
0
_I •
,

Low Power VLSI Implementation
Schemes For DCT-Based Image

Compression

Shedden Masupe

I V E

ii

A thesis submitted for the degree of Doctor of Philosophy.
The University of Edinburgh.

July 2001

UAI/

C)

Abstract

With the ever increasing need for portable electronic devices, there is a growing need for a
new look at very large scale integration (VLSI) design in terms of power consumption. Most
of the research and development efforts have focused on increasing the speed and complexity
of single chip digital systems. In other words, focusing on systems that can perform most
computations in given amount of time. However, area and time are not the only metrics
that can measure implementation quality. Power consumption has now entered the field, so
designers need to take another important parameter as a third dimension in order to enhance
the device capabilities.

The Discrete Cosine Transform (DCT) is the basis for current video standards like H.261,
JPEG and MPEG. Since the DCT involves matrix multiplication, it is a very computation-
ally intensive operation. Matrix multiplication entails repetitive sum of products which are
carried out numerous times during the DCT computation. Therefore, as a result of the mul-
tiplications, a significant amount of switching activity takes place during the DCT process.
This thesis proposes a number of new implementation schemes that reduce the switching
capacitance within a DCT processor for either JPEG or MPEG environment.

A number of new generic schemes for low power VLSI implementation of the DCT are
presented in this thesis. The schemes target reducing the effective switched capacitance
within the datapath section of a DCT processor. Switched capacitance is reduced through
manipulation and exploitation of correlation in pixel and cosine coefficients during the com-
putation of the DCT coefficients. The first scheme concurrently processes blocks of cosine
coefficient and pixel values during the multiplication procedure, with the aim of reducing the
total switched capacitance within the multiplier circuit. The coefficients are presented to the
multiplier inputs as a sequence, ordered according to bit correlation between successive co-
sine coefficients. The ordering of the cosine coefficients is applied on the colunms. Hence the
scheme is referred to as column-based processing. Column-Based processing exhibits power
reductions of up to 50% within the multiplier unit.

Another scheme, termed order-based, is based on the ordering of the cosine coefficients
based on row segments. The scheme also utilises bit correlation between successive cosine
coefficients. The effectiveness of this scheme is reflected in power savings of up to 24%.
The final scheme is based on manipulating data representation of the cosine coefficients,
through cosine word coding, in order to facilitate for a shift-only computational process.
This eliminates the need for the multiplier unit, which poses a significant overhead in terms
of power consumption, in the processing element. A maximum power saving of 41% was
achieved with this implementation.

11

Declaration of originality

I hereby declare that the research recorded in this thesis and the thesis itself was composed

and originated entirely by myself in the Department of Electronics and Electrical Engineering

at The University of Edinburgh.

SheddewMasu pe

111

Acknowledgements

I would like to thank my supervisor Dr T. Arslan, for his assistance and guidance throughout

the project.

I would also like to thank all the guys in the SLI activity for their continuous assistance in

the subject matter of various aspects of the project. In particular, Damon Thompson for his

ever keen assistance with VHDL/Verilog programming and nifty digital design tips. I have to

thank Dr Ahmet Erdogan for his inspirational assistance in the low power design techniques.

Baba Goni, he had so much faith in me even at times that I doubted myself, I appreciate

that. I thank Prof Alan F. Murray for his input in the thesis. The acknowledgements will

be incomplete if I do not mention Barnabas Gatsheni, his probing questions about image

processing solidified my understanding for the basic concepts. I have to thank Dr Joseph

Chuma for his support throughout the programme.

My thanks go to my sponsors, the University of Botswana and Edinburgh University.

I still feel the urge to thank my parents, they did a good job.

Finally I would like to thank Tiny, Yoav and Ails a. They were very patient and understanding

to my absence at home.

lv

Dedication

to my wife

Tiny

Contents

Abstract ii
Declaration of originality iii
Acknowledgements 	 iv
Dedication v
Contents vi
List of figures 	 ix
List of tables xi
Acronyms and abbreviations 	 xii
Nomenclature xiv
List of Publications 	 xv

1 Introduction 	 1

	

1.1 	Introduction1

	

1.2 	Thesis Contribution 2

	

1.3 	Thesis Layout 4

2 Low Power CMOS Design 6
2.1 Introduction 6
2.2 Sources of Power Consumption 6

2.2.1 	Static Power Dissipation (Pstatj) 	 7
2.2.2 	Dynamic Power Dissipation (Pdynam jc) 	 10

2.3 Switching Power Reduction Techniques 16
2.3.1 	Reducing Voltage 16
2.3.2 	Reducing Physical Capacitance 17
2.3.3 	Reducing Switching Activity 18

2.4 Power Estimation Techniques 21
2.4.1 	Probabilistic Techniques 27
2.4.2 	Statistical Techniques 33

2 .5 Summary 34

3 Algorithms and Architectures for Image Transforms 	 36

	

3.1 	Introduction 36
3.2 Image Compression Fundamentals 39

3.2.1 	Image Transforms 41
3.3 The Discrete Cosine Transform51

3.3.1 DCT Algorithms and Architectures52

	

3.4 	Summary 62

4 Low Power DCT Research 	 64

	

4.1 	Introduction 	64

vi

Contents

4.2 Work so far 	 . 64
4.3 A Case for Low-Power DCT67
4.4 	Summary69

5 Column-Based DCT Scheme 	 70
5.1 	Introduction70
5.2 Column Based Processing70
5.3 Simulation Results and Analysis77
5.4 	Conclusions81

6 Column-Based DCT Processor 	 82
6.1 	Introduction82
6.2 Column-Based Scheme Implementation82

	

6.2.1 	Multipliers85

	

6.2.2 	Adders 92
6.2.3 Latch Bank95

6.3 Synthesis and Simulation Results99
6.4 Conclusions105

7 Cosine Ordering Scheme 	 107
7.1 	Introduction107
7.2 Order-Based Processing108
7.3 Synthesis and Simulations Results114
7.4 	Conclusions117

8 Cosine Coding Scheme 119
8.1 Introduction 119
8.2 Data Representation 119
8.3 Shift-Only Data Manipulation 121
8.4 Implementation 122
8.5 Results and Analysis 124
8.6 Conclusions 126

9 Conclusions 	 127
9.1 Conclusions and Discussion127
9.2 Novel Outcomes of the Research129
9.3 	Future Work131

A Image Compression Standards 	 133
A.0.1 	JPEG 133
A.0.2 	MPEG137

B Cosine Coefficients 	 141

C Test Images 	 142

vii

Contents

D Synopsys DesignPower Analysis 	 143
D.1 Power Analysis Techniques143
D.2 Simulation-Based Power Analysis144

D.2.1 RTL Simultation Based Power Analysis144
D.2.2 Gate-Level Simulation-Based Power Analysis145

E Program Listings 	 146
E.1 Pre-processing Programs146
E.2 Some Design Files Examples148

References
	

164

vii'

List of figures

2.1 Typical power consumption parameter profiles 7
2.2 Input voltage and short circuit current 12
2.3 Impact of load capacitance 13
2.4 Switching activity in synchronous systems 19
2.5 A typical synchronous sequential design 23
2.6 A power estimation flow 24
2.7 A typical BDD representation 30
2.8 An example signal probability waveform 31
2.9 A simplified test case model 32
2.10 A typical timing diagram for the test case model 33

3.1 from capture to compression 37
3.2 Video sequence example 38
3.3 Wavelet compression 47
3.4 Implementation of 2D DCT by 1 D DCTs 52
3.5 Data flow graph for the Chen Algorithm 55
3.6 DCT architecture based on four MAC processing units 56
3.7 Data flow graph for the Arai Algorithm 56
3.8 Lattice structure 57
3.9 Architecture of N input scalar product using DA 61

5.1 Matrix multiplication process 71
5.2 Flowchart of the algorithm 73
5.3 Simplified architecture of the processor 75
5.4 Framework for algorithm evaluation 79

6.1 DCT processor modified for Column based processing 83
6.2 Typical original DCT processor architecture 83
6.3 Implementation of column based mac unit 84
6.4 A signed Carry-save Array Multiplier example and implementation 	. 88
6.5 General architecture for Booth-coded Wallace Multiplier 89
6.6 Typical Wallace tree reduction 91
6.7 Final Addition Using ripple adder 92
6.8 Brent-Kung Parallel Prefix Network 96
6.9 Latch bank module 96
6.10 Demultiplexor 97
6.11 Gating example for first Latch 98
6.12 Latch 98

lx

List of flaures

6.13 	Latch array 100
6.14 	Multiplexor 101
6.15 Simulation environment 103

7.1 cosine coefficient with saved location 108
7.2 Flowchart of cosine ordering scheme 110
7.3 A simplified DCT processor architecture 112
7.4 A simplified MAC unit architecture 113
7.5 Example cosine matrix before and after ordering 114
7.6 Simulation environment 116
7.7 Average percentages of cell internal power dissipation per module . 117

8.1 Data word partitioning 121
8.2 Implementation of cosine coding scheme 123
8.3 Implementation of the compression unit 124
8.4 Simulation environment 125

A.1 Block diagram of JPEG Compression 134
A.2 Hierachy of video signals 138
A.3 Pand B frame predictions 140

C.1 Some of the tested images 142

x

List of tables

2.1 Power reduction techniques 21
2.2 Probabilistic techniques 28
2.3 intermediate and steady state expressions 32
2.4 Statistical techniques 34

3.1 Common Values of digital image parameters 38
3.2 Computation and Storage requirements for some DCT Algorithms 	. 62

5.1 Typical power savings 80

6.1 some of the DesignWare components used 84
6.2 Booth Algorithm encoding scheme 90
6.3 Column Based dct results for bk with csa 102
6.4 Conventional dct results for csa with bk 102
6.5 comparison of the multiplier units 102
6.6 Column Based dct results for other implementations with hamming sort 104
6.7 Column Based dct results for other implementations with ascending sort 104
6.8 Wordlength variations: for csa and bk implementations with lena image 105

7.1 some DesignWare components 111
7.2 results for csa mult: ascending order 116
7.3 results for wall mult: ascending order 117
7.4 results for nbw mult: ascending order 118
7.5 results for mac with csa mult and bk adder 118

8.1 data word coding example 121
8.2 results for conventional mac with csa mult and bk adder 125
8.3 results for cosine coding scheme 126

A.1 Typical MPEG standards specifications137

xi

Acronyms and abbreviations

ARPA Advanced Research Projects Agency
CIP 	Cell Internal Power
CMOS Complementary Metal Oxide Semiconductor
CLA Carry Look Ahead
CSA 	Carry Save Array
DA 	Distributed Arithmetic
DC 	Direct Current
DCT 	Discrete Cosine Transform
DIFT 	Discrete Fourier Transform
DST 	Discrete Sine Transform
FDCT Forward Discrete Cosine Transform
FFT 	Fast Fourier Transform
FSM 	Finite State Machine
GOP 	Group of Pictures
H.261 Recommendation of International Telegraph and Telephone Consultive Committee
HIDTV High Defination Television
IP 	Intellectual Property
ISDN Integrated Services Digital Network
JPEG Joint Photographic Expert Group
KLT 	Karhunen-Loeve Transform
LSI 	Linear Shift Invariant
MAC Multiply and Accumulate
MOPS Mega Operations Per Second
MOS Metal Oxide Semiconductor
MPEG Moving Photographic Expert Group
MSB 	Most Significant Bit
NMOS Negative-Channel Metal Oxide Semiconductor
NSP 	Net Switching Power
NTSC National Television Standards Committee
Pixel 	Picture elements
PMOS Positive-Channel Metal Oxide Semiconductor
RAM Random Access Memory
ROM Read Only Memory
SAW 	Switching Activity Interchange Format
TDP 	Total Dynamic Power
VHDL Very-high-speed Hardware Description Language

xii

Acronyms and abbreviations

VLC Variable Length Coding
VLSI Very Large Scale Intergration
WHT Waish-Hadamard Transform

xl"

Nomenclature

Ceíi effective capacitance
Cload load capacitance
cis cell internal power

f switching frequency
'Sc short-circuit current
I. switching current
k switching activity factor
L transistor length
nsp net switching power
Pstatic static power dissipation
Pdynamic dynamic power dissipation
Pt0t total power dissipation

switching power
Psc short circuit power
P5 (x) signal probability
P(x) transition probability
tdp total dynamic power
Vdd supply voltage
V95 gate-source voltage

input voltage
V0 output voltage
VT thermal voltage

threshold voltage for NMOS transistor
V threshold voltage for PMOS transistor
W transistor width

xiv

List of Publications

S. Masupe and T.Arslan. "Low Power DCT implementation approach for CMOS based

DSP Processors,"IEE Electronics Letters, volume 34, pp.2392-2394, Dec. 1998.

S. Masupe and T.Arslan. "Low Power DCT implementation approach for VLSI based

DSP Processors," in International Symposium on Circuits and Systems, IEEE, 30 May

- 2 June 1999.

T. Arslan, A. T. Erdogan, S. Masupe, C. Chan-Fu, D. Thompson, "Low Power IP

Design Methodology for Rapid Development of DSP-Intensive SoC Platform", 1P99

Europe, 2-3 November 1999, Edinburgh, UK. pp. 337-346

S. Masupe and T.Arslan. "Low Power VLSI implementation of the DCT on Single

Multiplier DSP Processors," VLSI Design: An International Journal of Custom-Chip

Design, Simulation and Testing, Volume 11, Number 4, pp. 397-403, 2000.

S. Masupe and T.Arslan. "Low Power Order Based DCT Processing Algorithrn,"in

International Symposium on Circuits and Systems, IEEE, Sydney, Australia, volume 2,

pp. 5-8, 7-9 May 2001.

xv

Chapter 1
Introduction

1.1 Introduction

With the ever increasing need for portable electronic devices, there is a growing need for a

new look at very large scale integration (VLSI) design in terms of power consumption. Most

of the research and development efforts have focused on increasing the speed and complexity

of single chip digital systems. In other words, focusing on systems that can perform most

computations in given amount of time. However, area and time are not the only metrics

that can measure implementation quality. Power consumption has now entered the field, so

designers need to take another important parameter as a third dimension in order to enhance

the device capabilities. Consumers would like their state of the art portable electronic devices

to operate for long periods of time without loss of power.

Some of the portable consumer electronic devices include lap-top computers, cellular phones

and pagers. Work has been done on battery technologies to increase the battery life. However,

some devices like the upcoming portable multi-media terminal, if built using off-shelf com-

ponents which are not designed for low power consumption, will require batteries of at least 3

kg in weight to operate for 10 hours without re-charge. Therefore, without low power design

techniques, existing and upcoming portable devices will be very bulky due to battery packs

or they will have a very short battery life if battery size is reduced[1]

Chapter 1: Introduction

A growing number of computer systems are incorporating multi-media capabilities for dis-

playing and manipulating video data. This interest in Multi-media combined with the great

popularity of portable computers and portable phones provides the impetus for creating a

portable video on demand system, This requires a bandwidth far greater than the ordinary

broadcast video, since a user can subscribe to different video programs at any time wherever

they are. Therefore an enormous bandwidth is required for storage and transmission, data

must be compressed in real time for the portable unit[1].

Digital video applications are some of the popular devices that have become part of the

every day life. For example, ISDN video-phone, video-conference systems, digital broad-

cast HDTV and remote surveillance [2]. The Discrete Cosine Transform (DCT) is the basis

for current video standards like H.261, JPEG and MPEG. Since the DCT involves matrix

multiplication, it is a very computationally intensive operation. Matrix multiplication entails

repetitive sum of products which are carried out numerous times during the DCT computa-

tion. Therefore, as a result of the multiplications, a significant amount of switching activity

takes place during the DCT process. This thesis proposes a number of new implementation

schemes that reduce the switching capacitance within a DCT processor for either JPEG or

MPEG environment.

1.2 Thesis Contribution

A number of new generic schemes for low power VLSI implementation of the DCT are

presented in this thesis. The schemes target reducing the effective switched capacitance

2

Chapter 1: Introduction

within the datapath section forward DCT processor(FDCT). Switched capacitance is reduced

through manipulation and exploitation of correlation in pixel and cosine coefficients during

the computation of the DCT coefficients. The techniques are generic and can be extended

to include other applications where matrix multiplication is required. Some DCT architec-

tures which suit the schemes are proposed as proof of concept, and some power dissipation

measures are given for the data path components.

The first scheme, column-based, reduces switched capacitance through manipulation and ex-

ploitation of correlation in pixel and cosine coefficients during the computation of the DCT

coefficients. The manipulation is of the form of ordering the cosine coefficients per column,

according to some ordering technique such as, ascending order or minimum hamming dis-

tance and processing the matrix multiplication using a column-column approach instead of

the usual row-column approach. This scheme achieves a power reduction of up-to 50% within

the multiplier section of the DCT implementation.

The second scheme, order-based, takes advantage of the rows in the cosine matrix. Ordering

the cosine coefficients in each row according to some ordering technique such as, ascending

order or minimum hamming distance, minimises the toggles at the inputs of the multiplier

unit in the DCT processor. The above techniques are generic and can be extended to include

other applications where matrix multiplication is required. The effectiveness of this scheme

is reflected in power savings of up-to 24% within the MAC unit of the DCT implementation.

The third scheme proposes coding cosine coefficients such that only shift operations are used

to process the DCT computation. In this scheme the need for a standard multiplication unit

3

Chapter 1: Introduction

is eliminated by formating the data representation of the cosine elements such that the pixel

values are processed using a shifter unit and an addition unit. Power savings resulting due to

this scheme can go up-to 41%.

1.3 Thesis Layout

Chapter 2 introduces the basic concepts of low power CMOS design. It provides definitions

and equations for static and dynamic power. Some of the techniques which can be used to

minimise power dissipation in CMOS circuits are also presented. These techniques are more

relevant to reducing power consumption which results from one of the major components of

dynamic power dissipation, switching power.

Fundamentals of image processing and image compression are introduced in chapter 3. The

chapter also goes on to cover some image transforms which are possible competitors of the

DCT. Since the DCT is key to the project, a more detailed introduction of the transform is

presented. This includes several algorithms and architectures which have been developed

since the creation of the DCT.

To conclude the literature review, chapter 4 presents a summary of low-power DCT research

covered before (or during the course of) this work.

The next four chapters introduce the three new schemes for low power implementation of the

DCT. Chapter 5 presents the first scheme, which is termed column-based. This involves the

power analysis of the multiplier section in the proposed scheme environment since this unit

Chapter 1: Introduction

is well-known for its computation intensive nature. Colunm-Based scheme is further invest-

igated in Chapter 6 by mapping the algorithm resulting from the scheme into an architecture

suitable for VLSI implementation.

The second scheme is presented in chapter 7 and this takes advantage of the rows in the

cosine matrix. This scheme is termed order-based. Ordering the cosine coefficients in each

row according to some ordering technique such as, ascending order or minimum hamming

distance, minimises the toggles at the inputs of the multiplier unit in the DCT processor.

Chapter 8 introduces the third and final scheme. This is a DCT implementation which codes

the cosine coefficients in order to reduce computational complexity by using shifters and

adders only in the processing.

Finally, chapter 9 concludes the thesis and puts forward some suggestions for future work to

be done in order to continue this research.

5

Chapter 2
Low Power CMOS Design

2.1 Introduction

This chapter introduces the basic concepts of Low Power CMOS Design. It provides defini-

tions and equations for static and dynaniic power. Some of the techniques which can be used

to minimise power dissipation in CMOS circuits are also presented. These techniques are

more relevant to reducing power consumption which results from one of the major compon-

ents of dynamic power dissipation, switching power. Some power estimation methodologies

are presented as well.

2.2 Sources of Power Consumption

The dominant source of power consumption in digital CMOS circuits is the switching power,

which is caused by periodic charging and discharging of nodal capacitances. There are two

kinds of power dissipation in CMOS circuits, static and dynamic. The total power consump-

tion can be categonsed as shown in Equation 2.1.

Pt.t = Pstatic + Pdynamic 	 (2.1)

Rl

Chapter 2: Low Power CMOS Design

The static power can be ignored since it can be minimised using current technologies. The

Dynamic power however is still a major source of dissipation in CMOS circuits and it only

occurs when a node voltage is switched.

2.2.1 Static Power Dissipation (Psi atic)

Static power is the power dissipated by a gate when it is not in operation, that is when it is

not switching [3]

Ideally, CMOS circuits dissipate no static (DC) power since in the steady state there is no

direct path from Vdd to ground(see Figure 2.1). Of course, this scenario can never be realised

in practice since in reality the MOS transistor is not an ideal switch. Hence there will always

be some leakage currents and substrate injection currents which will give rise to a static

component of the CMOS power dissipation.

Vdd

CLoad

vout

Figure 2.1: Typical power consumption pa rameter profiles

7

Chapter 2: Low Power CMOS Design

Leakage Current Power

There are two types of leakage currents, 	-

reverse-bias diode leakage - at the transistor drains

sub-threshold leakage - through the channel of a device that is turned off.

The magnitudes of the leakage currents is determined mainly by the processing technology.

diode leakage

This occurs when a transistor is turned off. For the case of an inverter, when the PMOS

transistor is turned off with a high input voltage, there will be a voltage drop of —Vdd between

the drain and the bulk after the Vdd to 0 transition at the output. This results in the diode

leakage expressed as [4]:

= Is 	- i)
	

(2.2)

where I is the reverse saturation current, V is the diode voltage and VT is the thermal voltage.

A typical value of the leakage current is if A per device junction. The value is too small to

have any impact on the overall power consumption. For example, for a chip with a million

devices, the total power dissipation contributed due to the leakage current will be approx

0.01fLW [4,5].

Chapter 2: Low Power CMOS Design

sub-threshold leakage

This occures due to current diffusion between the source and the drain when the gate-source

voltage (V) exceeds the weak inversion point, but still being below the threshold voltage

(Vi) [4,5].

- r l4Teff (Vm_VT)

1ds - Jo 	10 	S 	 (2.3)
W.

where

I. = I(1 - e)
	

(2.4)

and VT is the constant-current threshold voltage. W. and 10 are the gate width and the drain

current to define VT. S is the subthreshold swing parameter. The effective channel width is

referred to as We11 [5].

The magnitude of the sub-threshold is a function of the process (device sizing) and supply

voltage. The process parameter, V, predominantly affects the current. Reducing V has an

exponential increasing effect on the sub-threshold current. The sub-threshold current is a

proportional to E (device size), and is an exponential function of the input voltage. Hence,

the sub-threshold current can be minimised by the reduction of transistor size and the supply

voltage [4].

Chapter 2: Low Power CMOS Design

22.2 Dynamic Power Dissipation (Pdynarnic)

The dynamic power dissipation comprises of two main sources:-

Switching power (P3w) due to the charging and discharging circuit capacitances

Short-circuit power (P) current due to finite signal rise/fall times.

Pdyna,nic = Psw + Fsc
	 (2.5)

where

Psw =kCloadV,f 	 (2.6)

and where k is the number of energy consuming transitions. Cload is the physical capacitance.

Vddis the supply voltage. f is the data rate, it describes how often on average switching could

occur. For synchronous systems, f might correspond with the clock frequency.

Short-circuit Power (P8)

The dynamic part of power dissipation is a result of the transient switching behaviour of the

CMOS circuit. There exists a point whereby both the NMOS and PMOS in Figure 2.1 will be

on. During that moment, a short circuit exists between Vdd and the ground allowing currents

to flow. Figure 2.2 illustrates the transition from 0 to Vdd and Vdd to 0. The input voltage

10

Chapter 2: Low Power CMOS Design

obeys the following principle [4],

Vjn < yin <Vdd - 	 (2.7)

where V and V are threshold voltages for NMOS and PMOS transistors respectively. A

long input rise or fall time implies that the short-circuit current will flow longer.

Short circuit power dissipation is especially significant when the output rise/fall time is less

than the input rise/fall time. This is the case when the load capacitance Cj oad (CL), is small.

In this situation, when the inverter gate makes a 0 to Vdd transition with a finite slope, the

drain terminal of the PMOS transistor is immediately grounded and a current from the power

supply to the ground flows through. On the one hand if CL is very high, the output rise/fall

time becomes much greater than the input rise/fall time. Hence during an input transition,

whereby the input follows the principle in Equation 2.7, the output remains at Vdd. Therefore,

there will be no voltage drop across the source and drain terminals of the PMOS transistor.

