
 

1 

 

1 

Automatic Events Extraction in Pre-stack Seismic Data Based 1 

on Edge Detection in Slant-stacked Peak Amplitude Profiles 2 

Jing Zhao1, Jinchang Ren2,5, Jinghuai Gao3, Julius Tschanner2, Paul Murray2, Daxing Wang4 3 

1 School of Earth Science and Engineering, Xi’an Shiyou University, Xi’an, China.   4 

2 Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK 5 

3 Institute of Wave and Information, School of Electronic and Information Engineering, Xi’an Jiaotong University, 6 

Xi’an, China. 7 

4 Research Institute of E & D, Changqing Oil-Field Company of CNPC, Xi’an, China 8 

5 College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, China 9 

 10 

Abstract— Events picking is one of the fundamental tasks in interpreting seismic data. To extract the correct travel-time 11 

of reflected waves, picking events in a wide range of source-receiver offsets is needed. Compared to post-stack seismic data, 12 

pre-stack seismic data has an accurate horizon and abundant travel-time, amplitude, and frequency while the waveform 13 

of post-stack data is damaged by normal move-out (NMO) applications. In this paper, we focus on automatic event 14 

extraction from pre-stack reflection seismic data. With the deep development of oil-gas exploration, the difficulty of 15 

petroleum exploration is being increased. Auto recognition and picking of seismic horizon is presented as the basis for oil-16 

gas detection. There is a correspondence between the real geology horizon and events of seismic profiles. As a result, firstly, 17 

recognizing and tracing continuous events from real seismic records are needed to acquire significant horizon locations. 18 

Picking events is in this context the recognition and tracing of waves reflected from the same interfaces according to 19 

kinematics and dynamic characteristics of seismic waves. Current extraction algorithms are well able to trace these events 20 

of the seismic profile and are undergoing great development and utilization. In this paper, a method is proposed to pick 21 

travel-time and local continuous events based on edges obtained by slant-stacked peak amplitude section (SSPA). How to 22 

calculate the SSPA section is discussed in detail. The new method can improve the efficiency and accuracy without 23 

windowing and manual picking of seed points. The event curves obtained from both the synthetic layered model and field 24 

record have validated the high accuracy and efficiency of the proposed methodology.  25 

 26 

Index Terms—Automatic event extraction; pre-stack reflection data; ray tracing; Radon transformation. 27 
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1. Introduction 30 

Automatic events extraction is the process of recognizing and tracing reflection waves from the horizon according to kinematics 31 

and dynamic characteristics of seismic waves. In the field of seismic exploration, it is very important to recognize and trace the 32 

stratigraphic horizon. The real geology horizon generally corresponds to events at the seismic profile, hence tracing the events of 33 

the real seismic record is a key factor in acquiring the correct horizon locations (Zhao, 2018). The events can be used to analyze 34 

the seismic wave propagation on the subsurface medium and to derive the geologic structure and the expanding characteristic of 35 

stratum.  36 

Events can be acquired by connecting the reflection waves which have the same phases. In traditional methods, the interpreter 37 

recognizes and traces seismic events by comparing the phases of one or more maxima of waves in each trace of the seismic records. 38 

As manual tracing of events was of poor accuracy, time-consuming, and subjectivity sensitive (Wang and Gao, 2012) , automatic 39 

events picking technologies such as cross-correlation (Ding et al., 2012)  and neural networks (Lu and Mou, 1998) were proposed 40 

since the early 1980s. Recently, there are two categories of auto picking methods widely used, i.e. character tracing and correlation 41 

tracing (Zhen, 2013). However, both these methods have difficulties picking events continuously and have a low signal-to-noise-42 

ratio (SNR). 43 

Several edge detection based methods were recently proposed by Li (Li, 2014), Wang (Wang and Sun, 2016), Xiang (Xiang et 44 

al., 2017), Karbalaali (Karbalaali et al., 2017), Bondar (Bondar, 1992), Li (Li et al., 2007), Xiong (Xiong et al., 2009) and Yang 45 

(Yang and Cheney, 2011), where image processing on gray scale images of seismic gather and edge detection are used to detect 46 

events. The envelope of the gray mutation areas is interpreted as events after some post-processing, e.g. morphological thinning. 47 

