88,986 research outputs found

    Criminal Defectors Lead to the Emergence of Cooperation in an Experimental, Adversarial Game

    Get PDF
    While the evolution of cooperation has been widely studied, little attention has been devoted to adversarial settings wherein one actor can directly harm another. Recent theoretical work addresses this issue, introducing an adversarial game in which the emergence of cooperation is heavily reliant on the presence of “Informants,” actors who defect at first-order by harming others, but who cooperate at second-order by punishing other defectors. We experimentally study this adversarial environment in the laboratory with human subjects to test whether Informants are indeed critical for the emergence of cooperation. We find in these experiments that, even more so than predicted by theory, Informants are crucial for the emergence and sustenance of a high cooperation state. A key lesson is that successfully reaching and maintaining a low defection society may require the cultivation of criminals who will also aid in the punishment of others

    Simple bots breed social punishment in humans

    Full text link
    Costly punishment has been suggested as a key mechanism for stabilizing cooperation in one-shot games. However, recent studies have revealed that the effectiveness of costly punishment can be diminished by second-order free riders (i.e., cooperators who never punish defectors) and antisocial punishers (i.e., defectors who punish cooperators). In a two-stage prisoner's dilemma game, players not only need to choose between cooperation and defection in the first stage, but also need to decide whether to punish their opponent in the second stage. Here, we extend the theory of punishment in one-shot games by introducing simple bots, who consistently choose prosocial punishment and do not change their actions over time. We find that this simple extension of the game allows prosocial punishment to dominate in well-mixed and networked populations, and that the minimum fraction of bots required for the dominance of prosocial punishment monotonically increases with increasing dilemma strength. Furthermore, if humans possess a learning bias toward a "copy the majority" rule or if bots are present at higher degree nodes in scale-free networks, the fully dominance of prosocial punishment is still possible at a high dilemma strength. These results indicate that introducing bots can be a significant factor in establishing prosocial punishment. We therefore, provide a novel explanation for the evolution of prosocial punishment, and note that the contrasting results that emerge from the introduction of different types of bots also imply that the design of the bots matters.Comment: 12 pages, 4 figure

    A MODEL OF IMMIGRATION, INTEGRATION AND CULTURAL TRANSMISSION OF SOCIAL NORMS

    Get PDF
    I present and study an evolutionary model of immigration and culturaltransmission of social norms in a set-up where agents are repeatedly matchedto play a one-shot interaction prisoner´s dilemma. Matching can be non-randomdue to limited integration (or population viscosity). The latter refers to atendency of individuals to have a higher rate of interaction with individuals oftheir type than with similar numbers of other agents. I derive a culturaltransmission mechanism in order to examine the influence of viscosity and ofother institutional characteristics of society on the evolutionary selection of prosocialnorms. The main findings are that strict norms, sustained by stronginternal punishment, need either viscosity or strong institutional pressures topersist, while norms of intermediate strength persist under a variety ofinstitutional characteristics. Endogenizing norm strength allows to identify twoscenarios in which pro-social norms survive: One of rigidity in whichseparation (high viscosity) leads to monomorphic equilibria with strict normsfor cooperation. And one of integration (low viscosity) where intermediatenorms persist in polymorphic equilibria. Furthermore, with endogenous norms,viscosity and cooperation are not linked in a monotone way.Cultural Evolution, Game Theory, Social Norms, Cooperation, Population Viscosity.

    Punishment in Public Goods games leads to meta-stable phase transitions and hysteresis

    Full text link
    The evolution of cooperation has been a perennial problem in evolutionary biology because cooperation can be undermined by selfish cheaters who gain an advantage in the short run, while compromising the long-term viability of the population. Evolutionary game theory has shown that under certain conditions, cooperation nonetheless evolves stably, for example if players have the opportunity to punish cheaters that benefit from a public good yet refuse to pay into the common pool. However, punishment has remained enigmatic because it is costly, and difficult to maintain. On the other hand, cooperation emerges naturally in the Public Goods game if the synergy of the public good (the factor multiplying the public good investment) is sufficiently high. In terms of this synergy parameter, the transition from defection to cooperation can be viewed as a phase transition with the synergy as the critical parameter. We show here that punishment reduces the critical value at which cooperation occurs, but also creates the possibility of meta-stable phase transitions, where populations can "tunnel" into the cooperating phase below the critical value. At the same time, cooperating populations are unstable even above the critical value, because a group of defectors that are large enough can "nucleate" such a transition. We study the mean-field theoretical predictions via agent-based simulations of finite populations using an evolutionary approach where the decisions to cooperate or to punish are encoded genetically in terms of evolvable probabilities. We recover the theoretical predictions and demonstrate that the population shows hysteresis, as expected in systems that exhibit super-heating and super-cooling. We conclude that punishment can stabilize populations of cooperators below the critical point, but it is a two-edged sword: it can also stabilize defectors above the critical point.Comment: 22 pages, 9 figures. Slight title change, version that appears in Physical Biolog

    If cooperation is likely punish mildly: Insights from economic experiments based on the snowdrift game

