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Differential Evolution (DE) optimization algorithm has shown good performance in many 

optimization problems. However, its control parameters greatly affect its performance and 

require many trials to determine the optimum values of control parameters for specific 

optimization problem. On the other hand, the Expanding Solvent Steam-Assisted Gravity 

Drainage (ES-SAGD) process is one of the most promising thermal techniques to recover 

heavy oil and extra heavy-oil reservoirs. However, because of high computation 

requirements, limited attention has been paid to integrate the ES-SAGD simulation with 

global optimization algorithms to handle more design elements. Without efficient and 

optimized recovery process design, the ultimate recovery from such unconventional 

resources will not be achieved, or it could be achieved with great cost and large 

environmental impact. 

The objective of this work is introducing self-adaptive DE algorithm with a new adaptation 

technique to improve solution quality, speed convergence to optimum solution and reduce 

computational cost. As well as studying its performance on benchmark test functions 

before being applied to optimize the recovery performance of ES-SAGD process.  
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The proposed method is shown to enhance the convergence speed and balance the 

exploitation and global exploration capabilities of self-adaptive DE algorithms and it is 

superior over conventional DE algorithm. It has also be shown that cumulative Steam Oil 

Ratio (cSOR) is not the right performance indicator when optimizing ES-SAGD recovery 

process. Alternatively, Net Present Value (NPV) of the recovery process at the end of the 

project is better representative to project profitability and recovery capability. 
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 ملخص الرسالة

 
 

 موسى مجديتامر  :  الاسم الكامل
 

 تحسين أداء عملية ضخ بخار الماء والمذيبات العضوية لإنتاج الزيت عن طريق  : عنوان الرسالة
 خوارزمية تطور التفاضلية  

 
 هندسة البترول :  التخصص

 
 2015مايو  : تاريخ الدرجة العلمية

 

تحسين أداء جيد في العديد من مشاكل التحسين  ifferential Evolution) (Dخوارزمية تطور التفاضلية  لقد أظهرت

العددية. ومع ذلك، عوامل التحكم في هذه الطريقة تؤثر بشكل كبير على أدائها وتتطلب العديد من التجارب لتحديد القيم 

 عن طريق ضخ بخار الماء المثلى لهذه العوامل لكل عملية تحسين عددية. من ناحية أخرى، عملية تحسن انتاج الزيت

هي واحدة من التقنيات الحرارية الواعدة لاستخراج النفط الثقيل. ومع ذلك، بسبب متطلبات  ( SAGD-ESوالمذيبات )

مع خوارزميات التحسين العددية للتعامل  SAGD) -(ESالحوسبة العالية، فقد تم إيلاء اهتمام محدود لدمج محاكاة عملية

اصر التصميم. وبدون عملية متكاملة ومحسنة لاستخراج الزيت الثقيل، لن يتحقق الإنتاج مع أكثر من عنصر من عن

 .المرجو من هذه الموارد غير التقليدية، او يمكن أن يتحقق ذلك ولكن بتكلفة كبيرة وأثر بيئي واسع

ين يف الذاتي لتحستحسين اداء خوارزمية تطور التفاضلية عن طريق إضافة خاصية التك ان الهدف من هذا العمل هو

نوعية الحل، وسرعة التقارب إلى الحل الأمثل وتقليل التكلفة الحسابية. وكذلك دراسة أدائها على مجموعة من مشاكل 

 .(SAGD-ESالتحسين المعروفة لاختبار و قياس الأداء قبل تطبيقها لتحسين أداء عملية )

وانها متفوقة على   زن بين الاستغلال والاستكشاف العامتظهر الطريقة المقترحة تعزيز سرعة التقارب وتحقيق التوا

( ليس مؤشر الأداء cSORالتقليدية. كما أن يتبين أن نسبة الزيت الى البخار المتراكم ) خوارزمية تطور التفاضلية

 من العملية  (NPV)( بدلا من ذلك، صافي القيمة الحاليةSAGD-ESالزيت في عملية )  إنتاج الصحيح عند لتحسين

 .في نهاية المشروع هو الممثل الأفضل لربحية المشروع والقدرة على الإنتاج
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1 CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

 

The decline of conventional oil reserves and the ever-increasing energy demands make 

heavy oil exploration of primary interest to many oil companies. Due to the heavy oil 

recovery difficulties and low economic return, most of the heavy oil reserves remain 

undeveloped, despite the large volume of its original oil in place. Oil with API gravity less 

than 20o is considered heavy oil and with less than 10o is categorized as extra heavy-oil 

(IEA Conference, Calgary, 2002). Heavy-oil’s high viscosity and density are the main 

challenges in heavy oil recovery, which sometimes make it immobile at initial reservoir 

conditions. 

Recently, because of the development in directional drilling technologies, it has been 

possible to develop and produce heavy-oil reservoirs by very promising recovery methods 

such as Steam-Assisted Gravity Drainage (SAGD) and Solvent Vapor Extraction 

(VAPEX). These techniques have significantly improved oil recovery factor and reduce 

production costs due to the improved sweep efficiencies. 

Thermal recovery techniques such as Steam- Assisted Gravity Drainage (SAGD) takes the 

advantage of the strong dependency of heavy oil viscosity on reservoir temperature. In 

other words, SAGD has been applied to reduce the viscosity of heavy oil by heating the 
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reservoir. However, for reservoirs with high water content, thin pay zones or/and 

underlying aquifers, thermal recovery methods are usually not considered as an economical 

technique for heavy-oil recovery. In addition, despite the higher oil recovery of the SAGD 

method, there are several challenges associated with this technique including the 

requirement of large amount of fresh water, produced water treatment and handling, and 

high energy consumption to generate steam, resulting in high CO2 emissions. Therefore, 

another technique which uses the same well configuration as SAGD has shown up and 

might be considered as a good alternative to the SAGD. This technique is VAPEX. In this 

process hydrocarbon solvent is injected instead steam and the heavy oil viscosity is 

decreased by dilution. Although VAPEX is less energy intensive than SAGD, it produces 

at lower rates. In addition, there are also many challenges in VAPEX including it sensitivity 

to reservoir heterogeneity and the requirement of large amount of solvent. 

Therefore, Nasr et al., in 2003, suggested to add solvent to the injected steam to improve 

the oil recovery or at least maintain the recovery and reduce steam injection with its 

associated water treatment cost and hazards (Nasr et al. 2003).This is the concept of 

Expanding Solvent Steam-Assisted Gravity Drainage (ES-SAGD) process. SAGD and ES-

SAGD are the two most promising thermal techniques to recover heavy oil and extra 

heavy-oil reservoirs. The feasibility and efficiency of those processes have been studied in 

the literature. Generally, ES-SAGD has better performance based on the oil recovery 

factor, cumulative Steam Oil Ratio (cSOR) and oil production rate. However, there is no 

detailed analysis of their recovery performances from economical point of view and based 

on their Net Present Value (NPV) at the end of the project. 
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1.2 Problem Statement 

 

ES-SAGD is a solvent/thermal recovery process with many operational parameters. 

Determining the optimal values of the most-effective control operational variables with the 

existing reservoir conditions is very challenging in practical life. These challenges are due 

to the significant co-effect of the operational parameters on the reservoir behavior and 

recovery performance. However, the ability to efficiently determine the appropriate values 

of those parameters improves the recovery performance and the project profitability. 

In real life and due to the fact that optimization problems are restricted by the time and 

number of simulation runs required, especially, with the thermal/solvent and compositional 

effect in ES-SAGD, the parameters are often determined by running sensitivity studies on 

some or all the parameters where one parameter is varied while others are kept fixed. Then 

the best value of the first parameter is kept fixed and the next parameter is investigated, 

and so on. However, they are very limited in scope and cannot explore the entire domain 

of interest. Moreover, this is liable to miss optimal combination of parameters due to their 

likely interaction. This makes automatic optimization methods, especially the stochastic 

optimization algorithms, more efficient in determining the optimal operational parameters. 

Differential Evolution is one of the most successful optimization algorithms that have been 

applied in real-life and engineering problems. However, it has not been used to optimize 

the operational control parameters in ES-SAGD process. In addition, most of the literatures 

use the cumulative steam oil ratio, cSOR as the objective function to be minimized when 

optimizing ES-SAGD process, as they neglect the solvent loss in the formation when co-

injected with steam, which leads to inaccurate representation of the project profitability. 

Therefore, this work will consider this solvent losses in the reservoir and use the Net 
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Present Value (NPV) of the project as the objective (cost) function to make our work 

economically representative to realistic processes. 

 

1.3 Research Objectives 

 

In this work, three main research objectives are proposed and are organized as following: 

1- Recently, some self-adaptive strategies have been proposed to automatically adjust 

these parameters. Qui et al., in 2009, proposed a very promising Self-adaptive 

Differential Evolution algorithm (SaDE) used previous experiences of better 

solutions to design a self-adaptive parameter control mechanism (Qin et al. 2009). 

The first objective of our proposed work is to enhance SaDE algorithm in terms of 

solution quality, speed the convergence to optimum solution and reduce 

computational cost. Then study the performance of modified SaDE compared with 

the original SaDE on benchmark test functions. 

2- This research shows how the most promising optimization techniques SaDE and 

proposed modified SaDE can be a robust tool for the design and performance 

evaluation of one of the most challenging recovery process of (ES-SAGD). In 

addition, this work, unlike most of the literatures, will consider solvent losses in the 

reservoir as well as all the economic parameters in the ES-SAGD process. 

Therefore, Net Present Value (NPV) at the end of the project is used as the objective 

(cost) function instead of cSOR to show the actual profitability, and make this study 

more, economically, representative to the real-life conditions. 
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3- SAGD and ES-SAGD are the two most promising techniques for production of 

heavy oil and extra-heavy oil reservoirs. The feasibility and efficiency of those 

processes have been studied in the literatures. Although ES-SAGD has, generally, 

better performance based on the recovery factor, cSOR and oil production rate, the 

real economic analysis of both methods has not been investigated. In this study, we 

will consider the NPV of both processes to be the performance indicator instead of 

cSOR to compare the profitability of each recovery method. 

 

1.4 Methodology 

 

1- Improve Self-adaptive Differential Evolution algorithm by completely modifying 

its adaption technique and changing both the size and type of its candidate pool of 

trial-vector generation strategies. This proposed modifications, will enhance 

solution quality and improve the convergence speed with keeping the exploration 

capabilities. As well as saving its computational costs. 

2- Analyze the performance of proposed optimization algorithm compared with 

original SaDE algorithm on suite of 22 numerical optimization problems. 

