Forward Collision Warning (FCW).
The DAC system is a driver fatigue detection and warning system. Subjective
data is in this case collected to verify whether drivers actually are tired when the
DAC system triggers, and to follow up whether they take a break as the system
suggests. The FCW system alerts the driver when there is risk for a collision.
Subjective data is collected to verify whether issued collision warnings are rele-
vant. The purpose of the case study is to collect subjective user experience data
from field trials and to analyze the data together with (objective) measurement
data in order to improve the DAC and FCW systems. The hypothesis is that the
technological framework presented in this paper will facilitate the orchestration
of this kind of user experience surveys with a potentially large number of par-

ticipating users, and to improve the quality of the data being collected.
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4.5 Privacy Issues

While our approach to collect user data opens up new opportunities for im-
proved, data-driven analytics, it also has privacy implications for the drivers
that need to be addressed. For example, if a driver has a high number of FCW,
it can indicate that the driver is reckless or aggressive, as he or she is often about
to collide with objects. An additional privacy issue in this particular setting is
that follow-up questions can be issued based on previous answers, which makes
the fact that the follow-up question is sent reveal sensitive information. As an
example, if a driver ignores the DAC even though he or she is tired, and con-
fesses that this is the case through submitting subjective data during a follow-up
poll, this information could be incriminating if the driver is later involved in a

traffic accident.

Traditionally, analysts would choose to de-identify data, often through remov-
ing certain identifiers, such as the vehicle identification number (VIN) and the
license plate from the data set. However, real-world examples [4} |5] has shown
that de-identification often fails, allowing individuals to be re-identified. Ex-
amples from the automotive domain where re-identification has been possible
include deducing the location of a car based on its speed [6] and fingerprinting

drivers from their driving style [[7].

In order to protect the driver’s privacy, we suggest that data is gathered un-
der differential privacy. Differential privacy [8] gives mathematically proven,
robust privacy guarantees, which is not provided by any other privacy model.
Definition 2] shows the formal definition of differential privacy [9]. Intuitively,
differential privacy aims to simulate the best privacy for an individual: namely
when he or she has opted out of the analysis. Essentially, differential privacy
provides privacy by introducing some inaccuracy, noise, to a real answer. The
privacy risk to an individual is then monitored by a privacy budget, which is
usually shared by all participants.
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Definition 2 (e-differential privacy). A randomized function K gives
e-differential privacy if for all data sets D1 and D4 differing on at most one
element, and all S C Range(K),

Pr[K(D;) € S] < exp(e) x Pr[K(D3) € 5]

To address the privacy issues of the smartphone app, we suggest that a frame-
WOI' for personalized local differential privacy (PLDP) based on randomized
response [[10]] is developed and used when issuing questions from the app. Ran-
domized response is a surveying technique that was invented to avoid evasive
answers, for example by lying, from respondents. Randomized response is im-
plemented by letting the respondent flip a coin to determine whether to lie or
to answer truthfully, and if the respondent is asked to lie, he or she again flips
a coin to determine what to answer. As the one collecting the answer does
not know whether the respondent tells the truth or provides the random answer
determined by the coin, randomized response is said to give plausible deniabil-
ity. When the analyst wants to perform an analysis on the data, he or she uses
Bayes’ theorem in order to extract the truthful answers. This way data can be
collected without it being possible trace a reply back to a specific individual,
and also giving the respondents an incentive not to lie unless the coin tells them
to.

To address privacy in our architecture, the PLDP framework would be placed
in a privacy preservation layer above the smartphone app service layer, and
work as an application programming interface (API) used for the questions in
the app. Previously, PLDP has only been investigated theoretically [[11f], and
practical implementations do not yet exist. The updated version of the software

architecture is shown in Figure 4.5]

Similarly, data from the telematic service layer should also be passed through a

privacy preservation layer. The main challenge here is to be able to ask follow-

¥The use of PLDP in this context is ongoing joint work with Hamid Ebadi and David Sands at
Chalmers University of Technology
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Figure 4.5: Updated software architecture of the framework with privacy in

mind

up questions, without letting the back-end server learn the answer to the original
questions. Therefore, the polls cannot be issued by the back-end server, but
instead will be sent by the telematics server layer as it has access to the car’s
data. Then, the back-end server chooses a number of cars, uniformly at random,
to answer a question. In this way, answers will only be uploaded once the back-
end server has chosen that car to participate in a question.

The main implications of a PLDP framework for cars are:

* Local differential privacy does not require a trusted party, as privacy is
enforced before the answer is sent to the back-end server. No sensitive
data will therefore be uploaded.



4.6. CONCLUSIONS AND FUTURE DIRECTIONS 117

* Local differential privacy also gives the driver an incentive not to lie, as
raw data never reaches the back-end server.

* Personalized budgets allow for more flexible budgeting than traditional,
global budgets, thus allowing for more questions being answered with
high accuracy than when using global budgets.

* For each user, a privacy budget needs to be stored and managed, as bud-
gets are personalized.

* Answers to polls need to be saved, in a private state, in the smartphone

app.

4.6 Conclusions and Future Directions

In this paper we have explored the opportunities and challenges of joint subjec-
tive/objective data capture and analytics for automotive applications. Access to
subjective data and sophisticated analytics frameworks in the testing, verifica-
tion and validation phases of product development promises improved product
quality and shorter development cycles, reducing the time to market for new
products. We believe that the framework presented in this paper contributes
strongly to this. Our future work includes integration of more advanced analyt-
ics and visualization mechanisms into the framework and to improve the overall
design based on experiences from the case study described in section[4.4] Fur-
thermore, we have also investigated how to extend the data capture to collect
both the subjective user data and the objective car data in a privacy-preserving

fashion under differential privacy.
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Abstract

Polls are a common way of collecting data, including product reviews

and feedback forms. We propose giving quantifiable privacy guarantees

through the statistical notion of differential privacy for polls. Still, since

polls can contain of follow-up data that is inherently dependent data, im-

plementing differential privacy correctly may not be straight forward in

this setting. Moreover, apart from successfully implementing differential

privacy, the inherent trade-off between accuracy and privacy also needs to

be balanced.

Motivated by the lack of tools for setting the privacy parameter (¢) and

need for correct implementations [[1], we present RANDORI, a set of novel

open source tools for differentially private poll data collection. RANDORI

is designed to offer both privacy guarantees and accuracy predictions for

local differential privacy. Hence, our tools provide analytical predictions

of the accuracy of a poll that can be taken into account when setting €. Fur-

thermore, we show that differential privacy alone is not enough to achieve

end-to-end privacy in an interactive server-client setting. Consequently,

we also investigate and mitigate implicit data leaks in RANDORI.

123
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5.1 Introduction

Polls are a widely used way of collecting data. For example, one is often asked
to fill out a review after purchasing an item online. Now, these polls can consist
of an arbitrary number of intertwined questions. For example, after purchasing
an item online, one might be asked “How do you feel about your purchase?”
with answer alternatives ‘Happy’, ‘Neutral’ and ‘Unhappy’. Next, a merchant
can also choose to add a follow-up question asking “What’s the reason you feel
unhappy?” to all respondents that answer that they were unhappy with their
purchase. Consequently, a poll’s structure can be arbitrarily complex. Having
established that polls are indeed an interesting way to gather data, providing
adequate privacy for poll data is the next step. A frequent collector of poll data
is the US Census Bureau, who used differential privacy (Section [5.2) in their
2020 census [1]. Differential privacy is a rigorous statistical notion of privacy
where privacy loss is quantified. Based on their experiences with the 2020
census, the US Census Bureau point out that there exist several issues with
differential privacy in a real context, such as I) setting the privacy parameter
(e), and II) the lack of tools to verify the correctness of the implementation of

differential privacy [2].

Now, gathering poll data under differential privacy may seem straight forward,
but we will argue the devil is in the details. First, there is the detail of the logical
representation of a poll. Recalling the poll questions introduced previously, we
could add controlled noise to each respondent’s answer to achieve differential
privacy. Still, if we add this noise naively, we would leak information all the
same through the number of responses alone. For example, a person that an-
swers that they were happy with the purchase never gets asked the follow-up
question. Hence, the implicit information flow created by follow-up questions
is not automatically captured by differential privacy itself. Consequently, we
ask ourselves if we can design polls in such a way that the poll’s structure does

not leak information while still allowing for follow-up questions.
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The next detail is in the implementation of the tool. Even when processing data
using differentially private query systems, such as PINQ [3]] and AIRAVAT [4],
information can be leaked through side-channels [5]. In these cases, Haeberlen
et al. [5]] attributed the side-channels to differences in: 1) processing time, and
2) the privacy budget (¢). To complicate our case further, we note that differ-
entially private applications and programming languages (e.g. [6} |7} 3L |8, |9]1)
tend to focus solely on the processing of data, and hence do not address the
collection of data. As such, an application needs to be put into context so that

we can protect against side-channels (Section[5.3).

Lastly, accuracy is an ever important factor in differentially private analyses. As
such, we argue that it is important that a tool can provide some measurement
of error to address issue I) that was raised by the US Census Bureau. Conse-
quently, we identify three main problems with collecting poll data under local
differential privacy:

* Implementation needs to be correct
* Gathered data may be too inaccurate

¢ Side-channels may arise during collection

To make local differential privacy available for all, we present a novel set of
open source tools (Section called RANDORI(Japanese:ﬁLHX "), meaning:
free-style practice in Japanese martial arts). RANDORI provides tools for three
stages: 1) poll design, 2) tuning the accuracy/privacy trade-off (setting ), and
3) collecting poll data interactively under local differential privacy. Moreover,
we have implemented RANDORI in such a way that we address the logical and
implementation details mentioned earlier, which we later evaluate (Section@
and discuss (Section[5.6). We also put our work into context by comparing it to
existing research (Section [5.7) before summarizing (Section [5.8).

As such, with RANDORI we focus both on accurate differentially private data

YSource code available at:

https:github.com/niteo/randori


https:github.com/niteo/randori
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collection, as well as protecting privacy end-to-end throughout the entire col-

lection process. By presenting RANDORI our contributions are:

+ Tools for designing polls, and collecting data under differential privacy
+ A tool for predicting and tuning accuracy for a given poll

+ A data collection process that is end-to-end private

5.2 Differential Privacy

Differential privacy is a statistical notion of privacy that represents a property of
an algorithm, as opposed to being a property of data. As such, differential pri-
vacy is fundamentally different from privacy models such as k-anonymity [[10],
{-diversity [11] and ¢t-closeness [[12]], where privacy guarantees are derived from
the data.

In this paper we focus specifically on local differential privacy [13]], which is
relevant whenever the mechanism is applied locally at the data source (e.g. a
client) rather than centrally (e.g. a server). In the rest of the paper, when
we talk about differential privacy, we mean specifically local differential pri-

vacy.

Definition 1 (¢-Differential Privacy). A randomized algorithm f, with an input
domain A and an output domain X, is e-differentially private if for all possible
inputs a,a’ € A, and all possible output values x € X,

Pr(f(a) = x] < e x Pr[f(a’) = z].

The core mechanism used in this paper to achieve differential privacy is a vari-
ant of the classic randomized response algorithm [14]. Using a binary input
domain (‘yes’ or ‘no’), the randomized response algorithm can be described as
follows: flip a coin ¢. If ¢ lands heads up then respond with the true answer (the
input). Otherwise flip a second coin  and return ‘yes’ if heads, and ‘no’ if tails.
Basically, this algorithm will either deliver the true answer, or randomly choose
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one of the viable answers. By delivering an answer in this way, we say that the

respondent enjoys plausible deniability.

In randomized response the bias of the coin ¢ determines the privacy-accuracy
trade-off, whereas the coin r can always be unbiased (i.e. it has a uniform
distribution). The variant of this mechanism used in this paper is a simple gen-
eralization: it (i) allows for a non-binary input domain, and (ii) permits us to

give different accuracy to different answer alternatives.

Definition 2 (Randomized Response). Let A be the data domain, and T =
{ta}aca be an indexed set of values in [0, 1]. Given these, we define the ran-
domized response mechanism RRy, a randomized function from A to A, as

follows:

to + 74 whena=x,
Pr[RRy(a) = 2] =
T otherwise.

where T = 1\_Tt|a’ hence to + 14 X |A| = to + (1 —to) = 1, and t, is chosen
8.t tq + 14 = Pritruth] + ((1 — Pr{truth)) x w,) where wy, is the weights in the

tree path to the node containing a.

Now, we also want to be able to reason about the accuracy of our algorithm.
Deriving from the concept of a misclassification rate [13|], we define our metric
for error in Definition [3| That is, if a response a gets mapped by the random-
ized response mechanism to a value other than itself, it is considered misclassi-
fied.

Definition 3 (Error Metric). Let RRy represent randomized response, then
given for any answer a € A the error is the probability of outputting any other

output in A:
errorg, = Pr{RR1(a) # aj

Now, to reason about the accuracy of more than one response we need a notion
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that allows us to sum errors. A general analytical error bound [15], for any
algorithm, is given by the additive Chernoff bound in Definition[d We say that
an algorithm is («, 5)-useful [16].

Definition 4 (Analytical Accuracy). Let E be a random variable representing
the error of the output of a differentially private algorithm, n is the population
size and o, 3 € (0, 3), where 8 = 2e29°" Given these, with probability 1-8,

the error E is bounded by at most error o.:

PrlIE<al>1-p

5.3 Threat Model and System Limitations

In order to show that it is possible to build a tool for differentially private data
collection that is end-to-end private in a server-client setting, we construct a
proof of concept called RANDORI. Our goal is to build a prototype that is I)
differentially private by design, II) able to predict error and III) protected against
side-channels. In order to make a thorough investigation of side-channels, we

introduce a threat model next.

Adversary Model and Assumptions. We assume that adversaries can be ei-
ther passive or active. The active adversary can send out polls using RANDORI.
Consequently, we assume that the adversary can pose as a data analyst. The
passive adversary can observe and read the contents of all network traffic be-
tween data analyst and respondent. That is, we consider both the case where
the communication takes place in plain text, and the case where the adversary
is strong enough to break any encryption used during communication. That is,
we assume an adversary that can read message contents even when the commu-
nication is done over HTTPS. Still, we assume that the internal state of the code
the respondent is running and the respondent’s hardware cannot be monitored
by the adversary. That is, the respondent is entering their true answers into a

trusted computing base.
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We also assume that the respondent does not close their client before our code
has finished executing. Later, we elaborate on ways to handle non-termination

and the challenges of implementing these defenses in our discussion (Section[5.6).

We do not consider cases where the respondent is an adversary that tries to
attack the accuracy of the poll by skewing their answers. That is, we will only

consider attacks on privacy, and not attacks on accuracy.

Trust. The sensitive data in this setting is the respondents’ true answers to
polls. That is, responses produced by randomized response are not considered
sensitive as the respondent enjoys plausible deniability. Hence, sensitive data

only resides in the respondent’s application.

Moreover, we consider the code running on the respondent’s device to be com-
pletely trusted by the respondent. That is, the code the respondent is running is

allowed to hold and take decisions based on sensitive data.

As for the data analysts, we do not consider any of their data to be sensitive.
Consequently, the poll questions are considered public data. Hence, the ¢ for
any poll is also public data. We will also assume that the value of each re-
spondent’s privacy budget is public. That is, whether or not a respondent has
participated in a poll also becomes public. We do not attempt to hide the identity
of the respondents, but settle for plausible deniability.

Furthermore, the data analysts are considered untrusted by the respondent. That
is, the respondent only wants to share their poll answers under differential pri-
vacy, and do not wish to share any other data than what is publicly known with

the data analysts.

System Limitations. In RANDORYI, the respondents do not have a persistent ap-
plication. Hence, we cannot store the privacy budget between sessions. Instead,
we assume a maximum budget per poll. The lack of a persistent application
also does not allow us to re-use previous responses to polls as in RAPPOR [17].

This also means that while we are not subject to tracking in the same way RAP-
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POR’s users are (through re-use of responses), we do not protect against an
attacker that sends the same poll twice. As such, we do not address longitudinal

privacy in our current proof of concept.

In its current state, RANDORI does not contain a trusted third party to send the
RESPONDENT UI to the respondents. Still, adding a third party only requires
a minor change where the respondent visits the trusted third party to receive
the RESPONDENT UI, but polls can still be served by the untrusted data ana-
lyst.

We do not consider the identity of the respondents to be secret, and thus we
do not protect against leaking information through participation alone. Also,
we do not guarantee security through encryption, since we assume an adversary
strong enough to break encryption. Still, we expect the users to encrypt the
communication and take adequate measures to store the collected data securely,

but we leave this outside of our system scope.

Furthermore, we do not guarantee that RANDORI is optimal from an accuracy

or performance aspect.

5.4 Randori

RANDORI is a set of tools with two focal points as far as functionality goes.
These focal points are: poll design and data collection. In this section we will
both describe the functionality of RANDORI, the tools it consists of, as well
as how differential privacy is achieved. Lastly, we describe the steps taken to
assure end-to-end privacy, as this property is not captured by differential privacy
itself.

5.4.1 Tools and Vision

RANDORTI is a set of tools (Figure [5.1)) for designing polls, and for collecting

data under differential privacy.
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Poll Design: PoLL EpiTor

The POLL EDITOR is where the poll structure and content is created and edited.
To be able to hide details about the underlying implementation under the hood

it consists of two modes: edit and explore.

