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DIGITAL COMPRESSION ON GPU 

by 
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ABSTRACT 

There has been a great progress in the field of graphics processors. Since, there is no rise in the 

speed of the normal CPU processors; Designers are coming up with multi-core, parallel 

processors. Because of their popularity in parallel processing, GPUs are becoming more and more 

attractive for many applications. With the increasing demand in utilizing GPUs, there is a great 

need to develop operating systems that handle the GPU to full capacity. GPUs offer a very 

efficient environment for many image processing applications. This thesis explores the processing 

power of GPUs for digital image compression using discrete cosine transform. 
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CHAPTER 1: INTRODUCTION 

The rapid growth of digital imaging applications, including desktop publishing, 

multimedia, teleconferencing, and high-definition television has increased the need for effective 

and standardized image compression techniques [29]. At the present state of technology, the only 

solution is to compress multimedia data before its storage and transmission, and decompress it at 

the receiver for play back. Image compression addresses the problem of reducing the amount of 

data required to present a digital image with acceptable image quality. The underlying basis of the 

reduction process is the removal of redundant data. If the process of redundancy removing is 

reversible, i.e. the exact reconstruction of the original image can be achieved, it is called lossless 

image compression; otherwise, it is called lossy image compression. Lossless compression is an 

error-free compression, but can only provide a compression ratio ranging between 2 to 10 [31]. 

On the other hand lossy image compression (irreversible compression) is based on compromising 

the accuracy of the recovered image in exchange for more compression. Scientific or legal 

considerations make lossy compression unacceptable for many high performance applications 

such as geophysics, telemetry, non-destructive evaluation, and medical imaging, which will still 

require lossless image compression [33]. Lossless compression is necessary for many high 

performance applications such as geophysics, telemetry, nondestructive evaluation, and medical 

imaging, which require exact recoveries of original images.  

For still image compression, the ‘Joint Photographic Experts Group’ or JPEG standard has 

been established by ISO (International Standards Organization) and IEC (International Electro-

Technical Commission). JPEG established the first international standard for still image 

compression where the encoders and decoders are DCT-based. The JPEG standard specifies three 

modes namely sequential, progressive, and hierarchical for lossy encoding, and one mode of 

lossless encoding.  
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Fractal image compression is a relatively recent image compression method which exploits 

similarities in different parts of the image. During more than two decades of development, the 

Iterated Function System (IFS) based compression algorithm stands out as the most promising 

direction for further research and improvement [30]. Another technique that is widely used is 

Vector Quantization. Vector quantization (VQ) is a relatively efficient coding technique used in 

digital image compression area. The image is partitioned into many blocks, and each block is 

considered as a vector. It provides many attractive features for image coding applications with 

high compression ratios [26]. One important feature of VQ is the possibility of achieving high 

compression ratios with relatively small block sizes. Another important advantage of VQ image 

compression is its fast decompression by table lookup technique.  

Since many image processing techniques have sections which consist of a common 

computation over many pixels, this fact makes image processing in general a prime topic for 

acceleration on the GPU [14].  Digital image processing (DIP) appears to be especially well-

suited to current GPU hardware and APIs, due to the graphical nature of the GPU's processing 

power. The GPU is especially well-suited to performing 2D convolutions and filters, as well as 

morphological operations. Furthermore, programming the GPU version of these algorithms is a 

straightforward process, allowing the developer to access pixel neighborhoods using a relative 

indexing paradigm rather than a complicated modular arithmetic scheme for referencing 2D array 

elements in main memory [6]. A GPU is no longer a fixed pipeline but is now better described as 

a SIMD parallel processor or a streaming processor [16].  

The evolution of consumer graphics cards in recent years has introduced the GPU as a 

flexible vector-processor capable of coloring, shading, etc. in parallel. In the most recent 

generations of Graphics Processing Units (GPUs), the capacities of per-pixel and texturing 

operations have greatly increased. Digital image processing algorithms should be a good fit for 

modern GPU hardware. Any digital image processing technique entails a repetitive operation on 
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the pixels of an image. Graphics processors are designed to perform a block of operations on 

groups of vertices or pixels, and they do this very efficiently.  

The Fourier transform is a well known and widely used tool in many image processing 

techniques, including filtering, manipulation, correction, and compression [16]. Implementing the 

FFT on the graphics card is relatively straightforward. Fourier domain processing is not currently 

done for real-time graphics synthesis because performing transforms on a CPU requires data to be 

moved to and from the graphics card, a serious bottleneck. However, the current generation of 

graphics cards has the power, programmability, and floating point precision required to perform 

the FFT efficiently.  

Fractal compression allows fast decompression but has long encoding times. The most time 

consuming part is the domain blocks searching from each range [11]. Ugo Erra presented a novel 

approach to perform fractal image compression on programmable graphics hardware, which is the 

first application that uses the GPU for image compression. Using programmable capabilities of 

the GPUs, the large amount of inherent parallelism and memory bandwidth are exploited to 

perform fast pairing search between portions of the image. 

Bo Fang, Guobin Shen, Shipeng Li, and Huifang Chen proposed several techniques that are 

presented for efficient implementation of DCT/IDCT on GPU which are using matrix 

multiplication [5]. The computation on GPU is achieved through one or multiple rendering 

passes. Among the proposed techniques, multiple channel technique makes the most contribution 

towards the final performance. It alone doubles the speed. This reveals that GPU is indeed good 

at parallel processing.  

The thesis continues as follows: Chapter 2 discusses basics of the digital compression. Next 

chapter, Chapter 3, gives a brief introduction about graphics processing unit (GPU). Chapter 4, 

presents the proposed fast compression techniques till now and Chapter 5 represents the 

approach, and implementing of DCT on GPU and a brief introduction to Cg programming 



  

 

4 

language. Chapter 6 represents experimental results. Chapter 7 represents the discussion and 

contributions. 
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CHAPTER 2: BASICS OF DIGITAL COMPRESSION 

Every day, an enormous amount of information is stored, processed, and transmitted 

digitally. Since much of this on-line information is graphical or pictorial in nature, the storage and 

communications requirements are immense. Uncompressed multimedia data requires 

considerable storage capacity and transmission bandwidth. Despite rapid progress in mass-storage 

density, processor speeds, and digital communication system performance, demand for data 

storage capacity and data-transmission bandwidth continues to outstrip the capabilities of 

available technologies. The recent growth of data intensive multimedia-based web applications 

have not only sustained the need for more efficient ways to encode signals and images but have 

made compression of such signals central to storage and communication technology. 

2.1. Why Do We Need Compression? 

Image compression addresses the problem of reducing the amount of data required to 

present a digital image with acceptable image quality. The underlying basis of the reduction 

process is the removal of redundant data [32]. Interest in image compression dates back more 

than 35 years. The initial focus on research efforts in this field was on development of analog 

methods for reducing video transmission bandwidth, a process called bandwidth compression. 

The advent of the digital computer and subsequent development of advanced integrated circuits, 

however, caused interest to shift from analog to digital compression approaches.  

Currently, image compression is recognized as an “enabling technology”. In addition to the 

areas just mentioned, image compression is the natural technology for handling the increased 

spatial resolutions of today’s imaging sensors and evolving broadcast television standards [32]. 

Furthermore, image compression plays a major role in many important and diverse applications, 

including televideo-conferencing, remote sensing, document and medical imaging, facsimile 

transmission (FAX), and the control of remotely piloted vehicles in military, space, and 

hazardous waste management applications. In short, an ever-expanding number of applications 
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depend on the efficient manipulation, storage, and transmission of binary, gray-scale, and color 

images. The examples in table below clearly illustrate the need for sufficient storage space, large 

transmission bandwidth, and long transmission time for image, audio, and video data. 

 

Table 2.1: Multimedia Data Items and Required Size and Transmission Time 

2.2. What Are The Principles Behind Compression? 

A common characteristic of most images is that the neighboring pixels are correlated and 

therefore contain redundant information. The foremost task then is to find less correlated 

representation of the image. Two fundamental components of compression are redundancy and 

irrelevancy reduction.  

Redundancy reduction aims at removing duplication from the signal source (image/video). 

Data redundancy is a central issue in digital image compression. It is not an abstract concept but a 

mathematically quantifiable entity. If 1n  and 2n denote the number of information-carrying units 

in two data sets that represent the same information, the relative data redundancy DR of the first 

data set can be defined as 

R
D C

R 11−=  
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where RC , commonly called the compression ratio, is 

2

1

n
n

CR = . 

In digital image compression, three basic data redundancies can be identified and exploited: 

coding redundancy, interpixel redundancy, and psychovisual redundancy. Data compression is 

achieved when one or more of these redundancies are reduced or eliminated.  

If the gray levels of an image are coded in a way that uses more code symbols than 

absolutely necessary to represent each gray level, the resulting image is said to contain coding 

redundancy. In general, coding redundancy is present when the codes assigned to a set of events 

have not been selected to take full advantage of the probabilities of the events. It is almost always 

present when an image’s gray levels are represented with a straight or natural binary code. 

In order to reduce the interpixel redundancies in an image, the 2-D pixel array normally 

used for human viewing and interpretation must be transformed into more efficient format.  

In case of psychovisual redundancy, certain information simply has less relative importance 

than other information in normal visual processing. This information is said to be psychovisually 

redundant. It can be eliminated without significantly impairing the quality of image perception. 

Psychovisual redundancy is fundamentally different from the redundancies discussed above. 

Unlike others, psychovisual redundancy is associated with real or quantifiable visual information. 

Its elimination is possible only because the information itself is not essential for normal visual 

processing. Since the elimination of psychovisual redundant data results in a loss of quantitative 

information, it is commonly referred to as quantization[1]. 

On the other hand Irrelevancy reduction omits parts of the signal that will not be noticed by 

the Human Visual System (HVS). In general, three types of redundancy can be identified which 

are Spatial Redundancy, Spectral Redundancy and Temporal Redundancy.  

Image compression research aims at reducing the number of bits needed to represent an 

image by removing the spatial and spectral redundancies as much as possible. 
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2.3. Image Compression Models 

Figure 2.1 shows a compression system, it consists of two distinct structural blocks: an 

encoder and an decoder. An input image ( )yxf ,  is fed into the encoder, which creates a set of 

symbols from input data. After transmission over the channel, the encoded representation is fed to 

the decoder, where a reconstructed output image ( )yxf ,ˆ  is generated. In general ( )yxf ,ˆ  may or 

may not be an exact replica of ( )yxf , . If it is, the system is error free or information preserving; 

if not, some level of distortion is present in the reconstructed image.  

The encoder is made up of a source encoder, which removes input redundancies and a 

channel encoder, which increases the noise immunity of the source encoder’s output. The decoder 

includes a channel decoder and followed by a source decoder. 

 

Figure 2.1 General Compression System Model 

The source encoder is responsible for reducing or eliminating any coding, interpixel, or 

psychovisual redundancies in the input image. Normally, the approach can be achieved by a 

series of three independent operations which are mapper, quantizer and symbol encoder. Each 

operation is designed to reduce one of the three redundancies.  

Mapper, which is generally reversible, transforms the input data into format deigned to 

reduce interpixel redundancies in the input image. The second stage quantizer block, which is 

used to reduce the psychovisual redundancies of the input image, reduces the accuracy of the 

mapper’s output in accordance with some preestablished fidelity criterion.  
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In the third and final stage of the source encoding process, the symbol coder creates a 

fixed- or variable-length code to represent the quantizer output and maps the output in accordance 

with the code. It assigns the shortest code words to the most frequently occurring output values 

and thus reduces coding redundancy.  

On the other hand, source decoder contains only two components, which are symbol 

decoder and inverse mapper. These blocks perform, in reverse order, the inverse operations of the 

source encoder’s symbol encoder and mapper blocks.  