The results however are ambiguous, have low resolution and are easily affected by noise.  48 

Different from the linear detection technology mentioned above, Faraklioti (Faraklioti, 2004) proposed an automatic horizon 49 

extraction method from 3-D seismic data based on surface detection. This method however has a higher complexity and 50 

computational cost. In McCormack (McCormack, 1993) and Glinsky (Glinsky, 2001), neural networks are employed to use known 51 

events as the standard samples to train the network. The weight values of neurons are modified step by step using the error back-52 

propagation algorithm. The network is able to process new data when the algorithm can find the optimal weight distribution. 53 

Finding sufficient training samples for the network has however proven difficult, also the trained network could be affected by the 54 

new samples. Additionally, the training process is very time consuming due to the large amount of iterations.  55 

In both the adaptive coherent picking technique proposed by Spagnolini (Spagnolini, 1991) and the high order cumulants 56 

method proposed by Tugnait (Tugnait, 1991) and Feng (Feng et al., 2011), similar characteristics of waveforms of the events 57 

among different traces are used. Xu (Xu et al., 1990) introduced a chain match method in which a chain is constructed by crest and 58 
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several features is used to represent each trace of the wave forms. Bian (Bian, 1991) manually picked some control points (seed 59 

points) of seismic events followed by interpolation, where they filtered out the outliers with high frequencies produced during the 60 

interpolation process. This method has difficulties in achieving automatic events picking because of the manual picking of the seed 61 

points. Zhou (Zhou and Hu, 1991) proposed a fitting method which interprets the events as dynamic curves. The curves are 62 

described by generalized time series and are fitted by models such as AR (Auto Regressive) model. An appropriate model and the 63 

arrival-time of waves are difficult to determine, which will affect the results of events fitting.  64 

Probabilistic modelling is also one main stream of approaches in auto event picking. Woodham (Woodham, 1995) proposed a 65 

probabilistic data association algorithm which models the horizons to be extracted as first order ordinary differential equations. 66 

This method traces the horizon information gradually according to the results of the data association achieved by calculating the 67 

posterior probability of each observed vector. In Li (Li, et al., 2005) and Zhao (Zhao et al., 2006), a chaos oscillator detection 68 

method was used to detect weak events according to a modified Duffing equation. This method scans the events to construct equal 69 

time interval series according to an assumed pair of time and velocity. Finally, the series is sent to the chaos oscillator system and 70 

the extraction results are acquired according to the difference of phase. This method can extract events even in the case of extremely 71 

low SNR. This method however requires to search the pair of time and velocity and to solve the differential equations of the chaos 72 

oscillator system, which resulted in inefficiencies. Most of the existing methods do not incorporate the motion law of seismic 73 

waves, have a high computation complexity and have difficulties to automatically extract events from noisy data.  74 

In this paper, an automatic travel-time and continuous events picking method at large offsets of seismic data is presented that 75 

utilizes edge detection based on peak amplitude profiles.  Events are picked continuously with a large offset to obtain correct travel 76 

times of the reflections. Compared to other state of the art methods, this method has the advantage of being able to process data 77 

with a high SNR and is easy to implement. It overcomes the difficulty of existing approaches, manually or automatically, when 78 

picking continuous events in large offset areas.  79 

 80 

2. Theory 81 

Travel-time is an important parameter for attenuation and velocity tomography of seismic data. To determine the travel-time of 82 

a reflection wave, events are required to be picked in a wide range of offsets. Events picking is one of the basic steps for seismic 83 

interpretation. However, it is often difficult to successively pick continuum events in large offsets due to noise in the recorded data. 84 

Post-stack reflection data has high signal to noise ratio (SNR), but part of the amplitude and frequency information are damaged 85 

after the stretching and the stacking of normal move-out (NMO). The damage result in some subtle features being difficult to 86 

recognize. Compared to the post-stack reflection data, the pre-stack seismic reflection data has low SNR, but it is not affected by 87 