Data R d‘;y
andaori
Analyst(s); - oo o Ty ReSPODi?“tS

n
a

ford Jad

Figure 5.1: The different tools included in RANDORI

In the edit mode (screenshot in Appendix Figure [5.7a) the focus is solely
on the poll content: order of questions, number of answers and what answers
trigger follow-up questions. That is, in the edit mode differential privacy is

abstracted away. Polls are imported/exported on our JSON format (Appendix

Listing [5.3)).

Then, the fact that data is to be gathered under differential privacy is visible in
the explore mode (screenshot in Appendix Figure[5.7b). Arguably, without
adequate accuracy, collected data becomes useless to the data analyst. To miti-
gate the problem of high error, we allow for exploration of the accuracy/privacy
trade-off through two sets of parameters: (i) True/Random answers and
Weight (corresponding to Pr{truth] and w to calculate ¢ from Deﬁnition, and
(ii) Alpha, Beta and Population (a, 3, and n from Definition [d).

The parameters from set (i) influence the value of £, where the True /Random
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answers slider is a course-grained adjustment affecting all answers (1, ..., ¢,
from Definition[2), and weight is a fine-grained adjustment available per answer

(affecting a specific t,). Then, ¢ is calculated from the poll structure.

All parameters from set (ii) are part of the Chernoff bound and are calculated
using Equation (5.1I). The parameters population, alpha and beta are
shown on a per answer basis. The data analyst is required to set values for
two of the parameters per answer, and the POLL EDITOR calculates the third
parameter. For example, one can set accuracy (alpha) to a fixed value, and
then explore which values of population and beta gives the desired accu-

racy.

Based on Vadhan [18]] we construct the following equation system to display

the relationship between «, 3, n and €.

o= 1+e;)\
— 9e~2\n log 2
P e, where A = |/ — B (5.1)
e = log( 1*_% ) n
e\2
n = ‘(1—522)(651%{)22/5)

Data Collection: SERVER

The SERVER holds the currently active poll on our JSON format. The RE-
SPONDENT UI then accesses the poll from e.g. localhost:5000/poll.
Next, data analysts can access poll results through e.g 1localhost:5000/
results. The server post-processes responses from the respondents by filter-
ing away statistical noise using Bayes’ theorem. The results are shown to the

data analysts in form of a JSON file.

Data Collection: REspoNDENT Ul

The RESPONDENT UI is a JavaScript client running on the respondents’ de-
vice. As the RESPONDENT UI is trusted by the respondent, it can branch on
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sensitive data to present the respondent with questions based on their previous
answers. Hence, to the respondent, a RANDORI polls looks just like any other
poll, since randomized response is abstracted away. The RESPONDENT UT also
re-calculates €. Note ¢ is calculated before the respondent answers the poll and

consequently € does not rely on the respondent’s answer.

5.4.2 Differential Privacy

Differential privacy is achieved in RANDORI through randomized response.
Since we are in the local setting, ensuring differential privacy is entirely done
by the RESPONDENT UI. In particular, we ensure differential privacy through

the two following practices:

* Calculation of ¢ (Section[2.4.2))
* Data representation that prevents information leakage from follow-up

questions (Section[5.4.2)

Implementation of Randomized Response

In our implementation of randomized response, the mechanism frr can be
viewed as a stochastic matrix from some input in € A to some output out € A.
From Definition [2] and given a biased coin ¢; € 7T for each input-output pair,

we construct the following stochastic matrix M:

in '\ out a; az ... aja|-1 a4
ai ti1+r1 r1 ... 1
as T2
M=
ajA)-1 o TlAl-1
a4 T|A| e |4 L) + 74

Note that each row sums to one by definition of r (Definition [2). Also note that

the stochastic matrix is created dynamically based on the size of A and bias



134 CHAPTER 4. PAPER IV

of the coin. That is, the stochastic matrix does not contain any sensitive data
since it only relies on the input from the data analyst. Consequently, we always

construct the stochastic matrix before the respondent answers the poll.

Then, to calculate the value of ¢ for a given stochastic matrix M, we use the

following equation:

min(M,;) max(M*j)» (5.2)

) =l
Vaj € A e "( max(maX(M*jY min(MM.;)

Where M, ; represents a full column in M. Moreover, even when we have non-
uniform values for ¢ we do not break differential privacy. Instead, we may end
up paying a higher price than what we actually "use’. As such, we do not suffer
from the side-channel that the privacy budget depends on the data as Haeberlen

et al. [5]] identified in other applications.

Still, for our implementation to be differentially private, we rely on the random-
ness provided by the programming language. Hence, we strive to make a best
effort given the programming language used. Consequently, our implementa-
tion of differential privacy uses Javascript’s Crypto library to ensure crypto-
graphically strong random values [19], which is the strongest implementation
of randomness available in JavaScript. Also related to the implementation of
correct randomness is the use of floating point numbers. As incorrect round-
ing of floats may affect randomness [20], we use fractions in our calculations
instead of built-in floats.

To enforce the privacy budget we check that the respondent has enough budget
left for the full poll when a poll is received. As this is a proof-of-concept tool
as opposed to a monolithic system we have not implemented a stateful client
that saves changes to the budget. Instead, we expect practitioners to be able
to easily incorporate the RESPONDENT UI into their existing system, and then
connecting a budget to a user’s profile on their web page.

Lastly, we have also introduced a truth threshold (here set to a dummy
value of 0.99), as even polls with 100% of truthful answers would otherwise be
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considered valid polls. The corresponding validity checks are shown in List-

ing[5.4]
Mitigating Structural Information Leakage

Next, we address implicit information leaks. In particular, we have investigated
how we can allow for follow-up questions without letting them leak information
about their parent questions. Recalling our example from the introduction with
the question “How do you feel about your purchase?”, only respondents that
answer ‘Unhappy’ get a follow-up question. Accordingly, any answer to the
follow-up question would leak that the first answer was ‘Unhappy’. We want to
ensure that RANDORI can handle follow-up questions without leaking answers

to other questions.

Hence, we propose the following representation (Figure [5.2) of a question and
its follow-up questions. Note that this representation allows us to always send
one response regardless of the tree’s depth. That is, the dotted nodes represent
answers that the respondent can choose, but that are never sent to the server. Ba-
sically, we allow for the respondent to traverse the tree and choose an answer to
each triggered question, but in reality the client will only send one response per
tree (a question and all its follow-ups). Since the client is a trusted component,
branching on secrets is ok, so we can do this without leaking information. In
this example, the respondents that choose ‘Happy’ or ‘Neutral’, are never asked
why they were unhappy (which they were not), but the server never learns this

due to the use of a single response.

5.4.3 End-to-End Privacy

Simply implementing randomized response to deliver responses is not enough
to protect respondents’ privacy, since the data collection process may leak ad-
ditional information. In particular, information leakage through side-channels
such as differences in timing, is not captured by randomized response. Conse-
quently, to achieve end-to-end privacy, we need to make sure RANDORI protects

against side-channels. To achieve a suitable implementation, we have iterated
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Figure 5.2: Tree structure that allows us to model the behavior of follow-up

questions without leaking implicit information
through versions of RESPONDENT UI.

In the end, we arrive at the implementation in Listing[5.1] In order to not let the
respondent’s answering time leak any information about their answers, we im-
plement a constant time function for answering the poll. This approach of using
a constant time function is similar to that of Haeberlen et al. [5]. Essentially,
our function depends on set Timeout, which sleeps for a given time and then
executes the function. By pre-populating each question with a random answer,
we create a loop that executes in constant time (only depends on the amount of

questions, which is not secret).

Unlike Haeberlen et al. [5]], we gather data directly from respondents. Con-
sequently, we have an additional attack surface to take into account: namely
communication. We will later evaluate which attacks we protect against in Sec-

tion[5.5.2]

Listing 5.1: Version 4

var answers = {};
var shadow = {};
var random = {};

var timeout = 9000; //Example
fetch(’/poll’);
for (question in poll){

AN N R W N =
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7 random [ question J=random ();

8 }

9 setTimeout(submit, timeout);

10 ... // Respondent answers poll

(1 function submit(){

12 for (answer in random){

13 if (shadow[answer]==null){

14 answers [answer |]=random [ answer |;
15 } else {

16 answers [ answer |=shadow [ answer |;
7 }

8 }

19 let responses = rr(answers);

0] fetch(’/submit’, {method: 'POST’,

Pl body: JSON. stringify (responses)});

P2 }

5.4.4 Algorithm Summary

In summary, our algorithm performs the following steps sequentially:

1. Flatten poll structure from the JSON into one flat tree per question

N

Construct a stochastic matrix M for each tree, then calculate € using
Equation (5.2)

Check that respondent has enough budget

Check that the truth threshold has not been exceeded

Deduct ¢ from the respondent’s budget

Initiate dummy answers randomly

Start timeout

© N kW

On timeout:
* Lookup the true answer for each question, otherwise use the dummy

answer. Next, run randomized response on the answers.

5.5 Privacy Evaluation

In this section, we will show that our implementation is in fact differentially

private (Section[5.5.T)). Next, we will evaluate end-to-end privacy by investigat-
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ing the two attack surfaces available to the adversary: the communication and
the content of the response sent (Section[5.5.2).

5.5.1 Differential Privacy

First, we argue that the calculation of € by the RESPONDENT UI is correct by
proving Proposition I}

Proposition 1. If M is a stochastic matrix representing some probability func-

tion f, then f is e-differentially private where €€ = qu(M—j)
i1, i’j

Proof. From Definition[I] we require for any two inputs a and a’ and any output
b

Pe{ () =]
Plf(a=a] = €

Let us write M, for the cell of M representing the probability Pr[f(a) = b]
(recall that a is the row and b is the column in M). By choosing e® to be the

largest value of %j]] over all choices of ¢, ', j then clearly

Prf(a)=a] _ My

Pr[f(a’)=x] M ; —

S

e

O
Next, we argue that the inputs are checked and that the privacy budget is cor-
rectly enforced. First, the validity of ¢4, ...,t,, and rq, ..., 7, is checked on line 5
and 4 respectively (Listing[5.4). Then, through line 6 (Listing[5.4), respondents’
budget threshold is enforced. Since the server is untrusted by the respondent,
the client calculates the value of ¢ from the poll structure (line 3 Listing [5.4).
The client will not allow the respondent to answer any question if the respon-
dent cannot afford the full poll (line 7 Listing[5.4). Since we assume the value
of a respondent’s budget is public information, we do not leak any additional

information by not answering due to insufficient budget.
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From Section [5.4.2] it is clear that the implicit flow introduced by follow-up
questions is mitigated through flattening each question tree. To clarify, since
questions with any amount of follow-up questions and questions with no follow-

up question both return exactly one response, they are indistinguishable to the

attacker.
Property Implementation
Validity of poll Checked on trusted device
Calculation of € Follows from Definition lgl and cal-

culated on trusted device

Enforcement of budget Before poll
Follow-up question triggered or un- | Indistinguishable
triggered

Table 5.1: Evaluated properties

5.5.2 Side-Channels

Based on our threat model (Section[5.3)), the passive adversary can observe and
read any network traffic between a data analyst (or an adversary) and a respon-
dent. Since we already explore the implementation of differential privacy, we
now assume that all responses sent have plausible deniability. Hence, the ad-
versary cannot learn anything about the true answer beyond what e-differential

privacy allows from observing a response.

In order to learn the true answers, the adversary hopes to observe differences in
communication or responses and be able to reverse engineer the true answers.
Since we are trying to prove the absence of side-channels, our goal is to ex-
haustively show all possible cases where true answers could cause differences
in communication and poll answers, and refute the possibility of them arising
in RANDORI. Thus, our objective is to make sure different answers are indis-

tinguishable to the adversary.
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There are two attack surfaces available to the adversary: the communication
itself and the message content. We have identified three cases (Figure [5.3] [5.4]

and[5.5), which we walk through next.

Question
: Next H
<— Leaks
i Question % (previous
: ¢ Next i) reply

Poll >
H L Answer
Time
Responses

Figure 5.3: A: The ad-
versary can learn true
answers to questions if
a respondent requests
(or does not request)

follow-up questions

Figure 5.4: B: From
observing when a poll
is received and when
the responses are sent,
the adversary learns the

answering time

"Ql" : "Answer"
"F1" : "Answer"
"Fn" : "Answer"
Qo

Figure 5.5: C:
Mlustration of a
poll response with
unanswered —ques-

tions

Case A

There are only two types of communication between the RESPONDENT UI and
the SERVER in our implementation: 1) poll GET request and 2) response POST.
We need to make sure that the number of GET and POST messages are not

related to the respondent’s true answers.

Mitigation: Always send the full poll. Our implementation does not allow
the respondent’s client to send any data when requesting a poll (Listing [5.1]
line 5) thus requesting anything but the whole poll is impossible. Also, the
RESPONDENT UI only replies with one POST containing all responses at once.

Hence, the scenarios next listed are indistinguishable by design:

o Respondent requests all questions
o Respondent requests some questions

o Respondent requests no questions
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Case B

> Attack surface: communication.

> Adversary goal: learn one specific answer.

> Example attack: many follow-ups for one specific answer. That is, the
adversary will be able to observe differences in how long time it takes
for the respondent to finish the poll (Figure [5.4). Here, longer answering
time means the follow-up was triggered.

There could be different reasons for differences in answering time, and while it
may not be possible for the attacker to say with 100% certainty that the answer-
ing time is because of the adversary’s follow-ups being triggered, the adversary
will be able to shift the probability of their question altering the answer time.

Thus, the adversary would be able to gain an advantage.

Consequently, we want to make any reason for differences in timing indistin-
guishable to an attacker, such that differences in timing do not leak any addi-
tional information.

Mitigation: timeout assures constant answering time, since submit () is trig-
gered by the timeout (Listing [5.1] line 9). Furthermore, the same amount of
instructions are executed (Listing [5.1] line 14 vs line 16) whether the question
has been answered or a random pre-populated answer is used. What’s more, the
for-loop is over random, which is of constant size as it contains all question in
the poll. Lastly, since the adversary cannot examine the respondent’s hardware,
they cannot distinguish between the paths in the if-else. Next, we list the differ-

ences in timing our implementation takes into account and mitigates:

o Respondent triggers no follow-ups

@]

Respondent triggers some follow-ups

[¢]

Respondent triggers all follow-ups

o

Respondent answers fast, not related to follow-up

O

Respondent answers slowly, not related to follow-ups
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Case C

> Attack surface: message content.

> Adversary goal: learn one specific answer.

> Example attack: many follow-ups for one specific answer which cause
the respondent to timeout before answering the last question (Figure[5.3).
No answer to the last question means the follow-ups were triggered. Note

that this specific attack is introduced by our need to use a timeout.

Since the request for the poll contains no data entered by the respondent, the
only place for possible information leakage is through the response POST. As
each response to a question benefits from plausible deniability due to random-
ized response, the actual response leaks no information. However, unanswered
questions would indeed leak if the respondent answered the question or not.
Accordingly, the adversary could learn something by observing how many and

which questions are unanswered/answered in the response message.

Mitigation: Since our implementation ensures that each question will have
exactly one answer by pre-populating with dummy answers (Listing line
12-21), the adversary cannot learn anything new from observing which ques-
tions are answered/unanswered. Next, we iterate through all different scenarios

where the amount of answered questions could differ:

o Respondent answers no questions
o Respondent answers some questions

o Respondent answers all questions

5.6 Discussion, Limitations and Future Work

Based on the US Census Bureau’s experience with differential privacy [1], the
main issues with implementing a differentially private poll is ensuring differen-
tial privacy and setting . We have focused on both these issues by first provid-
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ing a proof of concept implementation, and by expressing € accuracy loss. In
our setting, there is also a potential for dependence between answers due to the
fact that we allow follow-up questions. Consequently, we allow for non-uniform
diagonals (i.e. different values for ¢) in our stochastic matrix. While this gives
the data analyst more freedom to properly weight their accuracy among an-
swers, it also makes understanding the error more difficult. Hence, we show
a Chernoff bound per answer, but this also means that the parameters (v, 3, n)
also needs to be tweaked per answer. So while we let the data analyst explore
the estimated error, we also believe that analytical error bounds may be too
blunt for complex polls. Thus, extending RANDORI to include empirical error
evaluation remains an open and interesting challenge. In fact, we are currently
working on a simulation environment that allows for this kind of empirical eval-

uation.

As for trust, we acknowledge that the respondents receive their client code from
the untrusted server. Since the source code of the client is released open source,
we assume that the respondent would trust a third party to verify the client
code. However, we do not perform any third party checks before letting the
respondent answer the poll at this time. A possible and simple extension would
be to let a third party serve the client code, and the data analyst would just send
the poll.

Regarding the respondent not having a persistent application: this raises two
problems. First of all, we do not have a way to save budgets between sessions.
We have noted this in our system limitations, but in a real setting this of course
becomes a problem, especially when dealing with multiple polls. Our intention
is for RANDORI’'s RESPONDENT UI to be part of an already existing system,
for example a web page where the respondent already has an account, which is
why we left persistent budgets out of scope. Still, it is important to remember
that the respondent’s budget needs to be held and updated by a system that the

respondent trusts.

