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ABSTRACT
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Thesis Title . Optimization of Expanded-Solvent Steam Assisted Gravity Drainage
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Differential Evolution (DE) optimization algorithm has shown good performance in many
optimization problems. However, its control parameters greatly affect its performance and
require many trials to determine the optimum values of control parameters for specific
optimization problem. On the other hand, the Expanding Solvent Steam-Assisted Gravity
Drainage (ES-SAGD) process is one of the most promising thermal techniques to recover
heavy oil and extra heavy-oil reservoirs. However, because of high computation
requirements, limited attention has been paid to integrate the ES-SAGD simulation with
global optimization algorithms to handle more design elements. Without efficient and
optimized recovery process design, the ultimate recovery from such unconventional
resources will not be achieved, or it could be achieved with great cost and large

environmental impact.

The objective of this work is introducing self-adaptive DE algorithm with a new adaptation
technique to improve solution quality, speed convergence to optimum solution and reduce
computational cost. As well as studying its performance on benchmark test functions

before being applied to optimize the recovery performance of ES-SAGD process.



The proposed method is shown to enhance the convergence speed and balance the
exploitation and global exploration capabilities of self-adaptive DE algorithms and it is
superior over conventional DE algorithm. It has also be shown that cumulative Steam Oil
Ratio (cSOR) is not the right performance indicator when optimizing ES-SAGD recovery
process. Alternatively, Net Present Value (NPV) of the recovery process at the end of the

project is better representative to project profitability and recovery capability.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The decline of conventional oil reserves and the ever-increasing energy demands make
heavy oil exploration of primary interest to many oil companies. Due to the heavy oil
recovery difficulties and low economic return, most of the heavy oil reserves remain
undeveloped, despite the large volume of its original oil in place. Oil with API gravity less
than 20° is considered heavy oil and with less than 10° is categorized as extra heavy-oil
(IEA Conference, Calgary, 2002). Heavy-oil’s high viscosity and density are the main
challenges in heavy oil recovery, which sometimes make it immobile at initial reservoir
conditions.

Recently, because of the development in directional drilling technologies, it has been
possible to develop and produce heavy-oil reservoirs by very promising recovery methods
such as Steam-Assisted Gravity Drainage (SAGD) and Solvent Vapor Extraction
(VAPEX). These techniques have significantly improved oil recovery factor and reduce
production costs due to the improved sweep efficiencies.

Thermal recovery techniques such as Steam- Assisted Gravity Drainage (SAGD) takes the
advantage of the strong dependency of heavy oil viscosity on reservoir temperature. In

other words, SAGD has been applied to reduce the viscosity of heavy oil by heating the



reservoir. However, for reservoirs with high water content, thin pay zones or/and
underlying aquifers, thermal recovery methods are usually not considered as an economical
technique for heavy-oil recovery. In addition, despite the higher oil recovery of the SAGD
method, there are several challenges associated with this technique including the
requirement of large amount of fresh water, produced water treatment and handling, and
high energy consumption to generate steam, resulting in high CO2 emissions. Therefore,
another technique which uses the same well configuration as SAGD has shown up and
might be considered as a good alternative to the SAGD. This technique is VAPEX. In this
process hydrocarbon solvent is injected instead steam and the heavy oil viscosity is
decreased by dilution. Although VAPEX is less energy intensive than SAGD, it produces
at lower rates. In addition, there are also many challenges in VAPEX including it sensitivity
to reservoir heterogeneity and the requirement of large amount of solvent.

Therefore, Nasr et al., in 2003, suggested to add solvent to the injected steam to improve
the oil recovery or at least maintain the recovery and reduce steam injection with its
associated water treatment cost and hazards (Nasr et al. 2003).This is the concept of
Expanding Solvent Steam-Assisted Gravity Drainage (ES-SAGD) process. SAGD and ES-
SAGD are the two most promising thermal techniques to recover heavy oil and extra
heavy-oil reservoirs. The feasibility and efficiency of those processes have been studied in
the literature. Generally, ES-SAGD has better performance based on the oil recovery
factor, cumulative Steam Oil Ratio (cSOR) and oil production rate. However, there is no
detailed analysis of their recovery performances from economical point of view and based

on their Net Present Value (NPV) at the end of the project.



1.2 Problem Statement

ES-SAGD is a solvent/thermal recovery process with many operational parameters.
Determining the optimal values of the most-effective control operational variables with the
existing reservoir conditions is very challenging in practical life. These challenges are due
to the significant co-effect of the operational parameters on the reservoir behavior and
recovery performance. However, the ability to efficiently determine the appropriate values
of those parameters improves the recovery performance and the project profitability.

In real life and due to the fact that optimization problems are restricted by the time and
number of simulation runs required, especially, with the thermal/solvent and compositional
effect in ES-SAGD, the parameters are often determined by running sensitivity studies on
some or all the parameters where one parameter is varied while others are kept fixed. Then
the best value of the first parameter is kept fixed and the next parameter is investigated,
and so on. However, they are very limited in scope and cannot explore the entire domain
of interest. Moreover, this is liable to miss optimal combination of parameters due to their
likely interaction. This makes automatic optimization methods, especially the stochastic
optimization algorithms, more efficient in determining the optimal operational parameters.
Differential Evolution is one of the most successful optimization algorithms that have been
applied in real-life and engineering problems. However, it has not been used to optimize
the operational control parameters in ES-SAGD process. In addition, most of the literatures
use the cumulative steam oil ratio, cSOR as the objective function to be minimized when
optimizing ES-SAGD process, as they neglect the solvent loss in the formation when co-
injected with steam, which leads to inaccurate representation of the project profitability.
Therefore, this work will consider this solvent losses in the reservoir and use the Net

3



Present Value (NPV) of the project as the objective (cost) function to make our work

economically representative to realistic processes.

1.3

Research Objectives

In this work, three main research objectives are proposed and are organized as following:

1-

Recently, some self-adaptive strategies have been proposed to automatically adjust
these parameters. Qui et al., in 2009, proposed a very promising Self-adaptive
Differential Evolution algorithm (SaDE) used previous experiences of better
solutions to design a self-adaptive parameter control mechanism (Qin et al. 2009).
The first objective of our proposed work is to enhance SaDE algorithm in terms of
solution quality, speed the convergence to optimum solution and reduce
computational cost. Then study the performance of modified SaDE compared with
the original SaDE on benchmark test functions.

This research shows how the most promising optimization techniques SaDE and
proposed modified SaDE can be a robust tool for the design and performance
evaluation of one of the most challenging recovery process of (ES-SAGD). In
addition, this work, unlike most of the literatures, will consider solvent losses in the
reservoir as well as all the economic parameters in the ES-SAGD process.
Therefore, Net Present VValue (NPV) at the end of the project is used as the objective
(cost) function instead of cSOR to show the actual profitability, and make this study

more, economically, representative to the real-life conditions.



1.4

3-

SAGD and ES-SAGD are the two most promising techniques for production of
heavy oil and extra-heavy oil reservoirs. The feasibility and efficiency of those
processes have been studied in the literatures. Although ES-SAGD has, generally,
better performance based on the recovery factor, cSOR and oil production rate, the
real economic analysis of both methods has not been investigated. In this study, we
will consider the NPV of both processes to be the performance indicator instead of

cSOR to compare the profitability of each recovery method.

Methodology

Improve Self-adaptive Differential Evolution algorithm by completely modifying
its adaption technique and changing both the size and type of its candidate pool of
trial-vector generation strategies. This proposed modifications, will enhance
solution quality and improve the convergence speed with keeping the exploration
capabilities. As well as saving its computational costs.

Analyze the performance of proposed optimization algorithm compared with
original SaDE algorithm on suite of 22 numerical optimization problems.
Construct a numerical flow simulation model of one of Athabasca heavy oil
reservoirs by CMG STARS, a numerical flow simulation package for thermal
recovery process.

Develop a framework that integrates previously mentioned optimization
techniques, in addition to other two well-known optimization algorithms (DE and

PSO), with CMG STARS, to optimize ES-SAGD recovery process.



5-

A sensitivity study is done on ES-SAGD to determine a preliminary ranking of the
control operational parameters according to their effect on the project’s NPV. In
addition, this study will figure out the realistic effective range (upper and lower
limits) to be assigned to the selected operational parameters in optimization step.

A comparison study is done to figure out the most-effective optimization algorithm
that maximized the NPV of the project while considering other performance
indicators like Oil Recovery Factor (RF) and cumulative Steam Oil Ratio (CSOR).
Finally, for convenient, a performance analysis of optimized SAGD and ES-SAGD

recovery processes is proposed.



CHAPTER 2

Evolutionary Programing

2.1 Differential Evolution Algorithm

Similar to all other Evolutionary Algorithms (EAS), the evolutionary process of DE uses
mutation, crossover and selection operators at each generation to reach the global optimum.
DE’s performance highly depends on the mutation strategy and the crossover operator. In
addition the control parameters; population size NP and scaling factor F play an important
role in achieving the balance between the exploration and convergence speed of the

algorithm. The original DE algorithm could be illustrated as following:

Initialization

The upper and lower bounds for each parameter must be defined before the initial
population can be generated. Two D-dimensional initialization vectors, x" and x -, are
used to store these values where U and L indicate the upper and lower bounds respectively.
Once the initial bounds for each parameter have been specified, arandom number generator
assigns a value from within the prescribed range to each parameter of every vector. As

shown, the initial value at generation (g =0) of the j™ parameter of the i" vector is:

]

X0 ="and; (0.1).(x} —x])+x] (2.1)



The random number generator, rand ; (0,1) returns a uniformly distributed random number

from within the range[0,1]. The current population, symbolized by P, as determined in
Eq.(2.2), is composed of x; , vectors shown in Eq.(2.3) that have been already found to be
acceptable as initial points or created randomly as mentioned above.