3- Construct a numerical flow simulation model of one of Athabasca heavy oil 

reservoirs by CMG STARS, a numerical flow simulation package for thermal 

recovery process. 

4- Develop a framework that integrates previously mentioned optimization 

techniques, in addition to other two well-known optimization algorithms (DE and 

PSO), with CMG STARS, to optimize ES-SAGD recovery process. 
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5- A sensitivity study is done on ES-SAGD to determine a preliminary ranking of the 

control operational parameters according to their effect on the project’s NPV. In 

addition, this study will figure out the realistic effective range (upper and lower 

limits) to be assigned to the selected operational parameters in optimization step. 

6- A comparison study is done to figure out the most-effective optimization algorithm 

that maximized the NPV of the project while considering other performance 

indicators like Oil Recovery Factor (RF) and cumulative Steam Oil Ratio (cSOR). 

7- Finally, for convenient, a performance analysis of optimized SAGD and ES-SAGD 

recovery processes is proposed.  
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2 CHAPTER 2 

Evolutionary Programing 

 

2.1 Differential Evolution Algorithm  

 

Similar to all other Evolutionary Algorithms (EAs), the evolutionary process of DE uses 

mutation, crossover and selection operators at each generation to reach the global optimum. 

DE’s performance highly depends on the mutation strategy and the crossover operator. In 

addition the control parameters; population size NP and scaling factor F play an important 

role in achieving the balance between the exploration and convergence speed of the 

algorithm. The original DE algorithm could be illustrated as following: 

Initialization 

The upper and lower bounds for each parameter must be defined before the initial 

population can be generated. Two D-dimensional initialization vectors, 
Ux and Lx , are 

used to store these values where U and L indicate the upper and lower bounds respectively. 

Once the initial bounds for each parameter have been specified, a random number generator 

assigns a value from within the prescribed range to each parameter of every vector. As 

shown, the initial value at generation ( 0g  ) of the thj  parameter of the thi  vector is: 

Equation Chapter (Next) Section 1Equation Section (Next) 

    , ,0 0," 1 ". u l l

j i j j j jx rand x x x     (2.1) 
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The random number generator,  0,1jrand  returns a uniformly distributed random number 

from within the range  0,1 . The current population, symbolized by 
xP as determined in 

Eq.(2.2), is composed of 
,i gx vectors shown in Eq.(2.3) that have been already found to be 

acceptable as initial points or created randomly as mentioned above. 

  , , max: 1,2,..., 0,1 ." ", ..,x g i gP x i NP g g     (2.2) 

 
, , ,(x ), 1,2,...," "i g j i gX j D    (2.3) 

The index, 
max0,1,...,g g , indicates the generation to which a vector belongs. In addition, 

each vector is assigned a population index, ,i which runs from 1 to NP . Parameters within 

vectors are indexed with ,j which runs from 0 to D . 

Mutation 

After initialization, DE mutates and recombines the population to produce a population of 

NP vectors 
,v gP . In particular, differential mutation adds a scaled, randomly sampled, 

vector difference to a third vector. Eq.(2.4) shows how to combine three different, 

randomly chosen vectors to create a mutant vector 
,i gv . 

  , 0, 1, 2,." "i g r g r g r gV X F X X     (2.4) 

The scale factor,  0,1 ,F  is a positive real number that controls the rate at which the 

population evolves. The base vector 0r  and the other two vectors; 1r  and 2r  are chosen 

randomly and have distinct indexes from each other. Eqs.(2.5) and (2.6) describe the 

intermediary mutation population. 

 
, , max, 1,2,..., , 0,1 ." , ".. ,v g i gP V i NP g g     (2.5) 
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  , , , 1,2,... "," i g j i gV v j D    (2.6) 

Crossover 

Each vector in the current population is then recombined with its mutant vector to produce 

the trial population, uP , as described by Eqs.(2.7) and (2.8). 

  , . max1,2,..., , 0,1 ." ", ..,u g i gP U i NP g g     (2.7) 

 
, , ," 1,2,..., "i g j i gU u j D      (2.8) 

Differential evolution employs a uniform crossover to build trial vectors out of parameter 

values that have been copied from two different vectors. In particular, DE crosses each 

vector with a mutant vector as shown in Eq.(2.9). 

 
 , ,  rand 0,1

, ,

, , .

" "
j randj i g if Cr or j j

j i g

j i g otherwise

v
u

x

 
 


  (2.9) 

Selection 

If the trial vector, , ,i gU has an equal or more-optimum (lower in minimization problems, 

and higher in maximization problems) objective function value then that of its target vector, 

, ,i gX it replaces the target vector in the next generation; otherwise, the target retains its 

place in the population for at least one more generation as shown in Eq.(2.10). 

 
, ,,  ( )     ( )

, 1

, .

" "
i g i gi g if f U is better than f X

i g

i g otherwise

U
X

X



 


  (2.10) 
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2.1.1 Pseudo-Code for DE Algorithm 

"  

Step 1: Initialization 

Set the generation number 0g   and randomly initialize a population of NP individuals 

 , 1, 2, ,, ,...,x g g g NP gP X X X  with 1, 1, , 2, , , ,, ,...g i g i g D i gX x x x     and each individual 

uniformly distributed in the range , ,L UX X 
   where  1 2, ,...,L l l l

DX x x x  and 

 1 2, ,...,U u u u

DX x x x  with  1, 2,...,i NP . 

Step 2: WHILE the stop criteria is not satisfied 

DO 

FOR i = 1 to NP   

Step 2.1: Mutation Step 

Generate a donor vector  , 1, , 2, , , ,, ,...,i g i g i g D i gV v v v  corresponding to 

the i th  target vector 
,i gX  via one of the different mutation schemes 

of DE as per Eqs. (2.11) – (2.17). 

Step 2.2: Crossover Step 

Generate a trial vector  , 1, , 2, , , ,, ,...,i g i g i g D i gU u u u  for the i th  

target vector 
,i gX through Eqs.(2.9). 

Step 2.3: Selection Step 

Evaluate the trial vector 
,i gU  

IF  ,i gf U  is better than  ,i gf X , then 
, 1 ,i g i gX U  , 

   , 1 ,i g i gf X f U    

IF  ,i gf U  is better than  ,Best gf X , then 
, ,Best g i gX U , 

   , ,Best g i gf X f U   

END IF 

ELSE 

   , 1 , , 1 ,,i g i g i g i gX X f X f X     

END IF  

END FOR 

Step 2.4: Increase the generation count 

1g g    

END WHILE 
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"  

2.1.2 Variants of Differential Evolution 

 

Variants of DE are different in the way they perform mutation. In the literature usually 

different variant of DE are presented in the form of DE / x / y / z, where x is the vector that 

will be mutated, y specifies the number of difference vectors used and z is the crossover 

scheme (bin: binomial; exp: exponential). 

DE / Rand / 1 

In this strategy, the base vector is chosen randomly and one weighted difference vector is 

added to generate the mutant vector: 

  
1 2 3

, 1 , , ,
" ".i i ii g r g r g r g
V X F X X      (2.11) 

DE / Best / 1 

This is similar to the DE / Rand / 1, but the base vector is the best vector resulting the 

optimum objective function (cost) instead of the random selection. As shown in Eq.(2.12)

, the vectors difference is added to the best vector. 

  
1 2 3

, 1 , , ,
" ".i i ii g r g r g r g
V X F X X      (2.12) 

DE / Best / 2  

This strategy is similar to DE / Best / 1. However, instead of one difference vector, two 

difference vectors, which selected randomly from the current population, are added to the 

base vector as shown in Eq. (2.13). The base vector is the best vector that gives the optimum 

value of the objection function 
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  
1 2 3 4

, 1 , , , , ,
." "i i i ii g Best g r g r g r g r g

V X F X X X X        (2.13) 

DE / Rand / 2  

This is similar to DE / Rand / 1, but two difference vectors are selected randomly and added 

to the base vector which is selected also randomly from the current population as shown in 

Eq. (2.14). 

  
1 2 3 4 5

, 1 , , , , ,
." "i i i i ii g r g r g r g r g r g

V X F X X X X        (2.14) 

DE / Rand-to-Best / 1 

In this strategy, some of the other strategies to create donor vector are mutated 

recombinants. It mutates a two-vector recombinant:  , , , "." i g best g i gX F X X  as shown 

in Eq. (2.15). 

    
1 2

, 1 , , , , ,
. ." "i ii g i g best g i g r g r g

V X F X X F X X        (2.15) 

DE / Rand-to-Best / 2 

This is similar to DE / Rand-to-Best / 1, but two difference vectors are selected randomly. 

      
1 2 3 4

, 1 , , , , , , ,
. ." ".i i i ii g i g best g i g r g r g r g r g

V X F X X F X X F X X          (2.16) 

DE / Current-to-Rand / 1 

Is a rotation-invariant strategy, its effectiveness has been verified when it was applied to 

solve multi-objective optimization problem. 

    
1 2 3

, 1 , , , , ,
" ". . i ii g i g r g i g r g r g
V X F X X F X X        (2.17) 
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Where 
1 2 3 4, , ,i i i ir r r r  and 

5

ir  are vectors selected randomly from the current population. 

,Best gX  is the best vector resulting the optimum value of the objective function. 

 

 

2.2 Literature Review on DE 

 

Researchers, over the past few years, have been investigating ways to improve the" DE 

performance by tuning its control parameters. Storn and Price indicated that a reasonable 

value for NP cold be between 5D and 10D (D is the dimension of the problem), and a good 

initial choice of F could be 0.5 (Storn and Price 1995). 

In 2002, Gamperle et al. tested different control parameters of DE on the Rosenbrock’s, 

Sphere, and Rastrigin’s functions (Gamperle et al. 2002). Their results showed that the 

global optimum searching capacity and the convergence speed are very sensitive to the 

choice of control parameters NP, F and CR. In addition, the best range of the population 

size NP is between 3D and 8D, with scaling factor F = 0.6 and CR in [0.3, 0.9]. 

In 2005, Ronkkonen et al. showed that typical F range is [0.4, 0.95] with F = 0.9 is a good 

first choice. CR usually lies in (0, 0.2) when function is separable, while in (0.9, 1) when 

the function’s parameters are dependent (Ronkkonen et al. 2005). 
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2.2.1 Literature Review on Performance Comparison of DE and Other 

Optimization Algorithms 

It is demonstrated that the Differential Evolution method converges faster and with more 

certainty than both Adaptive Simulated Annealing and the Annealed Nelder & Mead 

method. As the DE is robust, easy, requires few control parameters and lends itself very 

well to parallel computation (Storn and Price 1995). Storn et.al tested the DE method on 

function test-bed contains De Jong functions as presented in Ingber (1992) plus some 

additional functions which present further distinctive difficulties for global minimizer. The 

results showed that the Differential Evolution method was the only strategy to converge 

for all the functions in the test function suite and that could find all global minima of the 

test suite in the least number of function evaluations (Storn and Price 1995). Because the 

Differential Evolution technique is inherently parallel, a more significant speed up could 

be obtained if the algorithm is executed in a parallel machine or computer network, which 

is very useful in real-practical problems where optimizing the objective function requires 

extensive computational time. 