Secondly, since the respondent does not have a persistent application, the time-
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out fails if the respondent closes their client before timeout happens. When the
timeout fails, the analyst will not get any response, and as such the analyst’s
answer may become less accurate than expected (since the prediction is based
on n answers, not n — 1). As such the timeout introduces a new problem area:
if it is too long, we risk that the participant closes the client too early, and if it
is too short, the participant might not have time to answer all questions. We do
not provide a definitive answer as to what is the best value for this timeout. The
problem is mainly that deciding on an optimal value for a timeout is case de-
pendent, and thus very difficult to give a general answer to. The same problem
of setting a timeout arises in Haeberlen et al.’s proposed solution [5]. They [5]]
argue that if timeouts are chosen properly, decreased accuracy will not happen.
Of course, choosing a proper timeout is more tricky in our setting since it in-
volves a real person as opposed to being a case of just approximating a query’s

execution time.

Another benefit of having a persistent application is that we could re-use re-
sponses in the same way RAPPOR [17]] does. Still, it would be more tricky to
re-use responses in our setting, as it would require us to implement a proper
equals () function for polls. That is, the question “How old are you?” and
“When were you born?” are semantically similar, but not syntactically similar.
Consequently, even if we were to re-use responses to preserve the privacy bud-
get, we may not be able to properly identify which polls should share the same
response. As such, re-using responses in our settings requires careful investiga-

tion.

Lastly, one entirely unexplored area of RANDORI is usability. So far, we present
RANDORI as a way to get differential privacy by design, as opposed to the opti-
mal way. In our perspective, this paper represents an in vitro experiment where
we explore how we can provide accuracy and privacy guarantees by design for
polls with follow-up question in an interactive setting. Hence, interesting next
steps for future work include user studies 1) where real data analysts collect
data using RANDORI, and 2) where we collect data from real respondents. In

particular, it would be interesting to let the respondents control their own pri-
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vacy budget. That is, which values of ¢ they are comfortable with before they
start answering the polls. As of now, the client only calculates the €, but does not

enforce a ‘useful’ (customized) value of ¢ in relation to the respondent.

5.7 Related Work

The real world example that is most similar to RANDORI based on what data
is collected is the US Census Bureau’s deployment of differential privacy [21].
Even though we collect similarly structured data, a big difference is that the
Census Bureau’s implementation has been tailored to specific data and therefore

deploys release mechanisms under centralized differential privacy.

A handful applications have achieved end-to-end privacy by deploying local
differential privacy in real settings, for example applications by Google [17],
Apple [22]23],124]] and Microsoft [25]]. Out of these, RAPPOR [17] is interesting
because they also investigate side-channels. Still, the side-channels identified
by Google are different from the ones we face since theirs arise from re-using
responses. Another key difference between RANDORI and the aforementioned
applications is how we choose to gather data. Hence, interacting with respon-
dents and gathering inherently dependent data makes RANDORI novel in com-

parison.

Also using local differential privacy is the framework PRETPOST [26]. PRET-
POST enforces a similar timeout to RANDORI to prevent side-channels, and
uses randomized response. So, while the logical implementation of RANDORI
and PRETPOST share similarities, RANDORI comes with a graphical interface

to tune and evaluate error.

Next up, work that focuses on giving accuracy predictions for differentially pri-
vate algorithms. First, the Haskell library DPELLA [[7] is similar to RANDORI
when it comes to our use of Chernoff bounds for exploring accuracy. Still,
DPELLA is intended to be used by programmers, and assumes that the data is

already stored in a database. DPELLA is also not limited to randomized re-
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sponse as opposed to RANDORI.

Lastly, eKTELO shares a similar objective with RANDORI as far as providing ac-
curate, differentially private algorithms to users. Noted, eKTELO is much more
general than RANDORI, and allows users to define new algorithms. What’s
more, eKTELO also concerns the performance of algorithms, which is some-
thing we have left completely out of scope in this paper.

5.8 Conclusion

We implement RANDORTI, a set of tools for poll design and data collection un-
der differential privacy. A novel part of RANDORI is that we include the data
collection process when reasoning about privacy, and hence we also provide de-
fenses against implicit information leakage. What’s more, we make RANDORI
available for all by releasing it as open source software, in order to motivate

uninitiated parties to collect data under differential privacy.

To convince the reader that RANDORI is indeed both differentially private and
end-to-end private, we show that our implementation adheres to differential pri-
vacy by showing that our algorithm uses a differentially private mechanism.
Then, we evaluate and address how we protect polls from implicit information
flows. Next, we evaluate end-to-end privacy by systematically walking through
each attack surface and eliminate potential attacks. Consequently, through
RANDORI, we have made three contributions that map to our originally identi-

fied problems. Namely, we provide:

+ tools for designing polls and collecting data under differential privacy
+ atool for predicting and tuning accuracy of a given poll
+ an end-to-end private implementation of randomized response in a server-

client setting
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5. Appendix

Listing 5.2: Randomized response as pseudo-code

1 var transitions = pollToMatrix ();
2  function rr(answers){
3 for (answer in answers){
4 // Find output space
5 let outputs = {};
6 //Use transitions to get
7 // probability per output
8 //ranges|[include , exclude]->output
9 let ranges = {};
1o //Use cryptographic random [I,gcd]
1 let random = getRandomlInt(1,gcd);
2 outputs[answer] = ranges[random ];
13 }
4 1}

Listing 5.3: Calculation of € as pseudo-code
1 var epsilon = undefined;
2 // For each question subtree
3 let potential_epsilon = undefined;
4 // For each answer
5 let max = undefined;
6 let min = undefined;
7 // Loop through all other answers
8 // Get max probability ratio
9 let check=Math.max(max.div (min),
1o min.div(max));
11 // Bigger?
12 if (potential_epsilon==undefined
3 Il potential_epsilon <check){
14 potential_epsilon = check;
15 }
16 epsilon+=potential_epsilon;
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Listing 5.4: Enforcement of budget thershold

var budget = 100; // In(budget)
var truth_threshold = 0.99;
var cost = calculateEpsilon ();
var ok_truth = withinThreshold ();
if (cost > budget){

// Disable UI
} else if (!ok_truth){

// Disable UI
}else {

o I e Y R N S

=)

1o budget—=cost;
1 // Show poll
2 3

Listing 5.5: JSON format of the example question

{"children": [
{"qid":"F1",
"question":"What’s the reason you feel unhappy?",

"answers":["Didn’t meet my expectations"," Product was damaged"

," Other"],
"probability":["1/3","1/3","1/3"]}
1,
"roots": [
{"qid":"Ql",
"truth":"1/2",
"question":"How do you feel about your purchase?",
"answers": [ "Happy","Neutral", "Unhappy" ],
"probability":["1/3","1/3","1/3"]}
I,
"paths":[["Ql","Unhappy","FI1"]],
"order":["QIl"]
}

Figure 5.6: The JSON produced by the example question
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Efficient Error Prediction for
Differentially Private
Algorithms

Abstract
Differential privacy is a strong mathematical notion of privacy. Still, a
prominent challenge when using differential privacy in real data collec-
tion is understanding and counteracting the accuracy loss that differential
privacy imposes. As such, the trade-off of differential privacy needs to
be balanced on a case-by-case basis. Applications in the literature tend
to focus solely on analytical accuracy bounds, not include data in error

prediction, or use arbitrary settings to measure error empirically.

To fill the gap in the literature, we propose a novel application of fac-
tor experiments to create data aware error predictions. Basically, factor
experiments provide a systematic approach to conducting empirical ex-
periments. To demonstrate our methodology in action, we conduct a case
study where error is dependent on arbitrarily complex tree structures. We
first construct a tool to simulate poll data. Next, we use our simulated
data to construct a least squares model to predict error. Last, we show
how to validate the model. Consequently, our contribution is a method for

constructing error prediction models that are data aware.
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6.1 Introduction

Adopting differential privacy in real systems is ultimately an issue of properly
understanding the impact differential privacy will have on accuracy. In other
words, if an analyst cannot predict the accuracy loss an algorithm will cause,
they will be hesitant to use the algorithm. As such, understanding the accu-
racy loss induced by differential privacy is crucial to differential privacy being
deployed in real systems.

In the literature, the accuracy of a differentially private algorithm is often eval-
uated analytically through Chernoff bounds, such as by Kasiviswanathan et al.
[1]. Here, the authors introduce a metric for error, namely misclassification er-
ror, which is applicable in their domain. However, the general Chernoff bound
they provide requires that there exists a definition for error, i.e. a unit of mea-
surement for the inaccuracy introduced by differential privacy. As such, if the
relationship between input variables and error is unknown, Chernoff bounds
will not be applicable. As noted by Hay et al. [2], the more complex algorithm,
the more difficult it is to analyze the algorithm theoretically. Consequently,
some algorithms may be easier to investigate empirically instead of analyti-

cally.

In addition, previous research [2} |3]] shows that the accuracy of a differentially
private algorithm may be greatly influenced by the input data. Consequently,
input data should also be taken into account when modeling error. So far, the
current literature seems to model error from the algorithm without taking the
input data into consideration. For example, Kasiviswanathan et al. [1]] and Vad-
han [4]] use Chernoff bounds, but they do not include input data in their error

model.

From the other end of the perspective, several papers including [5, 6} 7, 8 9}
10, [11] investigate error empirically. Still, input values to the experiments are
chosen seemingly arbitrarily. For example, Gao and Ma [10]] use {0.005, 0.008,
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0.012, 0.015, 0.02} as input values for a threshold variable, and {20, 40, 60, 80,
100} as input for query range size. While these values may be representative
for their given domain, this approach requires the authors to rationalize both
the chosen ranges and the amount of values used. Furthermore, if a variable is
varied in isolation, it is not possible to capture interactions between variables.
For example, in [5], the authors vary the number of dimensions, while setting
cardinality and ¢ to fixed values. As such the trend for error when varying the
number of dimensions is just captured at a fixed setting.

Hence, we identify three existing problems: 1) the relationship between error
and an algorithm’s input may be unknown, 2) data oblivious error may result in
incorrect error predictions, and 3) choosing representative values for empirical
experiments is difficult. To mitigate these problems we propose a novel appli-
cation of factor experiments |12, 13| |14]], a statistical approach, to the domain
of differential privacy. Here, we show how empirical error measurements can
be used to construct an error prediction model using (multiple) linear regres-
sion. As such, we are able to model the relationship between all input variables,
including data, and error. Accordingly, for the example with £ and population

as variables, the prediction model would be in the following format:

Y =7 + Ythreshold X threShOId + ’Vrange X range

+ VYthreshold:range x threshold : range (63)

where y is the predicted error for a specific setting, -y, is the intercept, threshold
and range are coded value representations of the factors, and threshold:range
is the possible interaction between factors. Hence, the prediction model is able
to predict the error for any value (within the model’s span) of threshold and
range.

More importantly, factor experiments provide a systematic way to choose the
experiment settings where the most information can be extracted. Consequently,
our methodology tackles all of the three identified problems by 1) modeling
the relationship between variables and error, 2) involving all input variables in

model creation, and 3) minimizing the samples required, allowing for efficient
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experiments.

We expect our methodology to be valid for any differentially private algorithm:
factor experiments allow both numerical and categorical variables, and the ana-
lyst may choose any suitable error metric for their domain. To put our method-
ology into context, we will conduct a case study. In our case study, we run a poll
where the algorithm traverses a tree structure before delivering a differentially
private reply. Now, we will argue that our use case is particularly interesting
in the context of our methodology. First, we have noticed that it is difficult to
model the error correctly due to allowing for arbitrarily complex tree structures,
where we identify six variables that need to be varied in experiments. Next, it
is also difficult to argue for what constitutes a *good’ experiment setting in this
case. As such, we believe the many variables’ effect on error in our particu-
lar use case is difficult to investigate using methods from the current literature.
Accordingly, we use RANDORI [15] as a use case where we create a predic-
tion model for error. RANDORI is a set of tools for gathering poll data under
local differential privacy [16]]. So far, RANDORI can predict error analytically
through Chernoff bounds, but this error is not data aware. In this paper, we ex-
tend RANDORI by adding a simulation tool where users can generate synthetic

poll data and empirically evaluate error.

To summarize, prediction models created using our methodology will be able

to answer the following questions:

* What is each variable’s impact/effect on error?

 Are there any relationships/interactions between variables?

Hence, our contribution is a method for constructing accuracy/error prediction

models.
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6.2 Background

In this paper, we join two well-known areas: differential privacy and statis-
tical design of experiments (DOE) [17]. To provide the reader the necessary
background, we describe the trade-off in differential privacy. As we expect our
readers to mainly come from the area of differential privacy, we also introduce

terminology used in DOE.

6.2.1 Differential Privacy

Differential privacy [[18]] is a statistical notion of privacy that quantifies the pri-
vacy loss. Since differential privacy is a definition and not an implementation,
differential privacy can be achieved in different ways, but must always satisfy
Definition [2] To define differential privacy, we must first define neighboring
data sets (Definition [T)).

Definition 1 (Neighboring Data Sets). Two data sets, D and D', are neigh-
boring if and only if they differ on at most one element d. That is, D’ can be

constructed from D by adding or removing one single element d:
D'=D+d

Definition 2 (¢-Differential Privacy). A randomized algorithm f is e-differentially
private if for all neighboring data sets D, D’ and for all sets of outputs S

Prif(D) € S| < exp(e) x Pr[f(D') € S]
where the probability is taken over the randomness of the algorithm f.

Although differential privacy gives strong mathematical privacy guarantees, im-
plementations introduce some kind of error, relative to an exact but non-private
algorithm, to achieve said privacy. The accuracy of a differentially private algo-
rithm can be investigated through analytical accuracy bounds, such as Chernoff

bounds. These analytical accuracy bounds are often expressed in general terms,
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i.e. they do not define error for a specific algorithm, such as the Chernoff bound

given by Kasiviswanathan et al. [1]] in Definition 3]

Definition 3 ((«, 5)-usefulness). Let X be a random variable representing the
error of the output of a differentially private algorithm f', n is the population
size and «, 5 € (0, %) where 3 = 229" Then with probability 1-3, the
error X is bounded by at most error o:

PriX <a]>1-p
We say that [ is (., 8)-useful [|19].

Note that this formula in particular does not define how to express error. That is,
error must be defined on a per-algorithm basis. For example, Kasiviswanathan
et al. [[1]] use misclassification error as their error metric. Still, the resulting ac-
curacy bounds cover the entire possible range of error the algorithm can achieve.
That is, such theoretical accuracy bounds focus on the worst case error [2]]. In
other words, the bounds do not describe how error is distributed within the
bound. For example, high errors may have very low probability, but an ana-
lyst may still condemn the algorithm because the accuracy bounds are not tight
enough. Consequently, predicting error using analytical methods can be overly

pessimistic.

Furthermore, it can be difficult to properly model the error in order to construct
a Chernoff bound. The data dependence of an algorithm’s error is particularly
important to capture. As Hay et al. [2] point out, a number of differentially
private algorithms are indeed data dependent. Hence, data can have an impact
on error, but the current literature offers no guidelines on modeling error cor-

rectly.
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6.2.2 Designed Experiments

In this paper, we will empirically measure the error of a differentially pri-
vate algorithm. As a consequence, we need to plan and conduct experiments.
More specifically, we will conduct factor experiments [[12} |13]], which is a more
efficient way of conducting experiments than changing one factor at a time
(OFAT) [20]. Here, a factor is the same as a variable, and we will use these

terms interchangeably.

With factor experiments, we are able to change several factors simultaneously,
allowing us to run fewer experiments in total. Essentially, factor experiments
is a way of designing experiments such that we can maximize what is learned
given a fixed number of measurements [13]. For example, conducting an ex-
periment with two different factors that each can take on 100 different values
would require 10 000 measurements with the OFAT approach. Using these
same factors but instead running two-level factor experiments, we only need to
measure the response at each edge of the space. That is, only measurements
from the black dots in Figure are required for factor experiments, whereas
the response from each coordinate in the space is required using OFAT.

+@ @

K 9
+

Figure 6.1: The space covered by a factor experiment with two factors. Black
dots represents the factors at high/low respectively, and the blue dot is the base-

line.

Hence, two-level factor experiments with two factors (k = 2) require only 2* =
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22 = 4 measurements. In summary, with two-level factor experiments, ok
measurements are needed for an experiment with %k factors. Naturally, factor

experiments are much more efficient than OFAT.

When running factor experiments, coded values are used to denote actual val-
ues. For example, two-level experiments usually have a low (’-> or ’-1’) and
a high C+’ or ’+1’) coded value which are related to the actual values as fol-

lows:
v —a
Veoded = b 5 (64)
where a = w (6.5)
and b = w (6.6)

So, in a real use case, with the high value (+1) 1000, and the low value (-1) 100,
the actual value 500 is represented by the coded value -%.

Another point of interest in factor experiments is the baseline. The baseline is
the center point (the blue dot in Figure [6.1) of the entire space that we cover.

Consequently, the baseline always has the coded value 0O for each factor.

Using the 2* responses from the factor experiments, it is possible to construct
a prediction model. In this paper, we will construct a linear prediction model
using (multiple) linear regression. Given two factors A and B, the linear model

can be written as follows:
Yy =" +711A+ 7B+ v12AB + experimental error (6.7)

Where the constant -y is the response at the baseline, and AB is included to

capture the possible interaction between factor A and B.

Since the prediction model is linear, we will later show how to confirm these
assumptions and validate the fit of the model. We also note that in case of non-
linear systems, one can instead use three-level factorial designs [21]], which are

less efficient but are able to capture curvature.
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6.3 Methodology

We propose a methodology consisting of four stages:

1. Experiment design

2. Data collection/generation
3. Model creation

4. Model validation

After going through all the stages, the prediction model is ready to be used.