The channel encoder and decoder are designed to reduce the impact of channel noise by 

inserting a controlled form of redundancy into the source encoded data. One of the most useful 

channel encoding techniques was devised by R.W. Hamming. It is based on appending enough 

bits to the data being encoded to ensure that some minimum number of bits must change between 

valid code words. The 7-bit Hamming (7, 4) code word 76521 hhhhh K  associated with a 4-bit 

binary number 0123 bbbb  is; 

0124

0132

0231

bbbh
bbbh
bbbh

⊕⊕=
⊕⊕=
⊕⊕=

          

07

16

25

33

bh
bh
bh
bh

=
=
=
=

 

To decode a Hamming encoded result, the channel decoder must check the encoded value 

for odd parity over the bit fields in which even parity was previously established. A single-bit 

error is indicated by nonzero parity word 124 ccc  where 

76544

76322

75311

hhhhc
hhhhc
hhhhc

⊕⊕⊕=
⊕⊕⊕=
⊕⊕⊕=

 

If a nonzero value is found, the decoder simply complements the code word bit position 

indicated by the parity word. The decoded binary value is then extracted from the corrected code 

word as 7653 hhhh .  
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2.4. Error-Free Compression 

Digital images commonly contain lots of redundant information, and thus they are usually 

compressed to remove redundancy and minimize the storage space or transport bandwidth. If the 

process of redundancy removing is reversible, i.e. the exact reconstruction of the original image 

can be achieved, it is called error-free or lossles image compression; otherwise, it is called lossy 

image compression. The techniques employed in error-free image compression are all 

fundamentally rooted in entropy coding theory and Shannon’s noiseless coding theorem, which 

guarantees that as long as the average number of bits per source symbol at the output of the 

encoder exceeds the entropy (i.e. average information per symbol) of the data source by an 

arbitrarily small amount, the data can be decoded without error. 

The problem with current entropy coding algorithms is that the alphabets tend to be large 

and thus lead to computationally demanding implementations. A general solution to this problem 

is to define several very simple coders that are nearly optimal over a narrow range of sources and 

adapt the choices of coder to the statistics of input data. Nowadays, the performances of entropy 

coding techniques are very close to its theoretical bound, and thus more research activities 

concentrate on decorrelation stage. 

For many applications error-free compression is the only acceptable means of data 

reduction, such as for documents, text and computer programs. The principle of the error-free 

compression strategies normally provides the compression ratios of 2 to 10. Moreover, they are 

equally applicable to both binary and gray-scale image. The error-free compression techniques 

generally consists of two relatively independent operations: (1) modeling, assign an alternative 

representation of the image in which its interpixel redundancies are reduced; and (2) coding, 

encode the representation to eliminate coding redundancies. These steps correspond with the 

mapping and symbol coding operation of the source coding model. 
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The simplest approach of error-free image compression is to reduce only coding 

redundancy. Coding redundancy normally is present in any natural binary encoding of the gray 

levels in an image and it can be eliminated by construction of a variable-length code that assigns 

the shortest possible code words to the most probable gray levels so that the average length of the 

code words is minimized.  

2.4.1. Huffman Coding 

Huffman coding is the most popular lossless compression technique. It is a statistical data 

compression technique which gives a reduction in the average code length used to represent the 

symbols of a alphabet. In fact, it assigns codes to input symbols such that each code length in bits 

is approximatively 2log  (symbol probability) [12].  

When coding the symbols of an information source individually, Huffman coding yields the 

smallest possible number of code symbols per source symbols. The first step in Huffman coding 

is to create a series of source reductions by ordering the probabilities of the symbols under 

consideration and combining the lowest probability symbols under into a single symbol that 

replaces them I the next source reduction. Figure 2.2 shows this process for binary coding.  

The second step in Huffman’s procedure is to code each reduced source, starting with the 

smallest source and working back t the original source.  
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Figure 2.2 Huffman Coding 

Huffman’s procedure creates the optimal code for a set f symbols and probabilities subject 

to the constraint that the symbols be coded one at a time. After the code has been created, coding 

and/or decoding can be done in a simple lookup table manner.  

2.4.2. Arithmetic Coding 

Arithmetic coding generates nonblock codes. In arithmetic coding, one-t-one 

correspondence between source symbols and code words does not exist, and code words are 

constructed by partitioning the range of numbers between zero and one. As each symbol is 

encoded, the range is decreased by the amount inversely proportional to the probability 

occurrence of the symbol. When the range is sufficiently narrow, the partitioning is terminated 

and the codeword is assigned a binary fraction which lies within the final range [26].  

2.4.3. LZW Coding 

Lempel-Ziv-Welch (LZW) coder, which was originally developed for text compression, 

has also been applied to signal compression. When a sequence of symbols matches a sequence 

stored in the dictionary, an index is sent rather than the symbol sequence itself. If no match is 

found, the sequence of symbols is sent without being coded and the dictionary is updated [26]. 

The image is encoded by processing its pixels in a left-to-right, top-to-bottom manner, and each 

successive gray-level value is concatenated with a variable.  
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2.4.4. Bit Plane Coding 

Another effective technique for reducing an image’s interpixel redundancies is to process the 

image’s bit planes individually. The technique, called bit-plane coding, is based on the concept of 

decomposing a multilevel image into a series of binary images and compressing each binary 

image via one of several well-known binary compression methods.  

2.4.5. Lossless Predictive Coding 

In case of Lossless Predictive coding, error-free compression approach does not require 

decomposition of an image into a collection of bit planes. This approach is based on eliminating 

the interpixel redundancies of closely spaced pixels by extracting and coding only the new 

information in each pixel. The new information of a pixel is defined as the difference between the 

actual and predicted value of that pixel.  

Figure 2.3 shows the basic components of a lossless predictive coding system. The system 

consists of encoder and decoder, and an identical predictor.  

 

Figure 2.3 Lossless Predictive Coding Model: encoder, decoder 
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2.5. Lossy compression 

Unlike the error-free approaches, lossy encoding is based on concept of compromising the 

accuracy of the reconstructed image in exchange for increased compression. If the resulting 

distortion can be tolerated, the increase in compression can be significant. The difference between 

these two approaches is the presence or absence of the quantizer block.  

2.5.1. What Does a Typical Image Coder Look Like in Lossy Compression? 

A typical lossy image compression system consists of three closely connected components 

namely, Source Encoder (or Linear Transformer), Quantizer, and Entropy Encoder. Compression 

is accomplished by applying a linear transform to decorrelate the image data, quantizing the 

resulting transform coefficients, and entropy coding the quantized values. 

 

 

Figure 2.4 A Typical Lossy Signal/Image Encoder 

More detailed and complex version of Figure 2.4 is illustrated by Figure 2.5. In Figure 2.5, 

a quantizer, that also executes rounding, is now added between the calculation of the prediction 

error ne and the symbol encoder. It maps ne to a limited range of values nq  and determines both 

the amount of extra compression and the deviation of the error-free compression. This happens in 

a closed circuit with the predictor to restrict an increase in errors. The predictor does not use 

ne but rather nq , because it is known by both the encoder and decoder [27].  
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Figure 2.5 Lossy Predictive Coding Model: encoder and decoder 

Here the quantizer, which absorbs the nearest integer function of the error-free encoder, is 

inserted between the symbol encoder and the point at which the prediction error is formed.  

2.5.2. Transform Coding 

In transform coding, a reversible, linear transform is used to map the image into a set of 

transform coefficients, which are then quantized and coded. For most natural images, a significant 

number of the coefficients have small magnitudes and can be coarsely quantized with little image 

distortion.  

Next figure illustrates a typical transform coding system. The decoder implements the 

inverse sequence of steps of the encoder, which performs four relatively straightforward 

operations, which are subimage decomposition, transformation, quantization and coding. The 

goal of transformation process is to decorrelate the pixels of each subimage, or to pack as much 

information as possible into the smallest number of transform coefficients. The quantization step 

then selectively eliminates or more coarsely quantizes the coefficients that carry the least 

information. The encoding process terminates by coding the quantized coefficients.  
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Figure 2.6 A Transform Coding System: encoder and decoder 

2.5.3. Wavelet Coding 

Wavelets are mathematical functions that cut up data into different frequency components, 

and then study each component with a resolution matched to its scale. They have advantages over 

traditional Fourier methods in analyzing physical situations where the signal contains 

discontinuities and sharp spikes. The fundamental idea behind wavelets is to analyze according to 

scale. Wavelet algorithms process data at different scales or resolutions. If we look at a signal 

with a large "window," we would notice gross features. Similarly, if we look at a signal with a 

small "window," we would notice small features.  

Before 1930, the main branch of mathematics leading to wavelets began with Joseph 

Fourier (1807) with his theories of frequency analysis, now often referred to as Fourier synthesis. 

He asserted that any 2π-periodic function f(x) is the sum 
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After 1807, by exploring the meaning of functions, Fourier series convergence, and 

orthogonal systems, mathematicians gradually were led from their previous notion of frequency 

analysis to the notion of scale analysis. That is, analyzing f(x) by creating mathematical structures 
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that vary in scale. The first mention of wavelets appeared in an appendix to the thesis of A. Haar 

(1909). One property of the Haar wavelet is that it has compact support, which means that it 

vanishes outside of a finite interval. Unfortunately, Haar wavelets are not continuously 

differentiable which somewhat limits their applications. 

Between 1960 and 1980, the mathematicians Guido Weiss and Ronald R. Coifman studied 

the simplest elements of a function space, called atoms, with the goal of finding the atoms for a 

common function and finding the "assembly rules" that allow the reconstruction of all the 

elements of the function space using these atoms. In 1980, Grossman and Morlet, a physicist and 

an engineer, broadly defined wavelets in the context of quantum physics. These two researchers 

provided a way of thinking for wavelets based on physical intuition.  

In 1985, Stephane Mallat gave wavelets an additional jump-start through his work in digital 

signal processing. He discovered some relationships between quadrature mirror filters, pyramid 

algorithms, and orthonormal wavelet bases (more on these later). Inspired in part by these results, 

Y. Meyer constructed the first non-trivial wavelets. Unlike the Haar wavelets, the Meyer wavelets 

are continuously differentiable; however they do not have compact support. A couple of years 

later, Ingrid Daubechies used Mallat's work to construct a set of wavelet orthonormal basis 

functions that are perhaps the most elegant, and have become the cornerstone of wavelet 

applications today. 

Like the transform coding techniques, wavelet is based on the idea that the coefficients of a 

transform that decorrelates the pixels of an image can be coded more efficiently than the original 

pixels themselves.  

Figure 2.7 shows a typical wavelet coding system. To encode a jj 22 × image, an 

analyzing wavelet, ψ, and minimum decomposition level, PJ − , are selected and used to 

compute the image’s discrete wavelet transform. 
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Figure 2.7 A Typical Wavelet Coding System:  encoder and decoder 

If the wavelet has a complimentary scaling function φ, the fast wavelet transform can be 

used. Decoding is accomplished by inverting the encoded operations – with the exception of 

quantization, which cannot be reserved exactly.  

 

Figure 2.9 Wavelet Transform of the Image “Lena” 

Wavelet Selection 

Deciding on the optimal wavelet basis to use for image coding is a difficult problem. A 

number of design criteria, including smoothness, accuracy of approximation, size of support, and 
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filter frequency selectivity are known to be important. However, the best combination of these 

features is not known. 

The simplest form of wavelet basis for images is a separable basis formed from translations 

and dilations of products of one dimensional wavelets. Using separable transforms reduces the 

problem of designing efficient wavelets to a one-dimensional problem, and almost all current 

coders employ separable transforms.  

The most widely used expansion functions for wavelet-based compression are the 

Daubechies wavelets and biorthogonal wavelets. For biorthogonal transforms, the squared error 

in the transform domain is not the same as the squared error in the original image [27]. As a 

result, the problem of minimizing image error is considerably more difficult than in the 

orthogonal case.  

Another factor affecting wavelet coding computational complexity and reconstruction error 

is the number of transform decomposition levels. Since a P-scale fast wavelet transform involves 

P filter bank iterations, the number of operations in the computation of the forward and inverse 

transforms increases with the number of decomposition levels. Moreover, quantizing the 

increasingly lower-scale coefficients that result with more decomposition levels impacts 

increasingly larger areas of the reconstructed image.  