Another study was done by Das et.al to compare the popular optimization method, Particle 

Swarm Optimization PSO with the Differential Evolution algorithm, where both 

algorithms do not require any gradient information of the function to be optimized, uses 

only primitive mathematical operators and are conceptually very simple. They also 

concluded that the DE performs better than PSO on the different test functions they used 

(Das et al. 2008). 

In 2012. A performance comparison of GA, DE, PSO and SA methods was done by K. 

Chandrasekar et al., they also found that the Differential Evolution outperforms GA, PSO 



15 

 

and SA methods both in enhancement of TTC and computational efficiency (Chandrasekar 

and Ramana 2012). 

However, little is known about DE’s scaling property and behavior in real-world 

applications and it is important for practical application to gain more knowledge on how 

to choose the control variables for DE for a particular type of problem. 

 

2.2.2 Literature Review on Self-Adaptive DE Algorithms 

 

In real-world optimization problems, this could be confusing for engineers, as several 

claims and counter claims were reported to choose the control parameters of DE. Therefore, 

researchers developed techniques to be self-adaptive in order to avoid manual parameters 

adjusting. Usually, self-adaption is applied to tune the control parameters F and CR. 

Abbass self-adapted the crossover rate CR for multi-objective optimization problems, by 

encoding the value of CR into each individual and simultaneously evolving it with other 

search variables. The scaling factor F was generated for each variable from a Gaussian 

distribution N (0, 1) (Abbass 2002). 

In 2003, Zaharie proposed a parameter adaption strategy for DE (ADE) based on the idea 

of controlling the population diversity, and implemented a multi-population approach 

(Zaharie 2003). 

In 2005, Omran et al. proposed a self-adaptive scaling factor parameter F (Omran et al. 

2005). They generated the value of CR for each individual from a normal distribution N 

(0.5, 0.15). This approach (SDE) was tested on four benchmark functions and performed 

better than other DE versions. 
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In addition to adapting the control parameters F or/and CR, some researchers also adapted 

the population size NP. Teo introduced DE with self-adaptive populations (DESAP)(Teo 

2006), based on Abbass’ self-adaptive Pareto DE (Abbass 2002). 

Brest et al. encoded control parameters F and CR into the individual and evolved their 

values by using two new probabilities 1  and 2 . In their algorithm (SADE), a set of F 

values was assigned to each individual in the population. With probability  1 , F is 

reinitialized to a new random value in the range [0.1, 1.0], otherwise it is kept unchanged. 

The crossover CR assigned to each individual is adapted in an identical fashion, but with a 

different re-initialization range of [0, 1] and with the probability  2 . With probability 2 , 

CR takes a random value in [0, 1]. Otherwise it retains it earlier value in the next generation. 

In 2008, Rahnamayan et al. introduced an Opposition-based DE (ODE) that is specially 

suited for noisy optimization problems. The conventional DE algorithm was enhanced by 

utilizing the opposition number-based optimization concept in three levels, namely 

population initialization, generation jumping, and local improvement of the population’s 

best member (Rahnamayan et al. 2008). 

Norman and Iba proposed the Fittest Individual Refinement (FIR); a crossover-based local 

search method for DE. The FIR scheme accelerates DE by enhancing its search capability 

through exploration of the neighborhood of the best solution in successive generation. 

(Noman and Iba 2008) 

In 2009, Qin et al. proposed a Self-adaptive DE (SaDE) algorithm (Qin et al. 2009), in 

which both the trial vector generation strategies and their associated parameters are 

gradually self-adaptive by learning from their previous experience of generation promising 

solutions. 
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Inspired by SaDE algorithm and motivated by the recent success of diverse self-adaptive 

DE approaches, Mallipeddi et al. developed a self adaptive DE, called EPSDE, based on 

ensemble approach (Mallipeddi et al. 2011). In EPSDE, a pool of distinct mutation 

strategies along with a pool of values for each control parameter coexists throughout the 

evolution process and competes to produce offspring. The performance of EPSDE was 

evaluated on a set of bound constrained problems and compared with conventional DE and 

other state-of-the-art parameter adaptive DE variants. The comparative results showed that 

EPSDE algorithm outperformed conventional DE and other state-of-the-art parameter 

adaptive DE variants in terms of solution quality and robustness. 

Gang et al. proposed a hybrid DE based on the one-step k-means clustering and 2 multi-

parent crossovers, called clustering-based differential evolution with 2 multi-parent 

crossovers (2-MPCs-CDE) for the unconstrained global optimization problems (Liu et al. 

2012). In 2-MPCs-CDE, k cluster centers and several new individuals generate two search 

spaces. These spaces are then searched in turn. This method utilized the information of the 

population effectively and improves search efficiency. Hence it can enhance the 

performance of DE. A comprehensive set of 35 benchmark functions was employed for 

experimental verification. Experimental results indicated that 2-MPCs-CDE is effective 

and efficient. 

Piotrowski et al. presented an algorithm to improve optimization performance, namely DE 

with Separated Groups (DE-SG) (Piotrowski et al. 2012), which distributed population into 

small groups, defined rules of exchange of information and individuals between the groups 

and used two different strategies to keep balance between exploration and exploitation 

capabilities. The performance of DE-SG is compared to that of eight algorithms belonging 
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to the class of Evolutionary Strategies (Covariance Matrix Adaptation ES), Particle Swarm 

Optimization (Comprehensive Learning PSO and Efficient Population Utilization Strategy 

PSO), Differential Evolution (Distributed DE with explorative-exploitative population 

families, Self-adaptive DE, DE with global and local neighbors and Grouping Differential 

Evolution) and multi-algorithms (AMALGAM). Although slow for simple functions, the 

DE-SG algorithm achieved a good success rate for more difficult 30- and 50-dimensional 

problems. 

In 2013, Mohamed et al. introduced an Effective Differential Evolution (EDE) algorithm 

for solving real parameter optimization problems over continuous domain (Mohamed et al. 

2013). The proposed algorithm proposed a new mutation rule based on the best and the 

worst individuals among the entire population of a particular generation. The mutation rule 

is combined with the basic mutation strategy through a linear decreasing probability rule. 

The proposed mutation rule is shown to promote local search capability of the basic DE 

and to make it faster. Furthermore, a random mutation scheme and a modified Breeder 

Genetic Algorithm (BGA) mutation scheme are merged to avoid stagnation and/or 

premature convergence. Additionally, the scaling factor and crossover of DE are 

introduced as uniform random numbers to enrich the search behavior and to enhance the 

diversity of the population. The EDE algorithm is shown to be competitive with other 

algorithms in terms of final solution quality, efficiency, convergence rate, and robustness.

"  
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2.3 Self-adaptive Differential Evolution 

 

The SaDE algorithm can be described in two major steps: 

 

Adaption of Trial Vector Generation Strategy 

When solving different optimization problems, DE realizations using diverse trial vector 

generation strategies typically perform differently. Unlike using the computationally 

expensive trial-and-error search for the most suitable strategy and its associated control 

parameters, Qin et al., in 2009, kept a strategy candidate pool including several effective 

trial vector generation strategies with effective yet various characteristics (Qin et al. 2009). 

With respect to each target vector in the existing population, during evolution, one strategy 

will be chosen from the candidate pool according to a probability learned from its previous 

experience of generating promising solutions and applied to execute the mutation task. The 

more successfully one strategy behaved in previous generations to generate favorable 

solutions, the more probably it will be chosen in the current generation to generate 

solutions. 

In SaDE algorithm, four trial vector generation strategies are used; “DE/rand/1/bin” Eq. 

(2.11), “DE/rand/2/bin” Eq. (2.14), “DE/rand-to-best/2/bin” Eq.(2.16), and “DE/current-

to-rand/1” Eq. (2.17), as candidate pool. 

In the SaDE algorithm," one trial vector generation strategy is selected from the candidate 

pool, with respect to each target vector in the current population, according to the 

probability learned from its success rate in generating improved solutions within a certain 

number of previous generations. The selected strategy is subsequently applied to the 

corresponding target vector to generate a trial vector. More specifically, at each generation, 
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the probabilities of choosing each strategy in the candidate pool are summed to 1. These 

probabilities are gradually adapted during evolution in the following manner. 

Assume that the probability of applying the thk  strategy in the candidate pool to a target 

vector in the current population is , 1,2,...,kp k K , where K is the total number of 

strategies contained in the pool. The probabilities with respect to each strategy are 

initialized as 1/ k   , i.e., all strategies have the equal probability to be chosen. SaDE used 

the stochastic universal selection method to select one trial vector generation strategy for 

each target vector in the current population. At the generation g , after evaluating all the 

generated trial vectors, the number of trial vectors generated by the thk  strategy that can 

successfully enter the next generation is recorded as ,k gns , while the number of trial 

vectors generated by the thk   strategy that are discarded in the next generation is recorded 

as ,k gnf . SaDE has success and failure memories to store these numbers within a fixed 

number of previous generations hereby named learning period (LP). As illustrated in 

Table 2.1 and Table 2.2, at the generation g , the number of trial vectors generated by 

different strategies that can enter or fail to enter the next generation over the previous LP 

generations are stored in different columns of the success and failure memories. Once the 

memories overflow after LP generations, the earliest records stored in the memories, i.e. 

g LPns 
 or 

g LPnf 
 will be removed so that those numbers calculated in the current 

generation can be stored in the memories," as shown in Table 2.3. 