This implies that there will be no current drawn [4]. See Figure 2.3.

In conclusion, short circuit power dissipation can be reduced by making certain that the output

rise/fall time is larger than the input rise/fall time. There is, however, a problem with making

out rise/fall time too large. It slows down the circuit and can potentially cause short circuit

currents in the fan out gates.

11

Chapter 2: Low Power CMOS Design

VII,

Vd.j

Vdd. 1V61 I

Vt"

"C

'max

Figure 2.2: Input voltage and short circuit current

This short circuit dissipation can be kept below 10% of the total dynamic power dissipa-

tion with careful design. This is achieved by keeping the rise and fall times of all signals

throughout the design within a fixed range [6,7].

Switching Power (P3w)

The dominant component of the dynamic power is the switching power which is the result of

charging and discharging parasitic capacitances in the circuit. The case is modelled in Figure

2.3 where the parasitics are lumped together at the output in the capacitor C loadS

The average switching power 	required to charge and discharge the capacitance CL at a

switching frequency of f = can be computed as:

12

Chapter 2: Low Power CMOS Design

Vdd

±
CLO.d

	

(a) Large capacitive load 	
(b) Small capacitive load

Figure 23: Impact of load capacitance

1 T

	

= 	J i0(t)v0(t)dt

The current at the output during the charging phase can be presented as

dv 0
Z. = ip =

whereas while discharging the current is given by

(2.8)

(2.9)

13

Chapter 2: Low Power CMOS Design

dv 0
(2.10)

where i,, and ii,, are NIvIOS and PMOS currents respectively [4].

Substituting Equations 2.9 and 2.10 into the average switching power equation 2.8, results in

the average switching power for the inverter gate as:

P. = -
1 0 [fVddCL

VOdVO -

fVdd
CLV O dV O I

T]

- CLV,
- CLV1 	 (2.11)

- T -

and the energy being drawn from the power supply is

E=f
T

P(t)dt=CLV (2.12)

It can also be shown that the energy being drawn by the load capacitance CL is

14

Chapter 2: Low Power CMOS Design

tVdd 	dv0
EL = I CL--v 0dt

Jo dt
p V dd

= CU 	VOdVO=CLVdI 	 (2.13)
0

This implies that during a transition 0 to Vdd, one half of the energy drawn from the power

supply is stored in the capacitor and the other half is used up by the PMOS pull-up network.

The other transition Vdd to 0, results in the energy stored by the capacitor (Equation 2.13)

being used by the NMOS pulled down network. Therefore, from the above analysis, it can

be summarised that every time a capacitive node switches from ground to Vdd, an energy

equivalent to Equation 2.13 is consumed [4].

This leads to the conclusion that CMOS power consumption depends on the switching activity

of the signals involved. In this context, we define activity k, as the expected number of zero to

one transitions per data cycle. If this is coupled with the average data-rate, f, which may be

the clock frequency in a synchronous system, then the effective frequency of nodal charging

is given by the product of the activity and the data rate: kf This leads to the equation for

average CMOS power consumption shown in Equation 2.6 [4].

The resulting equation illustrates that the dynamic power is directly proportional to the switch-

ing activity, capacitive loading, and the square of the supply voltage [6]. This component of

dynamic power, switching power, is the most dominant of the total power dissipation. It can

amount to 80% of the total power consumption in circuit datapaths in modules like multipliers

15

Chapter 2: Low Power CMOS Design

and adders.

2.3 Switching Power Reduction Techniques

2.3.1 Reducing Voltage

With its quadratic relationship to power, voltage reduction offers the most direct and dramatic

means of minimising energy consumption. Without requiring any special circuits or techno-

logies, a factor of two reduction in supply voltage (Vdd) yields a factor of four decrease in

energy. This power reduction is a global effect, experienced not only in one sub-circuit or

block of the chip, but throughout the entire design. Because of this quadratic relationship,

designers are often willing to sacrifice increased physical capacitance or circuit activity for

reduced voltage. Despite the obvious advantage, voltage reduction is detrimental to perform-

ance of the system [8].

As the supply voltage is lowered, circuit delays increase leading to reduced system perform-

ance. For Vdd >> V delays increase linearly with decreasing voltage. In order to meet

system performance requirements, these delay increases cannot go unchecked. Some tech-

niques must be applied, either technological or architectural to compensate for this effect.

This works well until Vdd approaches the threshold voltage at which point delay penalties

simply become unmanageable. This tends to limit the advantageous range of the voltage

supplies to a minimum of about 214.

Performance is not, however the only limiting factor. When going to non-standard voltage

16

Chapter 2: Low Power CMOS Design

supplies, there is also the issue of compatibility and inter-operability. Most off-the-shelf

components operate either on 5V supply or 3.3 V. Unless the entire system is being designed

completely from scratch it is likely that some amount of communications will be required

with components operating at a standard voltage. The severity of this problem is reduced

by the availability of highly efficient DC-DC level converters, but still there is some cost

involved in supporting several different voltages [6].

Another issue that arises with the reduction of voltage is that, more designs are now im-

plemented as IP soft cores, this means that the operating voltage will be determined by the

foundry that supplied the library cells, hence it can not be altered [9].

2.3.2 Reducing Physical Capacitance

This is yet another degree of freedom which can be utilised to reduce the dynamic power dis-

sipation. In order to consider this possibility we must first understand what factors contribute

to the physical capacitance of a circuit.

The physical capacitance in CMOS circuits comes from two basic sources, devices and inter-

connect. Previous technologies had more problems with device capacitance than interconnect

parasitics. Since the technologies have scaled down a lot, interconnect parasitics contribute a

lot to the overall physical capacitance and hence they need to be addressed.

From the previous discussion, it can be recognised that capacitances can be kept at a mm-

imum by using less logic, smaller devices, fewer and shorter wires. Example techniques for

17

Chapter 2: Low Power CMOS Design

reducing the active area include resource sharing, logic minimisation and gate sizing. Ex-

ample techniques for reducing interconnect include register sharing, common sub-function

extraction, placement and routing. As with voltage however, there are disadvantages to ca-

pacitive loading reduction. For example, reducing device sizes not only reduces physical

capacitance, but also reduces the current drive of the transistors making the circuit operate

more slowly. This loss of performance might hinder the reduction of Vdd to a value which

would have otherwise been possible [6].

2.3.3 Reducing Switching Activity

Another candidate for dynamic power dissipation reduction in CMOS circuits is the reduction

of switching activity. A chip can contain a huge amount of physical capacitance, but if it does

not switch then no dynamic power will be consumed. The activity determines how often this

switching occurs. As mentioned before, there are two components to the switching activity,

the data rate (f), and the data activity (k). f describes how often on average switching could

occur. In synchronous systems, f might correspond with the clock frequency. See Figure

2.4. The other component, k, corresponds to the expected number of energy consuming

transitions that will be triggered by the arrival of each new piece of data. Hence while f

determines the average periodicity of data arrivals, k determines how many transitions each

arrival will spark. For circuits that do not experience glitching, k can be interpreted as the

probability that an energy consuming transition will occur during a single data period. Even

for these circuits, calculation of k is difficult as it depends not only on the switching activities

18

Chapter 2: Low Power CMOS Design

of the circuit inputs and the logic function computed by the circuit, but also on the spatial and

temporal correlations among the circuit inputs.

For certain logic styles, however, glitching can be an important source of signal activity

and therefore, deserves some mention here. Glitching refers to the spurious and unwanted

transitions that occur before a node settles down to its final steady-state value. Glitching

often arises when paths with unbalanced propagation delays converge at the same point in

the circuit. Calculation of this spurious activity in a circuit is very difficult and requires

careful logic and/or circuit level characterisation of the gates in a library as well as detailed

knowledge of the circuit structure. Since glitching can cause a node to make several power

consuming transitions instead of one, it should be avoided whenever possible [6].

IN

CLK J1J1JIJl

I/f

Vdd

k=1/4

1 	OUT I 	 I 	I 	I

Cioad

I 	I 	I
I 	I 	I

Figure 2.4: Switching activity in synchronous systems

The data activity k can be combined with the physical capacitance Cload to obtain an effect-

ive capacitance which describes the average capacitance charged during each 1/f data

period. This reflects the fact that neither the physical capacitance nor the activity alone de-

termine dynamic-power consumption. Instead, it is the effective capacitance, which combines

Chapter 2: Low Power CMOS Design

the two, that truly determines the power consumed by a CMOS circuit. Therefore:

Vdd 	 (2.14)

Evaluating the effective capacitance of a design is non-trivial as it requires a knowledge

of both the physical aspects of the design(ie technology parameters, circuit structure, delay

model) as well as the signal statistics(ie data activity and correlations). This explains why,

lacking proper tools, power analysis is often deferred to the latest stages of the design process

or is only obtained from measurements on the finished parts.

Some techniques for reducing switching activity include power-conscious state encoding and

multi-level logic optimisation for FSM's. Another example will be certain data representa-

tions such as sign magnitude have an inherently lower activity than two's compliment. Since

sign magnitude arithmetic is much more complex than two's compliment, however, there is

a price to be paid for the reduced activity in terms of higher physical capacitance. This is yet

another indication that low power design is a joint optimisation problem.

A summary of techniques that can be used to reduce effective switched capacitance is presen-

ted in Table 2.1.

20

Chapter 2: Low Power CMOS Design

Abstraction Level I Examples

System Power Down, System Partitioning
Algorithm Complexity, Concurrency

Locality, Regularity
Data representation

Architecture Concurrency, Data Representation
Signal correlations
Instruction set selection

Circuit'Logic Transistor Sizing, Power Down
Physical Design Logic optimisation, layout Optiniisation
Technology Advanced Packaging

Table 2.1: Power reduction techniques

2.4 Power Estimation Techniques

This section presents the case of power estimation and it introduces some of the probabilistic

and statistical measures used in power estimation.

Power estimation in general refers to the estimation of average power dissipation of a cir-

cuit. The most straight-forward method for power estimation is through simulation. That

is, performing a circuit simulation of the design and monitoring the power supply current

waveform. The average current is calculated and used to provide the average power. This

method has an advantage of accuracy and generality. The technique can be used to estimate

power of any circuit, regardless of the technology, design style, architecture etc. However,

complete and specific information about the input signals is required. Hence the simulation

based technique strongly depends on input patterns [7].

The pattern dependency poses a problem in the sense that often power estimation of a func-

tional block is performed before the rest of the design is complete. In this case, little is known

about the inputs to the functional block. Therefore, complete and specific information cannot

21

Chapter 2: Low Power CMOS Design

be provided.

Some methods of power estimation have been proposed [7, 10-12]. These techniques sim-

plify the problem by making three assumptions:

Assume that the power supply and ground voltage levels are fixed for the entire design.

- this makes it easier to compute the power by estimating the current drawn by every

sub-circuit assuming a fixed voltage.

Assume that the circuit is built up using logic gates and registers, see Figure 2.5

- for this case, the power dissipation of the circuit can be broken down into two corn-

ponents

. power consumed by registers

. power consumed by the combinational block

Assume it is sufficient to consider only the charging/discharging current drawn by a

logic gate

- neglecting short-circuit current

Referring to Figure 2.5, whenever the clock triggers the registers, some of them will make

transitions and hence draw power. Therefore the power consumed by registers depends on the

clock. For the combinational block, the internal gates may make several transitions before

settling down to their steady state values for that clock period. The additional transitions

22

Chapter 2: Low Power CMOS Design

x

x l

x

Xr

cli

fo

Figure 2.5: A typical synchronous sequential design

are called glitches. These are not necessarily design errors, but they are a problem for low-

power design since additional power is being dissipated. This additional power can easily go

up-to 20% of the total power dissipation in a circuit. Estimating the 'glitch power' can be

computationally expensive, this leads to most power estimation techniques ignoring it [7].

Instead of simulating the circuit for a large number of input patterns, and then averaging the

results, the fraction of cycles in which an input signal makes a transition can be computed

and used to estimate how often internal nodes make transitions. This fraction is a probability

measure. Figure 2.6 shows both the conventional circuit simulation-based power estimation

and the probability-based power estimation.

There are several ways of defining probability measures associated with the transitions made

23

Chapter 2: Low Power CMOS Desi

Randomly generated
Input Vector sequences

Many circuit
simulation
runs 	 A large

number
Circuit 	 of

Simulator 	 current
waveforms

Average

]] 	

tI[Power 	

]]

Figure 2.6: A power estimation flow

by a logical signal. This is the case for both the primary inputs of the combinational block

and an internal node. These definitions are as follows:

signal probability P3 (x)

- at a node x, is the average fraction of the clock cycles in which the steady state value of x is

a logic high

transition probability P(x)

- at a node x, is the average fraction of clock cycles in which the steady state value of x is

different from its initial state

Both the above probability measures are not affected by the circuit internal delay. This implies

that they are the same even if a zero-delay timing model is assumed. However, when zero-

24

Chapter 2: Low Power CMOS Design

delay is assumed, the glitch power is excluded from the analysis.

When assuming zero-delay model and the transition probabilities are calculated, the power

can be computed as [7]:

Pay = 	Vd Ci Pt (x i) 	 (2.15)
1=1

where T is the clock period, n is the total number of nodes in the circuit and Ci is the total

capacitance at node x. Because this assumes at most a single transition per clock cycle, then

it is the lower limit on the true average power [7].

In practice, it may occur that two signals are never high simultaneously. Computing this type

of correlation can be very expensive, hence circuit input and internal nodes are usually as-

sumed independent. This is referred as spatial independence. Another independence issue

can be termed as temporal independence. This results in an assumption that the values of

the same signal in two consecutive clock cycles are independent. Assuming temporal inde-

pendence, the transition probability can be obtained from the signal probability as follows

[7]

Pt = 2P(x)P3() = 2P8 (x)[1 - P(x)] 	 (2.16)

Chapter 2: Low Power CMOS Design

transition density

- if a logical signal x(t) makes n(T) transitions in a time interval of length T, then

n(T)
urn 	 (2.17)

T—+oo T

The transition density provides a useful measure of switching activity in logic circuits. If the

transition density of every node in a circuit can be computed, the overall power dissipation of

the circuit can be calculated as:

Pay = vc?cicjD(Xi) 	 (2.18)
t=1

where D(x 1) is the transition density at node x.

For a synchronous circuit, the relationship between transition density and transition probab-

ility is [7]:

D > P(x)

TC
(2.19)

equilibrium probability

Chapter 2: Low Power CMOS Design

- the average fraction of time that the signal is high - if x(t) is a logical signal, then its

equilibrium probability is [7]:

T

1 f-
2

urn -x(t)dt 	 (2.20)
T—coT T

The equilibrium probability depends on the circuit internal delays since it describes the be-

haviour of the signal over time, not the steady state behaviour per clock. For steady state

conditions, the equilibrium probability reduces to signal probability [7].

Other techniques, which use traditional simulation models and simulate the circuit for a

limited number of randomly generated input vectors while monitoring power are named

'statistical-based'. The input vectors are generated from user specific probabilistic informa-

tion about the circuit inputs.

The techniques introduced above, probabilistic and statistical techniques, are only applicable

to combinational circuits. They require activity information at the register outputs to be

specified by the user.

2.4.1 Probabilistic Techniques

There are several power estimation approaches which have been proposed to alleviate the

input pattern dependency problem. These techniques use probabilities to solve the problem.

27

Chapter 2: Low Power CMOS Design

The techniques proposed are only applicable to combinational circuits and they require the

user to specify the typical behaviour of the circuits at the combinational circuit inputs. Sample

techniques evaluated are rated according to the following criteria [7]. See Table 2.2

glitch power handling

temporal correlation handling

complexity of the input specification

individual gate power provision

spatial correlation handling

speed

Approach Handle glitch
Power

Handle temporal
correlation

Input
Specification

Individual I gate power
Handle spatial I correlation

Speed

signal No No
probability

Simple Yes No Fast

CREST Yes Yes Moderate Yes No Fast
DENSIM Yes Yes Simple Yes No Fast
BDD Yes Yes Simple Yes Yes slow
Correlation
Coefficients

Yes Yes Moderate Yes Yes Moderate

Table 2.2: Probabilistic techniques

All the techniques in Table 2.2 use simplified delay models for the circuit components and

require user-specified information about the input behaviour. Therefore their accuracy is

limited by the quality of the delay models and the input specification.

28

Chapter 2: Low Power CMOS Design

using signal probability

The easiest way to propagate signal probabilities throughout every node in a circuit is to

work with a gate-level description of the circuit. For example, if y = AND(x i , x 2), then

using basic probability theory we get P3 (y) = P8 (x i)P3 (x 2), assuming that x 1 and x 2 are

spatially independent. Using the same approach, other simple expressions can be derived for

other gate types. After calculating the signal probabilities of every node in the circuit, the

power can be computed using Equations 2.15 and 2.16 [7].

If a circuit is built from boolean components that are not a part of a predefined gate library, the

signal probability can be computed using a Binary Decision Diagram (BDD) to represent the

boolean functions. Figure 2.7 shows an example where the boolean function y = x 1 x 2 + x 3

using a BDD. As an example, assume that x 1 = 1, x 2 = 0, x3 = 1, to evaluate y begin at the

top node and branch to the right since x 1 = 1. Then branch to the left (x 2 = 0) and finally to

the right (x 3 = 1) to arrive at terminal node 1. The resulting value for y is 1 [12, 1 3].

For the general case, if y = f(x i , ..., x) is a boolean function, and the inputs x 2 are in-

dependent, then the signal probability of f can be obtained in linear time as follows: let

f = f(1 7 x 2) ..., x) and fj- = f(0, x 2 , . .. x) be cofactors off with respect to x 1 , then

P(y) = P(x1)P(f,) + P()P(f j-) 	 (2.21)

where cofactors are defined by the Shannon decomposition of boolean functions [13].

Equation 2.21 shows how the BDD can be used to evaluate P(y).

29

Chapter 2: Low Power CMOS Design

Figure 2.7: A typical BDD representation

probabilistic simulation

The typical input signal behaviour of a circuit is provided in a form of waveforms for this

approach. Probability waveforms are sequences of values indicating the probability that a

signal is high for certain time periods and the probability that it makes a 0 to 1 transition at

specific time points. This allows the computation of the average current waveforms drawn

by individual gates in the design in a single simulation run. The average current waveforms

are then used to compute average power dissipated by each gate, which can in-turn be used

to calculate the total average power. An example of the signal probability waveform is given

in Figure 2.8 [1 4].

A program by [15] called CREST uses this approach to estimate power dissipation.

30

Chapter 2: Low Power CMOS Design

ti 	12 	 t3 	 time

Figure 2.8: An example signal probability waveform

Transition Density

A program was presented in [16] which propagates the transition density values from the

inputs throughout the circuit. This was called DENSIM. To visualise the propagation of the

transition density, recall that if y is a boolean function that depends on x, then the Boolean

difference of y with respect to x is

yI=i ED YI=o
	 (2.22)

If the inputs (x e) to the Boolean module are spatially independent, then the transition density

of its outputs is given by [1 6]:

D(y) = >P Q-) D(x 1) 	 (2.23)

Using a BDD

A BDD is used to represent the successive Boolean functions at every node in terms of the

31

Chapter 2: Low Power CMOS Design

primary inputs. These functions do not represent the intermediate values that the node takes

before reaching a steady state condition. However, the circuit delay information can be used

to construct boolean functions for some intermediate values, assuming that the delay of every

gate is a specified fixed constant [7].

X1 ->o-Y-::P

Figure 2.9: A simplified test case model

In Figure 2.9, let x 1 and x 2 in two consecutive clock periods be denoted by x i (1), x i (2) and

x 2 (1), x 2 (2). Assuming equivalent delays between the inverter and the AND gate, a typical

timing diagram can be shown as in Figure 2.10, where it can be seen that node z may make

two transitions before settling down [7].

The intermediate and the steady state values can be expressed as follows:

node I expressions

y 	y(l) =

y(2) =zi(2)

z 	z(1) =

=

= z1(2)x2(2)

Table 2.3: intermediate and steady state expressions

A BDD can be built for these functions which makes it possible to accurately compute the

intermediate state probabilities.

32

Chapter 2: Low Power CMOS Design

	

Xi((Xi(2)

	

X2(1D(X2(2)

	

y(1) 	 y(2)

	

Z(1))(z(2))< 	z(3)

Figure 2.10: A typical timing diagram for the test case model

This method can be quite slow since a BDD for the entire circuit will have to be built. In

some cases the resulting BDD may be too large [7].

Correlation Coefficients

For this approach, correlation coefficients between steady state signal values are used as

approximations to the correlation coefficients between the intermediate signal values [7].

2.4.2 Statistical Techniques

For the statistical technique, a simulation of the circuit is conducted repeatedly while mon-

itoring the power being consumed. A logic or timing simulator can be used for this. The

average power will be the final result. The main concern of their method is how the input pat-

terns are selected such that the measured power converges to the true average power. Usually

the input vectors are randomly generated based on some method, e.g Monte Carlo. Table 2.4

compares two such methods [7].

Total Power

The method in [17] estimates the total average power of the circuit by applying randomly gen-

33

Chapter 2: Low Power CMOS Design

Approach Handle glitch
Power

Handle temporal
correlation

Input
Specification

I Individual
gate power

Handle spatial
correlation

Speed

McPower I Yes Yes Simple No only internally I Fast
MED I Yes I Yes I Simple I Yes I only internally I Moderate

Table 2.4: Statistical techniques

erated input patterns and monitoring the energy dissipated per clock cycle using a simulator.

The program developed was named 'McPower'

The disadvantage of this method is that it does not provide the power consumed by individual

gates or a small group of gates.

Individual Gate Power

To deal with the disadvatange exhibited by the above method, [18] proposed a method that

not only provides the total power, but also the individual-gate power estimate. They named

their program 'MED'. Despite its improved accuracy, this method suffers from slow speed.

2.5 Summary

This chapter presented the basic of low power design and the underlying factors behind the

power estimation tools. Sources of power consumption were presented with the help of the

power consumption equation. Using the equation, the degrees of freedom for reducing power

consumption were evaluated, giving advantages and disadvantages of each technique. The

focus of this research is based on reducing the switching activity of a circuit. A summary of

techniques for reducing power consumption was presented in table 2.1. Some power estim-

34

Chapter 2: Low Power CMOS Design

ation techniques were described briefly, this gives the background of the techniques behind

the power estimation tools used in the research.

35

Chapter 3
Algorithms and Architectures for

Image Transforms

3.1 Introduction

This chapter introduces the basic concepts of Image Processing and Image Compression. The

image compression covered is the one that results due to image transformation. Some image

transforms are presented which compete with the DCT

An image processing system, in general, consists of a source of image data, a processing ele-

ment and a destination for the processed results. Figure 3.1 shows a typical image processing

system.

The source of image data can be any of the following: a camera, a scanner, a mathematical

equation, statistical data etc. That is, anything able to generate or acquire data that has a

two-dimensional structure is considered to be a valid source of image data. Furthermore, the

data may change as a function of time.

The processing element is usually a microprocessor. The microprocessor may be implemen-

ted in several ways. For example, the brain can be considered as some kind of a micropro-

cessor that is able to perform image processing. Another type of microprocessor that can

handle image processing is the digital computer.

36

Chapter 3: Algorithms and Architectures for Image Transforms

For the purpose of image processing, digitised video can be treated as a sequence of frames

(images) with each frame represented as an array of picture elements (pixels), See Figure 3.2.

For colour video, a pixel is represented by three primary components - Red(R), Green(G), and

Blue(B). For effective coding, the three colour components are converted to another coordin-

ate system, called YUV where Y denotes the luminance (brightness) and U and V, called

the chrominance, denote the strength and vividness of the colour [19,20]. This conversion is

described below:

Y= O.3R+O.6G+O.1B

U=B—Y
	

(3.1)

v=R — Y

Figure 3.1: from capture to compression

A 2D continuous image a(x, y) is divided into N rows and M columns, see Figure 3.2. The

intersection of a row and a column is normally termed a pixel. The value assigned to the

integer coordinates [m, n] with {m = 0, 1,2,... , M - 1} and {n = 0, 1,2,... , N - 11 is

a[m, n].