6.3.1 Experiment Design

We propose using two-level factor experiments. This allows linear prediction
models to be created. Note that it is important to not choose maximum or
minimum values for the levels, as such values likely will be too extreme and
not produce a valid model [22f]. Instead, choose values that are feasible within
the domain. Accordingly, the prediction model will be valid within the space
the two levels span, but will not be able to make predictions for values outside.
This step is necessary, as extreme values will likely break the assumptions about

linearity that allow us to create a linear prediction model.

Next, the k factors involved needs to be identified. This can be done in different
ways. The authors note that in software systems, this process is much more
straightforward than in for example physical systems, since all possible factors
are represented in code. As such, it should be possible to extract all factors from

the code directly.

In cases where there are many factors, it might be a good idea to run screening
designs first, using fractional designs [23]] experiments to reduce the number
of measurements needed. Basically, a fractional design only includes some of

the 2 points, but are chosen in a systematic way. With screening designs, it
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is possible to determine if there are factors that can be ignored without running

the full 2* experiments.

Our use case: In RANDORI, data is gathered in poll format. A poll consists of
a number of questions and a fixed set of answer alternatives. We represent these
questions as trees where a node is either an answer alternative or a question.
Furthermore, we also allow follow-up questions in our poll. As such, some

answer alternatives have question nodes as children.

Answers to the poll are then gathered using randomized response [|16]. In ran-
domized response, a respondent will answer truthfully with some probability,
Pr[truth], and will otherwise choose a random answer according to a known dis-
tribution. In RANDORI, the known distribution is represented through weights
attached to each answer alternative.

From our use case, we identify six factors to include in our experiment de-
sign. Here, Prltruth] and relative alternative weight are due to randomized
response. Tree depth and Number of alternatives are due to the poll’s tree
structure. Next, to make our model data aware, we include both the Population
and the Number of answers which corresponds to the number of respondents
that choose the answer alternative that we target in our measurements. We il-
lustrate all of our identified factors in Figure @ When we measure the error,

we will choose one of the alternatives as our target, for example Al¢;.
In Table[6.1]we show all our factors and define the levels for each factor.

Now, it makes sense to explain why we have not included € among our factors.
In our case, one thing we want to investigate is the impact of the poll structure
on the error. However, there is not a one-to-one mapping between ¢ and poll
structure. That is, while € can be calculated from the structure of the poll,
different structures can result in the same value of €. As such, only varying

would not allow us to deduce a unique poll structure.
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Figure 6.2: The factors used as input to RANDORI, including both data (to the
left) and algorithm parameters (to the right). Here, question nodes are gray and

answer alternatives are green.

6.3.2 Data Collection/Generation

Data can either be collected from real experiments or generated synthetically.
That is, responses from any differentially private algorithm can be used. Note
that synthetic data does not make the model less valid: the prediction model will
be valid for the entire space covered by the factors. In fact, if the algorithm can
be simulated we recommend doing so, as this also eliminates the need to gather
potentially sensitive data. Basically, the finesse of factor experiments is that we
do not look to sample specific representative settings, but rather we want to be
able to cover all values within a known space.

Since results from differentially private algorithms are probabilistic, it is also
important to decide whether to measure an average error, or just one measure-
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Factor + -

Pr{truth] High Low

Tree depth  Deep  Shallow
Number of alternatives Many Few
Relative alternative weight High  Low
Population Many Few
Number of answers Many Few

Table 6.1: Factors, and their respective levels

ment per experiment setting. In this step, it is also important to decide which

metric to use for error comparison.

Next, create a table for all the possible combinations of the & factors for a total
of 2¥ combinations. In physical systems, it is customary to produce the mea-

surements in random order to avoid systematic errors.

Our use case: We construct a tool where we can generate synthetic data and
measure the empirical error introduced by randomized response. This tool sim-
ulates respondents answering a given poll on RANDORTI’s format. We call this
tool the SIMULATION ENVIRONMENT.

We decide to run each setting 30 times, i.e. n = 30, to measure the average
error. We also decide to use mean average percentage error (MAPE) as our
error metric:

Ty — T

1 n
MAPE = — 100 6.8
.2 x (68)

t=1

Tt

Here, we will calculate the MAPE for one target answer alternative. As such,
we measure the distance between the actual percentage (x) of respondents that
chose the target alternative, and the estimated percentage () calculated from

the randomized responses.



6.3. METHODOLOGY 167

6.3.3 Model Creation

From the measured error, it is now possible to create the prediction model. The
prediction model is calculated using (multiple) linear regression. To create the
prediction model, we suggest using the programming language R. In R, pass the
data to the 1m function and R will output a model. This model will include the

effect of each variable and all present interactions between variables.

6.3.4 Model Validation

To test the fit of the model, we first check that the assumptions about linearity
hold. Next, the predictions made by the model also need to be investigated.
That is, more measurements need to be gathered and compared to the model’s

predictions for the same setting.

If the model has a good fit, the residuals will be small. We use the following
formula to calculate the residual r; when comparing a prediction y; to a sample

measurement s; for some coordinate ¢:
Ty =Y — Si (6.9)

A numerical measurement of the model’s fit is the (multiple) R?, the coefficient
of determination. A high value of R? is necessary but not sufficient for con-
cluding that the fit is good [24]. Next, compare the R? value to the adjusted R?
(calculated as follows: R?, =1 — (1 — R?) g% 17, where N is the sample
size and p is the number of predictors). The value of R? and the adjusted R?

should be close. Otherwise, a difference indicates that there are terms in the
model that are not significant [25]. Consequently, if R? and adjusted R? dif-
fer much, insignificant terms can be removed from the model. In this step, the
programming language R can help with providing suggestions for which effects

are significant.

Next, we recommend using visual methods to further validate the model due to
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NIST’s recommendation [26]. These visual methods allow conclusions to be

drawn that cannot be drawn from merely observing R?.
We suggest the following three visual methods:

1. Histogram
2. Residual vs. fitted plot
3. Q-Q normal plot

First, use a histogram to test the residuals for normality. Here, the residuals are
expected to have the shape of a normal distribution, and to be centered around
0.

Next, for the residual vs. fitted plot, values should be randomly scattered around
0 on the y-axis [26]]. We also expect the locally weighted scatterplot smooth-
ing (LOWESS) [27] curve to be flat, since this shows that a linear model is

reasonable.

Last, using the Q-Q normal plot shows if the residuals come from a common
distribution as the prediction model. If the data sets come from common distri-

butions, the points should be close to the plotted line.

Strategy if the model does not fit: To get quick feedback about the model’s
fit, pick the three points in Figure Next, calculate the residuals for these
points.

In cases where the residuals are high, re-use the samples from Figure and
add the remaining samples needed to create a new, smaller space. That is, sys-
tematically zoom in and target a smaller space to make the predictions on. We
illustrate this new smaller space in 2D to be able to show a geometric explana-
tion in Figure[6.4]
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- +

Figure 6.3: The center point, i.e. the baseline represented by the blue dot, and
the red dots at (-0.5, -0.5) and (0.5,0.5) respectively
+

- +

Figure 6.4: Adding the points (0.5,-0.5) and (-0.5,0.5) allows us to zoom in and
find a new target space within the red lines

6.4 Results

Next, we will apply our methodology to our use case where we estimate error
for poll data. Here, we present the tool we used to generate data (the SIMULA-
TION ENVIRONMENT) and then we show how we iteratively apply the method-
ology to reach an adequate prediction model.

6.4.1 Simulation Environment

We have built a simulation environment using a Jupyter notebook [28]] that takes
input on a portable JSON format. The SIMULATION ENVIRONMENT is an
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additional tool to the RANDORI (Figure|6.5)) set of open source tools.

Data
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Figure 6.5: The SIMULATION ENVIRONMENT (white puzzle piece) in relation

to existing RANDORI tools

Here, a user can construct an arbitrarily complex poll using RANDORI’s POLL

EDITOR. Next, the poll can be imported into the SIMULATION ENVIRONMENT

where the user can tweak all the input variables. In addition, the SIMULATION

ENVIRONMENT is able to simulate the respondents’ answers either based on

probability distributions or a deterministic distribution, although we only use

deterministic distributions in this paper.

6.4.2 Experiments

We run a factor experiment with £ = 6, and calculate the error as MAPE. We

run each experiment n = 30 times.

Vinttps://github.com/niteo/randori
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Using the actual values in Table[6.2] we produce the measurements in Table[6.6]

(in Appendix due to length).

Factor Baseline +1 -1
Prltruth]  50% 90% 10%
Tree depth 3 5 1
Number of alternatives 6 10 2
Relative alternative weight 50% 90% 10%
Population 50500 100 000 1000
Number of answers  50% 90% 10%

Table 6.2: Factors and the actual values used for corresponding coded values.
In the case of weight and pop the percentage is used for the target alternative,

and the remainder is uniformly distributed among siblings.

We enter our data in R and create a prediction model using the 1m function. Cal-
culating the residual for the baseline, we get a significant error of 384.6646. We
pick two additional settings and measure them (Table[6.3)) to convince ourselves
that the model is indeed a bad fit.

Setting  y; S; T
(0,0,0,0,0,0) 418.7087 34.04411 384.6646

(0.5,0.5,0.5,0.5,0.5,0.5) 124.8765 14.41732 110.4592
(-0.5,-0.5,-0.5,-0.5,-0.5,-0.5) 731.8813 38.23649 693.6448

Table 6.3: Residuals calculated using the prediction model for the first experi-

ment

As a result, we move on to sample the 26 points that covers half the previous
space i.e using the settings from Table[6.4] The measured MAPE is in Table[6.7]
(in Appendix due to length). We then use these measurements to construct a
new prediction model over the smaller space.
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Factor Baseline +0.5 -0.5

Prltruth] 50% 0%  30%
Tree depth 3 4 2
Number of alternatives 6 8 4
Relative alternative weight 50% 70% 30%
Population 50500 75750 25250
Number of answers  50% 70% 30%

Table 6.4: Factors and the values used for calculating residuals

From entering our measured values into R’s 1m function, we get a model with
64 coefficients. Using the model, we notice that the prediction for the baseline
has improved significantly. The updated prediction is 32.89371, which gives us
a residual of 34.04411 — 32.89371 = 1.1504. Hence, we move on to validate

our model.

6.5 Analysis

Next, we move on to validate our model according to our methodology. After

validating the model, we will interpret the model.

6.5.1 Evaluating the Model

In order to validate the model, we need to investigate the behavior of the resid-
uals. Hence, we need more measurements. We have decided to pick settings to

sample from two sets:

1. The corners (25 points) of the middle of the model (like in Figure
and the center point

2. Any coordinate in the space

We randomly pick 20 points (except that we always include the center point in
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the first set) from each of the two approaches, giving us a total of 40 samples
to calculate residuals from. Be aware that you may also need to adjust values
in certain cases. In our case, we need to take into account that some of our fac-
tors are discrete. For example depth is a discrete value and our corner values
0.25 and -0.25 would correspond to a depth of 3.5 and 2.5 respectively. Conse-
quently, we chose to fix depth to 3. The points and their corresponding MAPE
is shown in Table

truth depth  alts weight  pop answers MAPE

0 0 0 0 0 0 0 34.04411
1 025 000 025 025 025 025 20.17603
2 -025 000 025 -025 025 -0.25 48.18286
3 025 000 -025 -025 025 -025 31.06755
4 -0.25 000 025 -025 -025 025 50.33476
5 025 000 -025 025 025 025 19.59611
6 -025 000 025 025 025 025 27.66037
7 -025 000 -025 -025 025 -0.25 46.24753
8 -0.25 0.00 -025 025 025 025 26.60268
9 025 000 -025 025 025 -025 17.30670
10 -025 000 025 025 -025 -0.25 25.07704
11 -0.25 000 -025 -025 025 -0.25 46.36067
12 -025 000 -025 -025 025 -0.25 46.18749
13 025 000 -025 025 -025 0.25 19.71108
14 025 000 -0.25 -025 -0.25 0.25 33.26383
15 -0.25 000 025 -025 -025 -0.25 48.09976
16 -025 000 025 025 -025 025 27.58968
17 -025 000 -025 025 025 -0.25 22.55290
18 -025 000 025 025 025 -0.25 24.97823
19 025 000 -025 025 025 0.25 19.61443
20 -0.50 -0.50 -0.50 0.03 -0.46 0.28 8.42964

21 0.16 025 000 032 -025 0.38 28.34642
22 -0.06 -0.25 -0.50 0.03 -031 -0.32 8.82148
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truth depth  alts weight  pop answers MAPE

23 -0.50 025 -025 0.03 0.03 -0.29 53.20864
24 021 050 000 012 -0.17 0.34 36.71494
25 031 050 025 034 -0.02 0.39 29.04886
26 -049 025 025 -022 -0.12 0.07 63.40224
27 -0.27 -0.50 0.00 035 029 034 65.43967
28 039 025 050 0.21 -0.03 0.38 25.73380
29 039 -025 000 030 013 0.28 3.46581

30 -045 050 050 0.06 -0.04 -0.21 59.91642
31 -0.00 050 -025 -036 0.05 -0.02 47.62934
32 -0.20 -0.25 -0.50 -0.03 0.16 042 21.80034
33 -0.14 025 050 -040 0.11 046 53.57877
34 0.11 000 -0.25 -048 -0.35 -0.21 39.38831
35 0.14 000 000 -037 0.15 0.02 38.41253
36 -0.09 -0.50 -0.50 -0.41 -047 -0.39 5.75857

37 -0.19 050 025 -0.08 044 -0.19 52.70103
38 042 -050 -0.25 -0.19 0.00 -0.01 2.18997

39 -047 050 -025 033 -033 035 51.42151

Table 6.5: The sampled points used and their measured MAPE

First, we check the value of our R2. For our model, the R? is 0.8419. However,
we notice that the adjusted R? is significantly lower, 0.5929. Seeing as we have
64 coefficients, it seems reasonable to simplify our model to avoid overfitting.
We update our model in R to only involve the effects that R marks as significant.
To do this, we enter the suggested effects in R, which in our case are:

Im(formula = MAPE ~ truth + alts + weight +
truthxdepth+depth*weight + truthxdepth*weight +

depth*weight*answers ).

Now, we end up with a R? of 0.7846, and an adjusted R? of 0.7562. These
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values are still high, and since they are now significantly closer, we move on to

validate the model visually.

Next, we plot the residuals as a histogram in Figure [6.6] From the histogram,
we see that our residuals are indeed centered around 0. The histogram indicates

a normal distribution. Hence, we move on to the next test.

Histogram of res.model$residuals

Frequency
10 20 30 40 50

— | |

I | T | T 1 | |
-40 -30 -20 -10 0 10 20 30

0
L

res.model$residuals

Figure 6.6: A histogram of the residuals

Now, we want to investigate the relationship between fitted values (measure-
ments) and the model’s prediction. Then, we plot fitted values vs. predictions
in Figure[6.7] We observe that the residuals appear to not have a specific shape
around the y-axis. We also conclude that the LOWESS fit curve appears to be

almost flat.

Finally, we investigate the normal Q-Q plot (Figure [6.8). We see that most
points follow the plotted line, indicating that our predictions come from the
same distribution as the measured values. Hence, we conclude that our predic-

tion model is valid for our use case.
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Figure 6.7: Residuals represented as circles, fitted values as the dotted line. The
red line represents the LOWESS fit of the residuals vs. fitted values.
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6.5.2 Interpreting the Model

The model is now ready to be used. That is, any value within each factor’s
range [high,Jlow] can be plugged in to produce an error prediction. It is also
possible to set y < ¢, with ¢ being our maximum tolerable error, and then
find which settings satisfy the inequality. Our final error prediction model is as

follows:

y = 32.501266 — 29.023493 x truth + 5.037411 x alts
— 16.562410 x weight + 1.449934 x depth
+ 1.856916 x answers + 10.044302 x truth : depth
— 28.397984 x weight : depth
+4.175231 x truth : weight
+ 8.535667 x depth : answers
— 8.402531 x weight : answers
+ 51.134829 x truth : weight : depth
+ 25.945740 x weight : depth : answers (6.10)

We note that the simplification step has allowed us to completely eliminate pop
from our factors. As such, we draw the conclusion that the population size itself

does not have a significant impact on error.

To get an overview of our model, we use a Pareto plot [29] (Figure [6.9) which
allows us to visually compare all effects at once. Here, effects are ordered by

magnitude.

From the plot, it is clear that truth:weight:depth affects error the most. Maybe
most notably, truth:weight:depth increases error whereas its components truth
and weight:depth both decrease error. From examining the Pareto plot, it

seems that truth:weight is the interaction that causes the increase in error.

As expected, truth has a negative impact on error. That is, a high value of truth
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Pareto plot
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Figure 6.9: The Pareto plot of the simplified model

will reduce error. More surprisingly, truth is involved in several interactions

which all increase error.

It may be tempting to completely ignore answers and depth as these two fac-
tors have the lowest magnitude of effect. However, ignoring these factors is
dangerous: they are both involved in interactions that have significantly higher

magnitude.

The factor alts is the only one that does not have interactions. It may seem
counter-intuitive that having more siblings have such a small impact on error.
Still, the magnitude of this effect may very well be due to our choice to in-
put polls where we uniformly distribute the remaining weight among the sib-

lings.

Hence, we can give RANDORT’s users the following advice: use the model
to find local minima or ranges. The model can also be used to find min-
ima and ranges while accounting for known constraints such as for example
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Prltruth] < 0.5. When working in RANDORI’s POLL EDITOR it is impor-
tant to beware of the main effect truth:weight:depth and its building blocks.
As weight primarily is involved in decreasing error, we recommend increasing

weight before tweaking the other factors.