Poo={Xig:i=12.,NP} g=01..,9g, (2.2)

X,9

X, =) i=12..D (2.3)

g

The index, g =0,1,..., 9, indicates the generation to which a vector belongs. In addition,
each vector is assigned a population index, i , which runs from 1 to Np . Parameters within
vectors are indexed with j,which runs from0to D .

Mutation
After initialization, DE mutates and recombines the population to produce a population of

NP vectors P, . In particular, differential mutation adds a scaled, randomly sampled,
vector difference to a third vector. Eq.(2.4) shows how to combine three different,

randomly chosen vectors to create a mutant vector v . o

+F.(X 1y =X 105 ) (2.4)

The scale factor, F (0,1], is a positive real number that controls the rate at which the

population evolves. The base vector r0 and the other two vectors; r1 and r2 are chosen
randomly and have distinct indexes from each other. Egs.(2.5) and (2.6) describe the
intermediary mutation population.

i =1,2,.,NP, g=01..0,, (2.5)



Vig={i,} §i=12..D (2.6)

1.9

Crossover

Each vector in the current population is then recombined with its mutant vector to produce

the trial population, P, as described by Egs.(2.7) and (2.8).

Po={Ui,} i=12..,NP, g=01..9,, (2.7)

u.g
Ui, =[ujs] i=12...D (2.8)

Differential evolution employs a uniform crossover to build trial vectors out of parameter
values that have been copied from two different vectors. In particular, DE crosses each

vector with a mutant vector as shown in Eq.(2.9).
" _ {V iig it rand; (0,1) <Cr oOF j=jg (29)
X

j.i.g otherwise.

Selection

If the trial vector, U.

i ¢» as an equal or more-optimum (lower in minimization problems,

and higher in maximization problems) objective function value then that of its target vector,

X. ., it replaces the target vector in the next generation; otherwise, the target retains its

ig’

place in the population for at least one more generation as shown in Eq.(2.10).

(2.10)

Ui,g if f(Uivg)is betterthanf(Xi‘g)
X i,g+1 = X

i,9 otherwise.



2.1.1 Pseudo-Code for DE Algorithm

Step 1: Initialization
Set the generation number g =0 and randomly initialize a population of NP individuals

P :{Xl,g,)(ﬁz,g,...Xvag} with X, =[Xy; X 41X | and each individual

X.9

uniformly distributed in the range |X,X"V ], where X' ={x/,x},..xy} and

D
XY ={x},x3,...xp } with i =[1,2,...,NP].

Step 2: WHILE the stop criteria is not satisfied
DO
FOR i=1to NP
Step 2.1: Mutation Step

Generate a donor vectorV { vigVaig ,...,vai’g} corresponding to

the i —th target vector X . o Via one of the different mutation schemes

of DE as per Egs. (2.11) — (2.17).
Step 2.2: Crossover Step

Generate a trial vector U {u1I goUzigrenlUp g} for the i —th

target vector X ; o through Eqs.(2.9).

Step 2.3: Selection Step
Evaluate the trial vector U,

IF f (Uﬁi,g) is better than f (Xﬂivg), then X, .,=U,,.
f ()(i,ngl):f (qu,g)
IF f(U,,) is better than f (X}, then X, =U,,,
f (Xoms)=f (Uis)
END IF
ELSE
Xai,g+l )(lg’f(ii,gﬂ):f ()(i,g)
END IF
END FOR
Step 2.4: Increase the generation count
g=9g+1
END WHILE
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2.1.2 Variants of Differential Evolution

Variants of DE are different in the way they perform mutation. In the literature usually
different variant of DE are presented in the form of DE / x /'y / z, where x is the vector that
will be mutated, y specifies the number of difference vectors used and z is the crossover
scheme (bin: binomial; exp: exponential).

DE/Rand/1

In this strategy, the base vector is chosen randomly and one weighted difference vector is

added to generate the mutant vector:

Vigu =X, +F (X, =X ) (211)

i,g+1 rli .9

DE/Best/1
This is similar to the DE / Rand / 1, but the base vector is the best vector resulting the
optimum objective function (cost) instead of the random selection. As shown in Eq.(2.12)

, the vectors difference is added to the best vector.

Y; =x%rli‘g+F.(>( —x”i) (2.12)

i,g+1 rzi,g rig

DE /Best/ 2

This strategy is similar to DE / Best / 1. However, instead of one difference vector, two
difference vectors, which selected randomly from the current population, are added to the
base vector as shown in Eq. (2.13). The base vector is the best vector that gives the optimum

value of the objection function
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HE(X =X X =X ) (213)

DE/Rand/2
This is similar to DE /Rand/ 1, but two difference vectors are selected randomly and added
to the base vector which is selected also randomly from the current population as shown in

Eq. (2.14).

Viga=X, +F.(>( X, X, X ) (2.14)

DE / Rand-to-Best / 1

In this strategy, some of the other strategies to create donor vector are mutated

recombinants. It mutates a two-vector recombinant: )(i,g + F.(X best.g —XAi 9 ) as shown

in Eq. (2.15).

V. =X +F.(x

i, g+l — ig

x”i,g)+|:.(xﬂ' -X ) (2.15)

best,g

DE / Rand-to-Best / 2

This is similar to DE / Rand-to-Best / 1, but two difference vectors are selected randomly.

Vign =X g +F (Ko =X g )+ F (X, =X J+F(X =X, ) (216)

g+ — best,g ~ ‘i K .g 0, i

DE / Current-to-Rand / 1
Is a rotation-invariant strategy, its effectiveness has been verified when it was applied to

solve multi-objective optimization problem.

Vv X, g +F. (X =X, )+F.()(2i —x*;,g) (2.17)

i,g+1 = i,g n.g ig

12



Where r/,r,,r,,r, and r. are vectors selected randomly from the current population.

)(Best'g is the best vector resulting the optimum value of the objective function.

2.2 Literature Review on DE

Researchers, over the past few years, have been investigating ways to improve the DE
performance by tuning its control parameters. Storn and Price indicated that a reasonable
value for NP cold be between 5D and 10D (D is the dimension of the problem), and a good
initial choice of F could be 0.5 (Storn and Price 1995).

In 2002, Gamperle et al. tested different control parameters of DE on the Rosenbrock’s,
Sphere, and Rastrigin’s functions (Gamperle et al. 2002). Their results showed that the
global optimum searching capacity and the convergence speed are very sensitive to the
choice of control parameters NP, F and CR. In addition, the best range of the population
size NP is between 3D and 8D, with scaling factor F = 0.6 and CR in [0.3, 0.9].

In 2005, Ronkkonen et al. showed that typical F range is [0.4, 0.95] with F = 0.9 is a good
first choice. CR usually lies in (0, 0.2) when function is separable, while in (0.9, 1) when

the function’s parameters are dependent (Ronkkonen et al. 2005).
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2.2.1 Literature Review on Performance Comparison of DE and Other
Optimization Algorithms

It is demonstrated that the Differential Evolution method converges faster and with more
certainty than both Adaptive Simulated Annealing and the Annealed Nelder & Mead
method. As the DE is robust, easy, requires few control parameters and lends itself very
well to parallel computation (Storn and Price 1995). Storn et.al tested the DE method on
function test-bed contains De Jong functions as presented in Ingber (1992) plus some
additional functions which present further distinctive difficulties for global minimizer. The
results showed that the Differential Evolution method was the only strategy to converge
for all the functions in the test function suite and that could find all global minima of the
test suite in the least number of function evaluations (Storn and Price 1995). Because the
Differential Evolution technique is inherently parallel, a more significant speed up could
be obtained if the algorithm is executed in a parallel machine or computer network, which
is very useful in real-practical problems where optimizing the objective function requires
extensive computational time.

Another study was done by Das et.al to compare the popular optimization method, Particle
Swarm Optimization PSO with the Differential Evolution algorithm, where both
algorithms do not require any gradient information of the function to be optimized, uses
only primitive mathematical operators and are conceptually very simple. They also
concluded that the DE performs better than PSO on the different test functions they used
(Das et al. 2008).

In 2012. A performance comparison of GA, DE, PSO and SA methods was done by K.

Chandrasekar et al., they also found that the Differential Evolution outperforms GA, PSO
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and SA methods both in enhancement of TTC and computational efficiency (Chandrasekar
and Ramana 2012).

However, little is known about DE’s scaling property and behavior in real-world
applications and it is important for practical application to gain more knowledge on how

to choose the control variables for DE for a particular type of problem.