NMO, and have exact layer information, abundant frequency and travel-time information. The minute stratum features such as the 88 
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variation of the waveform at the thin interbed series can be observed from the pre-stack data. Based on the abundance of amplitude 89 

and frequency information, it is important to study the events extraction method for pre-stack seismic record. 90 

In this paper, an edge detection analysis based on SSPA profiles is proposed for events picking in seismic data. Slant-stack is 91 

carried out because it serves as a filter and can reduce the noise. After Fourier transform and Hilbert transform, the real signal can 92 

be translated to complex signal, and the instantaneous amplitude (IA) can be obtained from the complex signal. The IA can reflect 93 

signal energy at any given time and the low frequency information. The IA section can filter some high frequency noise in a way, 94 

but its anti-noise capacity is weak. Studies on Slant-stack (namely, τ-p transform) do find a strong anti-noise property when 95 

stacking the amplitude along the gradient. We define the peak amplitude section after slant stacking as the SSPA profile. The SSPA 96 

profile is obtained by implying slant-stack transformation on the IA section but not the original seismic record, this is because the 97 

IA section has better quality than the seismic record.  SSPA profile has better SNR than the IA section and the original seismic 98 

data. This is because that the noise is counteracted when slant stacking. Afterwards, the edge detection profile is calculated based 99 

on the SSPA profile. The new method can also apply to pose-stack seismic data. 100 

The IA section is calculated as follow (Barnes, 1991, 1993):
 

101 
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where a(t) is instantaneous amplitude, s(t) the trace of seismic data and   1 1Im[ ( , )gH s t C S b a s ds
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obtained from wavelet transformation (WT). S(b,a) is the WT of the seismic data. The WT of s(t) for the wavelet function g(t) is 104 

defined as： 105 
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where, ,t bR ， 0a  ,      1 2, ,g t L dt L dt R R is a wavelet function,  tg is the complex conjugate of  tg , L1 and L2 
107 

are each absolutely and quadratic integrable spaces. gC is the admissible condition of the wavelet translation.  108 

Slant-stack is carried out using the local Radon transformation. It is applied on the IA section to stack several traces nearby the 109 

reference trace. In this way, a super-gather can be constructed to increase the SNR. The Linear Radon transformation is also called 110 

τ-p transformation. The integral path is linear. The τ-p transform is used to acquire the parameters of the rays. In the frequency 111 

domain, the discrete linear Radon transformation is defined by (Shen et al., 2000): 112 
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  is the 114 

Fourier transform of a(t, xm) and xm is the referential trace. The IA data is zero-padded before applying the Radon transformation 115 

with a length of three times the original signal in the time domain to increase the frequency resolution.  116 

 The local Radon transformation of the IA section is obtained by the following procedure:  117 

1) Choose a reference trace from the IA section.  118 

2) For a certain sample time pot i , add up the amplitude of the several traces nearby the reference trace in pn different gradient 
119 

values 
jp ( 1,2, , pj n ) with a step p (shown in Fig. 1). 

120 

3) Calculate the sum of IA under different directions and record the results on the corresponding positions in the τ-p domain.  121 

4) When the chosen gradient for adding up is close or equal to the gradient of the event of the observed record, the added value is 122 

maximum in τ-p domain.  123 

5) Pick the maximal value of the slant stack amplitude data, which is called the SSPA, and record it on the corresponding position 124 

in t-x domain.  125 

By applying this procedure, a super-gather section is constructed, which is called the SSPA section to improve the SNR. 126 

Compared to the IA section, the events of the SSPA section are much clearer and have less interference. This is because the noise 127 

is reduced further when several data traces of the neighborhood are added up in the gradient.  128 

 129 

Fig. 1 Radon transform diagram 130 

Edge detection can be used to detect structural variations and relevant properties in image data and can therefore be used to 131 

reduce the data amount. It is an important research field in feature extraction. Edges are defined as small areas of the image where 132 

the gray value or intensity is not continuous or produces mutations. The elements of the edge form the border in the images. 133 

Depending on the image acquisition process of the source data, edge detection may vary in quality. Usually, pre-processing steps, 134 
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such as gradient, that enhance the image edges are carried out to achieve the best recognition results. In the field of digital imaging, 135 

seismic profile can be considered as a 2D image and the reflection events as lines within these images. 136 