6.6 Discussion, Limitations and Future Work

A limitation in our work is that the prediction models we create are linear. As
such, prediction can be off in cases where the error is in fact non-linear. Still,
factor experiments can nevertheless be used to make predictions for non-linear
systems. To facilitate for non-linear systems the factor levels have to be cho-
sen differently: i.e. we would need 3 levels [21]] instead of 2. Hence, our
approach can be adapted to create non-linear models by running more experi-

ments.

Additionally, we know that error should also depend on the, non-linear, term
exp(e) from the definition of differential privacy. Still, it is not clear how the
term exp(e) and other, algorithm specific, factors compare in order of magni-
tude. As such, more research is needed to see if € can be modeled in a suitable
way, or if perhaps ¢ needs to be transformed to be linear (In(exp(e)). Neverthe-
less, factor experiments still provide a systematic and efficient way to explore
the impact of different variables on error. That is, factor experiments may still
be used to explore the other factors’ impact on error. Hence, while it may not
always be possible to extract an accurate prediction model, factor experiments
are still useful when determining which data points should be used as input to

test the accuracy of a differentially private algorithm.

Furthermore, factor experiments provide a possible way to systematically pre-
dict error for all representative input data sets for a differentially private algo-
rithm. That is, instead of using real data sets to predict error, factor experiments
statistically emulate all possible data sets bounded by the experiment’s levels
(the high/low values for each variable in our case). Hence, using factor experi-
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ments to create prediction models can be more robust statistically than making

predictions based on one real data set.

Whether the model is correct or not will be identified when testing the model
according to our methodology. If the model is incorrect it can be due to error
being non-linear, but it can also be due to not including all relevant factors. As

such, an incorrect model requires further investigation.

Accordingly, correctly identifying relevant factors is crucial to building a cor-
rect model. Still, there exists no recognized way of correctly and efficiently
identifying all factors. As mentioned in Section [6.3.1] it is nonetheless possi-
ble to try if a factor is relevant using screening designs before running a full
factorial experiment. From our use case, it is nonetheless clear that some can-
didate factors rule themselves out by simply being impossible to implement.
For example, we considered having the factor number of parent siblings to-
gether with depth, which results in the impossible combination of having no
parents (depth=0) and also having parent siblings. Hence, we believe look-
ing for possible contradictions among factors is important when designing the

experiments.

In order to not create contradicting factors, we have also decided to only model
the weight for the target alternative. That is, we set the weight for the target
alternative (or the target’s parent), and uniformly divide the remainder among
the siblings. For example, when a target has weight 70% and three siblings,
each sibling gets W% each. As such, we have not investigated settings

where the siblings have non-uniform weight distributions.

One decision that may seem controversial is that we do not include € as one of
the factors in our model. While we do not tweak ¢ directly, we do in fact adjust
€ by changing the structure of the poll. The reason we have chosen to indirectly
tweak ¢ as to tweaking it directly is that one single value of & corresponds to
multiple poll structures, whereas one poll structure corresponds to exactly one

value of €. Hence, while it may seem unintuitive at first, indirectly tweaking ¢
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makes more sense than tweaking it directly in our case.

Somewhat surprising is that population was eliminated from our prediction
model in the simplification step. We argue that the elimination of population
is because answers is related to pop (the probability of choosing some alter-
native Aig; is PrAig;] = pop*answers), and population therefore becomes
redundant. It is also possible that the choice of error measurement, MAPE in
our case, contributes to making population irrelevant since it is a relative mea-

surement of error as opposed to an absolute measurement.

Finally, we note that in this paper we have measured the error of leaf nodes
in a tree. Still, with the known relationships between answers, it appears to be
possible to further post-process and add accuracy to parent answers. We believe
including the number of children as a factor would be an interesting path to
explore next in order to better understand the effect of this post-processing. Put
differently, the challenge here is properly modeling the factors without creating

contradictions between factors.

6.7 Related Work

As mentioned in Section [6.1] evaluating error empirically is not a new topic
within differential privacy. However, creating prediction models from empirical

data appears to be a novel approach.

The work closest to ours is DPBENCH |[2], which is an error evaluation frame-
work for differentially private algorithms. In DPBENCH, the authors propose a
set of evaluation principles, including guidelines for creating diverse input for
algorithms. Hence, DPBENCH has a strong focus on understanding the data-
dependence of an algorithm’s error. Still, DPBENCH does not produce an error
prediction model like we do, nor does it minimize the number of experiments

needed to conduct.
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We also note that DPCoMP [3]] is the closest work to our SIMULATION EN-
VIRONMENT. DPCOMP allows users to compare how the accuracy of a differ-
entially private algorithm is affected by varying input data. Our work is sim-
ilar in the sense that our SIMULATION ENVIRONMENT also is intended to be
used to evaluate trade-offs. Our SIMULATION ENVIRONMENT is also inspired
by DPBENCH’s evaluation principles and consequently allows data following
different distributions to be entered and evaluated. However, our simulation
environment is less general than DPCOMP, since our solution uses one fixed

algorithm.

6.8 Conclusion

We have presented a methodology for empirically estimating error in differ-
entially private algorithms which 1) models the relationships between input
parameters, 2) is data aware, and 3) minimizes the measurements required as
input. Hence, prediction models created using our methodology allow for ex-
pressive, data aware, error prediction. Moreover, we conducted a case study
where we apply our methodology to a setting where error is measured from
poll structures. To support our use case, we have added a simulation tool to
the RANDORI open source tool suite, adding the functionality of generating

synthetic data and evaluating error empirically.

From our case study, we were able to create a prediction model for error using
six factors. After evaluating and simplifying our model, we are able to answer
the two questions from our introduction. First, there are 13 main effects on

error. Next, there are seven interactions.

From evaluating the prediction model we found that our model has a good fit.
As such, our novel application of factor experiments shows promising results as

a methodology for error evaluation of differentially private algorithms.

Consequently, we have contributed with a novel application of a methodology
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that shows promise for error prediction of differentially private algorithms. In
addition, we have also built a simulation environment that generates synthetic

poll data and measures error through simulating randomized response.

One interesting path for future work is to investigate if, and how, the number
of factors used in the model prediction affects the model’s fit. Along a simi-
lar line of thought, it would also be interesting to attempt to create prediction
models for well known differentially private algorithms and libraries. As such,
we encourage the use of our methodology in order to construct error prediction

models for other differentially private algorithms.
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Standard Pr[truth] Tree Number of  Alternative Population Number MAPE

order depth alternatives ~ weight of

answers
14 + - + + - - 18.47
15 - + + + - 405.1528
16 + + + + - - 3.74374
17 - - - - + - 90.03673
18 + - - - + - 1.21997
19 - + - + - 39.38121
20 + + - - + - 4.38645
21 - - + - + - 47.13567
22 + - + - + - 7.02496
23 - + + + - 75.60747
24 + + + - + - 8.34256
25 - - - + + - 7362.4095
26 + - + + - 98.25777
27 - + + + - 1240.11986
28 + + - + + - 19.7394
29 - - + + + - 1466.18583
30 + - + + + - 18.8858
31 - + + + + - 403.33846
32 + + + + + - 4.16551
33 - - - - - + 61.83111
34 + - - - + 8.08626
35 - + - - + 88.29154
36 + + - - - + 9.66657
37 - - + - - + 63.75222
38 + - + - - + 8.2323
39 - + + - - + 89.69907
40 + + + - - + 10.02583
41 - - - - + 811.41556
42 + - - + - + 10.13037
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Standard Pr[truth] Tree Number of  Alternative Population Number MAPE
order depth alternatives ~ weight of

answers
43 + - + 310.01569
44 - + - + 2.16437
45 + + - + 738.71667
46 - + + - + 9.07111
47 + + + + 300.02957
48 + + + - + 2.1328
49 - - - + + 61.99979
50 - - + + 7.9004
51 + - + + 88.42618
52 + - - + + 9.84616
53 - + - + + 63.75659
54 - + - + + 7.95395
55 + + + + 89.82931
56 + + - + + 9.95786
57 - - + + + 810.22851
58 - - + + + 9.99809
59 + + + + 310.55943
60 + - + + + 2.44021
61 - + + + + 737.21517
62 + + + + + 299.99379
63 - + + + + 9.01693
64 + + + + + 2.20558

Table 6.6: MAPE measurements for the experiment using -1 and +1 as coded

value inputs
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Standard Pr[truth] Tree Number of  Alternative Population Number MAPE

order depth alternatives ~ weight of

answers
N/A O 0 0 0 0 0 34.04411
1 - - - - - - 38.23649
2 + - - - - - 17.89185
3 - + - - - 58.33831
4 + + - - - - 25.18673
5 - - + - - - 48.15875
6 + - + - - - 25.15229
7 - + + - - 64.44095
8 + + + - - - 27.66351
9 - - - + - - 81.467
10 + - + - - 13.00362
11 - + - + - - 9.89232
12 + + - + - - 9.41709
13 - - + + - - 56.28555
14 + - + + - - 9.56171
15 - + + + - 19.75423
16 + + + + - - 12.79737
17 - - - - + - 38.11988
18 + - - + - 17.97198
19 - + - - + - 58.37657
20 + + - - + - 25.14935
21 - - + - + - 48.43102
22 + - + - + - 25.08915
23 - + + + - 64.49147
24 + + + - + - 27.73975
25 - - - + + - 81.24882
26 + - + + - 13.02403
27 - - + + - 9.5234
28 + - + + - 9.65797
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Standard Pr[truth] Tree Number of  Alternative Population Number MAPE

order depth alternatives ~ weight of
answers

29 - + + + - 56.3261
30 + - + + + - 9.79661
31 - + + + + 19.70136
32 + + + + + - 12.57202
33 - - - - - + 52.6255
34 + - - - - + 23.3408
35 - + - - - + 66.96285
36 + + - - - + 28.56059
37 - - + - - + 54.63909
38 + - + - - + 28.61188
39 - + + - + 68.09695
40 + + + - - + 29.17961
41 - - - + - + 45.78992
42 + - + - + 4.45637
43 - + - + - + 23.87327
44 + + - + - + 13.78785
45 - - + + - + 41.37552
46 + - + + - + 13.85628
47 - + + + + 25.68611
48 + + + + - + 14.47902
49 - - - - + + 52.71001
50 + - - + + 23.2522
51 - + - - + + 66.94767
52 + + - - + + 28.70839
53 - - + - + + 54.66564
54 + - + - + + 28.71268
55 - + + - + + 68.04705
56 + + + - + + 29.16309
57 - - - + + + 45.72794
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Standard Pr[truth] Tree Number of  Alternative Population Number MAPE

order depth alternatives ~ weight of
answers

58 + - - + + + 4.47782
59 - + + + + 23.84796
60 + + - + + + 13.90072
61 - - + + + + 41.23229
62 - + + + + + 25.70945
63 + - + + + + 13.88817
64 + + + + + + 14.41732

Table 6.7: MAPE measurements for the experiment using -0.5 and +0.5 as

coded value inputs
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SoK: Chasing Accuracy and
Privacy, and Catching Both in
Differentially Private
Histogram Publication

Abstract
Histograms and synthetic data are of key importance in data analysis.
However, researchers have shown that even aggregated data such as his-
tograms, containing no obvious sensitive attributes, can result in privacy
leakage. To enable data analysis, a strong notion of privacy is required to
avoid risking unintended privacy violations.

Such a strong notion of privacy is differential privacy, a statistical no-
tion of privacy that makes privacy leakage quantifiable. The caveat regard-
ing differential privacy is that while it has strong guarantees for privacy,
privacy comes at a cost of accuracy. Despite this trade-off being a central
and important issue in the adoption of differential privacy, there exists a
gap in the literature regarding providing an understanding of the trade-off
and how to address it appropriately.

Through a systematic literature review (SLR), we investigate the state-
of-the-art within accuracy improving differentially private algorithms for
histogram and synthetic data publishing. Our contribution is two-fold: 1)

we identify trends and connections in the contributions to the field of dif-
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ferential privacy for histograms and synthetic data and 2) we provide an
understanding of the privacy/accuracy trade-off challenge by crystallizing
different dimensions to accuracy improvement. Accordingly, we position
and visualize the ideas in relation to each other and external work, and
deconstruct each algorithm to examine the building blocks separately with
the aim of pinpointing which dimension of accuracy improvement each
technique/approach is targeting. Hence, this systematization of knowl-
edge (SoK) provides an understanding of in which dimensions and how

accuracy improvement can be pursued without sacrificing privacy.

7.1 Introduction

Being able to draw analytical insights from data sets about individuals is a pow-
erful skill, both in business, and in research. However, to enable data collection,
and consequently data analysis, the individuals’ privacy must not be violated.
Some strategies [|1}, |2, 3] for privacy-preserving data analysis focus on sanitiz-
ing data, but such approaches require identifying sensitive attributes and also
does not consider auxiliary information. As pointed out by Narayanan and
Shmatikov [4]], personally identifiable information has no technical meaning,
and thus cannot be removed from data sets in a safe way. In addition to the dif-
ficulty in modeling the extent of additional information that an adversary may
possess from public sources in such data sanitizing approaches, the privacy no-
tion of such approaches is defined as the property of the data set. However, it is
proved in [ S]] that for essentially any non-trivial algorithm, there exists auxiliary
information that can enable a privacy breach that would not have been possible
without the knowledge learned from the data analysis. Consequently, a strong
notion of privacy is needed to avoid any potential privacy violations, while still

enabling data analysis.

Such a strong notion of privacy is differential privacy [[6] (Section[7.2), in which
the privacy guarantee is defined as the property of the computations on the data

set. Differential privacy is a privacy model that provides meaningful privacy



7.1. INTRODUCTION 199

guarantees to individuals in the data sets by quantifying their privacy loss. This
potential privacy loss, is guaranteed independently of the background informa-
tion that an adversary may possess. The power of differential privacy lies in
allowing an analyst to learn statistical correlations about a population, while
not being able to infer information about any one individual. To this end, a
differential private analysis may inject random noise to the results and these

approximated results are then released to the analysts.

Differential privacy has spurred a flood of research in devising differentially
private algorithms for various data analysis with varying utility guarantees.
Given a general workflow of a differentially private analysis, which is illus-
trated in Figure @ we have identified four places (labeled A, B, C and D)
for exploring different possibilities to improve accuracy of differential private

analyses.

Y
x5 o0
O ©

Reply

Figure 7.1: Places for accuracy improvement: A) Altering the query, B) Post-
processing, C) Change in the release mechanism, D) Pre-processing.

In this work, we focus specifically on differentially private algorithms for his-
tograms, and synthetic data publication. Histograms and synthetic data are par-
ticularly interesting because they both provide a way to represent summary of
an underlying data set, thus may enable further analytical tasks executed over

the summary of the data set. While, histograms represent a graphical summary
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of frequency distribution of values of a specific domain in a data set, synthetic
data is an approximate representation of data distribution of an underlying data
set. Intrigued by the idea that there exists several ways to improve accuracy of
privatized histograms and synthetic data without compromising privacy, we aim

to systematically synthesize the state-of-the-art.

Advancement in research in differentially private histogram and synthetic data
publication has received considerable interest within the computer science and
statistics research communities [7, 8, 9]. However, only a few works system-
atically and critically assess the state-of-the-art differentially private, accuracy
improving algorithms for releasing histograms or synthetic data. Li et al. 8]
and Meng et al. [9]] categorized different differentially private publication tech-
niques for both histogram as well as synthetic data, and solely histograms re-
spectively. However, their selection and categorization of the algorithms are
not systematic. Further, the selected algorithms in their work are not exclu-
sively accuracy improving techniques, but rather differentially private release
mechanisms for histogram and synthetic data. That is, some of the surveyed al-
gorithms do not boost the accuracy of an existing release mechanism by adding
a modular idea, but instead invent new, monolithic algorithms. For example,
some of the algorithms have discovered ways to release data that previously did
not have a differentially private way of being released. Bowen and Liu [7]], on
the other hand, used simulation studies to evaluate several algorithms for pub-
lishing histograms and synthetic data under differential privacy. Their aim is
quite different from ours, is to assess the accuracy""|and usefulnes of the

privatized results.

Consequently, to bridge the knowledge gap, the present paper aims to provide
a systematization of knowledge concerning differentially private accuracy im-
proving methods for histogram and synthetic data publication. To this end, we

Viilwe will use the terms accuracy and utility interchangeably when we refer to decreasing the

error, i.e the distance between the privatized result and the true results.
ViIWe use the term usefulness to refer to the impact of the privatized results to conduct statistical

inferences.



7.2. DIFFERENTIAL PRIVACY 201

first review the main concepts related to differential privacy (Section[7.2)), which
are relevant to the qualitative analysis of state-of-the-art accuracy improving
techniques for differentially private histogram and synthetic data publication
(Section[7.5). However, before focusing on the qualitative analysis, we present
our method to conduct a systematic review of literature that enable a method-
ological rigor to the results of the qualitative analysis (Section[7.3) and a review
of general characteristics of the identified accuracy improving techniques (Sec-
tion [7.4). We further study the composability of accuracy improvement tech-
niques within the constraints of differential privacy in relation to the results of
our analysis in order to pave the way for future research (Section [7.6). Over-
all, this systematization of knowledge provides a conceptual understanding of
enhancing accuracy in the light of privacy constraints (Section [7.7).