The largest factor effecting wavelet coding compression and reconstruction error is 

coefficient quantization. The role of quantization is to represent this continuum of values with a 

finite — preferably small — amount of information. Obviously this is not possible without some 

loss. The quantizer is a function whose set of output values are discrete and usually finite (see 

Figure 2.8). Good quantizers are those that represent the signal with a minimum distortion. 

Figure 2.8 shows a useful view of quantizers as concatenation of two mappings. The first 

map, the encoder, takes partitions of the x-axis to the set of integers{ }2,1,0,1,2 −− . The second, 

the decoder, takes integers to a set of output values{ }kx̂ . We need to define a measure of 
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distortion in order to characterize “good” quantizers. We need to be able to approximate any 

possible value of x with an output value. 

 

Figure 2.8 (Left) Quantizer as a function whose output values are discrete. (Right) because 

the output values are discrete, a quantizer can be more simply represented only on one axis. 

Similarities and Dissimilarities of Wavelet Coding and Transfer Coding 

The fast Fourier transform (FFT) and the discrete wavelet transform (DWT) are both linear 

operations that generate a data structure that contains n2log  segments of various lengths, usually 

filling and transforming it into a different data vector of length n2 . Both transforms can be 

viewed as a rotation in function space to a different domain. For the FFT, this new domain 

contains basis functions that are sines and cosines. For the wavelet transform, this new domain 

contains more complicated basis functions called wavelets, mother wavelets, or analyzing 

wavelets. Also the basis functions are localized in frequency, making mathematical tools such as 

power spectra (how much power is contained in a frequency interval) and scalegrams (to be 

defined later) useful at picking out frequencies and calculating power distributions.  

The most interesting dissimilarity between these two kinds of transforms is that individual 

wavelet functions are localized in space. Fourier sine and cosine functions are not. This 

localization feature, along with wavelets' localization of frequency, makes many functions and 

operators using wavelets "sparse" when transformed into the wavelet domain. This sparseness, in 
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turn, results in a number of useful applications such as data compression, detecting features in 

images, and removing noise from time series.  

One way to see the time-frequency resolution differences between the Fourier transform 

and the wavelet transform is to look at the basis function coverage of the time-frequency plane.  

An advantage of wavelet transforms is that the windows vary. In order to isolate signal 

discontinuities, one would like to have some very short basis functions. At the same time, in order 

to obtain detailed frequency analysis, one would like to have some very long basis functions. A 

way to achieve this is to have short high-frequency basis functions and long low-frequency ones. 

This happy medium is exactly what you get with wavelet transforms.  

One thing to remember is that wavelet transforms do not have a single set of basis functions 

like the Fourier transform, which utilizes just the sine and cosine functions. Instead, wavelet 

transforms have an infinite set of possible basis functions. Thus wavelet analysis provides 

immediate access to information that can be obscured by other time-frequency methods such as 

Fourier analysis.  

2.6. Image Compression Standards 

Many of the lossy and error-free compression methods play important roles in popular 

image compression standards. Most of the standards are approved by the International 

Standardization Organization (ISO) and the consultative Committee of the International 

Telephone and Telegraph (CCITT). They address both binary and continuous-tone image 

compression, as well as both still-frame and video applications.  

2.6.1. Binary Image Compression Standards 

Two of the most widely used image compression standards are the CCITT Group 3 and 4 

standards for binary image compression. Despite of being currently utilized in a wide variety of 

computer applications, they were originally designed as FAX coding methods for transmitting 
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documents over telephone networks. Both standards use the same nonadaptive 2-D coding 

approach.  

Since the Group 3 and 4 standards are based on nonadaptive techniques, however, they 

sometimes result in data expansions. To overcome this and related problems, the Joint Bilevel 

Imaging Group (JBIG) has adopted and/or proposed several other binary compression standards, 

such as JBIG1 and JBIG2.  

2.6.2. Continuous Tone Still Image Compression Standards 

The CCITT and ISO have defined several continuous tone image compression standards. 

These standards addresses both monochrome and color image compression. In contrast to binary 

compression standards, continuous tone standards are based principally on the lossy transform 

coding techniques. The most well known still image compression standards are DCT-based JPEG 

standard and the recently proposed wavelet-based JPEG-2000 standard. 

JPEG defines three different coding systems. First one is a lossy baseline coding system, 

which is based on the DCT and is adequate for most compression applications. Second one is an 

extended coding system for greater compression, higher precision or progressive reconstruction 

applications, and the last one is a lossless independent coding system for reversible compression. 

Detailed information about JPEG standard will be given in next chapter. 

On the other hand, although not yet formally adopted, JPEG 2000 extends the initial JPEG 

standard to provide increased flexibility in both the compression of continuous tone still images 

and access to the compressed data. The standard is based on the wavelet coding techniques. 

Coefficient quantization is adapted to individual scales and subbands and the quantized 

coefficients are arithmetically coded on a bit-plane basis.  
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2.6.3. Video Compression Standards 

Video compression standards extend the transform-based, still image compression 

techniques of the previous section to include methods for reducing temporal or frame-to-frame 

redundancies. Depending on the intended application, the standards can be grouped into two 

broad categories, which are video teleconferencing standards and multimedia standards. Each 

video teleconferencing standard uses a motion-compensated, DCT-based coding scheme. 

Multimedia video compression standards for video use also similar motion estimation and coding 

techniques.  
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CHAPTER 3: INTRODUCTION TO GPU 

The rapid increase in the performance of graphics hardware, coupled with recent 

improvements in its programmability, have made graphics hardware a compelling platform for 

computationally demanding tasks in a wide variety of application domains. GPGPU stands for 

General-Purpose computation on GPUs. With the increasing programmability of commodity 

graphics processing units (GPUs), these chips are capable of performing more than the specific 

graphics computations for which they were designed. They are now capable coprocessors, and 

their high speed makes them useful for a variety of applications. Traditionally, graphics hardware 

has been optimized for a fixed functionality rendering pipeline that implements only the simple 

Phong lighting model, and rendering computation has been restricted to 8-bit fixed-point 

precision. Today’s GPUs have evolved into powerful and flexible streaming processors with fully 

programmable floating-point pipelines and tremendous aggregate computational power and 

memory bandwidth [25]. 

3.1. Why GPGPU? 

First reason is they are Powerful and Inexpensive. Not only is current graphics hardware 

fast, it is accelerating quickly and graphics hardware performance is roughly doubling every six 

months. Why is the performance of graphics hardware increasing more rapidly than that of 

CPUs? The disparity in performance can be attributed to fundamental architectural differences: 

CPUs are optimized for high performance on sequential code, so many of their transistors are 

dedicated to supporting non-computational tasks like branch prediction and caching. On the other 

hand, the highly parallel nature of graphics computations enables GPUs to use additional 

transistors for computation, achieving higher arithmetic intensity with the same transistor count.  

Second important reason is that GPUs are flexible and programmable. Modern graphics 

architectures have become flexible as well as powerful. Once fixed-function pipelines capable of 
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outputting only 8-bit-per-channel color values, modern GPUs include fully programmable 

processing units that support vectorized floating-point operations at full IEEE single precision.  

On the other hand it has its own limitations and difficulties. The GPU is hardly a 

computational panacea. The arithmetic power of the GPU is a result of its highly specialized 

architecture, evolved over the years to extract the maximum performance on the highly parallel 

tasks of traditional computer graphics. Today’s GPUs also lack some fundamental computing 

constructs, such as integer data operands. The lack of integers and associated operations such as 

bit-shifts and bitwise logical operations (AND, OR, XOR, NOT) makes GPUs ill-suited for many 

computationally intense tasks such as cryptography. Finally, while the recent increase in precision 

to 32-bit floating point has enabled a host of GPGPU applications; 64-bit double precision 

arithmetic appears to be on the distant horizon at best. The lack of double precision hampers or 

prevents GPUs from being applicable to many very large-scale computational science problems. 

GPGPU computing presents challenges even for problems that map well to the GPU, because 

despite advances in programmability and high-level languages, graphics hardware remains 

difficult to apply to non-graphics tasks. 

3.2. Overview of Programmable Graphics Hardware 

3.2.1 Overview of the Graphics Pipeline 

The application domain of interactive 3D graphics has several characteristics that 

differentiate it from more general computation domains. In particular, interactive 3D graphics 

applications require high computation rates and exhibit substantial parallelism. Building custom 

hardware that takes advantage of the native parallelism in the application, then, allows higher 

performance on graphics applications than can be obtained on more traditional microprocessors. 

All of today’s commodity GPUs structure their graphics computation in a similar 

organization called the graphics pipeline. This pipeline is designed to allow hardware 

implementations to maintain high computation rates through parallel execution. The pipeline is 
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divided into several stages; all geometric primitives pass through every stage. In hardware, each 

stage is implemented as a separate piece of hardware on the GPU in what is termed a task-

parallel machine organization. Figure 3.1 shows the pipeline stages in current GPUs.  

  

Figure 3.1 The modern graphics hardware pipeline. The vertex and fragment processor 

stages are both programmable by the user. 

The input to the pipeline is a list of geometry, expressed as vertices in object coordinates; 

the output is an image in a framebuffer. The first stage of the pipeline, the geometry stage, 

transforms each vertex from object space into screen space, assembles the vertices into triangles, 

and traditionally performs lighting calculations on each vertex. The output of the geometry stage 

is triangles in screen space.  

The next stage, rasterization, both determines the screen positions covered by each triangle 

and interpolates per-vertex parameters across the triangle. The result of the rasterization stage is a 

fragment for each pixel location covered by a triangle. The third stage, the fragment stage, 

computes the color for each fragment, using the interpolated values from the geometry stage. This 

computation can use values from global memory in the form of textures; typically the fragment 

stage generates addresses into texture memory, fetches their associated texture values, and uses 

them to compute the fragment color. In the final stage, composition, fragments are assembled into 

an image of pixels, usually by choosing the closest fragment to the camera at each pixel location. 
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3.2.2 Programmable Hardware 

As graphics hardware has become more powerful, one of the primary goals of each new 

generation of GPU has been to increase the visual realism of rendered images. The graphics 

pipeline was historically a fixed-function pipeline, where the limited number of operations 

available at each stage of the graphics pipeline was hardwired for specific tasks [18]. 

Over the past six years, graphics vendors have transformed the fixed-function pipeline into a 

more flexible programmable pipeline. This effort has been primarily concentrated on two stages 

of the graphics pipeline: the geometry stage and the fragment stage. In the fixed-function 

pipeline, the geometry stage included operations on vertices such as transformations and lighting 

calculations. In the programmable pipeline, these fixed-function operations are replaced with a 

user-defined vertex program. Similarly, the fixed-function operations on fragments that determine 

the fragment’s color are replaced with a user-defined fragment program.  

1999 marked the introduction of the first programmable stage, NVIDIA’s register combiner 

operations that allowed a limited combination of texture and interpolated color values to compute 

a fragment color. In 2002, ATI’s Radeon 9700 led the transition to floating-point computation in 

the fragment pipeline. The vital step for enabling general-purpose computation on GPUs was the 

introduction of fully programmable hardware and an assembly language for specifying programs 

to run on each vertex [LKM01] or fragment. This programmable shader hardware is explicitly 

designed to process multiple data-parallel primitives at the same time. As of 2005, the vertex 

shader and pixel shader standards are both in their third revision. The instruction sets of each 

stage are limited compared to CPU instruction sets; they are primarily math operations, many of 

which are graphics-specific. The newest addition to the instruction sets of these stages has been 

limited control flow operations.  