The image shown in Figure 3.2 has been divided into N = 19 rows and M = 26 columns.

The value assigned to every pixel is the average brightness in the pixel rounded to the nearest

integer value. The process of representing the amplitude of the 2D signal at a given coordinate

37

Chapter 3: Algorithms and Architectures for I
	

e Transforms

Frame 4

Frame 3

Frame 2

Frame 1

Time

Columns

0

Figure 3.2: Video sequence example

as an integer value with L different gray levels is usually referred to as amplitude quantisation

or simply quantisation.

There are standard values for the various parameters encountered in digital image processing.

These values can be dictated by video standards, by algorithmic requirements, or by the desire

to keep digital circuitry simple. Table 3.1 gives some of the commonly encountered values

[21].

Parameter I Symbol I Typical Value

Rows 	N 	256, 512, 525, 625, 1024, 1035
Columns 	M 	256, 512, 768, 1024, 1320
Gray Levels L 	2, 64, 256, 1024, 4096, 16384

Table 3.1: Common Values of digital image parameters

Chapter 3: Algorithms and Architectures for Image Transforms

The number of distinct gray levels is usually a power of 2, that is, L = 2 where n is the

number of bits in the binary representation of the brightness levels. When n > 1, the image

is referred to as a gray-level image, whereas when n = 1, the image is a binary or bi-level

image. In a bi-level image there are just two gray levels which can be referred to, for example,

as "black" and "white" or "0" and "1".

3.2 Image Compression Fundamentals

Image compression operations reduce the data content of a digital image and represent the

image in a more compact form, usually before storage or transmission. Grey scale, colour or

bi-level images can be compressed and different types of compression may be used for differ-

ent applications such as in medical imaging, the internet, finger-printing/security, seismology

and astronomy.

Digital images can be compressed by eliminating some redundant information. There are

three basic types of redundancy that can be exploited by image compression:

Spatial Redundancy

- in natural images, the values of neighbouring pixels are strongly correlated

Spectral Redundancy

- some images are composed of more than one spectral band, hence the spectral values

for the same pixel location are sometimes correlated

3. Temporal Redundancy

Chapter 3: Algorithms and Architectures for Image Transforms

- adjacent frames in video sequences often show very little change

Transform coding, which uses some reversible linear transform to decorrelate the image data,

removes both spatial and spectral redundancies. Temporal redundancy is handled by tech-

niques that only encode the differences between adjacent frames in an image sequence. Mo-

tion prediction is an example of such techniques.

There are two types of image compression, 1)lossy and 2)lossless.

Lossy compression

This type of compression results in the decompressed image being similar but not the

same as the original image. This is because some of the original data has been corn-

pletely discarded and/or changed. Because of its 'lossy' nature, this technique offers

high compression ratios in the order of 12:1 and beyond, depending on how much data

one is willing to loose.

Lossless compression

Lossless compression on the other hand retains the exact data of the original image bit

for bit. Lossless compression ratios are much lower, achieving rates of approximately

3:1.

Image compression is normally a two-way process which involves both compression and de-

compression. This process may not be symmetrical, that is, the time taken and the computing

power for one process may differ from the other given the type of compression algorithm

used.

40

Chapter 3: Algorithms and Architectures for Image Transforms

3.2.1 Image Transforms

If a purely sinusoidal signal has to be transmitted over some media, the signal can be sampled

and each data point be transmitted sequentially. The number of points depend on how accur-

ate the reconstructed signal should be, more points result in a better reconstructed signal. To

construct a deterministic sinusoid, magnitude, phase, frequency, starting time and the fact

that it is sinusoid are required. Therefore only five pieces of information are required to re-

construct the exact sinusoid. From an information theoretic point of view, a sampled sinusoid

is highly correlated whereas the five pieces mentioned above are not correlated. Transform-

ation is an attempt to take N sampled points in the transmission and turn them into a few

uncorrelated information pieces [22].

Transforms are used widely in image processing for functions such as image filtering and

image data compression. Only a few of the commonly used compression transforms are

presented in this section.

Basics

Let an image d be represented as an MxN matrix of integer numbers

d(O,O) 	d(O,1) 	... 	d(O,N-1)

d = 	 (3.2)

d(M - 1,0) d(M - 1,1) . . . d(M - 1,N —1)

41

Chapter 3: Algorithms and Architectures for Image Transforms

A general transform for image d is

(3.3)

where P and Q are transformation matrices on the rows and columns respectively for a 2-D

transform.

The general transform equation 3.3 can be re written as

M-1 N-i

D(u, v) = 	P(u, m)d(m, n)Q(n, v) 	 (3.4)
m=O n=O

whereu=O,1,...,M-1;andv=O,1,...,N-1

If P and Q are non-singular(non-zero determinants), then the inverse of matrix of Equation

3.3 exists.

d = P'DQ 1
	

(3.5)

If both P and Q are symmetric (P = Pt and Q = Qt), and orthogonal(PtP = 1 and

QtQ = 1) then

(3.6)

r

42

Chapter 3: Algorithms and Architectures for Image Transforms

and the transform is termed as an orthogonal transform [20].

Discrete Fourier Transform

The discrete Fourier transform is analogous to the continuous Fourier transform and may be

efficiently computed using the Fast Fourier transform algorithm. The properties of linearity,

shift of position, modulation, convolution, multiplication and correlation are similar to the

continuous one. The difference between them is the discrete periodic nature of the image and

its transform [23,24].

Let 4b jj be a transform matrix of size jxj

22 (k, 1) 	
j

C 	 (3.7)
1 (_i?kE)

-

-

wherek,1=0,1,... ,j-1

The discrete Fourier transform can be defined according to the following equation

F = MMI4'NN 	 (3.8)

M-1 N-i
/ 	m 	flV

F(u, v) = 	 f(m, n)e (-2iri(-u- + 	
\ 	

(3.9)
tn=O n=O

43

Chapter 3: Algorithms and Architectures for Image Transforms

whereu=O,1,...,M—landv=O,1,...,N-1

The inverse transform matrix is given by

41(k,l) = 	 (3.10)

and the inverse Fourier transform by

M-1 N-i

(27rz'(
mu 	flv

f(m,n) = 	F(u,v)e--+-j.)) 	 (3.11)
u=O v=O

wherem=O,1,...,M—landn=O,1,...,N-1

Therefore, the kernel of the discrete Fourier transform is given by

e

 (

.mu nv
27rz(M- + N)) (3.12)

When considering implementation of the discrete Fourier transform, equation 3.9 can be

modified to

M-1 r N-i
(_2r.flu)

F(u,v) = 	 e 2)f(mn)]

tn =O L n=O

The term in the square brackets, which is actually a 1D Fourier transform of the mth line, can

be computed using the standard Fast Fourier Transform procedures. Each line is substituted

with its Fourier transform, and the 1D discrete Fourier transform of each column is computed

Chapter 3: Algorithms and Architectures for Image Transforms

[20].

Although the DFT offers a good energy compaction, it suffers from increased computational

complexity. Both real and imaginary components of the transform have to be computed as it

can be seen in Equation 3.13.

Hadamard Transform

The forward Hadamard kernel is defined as

1
g(x, u) = 7(_i)Eo' b1fr)b,(u) 	 (3.14)

where the summation in the exponent is performed in modulo 2 arithmetic. Therefore a one

dimensional forward Hadamard transform is described by

N—i

H(u) = 	f(x)(-1)' b1(x)b(u) 	 (3.15)
a=O

where 1(x) is the image samples, N = 2h and u = 0,1,2,... , N - 1

A Hadamard matrix H is an nxn matrix with all entries +1 or -1(see Equation 3.16), such that

all rows are orthogonal and all columns are orthogonal [20].

The usual development starts with a defined 2x2 Hadamard matrix H22 , Equation 3.16. Each

step consists of multiplying each element in H22 by the previous matrix [20].

ER

Chapter 3: Algorithms and Architectures for Image Transforms

	

Ii 	1 	1
H22

= 	
(3.16)

Hij H22 =
[JJ _2] 	 (3.17)

	

Hj-j =Hjj 	 (3.18)

	

F = HMMIHNN 	 (3.19)

I = -JHMMFHNN

The Hadamard transform has no multiplications. This might seem like an advantage but it

turns out that it is very hard to analyse it.

Wavelet Transform

Wavelets are mathematical functions that divide data into different frequency components.

Each component is then studied with a resolution matched to its scale. Wavelets are suited

to modelling phenomena whose signals are not continuous. Wavelet compression algorithms

have achieved ratios of around 300:1 for still images [25]

The compression technique used in wavelets is using low-pass and high-pass filters to separ -

ate an image into images with low or high spatial frequencies respectively. Low frequency

images being those with gradual brightness change. This is the case for images like flat or

46

Chapter 3: Algorithms and Architectures for Image Transforms

rounded background areas. Such images appear soft and blurry. As for the high frequency

band, the images are sharp and crisp edged. To reconstruct the original image, the frequency

bands imaged are added together. This results in a near perfect image if the processing is

perfect [19,26].

Low pass

Filter

Low pass

Filter

Lowest
pass
Filter

QutlssUon 	118 samplIng rate

Run-length fl-
Huffman Coding if

High pass

Filter

High pass

Filter

Quantization 	1/8 sampling rate
Run-length i.+

luffman Coding

rate
Run-iength

luttman Coding

Input

Highest
pass
Filter

Quantization 	112 sampling rate
Run-length

iuffman Coding

Figure 3.3: Wavelet compression

In figure 3.3, a pixel data stream from an input image is divided into several sub-bands by

a tree of low and high pass filters. Each filter allows a specific band of frequencies to pass.

There filters can be either digital or analogue.

Wavelet compression is a lossy process. The image quality is always compromised to some

extent. Higher compression rates results in high image distortion. This distortion is different

from the blocking effects arising from the DCT. Wavelet application areas include signal and

image compression [27], communications [25].

47

Chapter 3: Algorithms and Architectures for Image Transforms

Despite all the advantages exhibited by the wavelet transform, it has an inherent weakness.

This segmentation of an image into different frequency ranges requires that the resulting

images be stored in the interim before going through the quantisation stage. Therefore starting

of with a single image and ending up with several images costs in terms of storage space.

Karhunen-Loeve Transform

The Karhunen-Loeve Transform (KLT) is based on statistical properties of an image. Its

main applications are in image compression and rotation. A sample image I (x, y) can be

expressed in the form of an N 2 -dimensional vector x

xi l

xi 2

xi = 	 (3.20)
x ii

XjN 2

where x ij denotes the jth component vector x.

The covariance matrix of the x vectors is defined as

C. = E{(x - m)(x - mx)T} 	 (3.21)

where m = E{x} is the mean vector and E is the expected value. Equation 3.21 can be

9.9

Chapter 3: Algorithms and Architectures for Image Transforms

approximated from image sample using the relations

m
	

(3.22)

and

M

C, 	(x - 	- mx)T 	 (3.23)
i=1

or

1

CX --- IxjxI _mxmxT
M 	

(3.24)
j

The mean vector is N 2 -Dimensional and C. is an N 2xN 2 matrix.

Let e j and), i = 1, 2,... , N, be the eigenvectors and corresponding eigenvalues of C x .

The eigenvalues are arranged in decreasing order (\ I > ... > \Pp) for convenience. A

transformation matrix, A, whose rows are eigenvectors of C, is

e 11 	e12 	... 	elN2

e2l 	e22 	 21%12 	
(3.25)

[
eN 2 1 eN22 ... 6N 2 N2

Me

Chapter 3: Algorithms and Architectures for Image Transforms

where e23 is the jth component of the ith eigenvector.

The discrete Karhunen-Loeve transform is simply a multiplication of the centralised image

vector (x - mr), by A to obtain a new image vector y:

y = A(x - m)
	

(3.26)

The KLT offers optimal energy compaction in the Mean Square error sense. That is €(k) =

E[(x - 5)T(x -)] is a minimum, where i is a representation of the truncated x in k terms. E

is the mathematical expectation operator. It also projects the data onto a basis that results in

complete decorrelation. Therefore, the KLT can reduce dimensionality if the data is of high

dimensionality [20,28].

As can be seen from the above presentation, the transform coefficients of the KLT vary from

image to image, hence they have to be computed on the fly. This can be very computationally

intensive for realtime and low power applications. Therefore, it is better to use the next best

efficient image transform.

Discrete Cosine Transform

The Discrete cosine transform and its inverse (IDCT) are the transforms for practical image

processing. Its energy compaction abilities are high. Another advantage over other transforms

is the existence of fast implementation algorithms. Because the DCT is the main subject of

50

Chapter 3: Atgorithms and Architectures for Image Transforms

this project, it will be discussed in detail in the next section. It is not the purpose of this thesis

to examine the IDCT, however the techniques proposed can be used to process the IDCT.

3.3 The Discrete Cosine Transform

Ever since it was discovered in 1974 by [29], the DCT has attracted attention from engin-

eering, scientific and research communities. This is indeed the least surprising because of

its energy packing capabilities which approach the statistically optimum transform, the KLT.

A number of fast DCT algorithms have been developed which also contributed to its hype

[22,30,31].

The following equation is a mathematical definition of an NxN DCT.

2 	
N-iN-i

GkGm (2i+1)klr) 	((23+1)mlr
N 	

)
C(k,m)= 	>d(i,j)co.s(

2N 	
CO3 	

2N
(3.27)

i=O j=O

where Gk = Gm = 1 and G0 = 1/\/

in a matrix form, Equation 3.27 can be written as:

[Ce] = 	 (3.28)

51

Chapter 3: Algorithms and Architectures for Image Transforms

where

[E] is the cosine matrix and [D] is the pixel matrix

An interesting quality of the DCT is that it is separable and orthogonal. The orthogonality

property implies that the energy of a signal is preserved under the transformation. The DCT's

separability principle implies that a multidimensional DCT can be implemented by a series

of one dimensional (1D) transforms. The advantage of this property is that fast algorithms

developed for 1D DCT can be directly extended to multidimensional transforms (Figure 3.4).

It should be observed that other forms of transformation do posses this separability quality.

Some examples are DFT, WHT, Haar etc [22].

PixelsCT data 	1D DCT/IDCT
	

1D DCT/IDCT 	DCT data/Pixels

onrows

Figure 3.4: Implementation of 2D DCTby 10 DCTs

3.3.1 DCT Algorithms and Architectures

The development of efficient algorithms began soon after it inception. It was natural for

the initial attempts to focus on the computation of the DCT by using the EFT algorithms.

Although it was not developed as a discretised version of the FFT, the DCT's relation to the

DFT were exploited in the initial developments of its computational algorithms [22].

There are two main approaches for implementing the DCT. Firstly, there is the flowgraph

52

Chapter 3: Algorithms and Architectures for Image Transforms

based architecture, which has an advantage of minimising the total number of arithmetic op-

erations and also is the basis of the fast algorithms [32]. Secondly, there is the scalar product

based architectures, these have gained favour with designers for their regularity in nature

and can exploit the use of distributed arithmetic [33]. Several architectures are discussed in

literature, see [34-36]. This section introduces only fundamental architectures.

3.3.1.1 The Chen Algorithm

Consider the matrix E

E=I

dd d d d d d d

a c e g —g —e —c —a

b f -f —b —b -f f b

c —g —a —e e a g —c

d —d —d d d —d —d d

(3.29)

e —a g c —c —g a —e

f —b b -f -f b —b f

g —e c —a a —c e —g

where

it 	 37r 	it 	 37r 	it 	 it
a = cos,b = cos--,c = cos-,d = cos-,e = cos-,f = cos--,g = cos 	(3.30)

16

53

Chapter 3: Algorithms and Architectures for Image Transforms

The symmetry of matrix E can be exploited to represent the 1-D DCT as follows

[YO d d d

Y2I b f -f

d —d —d

[Y6j [1 —b b

d

—b 	xi+x6

d

-f j x3+x4

(3.31)

Yi 	a c 	e 	g

c —g —a —e

e —a g c

g —e c —a

The exploitation in. 3.31 results in the (NXN) multiplication matrix being replaced two

(N12)X(N/2) matrices which can be computed in parallel together with the sums and dif-

ferences on the right hand side of 3.31.

Implementations in [37],[38], [39], [40] and [41] are all derivatives of this algorithm. To

further reduce complexity, [37] observed that the first matrix processing in Equation 3.31

involves multiplication with only three cosine coefficients (b, d and f). Therefore, the multi-

plications can be reduced from 32 to 28 in total.

The Algorithm presented in [42] is derived from 3.31, however it only requires 16 multi-

plications with 2 Additions on the critical data path. Figure 3.5 depicts the data flow of this

54

0

1

2

3

4

5

6

7

0

4

2

6

1

5

3

7

Chapter 3: Algorithms and Architectures for Image Transforms

algorithm. The arrow (—)) in the figure represents subtraction. An example architecture that

can be used to implement this algorithm is depicted in Figure 3.6.

Figure 3.5: Data flow graph for the Chen Algorithm

3.3.1.2 The Arai Algorithm

Arai et al in [43] developed an algorithm that requires only 5 multiplications. This scheme is

shown in the flowgraph depicted in 3.7. This is only possible because the outputs are scaled.

To get the true values of the DCT coefficients, the output requires a further multiplication.

For some systems, this further multiplication can be incorporated in subsequent stages. For

example, the perceptual weights in the video encoding algorithm. This processing technique

is termed as scaled-DCT.

55

Hi \ \1

T
G)

Reg

—~T,
Reg

—~T,

0

1

2

3

4

5

6

7

0

4

2

6

5

1

7

3

Chapter 3: Algorithms and Architectures for Image Transforms

-- 	coefficient memory

Figure 3.6: DCT architecture based on four MAC processing units

Figure 3.7: Data flow graph for the Arai Algorithm

56

Chapter 3: Algorithms and Architectures for Image Transforms

3.3.1.3 The Chiu Algorithm

A different approach to the DCT implementation was proposed by Chiu et a! in [44,45]. They

propose a direct implementation whereby the DCT is computed recursively. The values of

the DCT are updated with each new sample. Each DCT utilises the results from a previous

DCT, ie the next DCT is obtained by adding the difference between it and the previous DCT

This method requires the Discrete Sine Transform (DST), therefore a computation of both

the DCT and the DST is necessary. Deriving the recursive expression from 3.32, we get 3.33

^ II1

(k,1)

,1)

Figure 3.8: Lattice structure

t+N-1
- 2G(k) 	 (2(n - t) + 1)klr

C(k,t) 	
)

- N > d(n)cos(
2N 	

(3.32)

n=t

57

Chapter 3: Algorithms and Architectures for Image Transforms

wherek=O,...,N-1

C(k, t + 1) = (C(k, t) +
2

[—d(t) + (_1)cd(t + N)] cos(j
kir

))cos(
 kir
-j -) (3.33)

+ (C8(k,t) +
2

[—d(t) + (_1)'d(t + N)] sin(
ku
-))sin(ku --)

where k 	0; k = 0 is a special case. C3 (k, t + 1) is generated in the same manner as

Equation 3.33. The difference is that the first cosine and sine terms in Equation 3.33 are

swapped. C(k, t + 1) and C8 (k, t + 1) are obtained from C(k, t) and C3 (k, t) by subtracting

the effect of d(i) and adding the effect of d(i + N). This process is termed as time recursive

DCT.

Chiu et al proposed a fully pipelined architecture to compute the 2-D DCT from a frame-

recursive point of view. Two real-time lattice structures for successive frame and block 2-D

have been developed. These structures are fully pipelined with throughput rate N clock cycles

for an NxN successive input data frame. The resulting 2-D DCT architectures are modular,

regular, and locally connected and require only two 1 -D DCT blocks that are extended directly

from the 1-D DCT structure without transposition [44].

The 2-D DCT can be generated by using the lattice structure as in Figure 3.8. Depending

on the coefficients stored, the appropriate transform coefficient, Yk is computed. Every clock

unit, a new data input enters and gets processed. At the end of N cycles, the computations for

that set of N data elements are completed. By employing N such structures, all the transform

Chapter 3: Algorithms and Architectures for Image Transforms

coefficients are computed in parallel and made available at the end of N cycles. This parallel

computation of N coefficients represents the 1-D DCT.

Each kernel requires six multipliers for the computation of the forward transform alone.

Clearly, there are too many multipliers for the efficient VLSI implementation. The advantage

of this structure is its better numerical properties, being a normal form implementation as

opposed to the hR structure.

3.3.1.4 Distributed Arithmetic (DA) Implementation

Distributed arithmetic differs from conventional arithmetic in the order in which operations

are performed.

Consider a one dimensional N-point DCT defined as follows

C = >ejdj
	 (3.34)

where ek's are W-bit constants and d's are coded in B bits using two's compliment repres-

entation, i.e

d1 = — d,0 + E d2 	 (3.35)

this leads to

59

Chapter 3: Algorithms and Architectures for Image Transforms

C = 	e(—d, o + jj d1 ,32) 	 (3.36)

N-i 	B-i N-i
= -
	ed,0 + i(2 e1d1,j23)

i=0 	j=1 1=0

=

where

Et-o =e1 d1 , 	 (3.37)

and

E0 = - 	ed1 ,o 	 (3.38)

The change of summing the order in i and j characterises the DA scheme whereby the initial

multiplications are distributed to another computation pattern. Since the term E3 has only

2N possible values(that depend on the d,2 values), it is possible to store these 2N values

in a ROM. An input set of N bits {d 0,,, d1,,, ..., dNi,} is used as an address, allowing the

retrieval of E1 values. These intermediate results are accumulated in B clock periods, for

producing one C value. A typical architecture for DA computation is depicted in Figure 3.9.

The multipliers are replaced by a ROM followed by an accumulator [46,47].

Chapter 3: Algorithms and Architectures for Image Transforms

The DA takes advantage of ROM's in which the partial products are stored. This ROM's

need to be reset every internal clock. This is prone to increased power consumption since the

resets are implemented using a P-channel pull-up transistor. A direct path between VDD and

ground exists while the pull-ups are active [48].

D oj

D 11

D N-lJ

C o

C N-I

! 	 I
! 	 i
! 	 I

Figure 3.9: Architecture of N input scalar product using DA

3.3.1.5 Bit-Serial Implementation

In cases where cost is an issue, where parallel implementations are too expensive in terms

of integration, bit serial implementation becomes a viable option. These are simply a direct

mapping of a data-flow graph. Some bit-serial DCT implementations are presented in [49],

[50], [51] and [52]. Balsara et al in [53] presented an overview of bit serial multipliers.

A detailed comparison of bit-serial and bit parallel implementations is presented in [54].

Another advantage of bit-serial is that wiring overheads are almost negligible because only

61

Chapter 3: Algorithms and Architectures for Image Transforms

1-2 wires need to be routed per interconnection [55]. However, the availability of more

routing layers, the impact of global interconnects on bit-parallel implementations may not be

so detrimental. In the context of power, bit-parallel implementations have the advantage of

being able to exploit data correlation for power reduction [56].

Multiplications
additions, and ROM
space

Number of
Multiplications

Number of
Additions

Number of
ROM words

Number of
RAM words

 for Transposition

Per NxN Block Direct Computation N 4 N 4 - -

With Separability 2NO 2N 3 N 2
Fast Algorithm N 2 log2 N N 2 log2 N - N 2
PureDA - 32N 2N21v N 2
Mixed DA/FG - 34N N2 N 2

Per Pixel Direct Computation N 2 N 2 - -

With Separability 2N 2N - N 2
Fast Algorithm 1092 N 21092 N - N 2
PureDA - 2N2 2 N 2
Mixed DA/FG 2N3 17 N2 N 2

Table 3.2: Computation and Storage requirements for some DCTAlgorithms

3.4 Summary

This chapter presented the basics of image compression. It also highlighted relevant import-

ant features of some well known image transfonns and how they relate or compare with the

DCT. It is still fact that in terms of energy compaction, the DCT performs close to the optimal

KLT

There are several algorithms developed for the DCT ever since its invention. This goes to

show its continuing popularity amongst the image compression research and development.

Some algorithms are more suited for VLSI implementation than others, particularly the im-

62

Chapter 3: Algorithms and Architectures for Image Transforms

plementation using the separability principle of the DCT. This is so because of the regular

structure that results from implementation. Table 3.2 presents a summary of different imple-

mentation, which include computational complexity and ROMIRAM requirements.