Our main contributions are:

1. A technical summary of each algorithms in order to provide a consolidate
view of the state-of-the-art (Section [7.4).

2. Categorization that synthesize the evolutionary relationships of the re-
search domain in differential privacy for histogram and synthetic data
publication (Section [7.5.1).

3. Categorization of the state-of-the-art, which is based on the conceptual
relationships of the identified algorithms (Section [7.5.2).

7.2 Differential Privacy

Differential privacy [6] is a statistical definition that enables privacy loss to be
quantified and bounded. In differential privacy, privacy loss is bounded by the
parameter €. To achieve trivial accuracy improvement, € can be tweaked to a
higher value, as this gives less privacy (greater privacy loss) which means more
accuracy. In this paper we only consider accuracy improvements in settings
where ¢ is fixed.
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We formally define e-differential privacy in Definition [T} based on Dwork [3].
The parameter ¢ is usually referred to as the privacy budget. Essentially, ¢ is
the cost in terms of privacy loss for an individual participating in an analy-

sis.

Definition 1 (¢-Differential Privacy). A randomized algorithm [’ gives
e-differential privacy if for all data sets D1 and Do, where D1 and D5 are
neighboring, and all S C Range(['),

Pr(f'(Dy) € S] < e® x Pr[f'(D2) € S]

A relaxed version of differential privacy is (e, §)-differential privacy Dwork et
al. [10], which we define in Definition 2] (¢, 6)-differential privacy is primarily
used to achieve better accuracy, but adds a subtle, probabilistic dimension of
privacy loss. (e, d)-differential privacy is sometimes also called approximate

differential privacy [11].

Definition 2 ((, §)-Differential Privacy). A randomized algorithm [’ is (¢, 0)-
differentially private if for all data sets D1 and D4 differing on at most one
element, and all S C Range(f’),

Prf'(Dy) € 8] <e® x Pr[f'(D2) € S]+ 6

Theoretically, in e-differential privacy each output is nearly equally likely and
hold for any run of algorithm f’, whereas (g, §)-differential privacy for each
pair of data sets (D1, D5) in extremely unlikely cases, will make some answer
much less or much more likely to be released when the algorithm is run on D,
as opposed to D5 [[12]. Still, (g, §)-differential privacy ensures that the absolute
value of the privacy loss is bounded by ¢ with probability at least 1-§ [[12]. That
is, the probability of gaining significant information about one individual, even

when possessing all other information in the data set, is at most .

To satisfy differential privacy, a randomized algorithm perturbs the query an-

swers to obfuscate the impact caused by differing one element in the data set.
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Such perturbation can for example be introduced by adding a randomly chosen
number to a numerical answer. Essentially, the maximum difference any pos-
sible record in the data set can cause dictates the magnitude of noise needed to
satisfy differential privacy. This difference is referred to as the algorithm’s L
sensitivity, which we define in Definition E} based on Dwork et al. [|6]].

Definition 3 (L, Sensitivity ). The L, sensitivity of a function f : D™ — R% is
the smallest number A f such that for all D1, Dy € D™ which differ in a single
entry,

If(D1) = f(D2)ll, < Af

Since differential privacy is a property of the algorithm, as opposed to data,
there exists many implementations of differentially private algorithms. Thus,
we will not summarize all algorithms, but instead introduce two early algo-
rithms that are common building blocks, namely: the Laplace mechanism [6]]

and the Exponential mechanism [13]].

We define the Laplace mechanism in Definition[d} based on the definition given
by Dwork [14]. The Laplace mechanism adds numerical noise, and the proba-
bility density function is centered around zero, meaning that noise with higher

probability (than any other specific value) will be zero.

Definition 4 (Laplace mechanism). For a query f on data set D, the differen-

tially private version, f', adds Laplace noise to [ proportional to the sensitivity

of f:
f'(D) = f(D)+ Lap(Af/e)

Furthermore, we define the Exponential mechanism (EM) in DeﬁnitionE]based
on the definition given by McSherry and Talwar [13]]. The intuition behind
EM is that the probability of not perturbing the answer is slightly higher than
perturbing the answer. EM is particularly useful when Laplace does not make

sense, for example when queries return categorical answers such as strings,



204 CHAPTER 6. PAPER VI

but can also be used for numerical answers. The reason EM is so flexible is
that the utility function can be replaced to score closeness to suit the given

domain.

Definition 5 (Exponential mechanism (EM)). Given a utility function
uw: (DxR) — R, and a data set D, we define the differentially private version,

u';

u'(D,u) = {return r, where T ranges over R, with probability o
eu(D,r)
]

The semantic interpretation of the privacy guarantee of differential privacy rests
on the definition of what it means for a pair of data sets to be neighbors. In
the literature, the following two variations of neighbors are considered when

defining differential privacy: unbounded and bounded.

Definition 6 (Unbounded Differential Privacy). Let Dy and D+ be two data sets
where D1 can be attained by adding or removing a single record in Dy. With

this notion of neighbors, we say that we have unbounded differential privacy.

Definition 7 (Bounded Differential Privacy). Let D1 and D5 be two data sets
where D1 can be attained by changing a single record in Do. With this notion

of neighbors, we say that we have bounded differential privacy.

Distinguishing between the definition of neighboring data sets is important, be-
cause it affects the global sensitivity of a function. The sizes of the neighboring
data sets are fixed in the bounded differential privacy definition whereas, there

is no size restriction in the unbounded case.

In the case of graph data sets, a pair of graphs differ by their number of edges,
or number of nodes. Therefore, there exists two variant definitions in litera-
ture [15] that formalize what it means for a pair of graphs to be neighbors. Nev-
ertheless, these graph neighborhood definitions are defined only in the context

of unbounded differential privacy.
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Definition 8 (Node differential privacy [15]). Graphs G = (V, E) and G =
(V', E") are node-neighbors if:

Vi =V v,
E,:E_{(vla’l]?) |vi = vV = v},

for some nodev € V.

Definition 9 (Edge differential privacy [15]). Graphs G = (V,E) and G =
(V',E") are edge-neighbors if:

’

V=V,
E =E—{e},

for some edge e € E.

In certain settings, € grows too fast to guarantee a meaningful privacy protec-
tion. To cater for different applications, in particular in settings where data is
gathered dynamically, different privacy levels have been introduced that essen-
tially further changes the notion of neighboring data sets by defining neighbors
for data streams. These privacy levels are, user level privacy [16]], event level

privacy [17]], and w-event level privacy [18]].

Definition 10 (User Level Privacy). We say that a differentially private query
gives user level privacy (pure differential privacy), when all occurrences of

records produced by one user is either present or absent.

Essentially, for user level privacy, all records connected to one individual user

shares a joint privacy budget.

Definition 11 (Event Level Privacy). We say that a differentially private query
gives event level privacy, when all occurrences of records produced by one

group of events, where the group size is one or larger; is either present or absent.

With event level privacy, each data point used in the query can be considered

independent and thus have their own budget.
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Definition 12 (w-event Level Privacy). We say that a differentially private
query gives w-event level privacy, when a set of w occurrences of records pro-
duced by some group of events, where the group size is one or larger, is either
present or absent. When w = 1, w-event level privacy and event level privacy

are the same.

For w-event level privacy, w events share a joint privacy budget.

7.3 Method

We conducted a systematic literature review (SLR) [[19] to synthesize the state-
of-the-art accuracy improving techniques for publishing differentially private
histograms as well as synthetic data. Systematic literature review, which, here-
after we will refer to as systematic review when describing generally, is a
method to objectively evaluate all available research pertaining to a specific
research question or research topic or phenomena of interest [[19]. Although,
the method is common in social science and medical science disciplines, the
Evidence-Based Software Engineering initiative [20]] have been influential in
the recognition of systematic review as the method to integrate evidence con-
cerning a research area, a research question or phenomena of interest in software
engineering research. Systematic review provides methodological rigor to liter-
ature selection and synthesization as well as to the conclusion drawn as a result
of the synthesization. The method consists of several stages that are grouped
into three phases. The phases of systematic review are; i) planning the review,

ii) conducting the review and iii) reporting the review.

Planning the review phase underpins the need for a systematic review concern-
ing a research topic, a research question or phenomena of interest. Hence, in the
planning stage, a review protocol that defines the research questions, as well as
strategies for conducting the literature review is developed in order to minimize
the likelihood of researcher bias in the selection of literature.
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Following the specification of the search, the selection and the data synthesis
strategy, the review is conducted (conducting the review phase) in an orderly
manner. Thus, the first stage of the execution of a systematic review is the
identification of all available literature. This stage involves the construction of
search queries and identification of all relevant scholarly databases. After the
identification of literature on a given topic of interest, they need to be evaluated
for relevance, which usually is determined through a set of selection criteria.
The selected literature for a systematic review is generally referred to as primary
studies. Then, in order to synthesize the results of the primary studies, data are
extracted from each primary study for the analysis that is the final stage of the
conducting the review phase.

Reporting the review involves the documentation of the systematic review pro-

cess and the communication of the results of the systematic review.

In the following subsections we describe in detail, the process we undertake in

our SLR. Figure[7.2]shows the high-level view of the processes followed in our
SLR.

Step1: Identification Step 2: Selection of ~ Step 3: Qualitative

of Literature Literature Analysis and
Categorization

Figure 7.2: Workflow of processes followed in our SLR.
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7.3.1 Identification of Literature

A thorough and unbiased search for literature is the essence of a SLR. In this
SLR, we used a scholarly search engine, Microsoft Academic (MA) [21} 22],
primarily for two reasons. First, for its semantic search functionality and sec-

ond, for its coverage.

Semantic search leverages entities such as field of study, authors, journals, in-
stitutions, etc., associated with the papers. Consequently, there is no need to
construct search strings with more keywords and synonyms, rather, a natural
language query can be constructed with the help of search suggestions for rele-

vant entities.

Secondly, regarding the coverage of MA. MA’s predecessor, Microsoft Aca-
demic Search (MAS), suffered from poor coverage as pointed out by Harzing
[23]]. However, after relaunching MA its coverage has grown over the years [24,
25]]. In 2017, Hug and Brindle [26] compared the coverage of MA to Scopus
and Web of Science (WoS), and found that MA has higher coverage for book-
related documents and conferences, and only falls behind Scopus in covering
journal articles. More recently, in 2019, Harzing [27]] compared the coverage of
Crossref, Dimensions, Google Scholar (GS), MA, Scopus and WoS, and found
that GS and MA are the most comprehensive free search engines. Accordingly,
we have chosen to use MA since it has both adequate coverage and semantic
search, while for example GS lacks semantic search.

We used two queries, one focusing on histograms and the other on synthetic
data. The queries are as follows, with entities recognized by MA in bold

text:

Q1: Papers about differential privacy and histograms
Q2: Papers about differential privacy and synthetic data

The search was performed on June 10 2019, and yielded 159 hits in total. 78
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hits for Q1 and 81 hits for Q2, which are examined for relevance in the next
step of the SLR process.

7.3.2 Selection of Literature

We constructed and followed a set of exclusion criteria Table in order to
select the relevant literature that provides insights to our research aim. To re-
flect that we specifically wanted to focus on tangible, experimentally tested
algorithms, we constructed the criteria to exclude papers that contribute to pure

theoretical knowledge. To select papers, we examined the title and abstract of

Exclude if the paper is...

1) not concerning differential privacy, not concerning accuracy improvement,
and not concerning histograms or synthetic data.

2) employing workflow actions, pre-processing/post-processing/algorithmic
tricks but not solely to improve accuracy of histograms or synthetic data.

3) a trivial improvement to histogram or synthetic data accuracy through relax-
ations of differential privacy or adversarial models.

4) concerning local sensitivity as opposed to global sensitivity.

5) not releasing histograms/synthetic data.

6) pure theory, without empirical results.

7) about a patented entity.

8) a preprint or otherwise unpublished work.

9) not peer reviewed such as PhD thesis/master thesis/demo paper/poster/ex-
tended abstract.

10) not written in English.

Table 7.1: List of exclusion criteria followed in our SLR.

each paper against the exclusion criteria. When the abstract matches any one
of the criteria, the paper is excluded, otherwise the paper is included. When it

was unclear from the abstract that a contribution is empirical or pure theory, we
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looked through the body of the paper to make our decision. In the course of this
stage, in order to ensure the reliability of the decision concerning the inclusion
of a literature in our systematic review, both the authors have independently
carried out the selection of literature stage. When comparing the decisions of
the authors, if there exist a disagreement, we discussed each disagreement in
detail in relation of the criteria in Table [Z1] and resolved it. For the full list of

excluded papers along with the reason for exclusion, see Section

In the end, a total of 35 (after removing duplicates) papers were selected for the

qualitative analysis.

7.3.3 Qualitative Analysis and Categorization

The most common framework found in the literature to analyse and understand
a domain of interest, is classification schemes [28]]. It concerns the grouping
of objects with similar characteristics in a domain. Our aim is to synthesize;
1) on the one hand, trends and relationships among each papers and ii) on the
other hand, conceptual understanding of the privacy/accuracy trade-off in the
differentially private histogram and synthetic data research. Therefore, from
each paper we extracted distinct characteristics of the algorithms, evaluation
details of the algorithms as well as design principles such as aim of the solution
and motivation for using a particular technique. These characteristics are in-
ductively analyzed for commonality, which follows, though not rigorously, the
empirical-to-conceptual approach to taxonomy development defined by Nick-
erson et al. [28]]. The categorization that resulted from the qualitative analysis
are presented in Section

Deviation from the systematic review guidelines in [19]: The review protocol
for our SLR is not documented in the planning stage as specified by the orig-
inal guidelines but rather documented in the reporting the review stage. This
is largely due to the defined focus of our SLR, which is on the privacy/accu-
racy trade-off associated with differentially private algorithms for publishing
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histograms and synthetic data. Hence, the search strategy and selection crite-
ria do not call for an iteration and an account of the changes in the process.
Further, in our SLR we do not consider a separate quality assessment check-
list as prescribed by the SLR guidelines. However, in our SLR the quality of
the primary studies is ensured through our detailed selection criteria that in-
volves objective quality assessment criteria for example the criterion to include
only peer-reviewed scientific publications in the SLR. Furthermore, the quality
of the results of our SLR is ensured through the exclusion of some of the se-
lected primary studies because the algorithms in those studies lack comparable
properties in order to perform a fair comparison with other selected algorithms.
Additionally, during the analysis we surveyed additional relevant literature from
the related work sections of the primary studies, which adds to the quality of
the results of our SLR.

7.4 Overview of Papers

After analyzing the 35 included papers, 27 papers [29,30,31,/32, |33} |34} 35}, 36,
37,138,139, |40, |41} 142} 43| 144, |45, |46l 147,148,149, 501 511 52} 53} |54, |55 where
found to be relevant. All included papers and their corresponding algorithms
are listed in the ledger in Table We illustrate the chronological publishing
order of the algorithms, but note that within each year, the algorithms are sorted

on the first author’s last name, and not necessarily order of publication.
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2010 Boost Hay et al. [29]
2011 PMost, BMax Ding et al. [30]
Privelet, Privelett, Privelet* Xiao et al. [56, 31]
2012 EFPA, P-HP Acs et al. [32]
2013 NF, SF Xu et al. [57,[33]
DPCopula Li et al. [34]
CiTM Lu et al. [35]]
2014 PeGS, PeGS.rs Park et al. [58]], Park and Ghosh [36]
DPCube Xiao et al. 59,60, 37
PrivBayes Zhang et al. [38]]
AHP Zhang et al. [39]
RG Chen et al. [40]
2015 ADMM Lee et al. [41]]
DSAT, DSFT Lietal. [42]
(6,Q)-Histogram, §-CumHisto Day et al. [43]
2016 BPM Wang et al. [44]
PrivTree Zhang et al. [45]]
DPCocGen Benkhelif et al. [46]
SORTaki Doudalis and Mehrotra [47]]
2017 Pythia, Delphi Kotsogiannis et al. [48]
Tru, Min, Opt Wang et al. [49]
DPPro Xu et al. [50]
T Ding et al. [51]
2018 GGA Gao and Ma [52]
PriSH Ghane et al. [53]
2019 IHP, mIHP Lietal. [61}/54]
RCF Nie et al. [|55]

Table 7.2: Chronological ledger for the papers. Note that the abbreviation
"ADMM’ is due to Boyd et al. [[62], whereas Lee et al. [41]]’s work is an ex-

tension that uses the same abbreviation.
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Beware that some algorithms, for example NF, SF, have appeared in publications
twice, first in a conference paper and then in an extended journal version. When
a paper has two versions, we will refer to the latest version in our comparisons,
but we include all references in the paper ledger for completeness. Furthermore,
eight papers were excluded based on our qualitative analysis. Each decision is
motivated in Section [7.6.2} and those eight papers hence do not appear in the
paper ledger.

Furthermore, in Tables[7.3and [7.4] we present objective parameters regarding
the settings around the algorithms in each paper, for example the characteristics
of the input data they operate on, and the metric used to measure errors. Our in-
tention is that this table will allow for further understanding of which algorithms
are applicable given a certain setting when one searches for an appropriate al-
gorithm, but also to understand which algorithms are directly comparable in the
scope of this SLR.