In general, these programmable stages input a limited number of 32-bit floating-point 4-

vectors. The vertex stage outputs a limited number of 32-bit floating-point 4-vectors that will be 
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interpolated by the rasterizer; the fragment stage outputs up to 4 floating-point 4-vectors, 

typically colors. Each programmable stage can access constant registers across all primitives and 

also read-write registers per primitive. The programmable stages have limits on their numbers of 

inputs, outputs, constants, registers, and instructions; with each new revision of the vertex shader 

and pixel [fragment] shader standard, these limits have increased. GPUs typically have multiple 

vertex and fragment processors. Fragment processors have the ability to fetch data from textures, 

so they are capable of memory gather. However, the output address of a fragment is always 

determined before the fragment is processed—the processor cannot change the output location of 

a pixel—so fragment processors are incapable of memory scatter. Vertex processors recently 

acquired texture capabilities, and they are capable of changing the position of input vertices, 

which ultimately affects where in the image pixels will be drawn. Thus, vertex processors are 

capable of both gather and scatter. Unfortunately, vertex scatter can lead to memory and 

rasterization coherence issues further down the pipeline. Combined with the lower performance 

of vertex processors, this limits the utility of vertex scatter in current GPUs. 

3.2.3. Introduction to the GPU Programming Model 

GPUs achieve high performance through data parallelism, which requires a programming 

model distinct from the traditional CPU sequential programming model. The stream 

programming model exposes the parallelism and communication patterns inherent in the 

application by structuring data into streams and expressing computation as arithmetic kernels that 

operate on streams.  

Because typical scenes have more fragments than vertices, in modern GPUs the 

programmable stage with the highest arithmetic rates is the fragment processor. A typical GPGPU 

program uses the fragment processor as the computation engine in the GPU. Such a program is 

structured as follows; first of all, the programmer determines the data-parallel portions of his 

application. The application must be segmented into independent parallel sections. Each of these 
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sections can be considered a kernel and is implemented as a fragment program. The input and 

output of each kernel program is one or more data arrays, which are stored in textures in GPU 

memory. In stream processing terms, the data in the textures comprise streams, and a kernel is 

invoked in parallel on each stream element. 

After this step has been executed, to invoke a kernel, the range of the computation must be 

specified. The programmer does this by passing vertices to the GPU. A typical GPGPU 

invocation is a quadrilateral (quad) oriented parallel to the image plane, sized to cover a 

rectangular region of pixels matching the desired size of the output array. Note that GPUs excel at 

processing data in two-dimensional arrays, but are limited when processing one-dimensional 

arrays. At next step, the rasterizer generates a fragment for every pixel location in the quad, 

producing thousands to millions of fragments. Then, each of the generated fragments is then 

processed by the active kernel fragment program. Here the important point is that every fragment 

is processed by the same fragment program. The fragment program can read from arbitrary global 

memory locations (with texture reads) but can only write to memory locations corresponding to 

the location of the fragment in the frame buffer. The domain of the computation is specified for 

each input texture (stream) by specifying texture coordinates at each of the input vertices, which 

are then interpolated at each generated fragment. Texture coordinates can be specified 

independently for each input texture, and can also be computed on the fly in the fragment 

program, allowing arbitrary memory addressing.  

And at last, the output of the fragment program is a value (or vector of values) per 

fragment. This output may be the final result of the application, or it may be stored as a texture 

and then used in additional computations. Complex applications may require several or even 

dozens of passes (“multipass”) through the pipeline. 
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3.2.4. GPU Program Flow Control 

Flow control is a fundamental concept in computation. Branching and looping are such basic 

concepts that it can be daunting to write software for a platform that supports them to only a 

limited extent. The latest GPUs support vertex and fragment program branching in multiple 

forms, but their highly parallel nature requires care in how they are used. This section surveys 

some of the limitations of branching on current GPUs and describes a variety of techniques for 

iteration and decision-making in GPGPU programs.  

There are three basic implementations of data-parallel branching in use on current GPUs 

which are named as predication, MIMD branching, and SIMD branching. Architectures that 

support only predication do not have true data-dependent branch instructions. Instead, the GPU 

evaluates both sides of the branch and then discards one of the results based on the value of the 

Boolean branch condition. The disadvantage of predication is that evaluating both sides of the 

branch can be costly, but not all current GPUs have true data-dependent branching support. The 

compiler for high-level shading languages like Cg or the OpenGL Shading Language 

automatically generates predicated assembly language instructions if the target GPU supports 

only predication for flow control.  

In Multiple Instruction Multiple Data (MIMD) architectures that support branching, different 

processors can follow different paths through the program. In Single Instruction Multiple Data 

(SIMD) architectures, all active processors must execute the same instructions at the same time. 

The only MIMD processors in a current GPU are the vertex processors of the NVIDIA GeForce 6 

and NV40 Quadro GPUs. All current GPU fragment processors are SIMD. In SIMD, when 

evaluation of the branch condition is identical on all active processors, only the taken side of the 

branch must be evaluated, but if one or more of the processors evaluates the branch condition 

differently, then both sides must be evaluated and the results predicated. As a result, divergence 

in the branching of simultaneously processed fragments can lead to reduced performance.  
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Because explicit branching can hamper performance on GPUs, it is useful to have multiple 

techniques to reduce the cost of branching. A useful strategy is to move flow-control decisions up 

the pipeline to an earlier stage where they can be more efficiently evaluated. 

On the GPU, as on the CPU, avoiding branching inside inner loops is beneficial. On the 

GPU, the computation is divided into two fragment programs: one for interior cells and one for 

boundary cells. The interior program is applied to the fragments of a quad drawn over all but the 

outer one-pixel edge of the output buffer. The boundary program is applied to fragments of lines 

drawn over the edge pixels. 

3.3. Programming Systems 

Successful programming requires at least three basic components: a high-level language for 

code development, a debugging environment, and profiling tools. CPU programmers have a large 

number of well-established languages, debuggers, and profilers to choose from when writing 

applications. Conversely, GPU programmers have just a small handful of languages to choose 

from, and few if any full-featured debuggers and profilers.  

Most high-level GPU programming languages today share one thing in common: they are 

designed around the idea that GPUs generate pictures. As such, the high-level programming 

languages are often referred to as shading languages. That is, they are a high-level language that 

compiles into a vertex shader and a fragment shader to produce the image described by the 

program.  

Cg, HLSL, and the OpenGL Shading Language all abstract the capabilities of the 

underlying GPU and allow the programmer to write GPU programs in a more familiar C-like 

programming language. They do not stray far from their origins as languages designed to shade 

polygons. All retain graphics-specific constructs: vertices, fragments, textures, etc. Cg and HLSL 

provide abstractions that are very close to the hardware, with instruction sets that expand as the 

underlying hardware capabilities expand. The OpenGL Shading Language was designed looking 
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a bit further out, with many language features (e.g. integers) that do not directly map to hardware 

available today. 

Sh is a shading language implemented on top of C++. Sh provides a shader algebra for 

manipulating and defining procedurally parameterized shaders. Sh manages buffers and textures, 

and handles shader partitioning into multiple passes. 

At last, Ashli works at a level one step above that of Cg, HLSL, or the OpenGL Shading 

Language. Ashli reads as input shaders written in HLSL, the OpenGL Shading Language, or a 

subset of RenderMan. Ashli then automatically compiles and partitions the input shaders to run 

on a programmable GPU.  

Looking up data from memory is done by issuing a texture fetch. The GPGPU program 

may conceptually have nothing to do with drawing geometric primitives and fetching textures, yet 

the shading languages described in the previous section force the GPGPU application writer to 

think in terms of geometric primitives, fragments, and textures. Instead, GPGPU algorithms are 

often best described as memory and math operations, concepts much more familiar to CPU 

programmers. Here are some programming systems that attempt to provide GPGPU functionality 

while hiding the GPU-specific details from the programmer.  

The Brook programming language extends ANSI C with concepts from stream 

programming. Brook can use the GPU as a compilation target. Brook streams are conceptually 

similar to arrays, except all elements can be operated on in parallel. Kernels are the functions that 

operate on streams. Brook automatically maps kernels and streams into fragment programs and 

texture memory.  

Scout is a GPU programming language designed for scientific visualization. Scout allows 

runtime mapping of mathematical operations over data sets for visualization.  

Finally, the Glift template library provides a generic template library for a wide range of 

GPU data structures. It is designed to be a stand-alone GPU data structure library that helps 
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simplify data structure design and separate GPU algorithms from data structures. The library 

integrates with a C++, Cg, and OpenGL GPU development environment.  

One of the most important tools needed for successful platforms is a debugger. Until 

recently, support for debugging on GPUs was fairly limited. The needs of a debugger for GPGPU 

programming are very similar to what traditional CPU debuggers provide, including variable 

watches, program break points, and  single step execution. GPU programs often involve user 

interaction. While a debugger does not need to run the application at full speed, the application 

being debugged should maintain some degree of interactivity. A GPU debugger should be easy to 

add to and remove from an existing application, should mangle GPU state as little as possible, 

and should execute the debug code on the GPU, not in a software rasterizer. Finally, a GPU 

debugger should support the major GPU programming APIs and vendor-specific extensions.  

A GPU debugger has a challenge in that it must be able to provide debug information for 

multiple vertices or pixels at a time. There are a few different systems for debugging GPU 

programs available to use, but nearly all are missing one or more of the important features. 

gDEBugger and GLIntercept [Tre05] are tools designed to help debug OpenGL programs. Both 

are able to capture and log OpenGL state from a program. gDEBugger allows a programmer to 

set breakpoints and watch OpenGL state variables at runtime. There is currently no specific 

support for debugging shaders. GLIntercept does provide runtime shader editing, but again is 

lacking in shader debugging support.  

The Microsoft Shader Debugger, however, does provide runtime variable watches and 

breakpoints for shaders. Unfortunately, debugging requires the shaders to be run in software 

emulation rather than on the hardware. While many of the tools mentioned so far provide a lot of 

useful features for debugging, none provide any support for shader data visualization or printf-

style debugging. The Image Debugger was among the first tools to provide this functionality by 

providing a printf-like function over a region of memory. The region of memory gets mapped to a 

display window, allowing a programmer to visualize any block of memory as an image. Also, the 
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Shadesmith Fragment Program Debugger was the first system to automate printf-style debugging 

while providing basic shader debugging functionality like breakpoints and stepping. Finally, 

Duca et al. have recently described a system that not only provides debugging for graphics state 

but also both vertex and fragment programs. 

3.4. GPGPU Techniques 

We already knew that stream programming model is a useful abstraction for programming 

GPUs. There are several fundamental operations on streams that many GPGPU applications 

implement as a part of computing their final results: map, reduce, scatter and gather, stream 

filtering, sort, and search.  

Given a stream of data elements and a function, map will apply the function to every element in 

the stream. The GPU implementation of map is straightforward. The result of the fragment 

program execution is the result of the map operation.   

Sometimes a computation requires computing a smaller stream from a larger input stream, 

possibly to a single element stream. This type of computation is called a reduction. On GPUs, 

reductions can be performed by alternately rendering to and reading from a pair of textures. On 

each rendering pass, the size of the output, the computational range, is reduced by one half. In 

general, we can compute a reduction over a set of data in ( )nO log  steps using the parallel GPU 

hardware, compared to ( )nO  steps for a sequential reduction on the CPU. For a two-dimensional 

reduction, the fragment program reads four elements from four quadrants of the input texture, and 

the output size is halved in both dimensions at each step.  

Two fundamental memory operations with which most programmers are familiar are write 

and read. If the write and read operations access memory indirectly, they are called scatter and 

gather respectively. A scatter operation looks like the C code d[a] = v where the value v is being 

stored into the data array d at address a. A gather operation is just the opposite of the scatter 

operation. The C code for gather looks like v = d[a].   
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The GPU implementation of gather is essentially a dependent texture fetch operation. 

Unfortunately, scatter is not as straightforward to implement. Fragments have an implicit 

destination address associated with them: their location in frame buffer memory. A scatter 

operation would require that a program change the frame buffer write location of a given 

fragment, or would require a dependent texture write operation.  

A sort operation allows us to transform an unordered set of data into an ordered set of data. 

