31 research outputs found

    Cognitive seismic data modelling based successive differential evolution algorithm for effective exploration of oil-gas reservoirs

    Get PDF
    A cognitive modelling based new inversion method, the successive differential evolution (DE-S) algorithm, is proposed to estimate the Q factor and velocity from the zero-offset vertical seismic profile (VSP) record for oil-gas reservoir exploration. The DE algorithm seeks optimal solutions by simulating the natural species evolution processes and makes the individuals become optimal. This algorithm is suitable for the high-dimensional nonseparable model space where the inversion leads to recognition and prediction of hydrocarbon reservoirs. The viscoelastic medium is split into layers whose thicknesses equal to the space between two successive VSP geophones, and the estimated parameters of each layer span the related subspace. All estimated parameters span to a high dimensional nonseparable model space. We develop bottom-up workflow, in which the Q factor and the velocity are estimated using the DE algorithm layer by layer. In order to improve the inversion precision, the crossover strategy is discarded and we derive the weighted mutation strategy. Additionally, two kinds of stopping criteria for effective iteration are proposed to speed up the computation. The new method has fast speed, good convergence and is no longer dependent on the initial values of model parameters. Experimental results on both synthetic and real zero-offset VSP data indicate that this method is noise robust and has great potential to derive reliable seismic attenuation and velocity, which is an important diagnostic tool for reservoir characterization

    An exploration of evolutionary computation applied to frequency modulation audio synthesis parameter optimisation

    Get PDF
    With the ever-increasing complexity of sound synthesisers, there is a growing demand for automated parameter estimation and sound space navigation techniques. This thesis explores the potential for evolutionary computation to automatically map known sound qualities onto the parameters of frequency modulation synthesis. Within this exploration are original contributions in the domain of synthesis parameter estimation and, within the developed system, evolutionary computation, in the form of the evolutionary algorithms that drive the underlying optimisation process. Based upon the requirement for the parameter estimation system to deliver multiple search space solutions, existing evolutionary algorithmic architectures are augmented to enable niching, while maintaining the strengths of the original algorithms. Two novel evolutionary algorithms are proposed in which cluster analysis is used to identify and maintain species within the evolving populations. A conventional evolution strategy and cooperative coevolution strategy are defined, with cluster-orientated operators that enable the simultaneous optimisation of multiple search space solutions at distinct optima. A test methodology is developed that enables components of the synthesis matching problem to be identified and isolated, enabling the performance of different optimisation techniques to be compared quantitatively. A system is consequently developed that evolves sound matches using conventional frequency modulation synthesis models, and the effectiveness of different evolutionary algorithms is assessed and compared in application to both static and timevarying sound matching problems. Performance of the system is then evaluated by interview with expert listeners. The thesis is closed with a reflection on the algorithms and systems which have been developed, discussing possibilities for the future of automated synthesis parameter estimation techniques, and how they might be employed

    An exploration of evolutionary computation applied to frequency modulation audio synthesis parameter optimisation

    Get PDF
    With the ever-increasing complexity of sound synthesisers, there is a growing demand for automated parameter estimation and sound space navigation techniques. This thesis explores the potential for evolutionary computation to automatically map known sound qualities onto the parameters of frequency modulation synthesis. Within this exploration are original contributions in the domain of synthesis parameter estimation and, within the developed system, evolutionary computation, in the form of the evolutionary algorithms that drive the underlying optimisation process. Based upon the requirement for the parameter estimation system to deliver multiple search space solutions, existing evolutionary algorithmic architectures are augmented to enable niching, while maintaining the strengths of the original algorithms. Two novel evolutionary algorithms are proposed in which cluster analysis is used to identify and maintain species within the evolving populations. A conventional evolution strategy and cooperative coevolution strategy are defined, with cluster-orientated operators that enable the simultaneous optimisation of multiple search space solutions at distinct optima. A test methodology is developed that enables components of the synthesis matching problem to be identified and isolated, enabling the performance of different optimisation techniques to be compared quantitatively. A system is consequently developed that evolves sound matches using conventional frequency modulation synthesis models, and the effectiveness of different evolutionary algorithms is assessed and compared in application to both static and timevarying sound matching problems. Performance of the system is then evaluated by interview with expert listeners. The thesis is closed with a reflection on the algorithms and systems which have been developed, discussing possibilities for the future of automated synthesis parameter estimation techniques, and how they might be employed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    An exploration of evolutionary computation applied to frequency modulation audio synthesis parameter optimisation