2.2.2 Literature Review on Self-Adaptive DE Algorithms

In real-world optimization problems, this could be confusing for engineers, as several
claims and counter claims were reported to choose the control parameters of DE. Therefore,
researchers developed techniques to be self-adaptive in order to avoid manual parameters
adjusting. Usually, self-adaption is applied to tune the control parameters F and CR.
Abbass self-adapted the crossover rate CR for multi-objective optimization problems, by
encoding the value of CR into each individual and simultaneously evolving it with other
search variables. The scaling factor F was generated for each variable from a Gaussian
distribution N (0, 1) (Abbass 2002).

In 2003, Zaharie proposed a parameter adaption strategy for DE (ADE) based on the idea
of controlling the population diversity, and implemented a multi-population approach
(Zaharie 2003).

In 2005, Omran et al. proposed a self-adaptive scaling factor parameter F (Omran et al.
2005). They generated the value of CR for each individual from a normal distribution N
(0.5, 0.15). This approach (SDE) was tested on four benchmark functions and performed

better than other DE versions.
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In addition to adapting the control parameters F or/and CR, some researchers also adapted
the population size NP. Teo introduced DE with self-adaptive populations (DESAP)(Teo
2006), based on Abbass’ self-adaptive Pareto DE (Abbass 2002).

Brest et al. encoded control parameters F and CR into the individual and evolved their

values by using two new probabilities z; and r,. In their algorithm (SADE), a set of F

values was assigned to each individual in the population. With probability z,, F is

reinitialized to a new random value in the range [0.1, 1.0], otherwise it is kept unchanged.
The crossover CR assigned to each individual is adapted in an identical fashion, but with a
different re-initialization range of [0, 1] and with the probability r,. With probability 7,,
CR takes a random value in [0, 1]. Otherwise it retains it earlier value in the next generation.
In 2008, Rahnamayan et al. introduced an Opposition-based DE (ODE) that is specially
suited for noisy optimization problems. The conventional DE algorithm was enhanced by
utilizing the opposition number-based optimization concept in three levels, namely
population initialization, generation jumping, and local improvement of the population’s
best member (Rahnamayan et al. 2008).

Norman and Iba proposed the Fittest Individual Refinement (FIR); a crossover-based local
search method for DE. The FIR scheme accelerates DE by enhancing its search capability
through exploration of the neighborhood of the best solution in successive generation.
(Noman and Iba 2008)

In 2009, Qin et al. proposed a Self-adaptive DE (SaDE) algorithm (Qin et al. 2009), in
which both the trial vector generation strategies and their associated parameters are
gradually self-adaptive by learning from their previous experience of generation promising

solutions.
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Inspired by SaDE algorithm and motivated by the recent success of diverse self-adaptive
DE approaches, Mallipeddi et al. developed a self adaptive DE, called EPSDE, based on
ensemble approach (Mallipeddi et al. 2011). In EPSDE, a pool of distinct mutation
strategies along with a pool of values for each control parameter coexists throughout the
evolution process and competes to produce offspring. The performance of EPSDE was
evaluated on a set of bound constrained problems and compared with conventional DE and
other state-of-the-art parameter adaptive DE variants. The comparative results showed that
EPSDE algorithm outperformed conventional DE and other state-of-the-art parameter
adaptive DE variants in terms of solution quality and robustness.

Gang et al. proposed a hybrid DE based on the one-step k-means clustering and 2 multi-
parent crossovers, called clustering-based differential evolution with 2 multi-parent
crossovers (2-MPCs-CDE) for the unconstrained global optimization problems (Liu et al.
2012). In 2-MPCs-CDE, k cluster centers and several new individuals generate two search
spaces. These spaces are then searched in turn. This method utilized the information of the
population effectively and improves search efficiency. Hence it can enhance the
performance of DE. A comprehensive set of 35 benchmark functions was employed for
experimental verification. Experimental results indicated that 2-MPCs-CDE is effective
and efficient.

Piotrowski et al. presented an algorithm to improve optimization performance, namely DE
with Separated Groups (DE-SG) (Piotrowski et al. 2012), which distributed population into
small groups, defined rules of exchange of information and individuals between the groups
and used two different strategies to keep balance between exploration and exploitation

capabilities. The performance of DE-SG is compared to that of eight algorithms belonging
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to the class of Evolutionary Strategies (Covariance Matrix Adaptation ES), Particle Swarm
Optimization (Comprehensive Learning PSO and Efficient Population Utilization Strategy
PSO), Differential Evolution (Distributed DE with explorative-exploitative population
families, Self-adaptive DE, DE with global and local neighbors and Grouping Differential
Evolution) and multi-algorithms (AMALGAM). Although slow for simple functions, the
DE-SG algorithm achieved a good success rate for more difficult 30- and 50-dimensional
problems.

In 2013, Mohamed et al. introduced an Effective Differential Evolution (EDE) algorithm
for solving real parameter optimization problems over continuous domain (Mohamed et al.
2013). The proposed algorithm proposed a new mutation rule based on the best and the
worst individuals among the entire population of a particular generation. The mutation rule
IS combined with the basic mutation strategy through a linear decreasing probability rule.
The proposed mutation rule is shown to promote local search capability of the basic DE
and to make it faster. Furthermore, a random mutation scheme and a modified Breeder
Genetic Algorithm (BGA) mutation scheme are merged to avoid stagnation and/or
premature convergence. Additionally, the scaling factor and crossover of DE are
introduced as uniform random numbers to enrich the search behavior and to enhance the
diversity of the population. The EDE algorithm is shown to be competitive with other

algorithms in terms of final solution quality, efficiency, convergence rate, and robustness.
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2.3  Self-adaptive Differential Evolution

The SaDE algorithm can be described in two major steps:

Adaption of Trial Vector Generation Strategy

When solving different optimization problems, DE realizations using diverse trial vector
generation strategies typically perform differently. Unlike using the computationally
expensive trial-and-error search for the most suitable strategy and its associated control
parameters, Qin et al., in 2009, kept a strategy candidate pool including several effective
trial vector generation strategies with effective yet various characteristics (Qin et al. 2009).
With respect to each target vector in the existing population, during evolution, one strategy
will be chosen from the candidate pool according to a probability learned from its previous
experience of generating promising solutions and applied to execute the mutation task. The
more successfully one strategy behaved in previous generations to generate favorable
solutions, the more probably it will be chosen in the current generation to generate
solutions.

In SaDE algorithm, four trial vector generation strategies are used; “DE/rand/1/bin” Eq.
(2.11), “DE/rand/2/bin” Eq. (2.14), “DE/rand-to-best/2/bin” Eq.(2.16), and “DE/current-
to-rand/1” Eq. (2.17), as candidate pool.

In the SaDE algorithm, one trial vector generation strategy is selected from the candidate
pool, with respect to each target vector in the current population, according to the
probability learned from its success rate in generating improved solutions within a certain
number of previous generations. The selected strategy is subsequently applied to the

corresponding target vector to generate a trial vector. More specifically, at each generation,
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the probabilities of choosing each strategy in the candidate pool are summed to 1. These
probabilities are gradually adapted during evolution in the following manner.
Assume that the probability of applying the k™ strategy in the candidate pool to a target

vector in the current population is p, ,k =1,2,...,K, where K is the total number of

strategies contained in the pool. The probabilities with respect to each strategy are
initialized as 1/k , i.e., all strategies have the equal probability to be chosen. SaDE used
the stochastic universal selection method to select one trial vector generation strategy for

each target vector in the current population. At the generation g , after evaluating all the

generated trial vectors, the number of trial vectors generated by the k™ strategy that can

successfully enter the next generation is recorded as ns, ,, while the number of trial

vectors generated by the k™ strategy that are discarded in the next generation is recorded

as nf, .. SaDE has success and failure memories to store these numbers within a fixed

number of previous generations hereby named learning period (LP). As illustrated in

Table 2.1 and Table 2.2, at the generation g, the number of trial vectors generated by

different strategies that can enter or fail to enter the next generation over the previous LP
generations are stored in different columns of the success and failure memories. Once the
memories overflow after LP generations, the earliest records stored in the memories, i.e.

ns or nf__ . will be removed so that those numbers calculated in the current

g-LP
generation can be stored in the memories, as shown in Table 2.3.