Sorting is a classic algorithmic problem that has been solved by several different techniques on 

the CPU. Unfortunately, nearly all of the classic sorting methods are not applicable to a clean 

GPU implementation. The main reason these algorithms are not GPU friendly. Classic sorting 

algorithms are data-dependent and generally require scatter operations. Most GPU-based sorting 

implementations have been based on sorting networks. The main idea behind a sorting network is 

that a given network configuration will sort input data in a fixed number of steps, regardless of 

the input data. Additionally, all the nodes in the network have a fixed communication path. The 

fixed communication pattern means the problem can be stated in terms of gather rather than a 

scatter, and the fixed number of stages for a given input size means the sort can be implemented 

without data-dependent branching. This yields an efficient GPU-based sort, with an O(n log2 n) 

complexity. Sorting networks can also be implemented efficiently using the texture mapping and 

blending functionalities of the GPU.   

The last stream operation, search, allows us to find a particular element within a stream. 

Search can also be used to find the set of nearest neighbors to a specified element. Nearest 

neighbor search is used extensively when computing radiance estimates in photon mapping and in 

database queries. The simplest form of search is the binary search. This is a basic algorithm, 

where an element is located in a sorted list in ( )nO log  time. Binary search works by comparing 

the center element of a list with the element being searched for. The GPU implementation of 

binary search is a straightforward mapping of the standard CPU algorithm to the GPU. Binary 
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search is inherently serial, so we can not parallelize lookup of a single element.  Nearest neighbor 

search is a slightly more complicated form of search. In this search, we want to find the k nearest 

neighbors to a given element. On the CPU, this has traditionally been done using a k-d tree. 

Unfortunately, the GPU implementation of nearest neighbor search is not as straightforward. We 

can search a k-d tree data structure, but we have not yet found a way to efficiently maintain a 

priority queue. The important detail about the priority queue is that candidate neighbors can be 

removed from the queue if closer neighbors are found.  

3.4.1. Data Structures 

Effective GPGPU data structures must support fast and coherent parallel accesses as well as 

efficient parallel iteration, and must also work within the constraints of the GPU memory model. 

Before describing GPGPU data structures, let’s briefly describe the memory primitives with 

which they are built. To maintain parallelism, operations on these textures are limited to read-

only or write-only access within a kernel. Write access is further limited by the lack of scatter 

support. Outside of kernels, users may allocate or delete textures, copy data between the CPU and 

GPU, copy data between GPU textures, or bind textures for kernel access. Lastly, most GPGPU 

data structures are built using 2D textures for two reasons. First, the maximum 1D texture size is 

often too small to be useful and second, current GPUs cannot efficiently write to a slice of a 3D 

texture. C/C++ programming, algorithms are defined in terms of iteration over the elements of a 

data structure. Iteration over a dense set of elements is usually accomplished by drawing a single 

large quad. This is the computation model supported by Brook, Sh, and Scout. Complex 

structures, however, such as sparse arrays, adaptive arrays, and grid-of-list structures often 

require more complex iteration constructs. These range iterators are usually defined using 

numerous smaller quads, lines, or point sprites. The majority of data structures used thus far in 

GPGPU programming are random-access multidimensional containers, including dense arrays, 

sparse arrays, and adaptive arrays. In order to provide programmers with the abstraction of 
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iterating over elements in the virtual domain, GPGPU data structures must support both virtual-

to-physical and physical-to-virtual address translation.  

The most common GPGPU data structure is a contiguous multidimensional array. These 

arrays are often implemented by first mapping from N-D to 1D, then from 1D to 2D. Iteration 

over dense arrays is performed by drawing large quads that span the range of elements requiring 

computation. Brook, Glift, and Sh provide users with fully virtualized CPU/GPU interfaces to 

these structures.  

Sparse arrays are multidimensional structures that store only a subset of the grid elements 

defined by their virtual domain. Static Sparse Arrays can use complex, pre-computed packing 

schemes to represent the active elements because the structure does not change. We define static 

to mean that the number and position of stored (non-zero) elements does not change throughout 

GPU computation, although the GPU computation may update the value of the stored elements. A 

common application of static sparse arrays is sparse matrices. Dynamic sparse arrays are similar 

to static sparse arrays but support insertion and deletion of non-zero elements during GPU 

computation. An example application for a dynamic sparse array is the data structure for a 

deforming implicit surface. Multidimensional page table address translators are an attractive 

option for dynamic sparse (and adaptive) arrays because they provide fast data access and can be 

easily updated. 

Adaptive arrays are a generalization of sparse arrays and represent structures such as 

quadtrees, octrees, kNN-grids, and k-d trees. These structures non-uniformly map data to the 

virtual domain and are useful for very sparse or multiresolution data. Similar to their CPU 

counterparts, GPGPU adaptive address translators are represented with a tree, a page table, or a 

hash table. There are two types of adaptive arrays which are named as Static Adaptive arrays and 

Dynamic Adaptive arrays.  

GPGPU technique Differential equations arise in many disciplines of science and 

engineering. Their efficient solution is necessary for everything from simulating physics for 
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games to detecting features in medical imaging. Typically differential equations are solved for 

entire arrays of input. There are two main classes of differential equations: ordinary differential 

equations (ODEs) and partial differential equations (PDEs). An ODE is an equality involving a 

function and its derivatives. PDEs, on the other hand, are equations involving functions and their 

partial derivatives, like the wave equation. ODEs typically arise in the simulation of the motion of 

objects, and this is where GPUs have been applied to their solution.  

3.5. GPGPU Applications 

The use of computer graphics hardware for general-purpose computation has been an area 

of active research for many years. Pixar’s Chap was one of the earliest processors to explore a 

programmable SIMD computational organization, on 16-bit integer data. These early graphics 

computers were typically graphics compute servers rather than desktop workstations.  

The wide deployment of GPUs in the last several years has resulted in an increase in 

experimental research with graphics hardware. The earliest work on desktop graphics processors 

used non-programmable (“fixed-function”) GPUs. Programmability in GPUs first appeared in the 

form of vertex programs combined with a limited form of fragment programmability via 

extensive user-configurable texture addressing and blending operations. A major limitation of this 

generation of GPUs was the lack of floating-point precision in the fragment processors.  

3.5.1. Physically-Based Simulation 

Early GPU-based physics simulations used cellular techniques such as cellular automata 

(CA). Full floating point support in GPUs has enabled the next step in physically-based 

simulation: finite difference and finite element techniques for the solution of systems of partial 

differential equations (PDEs). Spring-mass dynamics on a mesh were used to implement basic 

cloth simulation on a GPU. Several researchers have also implemented particle system simulation 

on GPUs. Several groups have used the GPU to successfully simulate fluid dynamics. Related to 
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fluid simulation is the visualization of flows, which has been implemented using graphics 

hardware to accelerate line integral convolution and Lagrangian-Eulerian advection.  

3.5.2. Signal and Image Processing 

The high computational rates of the GPU have made graphics hardware an attractive target 

for demanding applications such as those in signal and image processing. The segmentation 

problem seeks to identify features embedded in 2D or 3D images. A driving application for 

segmentation is medical imaging. A common problem in medical imaging is to identify a 3D 

surface embedded in a volume image obtained with an imaging technique such as Magnetic 

Resonance Imaging (MRI) or Computed Tomograph (CT) Imaging. Fully automatic 

segmentation is an unsolved image processing research problem. Semi-automatic methods, 

however, offer great promise by allowing users to interactively guide image processing 

segmentation computations. GPGPU segmentation approaches have made a significant 

contribution in this area by providing speedups of more than 10× and coupling the fast 

computation to an interactive volume renderer. 
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CHAPTER 4: FAST COMPRESSION TECHNIQUES 

Some of the most common techniques that are used for image compression are JPEG image 

compression which DCT/IDCT [5] based image coding standard, Cellular Neural Networks [22], 

and fractal image compression [10, 30].  In most cases, image compression has to be processed in 

Real-Time. Unfortunately, the large amount of computation required by classical image 

compression algorithms prohibits the use of common sequential processors. On the other hand 

VLSI dedicated architectures have a main drawback of the impossibility of adaptation to the 

image to be treated. To solve this problem, a new parallel image compression algorithm is 

introduced which is able to be implemented on either SIMD or MIMD architecture [21]. It has 

been shown that compression algorithms based on Wavelet Transform, Vector quantization and 

Huffman Coding provide one of the best trade-off between compression rates and quality.  

 4.1. JPEG: DCT-Based Image Coding Standard 

The JPEG process is a widely used form of lossy image compression that centers on the 

Discrete Cosine Transform. The idea of compressing an image is not new. The discrete cosine 

transform (DCT) is a technique for converting a signal into elementary frequency components. It 

works by separating images into parts of differing frequencies. During compression step, the less 

important frequencies are discarded, hence the use of the term “lossy”. Then, only the most 

important frequencies that remain are used retrieve the image in the decompression process.  

It is widely used in image compression. Developed by Ahmed, Natarajan, and Rao [1974], 

the DCT is a close relative of the discrete Fourier transform (DFT). Its application to image 

compression was pioneered by Chen and Pratt [1984]. The discovery of DCT in 1974 is an 

important achievement for the research community working on image compression. It is a close 

relative of DFT, a technique for converting a signal into elementary frequency components. Thus 

DCT can be computed with a Fast Fourier Transform (FFT) like algorithm in ( )nnO log  
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operations. Unlike DFT, DCT is real-valued and provides a better approximation of a signal with 

fewer coefficients. The DCT of a discrete signal ( ) 1,,1,0, −= Nnnx K  is defined as: 

( ) ( ) ( ) ( )∑
−

=
⎟
⎠
⎞

⎜
⎝
⎛ +

=
1

0 2
12cos2 N

n N
unnxuC

N
uX π

 

where, C(u) = 0.707  for u = 0 and 

                    = 1  otherwise. 

Each element of the transformed list ( )uX  is the inner (dot) product of the input list ( )nx  

and a basis vector. The constant factors are chosen so that the basis vectors are orthogonal and 

normalized. The DCT can be written as the product of a vector (the input list) and the n x n 

orthogonal matrix whose rows are the basis vectors. Because the DCT uses cosine functions, the 

resulting matrix depends on the horizontal, diagonal, and vertical frequencies. Therefore an image 

black with a lot of change in frequency has a very random looking resulting matrix, while an 

image matrix of just one color, has a resulting matrix of a large value for the first element and 

zeroes for the other elements. 

The list ( )nx  can be recovered from its transform ( )uX  by applying the inverse cosine 

transform (IDCT): 
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where, C(u) = 0.707  for u = 0 and 

                    = 1  otherwise. 

The one-dimensional DCT is useful in processing one-dimensional signals such as speech 

waveforms. For analysis of two-dimensional (2D) signals such as images, we need a 2D version 

of the DCT. For an n x m matrix s, the 2D DCT is computed in a simple way: The 1D DCT is 

applied to each row of s and then to each column of the result. Thus, the transform of s is given 

by: 
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Since the 2D DCT can be computed by applying 1D transforms separately to the rows and 

columns, we say that the 2D DCT is separable in the two dimensions. To get the matrix form of 

equation, we will use the following equation: 

 

The columns of T form an orthonormal set, so T is an orthogonal matrix. When doing the 

inverse DCT the orthogonality of T is important, as the inverse of T is T` which is easy to 

calculate. Because the DCT is designed to work on pixel values ranging from -128 to 127, the 

original block is “leveled off” by subtracting 128 from each entry. Lets name the resulting new 

matrix as a M matrix. We are now ready to perform the Discrete Cosine Transform, which is 

accomplished by matrix multiplication. 

 TTMD ′=  

Here, matrix M is first multiplied on the left by the DCT matrix T from the previous 

section; this transforms the rows. The columns are then transformed by multiplying on the right 

by the transpose of the DCT matrix. 

This block matrix now consists of 2N  DCT coefficients. If we name the top-left 

coefficient as 00c , it correlates to the low frequencies of the original image block. As we move 

away from 00c  in all directions, the DCT coefficients correlate to higher and higher frequencies 

of the image block, where NNc  corresponds to the highest frequency. It is important to note that 
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the human eye is most sensitive to low frequencies, and results from the quantization step will 

reflect this fact.  