‘ Key ‘Meaning

X Correlated
z Dynamic
Data
® Sparse
z Static
. . * Multi
Dimension .
1D Single
EM Exponential mechanism
. LAP | Laplace mechanism
Mechanism . .
MM Matrix mechanism
RR Randomized response
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‘ Key ‘ Meaning
AVD | Average Variation Distance
KS Kolmogorov-Smirnov distance
KL Kullback-Leibler divergence
/1 L1 distance
Metric 02 L2 distance
MAE | Mean absolute error
Miss | Misclassification rate
MPE | Mean percentage error
MSE | Mean squared error
NWSE | Normalized weighted square error
SAQ | Scaled average per query
. & Bounded
Relation
O Unbounded
Table 7.3: Meaning of symbols and abbreviations.
& § = g g -
$ €S 3 £ £ 3 2 8
2 ~ a s
[29] e & Ip =z Lap MAE Histogram
[130] ¢ ? & * z, X Lap MAE Cuboids
31] ? & ID, =z Lap MAE, Range
* MPE count
queries
132] ¢ ? & 1D z, X Lap, KL, Histogram
EM MSE
133] € ? & 1D T Lap, MAE, Histogram
EM MSE
[34] ¢ ? & * T Lap MAE, Synthetic
MPE data
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5 = = £
] ) s 5] @ o -
s £ = s = - = 2 5
E E % § £ & £ £ &
S & 3 = £ = S 3 =
3 3 ~ o= - ) E o
2 R~ a s
MM,
[35] (£,0) Entity & * T, X . MPE Model
Agnostic
_ L. Rank
136] ¢ ? & * T Dirichlet Model
) corr.
prior
137] € ? & & T Lap MAE Histogram
138] ¢ ? & *, T Lap, AVD, Synthetic
® EM Miss data
139] € ? & 1D T Lap KL, Histogram
MSE
[40] e Event & 1D Z, Lap MSE Histogram
Contingency
[41] e ? & & T Lap, MSE table,
MM Histogram
User, o .
42] e 1D x, X Lap MAE, Histogram
w-event MPE
[43] ¢ ? Node * T EM KS, ¢1 Histogram
[44] e ? & 1D T RR NWSE Histogram
[45] € ? & 3 z, X Lap MPE Quadtree
[46]] ? & * z,®  Lap Hellinger Partitioning
[47] € ? & 1D T Lap SAQ Histogram
Lap, 02,
l4g] = 2 & Ip, . N/A
B Agnostic Regret
[49] e ? & 1D z, XM Lap MSE Histogram
[50] (&,6) ? & * T Gaussian, Miss, Matrix
MM
MSE
[51] ? Node * T Lap KS, £1 Histogram
152] ¢ ? & 1D T Lap MAE Histogram
153 ? & * Z,X  MWEM KL, /1 Histogram
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[ = g
¢ g g £ o 2 o g
s ¢ E= = =

5 E 3 E 5§ & 3 g g

s g - s E = g = S

[~ =] a s

154] ¢ ? & ID,* Z,®  Lap, KL, Histogram

EM MSE
[55] e ? & 1D T RR MSE Histogram

Table 7.4: Mapping between papers to corresponding differential privacy defi-
nition, privacy level, neighbor relationship, dimension of data, input data, use of
mechanism, error metric and output data. Abbreviations and the corresponding

symbols are explained in a separate table.

Note that the privacy level (user, event or w-event) was not explicitly stated
in most papers, in which case we have attributed the privacy level as °’?". A
’?” privacy level does not imply that the algorithm does not have a particular
privacy level goal, but rather, that the authors did not explicitly describe what
level they are aiming for. With this notice, we want to warn the reader to be
cautious when comparing the experimental accuracy of two algorithms unless
they in fact assume the same privacy level. For example, comparing the same
algorithm but with either user level or event level privacy would make the event
level privacy version appear to be better, whereas in reality it trivially achieves

better accuracy through relaxed privacy guarantees.

In general, user level privacy tends to be the base case, as this is the level as-
sumed in pure differential privacy [[16], but to avoid making incorrect assump-
tions, we chose to use the ’?” label when a paper does not explicitly state their

privacy level.

Histogram Hybrid Synthetic Data

Hay et al. [29] Lu et al. [35] Liet al. [34]
Xiao et al. [31] Ding et al. [|30] Park and Ghosh [36]
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Acs et al. [32] Xiao et al. [37] Zhang et al. [38]
Xu et al. [33]] Lee et al. [41]] Xu et al. [50]
Zhang et al. [39] Zhang et al. [45]]
Chen et al. [40] Benkhelif et al. [46]
Lietal. [42] Kotsogiannis et al. [48]
Day et al. [43]] Wang et al. [49]
Wang et al. [44] Li et al. [54]
Doudalis and Mehrotra [47]]
Ding et al. [51]
Gao and Ma [52]
Ghane et al. 53]
Nie et al. [|55]

Table 7.5: The papers grouped by their type of output, where hybrid internally
uses histogram structures where synthetic data is sampled from.

Given that our two queries were designed to capture algorithms that either out-
put synthetic data or a histogram, we examine the similarity between the strate-
gies used in each algorithm. To this end, we manually represent the similar-
ity between the algorithms’ strategies based on their output in Table [7.5] We
distinguish between the two kinds of outputs by their different goals: for his-
tograms, the goal is to release one optimal histogram for a given query, whereas
for synthetic data the goal is to release a data set that is optimized for some
given set of queries. Some algorithms use similar approaches to the algorithms
from the other query; and therefore we label them as hybrid. An example of
a hybrid paper is Li et al. [54]], since they both deal with one-dimensional his-
tograms (THP), and then re-use that strategy when producing multi-dimensional
histograms (mIHP) that resembles the outputs of synthetic data papers.
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7.5 Analysis

We present our qualitative analysis on 27 included papers from two different
perspectives in the light of research in differential privacy histogram and syn-
thetic data. First, from a evolutionary perspective for identifying trends and to
position each contribution in the history of its research (Section[7.5.1)). Second,
from a conceptual perspective for understanding the trade-off challenge in the
privacy and utility relationship (Section[7.5.2).

7.5.1 Positioning

In order to provide context, we studied where the algorithms originated from,
and how they are connected to each other. To also understand when to use each
algorithm, and which ones are comparable in the sense that they can be used for
the same kind of analysis, we also investigate which algorithms are compared
experimentally in the papers.

First, we explored and mapped out the relationships between the included algo-
rithms. To further paint the picture of the landscape of algorithms, we analyzed
the related work sections to find external work connected to the papers included
in our SLR. We present our findings as a family tree of algorithms in Figure
which addresses from where they came.

Since our exploration of each algorithms’ origin discovered papers outside of
the SLR’s queries, we also provide a ledger for (Table [7.6) external papers.
When the authors had not designated a name for their algorithms, we use the
abbreviation of the first letter of all author’s last name and the publication year
instead. Note that we have not recursively investigated the external papers’
origin, so external papers are not fully connected in the family tree.
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Figure 7.3: The family tree of algorithms. Light blue indicate papers not cov-

ered by the SLR, and the darker blue represents included papers.

Label Author
AKL11 Arasuetal.
Bayesian Network Model  Koller and Friedman
BLRO8 Blum et al. [65

Budget Absorption (BA),
Budget Distribution (BD)
CFDS12
Data Recycling
Dirichlet Prior
Distributed Euler Histograms (DEH)
DIW13

Xiao et al. [67
Machanavajjhala et al.

Xie et al. I@I
Duchi et al. ||
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Label

Author

Edge Removal

Eigen-Design

FlowGraph

Fourier Perturbation Algorithm (FPA)
Freqltem

Geometric Mechanism

Grouping and Smoothing (GS)

Matrix Mechanism (MM)

MWEM

n-grams

Private Multiplicative Weights (PMW)
Private Record Matching

Private Spatial Decompositions (PSD)
RAPPOR

Sampling Perturbation Algorithm (SPA)
Truncation

V-opt hist

Blocki et al. [[71]]

Li and Miklau [[72]
Raskhodnikova and Smith [[73]]
Barak et al. [74]

Zeng et al. [[75]]

Ghosh et al. [[76]

Kellaris and Papadopoulos [[77]
Lietal. [78]

Hardt et al. [[79]]

Chen et al. [80]]

Hardt and Rothblum [|81]]

Inan et al. [82]

Cormode et al. [|83]]

Erlingsson et al. [84]]

Rastogi and Nath [85]]
Kasiviswanathan et al. [|86]
Jagadish et al. [87]]

Table 7.6: Ledger for papers outside of the SLR.

From the family tree, we notice that there are several different lines of research
present. One frequently followed line of research is that started by Xu et al. [33]],
NF, SF, which addresses the issue of finding an appropriate histogram structure
(i.e. bin sizes) by creating a differentially private version of a v-optimal his-
togram. Essentially, EM is used to determine the histogram structure, and then
the Laplace mechanism is used to release the bin counts. The idea by Xu et al.

[33]] is followed by AHP, RG, SORTaki, IHP and mIHP.

The matrix mechanism (MM) is a building block that is used in PMost, BMax,
CiTM and DPPro. Apart from using the same release mechanism, they do not
share many similarities as also becomes apparent when comparing their exper-
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imental evaluation.

Only Pythia and DPCopula appears as orphaned nodes in the family tree. Pythia
is special in the sense that it is not a standalone algorithm, but rather provides
a differentially private way of choosing the ’best’ algorithm for a given data
set. DPCopula has a mathematical background in copula functions, which are
functions that describe the dependence between multivariate variables. This
approach of using copula functions is not encountered in any of the other pa-

pers.

To further put the algorithms into perspective, we explored which algorithms
were used in their experimental comparisons. The comprehensive matrix of
which algorithms are experimentally compared to each other in Table[7.7] This
complements the fact table (Table in addressing the question of when to
use an algorithm, as algorithms that are compared experimentally can be used
interchangeably for the same analysis. E.g, when NF is used, it can be swapped

with for example THP.

Internal External

Algorithm . .
Comparison Comparison

Boost - -

PMost, BMax - -

Privelet, Privelett, - -

Privelet™

EFPA, P-HP Boost, Privelet, NF,  SPA [85[], MWEM [[79]
SF

NF, SF Boost, Privelet -

DPCopula Privelett, P-HP FP [88]], PSD [83]]

CiT™M - -

PeGS, PeGS.rs

DPCube

Boost

Private Interactive ID3 [89],
Private Record Matching [82]
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PrivBayes

AHP
RG
ADMM

DSAT, DSFT

(6,92)-Histogram,
6-CumHisto

BPM
PrivTree

DPCocGen
SORTaki

Pythia, Delphi

Tru, Min, Opt

DPPro

T>‘

GGA
PriSH

IHP, mIHP

RCF

NF, SF, P-HP

Boost, EFPA, P-HP,

Privelet

Privelet™

PrivBayes

Boost

DSAT

Boost,EFPA, P-HP,
SF, AHP

Boost, NF
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FPA[74],
PrivGene [90],

ERM [91]
GS [77]

BA [18]], FAST [92]
LMM [78]l, RM [93]]

EdgeRemoval [[71],
Truncation [86],

FlowGraph [[73]]
EM [13]], Binary RR [70}, |84]
UG [94, 195 96], AG [94],

Hierarchy [95]], DAWA [97]]

n-grams [80]], Freqltem [75]],GS,

DAWA, DPT [98]
Private SVM [99Y],

PriView [100],
JTree [101]]

MWEM, DAWA
PSD, GS

SHP [102]

Table 7.7: Algorithms used in empirical comparisons, divided by internal (in-
cluded in the SLR) and external (excluded from the SLR) algorithms, sorted by

year of publication. Comparisons with the Laplace mechanism and the author’s

own defined baselines (such as optimal) have been excluded from the table.
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7.5.2 Categorization of Differentially Private Accuracy Improving

Techniques

We observe from the algorithms in the 27 papers, there are three different di-

mensions to accuracy improvement in the context of differential privacy: i)

total noise reduction, ii) sensitivity reduction and iii) dimensionality reduc-

tion.

i)

ii)

iif)

Total Noise Reduction On the one hand, a histogram is published as
statistical representation of a given data set (Goal I). On the other hand,
histograms are published as a way to approximate the underlying distri-
bution, which is then used to answer queries on the data set (Goal II). We
refer to the latter as universal histograms: terminology adapted from [29].
In this dimension, optimizing the noisy end result (i.e differentially pri-
vate histograms) provides opportunities for accuracy improvement.
Sensitivity Reduction The global sensitivity of histogram queries is not
small for graph data sets. Because, even a relatively small change in
the network structure results in big change in the query answer. The
accuracy improvement in this dimension follow from global sensitivity
optimization.

Dimensionality Reduction Publishing synthetic version of an entire data
set consists of building a private statistical model from the original data
set and then sampling data points from the model. In this dimension,
inferring the underlying data distribution from a smaller set of attributes

provides opportunities for accuracy improvement.

Dimension: Total Noise Reduction

In Table we summarize the distinct techniques/approaches of the state-of-

the-art from the point of view of reducing the total noise.
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Category Technique/Approach Algorithms Notes
Bi-partite BPM
Bisection P-HP
Bisection IHP, mIHP
MODL co-  DPCocGen
clustering [[103]]
Matrix decomposition Privelet™
Weighted combination AC Least Square
Method
Clustering Retroactive Grouping RG Thresholded
Selecting Top k EFPA
CiTM Key/foreign-key
Relationships
Min Query Overlap
SF V-optimality
NF
AHP V-optimality
(6,92)- V-optimality
Histogram

T Equi-width
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Category Technique/Approach Algorithms Notes
Frequency Calibration 6-CumHisto ~ Monotonicity
Property
Hierarchical Consis-  Opt
Consistency tency
Check Least Square Minimiza- Boost
tion
Least Square Minimiza- DPCube
tion
Realizable model CiTM Linear-time
Approximation
PMost Least Norm Prob-
lem
Binary Tree Boost
kd-tree DPCube V-optimality
Hierarchical Quadtree PrivTree
Decomposition Query Tree CiTM Correlation of -
Table Model
Sequential Partitions mIHP t-value
Reallocate Values f-CumHisto  Linear Regression,
Powerlaw & Uni-
Learning form distributions
True Rescaling Weights PriSH Query  Absolute
Distribution Error, Dependency

Constraints
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Category Technique/Approach Algorithms Notes
Composition rule-based ~ CiTM
Threshold-driven ~ Re-  DSAT, Adaptive-distance
lease DSFT Qualifier, Fixed-
Prlvacy distance Qualifier
Budget Threshold-driven  Re- GGA Fixed-distance
Optimization  Jease Qualifier
Weighted BPM
. Bernoulli Sampling RG
Sampling .
Data Recycling DRPP
Sorting AHP
) Wavelet Transform Privelet
Transformation

Fourier Transformation EFPA

Qualifying Weight PMost
Qualifying  Source-of- BMax
Threshold noise

Qualifying  Source-of- Tru

noise
Sanitization AHP
Wavelet Thresholding Privelet*

Table 7.8: Categorization of techniques/approaches used by each algorithm for
total noise reduction. Additional qualifiers of each techniques are captured as

notes.

> Goal I: When the goal is to publish some statistical summary of a given
data set as a differentially private histogram, histogram partitions play an
essential role in improving the accuracy of the end result. A histogram

partitioned into finer bins reduces approximation erro of the result, be-

XError caused by approximating the underlying distribution of data into histogram bins: intervals
covering the range of domain values.
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cause each data point is correctly represented by a bin. However, the
Laplace mechanism for histograms adds noise of scale A f /e to each his-
togram bin. In other words, a histogram that is structured to minimize the
approximation error, would suffer more noise in order to satisfy differen-

tial privacy.

The most common approach to enhance the utility for this goal, is to identify

optimal histogram partitions for the given data.

Algorithms P-HP, SF and (9,Q)-Histogram use the Exponential mechanism to find
V-optimal histogram [87] partitions. However, the quality of the partitions
drops as the privacy budget available for iterating the Exponential mechanism
decreases. Hence, algorithms NF, AHP, DPCocGen instead operate on the non-
optimized noisy histogram for identifying sub-optimal partitions for the final
histogram. To further improve the quality of the partitions that are based on the

non-optimized noisy histogram, in AHPsorting technique is used.

For the same goal described above, if the given data are bitmap strings then
one opportunity for accuracy improvement is to vary the amount of noise for
various histogram bins. Algorithm BPM uses a bi-partite cut approach to par-
tition a weighted histogram into bins with high average weight and bins with
low relative weight. Further, in BPM the privacy budget ¢ is carefully split be-
tween the bins such that the heavy hitters, i.e. bins with high count, enjoy less
noise. Algorithm AC uses weighted combination approach in terms of least
square method in order to find optimal histogram partitions. Sample expansion
through recycling the data points is another interesting approach for enhancing

the accuracy of histograms over bitmap strings.

In the case of dynamic data sets, it is desirable to sequentially release the statis-
tical summary of evolving data set at a given point in time. The most common
approach is to limit the release of histograms, when there is a change in the data
set for avoiding early depletion of privacy budget. Algorithms DSFT, DSAT and

GGA uses distance-based sampling to monitor significant updates to the input
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data set. In algorithm RG an adaptive sampling process uses Bernoulli sampling
for change detection in the data set. Further, in RG a novel histogram partition-
ing approach called retroactive grouping is introduced to enhance the accuracy
of the end result.

> Goal II: When the histograms are used to answer workload of allowable
queries. Laplace noise accumulates (sequential composition) as the num-
ber of queried histogram bins increases in order to answer the workload
(covering large ranges of domain values). However, if the answer to the
workload can be constructed by finding a linear combination of fewer

bins, then the accuracy of the final answer will be significantly improved.