The gradient operator is used to extract edges. Assume the gray degree field is ,( )f x y , the corresponding gradient value is 137 

defined by: 138 

( , ) ,

T

f f
gradf x y

x y

  
  

  
                                                                    (4) 139 

The absolute value of equation (4) is defined by: 140 

22

( , )
f f

gradf x y
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                                                        (5) 141 

In the discrete case, equation (5) can be replaced by the differential form: 142 

( ) ( ) ( ) , , 1,x f x y f x y f x y                                                              (6) 143 

                                     ( ) ( ) ( ) , , , 1y f x y f x y f x y                                                              (7) 144 

Specifically, the Sobel, Prewitt and Canny operators are used as the gradient operator: 145 

(1) The Sobel operator is defined as following： 146 

2 2
( , )

x y
s i j f f  , equivalent to,  ,( ),

x y
s i j max f f                               (8) 147 
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y

f f i j f i j f i j f i j f i j f i j                        (10) 149 

Given the appropriate threshold  β, if the edge strength ,( )S i j  , the point ( ),i j is determined as an edge point. For the 150 

threshold β, the smaller the value is, the more detailed edges it can detect. Therefore, appropriate threshold needs be chosen for 151 

proper detection of image edges. Here there are two defining methods: one is self-defining, for example, we can choose 0.8 times 152 

of the maximum gray value as the threshold; the other is adaptive method, where the threshold can be determined by some 153 

constraint conditions.  154 

(2) The Prewitt operator is defined as following: 155 

  2 2
,

x y
P i j f f  ，equivalent to,  ,( ),

x y
p i j max f f                                       (11) 156 

Edge detection formulas are defined as: 157 
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Given the appropriate threshold w , if ,( )P i j w , the processed point ( ),i j is considered as the edge point. 159 

(3) The workflow of the Canny operator for edge detection is given as follows: 160 

a) Smooth the image using a Gaussian filter with optimal parameters neighbourhood size and standard deviation. The image 161 

,( )S x y is obtained by the convolution of the Gaussian filter ,( )G x y with the image ,( )f x y . 162 

b) To obtain the normal vector and edge strength  ,A i j  at the point  ,i j of the image ,( )f x y , the direction and amplitude 163 

of the gradient of the image are calculated using the finite difference method of the first-order partial derivative. 164 

c) Inhibiting the non-maximum of the amplitude of the image gradient: We use the non-maximum inhibition method rather than 165 

edge strength  ,A i j  to make sure whether the image  ,f x y is the edge at the point  ,i j . If the edge strength value 166 

 ,A i j  at the pixel  ,i j is less than the strength of the two neighborhood pixels in gradient direction, this pixel is not the 167 

edge. In this situation, the strength  ,A i j  is set as zero. 168 

The flowchart for edge detection based auto events picking is summarized in Fig. 2: 169 

 170 

Fig.2 Flowchart of edge detection based auto events picking 171 

 172 

3.  Experimental results and discussions 173 

3.1 Data set 1: Synthetic pre-stack CMP data 174 

The proposed auto events picking method is validated by using a synthetic pre-stack model. The pre-stack CMP data is 175 

synthetized by ray trace method based on the Fermat principle. We assume that the source wavelet can be approximated by the 176 

constant phase wavelet with four parameters: 177 
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where A and   are the amplitude and phase respectively, σ is modulation angular frequency, δ is energy absorption factor. The 179 

Fourier transform of formula (13) is: 180 
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When  the  seismic source propagate at the depth of z , the frequency domain expression of the wavelet is: 182 
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                                                 (15) 183 

where, 1i   ,   is the angular frequency, z is the propagation distance,  G z is the factor which is independent of 184 

frequency and absorption,  c  is phase velocity. 185 

The seismic record has 49 traces. The length is 1600ms, and the sample interval is 1ms. Fig. 3 shows that the synthetic data has 186 

5 reflected events. Fig.4(a) is the IA section of the synthetic record. Fig.4(b) is the SSPA section based on the IA section. Fig.4 187 

show that the locations of the events on the two sections are correct, but the SSPA centralizes the effective information which 188 

makes the edge detection easier. 189 

 190 

 191 

Fig.3 Synthetic seismic section 192 



 