After the initial LP generations, the probability of choosing different strategies will be 

updated at each subsequent generation based on the success and failure memories as 

following: 
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  (2.19) 

where ,k gS  represents the success rate of the trial vectors generated by the thk  strategy 

and successfully entering the next generation with the previous LP generation with respect 

to generation g . The small constant value 0.01   is used to avoid the possible null 

success rates. To ensure that the probabilities of choosing strategies are always summed to 

1, we further divide ,k gS  by 
1

K

k

k

S


  to calculate ,k gp . Obviously, the larger the success 

rate for the thk  strategy within the previous LP generation is, the larger the probability of 

applying it to generate the trial vectors at the current generation. 
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"  

 

 
Table 2.1: Success memory 

Index Strategy 1 Strategy 2  Strategy K 

1 1,g LPns 
 

2,g LPns 
  ,k g LPns 

 

2 1, 1g LPns  
 

2, 1g LPns  
  , 1k g LPns  

 

     

LP 1, 1gns 
 

2, 1gns 
  , 1k gns 

 

 

 

Table 2.2: Failure memory 

Index Strategy 1 Strategy 2  Strategy K 

1 1,g LPnf   2,g LPnf    ,k g LPnf   

2 1, 1g LPnf    2, 1g LPnf     , 1k g LPnf    

     

LP 1, 1gnf   2, 1gnf    , 1k gnf   

 

 

Table 2.3: Progress of Success memory 

1,g LPns    ,k g LPns    1, 1g LPns     , 1k g LPns     1, 2g LPns     , 2k g LPns     

   


 
        



 

1, 1gns    , 1k gns    1,gns
  ,k gns

  1, 1gns    , 1k gns    

Generation g   Generation 1g    Generation 2g   

"  
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Adaption of Control Parameters 

In the conventional DE," the choice of numerical values for the three control parameters F

, CR , and NP  highly depends on the problem under consideration. In the SaDE algorithm, 

NP  is left as a user-specified parameter because it highly replies on the complexity of a 

given problem. In fact, the population size NP  does not need to be fine-tuned and just a 

few typical values can be tried according to the pre-estimated complexity of the given 

problem. Between other two parameters, CR  is usually more sensitive to problems with 

different characteristics, e.g., the uni-modality and multimodality, while F  is closely 

related to the convergence speed (Qin et al. 2009). In SaDE algorithm, the parameter F is 

approximated by a normal distribution with mean value 0.5 and standard deviation 0.3, 

denoted by  0.5,0.3N . A set of F values are randomly sampled from such normal 

distribution and applied to each target vector in the current population. It is easy to verify 

that values of F  must fall into the range  0.4,1.4   with the probability of 0.997. By doing 

so, we attempt to maintain both exploitation (with small F values) and exploration (with 

large F values) capabilities throughout the entire evolution process."  

The proper choice of CR can lead to successful optimization performance while a wrong 

choice may deteriorate the performance. In fact, good values of CR generally fall into a 

small range for a given problem, with which the algorithm can perform consistently well. 

Therefore, SaDE considered gradually adjusting the range of CR values for a given 

problem according to previous CR values that have generated trial vectors successfully 

entering the next generation. Specifically, Qin et al., in 2009, assumed that CR obeys a 

normal distribution with mean value 
mCR  and standard deviation 0.1Std  , denoted by 
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 ,mN CR Std  where 
mCR is initialized as 0.5. The Std  should be set as a small value to 

guarantee that most CR  values generated full within [0,1] , even when 
mCR  is near 0 or 

1. Hence, the value ofStd  is set as 0.1. Experiments showed that minor changes to the 

Std  of the Gaussian distribution do not influence the performance of SaDE significantly 

(Qin et al. 2009). 

In SaDE, the value of 
mCR  is adapted with respect to each trial vector generation strategy 

as following: 

With respect to the thk  strategy, the value of"
,m kCR  is initialized to 0.5. A set of CR  

values are randomly generated according to  , ,0.1m kN CR  and then applied to those 

target vectors to which the thk   strategy is assigned. To adapt the crossover rate CR , 

memories named 
kMemoryCR are established to store those CR  values with respect to the 

thk strategy that have generated trial vectors successfully entering the next generation 

within the previous LP generations. Specifically, during the first LP generations, CR

values with respect to thk  strategy are generated by  , ,0.1m kN CR . At each generation 

after LP generations, the median value stored in 
kMemoryCR will be calculated to overwrite 

,m kCR . Then, CR values can be generated according to  , ,0.1m kN CR when applying the 

thk  strategy. After evaluating the newly generated trial vectors, CR values in 
kMemoryCR

that correspond to earlier generations will be replaced by promising CR values obtained at 

the current generation with respect to the thk  strategy."  

In the SaDE algorithm, both trial vector generation strategies and their associated control 

parameters are gradually self-adapted by learning their previous experiences of generating 
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promising solutions. Consequently, a more suitable strategy along with its parameter 

setting can be determined adaptively to suit different phases of the search process. 

Extensive experiments described and done by Qin et al., in 2009, verified the promising 

performance of the SaDE to handle problems with distinct properties such as uni-modality 

and multi-modality (Qin et al. 2009). 

2.3.1 Pseudo-Code for SaDE Algorithm 

"  

Step 1: Set the generation number 0g   and randomly initialize a population of NP

individuals  , 1, 2, ,, ,...,x g g g NP gP X X X  with 1, 1, , 2, , , ,, ,...g i g i g D i gX x x x     and 

each individual uniformly distributed in the range , ,L UX X 
   where 

 1 2, ,...,L l l l

DX x x x  and  1 2, ,...,U u u u

DX x x x  with  1, 2,...,i NP . 

Initialize the median value of  , ,m kCR CR  strategy probability ,k gp , K is the 

number of available strategies, and learning period LP . 

Step 2: Evaluate the population 

Step 3: WHILE stopping criterion is not satisfied 

DO 

Step 3.1: Calculate strategy probability ,k gp  and update the success and 

failure memory 

IF g LP   

FOR 1k to k   

Update the ,k gp  by Eq. (2.18) 

Remove ,k G LPns   and ,k G LPnf   out of the Success and 

Failure Memory respectively. 

END FOR 

END IF 

Step 3.2: Assign trial vector generation strategy and parameter to each 

target vector ,i gX  

Assign trial vector generation strategy 

Using stochastic universal sampling to select one strategy k  for 

each target vector ,i gX   
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Assign control parameter F   

FOR 1i to NP   

 0.5,0.3iF Normrnd  

END FOR  

Assign control parameter CR  

IF g LP   

FOR 1k to K   

 , km k MemoryCR median CR   

END FOR 

END IF 

FOR 1k to K   

FOR 1i to NP   

 , , ,0.1k i m kCR Normrnd CR   

WHILE , 0m iCR   or ,i 1mCR    

 , , ,0.1k i m kCR Normrnd CR   

END WHILE 

END FOR 

 END FOR 

Step 3.3: Generate a new population where each trial vector ,

k

i gU  is 

generated according to associated trial vector generation 

strategy k  and parameters iF  and ,k iCR  in Step 3.2. 

Step 3.4: Randomly reinitialize the trial vector ,

k

i gU  within the search 

space if any variable is outside it boundaries. 

Step 3.5: Selection 

FOR 1i to NP   

Evaluate the trial vector ,

k

i gU   

IF  ,

k

i gf U  is better than  ,i gf X   

   , 1 , , 1 ,,k k

i g i g i g i gX U f X f U     

, , 1k g k gns ns    

Store 
,k iCR  into 

kMemoryCR  

IF  ,

k

i gf U  is better than  ,best gf X   

   , , , ,,k k

best g i g best g i gX U f X f U   

END IF 
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ELSE 

, , 1k G k Gnf nf   

END IF 

END FOR 

Store 
,k gns  and 

,k gnf ,  1, 2,...,k K  into the Success and 

Failure Memory respectively. 

Step 3.6: Increment the generation count 

1g g    

END WHILE 

"  

2.4 Proposed Work: Modified Self-adaptive Differential Evolution 

 

Qin et al, when proposing self-adaptive DE algorithm, overcame the dilemma of selecting 

appropriate trial vector generation strategy along with its associated parameter values. 

Therefore, SaDE algorithm avoided the expensive computational costs spent on searching 

for the optimum strategy for each optimization problem. However, a good candidate pool 

should be restrictive so that the unfavorable influences of less effective strategies can be 

suppressed. Moreover, a set of effective strategies contained in a good candidate pool 

should have diverse characteristics. That is, the used strategies should demonstrate distinct 

capabilities when dealing with optimization problem. Generally speaking, having more 

strategies in candidate pool means an obligation of more number of function evaluations 

to achieve the success of self-adaptive algorithm. In other words, SaDE depends on 

spreading out number of population NP, equally, on the strategies in candidate pool at the 

initialization step. Having insufficient population vectors for each strategy, results in bad 

performance in the learning-period stage, and would give non-representative success and 

failure rates for each strategy, which is the main indicator to self-adapt DE algorithm to a 

successful trial-vector generation strategy in the optimization problem. 
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The main advantage of SaDE is avoiding the expensive cost of computation and this would 

not be valid if large number of strategies are selected in the candidate pool. On the other 

hand, having less number of strategies could result in bad optimization performance on 

same problem due to the lack of variety in strategy characteristics. Therefore, the main 

challenges that are investigated and solved by the proposed algorithm can be classified as: 

firstly, form a good candidate pool with the minimum number of effective strategies that 

possess exploration and exploitation capabilities. Secondly, improve the convergence 

speed without allowing the algorithm to be stagnant in local optima. 

These two challenges become very critical when dealing with real-life complex 

optimization problems which are very expensive in terms of computational cost. 

In this work, we modify and improve the Self-adaptive Differential Evolution SaDE 

algorithm proposed by Qin et al. (Qin et al. 2009) in terms of higher solution quality, 

convergence speed enhancement and maintaining the exploration capabilities required for 

successful DE algorithm. The proposed algorithm, which is been referred as Modified Self-

adaptive Differential Evolution (MSaDE), introduces new technique to determine the 

success rate of each trial-vector generation strategy based on the quality of improvement 

in solution toward optimum solution that each strategy achieves, not on the successful 

number of entries to following generations as applied in original SaDE. In addition, to 

downsize the candidate pool to include only two effective trial-vectors generation strategies 

instead of four as described in the original SaDE. Therefore, the modification proposed to 

SaDE can be divided to two major steps: 
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A New Technique to Adapt Trial-Vector Generation Strategy 

In SaDE, Qin et al. (Qin et al. 2009) used the success and failure rates in learning period to 

determine which strategy of generating trial vector is more effective as shown in Eqs. 

(2.18) and (2.19). then, in the following generations, more population vectors are assigned 

to the more successful strategy. In other words, the original SaDE algorithm determined 

the success rate 
,k gS  of thk  strategy by calculating how many times ( kns ) that strategy, 

successfully, enter to the next generation as shown in Eq. (2.19), neglecting the “quality” 

of improvement that thk  strategy has achieved toward the optimum solution. Therefore, if 

a strategy A enters next generations in learning period more than strategy B , even if 

strategy B has a bigger effect on the solution improvement toward optimum solution, 

strategy A will still be considered more successful than strategy B . Consequently, in next 

generation, original SaDE algorithm will assign more population vectors to strategy A  

than B , which will result in misrepresentation in both strategies performance and 

weakening the real-effective strategy that leads to , relatively, bad results. 