63

Chapter 4
Low Power DCT Research

4.1 Introduction

Some of the work done by other researchers in order to address the problem of low power

DCT implementation is briefly summarised in this chapter. In addition it will also highlight

the need for DCTs and in particular, the low power DCT implementation.

Most research work considering low power implementation of the DCT have targeted redu-

cing the computational complexity of the design or modifying it for operation under a lower

supply voltage [57,58]. Both these techniques have a limited effect on power reduction. An-

other major contribution to power consumption is due to the effective switched capacitance

[56,59]. Only a few researchers have targeted reducing power of a DCT implementation

through a reduction in the amount of switched capacitance [60-62].

4.2 Work so far

Switched capacitance reduction has been achieved through techniques such as the adaptive

bitwidth reduction [61-63] and lookup table partitioning [60]. Xanthopoulos et al. [62]

demonstrated that bitwidth of arithmetic operations can be minimised dynamically in the

presence of data spatial correlation. This technique utilised the fact that image pixels are bc-

Chapter 4: Low Power DCT Research

ally highly correlated and they show a certain number of common most significant bits. These

MSB 's are only relevant for the DC component and can be rejected for all high frequency

coefficients. Hence the bitwidth is reduced, which in turn implies reduction of switching

activity.

For the lookup table partioning technique, Cho et al. [60] proposed a data driven variable

length decoder which exploits the signal statistics of variable length codes to reduce power.

The idea here is to minimise the average codeword length by exploiting the statistics of the

data. That is, shorter codewords are assigned to recurrent data while longer codewords are

assigned to sparsely occurring data. Therefore a minimum average codeword is experienced,

implying a reduction of switched capacitance.

Another circuit has been proposed in [63] which reduces signal transitions by adaptively

adjusting the number of the MSB 's to varying content of the input data. The scheme compares

the input pixels and dynamically shuts the MSB's values that have not changed.

Chen et al in [64,65] presented a low power architecture for video coding systems using a

combination of low power techniques such as multirate, look-ahead and pipelining. Multirate

in this context is defined as dividing the data stream into odd and even sequences and then

running the resulting modules at half the speed of the input data.

Targeting an asynchronous multiplier for the DCT, Kim et al [66] take advantage of the typ-

ically large fraction of zero and small valued data in the DCT application. Their design skips

multiplication by zero and dynamically deactivates bit slices that contain only sign extension

bits.

65

Chapter 4: Low Power DCT Research

The techniques here include removal of circuit blocks that computes the DCT coefficients

which will be quantised to zeroes, reordering of operations in constant-multipliers to reduce

transition probability, and re-designing cells for low-voltage operation. Power consumption

for an 8x8 2D DCT is estimated at 16.95mW [67].

The use of pipelining and parallelism for reducing power consumption is considered in [68]

for fast discrete cosine transforms. ROM-Based algorithms are also presented. In conclusion,

multiplier based implementations consumed less power than ROM based implementations.

But the ROM based Implementation was faster than the multiplier Implementation.

Chen et. al. in [58] presented a low power DCT chip. Their technique for power reduction

was based on reducing the complexity of the DCT by using the direct implementation of

the 2-D DCT. They also used a parallel distributed arithmetic approach with reduced power

supply voltage [58,69].

In [70], Masselos et al presented an approach for low power realisation of DSP algorithms

that are based on inner product computation. Their proposed methodology is based on an

architectural transformation that reorders the sequence of evaluation of the partial products

forming the inner products.

Although the methodology summarised above appears to be comparable to the schemes pro-

posed in this thesis, there are several key differences. The first difference worthy of noting is

that the methodology proposed by [70] is not generic, only the minimum Hanmiing distance

can be used with the methodology. This implies that no other ordering techniques can be used

even if it offers a better solution in terms of reducing switching activity. In [70], it is unclear

Chapter 4: Low Power DCT Research

how the data is being dealt with. This comes into consideration since when a matrix multi-

plication is to be processed, the row of the cosine matrix has to be multiplied with a column

of the data matrix. If the location of the entry in the row of the cosine matrix is changed, ap-

propriate measures have to be taken in the respective column entry so that the correct entries

are used. And finally, [70] proposes an architecture whereby data is transfered from the data

memory into a set of foreground registers. This foreground registers are configured in such

a way that they form a queue. That is when the second entry is being read from the data

memory, it pushes the first entry into the second register. This implementation suggests that

every time a new entry is being read from the data memory, all the registers are being written

to since data is being shifted into them. From our experience, this technique is very costly in

terms of switching activity.

This thesis presents a number of low power approaches for implementing the DCT. The low

power approach used is based on reducing the switching activity of circuit. The techniques

are generic and can be extended to include other applications where matrix multiplication

is required. Some DCT architectures which suit the schemes are proposed as proof of the

concept, and some power dissipation measures are given for the data path components.

4.3 A Case for Low-Power DCT

Until recently, dedicated signal processing hardware was a necessity for the DCT computa-

tion in real time video applications. MPEG2 compression for a 720 x480 frame size at 30

frames per second(fps) 4:2:0 requires approximately 132 mega operations per second worst

67

Chapter 4: Low Power DCT Research

case assuming that a fast computation algorithm is employed. Microprocessors (300M11z)

with instruction sets enhanced with multimedia extensions (ie Intel MMX) are capable of

perfonning multiple instructions per cycle by partitioning a single 64-bit integer datapath

into a two 32-bit, four 16-bit or eight 8-bit independent integer datapaths operating in par-

allel. Such instruction sets are ideal for the implementation of signal processing tasks that

involve multiple independent low precision integer operations. A 300 MIHz Intel Pentium

II can process 1.2 giga operations per second on 16-bit media data types. Therefore, it can

be observed that the DCT approximately occupies 11% of the processing resources avail-

able in commodity microprocessors today in a real time video application. The other 89%

of the machine resources may be allocated to other video processing tasks such as motion

compensation and entropy decoding or graphics computations for updating the display[61].

Some more figures reflecting the amount of data involved in video data are listed below.

• Five minutes of video

- 512x512 pixel colour image at 25 frames/sec requires 5.625 Gbytes

• Five still images

- 5 still images of size 512x512, 3 bytes for colour(RGB), requires 3.35Gbytes

This clearly calls for some form of compression in order to store data.

RN

Chapter 4: Low Power DCT Research

4.4 Summary

The chapter presented some of the work covered prior (or during) to this work in order to

address the problem of low power DCT implementation. The common technique witnessed

seems to be adaptively minimising the bitwidth of input pixel based on the statistics of image

content. This research proposes a different approach, unique to the DCT implementation,

whereby switched capacitance is reduced through manipulation and exploitation of correla-

tion in cosine coefficients during the computation of the DCT coefficients.

The need for low power DCT was also highlighted in this chapter. Some figures are given to

enhance the appreciation of how computation-costly the DCT can be.

Chapter 5
Column-Based DCT Scheme

5.1 Introduction

An exploration of the first scheme is presented by the use of the multiplier unit example. This

involves the power analysis of the multiplier section of the proposed scheme environment.

The multiplier unit is well-known for its computation intensive nature. This scheme is termed

Column-Based.

5.2 Column Based Processing

The computational bottleneck for the implementation of the DCT is the multiplication of the

cosine coefficients matrix [E], by the pixel matrix [D], in order to obtain the DCT coefficients

[C], i.e.

[C] = [E] * [D]
	

(5.1)

where each element CIk in [C] matrix of order n is given by:

70

Chapter 5: Column-Based DCT Scheme

C2k

=

	 (5.2)

C 11 C 12 C18 E 11 E 12 .E18 D il 0 12 D 8

C 21 C 22 c28 E21 E E28 0 21 0 22

81 C 82 C E81 E 82 0 81 D 82

C ll =E ll *+ED2l ±E l3*+...+E,D8l

C 21 = E 21 * + E 2 . 	D21 ± E23 * 	+. . . + E 2 . 	081

C 31 = E31
* + E 3 : D21t E33+. . . + E 3; D81

C 41 = E1 *+ E 4 	021+ E 43 * + 	. . I + E 4 	D81

C 51 = E 51 + E 5 	021± E 	- D31 +. . . + 	D81

C 61 = E61 * + E6021 -- E 	* D31 + 	.. +E 	D81

C71= 	
*

71 + E 7 . 	 D21 + E73 * 	+. . . + E 	D81

C 81 =E 81 *+E* 021+ E*+. . .+E 6 D81

\ / ___Zz
F Dxk constant I

Figure 5.1: Matrix multiplication process

A number of experiments were carried out with some cosine matrix and various pixel matrices.

Careful analysis of the multiplication procedure revealed two distinct categories of cosine ele-

ments: (1) elements that are powers of 2, and (2) those which are non-powers of 2 numerics.

For this reason, the algorithm processes the elements in (1) by performing a simple shift op-

71

r 5: Column-Based DCI Scheme

eration. It is well known that the switched capacitance of a shift is significantly less than that

of a multiplication[58].

Examination of the multiplication procedure embodied in Equation 5.2 can reveal more scope

for power optimisation. This can be demonstrated by expanding Equation 5.2 with n=8,

as shown in Figure 5.1. As could be deduced from the figure, when the computation is

performed on the basis of evaluating coefficients successively, i.e. G 11 -C81 , then new pixel

and coefficient values are processed at both inputs of the multiplier. If the multiplication

procedure is performed on a column-after-column basis (i.e. E 1 *D11 , E 2 *D21 , and so on)

then the value of Dk will be constant (for 8 multiplications) at the corresponding multiplier

input. This implies less switching activity at the multiplier inputs and memory buses.

For each column being processed, the multiplication procedure outlined above has the product

form (m*constant), where m are the cosine matrix elements in the column being processed.

The constant remains valid for only these values of m, if the column changes, a new constant

is activated.

The multiplication results are unchanged irrespective of the order in which the constant is

multiplied by the sequence of cosine coefficients in the column. For this reason, the algorithm

performs the multiplication of elements in (2) in a column-by-column fashion and orders the

elements, in the column being processed, according to some criteria. In this case, the criteria

being minimum switching activity (hamming distance) between consecutive coefficients mul-

tiplied by the constant. This guarantees that similar elements are subsequently applied to the

inputs of the multiplier causing minimum switching activity within the internal circuit of the

72

Chapter 5: Column-Based DCT Scheme

Figure 5.2: Flowchart of the algorithm

73

Chapter 5: Column-Based DCT Scheme

multiplier.

Hamming distance is defined as the number of digit positions in which the corresponding

digits of two binary words of the same length are different. For example, the Hamming

distance between 01101100 and 10001000 is 4. The ordering of binary words according to

minimum Hamming distance uses this definition to arrange any two consecutive numbers

such that the Hamming distance is less than any other arrangement.

Although the investigations were carried out using the example of ordering elements accord-

ing to minimum hamming distance, in practice, any ordering algorithm can be used and the

amount of power saving is determined by the power of the algorithm used. The steps in Fig-

ure 5.2 outline the algorithm, which commences with the following initialisation steps: (1)

Process entries E1 with shift operation. (2) Order remaining coefficients according to some

ordering algorithm. (3) Save entries Ei., in (E) memory, see Figure 5.3, with elements of the

same column being adjacent to each other, followed by the next column, and so on.

To illustrate the above algorithm, consider an example where;

2.00 2.00 2.00 2.00

1.85 0.77 —0.77 —1.85
E =

1.41 —1.41 —1.41 1.41

0.77 —1.85 1.85 —0.77

(5.3)

74

Chapter 5: Column-Based DCT Scheme

Demux

Multiplier
Shifter

CosIne 	1 Mux

	

Pixel 	 I Matrix 	Ii
Memory ii 	IMemory 1 	V

	

(D) 	 (E) 	 \J 	4
DCT Coel.

	

Control 	 Register

Bank(R)

Figure 5.3: Simplified architecture of the processor

75

Chapter 5: Column-Based DCT Scheme

and

35 32 31 34

32 37 31 31
D =

29 28 27 31

26 28 31 34

After the first iteration (i=1, x=1, and k=1), the first column, E 1 , is ordered according to

minimum hamming distance to produce the ordered sequence (2.00, 0.77, 1.41, 1.85). The

original locations of these elements are stored. Next the above sequence is multiplied by the

first entry in D 1 , 35. The entries in registers Ri will be (70, 64.75, 49.35, 26.95), where

the first entry (70) is saved in R 1 and the second entry is saved in R 2 and so on. Similarly

at the end of iteration 2 (i=2, x=1, and k=1), Ri will contain (134, 89.39, 4.23, -32.25).

The last iteration (i=4, x=1, and k=1) for this particular column, results in R i containing the

first column of the DCT coefficient matrix [C], i.e. Ri = Cxj = (244, 18.96, 0, 1.35)T.This

procedure is carried out until x =k = n, at which case R 1 will contain C44

As it stands, the algorithm can be implemented on traditional DSPs without any loss in

throughput. However for high throughput applications, a modified processor architecture

is required. The architecture, a simplified version of which is shown in Figure 5.3, requires

an internal register bank in order to store the partial products, (R), which eventually result

(5.4)

76

Chapter 5: Column-Based DCT Scheme

in the DCT coefficients, [C]. In addition, a memory unit is allocated for both the cosine and

the pixel matrix elements, E and Dk respectively. A shifter is included to cope with the

additional shift operations. The multiplier and the adder units are included to perform the

normal multiply-add DSP operations. Since the outputs of both the multiplier and the shifter

have to share the same input of the register bank, a multiplexer is needed to resolve which

one output can use the register bank input. Another multiplexer is required to handle outputs

from multiplier/shifter and adder units since some of the inputs to the register bank proceed

directly to the bank without passing through the adder.

5.3 Simulation Results and Analysis

Figure 5.4 illustrates the framework utilised for the evaluation of the scheme with a number

of 512x512 pixel example benchmark images. These, which include Lena, Man and checked

images, are shown in Appendix C. The cosine coefficient matrix used was obtained using the

MATLAB signal processing toolbox [71].

The evaluation environment is based upon the JPEG standards, where images are processed

in blocks of W. For this reason our results are obtained with n=8, i.e. an 8x8 cosine matrix

is used with 512x512 pixel images being processed in blocks of 8x8. Some MPEG imple-

mentations subscribe to this processing. An 8x8-bit array Multiplier was constructed, using

the Cadence VLSI suite with ES2 0.7 CMOS Technology, and processed down to layout

level[72].

77

Chapter 5: Column-Based DCT Scheme

A C-program based test-fixture mapping system was developed to generate input simulation

files for the Verilog-XLTM digital simulator [73]. This involved forming the appropriate

image-pixel/cosine-coefficient pairs, in the order imposed by the multiplication algorithm, so

that they can be applied to the inputs of the hardware multiplier.

Three types of input simulation files are generated, representing the use of one of the follow-

ing: (1) Traditional cosine DCT multiplication (Traditional). (2) Column-based multiplica-

tion algorithm without ordering (Column-based). (3) Column-based multiplication algorithm

with ordering according to minimum hamming distance (Hamming). In each simulation, the

number of signal transitions (switching activity), at the output of each gate, is monitored. Ca-

pacitive information for each gate is extracted from the layout of the multiplier circuit. Both

of these are used to obtain a figure for the total switched capacitance of the multiplier.

Table 5.1 illustrates the results obtained with the different bench mark images. Clearly, power

saving is achieved in all cases with a maximum of 50% with the checked image using Ham-

ming, which reduces the amount of switched capacitance at both multiplier inputs. An aver-

age power saving of around 35% is achieved over all benchmark images.

The results illustrate that although the amount of power saving is proportional to the fre-

quency of pixel value variation across the image, significant power saving is achieved with

all image types. This includes those with sharp variation in pixel value, such as the checked

image, and those with continuous spectrum of pixel values, such as Lena, Man and Peppers

images (See Appendix Q. This in turn implies the suitability of the scheme for wide ranges

of images including coloured images.

im

Chapter 5: Column-Based DCT Scheme

Column-Based 	Hamming

	

HOL 	I 	I Simulator

Files

	

Circuit 	 I Switching

	

Layout 	I 	Monitor

Capacitance

Informati 	 Overall

Switched

Capacitance

Figure 5.4: Framework for algorithm evaluation

79

Chapter 5: Column-Based DCT Scheme

Image Ordering Switched
Capacit-
ance (pF)
* 103

Switched
Capa-
citance
reduction
(%)

Horizontal Stripes Traditional 13.77 -

Column-Based 8.45 38.64
Hammtng 7.06 48.64

Vertical Stripes Traditional 7.70 -

Column-Based 7.55 1.97
Hamming 6.41 16.84

Blocks Traditional 9.25 -

Column-Based 7.65 17.27
Hamming 6.47 29.99

Checked Traditional 13.81 -

Column-Based 8.39 39.25
Hamming 6.83 50.50

Lena
-

Traditional 39.01 -

Column-Based 29.51 24.35
Hamming 26.23 32.77

Man Traditional 40.05 -

Column-Based 30.08 24.91
Hamming 26.63 33.50

Peppers Traditional 39.57 -

Column-Based 29.75 24.84
Hamming 26.49 	1 33.05

Table 5.1: Typical power savings

RE

Chapter 5: Column-Based DCT Scheme

5.4 Conclusions

The chapter presented an effective scheme for the low power implementation of the DCT

within an JPEG/MPEG based environment. The scheme reduces power through the utilisa-

tion of shift operations, where possible, together with sequencing coefficient and pixel multi-

plications in an order dictated by the bit correlation of their successive values. This results in

up-to 50% power reduction with a number of standard benchmark images. The investigations

revealed that the scheme provides a generic framework for power saving in that significant

power savings is achieved with a range of standard image types. These include those with

sharp, continuous, and low pixel variation frequency. The scheme can easily be extended

to the implementation of the 2D DCT. A full implementation of the scheme presented here

is the subject of the next chapter which will also address possible overheads resulting from

ordering of the cosine coefficients.

81

Chapter 6
Column-Based OCT Processor

6.1 Introduction

Based on the foundation laid by the previous chapter, this chapter maps the column-based

scheme into a DCT processor. The resulting architecture is then analysed for power con-

sumption with the results being compared with the power consumption of a conventional

DCT processor.

6.2 Column-Based Scheme Implementation

This section will discuss the implementation of the column-based scheme. A brief summary

of various components of the architecture will be given. If a component is built from other

sub-components, the sub-components will subsequently be discussed under the component

heading.

The proposed architecture for the column-based scheme is illustrated in Figure 6.1. The

reference architecture for the original implementation used for comparison with the column-

based scheme is shown in Figure 6.2. The original implementation is a direct mapping of the

1-D DCT equation in matrix form.

The emphasis of the implementation is on the data path of the proposed architecture. The

MN

Chapter 6: Column-Based DCT Processor

pIx

resi

cloi

Figure 6.1: DCT processor modified for Column based processing

)Ut

Figure 6.2: Typical original DCT processor architecture

83

Chapter 6: Column-Based DCT Processor

data path for the design is considered to be the Multiply-Accumulate (MAC) unit shown in

Figure 6.3. The column based MAC unit consists of the multiplier, an adder, and a latch

bank. (see Figure 6.3). It should be noted that the MAC unit in this design differs from a

conventional MAC unit in the sense that this one has a latch bank consisting of 8 latches

whereas a normal MAC unit will have a simple register in the place of the latch bank. For the

multiplier unit, two multiplier implementations were used, the csa, and Wallace architectures.

These are listed in Table 6.1. The adders used are also listed in Table 6.1.

pixel 	cosine

mac_out

Figure 6.3: Implementation of column based mac unit

Adders 	 I Multipliers

Brent-Kung (bk) 	I Carry-save array (csa)
Carry look-ahead (cia) I Booth-coded Wallace tree (wall)

Table 6.1: some of the Design Ware components used

84

Chapter 6: Column-Based DCT Processor

6.2.1 Multipliers

The multiplier unit in the DCT processor is the most power hungry component. The previous

section explored the scheme based only on the power consumption of the multiplier unit.

There are several multiplier implementations reported in literature [74], but for the purpose

of this project we used two implementations. It should be noted that since the project is

based on comparing conventional DCT with the new schemes, it should not matter which

component implementations are used, as long a the same modules are used in both designs.

The multipliers examined in the project are briefly introduced below.

Carry-save Array multiplier

The Carry-Save Array (csa) multiplier architecture used for the design is capable of pro-

cessing signed numbers (two's compliment). The Baugh-Wooley algorithm [75] was de-

veloped to perform regular direct two's complement multiplication. It does not need prior

converting of multiplicands/multipliers to unsigned numbers and then back to signed after

processing.

Consider two numbers A and B as follows:

A = (an_ i ... ao) = —a_ 12' + E a1 2 	 (6.1)

Chapter 6: Column-Based DCT Processor

B = (b_1 ... b0) = — b_ 1 2 1 +E b1 2 	 (6.2)

The product A.B is given by the following equation, see Equation 6.3

n-2 n-2 	 n-2 	 n-2

A.B = a_ 1 b_ 1 222 + 	abj2i - a_1 	- b_ 1 E a2' (6.3)
i=0 j=0 	 i=0 	 1=0

If using this form, it can be seen that subtraction operations are needed as well as additions.

However, negative terms may be written as shown in Equation 6.4.

—a_ 1 	= a_i (-222 + 2' + E b2+1- ') 	 (6.4)

For this approach, A.B becomes

	

n-2 n-2 	 n-2

A.B = a_1 b_ 1 22' 2 + 	aibj2t+3 +a_i (-222 + 2' +

	

:=0 j=0 	 i=0
n-2

	

+b_1 (-222 + 2' + 	2' 1
) 	 (6.5)

1=0

r 6: Column-Based DCT Processor

Equation 6.5 can be put in a more convenient form with the recognition of

—(as 1 + b y)2n-2 = _22n_1 + (+)22n_2 	 (6.6) - 	n-1j'-

Therefore A.B becomes

	

A.B = _221 + 	+ 1 	+ a_ib_i)22' 2

n-2 n-2

+EE abj2' + (an_i + b_1)2
i=O j=O

	

n-2 	 n-2
7j2n+i1 + a_1 	 (6.7)

	

i=O 	 i=O

Using the above equations, an n x n multiplier can be implemented using only adder units.

This is shown in Figure 6.4 for an 4x4 two's compliment multiplier. Figure 6.4(a) gives an

example of the multiplication for a 4x4 multiplication whereas 6.4(b) depicts an implantation

of the multiplier.

Booth-coded Wallace tree(wall)

This is a parallel implementation of a multiplier unit which combines two well-known ap-

proaches that enhance the speed of multiplication. These approaches are the Booth encoding

technique and the Wallace tree reduction. It is reported in [76,77] that the Booth encoding

87

p6 	 p5 	 P4 	 P3 	 P2 	 131 Po

0 b0

0 b1

Chapter 6: Column-Based DCT Processor

a3 bo t a1 L ao i

a3b1 a2 b a1 b1 a0 b1

a3b2 a2 b2 a1b a0t

a3 b3 a2 b3 • 1 b3 aO N

b3

+ 	 1 	 83

P, 	Pe 	P5 	P4 	P3 	P2 	P1 	P3

(a) Example 01 Baugh-Wooley multiplication

(b) Baugh-Wooley multiplier Implementation

Figure 6.4: A signed Carry-save Array Multiplier example and implementation

Chapter 6: Column-Based DCT Processor

reduces the number of partial products by 50% while the Wallace tree increases the speed of

summing the partial products[74, 77-79]. The steps involved in the scheme are listed below:

See Figure 6.5

Booth encoding

Wallace tree reduction

final adder unit.

a 	b

Final addition

"U,
Product

Figure 6.5: General architecture for Booth-coded Wallace Multiplier

1) Booth Encoding

Let the multiplier B be represented as

Chapter 6: Column-Based DCT Processor

B = 1(b2k_l + b2k - 2b2k+1)22 k 	 (6.8)

where b_ 1 = 0

Basically, three multiplier bits (bk+l , bk, bk_i) are encoded into nine bits which are used to

select multiples of the multiplicand value set (-2,-1,0,1,2) determined by Equation 6.8[78]

[80]. The details of the Booth encoding/recoding scheme are illustrated in Table 6.2.

bk+j I 	bk bk_i Encoded Digit j Operation on (X)
o -ö-- 0 0 0.X
o 0 1 +1 +1.x
o -1- 0 +1 +1.x
o 1 1 +2 +2.X
1 0 0 -2 -2.X
1 0 1 -1 -1.X
1 r o -1
1 I 1 0 0.x

Table 6.2: Booth Algorithm encoding scheme

2) Wallace Tree Reduction

A Wallace tree is an implementation of an adder tree reduction designed for minimum propaga-

tion delay. Rather than completely adding the partial products in pairs like the ripple adder

tree does, the Wallace tree sums up all the bits of the same weights in a merged tree, See

Figure 6.6. Usually full adders are used, so that 3 equally weighted bits are combined to

produce two bits: one (the carry) with weight of n+1 and the other (the sum) with weight

n. Each layer of the tree therefore reduces the number of vectors by a factor of 3:2. There

MI

Chapter 6: Column-Based DCI Processor

exists another reduction scheme which obtains a 4:2 reduction using a different adder style

that adds little delay in an ASIC implementation. The tree has as many layers as is necessary

to reduce the number of vectors to two (a carry and a sum)[80-82].