9 

 

9 

 193 

Fig.4 (a) The IA section of the synthetic record; (b) The SSPA section based on the IA section 194 

Edge detection is a very important step in our method. This paper compares the merits of three operators used for edge detection 195 

and choses one optimal operator to pick events based on real seismic record. For the Sobel operator and Prewitt operator, the results 196 

are illustrated in Fig. 5. In the Prewitt operator, edges are detected from a gray scale image of the seismic section in the eight 197 

directions of east, west, south, north, southeast, northeast, southwest, and northwest, and the maximal response from the 8 198 

directions is selected as the edge response. 199 

As can be seen in Fig. 5(a), for the Sobel operator, the results of edge detection can recognize events ① and ②, but the 200 

recognition result for events ③, ④ and ⑤ are inaccurate and discontinuous, and there are glitch in the last three events. Fig. 5(b) 201 

shows that, for the Prewitt operator, the positions of the five events are consistent with the original image which is the same with 202 

the Sobel operator, but they are all discontinuous, where large offset can be found in the five events. To extract smooth and 203 

continuous events is aimed to be obtained, so these two operators are not very well. 204 

 205 
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 206 

          (a)                                                                                                   (b) 207 

Fig. 5 Results of edge detection using the Sobel operator (a) and Prewitt operator (b). 208 

 209 

The results of edge detection from the Canny operator is given in Fig. 6(a), in which the information of image edges can be 210 

effectively extracted and preserved, even for tiny edges within the image. In summary, the result using the Sobel operator is better 211 

than that of the Prewitt operator, yet the result from the Canny operator is the best among these three operators. When using the 212 

Canny operator, the five events are continuous and accurate, this is because that the Canny operator can maximally preserve the 213 

edge information of the image while detecting tiny edges. This means it can extract more subtle seismic events. For complex 214 

seismic data however, the Canny operator will keep more noise and affect the result of events extraction. 215 

Using the aforementioned edge operators, the mutation edge of the gray scale image can be detected. The results however are 216 

the edges of the events and can’t be considered as the result of auto extracted events. If the value of the grayscale image of the 217 

seismic section between the two edges is larger than a certain value, the area between the edges is considered as an event. As the 218 

results from the Canny operator are the best, the gray value is examined to extract the events by comparing it against a threshold. 219 

Because the result of the edge detection is logical data, namely the valid signal is 1 and the background is 0, the threshold can be 220 

decided as 0.5. The results of picked events ①~⑤ are also shown in Fig. 6(b), which is highlighted as bold solid line. As can be 221 

seen, the events have been successfully extracted from the edge detection results using the Canny operator. 222 

 223 
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 224 

     (a)                                                                                   (b) 225 

Fig. 6 Results from the Canny operator for edge detection (a) and auto event picking (b). 226 

3.2 Data set 2:  Synthetic pre-stack CMP data with Gaussian noise 227 

To tackle the noise within the real seismic records, it is necessary to analyze the anti-noise capability of the proposed method. 228 

Noisy signals with 5 layers are illustrated in Fig.7, where the Gaussian white noise is used with a SNR (signal noise ratio) of 5. Fig. 229 

8(a) is the IA section of the synthetic record, which shows that there is noise (for example, the noise in the ellipse) in the background. 230 

Fig. 8(b) is the SSPA section based on the IA section, which shows that the background of the SSPA section is very clear. This 231 

result confirms our conclusion that the SSPA section has better anti-noise immunity than the IA section. Fig. 9(a) is the results of 232 

edge detection, we can see that the five events can be detected and each event is detected as the lower and upper boundaries. Fig. 233 

9(b) shows the extracted events by examining the gray values based on the lower and upper boundaries. By comparing Fig.7 and 234 

9(b), the locations of the events of the two records are consistent, and the extracted events are clear and continuous. The experiment 235 

result show that the proposed method has strong ability to resist random noise. 236 

 237 

Fig. 7 Synthetic seismic section with Gaussian white noise 238 
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 239 