After the initial LP generations, the probability of choosing different strategies will be
updated at each subsequent generation based on the success and failure memories as

following:
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Peg =% (2.18)
DSk
k=1
where:
9max —1
ns, ,
Skg = o e g 1 +e, k=12..,K; g, >LP (2.19)
D ons. + Y, nf,
g:gmax_LP g:gmax_LP
where S, represents the success rate of the trial vectors generated by the k™ strategy

and successfully entering the next generation with the previous LP generation with respect
to generation g . The small constant value &£=0.01 is used to avoid the possible null

success rates. To ensure that the probabilities of choosing strategies are always summed to

K
1, we further divide S, ; by Zsk to calculate p, ,. Obviously, the larger the success
k =1

rate for the k™ strategy within the previous LP generation is, the larger the probability of

applying it to generate the trial vectors at the current generation.
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Table 2.1: Success memory

Index Strategy 1 Strategy 2 Strategy K
1 NS4 1p NSyq-1p NSy g-Lp
2 NS1g 1pu NS4 1pu NSy g P
LP I’]Sl’gfl nsz’gfl I’]Sk’gfl
Table 2.2: Failure memory
Index Strategy 1 Strategy 2 Strategy K
1 nf 1,9-LP nf 2,g-LP nf, ,g-LP
2 nf 1,9-LP+1 nf 2,0-LP+1 nf k,g-LP+1
LP nf, nf,, nfy 4
Table 2.3: Progress of Success memory
r’|Sl,g—LP nsk,g—LP ns1,g—LP+1 r]sk,g—LPﬂ nsl,g—LP+2 r]Sk,g—LP+2
nsl,g—l e I’]Sk,g—l nsl,g e I’]Sk g I’lsl,g+l ... nsk ,g+1
Generation g Generation g +1 Generation g +2
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Adaption of Control Parameters

In the conventional DE, the choice of numerical values for the three control parameters F
, CR ,and NP highly depends on the problem under consideration. In the SaDE algorithm,
NP is left as a user-specified parameter because it highly replies on the complexity of a
given problem. In fact, the population size NP does not need to be fine-tuned and just a
few typical values can be tried according to the pre-estimated complexity of the given
problem. Between other two parameters, CR is usually more sensitive to problems with
different characteristics, e.g., the uni-modality and multimodality, while F is closely
related to the convergence speed (Qin et al. 2009). In SaDE algorithm, the parameter F is

approximated by a normal distribution with mean value 0.5 and standard deviation 0.3,

denoted by N (0.5,0.3). A set of F values are randomly sampled from such normal

distribution and applied to each target vector in the current population. It is easy to verify
that values of F must fall into the range [-0.4,1.4] with the probability of 0.997. By doing
S0, we attempt to maintain both exploitation (with small F values) and exploration (with
large F values) capabilities throughout the entire evolution process.

The proper choice of CR can lead to successful optimization performance while a wrong
choice may deteriorate the performance. In fact, good values of CR generally fall into a
small range for a given problem, with which the algorithm can perform consistently well.
Therefore, SaDE considered gradually adjusting the range of CR values for a given
problem according to previous CR values that have generated trial vectors successfully
entering the next generation. Specifically, Qin et al., in 2009, assumed that CR obeys a

normal distribution with mean value CR,, and standard deviationStd =0.1, denoted by
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N (CR,,,Std ) where CR, is initialized as 0.5. The Std should be set as a small value to
guarantee that most CR values generated full within [0,1], even when CR_ is near O or

1. Hence, the value of Std is set as 0.1. Experiments showed that minor changes to the
Std of the Gaussian distribution do not influence the performance of SaDE significantly
(Qin et al. 2009).

In SaDE, the value of CR  is adapted with respect to each trial vector generation strategy
as following:

With respect to the k" strategy, the value of CR_, is initialized to 0.5. A set of CR

m .,k

values are randomly generated according to N (CRm’k ,0.1) and then applied to those

target vectors to which the k" strategy is assigned. To adapt the crossover rate CR ,

memories named CR are established to store those CR values with respect to the

Memory

k" strategy that have generated trial vectors successfully entering the next generation

within the previous LP generations. Specifically, during the first LP generations, CR

values with respect to k™ strategy are generated by N (CR 0 1). At each generation

mk ™"

after LP generations, the median value stored in CR will be calculated to overwrite

Memory

CR,,, - Then, CR values can be generated accordingto N (CR,,, ,0.1) when applying the

k™ strategy. After evaluating the newly generated trial vectors, CR values in CR

Memory
that correspond to earlier generations will be replaced by promising CR values obtained at

the current generation with respect to the k™ strategy.
In the SaDE algorithm, both trial vector generation strategies and their associated control

parameters are gradually self-adapted by learning their previous experiences of generating
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promising solutions. Consequently, a more suitable strategy along with its parameter
setting can be determined adaptively to suit different phases of the search process.
Extensive experiments described and done by Qin et al., in 2009, verified the promising
performance of the SaDE to handle problems with distinct properties such as uni-modality

and multi-modality (Qin et al. 2009).
2.3.1 Pseudo-Code for SaDE Algorithm

Step 1: Set the generation number g =0 and randomly initialize a population of NP

Xy o) with X, =[x sigrXpig | and

each individual uniformly distributed in the range [)(L,)(U}, where

individuals P, , ={X,,,X X

1,9 2,1 1i,9°

X5 ={x}, X5, Xp } and XY ={x},x5,..,xp } with i =[1,2,..,NP].
Initialize the median value of CR (CRm'k ) strategy probability p, ,, K is the

number of available strategies, and learning period LP .
Step 2: Evaluate the population
Step 3: WHILE stopping criterion is not satisfied
DO
Step 3.1: Calculate strategy probability p, , and update the success and

failure memory
IFg>LP
FOR k =1tok
Update the p, , by Eq. (2.18)
Remove ns, ;_,, and nf, ;. out of the Success and

Failure Memory respectively.
END FOR
END IF
Step 3.2: Assign trial vector generation strategy and parameter to each
target vector X,

Assign trial vector generation strategy
Using stochastic universal sampling to select one strategy k for
each target vector X ; |
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Assign control parameter F

FOR i =1to NP
F. =Normmd (0.5,0.3)
END FOR
Assign control parameter CR
IFg>LP
FOR k =1toK
CR,,, =median (CRyqyy, |
END FOR
END IF
FOR k =1toK
FOR i =1to NP
CR,; =Normmd (CR,,,,0.1)
WHILE CR,,, <0 or CR, , >1
CR,; =Nommd (CR,,,,0.1)
END WHILE
END FOR
END FOR

Step 3.3: Generate a new population where each trial vector Uifg IS

generated according to associated trial vector generation
strategy k and parameters F and CR, ; in Step 3.2.

k

i o Within the search

Step 3.4: Randomly reinitialize the trial vector U

space if any variable is outside it boundaries.
Step 3.5: Selection
FOR i =1to NP

Evaluate the trial vector U ifg
IF f (U i'fg) is better than f (Xi,g)
=Uikvg, f (Xi,g+l):f (Uk )

ig

X

i,g+1
ns, ,=ns,,+1
Store CR, ; into CR

Memory

IF £ (U,) is better than f (X g, )

Xbest,g :Uik,g’ f (Xbest,g):f (Ulkg)
END IF

26



ELSE
nf,s=nf o +1
END IF
END FOR

Store ns,, and nf, , (k =1,2,..,K) into the Success and

Failure Memory respectively.
Step 3.6: Increment the generation count

g=9+1

k,g?

END WHILE

2.4  Proposed Work: Modified Self-adaptive Differential Evolution

Qin et al, when proposing self-adaptive DE algorithm, overcame the dilemma of selecting
appropriate trial vector generation strategy along with its associated parameter values.
Therefore, SaDE algorithm avoided the expensive computational costs spent on searching
for the optimum strategy for each optimization problem. However, a good candidate pool
should be restrictive so that the unfavorable influences of less effective strategies can be
suppressed. Moreover, a set of effective strategies contained in a good candidate pool
should have diverse characteristics. That is, the used strategies should demonstrate distinct
capabilities when dealing with optimization problem. Generally speaking, having more
strategies in candidate pool means an obligation of more number of function evaluations
to achieve the success of self-adaptive algorithm. In other words, SaDE depends on
spreading out number of population NP, equally, on the strategies in candidate pool at the
initialization step. Having insufficient population vectors for each strategy, results in bad
performance in the learning-period stage, and would give non-representative success and
failure rates for each strategy, which is the main indicator to self-adapt DE algorithm to a

successful trial-vector generation strategy in the optimization problem.
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The main advantage of SaDE is avoiding the expensive cost of computation and this would
not be valid if large number of strategies are selected in the candidate pool. On the other
hand, having less number of strategies could result in bad optimization performance on
same problem due to the lack of variety in strategy characteristics. Therefore, the main
challenges that are investigated and solved by the proposed algorithm can be classified as:
firstly, form a good candidate pool with the minimum number of effective strategies that
possess exploration and exploitation capabilities. Secondly, improve the convergence
speed without allowing the algorithm to be stagnant in local optima.

These two challenges become very critical when dealing with real-life complex
optimization problems which are very expensive in terms of computational cost.

In this work, we modify and improve the Self-adaptive Differential Evolution SaDE
algorithm proposed by Qin et al. (Qin et al. 2009) in terms of higher solution quality,
convergence speed enhancement and maintaining the exploration capabilities required for
successful DE algorithm. The proposed algorithm, which is been referred as Modified Self-
adaptive Differential Evolution (MSaDE), introduces new technique to determine the
success rate of each trial-vector generation strategy based on the quality of improvement
in solution toward optimum solution that each strategy achieves, not on the successful
number of entries to following generations as applied in original SaDE. In addition, to
downsize the candidate pool to include only two effective trial-vectors generation strategies
instead of four as described in the original SaDE. Therefore, the modification proposed to

SaDE can be divided to two major steps:
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A New Technique to Adapt Trial-Vector Generation Strategy

In SaDE, Qin et al. (Qin et al. 2009) used the success and failure rates in learning period to
determine which strategy of generating trial vector is more effective as shown in Egs.
(2.18) and (2.19). then, in the following generations, more population vectors are assigned

to the more successful strategy. In other words, the original SaDE algorithm determined

the success rate S, . of k™ strategy by calculating how many times (ns, ) that strategy,

k.g
successfully, enter to the next generation as shown in Eqg. (2.19), neglecting the “quality”
of improvement that k™ strategy has achieved toward the optimum solution. Therefore, if
a strategy A enters next generations in learning period more than strategy B, even if
strategy B has a bigger effect on the solution improvement toward optimum solution,
strategy A will still be considered more successful than strategy B . Consequently, in next
generation, original SaDE algorithm will assign more population vectors to strategy A
than B, which will result in misrepresentation in both strategies performance and
weakening the real-effective strategy that leads to , relatively, bad results.