    Get PDF
    With the ever-increasing complexity of sound synthesisers, there is a growing demand for automated parameter estimation and sound space navigation techniques. This thesis explores the potential for evolutionary computation to automatically map known sound qualities onto the parameters of frequency modulation synthesis. Within this exploration are original contributions in the domain of synthesis parameter estimation and, within the developed system, evolutionary computation, in the form of the evolutionary algorithms that drive the underlying optimisation process. Based upon the requirement for the parameter estimation system to deliver multiple search space solutions, existing evolutionary algorithmic architectures are augmented to enable niching, while maintaining the strengths of the original algorithms. Two novel evolutionary algorithms are proposed in which cluster analysis is used to identify and maintain species within the evolving populations. A conventional evolution strategy and cooperative coevolution strategy are defined, with cluster-orientated operators that enable the simultaneous optimisation of multiple search space solutions at distinct optima. A test methodology is developed that enables components of the synthesis matching problem to be identified and isolated, enabling the performance of different optimisation techniques to be compared quantitatively. A system is consequently developed that evolves sound matches using conventional frequency modulation synthesis models, and the effectiveness of different evolutionary algorithms is assessed and compared in application to both static and timevarying sound matching problems. Performance of the system is then evaluated by interview with expert listeners. The thesis is closed with a reflection on the algorithms and systems which have been developed, discussing possibilities for the future of automated synthesis parameter estimation techniques, and how they might be employed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Automatic events extraction in pre-stack seismic data based on edge detection in slant-stacked peak amplitude profiles

    Get PDF
    Events picking is one of the fundamental tasks in interpreting seismic data. To extract the correct travel-time of reflected waves, picking events in a wide range of source-receiver offsets is needed. Compared to post-stack seismic data, pre-stack seismic data has an accurate horizon and abundant travel-time, amplitude, and frequency while the waveform of post-stack data is damaged by normal move-out (NMO) applications. In this paper, we focus on automatic event extraction from pre-stack reflection seismic data. With the deep development of oil-gas exploration, the difficulty of petroleum exploration is being increased. Auto recognition and picking of seismic horizon is presented as the basis for oil-gas detection. There is a correspondence between the real geology horizon and events of seismic profiles. As a result, firstly, recognizing and tracing continuous events from real seismic records are needed to acquire significant horizon locations. Picking events is in this context the recognition and tracing of waves reflected from the same interfaces according to kinematics and dynamic characteristics of seismic waves. Current extraction algorithms are well able to trace these events of the seismic profile and are undergoing great development and utilization. In this paper, a method is proposed to pick travel-time and local continuous events based on edges obtained by slant-stacked peak amplitude section (SSPA). How to calculate the SSPA section is discussed in detail. The new method can improve the efficiency and accuracy without windowing and manual picking of seed points. The event curves obtained from both the synthetic layered model and field record have validated the high accuracy and efficiency of the proposed methodology

    DG2: A Faster and More Accurate Differential Grouping for Large-Scale Black-Box Optimization

    Get PDF
    Identification of variable interaction is essential for an efficient implementation of a divide-and-conquer algorithm for large-scale black-box optimization. In this paper, we propose an improved variant of the differential grouping (DG) algorithm, which has a better efficiency and grouping accuracy. The proposed algorithm, DG2, finds a reliable threshold value by estimating the magnitude of roundoff errors. With respect to efficiency, DG2 reuses the sample points that are generated for detecting interactions and saves up to half of the computational resources on fully separable functions. We mathematically show that the new sampling technique achieves the lower bound with respect to the number of function evaluations. Unlike its predecessor, DG2 checks all possible pairs of variables for interactions and has the capacity to identify overlapping components of an objective function. On the accuracy aspect, DG2 outperforms the state-of-the-art decomposition methods on the latest large-scale continuous optimization benchmark suites. DG2 also performs reliably in the presence of imbalance among contribution of components in an objective function. Another major advantage of DG2 is the automatic calculation of its threshold parameter (ϵ\epsilon ), which makes it parameter-free. Finally, the experimental results show that when DG2 is used within a cooperative co-evolutionary framework, it can generate competitive results as compared to several state-of-the-art algorithms