To Final Adder

Figure 6.6: Typical Wallace tree reduction

Tracing the bits in the tree , an observation is made that the Wallace tree is a tree of carry-save

adders. A carry save adder consists of full adders like the more familiar ripple adders, but the

carry output from each bit is brought out to form the second result vector rather than being

wired to the next most significant bit. The carry vector is saved to be combined with the sum

later[77, 83].

91

Chapter 6: Column-Based DCI Processor

3) Final Adder Unit

After the Wallace tree reduction, there is a need for a final addition stage. The ripple adder is

used for this purpose. A typical ripple adder is depicted in Figure 6.7.

a3 b3 	a2 12 	a 1 b 1 	a Q b0

Ac~C2
~Ajl I~Ajl

i I co
1FA1jIS cm

C 3 S 3 	S 2 	S 1 	S 0

Figure 6.7: Final Addition Using ripple adder

6.2.2 Adders

A brief overview of the adders used in the designs follows.

Carry look-ahead (cia)

The disadvantage of Ripple Carry Addition is that each carry is dependent on the previ-

ous carry, which results in a long delay. Carry-Lookahead Addition produces the carries in

parallel.

The CarryOut logic equation is

CarryOut = (a. b) (a ED Carr yIn) ED (b. Carr yIn) 	 (6.9)

92

Chapter 6: Column-Based DCT Processor

This can be rewritten as

c[i + 1] = (a[i] b[i]) ED (a[i] c[i]) ED (b[i] c{i])

	

= (a[i] b[i]) 	(c[i] 	(a[i] e b[i])) 	 (6.10)

where c[i] is the carry into the i-th full adder.

3. We define

	

g[i] = a[i] . b[i] 	 (6.11)

	

p[i] = a[i] e b[i] 	 (6.12)

and rewrite the carry equation as

c[i + 11 = g[i] 	(c[i] . p[i]) 	 (6.13)

93

Chapter 6: Column-Based DCT Processor

4. For a 4-bit Carry-Lookahead Adder the carry equations are

c[l] = g[O] ED (c[OJ p[O})

= g[1] ED (c[1] p[l])

= 9[1] 	(p[l] g[O}) 	(p[l] p[O] cEO])

= g[2] ED (c[2]

= g[2] ED (p[2] g[1]) ED (p[2] p[l] g[O]) e (p[2] p[1] p[O] c[O]) 	(6.14)

The 4th carry can be produced using a regular full adder.

Brent-Kung(bk)

The Brent-Kung adder is identified by its regular layout [84]. This was first presented by

Brent and Kung in [85]. One of the distinct characteristics of the Brent-Kung Adder is that

computation time increases logarithmically as the number of bits increases linearly.

tadd o 1092 N
	

(6.15)

Define an operator o such that

(g,p)o(g',p') = (g+p.g',p.p') 	 (6.16)

where g and g' are carry generate terms formed any two input bits [85].

(G1,P1) = I
(gi, pi)

(gj,pj) (G1_ 1 ,P1 _ 1) if2 	i < n

(6.17)

Chapter 6: Column-Based DOT Processor

p and p' are carry propagate terms.

Also

Equation 6.17 together with the fact that o is associative, is the fundamental key that supports

the Brent-Kung approach. The associative property allows the computation of (G e , P1)'s in

any order. Hence Gi can be considered as a block carry generate signal and P1 as a block carry

propagate signal. The problem of computing (Ge, P1), for i = 0 to 16 can now be done in

the order defined a binary tree as in Figure 6.8. The main components of the carry generation

tree are the o operator denoted in the diagram by white circles.

6.2.3 Latch Bank

The latch bank module consists of a demultiplexor, gating module, 8 latches, and a multi-

plexor. See Figure 6.9. The components of this module are briefly described as follows.

Demux

The demux block is simply a 8 to 1 demultiplexor used to decode the write address. A single

data line can be connected to a number of output lines by appropriate choice of signal on

the select lines as shown in Figure 6.10. If a demultiplexor contains .s select lines, then the

number of possible output lines n to which data can be routed is n = 2. A demultiplexor

95

Level

1

2

S 15 	S14 	13 	12 S 11 S IO S9 	8 S7 	6 	5 	4 S3 	2 s 	S0

Chapter 6: Column-Based DCI Processor

Figure 6.8: Brent-Kung Parallel Prefix Network

read add

write ad

inpu

elk

)utput

Figure 6.9: Latch bank module

M.

Chapter 6: Column-Based DCT Processor

that contains an enable signal can serve as a decoder[86].

lutputfoJ

_0411

utput(2J

)utput(3J

utputf4J

ufput(5J

utput(6J

uu?7

Figure 6.10: Demultiplexor

Gating

The next module in the bank is the gating logic. Gating the clock is a powerful technique

used in low power design to disable unused modules of a circuit. Gating can create power

savings by both preventing unnecessary activity in the logic modules as well as eliminating

power dissipation in the clock distribution[87, 88].

This unit gates the clock such that only the latch which needs to be written is activated.. This

technique helps reduce the power consumption of the device by making sure that only the

one latch toggles at any given time. The example Figure 6.11 relates to the output of the

Demultiplexor for the first latch (at address 0). Gating signal cik with the address enable

in_0, this will produce latch enable enable_0 for the first latch only when both cik and in])

are asserted. Hence all other latches will not be activated within the current cik period.

97

Chapter 6: Column-Based DCT Processor

in

ci;4D- 0
enabie_O

Figure 6.11: Gating example for first Latch

The Gating module consists of 8 sets of gating logic as in Figure 6.11. This implies that there

is gating logic for each Latch in the Bank.

Latches

A latch is a level sensitive device. The output of a latch (Q) is transparent to the input (D)

as long as enable signal is activated. If the enable signal is disabled the output (Q) remains

constant and any change that occurs in the input is ignored. See Figure 6.12 for the latch

diagram.

,flp'

rese

enabi

)utput

Figure 6.12: Latch

For this design a reset signal is required in the storage element because there is a need to clear

the contents and start a new computation when a fresh column from the pixel matrix [D] is

being processed.

The advantage of a latch based storage over register based storage is that they are considerably

smaller (gate count) than registers. Therefore they consume less power. But a designer has

KV

Chapter 6: Column-Based DCT Processor

to be aware of the pit-falls of latch based designs. They can be prone to glitches and hold

time violations. The glitches can be avoided by using a glitch free enable. For the hold time

violation, one should ensure that data is held for long enough as the latch is closed. Figure

6.13 illustrates a latch array. This is an array of 8 latches that will be required to implement

the storage element. Since the output of the multiplier is 16 bits in total, each latch in the

array should be capable of storing 16 bits. It should be noted that the precision of the data

path is 16 bits. This implies that as the wordlength of the result increases beyond 16 bits, it is

truncated. This truncation will affect the quality of the resulting image.

Mux

The function of the Mux is to multiplex the outputs of the 8 latches on to a single data bus

which is fed back to the adder module and/or output out of the DCT processor module. A

multiplexor routes 1 of many inputs to its output under the control of 1 or more select signals.

See Figure 6.14.[89].

6.3 Synthesis and Simulation Results

The data path for the DCT (MAC unit) and its test-bench were implemented in Verilog. The

input images that were used for the simulations were preprocessed to chop them into blocks of

8x8 matrices. The images tested can be found in Appendix C. The designs were synthesised

with Synopsys's Design Compiler using the Alcatel 0.35tm CMOS library.

The simulation environment is shown in figure 6.15. An image is segmented into blocks

Chapter 6: Column-Based DCI Processor

Figure 6.13: Latch array

100

Chapter 6: Column-Based DCI Processor

)utpul

Figure 6.14: Multiplexor

of 8x8 using a perl script and this is input into the testbench environment. The temporary

storage of the test image is 64x8. On the other input channel, the cosine coefficients, another

array of 64x8 size is used. The elements in this memory module are sorted out according to

some algorithm, (either hamming, ascending, or any other algorithm) and then passed to the

testbench for processing. It should be noted that any algorithm that minimises the bit toggling

between any consecutive inputs can be used with this scheme.

During simulation, the toggle information is logged into a file as bits are being processed.

This is referred to as the SAIF/toggle file. The information is then annotated into Synopsys

DesignPower for the estimation of the power consumption. Appendix D summarises the

DesignPower strategy for power analysis.

Tables 6.3 and 6.4 presents the results for the Column-based DCT scheme and conventional

DCT respectively.

101

Chapter 6: Column-Based DCT Processor

Image Implementation Power(mW)
cip 	nsp 	tdp

mult I (cip)
add
(cip)

latch bank
(cip)

lena ascending 5.91 6.79 12.69 1.17 2.58 2.15
hamming 5.5 633 11.82 1.03 2.40 2.05

wallace ascending 7.30 8.41 15.71 1.91 3.17 2.20
hamming 7.18 8.25 15.43 1.81 3.16 2.20

checked ascending 6.42 7.42 13.84 1.58 2.68 2.15
hamming 6.24 7.17 13.42 1 	1.36 2.66 2.20

Table 6.3: Column Based dct results for bk with csa

Image 	Power(mW) 	mult add reg
cip I nsp I tdp I (cip) (cip) (cip)

lena 4.89 5.59 10.47 2.35 1.67 0.87
wallace 5.03 5.73 10.75 2.43 1.72 0.88
checked 5.41 6.45 1 	11.87 3.03 1 	1.63 0.76

Table 6.4: Conventional dct results for csa with bk

Image I Implementation [Power (mW) Power savings (%)

conventional 2.35 -

lena hamming 1.03 56.17
ascending 1.17 50.21

conventional 2.43 -

wallace hamming 1.81 25.51
ascending 1.91 21.40

conventional 3.03 -

checked hamming 1.36 55.11
ascending 1.58 47.85

Table 6.5: comparison of the multiplier units

102

Chapter 6: Column-Based DCT Processor

Input Image 	 cosine matrix
- 	 elements

8X8 block 	I 	I 	Column

generation 	 Based
ordering

VHDLiVerilog Testbench

I VHDL/Verilogj

	

SAW/Toggle 1 	,

	

j 	
[iesin Annotation 	

{ Design Power
File

Figure 6.15: Simulation environment

Table 6.5 presents the power dissipation within the multiplier units. The power consump-

tion of the multiplier unit when using the scheme is compared to that of the conventional

implementation. A percentage of the difference relative to the conventional implementation

is presented. This reflects that although there is an overall overhead in the design, the multi-

plier section is still saving some energy compared to the conventional implementation. The

resulting overhead is due to extra logic required to implement this scheme. A set of 8 re-

gistersflatches is required compared to only one in the conventional implementation. The

overhead is not of too much concern since for the implementation of a 2D DCT, an interme-

diate memory unit is required for the transposition process. This transposition memory can

be reused as a temporary storage for the partial sums. Another source of extra circuitry comes

103

Chapter 6: Column-Based DCT Processor

from addressing the re-ordered cosine coefficients.

Image Implementation

Power(mW)
cip 	I 	nsp 	I 	tdp

mult
(cip)

add
(cip)

latch bank
(cip)

wall+bk 5.59 6.28 11.88 0.97 2.24 2.21
lena wall+cla 5.15 5.84 11.00 0.97 1.96 2.23

csa+cla 4.53 5.08 9.61 0.95 1.85 1.73
wall+bk 6.16 6.87 13.03 1.26 2.52 2.38

wallace wall+cla 5.75 6.40 12.15 1.27 2.12 2.36
csa-i-cla 6.05 6.82 12.87 1.90 2.52 1.63
wall+bk 5.95 6.63 12.58 1.31 2.26 2.37

checked wall+cla 5.44 6.23 11.68 1.31 1.89 2.34
csa+cla 5.39 6.11 11.50 1.30 2.17 1.92

Table 6.6: Column Based dct results for other implementations with hamming sort

Image Implementation Power(mW)
 cip 	I 	nsp 	I 	tdp

mult
(cip)

add
(cip)

latch bank
(cip)

wall+bk 6.26 7.03 13.26 1.18 2.72 2.74
lena wall-+-cla 5.66 6.37 12.00 1.18 2.15 2.33

csa+cla 5.08 5.71 10.79 1.11 2.13 1.83
wall+bk 6.52 7.32 13.84 1.52 2.62 2.39

wallace wall+cla 6.09 6.81 12.91 1.52 2.19 2.37
csa+cla 6.29 7.13 13.42 1.79 2.58 1.93
wall+bk 6.24 6.98 13.23 1.55 2.35 2.33

checked wall+cla 5.82 6.49 12.32 1.55 1.96 2.31
csa+cla 5.46 6.19 11.64 1.44 2.14 1.88

Table 6.7: Column Based dct results for other implementations with ascending sort

For other multiplier and adder combination implementations, the results are presented in

Tables 6.6 and 6.7. The effects of varying the word length of the inputs to the datapath are

presented in the Table 6.8. As can be seen from the results, the multiplier unit within the

MAC saves power despite the increased wordlength.

104

Chapter 6: Column-Based DCT Processor

Implematation Wordlength Power(mW)
cip 	nsp 	tdp

mult I 	(cip)
add
(cip)

latch bank
orreg(cip)

Column-based
8 bits 5.50 6.33 11.82 1.03 240 2.05
16 bits 9.63 8.61 18.24 TT 2.56 3.10
24 bits 12.94 13.73 26.68 34 3.83 3.77

Conventional
8 bits 4.89 5.59 10.47 2.35 1.67 0.87
16 bits 9.18 11.77 20.85 5.50 2.34 1.35
24 bits FTT28 15.37 32.64 1 	9.87 4.45 2.95

Table 6.8: Wordlength variations: for csa and bk implementations with lena image

6.4 Conclusions

This chapter presented an implementation of the low power scheme for DCT processing in-

troduced in chapter 5. The scheme reduces power through the utilisation of sequencing coef-

ficient and pixel multiplications in an order dictated by the bit correlation of their successive

values. This results in up-to 56% power reduction within the multiplier unit for a number of

standard benchmark images.

Since the scheme requires saving of partial summations prior to outputting the DCT coeffi-

cients, a set of 8 registers is required compared to the conventional implementation which

requires only one. This register bank has a significant overhead on the overall power saving

such that the advantage revealed within the multiplier section is diminished. Theoretically,

only two registers/latches are expected to be switching when the scheme is in operation. One

read register and one write register, so the expected power overhead should be at least twice

the consumption of the single register in the conventional implementation. This however is

not completely unacceptable since in cases where a 2D DCT implementation is required, the

intermediate memory for transposition can be used to temporarily store these partial sums

and no extra circuitry will be required. Another source of overheads is the addressing of

105

Chapter 6: Column-Based DCT Processor

the ordered cosine coefficients. This requires extra circuitry in the control logic and also

the original location of the cosine coefficient entry to saved. Hence a wider storage unit is

required.

Different combinations of multiplier and adder units were analysed for power consumption.

In all combinations, the column-based implementation saved power within the multiplier unit.

106

Chapter 7
Cosine Ordering Scheme

7.1 Introduction

The scheme presented in this chapter takes advantage of the rows in the cosine matrix. Or-

dering the cosine coefficients in each row according to some ordering technique such as,

ascending order or minimum hamming distance, minimises the toggles at the inputs of the

multiplier unit in the DCT processor. Reducing the number of toggles at the inputs of the

multiplier reduces power consumption in the unit [4,90]. Since the multiplier unit is the most

computationally expensive unit in the data path of a DCT processor, it provides the most

advantage if it is targeted with a power conscious approach.

The scheme utilises the cosine coefficients ordering as in [90], however, the ordering is done

in the rows of the cosine matrix rather than the columns. The advantage of ordering the

coefficients in rows can be easily identified by the fact that no modification is needed in the

data path as in [90]. Therefore the overheads will be minimum since the same data path is

used as the one in the conventional implementation.

This chapter presents the implementation of the scheme, starting with the scheme exploration

at multiplier unit to the MAC unit. Some results are presented which reflect a power saving

of up-to 24%.

107

Chapter 7: Cosine Ordering Scheme

7.2 Order-Based Processing

The cosine coefficients [E] for any DCT implementation are constant, therefore ordering can

be done prior to loading them into a ROM unit. When the ordering is undertaken, the original

row location of the coefficient is tagged along with the corresponding cosine coefficient word.

The proposed cosine coefficient representation is shown in Figure 7.1. This consists of two

portions:

the original location of the cosine coefficients with a row in the cosine matrix.

the cosine coefficient value

This allows the saved location to be used as the address of the corresponding pixel element

to be computed. The three MSB 's of Figure 7.1 represent the pixel row location in the pixel

matrix, whereas the remaining bits represent the value of the cosine coefficient.

original 	 cosine
location 	 element

Figure 7.1: cosine coefficient with saved location

The flowchart for the implementation is depicted in Figure 7.2. The flowchart assumes that

ordering of the cosine coefficients has already been done prior to commencement of the steps

in the chart. Note that the flowchart is for processing one block of the image (8x8). For the

processing of an entire image, the complete flowchart should be followed in order to process

each 8X8 block. The steps for the scheme are listed below.

108

Chapter 7: Cosine Ordering Scheme

Decode the cosine word nE into its constituent parts. ie , pixel location (n) and cosine

word(E)

Get the value pixel(D) from location specified by n in (1)

Multiply ; E * D and add the result to the accumulator

Repeat steps (1) to (3) for the remaining row entries

Obtain the DCT coefficient (C) and clear the accumulator

repeat 1) to 5) until the last row of cosine matrix is processed

Restart processing of the next image block

A simplified DCT processor for the proposed scheme is depicted in Figure 7.3. This differs

with the conventional implementation by the fact that a slice of the data coming from cosine

coeff memory is used as an address for the pixel memory. This slice is the original location

portion of the cosine word as depicted in Figure 7.1.

The depth of the pixel memory is 64, therefore a 6 bit address is required to access a memory

of this depth. This problem is alleviated by using a 3 bit counter for the rest of the 6 bit

address. The address from the counter is appended as the most significant bits of the pixel

memory address to make a 6 bit word. The counter is incremented after every 8 memory

accesses. The overhead for this extra circuitry is very minimum since ordinarily a 6 bit

counter would have been required to generate the address for the pixel memory. Another

issue that might arise from this design will be the larger data word size of the cosine coeff

109

Chapter 7: Cosine Ordering Scheme

Figure 7.2: Flowchart of cosine ordering scheme

110

Chapter 7: Cosine Ordering Scheme

memory compared to the conventional implementation. This is covered by the fact that on

a conventional implementation a 6 bit address bus will be required to connect between the

control and the pixel memory (the dashed connection in Figure 7.3, labelled p.iiddr). So, as

far as bus toggling is concerned, for the proposed implementation there are 3 bits that can

toggle compared to the 6 bits that would be generated otherwise.

The multiplier implementations that were used for the scheme exploration are the same as the

ones used in the previous chapter. These are listed here for better clarity; the csa, nbw and

wall.

The emphasis of the implementation is on the data path of the proposed architecture. The data

path for the design is considered to be the multiply and accumulate (MAC) unit shown in Fig-

ure 7.4. The column based MAC unit consists of the multiplier, an adder, and a register. For

the multiplier unit, several multiplier implementations were used, the csa, nbw, and wallace

architectures. This are listed in Table 7.1. The adders used are also listed in Table 7.1.

Adders 	 I Multipliers 	 II
Brent-Kung (bk) 	Carry-save array (csa)
Carry look-ahead (cia) Non-Booth coded Wallace tree (nbw)

Booth-coded Wallace tree (wall)

Table 7.1: some Design Ware components

The same MAC unit architecture (see Figure 7.4)was used for both the conventional imple-

mentation and the cosine ordering scheme. The modules in the MAC unit are mult, add and

reg. The module mult, was implemented using Baugh-Wooley multiplier. For the add module,

Brent-Kung adder implementation was used. After testing several adders, the Brent-Kung ad-

111

Chapter 7: Cosine Ordering Scheme

der proved to be more power efficient and suitable for high speed applications. An ordinary

register with reset, clock and enable signal was used for the module reg. The enable signal is

asserted after every 8 multiplications to clear the register.

)Ut

Figure 7.3: A simplified DCT processor architecture

To illustrate the above algorithm, consider an example where the cosine matrix is as shown

in Figure 7.5(a). After sorting, according to minimum hanmiing distance, the cosine matrix

will be as in Figure 7.5(b).

As an example consider the multiplication of nE (Figure 7.5(b)) with the following matrix.

35

32
D =

29

26

112

Chapter 7: Cosine Ordering Scheme

pixel 	cosine

mac_out

Figure 7.4: A simplified MAC unit architecture

113

Chapter 7: Cosine Order Scheme

64 64 64 64

84 35 -35 -84

64 -64 -64 64

35 -84 84 -35

Original Cosine Matrix
(a)

64 164 264 364

084 35

64 364 1764 64

284 3 35 1-84

Sorted Cosine Matrix (nE)
(b)

Figure 7.5: Example cosine matrix before and after ordering

Evaluation of the first row in Figure 7.5(b), the multiplication procedure between this row

and [D] will follow the same steps as conventional matrix multiplication since the order has

not been altered. The second row however has been ordered according to minimum hamming

distance. So the multiplication for the row will resume with 84*35. This is because the

first entry (84) in the second row has n=O which implies that the first entry in [D] should be

processed. The next entry to be processed is -35 which has n=2, hence the multiplication

.35*29 will be carried out. The third computation is 84*26. Finally 35 *32 is processed. The

multiplication procedure carries on to the next row of the cosine matrix and follows the same

technique.

7.3 Synthesis and Simulations Results

The multipliers used for the design exploration were implemented in Venlog and a test-bench

for each multiplier was created. The input images that were used for the simulations were

preprocessed to chop them into blocks of 8x8 matrices. Examples of the images tested can be

114

Chapter 7: Cosine Ordering Scheme

found in Appendix C. The designs were synthesised with Synopsys's Design Compiler using

the Alcatel 0.35im CMOS library. Both top-down and bottom-up strategies were carried for

the synthesis was bottom-up compile strategy.

The simulation environment is shown in figure 7.6. The same gate-level netlist for the multi-

pliers was used for the simulation of the conventional implementation and the cosine ordering

scheme. To also keep the level of fairness in comparison, the same netlist for the MAC unit

was used in simulations for both the conventional implementation and the cosine ordering

scheme.

Tables 7.2,7.3 and 7.4 illustrate the results obtained for the scheme exploration with differ-

ent multiplier implementations. It can be seen from the tables that the scheme exhibits a

maximum power saving of 24%.

Table 7.5 illustrates the results obtained with the different scenarios used to test the algorithm.

As the table shows, power savings are achieved with all examples, with a maximum of 29%

power saving for the MAC unit. The horizontal striped image provides the most power say-

ing. This is the result of the inherently low toggling of the pixels within the image. For

this image, the conventional MAC consumed a total dynamic power (tdp) of 6.57mW. This

is listed under conventional for the horizontal stripes image. Cosine ordering according to

'minimum hamming distance' results are termed hamming. For the horizontal stripes, the tdp

consumption for hamming is 4.75mW. Compared to conventional, a power saving of 22.25%

is experienced. And finally ascending is used to represent cosine ordering according to as-

cending order. This produces a power saving of 29%. The cell internal power (cip) of the

115

Chapter 7: Cosine Ordering Scheme

MAC components is also listed in Table 7.5. The power consumption at the multiplier section

of the MAC unit constitutes a larger part of the total power consumption. This affirms the

theory that the multiplier is the most power hungry unit in the data path of a DCT processor.