In order to overcome this dilemma, we introduce a different technique to determine the

successful rate S,

«g Of astrategy k . The proposed technique depends on the “quality” of

solution improvement that has been achieved by strategy k within the learning period
toward optimum solution as following:
After the initial learning period LP , at generation g , the probability of choosing k"

strategy (k =1,2,...,K ) is update by Eqg. (2.20).

Prg =1 (2.20)
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where S, _ is determined by Eq. (2.21).

k.g

9 max

1
> WFR,

S = _9=UmLP +&, (k=12,...,K; g > LP) (2.21)

k'g gmax’]-

i Z WFk,g

k=1 9=0max—LP

The Weight Factor, WF, _, is determined by Egs. (2.22) and (2.23). in maximization and

minimization optimization problems respectively.

WF, , =f (U, ), = (X,), (2.22)
WF , =f (X,) —f (U,), (2.23)
where:
X,  :listhe target vector
U, . is the trial vector
& - is small constant (0.01) used to avoid null success rate

As shown, the success rate in the proposed Modified Self-adaptive Differential Evolution
(MSaDE) depends on the solution improvement that achieved by each strategy which,
truly, represents the actual-success of a strategy and enables the algorithm to be self-
adapted to the real-effective strategy. This novel technique enhances the solution quality
and speed the convergence rate.

Then, a combination technique between the old and new methods is also tested. In which

the probability p, , from Eq. (2.18) and probability p,;g from Eq. (2.20), are combined

as .
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Peo =(Peg)-(Pis) (2.24)

p: , combines two success indications for strategy k ; the successful number of entries for

k™ strategy represented by P, » aswell as the solution improvement represented by P, o

Therefore, in this combination technique, it can be shown that if a strategy k has
successfully entered the next generation and, at the same time, improve the solution better
than remaining strategies in the candidate pool, the success probability is significantly
increased. Subsequently, the convergence speed will be increased. This excess acceleration
in convergence is preferable in solving simple optimization methods with low dimensions
where the algorithm is able to find out, quickly, the successful strategy to dominate the
generation of trial-vectors. However, in complex optimization problems, this combination
technique could be ineffective and cause premature convergence and stagnation problems
at local optima.

Therefore, the effectiveness of the proposed technique and combination technique is
compared with the original technique to find out the best utilized technique with self-
adapted differential evolution algorithm. The numerical experiments and results in this
study show that the proposed new-adaption technique and combination technique are more
effective, in terms of solution quality and convergence speed, than the old-adaption

technique of SaDE.
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Downsize Candidate Pool of Strategies

The successful candidate pool of trial-vector generation strategies should have the
capabilities of exploration and exploitation. The importance of exploration in DE is to
overcome the problem of premature convergence, where the population converges to some
local optima, losing its diversity and resulting in stagnation. On the other hand, the
exploitation features enable the algorithm to have fast convergence speed toward the
optimal solution.

Original SaDE has four strategies; “DE/Rand/1/bin”, “DE/Rand/2/bin”, “DE/Rand-to-
Best/2/bin”, and “DE/Current-to-Rand/1” as illustrated in Egs. (2.11), (2.14), (2.16) and
(2.17) respectively. Qin et al., in 2009, tried to make the candidate pool having all the
effective strategies on the literature and typically possess the exploration and exploitation
features. However, and as mentioned before, it is very difficult to be applied on the real-
life and complex engineering problems as it requires large number of population vectors to
be initiated which means huge number of function evaluations. In addition, Qin et al, in
2009, admitted that the optimal pool size and strategies selection deserve further
investigation (Qin et al. 2009).

The proposed MSaDE optimization algorithm has only two strategies to generate trial-
vectors. These two strategies have been selected to preserve the exploration and
exploitation capabilities as well as improve convergence speed by distributing population
vectors NP on only two strategies instead of four as proposed in the original SaDE.
Downsizing the candidate pool and having effective strategies saves a lot of computational
time and results in higher solution quality. The two strategies selected in MSaDE are:

“DE/Best/1/bin” [Eq. (2.12)]; which relies on the best solution found so far and has fast
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convergence speed, and “DE/Rand/1/bin” [Eq. (2.11)]; which usually demonstrates slow
convergence but bears stronger exploration capability. Having these two strategies in the
same candidate pool, achieves the required balance between exploration and exploitation
capabilities of the MSaDE algorithm, in addition to reducing the function evaluations
required to find the optimum solution. The numerical experiments in the study shows that
downsizing the candidate pool, with effective selected strategies to generate trial-vectors
in mutation step, improves the solution quality and increase convergence speed.

The remaining of this work refers to self-adaptive DE algorithms as following:

SaDE: The original Self-adaptive Differential Evolution with four trial-vector
generation strategies in the candidate pool, and original adaption technique
[Eq. (2.18)].

SaDE-2: In this algorithm, the original adaption method is utilized with changing and
reducing number of trial-vector generation strategies to “DE/Rand/1/bin”
and “DE/Best/1/bin”.

MSaDE-1: Refers to the proposed Modified Self-adaptive DE algorithm in which the
novel adaption technique shown in Eg. (2.20) is used and downsizing
candidate pool of trial vector generation strategies to two as mentioned.

MSaDE-2: Is similar to MSaDE-1, but with combination adaption technique shown in

Eq. (2.24).
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2.5 Numerical Experiments

In this section, a comparison study is done to analyze the performance of proposed

algorithms (SaDE-2, MSaDE-1 and MSaDE-2) versus the original SaDE algorithm.

2.5.1 Benchmark Functions
In order to evaluate the performance of the proposed algorithms, twenty two well-known
benchmark test functions mentioned by (Yao et al. 1999) ; (Hedar 2007), presented

inTable 2.4, are used.

Functions f,—f,, are high-dimensional problems. Functions f,—f. are unimodal.
Functions f,—f,, are multi-modal functions where the number of local minima increases
exponentially with the problem dimension. They seem to be the most difficult class of
problems for many optimization problems (Yao et al. 1999). Functions f, —f,, are low-

dimensional functions, which have only a few local minima.

Table 2.4 shows the benchmark functions used in this study. N is the dimension of the

function, f . is the minimum value of the function, and S cR".

n
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Table 2.4: Benchmark of test functions

Test Functions n S f
) =" x? 10,30 [-100,100]" O
f,(x)=>" (x;+05) 10,30 [-100,100]" O
f(x) =3 ix? 1030 [-1010] 0
()= 20+ T 1030 [1010] 0
f(x)=>" [100( a2 +(x, —1)1 1030 [-30,30] 0
fﬁ(x):—ZOexp(—O.Z fs—lozi”le]
10,30  [-32,32]' 0
—exp[%ZLcosZﬂxi ]+20+e
1 n n n
f7(x):mziﬂxf— i COS[\/TJH 10,30 [-600,600] O
-1)
fS(X) 10sin’ (zy,) + Z
[1+10$|n (zy,. )] (y, -1) 10,30 [_50’50]n 0
+>." u(x,,10,100,4)
(Xi _1)2
fo(x)=0.19sin*(23x,)+ > " [1+sin (37x, )]
+(xn—1)2[1+sin2(27rxn)] 10,30 [—50,50]n 0
+>" u(x,,5100,4)
fio(x)=", [ x? —10cos(27x, )+10] 10,30 [-5125.12]" O
n 5 +10x,, 2+5xi_—xi ?
fll(x):Z“ii‘l1 ( 4i-3 2)4 ( 4i1 4) ) 8,28 [_4’5]n 0
+(X4i—2_2X4i—1) +1O(X4i—3_x4i)
Cont.../
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Test Functions n S F rin
-1
fo(x)= i+Zil - ! - 2 [-65.536,65.536]" 1
500 j +Zi:l(xi _aiJ')
X, (b?+b.x ) i
fa()=>""|a X0l +bixs) 4 5,5 0.0003075
(%) Z'lla' b?+b,x;+X, =53]

fM(x):4xf—2.1xf+%xf+x1x2—4x§+4x§ 2 [-5,5]" —1.0316285

2
fls(x)—(xz— 12 X2+ 5xl 6)

2 [-5,10]x [0,15] 0.398

87

+10(1—ijcosxl+10

19-14x, +3x /7 -14x,

=1+ (x, +x, +1)°
(e, )(+6x1x2+3x22

2

x| 30+ (2%, —3X,) x(

—36X,X, + 27X

fr(x)=-2.c eXpl:_Z?—laij (x; -y )2}
fe(x)= Zin:l(xi —1)2 - in:ZXiXi—l
fo(x)==>"sin(x,)sin*" (ﬁj

fzo(x):(Z;i cos((i +1)x, +i ))
.(Zlei cos((i +1)x, +i ))

() =2 [(Z0x! )b, ]

foo () =200 200,00 +ﬁ)([xﬂi _1ﬂ2

18-32x, +12x/ +48x,

I

ol

—4.687658

—186.7309
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2.5.2 Experimental Setup
Experiments were conducted on the twenty-two functions to evaluate the performance of

four algorithms SaDE, SaDE-2, MSaDE-1 and MSaDE-2. For functions f, —f,, both 10-
dimensional (10-D) and 30-dimensional (30-D) functions were tested. For function f,,,

both 8-D and 28-D functions were tested. For the remaining functions f,, —f,,, the

function dimension is shown in Table 2.4.