In 1992, JPEG established the first international standard for still image compression where 

the encoders and decoders are DCT-based. The JPEG standard specifies three modes namely 

sequential, progressive, and hierarchical for lossy encoding, and one mode of lossless encoding 

[28].  

Key processing steps in such an encoder and decoder for grayscale images are shown 

below figures. Color image compression can be approximately regarded as compression of 

multiple grayscale images, which are either compressed entirely one at a time, or are compressed 

by alternately interleaving 8x8 sample blocks from each in turn.  

 

Figure 4.1 JPEG Encoder Block Diagram 

 

Figure 4.2 JPEG Decoder Block Diagram 

The DCT-based encoder can be thought of as essentially compression of a stream of 8x8 

blocks of image samples. Each 8x8 block makes its way through each processing step, and yields 



  

 

44 

output in compressed form into the data stream. Because adjacent image pixels are highly 

correlated, the “forward” DCT (FDCT) processing step lays the foundation for achieving data 

compression by concentrating most of the signal in the lower spatial frequencies. For a typical 

8x8 sample block from a typical source image, most of the spatial frequencies have zero or near-

zero amplitude and need not be encoded. In principle, the DCT introduces no loss to the source 

image samples; it merely transforms them to a domain in which they can be more efficiently 

encoded. 

After output from the FDCT, each of the 64 DCT coefficients is uniformly quantized in 

conjunction with a carefully designed 64-element Quantization Table (QT). Quantization is the 

process of reducing the number of possible values of a quantity, thereby reducing the number of 

bits needed to represent it. Quantization is achieved by dividing each element in the transformed 

image matrix D by the corresponding element in the quantization matrix, and then rounding to the 

nearest integer value.  

⎟
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 On the other hand Dequantization, which maps the quantized value back into its original 

range (but not its original precision), is achieved by multiplying the value by the weight. At the 

decoder, the quantized values are multiplied by the corresponding QT elements to recover the 

original unquantized values.  

The quantized matrix C is now ready for the final step of compression. After quantization, 

it is quite common for most of the coefficients to equal zero. JPEG takes advantage of this by 

encoding quantized coefficients in the zig-zag sequence. This ordering helps to facilitate entropy 

encoding by placing low-frequency non-zero coefficients before high-frequency coefficients. The 

DC coefficient, which contains a significant fraction of the total image energy, is differentially 

encoded. 
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Figure 4.3 Zig-zag Sequence 

Entropy coding is a technique for representing the quantized data as compactly as possible. 

Entropy Coding (EC) achieves additional compression losslessly by encoding the quantized DCT 

coefficients more compactly based on their statistical characteristics. The JPEG proposal specifies 

both Huffman coding and arithmetic coding.  The baseline sequential codec uses Huffman 

coding, but codecs with both methods are specified for all modes of operation. Arithmetic coding, 

though more complex, normally achieves 5-10% better compression than Huffman coding. 

In the case of decompression, reconstruction of image begins by decoding the bit stream 

representing the quantized matrix C. Each element of C is then multiplied by the corresponding 

element of the quantization matrix originally used.  

jijiji CQR ,,, ×=  

The IDCT is next applied to matrix R, which is rounded to the nearest integer. Finally, 128 

is added to each element of that result, giving us the decompressed JPEG version N of original 

8x8 image block M.  

( ) 128+′= RTTroundN  

Here are some sample images that are taken from [28] on which DCT and IDCT are 

implemented. 
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Figure 4.4 Pepper – original image  Figure 4.5 DCT of Peppers 

  

Figure 4.6 Quality 20 - 91% Zeros  Figure 4.7 Quality 10 – 94% Zeros 

4.2. Image Compression Based on Vector Quantization 

For compression purpose, a new approach called FTVQ (fast transformed vector 

quantization) was proposed, combining together the features of speed improvement, transform 

coding and vector quantization. Speed improvement was achieved by fast Kohonen self-

organizing neural network algorithm [31]. 

Most compression algorithms are either based on transformation first, followed by scalar 

quantization and coding; or by direct vector quantization of the original image. Vector 

quantization (VQ) is a relatively efficient coding technique used in digital image compression 
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area. The image is partitioned into many blocks, and each block is considered as a vector. Next 

figure is used to illustrate this process.  

 

Figure 4.8 Image partitioned into blocks 

One important feature of VQ is the possibility of achieving high compression ratios with 

relatively small block sizes. Another important advantage of VQ image compression is its fast 

decompression by table lookup technique. Neural network approaches have been used for pattern 

classification and data clustering. It is possible to apply the training algorithm of neural networks 

to the design of appropriate codebook which maximizes the SNR values of reconstructed image.  

Kohonen’s self-organizing algorithm classifies inputs into groups that are similar. 

Kohonen’s standard approach produced very good results in terms of image quality and level of 

compression; however, there is a big disadvantage in terms of long training time.  

The basic idea of fast version of the Kohonen’s neural network called FKA (fast Kohonen 

algorithm) is choosing winning nodes based on Euclidean distance and weight adjusting based on 

input samples are retained.  

4.2.1. Fast Transformed Vector Quantization (FTVO) 

The approach starts by mapping the original image data into the frequency domain by an 

application of a transform such as DCT. Then the produced transformed coefficients are used as 

vector components and can be vector quantized. After vector quantizing, the quantizer output are 
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inverse transformed to produce the quantized approximation of the original input image. There is 

an advantage that can be obtained by combining transform coding and vector quantization. To 

understand how this is possible, it needs to be considered the transform coefficients and their 

distribution in the frequency domain. When a linear transform is applied to the original vector 

signal, the information is compacted into a subset of the vector components. DCT maps data from 

the spatial domain to the frequency domain which often results in that the high energy 

components would be concentrated in the low frequency region. This means that the transformed 

vector components in the higher frequency regions have very little information.  

The low energy components after DCT transform, which account for a certain percentage 

of all transformed components, were truncated from each subimage; leaving only the high energy 

components. The truncated transformed image was then vector quantized. In our approach, the 

vector quantization part is implemented using fast neural network algorithm.  

FTVQ is better than VQ in terms of both image quality and training speed. The reason for 

this is that the truncated transformed image has less complexity in sample space. Therefore, fewer 

output nodes are needed to recover the image than that required by VQ. When we look at images 

being compressed, FTVQ result emphasized low frequency information while the overall PSNR 

ratio is better than that of VQ. The VQ result has a relatively coarse image, and its fidelity is not 

as good as that of FTVQ. Next figure shows an image after standard vector quantization.  

 

Figure 4.9 Quantization 
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4.3. Fractal Image Compression 

In fractal image compression the encoding step is computationally expensive. A large 

number of sequential searches through a list of domains (portions of the image) are carried out 

while trying to find a best match for another image portion [10]. Dietmar proposed that basic 

procedure of fractal image compression is equivalent to multi-dimensional nearest neighbor 

search. And also, this result is useful for accelerating the encoding procedure in fractal image 

compression.  

Fractal compression is a lossy compression method introduced by Barnsley and Sloan for 

compactly encoding images. The main idea of fractal compression is to exploit local self-

similarity in images. This permits a self-referential description of image data to be yielded. To 

find the best matching image portion for each part is known to be the most time consuming part 

and numerous strategies have been presented to speed-up encoding. On the other hand, fractal 

image compression offers interesting features like fast decoding, independent-resolution and good 

image quality at low bit-rates which is useful for off-line applications.  

Here, to improve the coding speed, range block and self-similarity domain block are 

divided into four classes according to the complexity of blocks: smooth child-block, medium 

complicated child-block, simple edge child-block and blend edge child-block. In this method, the 

self-similarity of fractal image coding as expanded from 2D to 3D, the error between fractal 

collage image and the original image is reduced greatly, Signal-to-Noise Ratio and compressive 

ratio are increased greatly, so it is a kind of practical compression method. The coding speed of 

fractal coding method based on Notably Irrelevant Check is obviously faster than that of fractal 

coding method based on child-block classification, with the PSNR of decoded image has no 

distinct decrease. The result is smooth, and there is no obvious square effect, and the compressive 

ratio is improved. There are also fast fractal image compression, in which fractal dimension 

image segmentation method based on visual characteristic has high compressive ratio, and 



  

 

50 

hierarchy fractal image compression methods. Ugo Erra presented a novel approach to perform 

fractal image compression on programmable graphics hardware, which is the first application that 

uses the GPU for image compression [11].  

Using programmable capabilities of the GPUs, the large amount of inherent parallelism and 

memory bandwidth are exploited to perform fast pairing search between portions of the image. 

Mapping fractal compression on the GPU happens in this way; in order to exploit the specialized 

nature of the GPU and its restricted programming model we must map the fractal compression as 

a streaming computation. The goal is to perform pairings test between range and domain 

exploiting parallel architecture of the GPU and high bandwidth access to pixels. The entire 

process uses a gray level image as input data and returns the textures TPOS with the position of 

optimal domain blocks and TSO with scaling/offset coefficients as outputs. Using a 

producer/consumer scheme is the main idea of the technique. The producer gathers from the 

domain pool a block which is broadcasted to all consumers that are the ranges. Each range stores 

the current domain as soon as it appears as the best pairing block. The entire process continues 

until all domain blocks have been consumed. In this scenario, a pixel appears as a single floating-

point processor responsible for only one range. Then, the GPU mimics a computational grid 

rendering a sized-range rectangular upon which performs parallel pairing test among all the 

ranges for a given domain. The results are also pretty satisfactory, the CPU version takes about 

280 seconds to perform all pairing test whereas the GPU version takes about 1 second. Then, the 

amount of paring test that the GPU is capable to perform is about 64 millions per second whereas 

the CPU performs about 220 thousands paring test per second.  

Spiral Architecture (SA) is another technique that recently Fractal Compression is used 

with [30]. SA is a novel image structure on which images are displayed as a collection of 

hexagonal pixels. The selection of range and domain blocks for fractal image compression is 

highly related to the uniform image separation specific to SA. It is inspired from anatomical 

considerations of the primate’s vision. On Spiral Architecture, an image is a collection of 
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hexagonal picture elements as shown in Figure 4.10. The numbered hexagons form the cluster of 

size 7n. In the case of human eye, these elements (hexagons) would represent the relative position 

of the rods and cones on the retina.  

 

Figure 4.10 Spiral Architecture with spiral addressing 

On Spiral Architecture, an image can be partitioned into a few sub-images each of which is 

a scaled down near copy of the original image. Namely, each sub-image holds all the 

representative intensity information contained in the original. The points in the original image 

first were reallocated into a few groups, sub-images. The similar pixel intensity was found 

between the corresponding points in the different sub-images. Then, one sub-image was chosen 

as the reference image, and the intensity difference between the reference image and other sub-

images was computed. After that, the information of the original image was coded by recording 

only the reference sub-image and the intensity difference information.  

Figure 4.11 is used to test the algorithm, and Figure 4.12 and 4.13 show the original testing 

image represented on SA and the resulted decompressed image. 
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Figure 4.11 Testing Images: Building and boat 

 

Figure 4.12 Original and compressed ‘building’ in SA 

 

Figure 4.13 Original and compressed ‘boat’ in SA 

There are many ways to improve Fractal Image compression on SA for future work. . An 

adaptive Fractal Image Compression method that uses different sizes for different range blocks 

(and domain blocks) is another research direction to further enhance the compression 

performance. Parallel processing is another potential approach to increase the computation speed 
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and this can be performed through the uniform image separation on SA using a spiral 

multiplication [30].  
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CHAPTER 5: IMPLEMENTATION OF DCT ON GPU 

5.1. Approach 

In this chapter we would like to show how to implement the forward and inverse discrete 

cosine transform (DCT) using fragment routines. The DCT can be implemented on 8x8 pixel 

blocks which is used as the basis for JPEG compression. Also, 16x16 pixel blocks were tried to 

be implemented but because of the limitations of the Cg data types, which supports vectors up to 

size of four, the desired results were not satisfactory. The implementation platform was the 

GeForce FX 5900 Ultra AGP GPU card, and Cg (C for Graphics) was used as a programming 

language. 