For the MAC unit design that was used, the multiplier unit consumed an average of 46% of

the total cell internal power. See Figure 7.7

I cosine
elements

8X8 block I 	I 	Row

generation 	 Based
ordering

VHDL/Verilog Testbench

r~l
 SAIWFogge I 	 _____ Design Annotation I 	>1 Design Power

File 	 I

Figure 7.6: Simulation environment

Image Implementation Power(mW)
cip 	I 	nsp 	I 	tdp

Power
saving(%)

Lena conventional 2.33 2.74 5.07
22.09 cosine ordenng 1.83 2.12 3.95

Wallace conventional 2.41 2.76 5.17
20.31 cosine ordering 1.94 2.18 4.12

checked conventional 2.77 3.72 6.49
24.19 cosine ordering 1 	2.13 1 2.79 1 4.92

Table 7.2: results for csa mult: ascending order

116

Chapter 7: Cosine Ordering Scheme

23 I Legend
Mult 01111111I 31% L Add

Reg

Figure 7.7: Average percentages of cell internal power dissipation per module

Image Implementation Power(mW)
cip 	I 	nsp 	I 	tdp

Power I saving(%)

Lena conventional 2.50 3.80 6.30
10.48 cosine ordering 2.25 3.39 5.64

Wallace conventional 2.43 3.69 6.12
9.64 cosine ordering 2.20 3.33 5.53

checked conventional 1.23 2.39 3.62
22.10 cosine ordering 1 	1.01 r_1._81J_T8_2J

Table 7.3: results for wall mult: ascending order

7.4 Conclusions

The chapter presented a simple but very effective low power scheme for the implementation

of the DCT. The scheme takes advantage of the rows in the cosine matrix by ordering the

cosine coefficients in each row according to some ordering technique such as minimum ham-

ming distance. This minimises the toggles at the inputs of the multiplier unit in the DCT

processor. Reducing the number of toggles at the inputs of the multiplier reduces power con-

sumption in the unit. This scheme is able to save up-to 24% power dissipation compared to

the conventional implementation of the DCT. Because the same implementation architecture

as the conventional DCT is used, the scheme can be used in conjunction with other tech-

117

Chapter 7: Cosine Ordering Scheme

Image Implementation Power(mW)
cip 	I 	nsp 	tdp

Power
saving(%)

Lena conventional 1.65 2.58 4.23
14.89 cosine ordering 1.42 2.18 3.60

Wallace conventional 1.77 2.75 4.52
11.73 cosine ordering 1.59 2.40 399

checked conventional 2.44 4.00 6.44
15.22 cosine ordering 1 	2.14 3.32 5.46

Table 7.4: results for nbw mult: ascending order

Image Implementation Power(mW)
 cip 	I 	nsp 	tdp

mult I 	(cip)
add
(cip)

reg
(cip)

Power
saving(%)

conventional 5.25 459 9.84 2.33 1.75 1.17 -

Lena hamming 4.41 3.75 8.16 1.84 1.49 1.08 17.07
ascending 435 3.73 8.08 1.83 1.45 1.07 17.89

conventional 5.34 4.60 9.94 2.41 1.75 1.18 -

Wallace hamming 4.46 3.76 8.22 1.91 1.46 1.08 17.30
ascending 4.48 3.79 8.27 1.94 1.45 1.09 16.80

conventional 5.48 5.19 10.67 2.77 1.66 1.05 -

checked hamming 4.57 4.12 8.76 2.21 1.38 0.99 17.90
ascending 441 4.06 8.47 2.13 1.31 57 20.62

conventional 5.35 5.08 10.43 2.73 1.59 1.03 -

vertical hamming 4.60 4.21 8.81 2.27 1.35 0.98 15.53
stripes ascending 4.40 4.05 8.45 2.16 1. 0.96 19.01

conventional 3.54 3.03 6.57 1.56 1.06 0.92 -

horizontal hamming 2.62 2.13 4.75 0.98 0.79 0.85 22.25
stripes cosine ordering 2.55 2.09 4.63 0.963 0.75 083 29.53

Table 7.5: results for mac with csa mult and bk adder

niques in literature which reduce computational complexity of the DCT. It should be noted

that some overheads are possible due to the addressing of the ordered coefficients. This over-

head is minimised by using a 3 bit counter instead of the 6 bit address that is reqiured for the

conventional implementation.

118

Chapter 8
Cosine Coding Scheme

8.1 Introduction

It is a well known principle amongst the digital hardware design circles that a shift operation

is more energy efficient than a multiplication operation, hence the motivation for developing

a scheme which removes the burden of the multiplication operation and replacing it with a

more power conscious shift operation.

In this scheme the need for a multiplication unit is eliminated by fonnating the data repres-

entation of the cosine elements such that the pixel values are processed using a shifter unit

and an addition unit.

8.2 Data Representation

A close examination of the cosine elements reveals that in their fractional representation, they

are all numbers between -0.4904 and 0.4904, see Equations 8.1 and 8.2. The proposed data

representation scheme is as depicted in Figure 8.1. The MSB is used to indicate the sign of the

cosine coefficient. The MSB is high for a negative coefficient and low for a positive one. The

remaining bits are used to define the fractional part of the cosine coefficient. Depending on

the accuracy desired, the number of bits for the fractional part can be increased as appropriate.

119

Chapter 8: Cosine Coding Scheme

Therefore, wordlength affects quality of the results in this case. A reduced wordlength will

have negative impact on the image quality whereas an increase in wordlength will improve

the quality.

E=I

dd d d d d d d

a c e g —g —e —c —a

b f -f —b —b -f f b

C —g —a —e e a g —c

d —d —d d d —d —d d

(8.1)

e —a g c —c — g a —e

f —b b -f -f b —b f

g —e c —a a —c c —g

where

a = 0.4904,b = 0.4619,c = 0.4157,d = 0.3536,e = 0.2778,f = 0.1913,g = 0.0975

(8.2)

For example if the cosine element is 0.2778, the MSB will represent the sign bit, '0', and the

remaining bits will represent the fraction, 0.2778. For a 6 bit fractional part precision, 0.2778

will be represented as 010010. See table 8.1

120

Chapter 8: Cosine Coding Scheme

I 	I 	 I 	 I 	 I 	 I

I 	I 	I 	I 	I 	I
I 	 I 	 I

Sign 	 Fractional
Bit 	 Part

Figure 8.1: Data word partitioning

decimal partitioning 0 0.2778
binary representation 0 010010

Table 8.1: data word coding example

8.3 Shift-Only Data Manipulation

The previous section described the data representation adopted to make the data manipulation

for this scheme possible. An example of the data manipulation procedure will enhance the

description above.

If there are two numbers -0.2778 and 236, as the cosine element and the pixel element respect-

ively, the multiplication procedure will be as follows: From the example given in the previ-

ous section, -0.2778 would be represented as 1010010, so the computation will be between

1010010 and 011101100. Decoding the cosine word, 10 100 10, should result in '1' for the

sign part and 010010. This implies that there are 2 shifts to the right and 6 additions in total.

The two shifts to be executed are, a) shift right by 2 places and b) shift right 5 places.

121

Chapter 8: Cosine Coding Scheme

8.4 Implementation

To reduce the computational complexity of the architecture, the addition is deferred until the

final addition stage, this ensures that there is only one final adder stage unit.

Decode

This module decodes the coded cosine coefficient. This is simply breaking it into the corn-

ponents Sign Bit and Fractional Part. Sign Bit is directed to the conversion module, while

Fractional Part is used by the shr unit to inform the unit of the required number of shifts.

convert

This module receives a signal from the decode module. If the signal is high, the input pixel

to be processed has to be converted using to negative two's compliment number.

shr unit

The shr units module, contains the right shifters. For the example shown in Figure 8.2,

there are four right shifters in total, that implies that the fractional part of the coded cosine

word has got a precision of four bits. Within the shifting modules there are multiplexors

which determine whether a shift has to be executed or not, otherwise the the value just passes

through without any shifting. If the sign bit in the coded cosine word is '1', then the input

pixel is converted to negative two's compliment by the conversion module before it gets

shifted.

Compression

In Figure 8.3, there is a module referred to as CSA, in this module a unit adder is used instead

122

Chapter 8: Cosine Coding Scheme

of a fulladder. Each unit adder adds four data inputs and one carry input. It generates one

sum bit and two carry outputs[9 1]. The carry signals are not used for the current addition, but

rather for its successor[92]

add

This is the final stage addition. The carry that was saved in the previous, compression unit, is

propagated within this module to produce the sums.

pixel 	 cosine

__ 1
[convert 	

[
decode

]

11
shr units

hi
Compression

add

I
reg

output

Figure 8.2: Implementation of cosine coding scheme

123

Chapter 8: Cosine Coding Scheme

from Shifters 	 from Shifters 	from register

to adder

Figure 8.3: Implementation of the compression unit

8.5 Results and Analysis

The model was designed in VHDL and synthesised using 0.35tm technology from Alca-

tel. The input images that were used for the simulations were preprocessed to divide them

into smaller blocks of 8x8 matrices. Some examples of the images tested can be found in

Appendix C. The designs were synthesised with Synopsys's Design Compiler.

The simulation environment is shown in figure 8.4. This involves pre-coding of the cosine

coefficients before they are entered into a memory unit in the design. Cadence's VerilogXL

was used in conjuction with toggle count to capture the switching activity of the design during

gatelevel simulation. For the power analysis, DesignPower (See Appendix D) was used to

estimate the power estimation.

124

Chapter 8: Cosine Coding Scheme

Tables 8.3 illustrate the results obtained for the scheme with a number of images. The con-

vetional implementation results are given in Table 8.2. It can be seen from table 8.3 that the

scheme exhibits a maximum power saving of 41%.

Input Image

I
cosine matrix

 elements

8X8 block 	 Cosine

generation 	 coding

VHDIJVer11og Testbench

T~9 - SAiFlToggle 	I 	 _____
Design Annotation 	>]

Design Power
File 	 I

Figure 8.4: Simulation environment

Image Power(mW)
cip j 	n 	tdp

mult
(cip)

I 	add
(cip)

reg
(cip)

lena 5.25 4.59 9.84 2.33 1.75 1.17
wallace 5.34 4.60 9.94 2.41 1.75 1.18
checked 5.48 5.19 10.67 2.77 1.66 1.05
vertical stripes 5.35 5.08 10.43 2.73 1.59 1.03
horizontal stripes 3.54 3.03 6.57 1.56 1.06 0.92

Table 8.2: results for conventional mac with csa mult and bk adder

125

Chapter 8: Cosine Coding Scheme

Image Power(mW)
cip 	I 	nsp 	I 	tdp

compression
(cip)

add
(cip)

shifters
(cip)

I 	reg
(cip)

Power I saving(%)

lena 463 2.84 7.47 2.37 0.92 0.40 0.94 24.09
wallace 4.72 2.90 7.62 2.41 0.94 0.42 0.94 23.34
checked 5.28 3.51 8.79 2.94 0.74 0.82 0.79 17.62
vertical Stripes 4.88 3.22 8.09 2.63 0.71 0.75 0.79 22.44
horizontal Stripes 240 1.41 3.81 1.12 0.42 0.15 0.71 41.10

Table 8.3: results for cosine coding scheme

8.6 Conclusions

A new implementation scheme has been presented in this chapter which has an obvious ad-

vantage over conventional methods by using shift operators. The advantage was further en-

hanced by the use of compression units to defer the addition to the final stage accumulation

stage. This was made possible by intoducing a new data representation scheme where the co-

sine coefficients are coded as sign and fractional parts. A power saving of 41% was achieved

by the scheme over the conventional scheme. The accuracy of this implementation depends

largely on the wordlength chosen for the fractional part of the data representation. Choosing

a large fractional wordlength will result in a better image quality but reduced power savings.

Hence this implementation is better suited for applications where image quality is not the

main concern.

126

Chapter 9
Conclusions

A number of power saving schemes having been proposed and implemented in this project.

These schemes focus on the multiplier section of the DCT processor since it consumes more

power than the other components in the design. This chapter summarises the findings of the

various techniques employed. Potential future work suggestions to further enhance this work

are also presented.

9.1 Conclusions and Discussion

The literature review section, chapters 2,3 and 4, presented the basic of low power design and

the basics of image compression. It also highlighted relevant important features of some well

known image transforms and how they relate or compare with the DCT. It is still fact that

in terms of energy compaction, the DCT performs close to the optimal KLT. Some common

DCT algorithms and Architectures were presented. There are several algorithms developed

for the DCT ever since its invention. This goes to show its continuing popularity amongst the

image compression research and development community.

The Column-Based scheme was introduced in chapter 5. The scheme reduces power through

the utilisation of shift operations, where possible, together with sequencing coefficient and

pixel multiplications in an order dictated by the bit correlation of their successive values.

127

Chapter 9: Conclusions

This results in up-to 50% power reduction with a number of standard benchmark images.

The investigations revealed that that the scheme provides a generic framework for power

saving in that significant power savings is achieved with a range of standard image types.

These include those with sharp, continuous, and low pixel variation frequency. The scheme

can easily be extended to the implementation of the 2D DCT.

Chapter 6 presented an implementation of the low power scheme for DCT processing intro-

duced in chapter 5. The proposed architecture of the data-path was implemented in verilog.

The scheme reduces power through the utilisation of sequencing coefficient and pixel multi-

plications in an order dictated by the bit correlation of their successive values. This results

in up-to 56% power reduction within the multiplier unit for a number of standard benchmark

images.

Since the column-based scheme requires saving of partial summations prior to outputting the

DCT coefficients, a set of 8 registers is required compared to the conventional implement-

ation which requires only one. This register bank has a significant overhead on the overall

power saving such that the advantage revealed within the multiplier section is diminished.

Theoretically, only two registers/latches are expected to be switching when the scheme is in

operation. One read register and one write register, so the expected power overhead should

be at least twice the consumption of the single register in the conventional implementation.

This, however, can be avoided in cases where a 2D DCT implementation is required, the in-

termediate memory, for transposition can be used to temporarily store this partial sums and

no extra circuitry will be required.

128

Chapter 9: Conclusions

Chapter 7 presented a very effective low power scheme for the implementation of the DCT.

This scheme is able to save up-to 24% power dissipation compared to the conventional im-

plementation of the DCT. Because the same implementation architecture as the conventional

DCT is used, the scheme can be used in conjunction with other techniques in literature which

reduce computational complexity of the DCT. Although this scheme does not exhibit as much

power saving within the multiplier unit as the Column-based scheme, it does not have any

overheads.

Another implementation scheme has been presented in chapter 8 which has an obvious ad-

vantage over conventional methods by using shift operators. The advantage was further en-

hanced by the use of compression units to defer the addition to the final stage accumulation

stage. A power saving of 41% was achieved by the scheme over the conventional scheme.

This scheme can be used in conjunction with any of the two order based schemes to further

enhance the power saving of the DCT processor.

9.2 Novel Outcomes of the Research

Three new schemes for reducing the switched capacitance, within the multiplier section, of

the DCT processor were successfully developed. The first two schemes, column-based and

order-based, reduce switched capacitance through manipulation and exploitation of correl-

ation in pixel and cosine coefficients during the computation of the DCT coefficients. The

techniques are generic and can be extended to include other applications where matrix mul-

tiplication is required. The third scheme proposes coding cosine coefficients such that only

129

Chapter 9: Conclusions

shift operations are used to process the DCT computation.

The column-based scheme reduces switched capacitance through manipulation and exploita-

tion of correlation in pixel and cosine coefficients during the computation of the DCT coef-

ficients. The manipulation is of the form of ordering the cosine coefficients per colunm,

according to some ordering technique such as, ascending order or minimum hanuning dis-

tance and processing the matrix multiplication using a colunm-column approach instead of

the usual row-column approach. Several low power design techniques were used in imple-

menting this design. Some of the techniques used include clock gating and the use of latch-

based storage. A power saving of up-to 50% within the multiplier section was achieved with

this implementation.

The order-based scheme takes advantage of the rows in the cosine matrix. Ordering the

cosine coefficients in each row according to some ordering technique such as, ascending

order or minimum hamming distance, minimises the toggles at the inputs of the multiplier

unit in the DCT processor. The above techniques are generic and can be extended to include

other applications where matrix multiplication is required. This scheme is able to save up-to

24% power dissipation compared to the conventional implementation of the DCT.

The third scheme proposes coding cosine coefficients such that only shift operations are used

to process the DCT computation. In this scheme the need for a standard multiplication unit

is eliminated by fonnating the data representation of the cosine elements such that the pixel

values are processed using a shifter unit and an addition unit. With this scheme, a power

saving of up-to 41% can be achieved.

130

Chapter 9: Conclusions

9.3 Future Work

There are a few areas in which the work in this thesis can be further investigated. Some are

listed below.

For the Column-Based scheme, an implementation of the 2D DCT is needed. This

will enable the investigation of the proposed solution to the overhead incurred by the

scheme. The proposed solution is to reuse the matrix transposition memory as an inter-

mediate storage, therefore eliminating extra circuitry (latch bank).

For an increased power efficient DCT engine, a combination of the Order-Based and

Cosine-coding schemes should be considered. This should result in the advantages of

both schemes being experienced by the combined unit. Some overhead is expected due

to the increase of the cosine word wordlength.

A comparison of this implementation technique to other techniques such as RUM-

Based multipliers and digit-serial implementations should be considered.

The power estimation methodology used was pretty accurate, it was based on the gate-

level netlist after synthesis. A more accurate power reading can be achieved after cir-

cuit layout and back annotating the resulting parasitics. This will offer a reading that is

highly close to the actual value. This suggests that a layout of circuit should be carried

out.

An implementation of the IDCT using the proposed schemes can be considered as an

enhancement.

131

Chapter 9: Conclusions

A complete DCT engine Intellectual Property (IP) should be considered. This involves

all the components in the proposed architectures of the schemes. It would be an ad-

vantage if the IP is reconfigurable and/or programmable. The parameters could include

input wordlengths (both pixel word and cosine coefficient word), output wordlength,

data representations (e.g two's complement or sign-magnitude), internal data accur -

acy(wordlength, truncation, rounding).

The IP developed can be incorporated in a working environment for either JPEG or

MPEG standards and its performance observed relative to other implementations.

The multiplication schemes can be used in other applications where matrix multiplica-

tion is required

132

Appendix A
Image Compression Standards

A.O.1 JPEG

JPEG(Joint Photographic Experts Group) is a standardized image compression mechanism.

The 'Group' reflects the original committee that wrote the standard.

JPEG is designed for compressing either full-colour or gray-scale images of natural, real-

world scenes. JPEG is designed to exploit known limitations of the human eye. For example,

the fact that small colour details aren't perceived as well as small details of light-and-dark.

Thus, JPEG is intended for compressing images that will be looked at with a human eye, not

for machine analysis [93-95].

A useful property of JPEG is that the degree of lossiness can be varied by adjusting corn-

pression parameters. This means that during image capture, trade off file size against output

image quality can be made. Image files can be made extremely small if high image quality

is of no importance. This is useful for applications like indexing image archives and view

finders. On the other hand, if output image quality is an issue, high compression ratios can

be sacrifised for satisfactory image quality [93,95].

133

Appendix A: Image Compression Standards

RR RIak

mpressed
ge
a

Figure A.1: Block diagram of JPEG Compression

134

Appendix A: Image Compression Standards

Why use JPEG

There are two fundamental reasons to use JPEG

to make the image files smaller

to store 24-bit-per-pixel colour data instead of 8-bit-per-pixel data

Making image files smaller is an advantage for transmitting files across networks and for

archiving libraries of images.

If the viewing software does not support JPEG directly, JPEG has to be converted to some

other format for viewing or manipulating images. Even with a JPEG-capable viewer, it takes

longer to decode and view a JPEG image than to view an image of a simpler format such as

GIF. Hence, using JPEG is essentially a tradeoff between time and space.

The second fundamental advantage of JPEG is that it can store full colour information: 24

bits/pixel (16 million colours). The other image format, GIF, widely used on Usenet, can

only store 8 bits/pixel (256 or fewer colours) [95].

Baseline JPEG (Lossy)

Steps involved in the baseline compression algorithm[93]:

1. Firstly an image is transformed into a suitable colour space. For greysc ale this step in

unnecessary, but for colour images RGB is transformed into a luminance and chromin-

135

Appendix A: Image Compression Standards

ance color space (YCbCr, YUV, etc). The luminance component represents gray scale

and the other two axes are colour information. The reason for changing colour spaces

is that more information can be lost in the chrominance components at acceptable costs

than in the luminance component. The human eye is not as sensitive to high-frequency

colour information as it is to high-frequency luminance.

Downsample each component by averaging together groups of pixels. This is an op-

tional step. The luminance component is left at original resolution, while the colour

components are usually reduced 2:1 horizontally and either 2:1 or 1:1 vertically. This

step immediately reduces the data volume by one-half or one-third, while having virtu-

ally no impact on perceived quality.

Group the pixel values for each component into blocks of 8x8. Transform each 8x8

block through a discrete cosine transform (DCT). The motivation for doing this is that

high-frequency information can be thrown away without affecting low-frequency in-

formation.

For each block, divide each of the 64 DCT coefficients by a separate quantization

coefficient, and round the results to integers. This is the fundamental Lossy step. A

quantisation coefficient of 1 loses no information, while larger ones lose successively

more. The higher frequencies are usually reduced much more than the lower.

Encode the resulting coefficients using Huffman. This step is lossless, therefore it does

not affect image quality.

6. Attach appropriate headers, etc, and output the result. In an interchange JPEG file, all

136

ix A: Image Compression Standards

of the compression parameters are included in the headers so that the decompressor can

be able to reverse the process.

The decompression algorithm reverses the above process, and normally adds some smoothing

steps to reduce pixel-to-pixel discontinuities.

A.O.2 MPEG

The MPEG standards are generic and universal in the sense that they specify a compressed

bitstream syntax. There are three main parts of the MPEG specifications. Namely systems,

video, and audio components. The video part defines the syntax and semantics of the corn-

pressed video bitstreams. The audio defines the same thing for audio bitstream, while the

system addresses the multiplexing of video and audio streams into a single stream with all

necessary timing information[19, 94].

Standard I Bit rate Function Screen size

MPEG-i 1.14 to 3.0 mbps delivery of video for 352x240 pets at 30
a CD-ROM for NTSC

MPEG-2 6 to 8 mbps broadcast 	quality 720x480 	pets 	at
compressed video 60 for NTSC and

720x576 pels at 50
for HDTV

MPEG-4 64 kbits/s tow bit rate 	video Under development
phones, 	interactive
databases, interactive
newspapers etc

Table A.1: Typical MPEG standards specifications

At the top level of the hierachy (Figure A.2), the video bitstream consists of video sequences

MPEG-i allows only progressive sequences, while MPEG-2 allows both progressive and

137

Appendix A: Image Compression Standards

H 	 Video Sequence 	 1

I 	Group of Pictures 	 I

Picture
/7

	

Slice 	 Macroblock

	

I 	I 	I 	I 	LI 	I

Block

T
8 pixels

1-8 pixelsl

Figure A.2: Hierachy of video signals

interlaced sequences. Each video sequence contains a variable number of Group of Picures

(GOP). A GOP contains a variable number of pictures (P). A picture can either be a frame

picture or a field picture. In a frame picture, the fields (YUV) are coded together to form

a frame, while a field picture is a coded version of the individual field. In MPEG video

frames are broken down into 8x8 pixels regions called blocks. Four of these blocks can be

put together to create a 16x16 macroblock. The macroblocks are then grouped together into

runs of macroblocks called slices. The slice structure allows the receiver to resynchromse at

the beginning of a slice in case of data corruption because each slice begins with a unique

header [94,96].

Inside each GOP, two types of coding are permited, Intra frame and inter frame coding.