    Assisted history matching using pattern recognition technology

    Get PDF
    Reservoir simulation and modeling is utilized throughout field development in different capacities. Sensitivity analysis, history matching, operations optimization and uncertainty assessment are the conventional analyses in full field model studies. Realistic modeling of the complexities of a reservoir requires a large number of grid blocks. As the complexity of a reservoir increases and consequently the number of grid blocks, so does the time required to accomplish the abovementioned tasks.;This study aims to examine the application of pattern recognition technologies to improve the time and efforts required for completing successful history matching projects. The pattern recognition capabilities of Artificial Intelligence and Data Mining (AI&DM;) techniques are used to develop a Surrogate Reservoir Model (SRM) and use it as the engine to drive the history matching process. SRM is a prototype of the full field reservoir simulation model that runs in fractions of a second. SRM is built using a small number of geological realizations.;To accomplish the objectives of this work, a three step process was envisioned:;• Part one, a proof of concept study: The goal of first step was to prove that SRM is able to substitute the reservoir simulation model in a history matching project. In this part, the history match was accomplished by tuning only one property (permeability) throughout the reservoir.;• Part two, a feasibility study: This step aimed to study the feasibility of SRM as an effective tool to solve a more complicated history matching problem, particularly when the degrees of uncertainty in the reservoir increase. Therefore, the number of uncertain reservoir properties increased to three properties (permeability, porosity, and thickness). The SRM was trained, calibrated, and validated using a few geological realizations of the base reservoir model. In order to complete an automated history matching workflow, the SRM was coupled with a global optimization algorithm called Differential Evolution (DE). DE optimization method is considered as a novel and robust optimization algorithm from the class of evolutionary algorithm methods.;• Part three, a real-life challenge: The final step was to apply the lessons learned in order to achieve the history match of a real-life problem. The goal of this part was to challenge the strength of SRM in a more complicated case study. Thus, a standard test reservoir model, known as PUNQ-S3 reservoir model in the petroleum engineering literature, was selected. The PUNQ-S3 reservoir model represents a small size industrial reservoir engineering model. This model has been formulated to test the ability of various methods in the history matching and uncertainty quantification. The surrogate reservoir model was developed using ten geological realizations of the model. The uncertain properties in this model are distributions of porosity, horizontal, and vertical permeability. Similar to the second part of this study, the DE optimization method was connected to the SRM to form an automated workflow in order to perform the history matching. This automated workflow is able to produce multiple realizations of the reservoir which match the past performance. The successful matches were utilized to quantify the uncertainty in the prediction of cumulative oil production.;The results of this study prove the ability of the surrogate reservoir models, as a fast and accurate tool, to address the practical issues of reservoir simulation models in the history matching workflow. Nevertheless, the achievements of this dissertation are not only aimed at the history matching procedure, but also benefit the other time-consuming operations in the reservoir management workflow (such as sensitivity analysis, production optimization, and uncertainty assessment)

    Seeking multiple solutions:an updated survey on niching methods and their applications

    Get PDF
    Multi-Modal Optimization (MMO) aiming to locate multiple optimal (or near-optimal) solutions in a single simulation run has practical relevance to problem solving across many fields. Population-based meta-heuristics have been shown particularly effective in solving MMO problems, if equipped with specificallydesigned diversity-preserving mechanisms, commonly known as niching methods. This paper provides an updated survey on niching methods. The paper first revisits the fundamental concepts about niching and its most representative schemes, then reviews the most recent development of niching methods, including novel and hybrid methods, performance measures, and benchmarks for their assessment. Furthermore, the paper surveys previous attempts at leveraging the capabilities of niching to facilitate various optimization tasks (e.g., multi-objective and dynamic optimization) and machine learning tasks (e.g., clustering, feature selection, and learning ensembles). A list of successful applications of niching methods to real-world problems is presented to demonstrate the capabilities of niching methods in providing solutions that are difficult for other optimization methods to offer. The significant practical value of niching methods is clearly exemplified through these applications. Finally, the paper poses challenges and research questions on niching that are yet to be appropriately addressed. Providing answers to these questions is crucial before we can bring more fruitful benefits of niching to real-world problem solving
    corecore