5.2. Technique 

To compress the images, DCT based JPEG image compression technique is used. Most of 

the compression techniques, those are implemented till now, are CPU based, however using the 

efficient power of GPU, we can make it much faster.  

Discrete cosine transform (DCT) is a well-known signal processing tool widely used in 

compression standards due to its compact representation power. During compression stage, the 

image is divided into NXN blocks,  

 

Figure 5.1 2-D DCT 

As you see in the Figure 5.2, 2-D DCT can be obtained by first performing 1-D DCT of the 

rows in the matrix, lets name is as X, followed by 1-D DCT of the columns in the calculated 

matrix in the first 1-D DCT.  After calculating each coefficient according to, 

image 1-D DCT 1-D DCT 2-D DCT 
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The compression is achieved by quantizing small value coefficients to zero. Computing 

each DCT coefficient according to equations (5.1-5.2) in a block of 8x8 pixels, requires 4096 

additions and 4096 multiplications for the whole block. This is too much for a hardware 

implementation, even if we use GPU as a processor.  

There are several fast methods for computing the DCT. One of them is ANN which is 

proposed by Arai, Agui and Nakajima. Arai, Agui and Nakajima showed in 1988 that an 8-point 

DCT could be reduced to only 13 multiplications and 27 additions. This version of the DCT, 

called ANN, is the fastest one known until now. Figure 5.3 show the flowgraph of the 1-D DCT. 

Black dots in the graph represent additions, arrows are multiplications by -1 and boxes are 

multiplications.  
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Figure 5.2.1 signal flow graph for fast (scaled) 8-DCT according to Arai, Agui, Nakajima 

 

Figure 5.2.2 signal flow graph for fast (scaled) 8-DCT according to Arai, Agui, Nakajima 

Previous algorithm is used to compute coefficients according to ANN's algorithm as shown 

in Appendix A. Calculation of coefficients are programmed by Cg program. It is called through 

VC++ programming platform. Figure 5.4 illustrates how shader operates on the each row of DCT.  
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Figure 5.3 Partitioning the odd and even parts of DCT 

To able to communicate with Cg program, first off all we have to initialize the Cg. 

DCT_GPU class was created to initialize the Cg as shown in Appendix B. During initializing, 

forward discrete cosine transform, inverse discrete cosine transform and quantization programs 

were created and loaded to processor. After initializing stage, next stage is the loading the image 

to the image buffer on GPU. Loading of the image was also coded by DCT_GPU class as shown 

in Appendix B. 

After creation of the programs, to able to perform forward discrete cosine transform, we 

should activate the specific program. Activation was done by calling cgGLBindProgram() 

function through FDCT(RenderTexture *src, RenderTexture *dest) as shown in Appendix B.  
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Unpacking of the rows and columns follows the forward DCT stage, because we need to 

rearrange data into correct order. When it comes to partition the DCT, Render shader gets the 

1/8th of the width or height and returns the corrected data. Then shader reads 8 neighboring texels, 

and writes outputs to RGBA components of two render target using MRT.  

After FDCT is done, next stage is the quantization. Default quantization level is defined as 

2.0. Here, again as we did during FDCT, we called the Quantize(RenderTexture *src, 

RenderTexture *dest, float quantize_level) function through DCT_GPU class as shown in 

Appendix B. Quantize function activated the quantized program which was already created 

during initializing of the Cg.  

After Quantization is done now data should be unpacked on subsequent passes during the 

process of IDCT. Again 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D 

IDCT on each row. To calculate quantized coefficients again AAN method is used. The inverse 

ANN is obtained from the right to left in the flowgraph in Figure 5.3. During IDCT, again rows 

and columns were divided into two passes as done during DCT. This process also implemented 

by using Cg as shown in Appendix C. And at last, we unpacked the columns and rows to convert 

greyscale image packed into 2 RGBA textures into a single image 8 times as wide.  
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CHAPTER 6: RESULTS 

By defining glutInitWindowSize (512,512), at the same time we also define the limits of 

the pixels that we are going to compress. If we want to compress an image bigger than 512x512, 

we should change this command line to this, 

 glutInitWindowSize(1024, 1024); 

or; 

 glutInitWindowSize(2048, 2048). 

Program was tested on nine pictures, with sizes from 90Kb to 300Kb. Other then child.png 

image all of the other images were 512x512 pixel size, child.png is 256x256 pixel size. 

Unfortunately, program supports only the “png” type images for now.  

Figure 5.5 shows the command window; 
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Figure 5.4 Program View 

 

And next figure shows a demonstration of the program; 
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Figure 5.5 Demo Output of the Compression Program 

6.1. Test Images 

Next figures show the resulting images after DCT and IDCT transforms; 
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Figure 5.14 eye.png   Figure 5.15 After IDCT 

  

Figure 5.14 Comic.png    Figure 5.15 After IDCT 

 

  

Figure 5.14 Child.png    Figure 5.15 After IDCT 
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Figure 5.13 Original Image – serpil2.png 
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 Figure 5.14 After DCT    Figure 5.15 After IDCT 

 

 

 

Figure 5.16 Original Image – serpil3.png 
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 Figure 5.17 After DCT    Figure 5.18 After IDCT 

 

As a result we can conclude that, when the image’s pixel depth is larger, it gives much 

better results. If want to compare the images with the same pixel size, such as 512x512, we can 

say that if the color distribution through the pixels doesn’t vary too much, we get more 

satisfactory results. For example, if we compare eye.png and serpil3.png, we see uncompressed 

eye.png is much closer to original image.  

 Image Size GPU Time CPU Time 

Child.png 66 K, 256x256 .003541 .014629 

Untitled.png 92 K, 512x512 .011968 .058296 

Untitled2.png 190 K, 512x512 .011975 .058233 

Comic.png 213 K, 512x512 .011975 .05826 

Ocean.png 240 K, 512x512 .011971 .058381 

Serpil2.png 253 K, 512x512 .011970 .08332 

Eye.png 260 K, 512x512 .01198 .054871 
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Serpil3.png 275 K, 512x512 .01197 .05833 

Untitled1.png 308 K, 512x512 .01198 .058326 

Table 6.1 Time consuming of the GPU and CPU usage over the whole program 
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Chart 6.1 Proportional Time consumed according to size of an image 

As we can see from the chart and table also, when size of the image increases CPU time 

also increases. On the other hand, increment of the size doesn’t affect the GPU timing, because it 

is already so small. As we can see even uploading of the image takes more time then the whole 

GPU process, so implementing the image compression on GPU is a great achievement for saving 

of processing time.  
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CHAPTER 7: CONCLUSION 

By this thesis we explored the processing power of GPUs for digital image compression 

using discrete cosine transform. Experimental results showed that GPU gave almost five times 

faster results than CPU did. We used Cg programming language as a shader language, and used 

VC++ 7.1 as an interface between user and the GPU. Cg program was called by a C++ function.  

At the sight of experimental results we became sure that GPU’s efficient processing power 

and algorithms are good fit for implementing Digital Image Processing Standards. For making the 

program even more efficient ANN algorithm is used to calculate the coefficients of the DCT 

compression. And using the shaders at the stage of partitioning of the DCT blocks with Cg 

programming language helped us at saving the most of the processing time. But it is still not 

perfect, because Cg has its own limitations also, it is not developed for general purpose 

programming completely. If we want to compress the image with 16x16 blocks, since Cg doesn’t 

let us to use vector of size 8, it would be much more complicated. 

If we can also do color space conversion by using GPU, it would be very helpful, because 

right now user has to convert the image to grayscale outside the program by using another 

application. First I though about calling some Matlab functions for color space conversion from 

C++ files, but when I install the Cg and the Matlab together at the same Pc, somehow system just 

confuses up and Mablab doesn’t let Cg to do its part.  

Another limitation with this program is that it can only compress *.png files, at future 

applications if we can expand the type of the input image, it can be more useful. Because not 

everybody wants to work with only png files. 
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APPENDIX 

APPENDIX A  

float4 DCT_even(float d[8]) 
{ 
 float tmp0, tmp1, tmp2, tmp3; 
 float tmp10, tmp11, tmp12, tmp13; 
 float z1; 
 float4 output; 
  
    tmp0 = d[0] + d[7]; 
    tmp1 = d[1] + d[6]; 
    tmp2 = d[2] + d[5]; 
    tmp3 = d[3] + d[4]; 
     
    /* Even part */ 
    tmp10 = tmp0 + tmp3; /* phase 2 */ 
    tmp13 = tmp0 - tmp3; 
    tmp11 = tmp1 + tmp2; 
    tmp12 = tmp1 - tmp2; 
     
    output[0] = tmp10 + tmp11; /* phase 3 */ // dataptr[0] 
    output[1] = tmp10 - tmp11;     // dataptr[4] 
     
    z1 = (tmp12 + tmp13) * 0.707106781; /* c4 */ 
    output[2] = tmp13 + z1; /* phase 5 */  // dataptr[2] 
    output[3] = tmp13 - z1;      // dataptr[6] 
 
 return output; 
} 
 
float4 DCT_odd(float d[8]) 
{ 
 float tmp4, tmp5, tmp6, tmp7; 
 float tmp10, tmp11, tmp12; 
 float z2, z3, z4, z5, z11, z13; 
 float4 output; 
  
    tmp7 = d[0] - d[7]; 
    tmp6 = d[1] - d[6]; 
    tmp5 = d[2] - d[5]; 
    tmp4 = d[3] - d[4]; 
 
    /* Odd part */ 
    tmp10 = tmp4 + tmp5; /* phase 2 */ 
    tmp11 = tmp5 + tmp6; 
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    tmp12 = tmp6 + tmp7; 
 
    /* The rotator is modified from fig 4-8 to avoid extra negations. */ 
    z5 = (tmp10 - tmp12) * 0.382683433; /* c6 */ 
    z2 = 0.541196100 * tmp10 + z5; /* c2-c6 */ 
    z4 = 1.306562965 * tmp12 + z5; /* c2+c6 */ 
    z3 = tmp11 * 0.707106781; /* c4 */ 
 
    z11 = tmp7 + z3;  /* phase 5 */ 
    z13 = tmp7 - z3; 
 
    output[0] = z13 + z2; /* phase 6 */  // dataptr[5] 
    output[1] = z13 - z2;     // dataptr[3] 
    output[2] = z11 + z4;     // dataptr[1] 
    output[3] = z11 - z4;     // dataptr[7] 
 
 return output; 
} 
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APPENDIX B 

DCT_GPU::DCT_GPU(int w, int h, bool use_mrt) : width(w), height(h), mrt(use_mrt) 
{ 
    char *format = "float=16 rgba textureRECT"; 
//    char *format = "float=32 rgba textureRECT"; 
 
 // create buffers 
    img_buffer = CreateBuffer(w, h, format); 
    dest_buffer = CreateBuffer(w, h, format); 
    temp_buffer = CreateBuffer(w, h, format); 
 
    row_buffer = CreateBuffer(w/8, h, format); 
    if (!mrt) row_buffer2 = CreateBuffer(w/8, h, format); 
    col_buffer = CreateBuffer(w, h/8, format); 
    if (!mrt) col_buffer2 = CreateBuffer(w, h/8, format); 
 