All experiments were run 25 times independently and statistical results are provided
including the best, median and worst obtained results versus number of function evaluation
numbers. The population sizes are set to be between 30, 50 and 100 based on the function
dimension. All other control parameters are self-adaptive for the four algorithms.

In MATLAB 2014, the minimum and maximum double-precision values are from
2.22507E-308 to 1.79769E+308. Therefore, we put a tolerance of 1E-15. Beyond this

value, the function’s fitness is considered to be 0.0. In other words, the optimization run

will be stopped, if the error, ‘f “—f |, becomes less than 1E-15; where f * is function

min

fitness and f . is the global minimum of a function f .

n
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CHAPTER 3

RESULTS AND CONCLUSION

3.1 Experimental Results

The results (best run, median run and worst run) of the comparison are provided in
Table 3.1 for 10-dimensions functions, Table 3.2 for 30-dimensional functions and

Table 3.3 for the remaining functions. The best “median” results are typed in bold and it

means the minimum objection function error, ‘f “—f |, obtained within the 25 runs.

min
While the “worst” result means the maximum error obtained. Note that for functions

f,—f,, f, and f,, ,the values listed in Table 3.1, Table 3.2 and Table 3.3 are the absolute

difference between the obtained results (f or f,.«) and tolerance (1E-15). For

best fmedian
the functions, f,, —f,,, the optimum values are not zeros. Therefore, the listed results (best,
median and worst) for those functions in Table 3.3 are the absolute difference between the

obtained results (f ., f and f, ) and actual optimum f_; . Furthermore, in order to

median

analyze the performance behavior of each algorithm, the convergence characteristics in

terms of how fast the “median” of each algorithm reaches to the minimum value (f . ) for

min
10-D unimodal functions f,—f., 10-D multimodal functions f,—f,;, 30-D unimodal

functions f, —f., 30-D multimodal functions f, —f,, and the remaining functions f,, —f ,

are shown in Figure 3.1 to Figure 3.5 respectively.
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3.1.1 10-D Unimodal Functions (f, -f,)

From the results shown in Table 3.1, it can be seen that, generally, MSaDE outperforms

SaDE for all 10-D unimodal functions, f,—f,. Additionally, it can be observed that

MSaDE-1 and MSaDE-2 algorithms are almost the same and they approximately achieved
the same results. However, MSaDE-2 exhibit better results in this case.

As shown in Figure 3.1.e, changing and downsizing the candidate pool of trial-vector
generation strategies (as in SaDE-2) result in significant improvement in solution quality
and convergence speed. Furthermore, MSaDE algorithm exhibit better optimization

performance than SaDE and SaDE-2 due to the implementation of new adaption technique.

3.1.2 10-D Multimodal Functions (f,—f,)

Table 3.1 shows that MSaDE is better than SaDE for all functions, f, —f,, except for f

"
where SaDE-2 shows the best “median”. However, as shown in Figure 3.6, it can be
observed that the “best” results for MSaDE-1 and MSaDE-2 converge faster than SaDE.

It can also be shown in Figure 3.2 that big improvement is achieved by adding the strategy
“DE/Best/1/bin” to the candidate pool and reducing the number of strategies to two instead
of four, which is represented by SaDE-2. Then, additional improvement is clearly achieved

when applying MSaDE-1 and MSaDE-2 algorithms.
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3.1.3 30-D Unimodal Functions (f,—f)

As shown in Table 3.2, MSaDE exhibits better optimization performance than SaDE

algorithm for all functions (f, —f, ) except for function f_ where SaDE-2 shows the best

“median” result. However, when applying the new adaption technique from Eq. (2.20) and
combination technique Eq. (2.24) with keeping the candidate pool of trial-vector generation
strategies as same as original SaDE, performance improvement in MSaDE is observed.
MSaDE-1B and MSaDE-2B refer to the Modified Self-adaptive DE algorithms in which
candidate pool of trial-vector generation strategies are the same as in the original SaDE,
while applying the new adaption and combination techniques, respectively. As shown in
Figure 3.7, the proposed methods are, significantly more effective than the original SaDE

in terms of solution quality.
In contrary to what has been shown in 10-D unimodal functions (fl—fs), MSaDE-1

performs better than MSaDE-2 in 30-D unimodal functions.

3.1.4 30-D Multimodal Functions (f, —f,,)

With reference to Table 3.2, the results show that MSaDE is surpassed by SaDE algorithm

on function f_, only. However, MSaDE algorithm optimization performance is superior in
all other functions f_ —f_,. In addition, as shown in Figure 3.8, when applying MSaDE-

1B and MSaDE-2B to that function f they perform better and reach to the optimum
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converge faster than the original SaDE. In additions, MSaDE-1 performs better than

MSaDE-2 in this case.
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3.1.5 Remaining Functions (f,, -f,,)

Table 3.3 shows the comparison between SaDE, SaDE-2, MSaDE-1 and MSaDE-2 on

f,, —f,, over 25 runs for small dimensions functions. It is obviously shown that MSaDE

11
is superior to the SaDE algorithm in all functions in terms of best “median” results.
f

In function f_,, all algorithms converged to the optimum solution. In functions f

131 127 "14

and f,, SaDE-2, MSaDE-1 and MSaDE-2 reach to the optimum solution, while original

SaDE did not, even the best results obtained from SaDE did not reach the optimum

solution.

Generally, it is clear that MSaDE outperformed SaDE algorithms; MSaDE performed
better than SaDE in 82% of all the 22 functions considered. As shown in Table 3.4,
MSaDE-1 is the best in optimizing 30-D functions while MSaDE-2 performs a little better
than MSaDE-1 in optimizing 10-D functions. However, MSaDE-1 is the second best in
this case. For functions with small dimensions (<10-D), both MSaDE-1 and MSaDE-2 have

the same strength to find the optimal solution for the functions in this case.

Table 3.4: Performance comparison summary of SaDE, SaDE-2, MSaDE-1 and MSaDE-2 over 25 independent
runs for all functions

Success Percentage Over all Benchmark Test

Eunctions Functions, f, —f,,, (%)
SaDE SaDE-2 MSaDE-1 MSaDE-2
10-D Functions 0% 13% 40% 47%
30-D Functions 8% 8% 58% 25%
<10-D Function 4% 16% 40% 40%
Total 4% 14% 44% 38%
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Therefore, we conclude that the proposed algorithm, Modified Self-adaptive Differential
Evolution MSaDE, with both versions (MSaDE-1 and MSaDE-2) exhibits better
performance than the original SaDE algorithm. In addition, the completely new adaption
technique, based on Eq. (2.20), is more effective than the combination technique, Eq. (2.24)
. The reason for this improvement can be seen in Figure 3.9, which shows the success
probability progression vs algorithm generations. It is shown in Figure 3.9a that in SaDE
algorithm, no single strategy has dominated the trial-vector generation techniques, which
means that all strategies in the candidate pool almost has the same chance to be selected in
all generations. Besides, almost the same number of population vectors is assigned to each
strategy. Therefore, the algorithm loses its ability to find out the best technique to generate
new trial vectors and still use all strategies available in candidate pool with almost the same
probabilities. This means that the optimization algorithm needs relatively more

computational time to reach optimum solution.

In SaDE-2 algorithm; as shown in Figure 3.9b, after the learning period which is 10
generations in this case, one of the strategies has a success probability of more than 60%
which means that it possesses more population vectors to be mutated. In other words, by
downsizing the candidate pool size from four strategies to only two, and having the “good”
strategies that have the capabilities of exploration and exploitation, the algorithm is able to
self-adapt to one trial-vector generation strategy than the other and an improvement is

obtained.
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As shown in Figure 3.9c, after 60 generations, MSaDE-1 is able to find out the most
compatible strategy with optimization problem and be 100% self-adapted. This exhibits

higher solution quality in less computational time. With reference to Eq. (2.20), it can be

seen that depending on the quality of improvement (WF ), that is taken place by k™
strategy, is more efficient than calculating the success rate based on the number of vectors
entering to the next generations in learning period as expressed in Eq. (2.18). Therefore,
after 60 generations, all population vectors were assigned to the most successful trial-vector
generation strategy which enabled the algorithm to rapidly be self-adapted and reach the
optimal solution.