In order to overcome this dilemma, we introduce a different technique to determine the 

successful rate 
*

,k gS  of a strategy k . The proposed technique depends on the “quality” of 

solution improvement that has been achieved by strategy k  within the learning period 

toward optimum solution as following: 

After the initial learning period LP , at generation g , the probability of choosing thk  

strategy ( 1,2,...,k K  ) is update by Eq. (2.20). 

 

*

,*

,
*

,

1

k g

k g K

k g

k

S
p

S





  (2.20) 
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where 
*

,k gS  is determined by Eq. (2.21). 

  

max

max

max

max

1

,

*

, max1

,

1

, 1, 2,..., ;

g

k g

g g LP

k g gK

k g

k g g LP

WF

S k K g LP

WF





 



  

   



 
  (2.21) 

The Weight Factor, 
,k gWF , is determined by Eqs. (2.22) and (2.23). in maximization and 

minimization optimization problems respectively. 

    ," "k g g gk k
WF f U f X    (2.22) 

    ," "k g g gk k
WF f X f U    (2.23) 

" where:  

gX  : is the target vector 

gU  : is the trial vector 

   : is small constant (0.01) used to avoid null success rate"  

As shown, the success rate in the proposed Modified Self-adaptive Differential Evolution 

(MSaDE) depends on the solution improvement that achieved by each strategy which, 

truly, represents the actual-success of a strategy and enables the algorithm to be self-

adapted to the real-effective strategy. This novel technique enhances the solution quality 

and speed the convergence rate. 

Then, a combination technique between the old and new methods is also tested. In which 

the probability 
,k gp  from Eq. (2.18) and probability 

*

,k gp  from Eq. (2.20), are combined 

as : 
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    ** *

, , ," ".k g k g k gp p p   (2.24) 

**

,k gp combines two success indications for strategy k ; the successful number of entries for 

thk  strategy represented by 
,k gp , as well as the solution improvement represented by 

*

, .k gp

Therefore, in this combination technique, it can be shown that if  a strategy k  has 

successfully entered the next generation and, at the same time, improve the solution better 

than remaining strategies in the candidate pool, the success probability is significantly 

increased. Subsequently, the convergence speed will be increased. This excess acceleration 

in convergence is preferable in solving simple optimization methods with low dimensions 

where the algorithm is able to find out, quickly, the successful strategy to dominate the 

generation of trial-vectors. However, in complex optimization problems, this combination 

technique could be ineffective and cause premature convergence and stagnation problems 

at local optima.   

Therefore, the effectiveness of the proposed technique and combination technique is 

compared with the original technique to find out the best utilized technique with self-

adapted differential evolution algorithm. The numerical experiments and results in this 

study show that the proposed new-adaption technique and combination technique are more 

effective, in terms of solution quality and convergence speed, than the old-adaption 

technique of SaDE.  
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Downsize Candidate Pool of Strategies 

The successful candidate pool of trial-vector generation strategies should have the 

capabilities of exploration and exploitation. The importance of exploration in DE is to 

overcome the problem of premature convergence, where the population converges to some 

local optima, losing its diversity and resulting in stagnation. On the other hand, the 

exploitation features enable the algorithm to have fast convergence speed toward the 

optimal solution. 

Original SaDE has four strategies; “DE/Rand/1/bin”, “DE/Rand/2/bin”, “DE/Rand-to-

Best/2/bin”, and “DE/Current-to-Rand/1” as illustrated in Eqs. (2.11), (2.14), (2.16) and 

(2.17) respectively. Qin et al., in 2009, tried to make the candidate pool having all the 

effective strategies on the literature and typically possess the exploration and exploitation 

features. However, and as mentioned before, it is very difficult to be applied on the real-

life and complex engineering problems as it requires large number of population vectors to 

be initiated which means huge number of function evaluations. In addition, Qin et al, in 

2009, admitted that the optimal pool size and strategies selection deserve further 

investigation (Qin et al. 2009). 

The proposed MSaDE optimization algorithm has only two strategies to generate trial-

vectors. These two strategies have been selected to preserve the exploration and 

exploitation capabilities as well as improve convergence speed by distributing population 

vectors NP on only two strategies instead of four as proposed in the original SaDE. 

Downsizing the candidate pool and having effective strategies saves a lot of computational 

time and results in higher solution quality. The two strategies selected in MSaDE are: 

“DE/Best/1/bin” [Eq. (2.12)]; which relies on the best solution found so far and has fast 
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convergence speed, and “DE/Rand/1/bin” [Eq. (2.11)]; which usually demonstrates slow 

convergence but bears stronger exploration capability. Having these two strategies in the 

same candidate pool, achieves the required balance between exploration and exploitation 

capabilities of the MSaDE algorithm, in addition to reducing the function evaluations 

required to find the optimum solution. The numerical experiments in the study shows that 

downsizing the candidate pool, with effective selected strategies to generate trial-vectors 

in mutation step, improves the solution quality and increase convergence speed. 

The remaining of this work refers to self-adaptive DE algorithms as following: 

SaDE:  The original Self-adaptive Differential Evolution with four trial-vector 

generation strategies in the candidate pool, and original adaption technique 

[Eq. (2.18)]. 

SaDE-2: In this algorithm, the original adaption method is utilized with changing and 

reducing number of trial-vector generation strategies to “DE/Rand/1/bin” 

and “DE/Best/1/bin”. 

MSaDE-1: Refers to the proposed Modified Self-adaptive DE algorithm in which the 

novel adaption technique shown in Eq. (2.20) is used and downsizing 

candidate pool of trial vector generation strategies to two as mentioned. 

MSaDE-2: Is similar to MSaDE-1, but with combination adaption technique shown in 

Eq. (2.24). 
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2.5 Numerical Experiments 

 

In this section, a comparison study is done to analyze the performance of proposed 

algorithms (SaDE-2, MSaDE-1 and MSaDE-2) versus the original SaDE algorithm.   

 

2.5.1 Benchmark Functions 

In order to evaluate the performance of the proposed algorithms, twenty two well-known 

benchmark test functions mentioned by (Yao et al. 1999) ; (Hedar 2007), presented 

inTable 2.4, are used.  

Functions 1 11f f  are high-dimensional problems. Functions 1 5f f  are unimodal. 

Functions 6 11f f  are multi-modal functions where the number of local minima increases 

exponentially with the problem dimension. They seem to be the most difficult class of 

problems for many optimization problems (Yao et al. 1999). Functions 12 22f f  are low-

dimensional functions, which have only a few local minima. 

 Table 2.4 shows the benchmark functions used in this study. n  is the dimension of the 

function, minf  is the minimum value of the function, and 
nS R . 
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Table 2.4: Benchmark of test functions 

Test Functions n   S   minf   

  2

1 1

n

ii
f x x


   10,30

  100,100
n

   0   

   
2

2 1
0.5

n

ii
f x x


    10,30

  100,100
n

  0  

  2

3 1

n

ii
f x ix


   10,30

  10,10
n

  0  

 4 1 1

nn

i ii i
f x x x

 
    10,30

  10,10
n

  0  

     
21 22

5 11
100 1

n

i i ii
f x x x x





    
    10,30

  30,30
n

   0  

  2

6 1

1

1
20exp 0.2

30

1
exp cos 2 20

30

n

ii

n

ii

f x x

x e





 
    

 

 
   

 





 10,30
  32,32

n
   0  

  2

7 1 1

1
cos 1

400

nn i
ii i

x
f x x

i 

 
   

 
   10,30

  600,600
n

   0  

   
 

    

 

2

12

1 1 22

1

1

8

1
10 sin

. 1 10 sin 1

,10,100, 4

in

i

i n

n

ii

y
y

n y y

u x

f x

















  



  
  

  



 

10,30
  50,50

n
  0  

   

 

 

   

 

2

1 22

11 1

2 2

1

9

1

. 1 sin 30.1 sin 3

1 1 sin 2

, 5,100, 4

i

n

ii

n n

n

ii

x

xx

x x

u x

f x 













  



 
  

    
 

    




 

10,30
  50,50

n
  0  

   2

10 1
10cos 2 10

n

i ii
f x x x


      10,30

  5.12,5.12
n

   0  

 
   

   

2 2

/4 4 3 4 2 4 1 4

11 1 4 4

4 2 4 1 4 3 4

10 5

2 10

n i i i i

i

i i i i

x x x x
f x

x x x x

  



  

   
 
     

  8, 28
   4,5

n
   0  

   Cont.../ 
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Test Functions
  n   S   minf   

 
 

1

25

12 621

1

1 1

500 j

i iji

f x
j x a







 
  
  
 




 2    65.536, 65.536
n

   1   

 
 

2
2

11 1 2

13 21
3 4

i i

ii
i i

x b b x
f x a

b b x x

 
  

   
  4    5,5

n
   0.0003075   

  2 4 6 2 4

14 1 1 1 1 2 2 2

1
4 2.1 4 4

3
f x x x x x x x x       2    5,5

n
   1.0316285   

 
2

2

15 2 1 12

1

5.1 5
6

4

1
10 1 cos 10

8

f x x x x

x

 



 
    
 

 
   

 

 2      5,10 0,15x   0.398   

   

 

2
2 1 1 2

16 1 2 2

1 2 2

2
2 1 1 2

1 2 2

1 2 2

19 14 3 14
1 1

6 3

18 32 12 48
30 2 3

36 27

x x x
f x x x

x x x

x x x
x x

x x x

    
          

    
          

 

2    2,2
n

   3   

   
24

17 1 1
exp

n

i ij j iji j
f x c a x p

 

    
      3    0,1

n
  3.86   

   
2

18 11 2
1

n n

i i ii i
f x x x x  

     6   
2 2,

n

n n     50   

   
2

2

19 1
sin sin

n m i
ii

ix
f x x



 
   

 
  5    0,

n
   4.687658   

     
   

5

20 11

5

21

cos 1

. cos 1

i

i

f x i i x i

i i x i





  

 




 2    10,10

n
   186.7309   

   
2

21 1 1

n n i

j ii j
f x x b

 

  
     4    0,

n
n   0   

   

2

22 1 1
1

i

n n i i

i j

x
f x j

j


 

   
          

   4    ,
n

n n   0   

"  



37 

 

2.5.2 Experimental Setup 

Experiments were conducted on the twenty-two functions to evaluate the performance of 

four algorithms SaDE, SaDE-2, MSaDE-1 and MSaDE-2. For functions 1 10f f  both 10-

dimensional (10-D) and 30-dimensional (30-D) functions were tested. For function 11f , 

both 8-D and 28-D functions were tested. For the remaining functions 12 22f f , the 

function dimension is shown in Table 2.4. 