Algorithms Boost, DPCube, PrivTree, CiTM and mIHP employ an approach, where
the domain ranges are hierarchically structured, typically in a tree structure. The
intuition is, to find the fewest number of internal nodes such that the union of
these ranges equals the desired range in the workload. To further improve the
accuracy in the context of sequential composition, algorithm CiTM uses com-
position rule-based privacy budget optimization. Transformation techniques
such as wavelet transform (Privelet) and Fourier transform (EFPA) are also used

to model linear combination of domain ranges.

Another approach to reduce the accumulate noise in the context of universal
histograms is to contain the total noise below a threshold. In BMax the maximum
noise variance of the end result is contained within a threshold.

Furthermore, constraints are imposed in the output space of possible answers,
which are then verified in the post-processing step to identify more accurate

answers in the output space.

Preserving the dependency constraint is important for answering range queries
over spatial histograms. To this end, in algorithm PriSH, true distribution of the
underlying data set is learned from private answers to carefully chosen infor-
mative queries. Separately, to estimate the tail distribution of the final noisy

histogram, algorithm ¢-CumHisto uses some prior distribution to reallocate count
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values.

Dimension: Sensitivity Reduction

In Table we summarize the distinct techniques/approaches of the state-of-
the-art from the point of view of reducing the global sensitivity.

Category  Technique/Approach Algorithms Notes

Neighbor Redefine CiT™M Propagation Constraints
Relation
. (6,Q2)-Histogram
Edge Addition Network Degree Bounded
s . /-CumHisto
Projection Edge Deletion ™ Mutual Connections Bounded

Table 7.9: Categorization of techniques/approaches used by each algorithms for
sensitivity reduction. Additional qualifiers of each techniques are captured as

notes.

In graph data sets, global sensitivity becomes unbounded, for example, change
in a node and its edges, in the worst case affects the whole structure (i.e involv-
ing all the nodes) of the network under node differential privacy. Bounding the
network degree is one of the common approaches for containing the global sen-
sitivity for analysis under node differential privacy. Techniques, edge addition
((6,90)-Histogram, #-CumHisto) and edge deletion (T*) are used to bound the size of
the graph. Consequently, the noise required to satisfy node differential privacy

will be reduced.

When there exists no standard neighborhood definition for the differential pri-
vacy guarantee in the light of correlated data structures. In the CiTM algorithm
that operates on relational databases with multiple relation correlations, the

neighbor relation is redefined.
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Dimension: Dimensionality Reduction

In Table[7.10} we summarize the distinct techniques/approaches of the state-of-

the-art from the point of view of reducing the data dimensions.

Category Technique/Approach Algorithms Notes
Consistency Eigenvalue Procedure [[104]  DPCopula
check
Projection Hashing Trick [[105] PeGS
Privacy Budget Reset-then-sample PeGS.rs
Optimization
Bayesian Network PrivBayes
Transformation = Copula Functions DPCopula
Random Projection DPPro Johnson-
Lindenstrauss
Lemma

Table 7.10: Categorization of techniques/approaches used by each algorithm
for data dimensionality reduction. Additional qualifiers of each techniques are

captured as notes.

The most common approach to accuracy improvement in this dimension is to
build statistical models that approximate the full dimensional distribution of the
data set from multiple set marginal distributions. Some of techniques to ap-
proximate joint distribution of a data set are Bayesian Network (PrivBayes) and
Copula functions (DPCopula). Furthermore, projection techniques from high-
dimensional space to low-dimensional sub-spaces are shown to improve accu-
racy as less noise is required to make the smaller set of low-dimensional sub-
spaces differentially private. Projection techniques found in the literature are,
feature hashing using the hashing trick (PeGS) and random projection based on

the Johnson-Lindenstrauss Lemma (DPPro).
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In DPCopula, eigenvalue procedure is used in the post-processing stage to achieve
additional gain in accuracy. Unexpectedly, reset-then-sample approach grouped
under privacy budget optimization algorithmic category appear in this dimen-
sion, because the PeGS.rs algorithm supports multiple synthetic data set instances.

Summary

Figure [/.4| summarizes the categorization of differentially private accuracy im-
proving techniques. Techniques identified in each accuracy improving dimen-
sions are grouped into specific categories. The algorithmic categories are fur-
ther partially sub-divided by the input data they support. Query answer relates
to the type of release rather than to the input data, but the assumption is that the
other mentioned data types, they implicitly specify the type of release.

The further the algorithmic category is located from the center of the circle, the
more common is that category in that particular accuracy improvement dimen-
sion. Subsequently, clustering is the most commonly employed category for the
total noise reduction dimension. Interestingly, same set of categories of accu-
racy improving algorithms are employed for dynamic data and bitmap strings,
in the context of total noise reduction dimension. Hierarchical decomposition,
consistency check and learning true distribution are primarily used in the con-
text of releasing a histogram for answering workload of queries. It should be
noted that the consistency check technique is used in the dimensionality reduc-

tion dimension as well but the usage of the technique is conditional.
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Figure 7.4: Conceptualization of accuracy improving techniques in the con-
text of differential privacy: Abbreviations: C: Clustering, CC: Consistency
Check, HD: Hierarchical Decomposition, LTD: Learning True Distribution,
NR: Neighborhood Redefine, P: Projection, PBO: Privacy Budget Optimiza-
tion, Thrs: Threshold, Trans: Transformation, Sa: Sampling, So: Sorting.
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7.6 Discussion and Open Challenges

One limitation of this paper is that the scope of our SLR is limited to papers
with empirical results. We have chosen empirical measurement of accuracy,
since it can provide a less pessimistic understanding of error bounds, as opposed
to analytical bounds. However, in our analysis (Section of the papers,
we studied related theoretical aspects of accuracy improvements and put the
surveyed papers into context by tracing their origin, illustrated in Figure
As such, we can guide the interested reader in the right direction, but we do not

provide an analysis of theoretical results.

Next (Section [7.6.1), we identify possible future work, mainly related to com-
posability of the different techniques. It is not clear exactly which techniques
compose, or how many techniques from each place that can be used to achieve
accuracy improvements. Hence, open challenges include both coming up with
new accuracy techniques for each place as well as combining techniques in
meaningful, composable ways. Last Section[7.6.2} we list the papers that were
excluded as part of our qualitative analysis.

7.6.1 Composability of Categories

From the dimensions identified in our analysis, we continue by investigating
how techniques from different categories may be composed. We also connect
the papers with the place [f|their algorithm operates on in Table

A B C D

Hay et al. [29] v
Ding et al. [30] v v
Xiao et al. [31]] v
Acs et al. [32] v v

*Places refers to different points in the workflow of a typical differentially private analysis, see

Figure
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A B C D

Xu et al. [33]] v
Li et al. [34] v

Lu et al. [35] v v

Park and Ghosh [36]] v v
Xiao et al. [37]] v
Zhang et al. [38]] v
Zhang et al. [39] e

Chen et al. [40] v
Lee et al. [41] v

Lietal. [42] v v
Day etal. [43] v e
Wang et al. [44] v
Zhang et al. [45]] v
Benkhelif et al. [46] v v
Doudalis and Mehrotra [47]] e

Kotsogiannis et al. [48] v v v
Wang et al. [49] v
Xu et al. [50] v

Ding et al. [51] v
Gao and Ma [52] v
Ghane et al. [53] v v
Li et al. [54] v

Nie et al. [55] v v

Table 7.11: Mapping the papers to each place where: A) Altering the query, B)

Post-processing, C) Change in mechanism, D) Pre-processing.

We believe a technique from one place is possible to compose with techniques
from another place, since the places are designed to be a sequential representa-
tion of the data analysis. An open challenge derived from Table[7.T1]is boosting
each algorithm’s accuracy by adding more techniques, either in a place which
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does not yet have any accuracy improvement, or together with the already ex-
isting techniques. For example, an algorithm that has improvement in place B
(post-processing) may be combined with place A, C and/or D. Similarly, it may
be possible to compose one technique from place B with another technique also

from place B.

Next, we will illustrate how composability is already achieved by giving a few

examples of how techniques are composed in the included papers.

Place A: Altering the Query

Altering the query targets sensitivity reduction, as sensitivity is a property of
the query. Our take away from the SLR is that there are mainly two tricks to

altering the query:

1. When an analysis requires a high sensitivity query, replace the query with
an approximate query, or break the query down into two or more sub-
queries.

2. Use sampling to avoid prematurely exhausting the privacy budget.

Item [T} For example, a histogram query is broken down into two separate
queries: a clustering technique based on the exponential mechanism and usu-
ally a Laplace counting query, as in the case with Xu et al. [[33]] and consecutive

work.

By breaking down the query, the sensitivity reduction can increase accuracy,
but it needs to be balanced against the source of accumulated noise that is in-
troduced by multiple queries. In particular, when breaking down a query, the
privacy budget needs to be appropriately distributed between the sub-queries.
For example, when breaking a histogram into a clustering query and then a
count query, one could choose to give more budget to the clustering step to find
a tighter histogram structure, but that would come at the cost of less accuracy

for the count query.
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Item 2} When an analysis is done on dynamic data, it is possible to unintention-
ally include the same data points in multiple queries, and ending up "paying’ for
them multiple times. Li et al. [42] mitigates this source of accumulated noise
by deploying sampling. It is also possible to use sampling for static data, for
example, Delphi by Kotsogiannis et al. [48] could be trained on a sample of the

full data set, if no public training data is available.

Place B: Post-processing

Post-processing targets fotal noise reduction, usually by exploiting consistency
checks or other known constraints. Since post-processing is done on data that
has been released by a differentially private algorithm, post-processing can al-
ways be done without increasing the privacy loss. However, post-processing can
still decrease accuracy if used carelessly. In our SLR, the main post-processing
idea is:

1. Finding approximate solutions to get rid of inconsistencies through con-
strained inference [29].

2. Applying consistency checks that would hold for the raw data.

Item|[T} Boost is already being combined with several algorithms that release his-
tograms, for example NF and SF. ADMM is a similar, but more generic solution
that has been applied to more output types than just histograms. In fact, Lee et
al. [41] claims ADMM can re-use algorithms use for least square minimization,
which means Boost should be possible to incorporate in ADMM. Consequently,
we believe ADMM would compose with most algorithms due to its generic na-

ture.

Place C: Change in the Release Mechanism

Changing the release mechanism mainly targets fotal noise reduction. In the

SLR, we found the following approaches being used:
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1. Test-and-release.

2. Sorting as an intermediary step.

Item DSAT and DSFT uses thresholding to determine when to release data, as a
way to save the privacy budget. Thresholding is particularly useful for dynamic
data, as it often requires multiple releases over time. For example, adaptive or
fixed thresholding can be used for sensor data and trajectory data, effectively

providing a way of sampling the data.

SF also uses a type of test-and-release when creating the histogram structure
using the exponential mechanism. The test-and-release approach means EM
can be combined with basically any other release mechanism, which is also
what we found in the literature. We believe the main challenge with EM is
finding an adequate scoring/utility function, and this is where we believe a lot

of accuracy improvement will come from.

Item [2] SORTaki is designed to be composable with two-step algorithms that re-
lease histograms, for example NF. The idea is that by sorting noisy values, they
can group together similar values that would otherwise not be grouped due to
the bins not being adjacent.

Place D: Pre-processing

Pre-processing generally targets dimensionality reduction or total noise reduc-

tion. In our SLR, we encountered the following types of pre-processing:

1. Encoding through projection/transformation.

2. Learning on non-sensitive data.

Item [T} Several algorithms project or transform their data, for example Privelet
and EFPA. Encoding can reduce both sensitivity and dimensionality by decreas-
ing redundancy, and is therefore especially interesting for multi-dimensional

as well as high-dimensional, sparse, data sets. However, lossy compression
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techniques can potentially introduce new sources of noise, and therefore adds
another trade-off that needs to be taken into account. Intuitively, lossy com-
pression is beneficial when the noise lost in the compression step is greater than
the proportion of useful data points lost. For example, sparse data may benefit

more from lossy compression than data that is not sparse.

Item [2} Delphi is a pre-processing step which uses a non-sensitive, public data
set to build a decision tree. In cases where public data sets are available, it
could be possible to adopt the same idea; for example learning a histogram
structure on public data as opposed to spending budget on it. The caveat here is
of course that the public data needs to be similar enough to the data used in the
differentially private analysis, because otherwise this becomes an added source
of noise. Thus, learning from non-sensitive data introduces another trade-off

that is still largely unexplored.

7.6.2 Incomparable papers

We present a list of papers that were excluded during our qualitative analysis,
and the reason for why we decided to exclude them in Section The rea-
son for excluding papers in the analysis step is that certain properties of their
algorithms make them incomparable with other algorithms.

[106]: The DP-FC algorithm does not consider the structure of a histogram a
sensitive attribute, and thus achieves a trivial accuracy improvement over
other algorithms.

[107]: The APG algorithm does not perform differentially private clustering,
and therefore achieves better accuracy by relaxing the privacy guarantees
compared to AHP, IHP and GS.

[108]: The SC algorithm uses the ordering of the bins in order to calculate the
cluster centers, but does not perturb the values before doing so, and thus
the order is not protected, making their guarantees incomparable.

[109]]: The Outlier-Histopub algorithm, similarly sorts the bin counts accord-
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[L10]:

[L1I:

[112]:

[[L13]:

ing to size, without using the privacy budget accordingly to learn this
information. The authors claim that this type of sorting does not violate
differential privacy, but due to the fact that the output is determined based
on the private data, the approach cannot be O-differentially private.

The ASDP-HPA algorithm does not describe the details of how their use
of Autoregressive Integrated Moving Average Model (ARIMA) is made
private, and thus we cannot determine whether the entire algorithm is
differentially private. Furthermore, the details of how they pre-process
their data set is not divulged, and it can thus not be determined if the
pre-processing violates differential privacy or not by changing the query
sensitivity.

The algorithm is incomplete, since it only covers the histogram partition-
ing, and does not involve the addition of noise to bins. Furthermore, it
is not clear whether they draw noise twice using the same budget, or if
they reuse the same noise for their thresholds. As the privacy guarantee ¢
cannot be unambiguously deduced, we do not include their paper in our
comparison.

The GBLUE algorithm generates a k-range tree based on the private data,
where k is the fanout of the tree. Since private data is used to decide on
whether a node is further split or not, it does not provide the same privacy
guarantees as the other studied algorithms.

The algorithm creates groups based on the condition that the merged bins
guarantee k-indistinguishability. Since this merge condition is based on
the property of the data it does not guarantee differential privacy on the

same level as the other papers, so we deem it incomparable.

Further, in the analysis regarding dimensions of accuracy improvement tech-

niques presented in Section some algorithms such as ADMM, SORTaki and

Pythia are excluded. The rationale behind the exclusion is, these algorithms are

not self contained, but nevertheless improves accuracy of the differentially pri-

vate answers when combined with other analyzed algorithms.

Efforts such as Pythia and DPBench [|114], that provide practitioners a way to em-
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pirically assess the privacy/accuracy trade-off related to their data sets are com-
mendable. However, to effectively use the tool one needs to have some back-
ground knowledge of the right combination of parameters to tune. In our anal-
ysis of the algorithms, we mapped out the accuracy improvement techniques
grouped by optimization goals and corresponding query size. This knowledge
will allow practitioners and researchers alike to think about other places to ex-
plore for accuracy improvement, rather than finding the algorithms that are
based only on their data. Essentially, we provide an understanding to enable

algorithm design, as opposed to algorithm selection.

7.7 Conclusions

Motivated by scarcity of works that structure knowledge concerning accuracy
improvement in differentially private computations, we conducted a systematic
literature review (SLR) on accuracy improvement techniques for histogram and

synthetic data publication under differential privacy.

We present two results from our analysis that addresses our research objective,
namely to synthesize the understanding of the underlying foundations of the
privacy/accuracy trade-off in differentially private computations. This system-

atization of knowledge (SoK) includes:

1. Internal/external positioning of the studied algorithms (Figure and
Table[7.7).

2. A taxonomy of different categories (Figure [7.4) and their corresponding
optimization goals to achieve accuracy improvement: total noise reduc-
tion (Table[7.8)), sensitivity reduction (Table[7.9) and data dimensionality
reduction (Table[7.10).

What’s more, we also discuss and present an overview of composable algo-
rithms according to their optimization goals and category, sort-out by the places,
in which they operate (Section[7.6.1)). Our intent is that these findings will pave



7.7. CONCLUSIONS 241

the way for future research by allowing others to integrate new solutions ac-
cording to the categories. For example, our places can be used to reason about
where to plug in new or existing techniques targeting a desired optimization
goal during algorithm design.

From our overview of composability, we see that most efforts are focused on
making changes in the mechanism, and on post-processing. We observe that,
altering the query in one way or another, is not popular, and we believe further
investigation is required to understand which techniques can be adopted in this

place.

Finally, although all algorithms focus on accuracy improvement, it is impossi-
ble to select the ’best’ algorithm without context. Intuitively, newer algorithms
will have improved some property of an older algorithm, meaning that newer
algorithms may provide higher accuracy. Still, the algorithms are used for dif-
ferent analyses, which means not all algorithms will be interchangeable. Sec-
ondly, many algorithms are data dependent, which means that the selection of
the "best’ algorithm may change depending on the input data used, even when
the analysis is fixed. Consequently, the ’best’ algorithm needs to be chosen
with a given data set and a given analysis in mind. The problem of choosing the
"best’ algorithm when the setting is known is in fact addressed by Pythia.
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