In MSaDE-2 algorithm, as shown in Figure 3.9d, after only 30 generations, 100% of
population vectors were assigned to the successful strategy. In this algorithm the success
probability of a strategy is calculated by Eq. (2.24), which is a combination between the
old and new adaption techniques. As shown this combination technique accelerates the
process of adaption which is very effective in optimizing relatively less complex functions
such as the 10-D functions. However, in 30-D functions which are more complex, MSaDE-
1 performs better. Because in complex optimization problems, in order to avoid stagnation
and/or premature convergence to local optima, a convergence speed-balance is required to
find out the most successful trial-vector generation strategy within candidate pool before
assigning all population vectors to it. This required-balance is achieved by MSaDE-1
algorithm which is able to be 100% self-adapted to the successful strategy after satisfactory

number of generations to preserve the exploration and exploitation capabilities.
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3.2 Conclusion

In order to enhance the convergence speed and exploitation capability with maintaining a
satisfactory exploration level of SaDE algorithm, a Modified Self-adaptive Differential
Evolution MSaDE algorithm with novel technique in determining the success rate of trial-
vector generation strategy to solve global numerical optimization problems over continues
space is proposed. The proposed algorithm introduces a new adaptation technique to
determine the success rate of each trial-vector generation strategy based on the quality of
improvement in solution toward optimum solution that each strategy achieves, not on the
successful number of entries to following generations as applied in original SaDE. The
proposed method is shown to enhance the convergence speed and balance the exploitation
and global exploration capabilities of self-adaptive DE algorithms. The proposed MSaDE
algorithm has been compared with original SaDE over a suite of 22 numerical optimization
problems. The experimental results and comparison showed that the MSaDE algorithm
performs better than original SaDE algorithm in 82% of optimization problems with
different types, complexity and dimensionality. It performs better in terms of final solution
quality, convergence speed and robustness. Finally, it would be very interesting to
investigate the performance of proposed MSaDE to solve practical engineering

optimization problems and real-world applications.
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CHAPTER 4

Optimization of ES-SAGD Application: Comparative

Analysis of Optimization Technigques

4.1 Literature Review on ES-SAGD Optimization

Butler et al., in 1981, proposed the concept of the Steam-Assisted Gravity Drainage
(SAGD) recovery method; where two horizontal wells with vertical distance are placed
near to the bottom of the formation. The steam is continuously injected from the upper well
and heavy oil produced from the lower well (Butler and Stephens 1981).

The concept of Expanded Solvent Steam-Assisted Gravity Drainage (ES-SAGD) was
introduced by Nasr et al., in 2003, with detailed laboratory test results which showed that
the highest recovery performance was achieved when the vaporization temperature of the
added solvent (Hydrocarbon) is closer to the temperature of the injected steam (Nasr et al.
2003). Then, Das studied the dispersion and diffusion of solvent in VAPEX method. He
introduced the results of simulation study to investigate the effect of solvent components
inside vapor chamber (Das 2005).

Generally, it is expected that adding solvent components improves the process.

Boak and Palmgren presented a numerical analysis for a naphtha co-injection test during

SAGD for the MacKay River McMurray formation (Boak and Palmgren 2007). The effects
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of co-injecting a multi-component solvent, naphtha, and a single component solvent,
propane or pentane were investigated. Co-injection of any of the solvents studied (propane,
pentane and naphtha) resulted in an improved Steam Oil Ratio (SOR). Only naphtha co-
injection resulted in an improved oil production rate because the components of naphtha
travelled freely in the vapor chamber and accumulated along the vapor chamber front in
both the vapor and oil phases.

In 2008, Ivory et al. studied the low pressure ES-SAGD performance through lab
experiments and numerical simulations. They found that the effects of minimum
production pressure, sub-cool and solvent concentration must be considered
simultaneously as they impact each other. Sensitivity runs on minimum BHP resulted that
a lower producer BHP yielded a higher oil rate with less SOR (lvory et al. 2008).

Govind et al. performed detailed simulation studies on ES-SAGD. They stated that the
effective variables that control the performance of the ES-SAGD process are the solvent
type, concentration, operating pressure and the injection strategy. The results of sensitivity
studies performed on the solvent selection, dilation effect and operating condition were
presented with conclusions and recommendations for an operating strategy. They also
indicated the dilation is an important factor in the high pressure injection ES-SAGD
process (Govind et al. 2008).

In 2010, Ayodele et al. implemented experiment and history-matched simulation results of
2D scaled laboratory tests of ES-SAGD with hexane as the co-injected solvent. The
comparison of ES-SAGD and SAGD experiments shows that ES-SAGD using hexane

performed better than an equivalent SAGD experiment (Ayodele et al. 2010).
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Kumar et al. investigated the impact of geological heterogeneity on SAGD wellbore design
and the optimization of the length and positioning of multiple tubular strings as well as the
allocation of injected steam among multiple tubing strings (Kumar et al. 2010).

In 2012, Gates and Chakrabarty used the Simulated Annealing, SA method to find the
optimal solvent concentration that minimize the cost function which is cSOR. The results
showed that ES-SAGD can yield lower cSOR than SAGD and that the optimized
ES_SAGD operating strategy used % of the steam per unit volume of produced oil when
compared with SAGD method. In their study, they assumed that the solvent recovery
predicted from the simulations was about 90% which is in reasonable agreement with
existing thermal-solvent field pilots, therefore, they assumed that there is no losses in the

injected solvent (Gates and Chakrabarty 2012).

4.1.1 DE Application for Optimizing Oilfield-related Problems

Despite the successful applications of differential evolution in many engineering fields,
there is a limited number of publications related to the applications of DE algorithm for
tackling petroleum engineering problems.

Jahangiri (Jahangiri 2007) applied differential evolution to optimize smart well operations
to maximize oil production. Hajizadeh (Hajizadeh et al. 2009) used DE method to history
match production data in a black oil reservoir model. Other works include estimation of oil
and water relative permeabilities to match core flood data (Wang and Buckley 2006),
Estimation of geostatistics variogram parameters frameworks (Zhang et al. 2009)

waveform inversion of cross-well data using differential evolution (Wang et al. 2011).
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Recently in 2013, Nghiem et al. applied the DE technique to a SAGD case study to history
match saturation and temperature profiles in addition to cumulative oil, water production
and cSOR. The results showed good history matching, which allowed the assessment of
uncertainty for the forecast stage. The match-quality was compared with the Particle
Swarm Optimization method (PSO). The comparison showed that DE offers much better

solutions with much lower numbers of simulation runs (Nghiem et al. 2013).

4.2 Research Optimization Framework

In this research, we have constructed a numerical flow simulation model of one of
Athabasca heavy oil reservoirs using CMG STARS, a numerical flow simulation package
for thermal recovery process. Then we have developed a framework that integrates
previously mentioned optimization techniques (SaDE, SaDE-2, MSaDE-1 and MSaDE-2),
in addition to other two well-known optimization algorithms (DE and PSO) with CMG
STARS, to optimize ES-SAGD recovery process. Before that, a sensitivity study is done
on ES-SAGD to determine a preliminary ranking of the control operational parameters
according to their effect on the project’s NPV. In addition, this study will figure out the
realistic effective range (upper and lower limits) that would be assigned to the selected
operational parameters in the optimization step.

Subsequently, a comparison study is done to figure out the most-effective optimization
algorithm that maximized the NPV of the project while considering other performance

indicators like Oil Recovery Factor (RF) and cumulative Steam Oil Ratio (CSOR).
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Finally, for convenience, a performance analysis of optimized SAGD and ES-SAGD

recovery processes is performed.

4.3 Net Present Value

NPV was used as the performance indicator in this study. The NPV (Khan 1993) of a
project is defined as the sum of the present values of individual cash flows of that project;
where the cash flow is positive for revenue and negative for expenditure. In ES-SAGD
project, the capital cost at the project’s beginning consists of the exploration cost, the
drilling and well completion cost, steam generators capital cost, water treatment capital
cost, and solvent injection capital cost. The recurrent expenditure includes the cost of steam
generation, steam injection, produced water treatment, solvent handling and
recompression, solvent cost and operating costs including well remediation and human
resources. Such costs are discounted to the beginning time of the project. Revenue are in
the form of heavy-oil sales, which is also discounted to the present time. All these cash
flows are combined to give the NPV of the project and defined mathematically (Onwunalu
and Durlofsky. 2010), as shown in Eqg. (4.1):

NPV = NZ CF,
n=1 (1+ r)n

—C (4.1)

cap !

Where N is the total number of discounting periods (total number of years in this study),

N is the year index, I is the annual discount rate, C_,, is the capital cost and is given by:

Cep =C; +C,, +Nwamem +Cs +C, (4.2)

and CF, is the cash flow rate in year is given by:
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CF, =R -E_, (4.3)

where R is the total revenue for year (n ), given by:

R, =P°Q ™ (4.4)

and E is the expenditure for year (n ), given by:

E =C"Q" +CQ " +N C* +C*Q™ +C*Q " (4.5)

All the parameters used in Eqgs. (4.2) to (4.5) are explained, and their estimations are shown
in Table 4.1; the costs of facility installation, steam injection, treating produced water and
other operating costs are estimated with reference to (Azad et al. 2013). The costs of
exploration, well drilling and completion, steam generation facility, water treatment
facility, solving injection facility, and solvent’s cost, handling and recompression are based
on (Frauenfeld et al. 2009). In this study, the heavy oil price is estimated to be less than the
light oil price by 25% as per BAYTEX — Alberta, 2013 Heavy Oil Pricing Reports. The

abbreviations listed in Eqgs. (4.1) to (4.5) are listed in Table 4.1.
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Table 4.1: Abbreviation list for Egs. (4.1) to (4.5)

. 1 0 H 1 1
C., : Exploration cost Q. ™  :Total il production in year n
. S. .
Wyer - COSLOF thermal well Q,"™  :Total water injected in year n
W : Cost of non-thermal well SOjy; . .
cold Qn : Total solvent injected in year n

Cc : Operating cost per bbl oil W

n perating costp Q, "™  :Total water produced in year n
C SOy . L.

n : Cost of solvent injection per ft3 SOpro .