All experiments were run 25 times independently and statistical results are provided 

including the best, median and worst obtained results versus number of function evaluation 

numbers. The population sizes are set to be between 30, 50 and 100 based on the function 

dimension. All other control parameters are self-adaptive for the four algorithms. 

In MATLAB 2014, the minimum and maximum double-precision values are from 

2.22507E-308 to 1.79769E+308. Therefore, we put a tolerance of 1E-15. Beyond this 

value, the function’s fitness is considered to be 0.0. In other words, the optimization run 

will be stopped, if the error, 
*

minf f , becomes less than 1E-15; where *f  is function 

fitness and minf  is the global minimum of a function f . 
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3 CHAPTER 3 

RESULTS AND CONCLUSION 

3.1 Experimental Results 

 

The results (best run, median run and worst run) of the comparison are provided in 

Table 3.1 for 10-dimensions functions, Table 3.2 for 30-dimensional functions and 

Table 3.3 for the remaining functions. The best “median” results are typed in bold and it 

means the minimum objection function error, 
*

minf f , obtained within the 25 runs. 

While the “worst” result means the maximum error obtained. Note that for functions 

1 11f f , 21f  and 22f  , the values listed in Table 3.1,Table 3.2 and Table 3.3 are the absolute 

difference between the obtained results ( bestf , medianf or worstf ) and tolerance (1E-15). For 

the functions, 12 20f f , the optimum values are not zeros. Therefore, the listed results (best, 

median and worst) for those functions in Table 3.3 are the absolute difference between the 

obtained results ( bestf , and worstf ) and actual optimum minf . Furthermore, in order to 

analyze the performance behavior of each algorithm, the convergence characteristics in 

terms of how fast the “median” of each algorithm reaches to the minimum value ( minf ) for 

10-D unimodal functions 1 5f f , 10-D multimodal functions 6 11f f , 30-D unimodal 

functions 1 5f f , 30-D multimodal functions 6 11f f  and the remaining functions 12 22f f  

are shown in Figure 3.1 to Figure 3.5 respectively.  

medianf
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"  

  

 
(a) 1f  

 
(b) 2f  

 
(c) 3f  

 
(d) 4f  

 
(e) 5f  "  

 
Figure 3.1: Optimization performance (median curves) of SaDE, SaDE-2, MSaDE-1 and MSaDE-2 on uni-modal 10-D functions 
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"  

  

 
(a) 6f  

 
(b) 7f  

 
(c) 8f  

 
(d) 9f  

 
(e) 10f   

 

 
(f) 11f "  

 
Figure 3.2: Optimization performance (median curves) of SaDE, SaDE-2, MSaDE-1 and MSaDE-2 on 10-D multi-modal functions 
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(a) 1f  

 
(b) 2f  

 
(c) 3f  

 
(d) 4f  

 
(e) 5f "  

 
Figure 3.3: Optimization performance (median curves) of SaDE, SaDE-2, MSaDE-1 and MSaDE-2 on 30-D unimodal functions 
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(a) 6f  

 
(b) 7f  

 
(c) 8f  

 
(d) 9f  

 
(e) 10f   

 

 
(f) 11f "  

 
Figure 3.4: Optimization performance (median curves) of SaDE, SaDE-2, MSaDE-1 and MSaDE-2 on 30-D multimodal functions 
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"  

  

 
(a) 12f  

 
(b) 13f  

 
(c) 14f  

 
(d) 15f  

 
(e) 16f  "  

 
Figure 3.5: Optimization performance (median curves) of SaDE, SaDE-2, MSaDE-1 and MSaDE-2 on functions 

12 22f f  
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(f) 17f  

 

(g) 18f  

 

(h) 19f  

 

(i) 20f  

 

(j) 21f   

 

 

(k) 22f "  

 

Figure 3.5 (continued) 
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3.1.1 10-D Unimodal Functions  1 5f f  

From the results shown in Table 3.1, it can be seen that, generally, MSaDE outperforms 

SaDE for all 10-D unimodal functions, 
1 5f f . Additionally, it can be observed that 

MSaDE-1 and MSaDE-2 algorithms are almost the same and they approximately achieved 

the same results. However, MSaDE-2 exhibit better results in this case. 

As shown in Figure 3.1.e, changing and downsizing the candidate pool of trial-vector 

generation strategies (as in SaDE-2) result in significant improvement in solution quality 

and convergence speed. Furthermore, MSaDE algorithm exhibit better optimization 

performance than SaDE and SaDE-2 due to the implementation of new adaption technique. 

 

3.1.2 10-D Multimodal Functions  6 11f f  

Table 3.1 shows that MSaDE is better than SaDE for all functions, 
6 11f f , except for 

10f  

where SaDE-2 shows the best “median”. However, as shown in Figure 3.6, it can be 

observed that the “best” results for MSaDE-1 and MSaDE-2 converge faster than SaDE. 

It can also be shown in Figure 3.2 that big improvement is achieved by adding the strategy 

“DE/Best/1/bin” to the candidate pool and reducing the number of strategies to two instead 

of four, which is represented by SaDE-2. Then, additional improvement is clearly achieved 

when applying MSaDE-1 and MSaDE-2 algorithms. 
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Figure 3.6: Optimization performance (best curves) of SaDE, SaDE-2, MSaDE-1 and MSaDE-2 on 10-D 

multimodal function, 
10f . 
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3.1.3 30-D Unimodal Functions  1 5f f  

As shown in Table 3.2, MSaDE exhibits better optimization performance than SaDE 

algorithm for all functions (
1 5f f  ) except for function 

5f  where SaDE-2 shows the best 

“median” result. However, when applying the new adaption technique from Eq. (2.20) and 

combination technique Eq. (2.24) with keeping the candidate pool of trial-vector generation 

strategies as same as original SaDE, performance improvement in MSaDE is observed. 

MSaDE-1B and MSaDE-2B refer to the Modified Self-adaptive DE algorithms in which 

candidate pool of trial-vector generation strategies are the same as in the original SaDE, 

while applying the new adaption and combination techniques, respectively. As shown in 

Figure 3.7, the proposed methods are, significantly more effective than the original SaDE 

in terms of solution quality. 

In contrary to what has been shown in 10-D unimodal functions  1 5f f , MSaDE-1 

performs better than MSaDE-2 in 30-D unimodal functions. 

 

3.1.4 30-D Multimodal Functions  6 11f f  

With reference to Table 3.2, the results show that MSaDE is surpassed by SaDE algorithm 

on function 
10f  only. However, MSaDE algorithm optimization performance is superior in 

all other functions 
6 11f f . In addition, as shown in Figure 3.8, when applying MSaDE-

1B and MSaDE-2B to that function 
10f ,  they perform better and reach to the optimum 

converge faster than the original SaDE. In additions, MSaDE-1 performs better than 

MSaDE-2 in this case. 
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Figure 3.7: Optimization performance (median curves) of SaDE, MSaDE-1B, MSaDE-2B, SaDE-2, MSaDE-

1 and MSaDE-2 on 30-D unimodal function 
5f  

 
 
Figure 3.8: Optimization performance (median curves) of SaDE, MSaDE-1B, MSaDE-2B, SaDE-2, MSaDE-

1 and MSaDE-2 on 30-D multimodal function 
10f  
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3.1.5 Remaining Functions  12 22f f  

Table 3.3 shows the comparison between SaDE, SaDE-2, MSaDE-1 and MSaDE-2 on 

11 22f f  over 25 runs for small dimensions functions. It is obviously shown that MSaDE 

is superior to the SaDE algorithm in all functions in terms of best “median” results.  

In function 
13f , all algorithms converged to the optimum solution. In functions 

12f , 
14f  

and 
20f  SaDE-2, MSaDE-1 and MSaDE-2 reach to the optimum solution, while original 

SaDE did not, even the best results obtained from SaDE did not reach the optimum 

solution. 

 

Generally, it is clear that MSaDE outperformed SaDE algorithms; MSaDE performed 

better than SaDE in 82% of all the 22 functions considered. As shown in Table 3.4, 

MSaDE-1 is the best in optimizing 30-D functions while MSaDE-2 performs a little better 

than MSaDE-1 in optimizing 10-D functions. However, MSaDE-1 is the second best in 

this case. For functions with small dimensions (>10-D), both MSaDE-1 and MSaDE-2 have 

the same strength to find the optimal solution for the functions in this case. 

 

Table 3.4: Performance comparison summary of SaDE, SaDE-2, MSaDE-1 and MSaDE-2 over 25 independent 

runs for all functions 

Functions 

Success Percentage Over all Benchmark Test 

Functions, 
1 22f f , (%)  

SaDE SaDE-2 MSaDE-1 MSaDE-2 

10-D Functions 0% 13% 40% 47% 

30-D Functions 8% 8% 58% 25% 

>10-D Function 4% 16% 40% 40% 

     

Total  4% 14% 44% 38% 
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Therefore, we conclude that the proposed algorithm, Modified Self-adaptive Differential 

Evolution MSaDE, with both versions (MSaDE-1 and MSaDE-2) exhibits better 

performance than the original SaDE algorithm. In addition, the completely new adaption 

technique, based on Eq. (2.20), is more effective than the combination technique, Eq. (2.24)

. The reason for this improvement can be seen in Figure 3.9, which shows the success 

probability progression vs algorithm generations. It is shown in Figure 3.9a that in SaDE 

algorithm, no single strategy has dominated the trial-vector generation techniques, which 

means that all strategies in the candidate pool almost has the same chance to be selected in 

all generations. Besides, almost the same number of population vectors is assigned to each 

strategy. Therefore, the algorithm loses its ability to find out the best technique to generate 

new trial vectors and still use all strategies available in candidate pool with almost the same 

probabilities. This means that the optimization algorithm needs relatively more 

computational time to reach optimum solution. 