Fig. 8 The IA section of the synthetic record (a, left) and the SSPA section based on the IA section when the SNR is 5 (b, right). 240 

 241 

Fig. 9 (a) Result of edge detection and (b) auto event picking with Gaussian noise. 242 

3.3 Data set 2: Real field reflection record 243 

Real pre-stack common shot point (CSP) gather is shown in Fig. 10(a) and its corresponding IA section obtained by the wavelet 244 

transformation is shown in Fig. 10(b). The CSP gather has 595 traces, where the minimum offset is 90m, and the distance dx 245 

between two adjacent geophones is 10m. The corresponding SSPA section is shown in Fig. 11(a), and the detected edge of the 246 

SSPA section is given in Fig. 11(b). Fig. 11(a) shows that the slant stacked peak amplitude (SSPA) section has much clearer events 247 

and less interference compared to the IA section shown in Fig. 10(b). This is because the noise is compressed when stacking several 248 

traces along certain dip angles. Fig. 11(b) shows that the edge detection section is clear and accurate, which has good integrity and 249 

continuity. The edges detected from the SSPA section are closely corresponding to the associated events. From 500ms~1000ms, 250 

there are three events; and around 2000ms, there is one event. These events are illustrated by arrows in Fig. 11(b). Fig.12 is the 251 
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result of auto events picking by thresholding the gray scale intensity within the detected edges. Local continuous events and the 252 

corresponding travel-time are picked from the edge detection section. This method can reduce noise effectively, and overcomes 253 

the difficulty of picking successive events along wide offsets. 254 

 255 

 256 

Fig. 10 (a) Real CSP gather；(b) IA section of CSP gather 257 

 258 

Fig.11 (a) The SSPA section; (b) The edge detection section 259 

 260 
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 261 

Fig. 12 The result of auto event picking using Canny operator 262 

 263 

To further evaluate the performance of the proposed approach, another method named cross correlation is used for 264 

benchmarking. Fig.13(a) illustrates the principle of the cross correlation method, in which the maximum of cross correlation of 265 

two signals can be used to determine the delay time of the signals. This process can be repeated for other signals until the track of 266 

the events can all be obtained. This method needs to window the signals, as illustrated in Fig. 13(b), where the diagram shows the 267 

first ten traces moving along the hyperbole. Because the offset is too small, the hyperbole track of the events is not obvious. Fig.14 268 

is the result of the events picking using cross correlation method, where noise interference can be clearly seen as highlighted by 269 

ovals. The picked events are discontinuous as indicated by arrows, and the operation is complex because of the windowing. By 270 

comparing Fig.12 and Fig.14, our proposed approach is more straightforward and effective in auto events picking, and the obtained 271 

result has clear and continuous edges but less noise than the ones from correlation based approach. 272 

 273 

 274 

 275 
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Fig.13 Illustration of the principle of the cross correlation method (a) and the diagram of the windowing (b). 276 

 277 

 278 

Fig.14 The result of the events picking using cross correlation method. 279 

 280 

4. Conclusions 281 

In this paper, a new local continuous events and travel-time picking method is proposed by detecting edges of the slant-stacked 282 

peak amplitude (SSPA) section. How to calculate the SSPA section without windowing and manual picking of seed points is 283 

detailed. The high resolution Radon transformation is discussed based on the instantaneous amplitude (IA) section. The optimal 284 

operator applied for edge detection based method is provided and benchmarked with conventional approaches. The flowchart of 285 

the proposed method is also summarized.   286 

The proposed event picking method is effective and efficient, which overcomes the difficulty of picking continuous events 287 

along with a wide range of offsets. Our proposed method neither need to transform the seismic section to grayscale images nor 288 

sharpen the image. High accuracy and efficiency from the proposed method are shown in experiments with both synthetic pre-289 

stack CMP gathers and real data. When the locations of the events are obtained, the travel-time can be picked directly from the 290 

records. The proposed method has great potential for seismic interpretation, where both the detected events and the picked travel-291 

time can be used in waveform inversion, seismic attenuation estimation and gas reservoir characterization. Future work will focus 292 

on the interpolation method when the events are discontinuous as well as how to further improve the SNR.  293 
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