Qn : Total solvent produced in year n

S .
Cn % : Cost of solvent handling per well

Sinj 0 el i v
C,™  :Costof steam injection per bbl water P - Oil price, $

Woro . NW : Number of wells
Cn : Cost of treating produced water per bbl

S . .
Cn % . Cost of vapor solvent recompression per ft3 n : Year index

r : Annual discount rate
CSG : Capital cost of Steam Generators N
: Total number of years

C i : Capital cost of facility installation cost
CSO : Capital cost of Solvent injection facility

4.4  Model Description

Steam, Thermal and Advanced Processes Reservoir Simulator (STARS) from CMG is used
in this work to simulate reservoir model of ES-SAGD. A homogeneous 2D Cartesian
model with one pair of horizontal injection and production wells, with 51 grid blocks along
X-axis and 30 grid blocks along Z-axis is used, with a gas cap layer with a thickness of 10
ft, gas saturation of 85%, initial water saturation of 15% and gas cap pressure of 145 psi.
The common reservoir and fluid parameters (Gates and Chakrabarty 2005) are shown in
Table 4.2. Three phase relative permeability model with end-points values are used to
generate the oil-water and gas-oil relative permeability curves as shown in Figure 10. ES-
SAGD model is simulated for 10 years where a sensitivity study was done on the ES-
SAGD recovery processes to determine the optimum operating parameters which result in

the maximum NPV at the end of the project.
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Table 4.2: Simulator input parameters

Input Parameter Value
Reference Depth, ft 900
Reservoir Initial Pressure @ 900 ft, psi 145
Reservoir Temperature, °F 52
Porosity 38%
Average Horizontal Permeability, mD 7000
Average Vertical Permeability, mD 3000
Rock Heat Capacity, Btu/ft> F 417
Rock Thermal Conductivity, Btu/(ft day F) 106
Over/Underburden Heat Capacity, Btu/ft3 F 417
Over/Underburden Thermal Conductivity, Btu/(ft day F) 106
Bitumen Thermal Conductivity, Btu/(ft day F) 1.85
Bitumen Viscosity Correlation A =22.8515
Inin zz(cp) = A+BInT (k) B=-3.5784
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Figure 4.1: Relative Permeability Data
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CHAPTER 5

RESULTS AND CONCLUSION

5.1 ES-SAGD Optimization Results

The optimization results of ES-SAGD (best run, median and worst run) of the comparison
between SaDE, DE, PSO, SaDE-2, MSaDE-1 and MSaDE-2 algorithms are provided in
Table 9. The best “median” result is typed in bold. The “best” result of an algorithm means
the maximum NPV obtained within the five independent runs initiated with different
populations. While the “worst” result means the minimum NPV obtained. Furthermore, in
order to analyze the performance behavior of each algorithm, the convergence
characteristics in terms of how fast the “Best”, “Median” and “Worst” of each algorithm
reaches to the maximum NPV are shown in Figure 5.1a-c, respectively.

Table 5.1: Comparison between SaDE, DE. PSO, SaDE-2, MSaDE-1 and MSaDE-2 algorithms
on optimizing ES-SAGD recovery method

_ NPV (x 10° $)
Algorithm ]

Best Median Worst

SaDE 51.9 50.9 49.8
DE 49.3 48.3 475
PSO 51.3 479 475
SaDE-2 52.2 51.7 51.4
MSaDE-1 53.6 52.7 52.5
MSaDE-2 53.6 52.4 51.9
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5.1.1 Best Results Analysis

Figure s.1.a shows the “best” runs which result in maximum NPV of ES-SAGD process at
the end of the project. It is clearly shown that MSaDE algorithm performs better than other
optimization algorithms including SaDE with two strategies in candidate pool. Although
MSaDE-1 and MSaDE-2 achieved the same maximum NPV at the end of the project,
MSaDE-1, with completely new adaptation technique, shows faster convergence speed
toward optimum solution. MSaDE-2 reaches an NPV of 52 Million $ after 325 function
evaluations, while MSaDE-1 and SaDE-2 reach to the same NPV after 650 and 900

function evaluations respectively.

5.1.2 Median Results Analysis

As shown in Figure s.1.b, it is obvious that self-adaptive algorithms outperform normal
methods without self-adaption techniques, although all algorithms have started with the
same initial population. In addition, the proposed self-adaptive algorithms in this study
(SaDE-2, MSaDE-1 and MSaDE-2) show better optimization performance than original
SaDE algorithm. In particular, MSaDE-1, with completely new adaptation technique,
performs better than MSaDE-2 and SaDE-2 and shows the maximum NPV at the end of

the project.
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5.1.3 Worst Results Analysis

The “Worst” results mean the minimum NPV value obtained by each optimization
algorithm in five independent optimization runs. As shown in Figure s.1.c, generally, self-
adaptive algorithms exhibit better solutions than others do. It can be seen that starting from
750 function evaluations up to 875; MSaDE-1, MSaDE-2 and SaDE-2 almost have the
same NPV value. However, MSaDE-1 is able to improve the solution and achieved the

maximum NPV at the end of optimization process.

5.2  Performance Analysis of SAGD and ES-SAGD Recovery Methods

In this section, the performances of optimized ES-SAGD and SAGD recovery processes
are studied and compared. Table 10 shows the maximum NPV values that have been
achieved by ES-SAGD and SAGD recovery methods when applying MSaDE-1
optimization algorithm. It also shows the NPV values that have been obtained when
optimizing the cumulative Steam Oil Ratio cSOR to the minimum (as most of the
literatures do) instead of optimizing NPV.

As shown in Table 10, in Case #1, when NPV is the objective function to be optimized, the
NPV values at the end of the project of ES-SAGD and SAGD are 52.5 and 31.8 M$
respectively. In other words, the ES-SAGD is 65% more profitable than SAGD in this
example cse. In additions, cSOR in ES-SAGD and SAGD are 1.1 and 2.1 bbl/bbl
respectively. Therefore, the ES-SAGD has cSOR value, almost, 50% less than SAGD. The
oil recovery factors in this case are 66% and 47% for ES-SAGD and SAGD respectively;

it also shows that ES-SAGD is better than SAGD it terms of oil recovery.
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Table 5.2: Performance indicators of ES-SAGD and SAGD

Recover Case #1: Optimizing NPV Case #2: Optimizing cSOR
Method NPV cSOR RF NPV cSOR RF
(M$) (bbl/bbl) % (M$) (bbl/bbl) %
ES-SAGD 52.5 11 66 31.9 0.8 47
SAGD 31.8 2.1 47 30.0 2.0 46

On the other hand, in Case #2, when cSOR is the objective function to be minimized, there
is no significant difference between ES-SAGD and SAGD in terms of NPV and RF,
although cSOR has reduced in ES-SAGD by 60% than SAGD. Therefore, this case does
not show significant advantage of ES-SAGD in terms of economical profitability or oil
recover capability.

This is one of the main objectives in this study; to show that having cSOR as objective
function to compare the performance of ES-SAGD and SAGD recovery processes, is not
the optimum selection. Because although the optimized cSOR of ES-SAGD is 60% less
than SAGD (which agrees with literatures), the project profitability was not improved.
Moreover, in real-life the most important considerations are the project’s profitability and
how much oil the process can recover. On the other hand, when selecting NPV as the
objective function to be optimized, it is clearly shown that maximizing NPV results in
improving cSOR and RF, as well as the project’s profitability at the first place.

When optimizing only SAGD recovery process (not to be compared with ES-SAGD), it
can be shown that selecting NPV or cSOR has no significant effect on representing
recovery performance. In Case #1, it is shown that the NPV, cSOR and RF of SAGD are
31.8 M$, 2.1 bbl/bbl and 47% respectively. While in Case #2, the values are 30 M$, 2
bbl/bbl and 46% respectively. Therefore, there is no much difference in any of the

performance indicators. On the other hand, in ES-SAGD, because of injecting solvent in
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addition to steam, cSOR is not representative, as it does not consider solvent cost or solvent
losses in the reservoir. Therefore, NPV is better indicator to the performance of recovery

process and project’s profitability.

5.3 Conclusion

It was shown that the proposed self-adaptive DE algorithm with a new adaptation technique
(MSaDE-1) exhibited better solution quality and convergence speed than other self-
adaptive DE algorithms. Actually, the worst solution obtained by MSaDE-1 is better than
the best solutions achieved by SaDE, DE, PSO and SaDE-2. It is also shown that the new
proposed adaptation technique of trial-vector generation strategies with the aid of new
candidate pool, achieve the required balance between exploration and exploitation
capabilities of differential evolution optimization algorithms. Therefore, MSaDE-1 shows
faster convergence speed, better solution quality and has never been stagnant in local
optima.

It has also be shown that cumulative Steam Oil Ratio (cSOR) is not the right performance
indicator when optimizing ES-SAGD recovery process, or comparing its recovery
performance with SAGD. Because cSOR does not consider solvent cost or losses in the
reservoir. On the other hand, NPV is better representative to project profitability and
recovery capability. In addition, it has be shown that optimizing NPV, also, improving

recovery factor (RF) and reduces cSOR proportionally.
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