138

Appendix A: Image Compression Standards

The intra coding of frame proceeds without any references to other frames exploiting only

its spatial redundancy. The intra coded frames (I-frames) provides the access point to the

coded sequence. Inter frame coding uses motion compensation prediction from previous

or subsequent frames in order to exploit both spatial and temporal redundacny. In MPEG,

two kinds of inter coded frames are distinguished, P-frames and B-frames. P-frames are

motion compensated from the a past I-frame whereas B-frame require both past and future

reference frames for mption compensation. Since B-frames uses both future and past frames

for prediction, the highest degree of cpmpression is obtained for B-frames but they cannot be

used as a reference for prediction(Figure A.3)[96].

The MPEG derives its maximum compression from P and B-frames. This is done through a

technique named motion compensation based prediction. This exploits temporal redundancy.

Since framce are closely related, it is assumed that a current picture can be modelled as a

transition of the picture at a previous time. It is possible then to acurately predict the data of

one frame based on the data of a previous frame. The encoder searches the previous frame in

half pixel increments for other macroblock locations that are close match to the information

that is contained in the current macroblock. The displacement in the vertical and horizontal

directions of the match macroblock from the cosited macroblock are called motion vectors. If

a matching block is found in the search region the motion vectors are encoded. If no matching

is found in the neighbouring region, the macroblock is intra-coded and the DCT coefficients

are encoded [96].

The intra-frame coding involves the same process described in the JPEG standard.

139

dix A: Image Compression Standards

Forward Prediction

Bidirectional Prediction

E'l 	E,
Figure A.3: Pand B frame predictions

140

where

Appendix B
Cosine Coefficients

dd d d d d d d

a c e g —g —e —c —a

b f -f —b —b -f f b

c —g —a —e e a g —c
E=I
	

(B.1)

d —d —d d d —d —d d

e —a g C —c —g a —e

f —b b -f -f b —b f

g —e C —a a —c e — g

37r 	7r 	37r 	it 	 it
(B.2)

141

('liecked

Appendix C

Test Images

Some of the test images that were used for the simulations.

TT. 	 a

(e) Blocks
	

1) Vertical

Figure C.1: Some of the tested images

142

Appendix D
Synopsys DesignPower Analysis

After the RTL model has been captured, the next level down the deisgn hierachy is obtaining

the gatelevel netlist through synthesis. When the netlist is finalized, DesignPower can use the

RTL simulation switching activity information to accurately determine a power estimation of

the design. DesignPower's accuracy can be further enhanced through the use of switching

activity generated from a gate-level simulation. The gate-level simulation supports power

dissipation due to glitching and can use the state-dependent and path-dependent library power

models [3,97].

Di Power Analysis Techniques

The power of a circuit can be determined by either using an RTL simulation approach or

a netlist simulation-based approach. RTL simulation-based power analysis can be used be-

fore synthesis and is based on switching activity captured from RTL simulation. Gate-level

simulation-based power analysis combines both state-dependent and path-dependent library

power models with state-dependent and path-dependent switching activity. This yields an

improved accuracy. However, the complexity of this analysis depends on the number of input

stimuli applied to the circuit inputs, as well as the size of the circuit being analyzed. Hence,

143

ix D: Synopsys Design Power Analysis

for large circuits with a large number of input stimuli, gate-level simulation-based power

estimation may require substantial computing resources [97].

D.2 Simulation-Based Power Analysis

D.2.1 RTL Simultation Based Power Analysis

For the RTL simulation based power analysis approach, the static probability and transition

density of each synthesis invariant element is captured from RTL simulation. The captured in-

formation is then propagated to all intermediate nodes in the circuit using an internal propaga-

tion engine. The internal propagation engine does not generate state-dependent and path-

dependent switching activity, so the library power models are not used to their full extent

[97].

The accuracy can also affected by the delay model chosen for the analysis. Analysis tech-

niques have been proposed using zero delay, unit delay, and full timing-delay models. With

zero-delay model, glitching is ignored while unit-delay and full timing-delay include the im-

pact of glitching on the average switching activity. The zero-delay model assumption simpli-

fies the computation of power estimate, therefore, it used in the switching activity propagation

engines [97].

144

Appendix D: Synopsys Design Power Analysis

D.2..2 Gate-Level Simulation-Based Power Analysis

Gate-level (or netlist) simulation-based power analysis is based upon switching activity data

captured by observing the transitions made by every net in the circuit during a gate-level

simulation run. Some of the commercially available netlist simulators can also count the

transitions based on pre-defined states of various nodes in the design. For example, they can

record the switching activity on the clock pin of a RAM when RW = 1 separated from those

when RW = 0. The switching information derived from the simulation is back-annotated and

combined with information from the library to compute the design's total power dissipation.

When using good quality library power models with good simulation models for interconnect,

glitching, and gate delays, the gate-level simulation-based technique can be very accurate.

The penalty for high accuracy, however, is lengthy gate-level simulation [97].

145

Appendix E
Program Listings

E.1 Pre-processing Programs

#! /usr/local/bin/perl
This program arranges the vectors in array vector starting with the one
with minimum number of ones first, and then does a sort on minimum hamming
distance.

print stderr "Enter nput filename --> input :-
$input = <stdin>;
chop $input;

print stderr "Enter output filename --> hamming :-
$output_ham = <stdin>;
chop $output_ham;

open(FIN,"< $input');
open(FOUT, ">$output_ham");
open(FOUT_debug, ">debug.out");

@vector = <FIN>;

for ($i = 0 ; $i < 8 ;

for ($k = 0 ; $k < 8 ;

= ($k+($i*8)) ;

@vector_to_sort [$k] = @vector [$m]

@vectors = sort {($a=Th/l/l/g)<=>($b=Th/l/l/g)) vector_to_sort;
while($#vectors+l)

push @sorted, shift(@vectors);
@vectors = sort by_hamming @vectors;

print FOUT @sorted;

sub by_hainming()

(join ",sort split /I,@sorted[-l]$a) cmp (join ",sort split //,@sorted[-l]$b);

146

Appendix E: Program Listings

#! /usr/local/bin!perl
This program arranges the vectors in array vector in ascending order
print stderr "Enter filename to be sorted
$ input = <stdin>;
chop $input;

print stderr "Enter output filename --> ascending :-
$output_asc = <stdin>;
chop $output_asc;

open(FIN, "<$input");
open(FOtJT_asc, ">$output_asc');
#open(FOUT_min, ">$output_min');

@vector = <FIN>;

#@vector_sort = sort { $a <=> $b } @vector; #this sorts the entire array @vector
#print @vector;
#print FOUT_asc "@vector sort";

for (Si = 0 ; $i < 8 ;

for ($k = 0 ; $k < 8 ;

$m = ($k+($i*8)) ;

@vectorto_sort ($k) = @vector [$m]

@vector_sorted = sort { $a <=> $b } @vector_to_sort;
print FOUT_asc @vector_sorted;

147

Appendix E: Program Listings

E.2 Some Design Files Examples

Order Based Implementation

Filename 	 cb_mac_sim.v
II Description 	: column based mac unit for simulation
II Author 	 : Shedden Masupe

'define pixel_width 9
'define counter_width 3
'timescale ins / ins

II Lower hierachy modules

module mult_csa(a_in, b_in, mult_out);

parameter width = 'pixel_width;

output [(width*2)_i : 0] rnult_out;
input [width-i : 0] 	a_in;
input (width-i : 0) 	b_in;

assign muit_out = a_in * b_in;

endmodule /Jmutiplier

module adder_bk(a_in, b_in, adder_out);

parameter width = 'pixel_width;

output [(width*2)_l 	01 adder_out;
input [(width*2)_l 	0] a_in;
input ((width*2)_l : 01 b_in;

assign adder_out = a_in + b_in;

endmoduie I/adder

module mux(a_in, sel, mux_out);
parameter width = 'pixel_width;

input [(width*2)_i 	0] a_in;
input 	sel;
output [(width*2)_l 	01 mux_out;

reg ((width*2)_l 	0] 	mux_out;

always @(a_in or sel)
if (sel)
mux_out = 0;

else
mux_out = a_in;

endmodule II mux

module out_reg(a_in, en, clk, reset, reg_out);

parameter width = 'pixel_width;

input ((width*2)_l 	01 a_in;
input clk, reset, en;

148

Appendix E: Program Listings

output [(width*2)_l : 0] reg_out;

reg [(width*2)_l : 01 reg_out;

always @(posedge clk or negedge reset)
if(!reset)
reg_out = 0;

else
if(en)
reg_out = a_in;

else
reg_out = 0;

endmodule I/register

II Top module

module cos_order(a_in, b_in, en, clk, reset, mac_out);

parameter width = 'pixel_width;
parameter addr_width = 'counter_width;

output [(width*2)_l 	01 mac_out;

input [width-1 : 01 a_in;
input (width-1 01 b_in;
input clk, reset,en;

II signals
wire ((width*2)_l 	0) sum;
wire ((width*2)_l 	01 mux_out;
wire [(width*2)_l : 01 product;
wire c_in, c_out;
wire clk, reset;

II multiplier used here is behavioural, basically (*)

mult_csa mult_l(.a_in(a_in), .b_in(b_in), .mult_out(product));

II the adder is behavioural as well (+)

adder_bk add_l (a_in(mwc_out), .b_in(product), 	adder_out(sum));

/ /multiplexor
mux miix_l(.a_in(sum) , .sel(en) , .mux_out(mux_out));
I/output register instantiation

out_rag reg_l (.a_in(sum), .en(en), .clk(clk), .reset(reset), .reg_out(mac_out));

endmodule

149

Appendix E: Program Listings

If Filename 	: cb_mac_syn.v
Description 	column based mac unit for synthesis

II Author 	 Shedden Masupe

'define pixel_width 9
'define counter_width 3

1*

* Lower hierachy modules
*1

module mult_csa(a_in, b_in, mult_out);

parameter a_width = 'pixel_width;
parameter b_width = 'pixel_width;

output [(a_width + b_width)-1 	01 mult_out;
input [a_width-1 	0] a_in;
input [b_width-1 : 01 b_in;

wire tc_control = 1;

/ I synopsys dc_script_begin
II set_implementation csa csal
/ / synopsys dc_script_end

DW02_mult #(a_width, b_width) csal(.A(a_in), .B(b_in), .TC(tc_control), PRODUCT(rnult_out));

endmodule //mult_csa

module adder_bk(a_in, b_in, adder_out);

parameter width = pixel_width*2 ;

input (width-l:O] a_in;
input [width-1:0] b_in;

output [width-l:O] adder_out;

wire 	c_out;
wire 	c_in = 0;
/ /synopsys dc_script_begin
II set_implementation bk bkl
/ /synopsys dc_script_end

DW01_add #(width) bkl(.A(a_in), .B(b_in), .CI(c_in), .SUM(adder_out), .CO(c_out));
endmodule / /adder_bk

module mux(a_in, sel, mux_out);
parameter width = 'pixel_width;

input [(width*2)_l : 0] a_in;
input 	sel;
output [(width*2)_l 	01 mux_out;

reg [(width*2)_l : 0] 	mux_out;

always @(a_in or sel)
if (sel)
mux_out = 0;

else
mux_out = a_in;

endmodule // mux

150

Appendix E: Program Listings

module out_reg(a_in, en, clk, reset, reg_out);

parameter width = 'pixel_width;

input ((width*2)_l 	01 a_in;
input cik, reset, en;
output ((width*2)_l 	0) reg_out;

reg ((width*2)_l : 01 reg_out;

always @(posedge cik or negedge reset)
if(!reset)

reg_out = 0;
else

if(en)
reg_out = a_in;

else
reg_out = 0;

endmodule I/register

1*

* Top module
*1

module cos_order(a_in, b_in, en, clk, reset, mac_out);

parameter width = 'pixel_width;
parameter addr_width = 'counter_width;

output [(width*2)_l 	0] mac_out;

input (width-1 	01 a_in;
input (width-1 : 0) b_in;
input clk, reset, en;

II signals
wire [(width*2)_l 	01 sum;
wire [(width*2)_l : 01 mux_out;
wire [(width*2)_l : 0] product;

wire clk, reset;

II multiplier used here is behavioural, basically (*)

mult_csa mult_l (.a_in(a_in), .b_in(b_in), .mult_out(product));

II the adder is behavioural as well (+)

adder_bk add_l (a_in(mux_out), .b_in(product), 	adder_out (sum));

I /multiplexor
mux mux_l(.a_in(sum) , .sel(en), .mux_out(mux_out));

I/output register instantiation

out_reg reg_l(.a_in(sum), .en(en), .clk(clk), .reset(reset), .reg_out(mac_out));

endmodule

151

Appendix E: Program Listings

Filename 	 cos_order_tb.v
Description 	test bench for column based mac unit

II Author 	 Shedden Masupe

'timescale ins / ins
module cos_ord_sim_test

parameter pixel_width = 9;
parameter image_order = 64;
parameter matrix_order = 8;
parameter addr_width = 3;
parameter freq = 20;

reg (pixel_width-i 	0) a_in, b_in;
reg clk, reset, en;
reg [pixel_width+2 	01 cos_array[O:image_order];
reg [pixel_width-i 	01 pel_array[0:image_order];
reg [addr_width-1:0] bc, d;
reg [pixel_width+2 0] temp
wire [(pixel_width*2)_l 	01 mac_out;
wire tc_control;

integer n, a, b;
integer write_file;

I/instantiate dut
cos_order dut(.a_in(a_in), .b_in (b_in), .en(en), .clk(clk), .reset(reset), .mac_out (mac_out));

I/initialisation
initial
begin
reset = 0;
en = 0;
a_in = 0;
b_in = 0;
d = 6;

#50 reset = 1;
II #15 write_addr = 7;
II 	read_addr =0;
end

II--
I/read from file
II--
initial
begin

wait(reset)

$readmemb(' ./input/ascending_l28.dat',cos_array);
$readmemb(./input/v_stripes.dat",pel_array);

$readmemb(/input/ones .dat , cos_array);
II 	$readmemb(' ./input/twos.dat',pel_array);

write_file = $fopen(/output/cos_ord_out.dat");
II 	$set_toggle_region (dut);
II 	$toggle_start;

$fwrite(write_file, 	 time en a_in b_in mult_out adder_out mac_out\n");

I/read in vectors
for(n = 0; n<matrix_order; n= n+1) I/counter for pel cols

152

Appendix E: Program Listings

begin
for(b=O; b<matrix_order; b=b+l)//counter for cosine cols and pel rows
begin

for(a=O; a< matrix_order; a=a+l) I/do the cosine rows
begin

@(posedge cik);

temp = cos_array[a+(b* matrix_order)];
bc = temp[11:9);

b_in = temp[8:0);
a_in = pel_array[loc +(n* matrix_order)];
$fwrite(write_file, $time,, " %d %d 	%d %d 	%d 	%d\n", en, a_in, b_in, dut.mult_l
//$monitor($time,,"%d %d %d 	%d",d, a_in, b_in, mac_out);

end // counter a
end II counter b

end I/counter n
$toggle_stop;
$toggle_report (" /output/cos_ord_norm. saif', 1. Oe-9, 'cos_ord_sim_test .dut');

$finish;
end

/ /counter
always @ (negedge clk)
begin
wait (reset)
d = d + 1;

if (d==O)
en = 1;

else
en = 0;

end

II generate clock
initial

clk = 0;
always #(freq/2) clk = !clk;

endmodule II cos_ord_sjm_test

153

Appendix E: Program Listings

Column Based Implementation

II Filename 	: cb_mac_sim.v
II Description 	column based mac unit for simulation
II Author 	 Shedden Masupe

'define pixel_width 8
'define counter_width 3

I -

/I Lower hierachy modules

module mult(a_in, b_in, mult_out);

parameter width = 'pixel_width;

output [(width*2)_l 	0] mult_out;
input [width-1 : 0) 	a_in;
input [width-1 	0] 	b_in;

assign mult_out = a_in * b_in;

endrnodule //mutiplier

module adder(a_in, b_in, adder_out)

parameter width = 'pixel_width;

output [(width*2)_l : 0] adder_out;
input [(width*2)l : 01 a_in;
input [(width*2)_l : 0] b_in;

assign adder_out = a_in + b_in;

endmodule I/adder

module latch(a_in, enable, reset, latch_out)

parameter width = 'pixel_width;

input [(width*2)l 	0] a_in;
input enable, reset;
output [(width*2)_l 	0) latch_out;

reg [(width*2)_l 	0] latch_out;

reg q;
always @(a_in or enable or reset)
if(!reset)

latch_out = 0;
else

if (enable)
latch_out = a_in;

endinodule I/latch

module latch_bank(a_in, cik, en, reset, write_addr, read_addr, latch_out);

parameter width = 'pixel_width;
parameter addr_width = 3;

input [(width*2)_l : 01 a_in;
input [addr_width-1:0) write_addr, read_addr;

154

Appendix E: Program Listings

input reset, en, cik;

output [(width*2)_i : 01 latch_out;

reg [(width*2)_l : 0] latch_out;

wire enable_0,
enable_i,
enable_2,
enable_3,
enable_4,
enable_5,
enable_6,
enable_7;

reg in,
in 0,

in_7; I/signals for the latch enable gating signals

wire clk_n;

wire [(width*2)_l : 0] out_0,
out 1,
Out 2,
Out 3,
Out 4,
Out 5,
Out 6,
out 7;

//demultiplexing the input to the latch_bank
always @(write_addr or in)

begin
if(write_addr == 3 1 bOOO)

in_0 = en;
else in_0 = 0;

if(write_addr == 3 1 bO01)
in_i = en;

else in_i = 0;

if(write_addr == 3'bOlO)
in_2 = en;

else in_2 = 0;

if(write_addr == 3 1 b011)
in_3 = en;

else in_3 = 0;

if(write_addr == 3 1 blOO)
in_4 = en;

else in_4 = 0;

if(write_addr == 3 1 bl0l)
in_S = en;

else in_5 = 0;

if(write_addr == 3 1 bllO)
in_6 = en;

155

Appendix E: Program Listings

else in_6 = 0;

if(write_addr == 3'blli)
in_7 = en;

else in_7 = 0;
end I/always

liGating the cik signal with enable
not inv_clk(cik_n, clk);
and act_enO(enable_0, clk_n, in_O);
and act_enl(enable_l, clk_n, in_i);
and act_en2(enable_2, elk_n, in_2);
and act_en3(enable_3, elk_n, in_3);
and act_en4(enable_4, elk_n, in_4);
and act_en5(enable_5, elk_n, in_5);
and act_en6(enable_6, elk_n, in_6);
and act_en7(enable_7, elk_n, in_7);

I/end of gated clock

I/instantiation of the latches required
latch LO (.a_in(a_in) , .enable(enable_0),
latch Li (.a_in(a_in) , .enable(enable_l),
latch L2 (.a_in(a_in) , .enable(enable_2),
latch L3 (.a_in(a_in) , .enable(enable_3),
latch L4 (.a_in(a_in) , .enable(enable_4),
latch L5 (.a_in(a_in) , .enable(enable_5),
latch L6 (.a_in(a_in) , .enable(enable_6),
latch L7 (.a_in(a_in) , .enable(enable_7),

reset(reset), .latch_out(out_0));
reset (reset), .latch_out (out_i));
reset (reset), .latch_out(out_2));
reset (reset) , .latch_out(out_3));
reset (reset), .iatch_out(out_4));
reset (reset) , .latch_out(out_5));
reset(reset), .latch_out(out_6));
reset (reset), latch_out (out_7));

i/multiplexing the output of the latch_bank
always @(read_addr or out_0 or out_i or out_2 or out_3 or out_4 or

begin
case (read_addr)

3'bOOO 	latch_out = out_0;
3'bOOi 	latch_out = out_i;
3'bOlO 	latch_out = out_2;
3'boll : latch_out = out_3;
3'blOO : latch_out = out_4;
3'biOl 	latch_out = out_5;
3'bllo 	latch_out = out_6;
3'blll 	latch_out = out_7;
default : latch_out = 0;

endease
end i/always

endmodule I/latch_bank

out_5 or out_6 or out_7)

I -

/I Top module
II

module mac(a_in, b_in, write_addr, read_addr, en, elk, reset, mac_out);

parameter width = 'pixel_width;
parameter addr_width = 'counter_width;

output ((width*2)_l : 01 mac_out;

input (addr_width-i : 0] write_addr;
input [addr_width-1 01 read_addr;
input [width-i : 0] a_in;
input [width-i 0] b_in;
input elk, reset, em;

II signals

156

Appendix E: Program Listings

wire ((width*2)_i 	0) sum;
wire ((width*2)_i 	0) product;
wire c_in, c_out;
wire clk, reset;

II multiplier used here is behavioural, basically (*)

mult mult_l(.a_in(a_in), .b_in(b_in), .muit_out(product));

II the adder is behavioural as well (+)

adder add_i (.a_in(mac_out), .b_in(product), .adder_out(sum));

f/the latch bank has been coded at RTL level

latch_bank latches (.a_in(sum), .clk(clk), .en(en), .reset(reset), .write_addr(write_addr), .read_addr(rea

endmodule

157

Appendix E: Program Listings

II Filename 	: cb_mac_syn.v
Description 	column based mac unit for synthesis
Author 	 : Shedden Masupe

'define pixel_width 8
'define counter_width 3

1*
* Lower hierachy modules
*1

module mult_csa(a_in, b_in, mult_out);

parameter a_width = 'pixel_width;
parameter b_width = 'pixel_width;

output [(a_width + b_width)-1 : 0] mult_out;
input [a_width-1 	01 a_in;
input [b_width-1 : 01 b_in;
wire tc_control = 1;

/ / synopsys dc_script_begin
II set_implementation csa csal
/ /synopsys dc_script_end

DW02_mult # (a_width, b_width) csal (.A(a_in), .B(b_in), .TC(tc_control), .PRODUCT(mult_out));

endmodule //mult_csa

module adder_bk(a_in, b_in, adder_out);

parameter width = pixel_width*2 ;

input [width-1:0] a_in, b_in;

output [width-1:0] adder_out;
wire 	c_out;
wire 	c_in = 0;
/ /synopsys dc_script_begin
// set_implementation bk bkl
/ /synopsys dc_script_end

DW01_add #(width) bkl(.A(a_in), .B(b_in), .CI(c_in), .SUM(adder_out), .CO(c_out));
endmodule / /adder_bk

module latch(a_in, enable, reset, latch_out);

parameter width = 'pixel_width;

input [(width*2)_l 	01 a_in;
input enable, reset;
output [(width*2)_l : 01 latch_out;

reg [(width*2)_l 	0] latch_out;
always @(a_in or enable or reset)
if(! reset)

latch_out = 0;
else

if (enable)
latch_out = a_in;

endmodule I/latch

module latch_bank(a_in, cik, en, reset, write_addr, read_addr, latch_out);

158

Appendix E: Program Listings

parameter width = 'pixel_width;
parameter addr_width = 3;

input [(width*2)_i 	01 a_in;
input [addr_width-l:O] write_addr, read_addr;
input reset, en, elk;

output [(width*2)_i 	0] latch_out;

reg [(width*2)_l : 0) latch_out;

wire enable_C,
enable_i,
enabie_2,
enable_3,
enable_4,
enable_5,
enable_6,
enabie_7;

rag in,
in 0,

in_7; I/signals for the latch enable gating signals

wire elk_n;

wire [(width*2)_l 	0] out_0,
out 1,
out 2,
out 3,
out 4,
out 5,
Out 6,
out 7;

//demultipiexing the input to the latch_bank
always @(write_addr or en)

begin
if(write_addr == 3 1 bOOO)

in_0 = en;
else in_C = 0;

if(write_addr == 3'bOOl)
in_i = en;

else in_l = 0;

if(write_addr == 3 1 bOlO)
in_2 = en;

else in_2 = 0;

if(write_addr == 3 1 bOli)
in_3 = en;

else in_3 = 0;

if(write_addr == 3 1 blOO)
in_4 = en;

else in_4 = 0;