    Get PDF
    Punishment may deter antisocial behavior. Yet to punish is costly, and the costs often do not offset the gains that are due to elevated levels of cooperation. However, the effectiveness of punishment depends not only on how costly it is, but also on the circumstances defining the social dilemma. Using the snowdrift game as the basis, we have conducted a series of economic experiments to determine whether severe punishment is more effective than mild punishment. We have observed that severe punishment is not necessarily more effective, even if the cost of punishment is identical in both cases. The benefits of severe punishment become evident only under extremely adverse conditions, when to cooperate is highly improbable in the absence of sanctions. If cooperation is likely, mild punishment is not less effective and leads to higher average payoffs, and is thus the much preferred alternative. Presented results suggest that the positive effects of punishment stem not only from imposed fines, but may also have a psychological background. Small fines can do wonders in motivating us to chose cooperation over defection, but without the paralyzing effect that may be brought about by large fines. The later should be utilized only when absolutely necessary.Comment: 15 pages, 6 figures; accepted for publication in PLoS ON

    Evolutionary prisoner's dilemma games on the network with punishment and opportunistic partner switching

    Full text link
    Punishment and partner switching are two well-studied mechanisms that support the evolution of cooperation. Observation of human behaviour suggests that the extent to which punishment is adopted depends on the usage of alternative mechanisms, including partner switching. In this study, we investigate the combined effect of punishment and partner switching in evolutionary prisoner's dilemma games conducted on a network. In the model, agents are located on the network and participate in the prisoner's dilemma games with punishment. In addition, they can opportunistically switch interaction partners to improve their payoff. Our Monte Carlo simulation showed that a large frequency of punishers is required to suppress defectors when the frequency of partner switching is low. In contrast, cooperation is the most abundant strategy when the frequency of partner switching is high regardless of the strength of punishment. Interestingly, cooperators become abundant not because they avoid the cost of inflicting punishment and earn a larger average payoff per game but rather because they have more numerous opportunities to be referred as a role agent by defectors. Our results imply that the fluidity of social relationships has a profound effect on the adopted strategy in maintaining cooperation.Comment: 10 pages, 1 table, 8 figures; Figs 6 and 7 are appended to reflect reviewers' suggestions. Accepted for publication in EPL (Europhysics Letters

    The evolution of cooperation by social exclusion

    Get PDF
    The exclusion of freeriders from common privileges or public acceptance is widely found in the real world. Current models on the evolution of cooperation with incentives mostly assume peer sanctioning, whereby a punisher imposes penalties on freeriders at a cost to itself. It is well known that such costly punishment has two substantial difficulties. First, a rare punishing cooperator barely subverts the asocial society of freeriders, and second, natural selection often eliminates punishing cooperators in the presence of non-punishing cooperators (namely, "second-order" freeriders). We present a game-theoretical model of social exclusion in which a punishing cooperator can exclude freeriders from benefit sharing. We show that such social exclusion can overcome the above-mentioned difficulties even if it is costly and stochastic. The results do not require a genetic relationship, repeated interaction, reputation, or group selection. Instead, only a limited number of freeriders are required to prevent the second-order freeriders from eroding the social immune system.Comment: 28 pages, 3 figures, supplementary material (materials and methods, and 6 supplementary figures

    Effectiveness of conditional punishment for the evolution of public cooperation

    Get PDF
    Collective actions, from city marathons to labor strikes, are often mass-driven and subject to the snowball effect. Motivated by this, we study evolutionary advantages of conditional punishment in the spatial public goods game. Unlike unconditional punishers who always impose the same fines on defectors, conditional punishers do so proportionally with the number of other punishers in the group. Phase diagrams in dependence on the punishment fine and cost reveal that the two types of punishers cannot coexist. Spontaneous coarsening of the two strategies leads to an indirect territorial competition with the defectors, which is won by unconditional punishers only if the sanctioning is inexpensive. Otherwise conditional punishers are the victors of the indirect competition, indicating that under more realistic conditions they are indeed the more effective strategy. Both continuous and discontinuous phase transitions as well as tricritical points characterize the complex evolutionary dynamics, which is due to multipoint interactions that are introduced by conditional punishment. We propose indirect territorial competition as a generally applicable mechanism relying on pattern formation, by means of which spatial structure can be utilized by seemingly subordinate strategies to avoid evolutionary extinction

    The Evolution of Social Contracts

    Get PDF
    Influential thinkers such as Young, Sugden, Binmore, and Skyrms have developed game-theoretic accounts of the emergence, persistence and evolution of social contracts. Social contracts are sets of commonly understood rules that govern cooperative social interaction within societies. These naturalistic accounts provide us with valuable and important insights into the foundations of human societies. However, current naturalistic theories focus mainly on how social contracts solve coordination problems in which the interests of the individual participants are aligned, not competition problems in which individual interests compete with group interests. In response, I set out to build on those theories and provide a comprehensive naturalistic account of the emergence, persistence and evolution of social contracts. My central claim is that social contracts have culturally evolved to solve cooperation problems, which include both coordination and competition problems. I argue that solutions to coordination problems emerge from “within-group” dynamics, while solutions to competition problems result largely from “between-group” dynamics
    • …
    corecore