    InitCg(); 
} 
 
void 
DCT_GPU::InitCg() 
{ 
    cgSetErrorCallback(cgErrorCallback); 
    g_context = cgCreateContext(); 
 
    const char *code = read_text_file("gpgpu_dct/dct.cg"); 
    fprog_profile = cgGLGetLatestProfile(CG_GL_FRAGMENT); 
 
 if (mrt) { 
  dct_rows_fprog = cgCreateProgram(g_context, CG_SOURCE, code, 
fprog_profile, "DCT_rows_singlepass_PS", NULL); 
 } else { 
  dct_rows_fprog = cgCreateProgram(g_context, CG_SOURCE, code, 
fprog_profile, "DCT_rows_pass1_PS", NULL); 
  dct_rows2_fprog = cgCreateProgram(g_context, CG_SOURCE, code, 
fprog_profile, "DCT_rows_pass2_PS", NULL); 
 } 
    dct_unpack_rows_fprog = cgCreateProgram(g_context, CG_SOURCE, code, fprog_profile, 
"DCT_unpack_rows_PS", NULL); 
 
 if (mrt) { 
  dct_cols_fprog = cgCreateProgram(g_context, CG_SOURCE, code, 
fprog_profile, "DCT_cols_singlepass_PS", NULL); 
 } else { 
  dct_cols_fprog = cgCreateProgram(g_context, CG_SOURCE, code, 
fprog_profile, "DCT_cols_pass1_PS", NULL); 
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  dct_cols2_fprog = cgCreateProgram(g_context, CG_SOURCE, code, 
fprog_profile, "DCT_cols_pass2_PS", NULL); 
 } 
    dct_unpack_cols_fprog = cgCreateProgram(g_context, CG_SOURCE, code, fprog_profile, 
"DCT_unpack_cols_PS", NULL); 
 
 if (mrt) { 
  idct_rows_fprog = cgCreateProgram(g_context, CG_SOURCE, code, 
fprog_profile, "IDCT_rows_singlepass_PS", NULL); 
 } else { 
  idct_rows_fprog = cgCreateProgram(g_context, CG_SOURCE, code, 
fprog_profile, "IDCT_rows_pass1_PS", NULL); 
  idct_rows2_fprog = cgCreateProgram(g_context, CG_SOURCE, code, 
fprog_profile, "IDCT_rows_pass2_PS", NULL); 
 } 
 idct_unpack_rows_fprog = cgCreateProgram(g_context, CG_SOURCE, code, 
fprog_profile, "IDCT_unpack_rows_PS", NULL); 
 
 if (mrt) { 
  idct_cols_fprog = cgCreateProgram(g_context, CG_SOURCE, code, 
fprog_profile, "IDCT_cols_singlepass_PS", NULL); 
 } else { 
  idct_cols_fprog = cgCreateProgram(g_context, CG_SOURCE, code, 
fprog_profile, "IDCT_cols_pass1_PS", NULL); 
  idct_cols2_fprog = cgCreateProgram(g_context, CG_SOURCE, code, 
fprog_profile, "IDCT_cols_pass2_PS", NULL); 
 } 
    idct_unpack_cols_fprog = cgCreateProgram(g_context, CG_SOURCE, code, fprog_profile, 
"IDCT_unpack_cols_PS", NULL); 
 
    display_fprog = cgCreateProgram(g_context, CG_SOURCE, code, fprog_profile, 
"Display_PS", NULL); 
    brightness_param = cgGetNamedParameter(display_fprog, "brightness"); 
 
 quantize_fprog = cgCreateProgram(g_context, CG_SOURCE, code, fprog_profile, 
"Quantize_PS", NULL); 
    quantize_param = cgGetNamedParameter(quantize_fprog, "quantize_level"); 
 
    cgGLLoadProgram(dct_rows_fprog); 
    if (!mrt) cgGLLoadProgram(dct_rows2_fprog); 
    cgGLLoadProgram(dct_unpack_rows_fprog); 
    cgGLLoadProgram(dct_cols_fprog); 
    if (!mrt) cgGLLoadProgram(dct_cols2_fprog); 
    cgGLLoadProgram(dct_unpack_cols_fprog); 
 
    cgGLLoadProgram(idct_rows_fprog); 
    if (!mrt) cgGLLoadProgram(idct_rows2_fprog); 
    cgGLLoadProgram(idct_unpack_rows_fprog); 
    cgGLLoadProgram(idct_cols_fprog); 
    if (!mrt) cgGLLoadProgram(idct_cols2_fprog); 
    cgGLLoadProgram(idct_unpack_cols_fprog); 



  

 

76 

 
    cgGLLoadProgram(display_fprog); 
    cgGLLoadProgram(quantize_fprog); 
 
    delete [] code; 
} 

void 
DCT_GPU::LoadImage(array2<unsigned char> &img) 
{ 
    glGenTextures(1, &img_tex); 
    glBindTexture(GL_TEXTURE_RECTANGLE_NV, img_tex); 
 glTexParameteri(GL_TEXTURE_RECTANGLE_NV, GL_TEXTURE_WRAP_S, 
GL_CLAMP_TO_EDGE); 
 glTexParameteri(GL_TEXTURE_RECTANGLE_NV, GL_TEXTURE_WRAP_T, 
GL_CLAMP_TO_EDGE); 
    glTexParameteri(GL_TEXTURE_RECTANGLE_NV, GL_TEXTURE_MAG_FILTER, 
GL_NEAREST); 
    glTexParameteri(GL_TEXTURE_RECTANGLE_NV, GL_TEXTURE_MIN_FILTER, 
GL_NEAREST); 
  glTexImage2D(GL_TEXTURE_RECTANGLE_NV, 0, GL_LUMINANCE, 
img.get_width(), img.get_height(), 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, (const void 
*)img.get_pointer()); 
 
    img_buffer->Activate(); 
    DisplayTexture(img_tex); 
    img_buffer->Deactivate(); 
} 

void 
DCT_GPU::FDCT(RenderTexture *src, RenderTexture *dest) 
{ 
 if (mrt) { 
  Pass_MRT(dct_rows_fprog, src, WGL_FRONT_LEFT_ARB, 0, row_buffer, 
GL_AUX0, GL_AUX1); 
  Pass_MRT(dct_unpack_rows_fprog, row_buffer, WGL_AUX0_ARB, 
WGL_AUX1_ARB, dest, GL_FRONT_LEFT, 0); 
 
  Pass_MRT(dct_cols_fprog, dest, WGL_FRONT_LEFT_ARB, 0, col_buffer, 
GL_AUX0, GL_AUX1); 
  Pass_MRT(dct_unpack_cols_fprog, col_buffer, WGL_AUX0_ARB, 
WGL_AUX1_ARB, dest, GL_FRONT_LEFT, 0); 
 } else { 
  Pass(dct_rows_fprog, src, 0, row_buffer); 
  Pass(dct_rows2_fprog, src, 0, row_buffer2); 
  Pass(dct_unpack_rows_fprog, row_buffer, row_buffer2, dest); 
 
  Pass(dct_cols_fprog, dest, 0, col_buffer); 
  Pass(dct_cols2_fprog, dest, 0, col_buffer2); 
  Pass(dct_unpack_cols_fprog, col_buffer, col_buffer2, dest); 
 } 
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} 

void 
DCT_GPU::Quantize(RenderTexture *src, RenderTexture *dest, float quantize_level) 
{ 
    cgGLSetParameter1f(quantize_param, quantize_level); 
    Pass(quantize_fprog, src, 0, dest); 
} 
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APPENDIX C 

float4 IDCT_1(float d[8]) 
{ 
 float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; 
 float tmp10, tmp11, tmp12, tmp13; 
 float z5, z10, z11, z12, z13; 
 float4 output; 
  
    /* Even part */ 
    tmp0 = d[0]; 
    tmp1 = d[2]; 
    tmp2 = d[4]; 
    tmp3 = d[6]; 
 
    tmp10 = tmp0 + tmp2; /* phase 3 */ 
    tmp11 = tmp0 - tmp2; 
 
    tmp13 = tmp1 + tmp3; /* phases 5-3 */ 
    tmp12 = (tmp1 - tmp3) * 1.414213562 - tmp13; /* 2*c4 */ 
 
    tmp0 = tmp10 + tmp13; /* phase 2 */ 
    tmp3 = tmp10 - tmp13; 
    tmp1 = tmp11 + tmp12; 
    tmp2 = tmp11 - tmp12; 
     
    /* Odd part */ 
    tmp4 = d[1]; 
    tmp5 = d[3]; 
    tmp6 = d[5]; 
    tmp7 = d[7]; 
 
    z13 = tmp6 + tmp5;  /* phase 6 */ 
    z10 = tmp6 - tmp5; 
    z11 = tmp4 + tmp7; 
    z12 = tmp4 - tmp7; 
 
    tmp7 = z11 + z13;  /* phase 5 */ 
    tmp11 = (z11 - z13) * 1.414213562; /* 2*c4 */ 
 
    z5 = (z10 + z12) * 1.847759065; /* 2*c2 */ 
    tmp10 = 1.082392200 * z12 - z5; /* 2*(c2-c6) */ 
    tmp12 = -2.613125930 * z10 + z5; /* -2*(c2+c6) */ 
 
    tmp6 = tmp12 - tmp7; /* phase 2 */ 
    tmp5 = tmp11 - tmp6; 
    tmp4 = tmp10 + tmp5; 
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    output[0] = tmp0 + tmp7;  // wsptr[DCTSIZE*0] 
//    output[7] = tmp0 - tmp7;  // wsptr[DCTSIZE*7] 
    output[1] = tmp1 + tmp6;  // wsptr[DCTSIZE*1] 
//    output[6] = tmp1 - tmp6;  // wsptr[DCTSIZE*6] 
    output[2] = tmp2 + tmp5;  // wsptr[DCTSIZE*2] 
//    output[5] = tmp2 - tmp5;  // wsptr[DCTSIZE*5] 
//    output[4] = tmp3 + tmp4;  // wsptr[DCTSIZE*4] 
    output[3] = tmp3 - tmp4;  // wsptr[DCTSIZE*3] 
 return output; 
} 
 
float4 IDCT_2(float d[8]) 
{ 
 float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; 
 float tmp10, tmp11, tmp12, tmp13; 
 float z5, z10, z11, z12, z13; 
 float4 output; 
  
    /* Even part */ 
    tmp0 = d[0]; 
    tmp1 = d[2]; 
    tmp2 = d[4]; 
    tmp3 = d[6]; 
 
    tmp10 = tmp0 + tmp2; /* phase 3 */ 
    tmp11 = tmp0 - tmp2; 
 
    tmp13 = tmp1 + tmp3; /* phases 5-3 */ 
    tmp12 = (tmp1 - tmp3) * 1.414213562 - tmp13; /* 2*c4 */ 
 
    tmp0 = tmp10 + tmp13; /* phase 2 */ 
    tmp3 = tmp10 - tmp13; 
    tmp1 = tmp11 + tmp12; 
    tmp2 = tmp11 - tmp12; 
     
    /* Odd part */ 
    tmp4 = d[1]; 
    tmp5 = d[3]; 
    tmp6 = d[5]; 
    tmp7 = d[7]; 
 
    z13 = tmp6 + tmp5;  /* phase 6 */ 
    z10 = tmp6 - tmp5; 
    z11 = tmp4 + tmp7; 
    z12 = tmp4 - tmp7; 
 
    tmp7 = z11 + z13;  /* phase 5 */ 
    tmp11 = (z11 - z13) * 1.414213562; /* 2*c4 */ 
 
    z5 = (z10 + z12) * 1.847759065; /* 2*c2 */ 
    tmp10 = 1.082392200 * z12 - z5; /* 2*(c2-c6) */ 
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    tmp12 = -2.613125930 * z10 + z5; /* -2*(c2+c6) */ 
 
    tmp6 = tmp12 - tmp7; /* phase 2 */ 
    tmp5 = tmp11 - tmp6; 
    tmp4 = tmp10 + tmp5; 
 
 //  output[0] = tmp0 + tmp7;  // wsptr[DCTSIZE*0] 
    output[3] = tmp0 - tmp7;  // wsptr[DCTSIZE*7] 
 //   output[1] = tmp1 + tmp6;  // wsptr[DCTSIZE*1] 
    output[2] = tmp1 - tmp6;  // wsptr[DCTSIZE*6] 
 //   output[2] = tmp2 + tmp5;  // wsptr[DCTSIZE*2] 
    output[1] = tmp2 - tmp5;  // wsptr[DCTSIZE*5] 
    output[0] = tmp3 + tmp4;  // wsptr[DCTSIZE*4] 
//    output[3] = tmp3 - tmp4;  // wsptr[DCTSIZE*3] 
 return output; 
} 
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