 

In SaDE-2 algorithm; as shown in Figure 3.9b, after the learning period which is 10 

generations in this case, one of the strategies has a success probability of more than 60% 

which means that it possesses more population vectors to be mutated. In other words, by 

downsizing the candidate pool size from four strategies to only two, and having the “good” 

strategies that have the capabilities of exploration and exploitation, the algorithm is able to 

self-adapt to one trial-vector generation strategy than the other and an improvement is 

obtained. 
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(a) SaDE Algorithm 

 
 

(b) SaDE-2 Algorithm 

 
 

(c) MSaDE-1 Algorithm 

 
 

(d) MSaDE-2 Algorithm 

 Figure 3.9: Success probabilities progression of strategies with algorithm generation 
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As shown in Figure 3.9c, after 60 generations, MSaDE-1 is able to find out the most 

compatible strategy with optimization problem and be 100% self-adapted. This exhibits 

higher solution quality in less computational time. With reference to Eq. (2.20), it can be 

seen that depending on the quality of improvement (WF ), that is taken place by thk  

strategy, is more efficient than calculating the success rate based on the number of vectors 

entering to the next generations in learning period as expressed in Eq. (2.18). Therefore, 

after 60 generations, all population vectors were assigned to the most successful trial-vector 

generation strategy which enabled the algorithm to rapidly be self-adapted and reach the 

optimal solution. 

In MSaDE-2 algorithm, as shown in Figure 3.9d, after only 30 generations, 100% of 

population vectors were assigned to the successful strategy. In this algorithm the success 

probability of a strategy is calculated by Eq. (2.24), which is a combination between the 

old and new adaption techniques. As shown this combination technique accelerates the 

process of adaption which is very effective in optimizing relatively less complex functions 

such as the 10-D functions. However, in 30-D functions which are more complex, MSaDE-

1 performs better. Because in complex optimization problems, in order to avoid stagnation 

and/or premature convergence to local optima, a convergence speed-balance is required to 

find out the most successful trial-vector generation strategy within candidate pool before 

assigning all population vectors to it. This required-balance is achieved by MSaDE-1 

algorithm which is able to be 100% self-adapted to the successful strategy after satisfactory 

number of generations to preserve the exploration and exploitation capabilities. 
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3.2 Conclusion 

 

In order to enhance the convergence speed and exploitation capability with maintaining a 

satisfactory exploration level of SaDE algorithm, a Modified Self-adaptive Differential 

Evolution MSaDE algorithm with novel technique in determining the success rate of trial-

vector generation strategy to solve global numerical optimization problems over continues 

space is proposed. The proposed algorithm introduces a new adaptation technique to 

determine the success rate of each trial-vector generation strategy based on the quality of 

improvement in solution toward optimum solution that each strategy achieves, not on the 

successful number of entries to following generations as applied in original SaDE. The 

proposed method is shown to enhance the convergence speed and balance the exploitation 

and global exploration capabilities of self-adaptive DE algorithms. The proposed MSaDE 

algorithm has been compared with original SaDE over a suite of 22 numerical optimization 

problems. The experimental results and comparison showed that the MSaDE algorithm 

performs better than original SaDE algorithm in 82% of optimization problems with 

different types, complexity and dimensionality. It performs better in terms of final solution 

quality, convergence speed and robustness. Finally, it would be very interesting to 

investigate the performance of proposed MSaDE to solve practical engineering 

optimization problems and real-world applications. 
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4 CHAPTER 4 

Optimization of ES-SAGD Application: Comparative 

Analysis of Optimization Techniques 

 

4.1 Literature Review on ES-SAGD Optimization 

 

Butler et al., in 1981, proposed the concept of the Steam-Assisted Gravity Drainage 

(SAGD) recovery method; where two horizontal wells with vertical distance are placed 

near to the bottom of the formation. The steam is continuously injected from the upper well 

and heavy oil produced from the lower well (Butler and Stephens 1981). 

The concept of Expanded Solvent Steam-Assisted Gravity Drainage (ES-SAGD) was 

introduced by Nasr et al., in 2003, with detailed laboratory test results which showed that 

the highest recovery performance was achieved when the vaporization temperature of the 

added solvent (Hydrocarbon) is closer to the temperature of the injected steam (Nasr et al. 

2003). Then, Das studied the dispersion and diffusion of solvent in VAPEX method. He 

introduced the results of simulation study to investigate the effect of solvent components 

inside vapor chamber (Das 2005). 

Generally, it is expected that adding solvent components improves the process. 

Boak and Palmgren presented a numerical analysis for a naphtha co-injection test during 

SAGD for the MacKay River McMurray formation (Boak and Palmgren 2007). The effects 
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of co-injecting a multi-component solvent, naphtha, and a single component solvent, 

propane or pentane were investigated. Co-injection of any of the solvents studied (propane, 

pentane and naphtha) resulted in an improved Steam Oil Ratio (SOR). Only naphtha co-

injection resulted in an improved oil production rate because the components of naphtha 

travelled freely in the vapor chamber and accumulated along the vapor chamber front in 

both the vapor and oil phases. 

In 2008, Ivory et al. studied the low pressure ES-SAGD performance through lab 

experiments and numerical simulations. They found that the effects of minimum 

production pressure, sub-cool and solvent concentration must be considered 

simultaneously as they impact each other. Sensitivity runs on minimum BHP resulted that 

a lower producer BHP yielded a higher oil rate with less SOR (Ivory et al. 2008). 

Govind et al. performed detailed simulation studies on ES-SAGD. They stated that the 

effective variables that control the performance of the ES-SAGD process are the solvent 

type, concentration, operating pressure and the injection strategy. The results of sensitivity 

studies performed on the solvent selection, dilation effect and operating condition were 

presented with conclusions and recommendations for an operating strategy. They also 

indicated the dilation is an important factor in the high pressure injection ES-SAGD 

process (Govind et al. 2008). 

In 2010, Ayodele et al. implemented experiment and history-matched simulation results of 

2D scaled laboratory tests of ES-SAGD with hexane as the co-injected solvent. The 

comparison of ES-SAGD and SAGD experiments shows that ES-SAGD using hexane 

performed better than an equivalent SAGD experiment (Ayodele et al. 2010). 
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Kumar et al. investigated the impact of geological heterogeneity on SAGD wellbore design 

and the optimization of the length and positioning of multiple tubular strings as well as the 

allocation of injected steam among multiple tubing strings (Kumar et al. 2010). 

In 2012, Gates and Chakrabarty used the Simulated Annealing, SA method to find the 

optimal solvent concentration that minimize the cost function which is cSOR. The results 

showed that ES-SAGD can yield lower cSOR than SAGD and that the optimized 

ES_SAGD operating strategy used ½ of the steam per unit volume of produced oil when 

compared with SAGD method. In their study, they assumed that the solvent recovery 

predicted from the simulations was about 90% which is in reasonable agreement with 

existing thermal-solvent field pilots, therefore, they assumed that there is no losses in the 

injected solvent" (Gates and Chakrabarty 2012). 

 

4.1.1 DE Application for Optimizing Oilfield-related Problems 

 

Despite the successful applications of differential evolution in many engineering fields, 

there is a limited number of publications related to the applications of DE algorithm for 

tackling petroleum engineering problems. 

Jahangiri (Jahangiri 2007) applied differential evolution to optimize smart well operations 

to maximize oil production. Hajizadeh (Hajizadeh et al. 2009) used DE method to history 

match production data in a black oil reservoir model. Other works include estimation of oil 

and water relative permeabilities to match core flood data (Wang and Buckley 2006), 

Estimation of geostatistics variogram parameters frameworks (Zhang et al. 2009) 

waveform inversion of cross-well data using differential evolution (Wang et al. 2011). 
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Recently in 2013, Nghiem et al. applied the DE technique to a SAGD case study to history 

match saturation and temperature profiles in addition to cumulative oil, water production 

and cSOR. The results showed good history matching, which allowed the assessment of 

uncertainty for the forecast stage. The match-quality was compared with the Particle 

Swarm Optimization method (PSO). The comparison showed that DE offers much better 

solutions with much lower numbers of simulation runs (Nghiem et al. 2013). 

 

4.2 Research Optimization Framework 

 

In this research, we have constructed a numerical flow simulation model of one of 

Athabasca heavy oil reservoirs using CMG STARS, a numerical flow simulation package 

for thermal recovery process. Then we have developed a framework that integrates 

previously mentioned optimization techniques (SaDE, SaDE-2, MSaDE-1 and MSaDE-2), 

in addition to other two well-known optimization algorithms (DE and PSO) with CMG 

STARS, to optimize ES-SAGD recovery process. Before that, a sensitivity study is done 

on ES-SAGD to determine a preliminary ranking of the control operational parameters 

according to their effect on the project’s NPV. In addition, this study will figure out the 

realistic effective range (upper and lower limits) that would be assigned to the selected 

operational parameters in the optimization step. 

Subsequently, a comparison study is done to figure out the most-effective optimization 

algorithm that maximized the NPV of the project while considering other performance 

indicators like Oil Recovery Factor (RF) and cumulative Steam Oil Ratio (cSOR). 
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Finally, for convenience, a performance analysis of optimized SAGD and ES-SAGD 

recovery processes is performed.  

 

4.3 Net Present Value 

 

NPV was used as the performance indicator in this study. The NPV (Khan 1993) of a 

project is defined as the sum of the present values of individual cash flows of that project; 

where the cash flow is positive for revenue and negative for expenditure. In ES-SAGD 

project, the capital cost at the project’s beginning consists of  the exploration cost, the 

drilling and well completion cost, steam generators capital cost, water treatment capital 

cost, and solvent injection capital cost. The recurrent expenditure includes the cost of steam 

generation, steam injection, produced water treatment, solvent handling and 

recompression, solvent cost and operating costs including well remediation and human 

resources. Such costs are discounted to the beginning time of the project. Revenue are in 

the form of heavy-oil sales, which is also discounted to the present time. All these cash 

flows are combined to give the NPV of the project and defined mathematically (Onwunalu 

and Durlofsky. 2010), as shown in Eq. (4.1):Equation Section 4 

 
 1

,
1

N
n

capn
n

CF
NPV C

r

 


   (4.1) 

Where N is the total number of discounting periods (total number of years in this study), 

n is the year index, r is the annual discount rate, capC is the capital cost and is given by: 

 
thermcap f ex w w SG SoC C C N C C C       (4.2) 

and nCF is the cash flow rate in year is given by: 



62 

 

 ,n n nCF R E    (4.3) 

where nR is the total revenue for year ( n ), given by: 

 prooo

n n nR P Q   (4.4) 

and nE is the expenditure for year ( n ), given by: 

 pro pro inj inj pro prorech
W W S S So OSoSo op

n n n n n w n n n n n
E C Q C Q N C C Q C Q       (4.5) 