159

Appendix E: Program Listin

if(write_addr == 3'bl0l)
in_5 = en;

else in_5 = 0;

if(write_addr == 3'bllO)
in_6 = en;

else in_6 = 0;

if(write_addr == 3 1 blil)
in_7 = en;

else in_7 = 0;
end I/always

liGating the clk signal with enable
not inv_clk(clk_n, clk);
and act_enO(enable_O, clk_n, in_0);
and act_enl(enable_l, clk_n, in_l);
and act_en2(enable_2, clk_n, in_2);
and act_en3(enable_3, clk_n, in_3);
and act_en4(enable_4, clk_n, in_4);
and act_en5(enable_5, clk_n, in_5);
and act_en6(enable_6, clk_n, in_6);
and act_en7(enable_7, clk_n, in_7);

i/end of gated clock

I/instantiation of the latches required
latch LO (.a_in(a_in) , .enable(enable_0),
latch Ll (.a_in(a_in) , .enable(enable_l),
latch L2 (.a_in(a_in) , .enabie(enable_2),
latch L3 (.a_in(a_in) , .enable(enabie_3),
latch L4 (.a_in(a_in) , .enable(enable_4),
latch L5 (.a_in(a_in) , .enable(enable_5),
latch L6 (.a_in(a_in) , .enable(enabie_6),
latch L7 (.a_in(a_in) , .enabie(enable_7),

.reset(reset) , .latch_out(out_0));

.reset(reset) , .latch_out(out_l));

.reset(reset) , .latch_out(out_2));

.reset(reset) , .latch_out(out_3));

.reset (reset), .latch_out(out_4));

.reset (reset), .latch_out(out_5));

.reset (reset), .latch_out(out_6));

.reset (reset), .latch_out(out_7));

i/multiplexing the output of the latch_bank
always c3(read_addr or out_0 or out_i or out_2 or out_3 or out_4 or
begin

case (read_addr)
3'bOOO 	latch_out = out_0;
3 1 bOO1 : latch_out = out_i;
3'bOlO 	latch_out = out_2;
3'b011 : latch_out = out_3;
3'blOO 	latch_out = out_4;
3'b101 	latch_out = out_5;
3'bllO : latch_out = out_6;
3 1 blll : latch_out = out_7;
default latch_out = 0;

endcase
end I/always

endinodule / / latch_bank

out_5 or out_6 or out_7)

1*
* Top module
*1

module mac(a_in, b_in, write_addr, read_addr, en, clk, reset, mac_out);

parameter width = 'pixel_width;
parameter addr_width = 'counter_width;

output ((width*2)_l 	01 mac_out;

input [addr_width-1 0] write_addr;

160

Appendix E: Program Listi

input [addr_width-1 : 01 read_addr;
input [width-i 	01 a_in;
input [width-i : 0) b_in;
input cik, reset, en;

1* signals */
wire [(width*2)_l 	01 sum;
wire [(width*2)_l 	0] product;

wire clk, reset;

1* multiplier used here is behavioural, basically

mult_csa mult_l (.a_in(a_in), .b_in(b_in), .mult_out (product));

/* the adder is behavioural as well (+) *1

adder_bk add_l(a_in(mac_out), .b_in(product), .adder_out (sum));

/*the latch bank has been coded at RTL level */

latch_bank latches (.a_in(suxn), .clk(clk), .en(en), .reset(reset), .write_addr(write_addr), .read_addr(rea

endmodule

161

Appendix E: Program Listings

II Filename 	 cb_mac_tb-20ns.v
II Description 	: test bench for column based mac unit
II Author 	 Shedderi Masupe

module cb_mac_sim_test

parameter pixel_width = 8;
parameter image_order = 64;
parameter matrix_order = 8;
parameter addr_width = 3;
parameter freq = 20;

reg (pixel_width-1 	0] a_in, b_in;
reg clk, reset, en;
reg (pixel_width-1 : 0] cos_array[O:image_order];
reg [pixel_width-1 : 0] pel_array[O:image_order];
reg (addr_width-l:O] write_addr, read_addr;

wire [(pixel_width*2)_l 	0] mac_out;
wire tc_control;

integer n, a, b, d;
integer write_file, latch_file;

assign tc_control = 1;

I/instantiate dut
mac dut(.a_in(a_in), .b_in(b_in), .write_addr(write_addr),

.read_addr(read_addr), .en(en), . clk(clk),

.reset (reset), .mac_out(mac_out))

I/initialisation
initial
begin
reset = 0;
en = 0;
a_in = 0;
b_in = 0;

mac_out = 0;

#50 reset = 1;
II #15 write_addr = 7;
II 	read_addr =0;
end

II--
I/read from file
//--
initial

begin
wait (reset)

$readniemb(" . /input/col_cos_lOO_ham.dat" ,cos_array);
$readmenib(" ./input/lena_part_8.dat" ,pel_array);
//$readmemb(. /input/ones .dat" ,cos_array);
//$readmernb(" . /input/twos .dat" ,pel_array);
write_file = $fopen("./output/mac_out-20ns.dat");
latch_file = $fopen(./output/latch_out.dat");
$set_toggle_region (dut);
$toggle_start;
$fwrite(write_file, 	 time w r a_in b_in mult_out adder_out mac_out\n");
$fwrite(latch_file, 	 time 	L0 	1.1 	L2 	L3 	LA 	L5 	L6

f/read in vectors

162

Appendix E: Program Listings

for(n = 0; n<matrix_order; n= n+l)//counter for pel cols
begin

reset=0;
for(b=0; b<matrix_order; b=b+l)//counter for cosine cols and pel rows
begin

for(a=0; a< matrix_order; a=a+l) f/do the cosine rows
begin

@(posedge clk);
reset=l;
en = 1;

b_in = cos_array(a+(b* matrix_order));
a_in = pel_array[b+(n* matrix_order)]-128;

write_addr=a;
read_addr= a+l;

II write_addr= write_addr+l;
II read_addr = read_addr + 1;

$fwrite(write_file, $time,, 	%d %d %d 	%d %d 	%d 	%d\n',
write_addr, read_addr,a_in, b_in, dut.mult_l .mult_out,
dut.add_l.adder_out, mac_out);

$fwrite(latch_file, $time,, 	%d %d %d %d %d %d 	%d 	%d\n",
dut latches.L,0 latch_out, dut latches .Ll latch_out,
dut latches.L2 .latch_out, dut. latches .L3 latch_out,
dut. latches .L4 . latch_out, dut. latches .L5 . latch_out,
dut. latches.L6 . latch_out, dut. latches .L7 . latch_out);

If $monitor($time,,"%d %d 	%d", a_in, b_in, mac_out);
end II counter a

end II counter b
end I/counter n

$ toggle_s top
$toggle_report(" . /output/cb_rnac_norm-20ns .saif", 1. Oe-9, 'cb_mac_sim_test .dut');
$finish;

end

II generate clock
initial

cik = 0;
always #(freq/2) cik = !clk;

endmodule II cb_mac_sim_test

163

References

T. H. Meng, B. M. Gordon, E. K. Tsern, and A. C. Hung, "Portable video-on-demand
in wireless communication," in Proceedings of the IEEE, pp. 659 - 680, IEEE, April
1995.

P. Pirsch, N. Demassieux, and W. Gehrke, "VLSI architectures for video compression -
a survey," in Proceedings of the IEEE, pp. 220 - 246, IEEE, Feb 1995.

Synopsys Inc., 700 East Middlefield Road,Mountain View, CA 94043-4033, USA, Syn-
opsys Online Documentation, Power products reference manual, 1998.

A. T. Erdogan, Low Power FIR Filter Implementations for VLSI Based DSP Systems.
PhD Thesis, Cardiff University, UK, August 1999.

A. Bellaouar andM. I. Elmasry, Low-PowerDigital VLSIDesign: Circuits and Systems.
Kiuwer Academic Publishing, 1995.

J. M. Rabaey and M. Pedram, Low Power Design Methodologies. Kiuwer Academic
Publishers, 1996.

F. N. Najm, "A survey of power estimation techniques in VLSI circuits," in IEEE Trans-
actions on Very Large Scale Integration (VLSi) Systems, IEEE, December 1994.

A. Chandrakasan, S. Sheng, and R. Brodersen, "Low-power cmos digital design," in
JSSC, vol. 27, pp. 473-484, 1992.

G. Keane, J. R. Spanier, and R. Woods, "Low power design of signal processing sys-
tems using characterisation of silicon IP cores," in Proceedings of the 33rd Asimolar
Conference on Signals, Systems and Computers, pp. 767 - 771, Oct. 1999.

J. Monteiro, S. Devadas, and B. Lin, "A methodology for efficient estimation of switch-
ing activity in sequential logic circuits," in Design Automation Conference, pp. 12-17,
1994.

C. Tsui, J. Monteiro, M. Pedram, S. Devadas, A. Despain, and B. Lin, "Power estimation
for sequential logic circuits," in IEEE Trans. VLSI Systems, vol. 3, September 1995.

S. Iman and M. Pedram, Logic Synthesis for Low Power VLSI Designs. Kiuwer Aca-
demic Publishing, 1998.

R. E. Bryant, "Graph-based algorithms for boolean function manipulation," in IEEE
Transactions on Computers, pp. 677-691, IEEE, 1986.

164

References

F. N. Najm, "Estimating power dissipation in VLSI circuits," in IEEE Circuits and
Devices Magazine, 1994.

F. N. Najm, R. Burch, and P. Y. I. Hajj, "CREST- a current estimator for CMOS cir-
cuits," in IEEE International Conference on Computer-Aided Design, pp. 204-2-7,
IEEE, November 1988.

F. N. Najm, "Transition density: A new measure of activity in digital circuits," in IEEE
Transactions on Computer-Aided Design, vol. 12, pp. 310-323, IEEE, February 1993.

R. Burch, F. Najm, P. Yang, and T. Trick, "McPOWER: A monte carlo approach to
power simulation," in IEEE/A CM International conference on Computer-Aided Design,
pp. 90-97, IEEE, November 1992.

M. Xakellis and F. Najm, "Statistical estimation of switching activity in digital circuits,"
in 31st IEEE/ACM Design Automation conference, IEEE, 1994.

R. S. Clarke, Digital Compression of Still Images and Video. Academic Press, 1995.

R. C. Gonzalez and P. Wintz, Digital Image Processing. Addison-Wesley Publishing
Company, second edition ed., 1987.

Pattern-Recognition-Group, 	"Image 	Processing 	Fundamentals."
http:llwww.ph.tn.tudelft.nlJCoursesfFIP/frames/fip.html.

K. Rao and P. Yin, Discrete Cosine Transforms: Algorithms, Advantages and Applica-
tions. New York Academic Press, 1990.

E. Ifeachor and B. Jervis, Digital Signal Processing: A Practical Approach. Addison-
Wesley Publishing, 1993.

S. K. Mitra and J. F. Kaiser, Handbook for Digital Signal Processing. John Wiley and
Sons, 1993.

M. L. Hilton, B. D. Jawerth, and A. Sengupta, "Compressing still and moving images
with wavelets," Multimedia Systems, vol. 2, no. 5, pp. 2 18-227, 1994.

C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelets Trans-
forms : A Primer. Prentice-Hall, 1998.

M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek, "An overview
of JPEG-2000," in Data Compression Conference, pp. 523-544, 2000. cite-
seer.nj .nec.com/marcellinOOoverview.html.

J. Cardinal, "Fractal compression using the discrete karhunen-loeve transform."
http:llciteseer.nj .nec.com/cardinal98fractal.html, Brussels Free University, Computer
Science Department, Bld. du Triomphe CP212, B 1050 Brussels, Belgium, 1998.

165

References

N. Ahmed, T. Natarajan, and K. R. Rao, "Discrete cosine transform," in Transactions
on Computing, vol. c, pp. 90-93, IEEE, Jan 1974.

V. Bhaskaran and K. Konstantinedes, Image and Video Compression Standards: Al-
gorithms and Architectures. Kiuwer Academic Publishers, 1995.

J. F. Blinn, "What's the deal with the DCT," in IEEE Computer Graphics and Applica-
tions, pp. 78 - 83, July. 1993.

T.-S. Chang, C.-S. Kung, and C. Jen, "A simple processor core design for DCTIIDCT,"
in IEEE Transactions on Circuits and Systems for Video Technology, vol. 10, pp. 439-
447, IEEE, April 2000.

I. Sundsbo, G. L. Hansen, and E. J. Aas, "Comparison of two architectures for imple-
mentation of the discrete cosine transform," in ICASSP 96, pp. 3272 - 3275, May 1996.

G. S. Taylor and G. M. Blair, "Design for the discrete cosine transform in VLSI," in
IEEE Proceedings in Computer and Digital Tech, vol. 145, pp. 127 - 133, Mar. 1998.

N. Demassieux, G. Concordel, J.-P. Durandeau, and F. Jutand, "An optimised VLSI
architecture for a multiformat discrete cosine transform," in Proceedings of ICSP '98,
pp. 85 - 88, 1998.

F. A. McGovern, R. F. Woods, and M. Yan, "Novel VLSI implementation of (8x8) point
2-D DCT," lEE Electronics Letters, vol. 8, pp. 624 - 626, April 1994.

A. Madisetti and A. Willson, "A 100mhz 2-d 8x8 DCTJIDCT processor for HDTV
applications," in lEE Transactions on Circuits and Systems for Video Technology, vol. 5,
pp. 158-165, April 1995.

A. Madisetti and A. Willson, "DCTIIDCT processor design for FIDTV applications,"
in Proceedings of Signals, Systems and Electronics, ISSSE'95, vol. 5, pp. 63-66, April
1995.

S. Uramoto, Y. Inoue, A. Takabatake, J. Takeda, Y. Yamashita, H. Terane, and
M. Yoshimoto, "A 100mhz 2-d discrete cosine transform processor," in IEEE Journal of
Solid State Circuits, vol. 27, pp. 492-499, April 1992.

M. Matsui, H. Hara, Y. Uetani, L. Kim, T. Nagamatsu, Y. Watanabe, A. Chiba, K. Mat-
suda, and T. Sakurai, "A 200mhz 13mm 2 2-d DCT macrocell using sense-ampliflying
pipeline flip-flop scheme," in IEEE Journal of Solid State Circuits, vol. 29, pp. 1482-
1490, December 1994.

Y. Jang, J. Kao, J. Yang, and P. Huang, "A 0.8mu 100mhz 2-d DCT core processor," in
IEEE Transactions on Consumer Electronics, vol. 40, pp. 703-709, August 1994.

W. Chen, C. H. Smith, and S. Fralick, "A fast computation algorithm for the discrete
cosine transform," in IEEE Transactions on Communications, vol. 25, pp. 1004-1009,
September 1977.

166

References

Y. Arai, T Agui, and M. Nakajima, "A fast DCT-SQ scheme for images," in The Trans-
actions of the IEICE, vol. E71, pp. 1095-1097, November 1988.

C. Chiu and K. J. Liu, "Real-time parallel and fully pipelined two-dimensional DCT
lattice structures with applications to HDTV systems," IEEE Transactions on Circuits
and Systems for 1'deo Technology, pp. 25 - 37, March 1992.

K. J. R. Liu and C. T. Chiu, "Unified parallel lattice structures for time-recursive dis-
crete cosine/sine/hartley transforms," Technical Research Report TR 91-36, University
of Maryland, College Park, EE Dept, Sysetems Research Center, University of Mary-
land, College Park, MD 20742, 1991.

S. A. White, "Applications of distributed arithmetic to digital signal processing: A tu-
torial review," IEEE ASSAP Magazine, pp. 5 - 19, July 1989.

Y.-H. Chan and W.-C. Siu, "On the realization of discrete cosine transform using the
distributed arithmetic," in IEEE Transactions on Circuits and Systems-I: Fundamental
Theory and Applications, vol. 39, pp. 705-7 12, IEEE, September 1992.

M. Kuhlmann and K. K. Parhi, "Power comparison of flow-graph and distributed arith-
metic based DCT architectures," in Conference Record of the Thirty-Second Asimolar
Conference on Signals, Systems and Computers, vol. 2, pp. 1214-1219, 1998.

G. Fettweis, J. Chiu, and B. Fraenkel, "A low-complexity bit-serial DCTIIDCT architec-
ture," in IEEE International Conference on Communications, vol. 1, (Geneva), pp. 217-
221, 1993.

M. Sanchez, J. D. Brugera, and E. L. Zapata, "Bit serial architecture for the two di-
mensional DCT," in International conference on Signal Processing, Applications and
Technology, ICSPAT'95, (Boston, USA), pp. 662-666, 1995.

V. Karunakaran, ASIC Design of Bit-Serial and Bit-Parallel Discrete Cosine Transform
Processors. Msc thesis, University of Maryland, 1994.

S. Sachidanandan, Design, Implementation and Testing of an 8x8 DCT Chip. Master of
science, University of Maryland, College Park, 1989.

P. T. Balsara and D. T. Harper, "Understanding VLSI bit serial multipliers," in IEEE
Transactions on Education, vol. 39, pp. 19-28, February 1996.

D. Crook and J. Fulcher, "A comparison of bit serial and bit parallel DCT designs," in
VLSI Design, vol. 3, pp. 59-65, 1995.

P. Denyer and D. Renshaw, VLSI Signal Pmcessing: A bit serial Appmach. Addison-
Wesley, 1985.

A. P. Chandrakasan and R. W. Brodersen, Low Power Digital CMOS Design. Kiuwer
Academic Publishers, 1995.

167

References

I.-M. Pao and M.-T. Sun, "Computation reduction for discrete cosine transform," in
International Symposium on Circuits and Systems, pp. 285 - 288, IEEE, 31 May - 3
June 1998.

L. G. Chen, J. Y. Jiu, H. C. Cheng, Y. P.Lee, and C. W. Ku, "Low power 2D DCT chip
design for wireless multimedia terminals," in International Symposium on Circuits and
Systems, vol. 4, pp. 41 - 44, IEEE, 31 May to 3 June 1998.

A. T. Erdogan and T. Arslan, "Data block processing for low power implementation on
single multiplier CMOS DSP processors," in International Symposium on Circuits and
Systems, IEEE, 31 May - 3 June 1998.

S. Cho, T. Xanthopoulos, and A. P. Chandrakasan, "Ultra low power variable length
decoder for MPEG-2 exploiting codeword distribution," in Proceedings of the 1998
IEEE Custom Integrated Circuits Conference, pp. 177 - 180, IEEE, May 1998.

T. Xanthopoulos, Low Power Data-Dependent Transform Video and Still Image Coding.
Massachusetts Institute of Technology, PhD Thesis, 1999.

T. Xanthopoulos and A. P. Chandrakasan, "A low power DCT core using adapt-
ive bitwidth and arithmetic exploiting signal correlations and quantisation," in IEEE
Journal of Solid-State Circuits, vol. 35, pp. 740-750, May 1999.

V. G. Moshnyaga, "A MSB truncation scheme for low-power video processors," in In-
ternational Symposium on Circuits and Systems, pp. IV-29 1 to IV-294, IEEE, 31 May
- 3 June 1999.

J. Chen and K. J. R. Liu, "Cost-effective low-power architecture of video coding sys-
tems," in International Symposium on Circuits and Systems, pp. 1-153 - 1-156, IEEE,
31 May - 3 June 1999.

J. Chen and K. J. R. Liu, "Low-power architectures for compressed domain video coding
co-processor," in IEEE Transactions on Multimedia, vol. 2, pp. 111-128, IEEE, June
2000.

K. Kim, P. A. Beerel, and Y. Hong, "An asynchronous matrix-vector multiplier for dis-
crete cosine transform," in Proceedings of the 2000 International Symposium on Low
Power Electronics and Design, pp. 256-261,2000.

J. Li and S.-L. Lu, "Low power design of two-dimensional DCT," in Proceedings of the
IEEE, pp. 309-312, IEEE, Feb 1996.

E. N. Farag and M. I. Elmasry, "Low power implementation of discrete cosine trans-
form," in Sixth Great Lakes Symposium on VLSI, pp. 174-177, IEEE, 1996.

L. G. Chen, J. Y. Jiu, and H. C. Cheng, "Design and implementation of low power
DCT chip for wireless multimedia terminals," in IEEE Workshop on Signal Processing
Systems, pp. 85-93, IEEE, 1998.

168

References

K. Masselos, P. Merakos, T. Stouraitis, and G. E. Goutis, "A movel methodology for
power consumption reduction in a class of dsp algorithms," in International Symposium
on Circuits (ISCAS'98), vol. 6, pp. 199-202, IEEE, June 1998.

J. Little and L. Shure, Signal Processing toolbox for use with MATL4B. The Mathworks
Inc., July 1992.

Cadence, Synergy HDL Synthesiser and Optimiser Modelling Style Guide. Cadence
Design Systems, 555 River Oaks Parkway, San Jose, CA 95134, USA, version 3.0 ed.,
February 1997.

D. E. Thomas and P. R. Morby, The Verilog Hardware Description Language. Kiuwer
Academic Publishers, 1995.

A. R. Omondi, Computer Arithmetic Systems: Algorithms, Architectures and imple-
mentation. Prentice Hall, 1994.

C. R. Baugh and B. A. Wooley, "A two's complement parallel array multiplication al-
gorithm," in IEEE Transactions on Computers, pp. 1045 - 1047, IEEE, 1973.

D. Dahan, "17x17 bit, high-performance, fully synthesizable multiplier," in IFIP Inter-
national Workshop on Based Synthesis Design, Dec 1999.

G. W. Bewick, Fast Multiplication: Algorithms and Implementation. Phd thesis, Stan-
ford University, Feb 1994.

P. Bonatto and V. G. Oklobdzija, "Evaluation of booth's algorithm for implementation
in parallel multipliers," in Proceedings of ASILOMAR-29, vol. 1, pp. 608 - 610, IEEE,
1996.

J. Fadavi-Ardekani, "Mxn booth encoded multiplier generator using optimised wallace
trees' in IEEE Transactions on VLSI, pp. 120-125, IEEE, 1993.

B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs. Oxford Uni-
versity Press, 2000.

P. C. H. Meier, Analysis and Design of Low Power Digital Multipliers. Phd, Carnegie
Mellon University, Pittsburgh, PA, August 1999.

R. Zimmermann, "Lecture notes on computer arithmetic Principles, architectures,
and VLSI design." http://www.iis.ee.ethz.ch/zimmilpublications/, Integrated Systems
Laboratory, Swiss Federal Institute of Technology(ETH), CH-8092 Zurich, Switzer-
land, March 1999.

H. A. Al-Twaijry, Area and Peiformance Optimised CMOS Multipliers. Phd, Stanford
University, August 1997.

169

References

D. Duarte, J. Hezavei, and M. J. Irwin, "Power consumption and performance compar -
ative study of logarithmic-time CMOS adders," in IEEE Workshop on Signal Processing
Systems, pp. 467-476, 2000.

R. Brent and H. Kung, "A regular layout for parallel adders," in IEEE Transactions on
Computers, pp. 260-264, March 1982.

B. Holdsworth, Digital Logic Design. Butterworth-Heinemann, third ed., 1993.

Q. Wu, M. Pedram, and X. Wu, "Clock-gating and its application to low power design
of sequential circuits," in IEEE Transactions on Circuits and Systems-I: Fundamental
Theory and Applications, vol. 47, pp. 415-420, IEEE, March 2000.

F. Theeuwen and E. Seelen, "Power reduction through clock gating by symbolic manip-
ulation," in IFIP International Workshop on Logic and Architecture Synthesis, 1996.

C. H. Roth, Fundamentals of Logic Design. PWS Publishing Company, fourth ed.,
1995.

S. Masupe and T. Arslan, "Low power DCT implementation approach for CMOS based
DSP processors," lEE Electmnics Letters, vol. 34, pp. 2392 - 2394, Dec 1998.

K. Chang, Digital Systems Design with VHDL and Synthesis: And Integrated Approach.
IEEE, Computer Society, 1999.

P. Pirsch, Architectures for Digital Signal Pmcessing. John Wiley and Sons Ltd, 1998.

G. K. Wallace, "The JPEG still picture compression standard' in IEEE Transactions on
Consumer Electronics, vol. 38, pp. xviii - xxxiv, Feb. 1992.

K. Jack, Video demystified: A handbookfor the digital engineer. Eagle Rock VA 24085:
LLH Technology Publishing, third ed., 2001.

T. Lane, "JPEG FAQ." http://www.faqs.orglfaqs/jpeg-faq/, March 1999.

F. Gadegast, "MPEG FAQ." http://www.faqs.org/faqs/mpeg-faq/, March 1999.

"Synopsys designpower and power compiler : 	Technology backgrounder."
http://www.synopsys.com/products/power/power.ibkg.htm1, 700 East Middlefield
Road,Mountain View, CA 94043-4033, USA, January 1998.

170