All the parameters used in Eqs. (4.2) to (4.5) are explained, and their estimations are shown 

in Table 4.1; the costs of facility installation, steam injection, treating produced water and 

other operating costs are estimated with reference to (Azad et al. 2013). The costs of 

exploration, well drilling and completion, steam generation facility, water treatment 

facility, solving injection facility, and solvent’s cost, handling and recompression are based 

on (Frauenfeld et al. 2009). In this study, the heavy oil price is estimated to be less than the 

light oil price by 25% as per BAYTEX – Alberta, 2013 Heavy Oil Pricing Reports. The 

abbreviations listed in Eqs. (4.1) to (4.5) are listed in Table 4.1. 
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Table 4.1: Abbreviation list for Eqs. (4.1) to (4.5) 

exC   : Exploration cost 

thermwC   : Cost of thermal well 

coldwC   : Cost of non-thermal well 

op

nC   : Operating cost per bbl oil 

injSo

nC   : Cost of solvent injection per ft3 

hSo

nC   : Cost of solvent handling per well 

injS

nC   : Cost of steam injection per bbl water 

proW

nC   : Cost of treating produced water per bbl 

recSo

nC   : Cost of vapor solvent recompression per ft3 

SGC   : Capital cost of Steam Generators 

fC   : Capital cost of facility installation cost 

SoC   : Capital cost of Solvent injection facility 

 

proO

nQ   : Total oil production in year n 

injS

nQ   : Total water injected in year n 

injSo

nQ   : Total solvent injected in year n 

proW

nQ   : Total water produced in year n 

proSo

nQ   : Total solvent produced in year n 

 

o

nP   : Oil price, $ ¥¥ 

wN   : Number of wells 

 

n  : Year index 

r  : Annual discount rate 

N  : Total number of years 

 

4.4 Model Description 

 

Steam, Thermal and Advanced Processes Reservoir Simulator (STARS) from CMG is used 

in this work to simulate reservoir model of ES-SAGD. A homogeneous 2D Cartesian 

model with one pair of horizontal injection and production wells, with 51 grid blocks along 

X-axis and 30 grid blocks along Z-axis is used, with a gas cap layer with a thickness of 10 

ft, gas saturation of 85%, initial water saturation of 15% and gas cap pressure of 145 psi.  

The common reservoir and fluid parameters (Gates and Chakrabarty 2005) are shown in 

Table 4.2. Three phase relative permeability model with end-points values are used to 

generate the oil-water and gas-oil relative permeability curves as shown in Figure 10. ES-

SAGD model is simulated for 10 years where a sensitivity study was done on the ES-

SAGD recovery processes to determine the optimum operating parameters which result in 

the maximum NPV at the end of the project. 
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Table 4.2: Simulator input parameters 

Input Parameter Value 

Reference Depth, ft 900 

Reservoir Initial Pressure @ 900 ft, psi 145 

Reservoir Temperature, oF 52 

Porosity 38% 

Average Horizontal Permeability, mD 7000 

Average Vertical Permeability, mD 3000 

Rock Heat Capacity, Btu/ft3 F 417 

Rock Thermal Conductivity, Btu/(ft day F) 106 

Over/Underburden Heat Capacity, Btu/ft3 F 417 

Over/Underburden Thermal Conductivity, Btu/(ft day F) 106 

Bitumen Thermal Conductivity, Btu/(ft day F) 1.85 

Bitumen Viscosity Correlation A = 22.8515 

   ln ln A BlnTcp k    B = -3.5784 

"  

 

 

Figure 4.1: Relative Permeability Data 
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5 CHAPTER 5 

RESULTS AND CONCLUSION 

5.1 ES-SAGD Optimization Results 

 

The optimization results of ES-SAGD (best run, median and worst run) of the comparison 

between SaDE, DE, PSO, SaDE-2, MSaDE-1 and MSaDE-2 algorithms are provided in 

Table 9. The best “median” result is typed in bold. The “best” result of an algorithm means 

the maximum NPV obtained within the five independent runs initiated with different 

populations. While the “worst” result means the minimum NPV obtained. Furthermore, in 

order to analyze the performance behavior of each algorithm, the convergence 

characteristics in terms of how fast the “Best”, “Median” and “Worst” of each algorithm 

reaches to the maximum NPV are shown in Figure 5.1a-c, respectively. 

 

Table 5.1: Comparison between SaDE, DE. PSO, SaDE-2, MSaDE-1 and MSaDE-2 algorithms 

on optimizing ES-SAGD recovery method 

Algorithm 
NPV (x 106 $) 

Best Median Worst 

SaDE 51.9 50.9 49.8 

DE 49.3 48.3 47.5 

PSO 51.3 47.9 47.5 

SaDE-2 52.2 51.7 51.4 

MSaDE-1 53.6 52.7 52.5 

MSaDE-2 53.6 52.4 51.9 
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(a) Best Curves 

 
(b) Median Curves 

 
(c) Worst Curves 

 
Figure 5.1: Optimization performance of SaDE, DE, PSO, SaDE-2, MSaDE-1 and MSaDE-2 

on ES-SAGD recovery method. 



67 

 

5.1.1 Best Results Analysis 

Figure 5.1.a shows the “best” runs which result in maximum NPV of ES-SAGD process at 

the end of the project. It is clearly shown that MSaDE algorithm performs better than other 

optimization algorithms including SaDE with two strategies in candidate pool. Although 

MSaDE-1 and MSaDE-2 achieved the same maximum NPV at the end of the project, 

MSaDE-1, with completely new adaptation technique, shows faster convergence speed 

toward optimum solution. MSaDE-2 reaches an NPV of 52 Million $ after 325 function 

evaluations, while MSaDE-1 and SaDE-2 reach to the same NPV after 650 and 900 

function evaluations respectively.  

 

5.1.2 Median Results Analysis 

As shown in Figure 5.1.b, it is obvious that self-adaptive algorithms outperform normal 

methods without self-adaption techniques, although all algorithms have started with the 

same initial population. In addition, the proposed self-adaptive algorithms in this study 

(SaDE-2, MSaDE-1 and MSaDE-2) show better optimization performance than original 

SaDE algorithm. In particular, MSaDE-1, with completely new adaptation technique, 

performs better than MSaDE-2 and SaDE-2 and shows the maximum NPV at the end of 

the project.  
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5.1.3 Worst Results Analysis 

The “Worst” results mean the minimum NPV value obtained by each optimization 

algorithm in five independent optimization runs. As shown in Figure 5.1.c, generally, self-

adaptive algorithms exhibit better solutions than others do. It can be seen that starting from 

750 function evaluations up to 875; MSaDE-1, MSaDE-2 and SaDE-2 almost have the 

same NPV value. However, MSaDE-1 is able to improve the solution and achieved the 

maximum NPV at the end of optimization process. 

 

5.2 Performance Analysis of SAGD and ES-SAGD Recovery Methods 

 

In this section, the performances of optimized ES-SAGD and SAGD recovery processes 

are studied and compared. Table 10 shows the maximum NPV values that have been 

achieved by ES-SAGD and SAGD recovery methods when applying MSaDE-1 

optimization algorithm. It also shows the NPV values that have been obtained when 

optimizing the cumulative Steam Oil Ratio cSOR to the minimum (as most of the 

literatures do) instead of optimizing NPV. 

As shown in Table 10, in Case #1, when NPV is the objective function to be optimized, the 

NPV values at the end of the project of ES-SAGD and SAGD are 52.5 and 31.8 M$ 

respectively. In other words, the ES-SAGD is 65% more profitable than SAGD in this 

example cse. In additions, cSOR in ES-SAGD and SAGD are 1.1 and 2.1 bbl/bbl 

respectively. Therefore, the ES-SAGD has cSOR value, almost, 50% less than SAGD. The 

oil recovery factors in this case are 66% and 47% for ES-SAGD and SAGD respectively; 

it also shows that ES-SAGD is better than SAGD it terms of oil recovery.   
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Table 5.2: Performance indicators of ES-SAGD and SAGD 

Recovery 

Method 

Case #1: Optimizing NPV Case #2: Optimizing cSOR 

NPV 

(M$) 

cSOR 

(bbl/bbl) 

RF 

% 

NPV 

(M$) 

cSOR 

(bbl/bbl) 

RF 

% 

ES-SAGD 52.5 1.1 66 31.9 0.8 47 

SAGD 31.8 2.1 47 30.0 2.0 46 

 

On the other hand, in Case #2, when cSOR is the objective function to be minimized, there 

is no significant difference between ES-SAGD and SAGD in terms of NPV and RF, 

although cSOR has reduced in ES-SAGD by 60% than SAGD. Therefore, this case does 

not show significant advantage of ES-SAGD in terms of economical profitability or oil 

recover capability. 

This is one of the main objectives in this study; to show that having cSOR as objective 

function to compare the performance of ES-SAGD and SAGD recovery processes, is not 

the optimum selection. Because although the optimized cSOR of ES-SAGD is 60% less 

than SAGD (which agrees with literatures), the project profitability was not improved. 

Moreover, in real-life the most important considerations are the project’s profitability and 

how much oil the process can recover. On the other hand, when selecting NPV as the 

objective function to be optimized, it is clearly shown that maximizing NPV results in 

improving cSOR and RF, as well as the project’s profitability at the first place. 

When optimizing only SAGD recovery process (not to be compared with ES-SAGD), it 

can be shown that selecting NPV or cSOR has no significant effect on representing 

recovery performance. In Case #1, it is shown that the NPV, cSOR and RF of SAGD are 

31.8 M$, 2.1 bbl/bbl and 47% respectively. While in Case #2, the values are 30 M$, 2 

bbl/bbl and 46% respectively. Therefore, there is no much difference in any of the 

performance indicators. On the other hand, in ES-SAGD, because of injecting solvent in 
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addition to steam, cSOR is not representative, as it does not consider solvent cost or solvent 

losses in the reservoir. Therefore, NPV is better indicator to the performance of recovery 

process and project’s profitability. 

 

5.3 Conclusion 

 

It was shown that the proposed self-adaptive DE algorithm with a new adaptation technique 

(MSaDE-1) exhibited better solution quality and convergence speed than other self-

adaptive DE algorithms. Actually, the worst solution obtained by MSaDE-1 is better than 

the best solutions achieved by SaDE, DE, PSO and SaDE-2. It is also shown that the new 

proposed adaptation technique of trial-vector generation strategies with the aid of new 

candidate pool, achieve the required balance between exploration and exploitation 

capabilities of differential evolution optimization algorithms. Therefore, MSaDE-1 shows 

faster convergence speed, better solution quality and has never been stagnant in local 

optima. 

It has also be shown that cumulative Steam Oil Ratio (cSOR) is not the right performance 

indicator when optimizing ES-SAGD recovery process, or comparing its recovery 

performance with SAGD. Because cSOR does not consider solvent cost or losses in the 

reservoir. On the other hand, NPV is better representative to project profitability and 

recovery capability. In addition, it has be shown that optimizing NPV, also, improving 

recovery factor (RF) and reduces cSOR proportionally.  
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