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Abstract 

 

With the ever-increasing complexity of sound synthesisers, there is a growing demand for 

automated parameter estimation and sound space navigation techniques. This thesis 

explores the potential for evolutionary computation to automatically map known sound 

qualities onto the parameters of frequency modulation synthesis. Within this exploration 

are original contributions in the domain of synthesis parameter estimation and, within the 

developed system, evolutionary computation, in the form of the evolutionary algorithms 

that drive the underlying optimisation process. Based upon the requirement for the 

parameter estimation system to deliver multiple search space solutions, existing 

evolutionary algorithmic architectures are augmented to enable niching, while maintaining 

the strengths of the original algorithms. Two novel evolutionary algorithms are proposed in 

which cluster analysis is used to identify and maintain species within the evolving 

populations. A conventional evolution strategy and cooperative coevolution strategy are 

defined, with cluster-orientated operators that enable the simultaneous optimisation of 

multiple search space solutions at distinct optima. A test methodology is developed that 

enables components of the synthesis matching problem to be identified and isolated, 

enabling the performance of different optimisation techniques to be compared 

quantitatively. A system is consequently developed that evolves sound matches using 

conventional frequency modulation synthesis models, and the effectiveness of different 

evolutionary algorithms is assessed and compared in application to both static and time-

varying sound matching problems. Performance of the system is then evaluated by 

interview with expert listeners. The thesis is closed with a reflection on the algorithms and 

systems which have been developed, discussing possibilities for the future of automated 

synthesis parameter estimation techniques, and how they might be employed. 
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Chapter 1 

 

Introduction 

 

There is no doubt that modern technology has had a profound effect on the structure, form 

and performance of music. Powerful and inexpensive general-purpose computers have 

made electronic musical apparatus widely available to amateur and professional composers 

alike. The audio synthesiser has, and continues to play an important role in the 

development of modern music, enabling composers to electronically recreate the sound of 

acoustic instruments, or to explore beyond the realms of the familiar, to create sounds 

previously unheard. There are a wide variety of synthesis techniques which can be used to 

create musical sounds across a considerable range of timbres (tonal characteristics). 

Effective control and navigation of a synthesiser‘s sound space requires expert knowledge 

of the underlying synthesis technique, which may draw from theoretical and/or experiential 

knowledge. It is often the case that composers are required to defer traditional notions of 

musicianship to concentrate on the task of synthesiser programming: manipulating 

parameters to produce a desired effect. Consequently, an emerging archetype amongst 

contemporary electronic musicians is the composer/programmer: an individual versed not 

only in music, but also the inner workings of the enabling technology.  
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To experimental musicians lacking this technical prerequisite, the synthesiser interface can 

present an obstacle between artistic ideas and their expression. The parameters which are 

used to shape the sound character are specific to the particular synthesis architecture being 

employed, and rarely relate to sound in human terms. Consequently, there is a complex 

mapping between the dimensions of a synthesis parameter (or control) space, and the 

perceived sound character (or timbre) space. This can often result in an unintuitive 

synthesiser interface which is concerned with scientific process rather than artistic 

creativity.  

 

Manufacturers attempt to sidestep this issue by providing a database of parameter settings 

that enable users to select from a wide range of pre-programmed sounds, known as presets. 

However, presets only provide access to a limited subspace of the complete synthesis 

sound space. If it were possible to relate the parameters of a synthesiser more directly to 

the user‘s intuitive understating of timbre, synthesiser control could become more 

transparently about sound creation rather than computer programming. The first step to 

achieving this is the development of a process which is able to map known sound qualities 

onto sound synthesis parameters. This requires a technique that can efficiently search a 

synthesis parameter space to identify configurations which achieve specific auricular 

characteristics. This thesis examines the use of evolutionary computation to do just this, 

and documents a series of experiments in which evolutionary algorithms are applied to the 

problem domain of sound matching with frequency modulation (FM) synthesis.  

 

1.1  Context 

One of the earliest examples in which evolutionary computation was applied to sound 

synthesis parameter estimation is the work of Professor Andrew Horner (1993) at the 

University of Illinois. In this work, Horner applied a genetic algorithm to both frequency 

modulation and wavetable synthesis in order to match (reproduce) acoustic musical 

instrument tones. As in more recent efforts (Riionheimo and Välimäki, 2003), a great deal 

of domain-specific knowledge was applied to reduce the complexity of the problem, by 

augmenting the synthesis process, and carefully encoding the parameters to make the 

search domain more tractable. The work presented here avoids the use of domain-specific 

knowledge and places emphasis on the application of existing and new evolutionary 

computation methods to address the parameter estimation problem while leaving the 

frequency modulation synthesis structures and their parameter encodings intact.  
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1.1.1 Evolutionary Optimisation 

Artificial models of evolution have been shown to offer many advantages over more 

traditional optimisation techniques. For example, as evolutionary search is guided by a 

means of directed stochastic search, high-performance solutions are located more directly 

than purely random methods (Monte-Carlo search), and more efficiently than enumeration-

based methods (brute force search). Maintenance of an advancing population ensures that 

evolutionary models are less susceptible to becoming trapped within local optima than 

calculus-based methods (Hill-Climbing), without the need for detailed a priori domain-

specific knowledge.  

 

Despite these strengths, evolutionary optimisation is not without weaknesses; in certain 

applications problems can arise. This thesis is concerned with a class of problem in which 

multiple distinct high fitness optima may be found within the problem space: the so-called 

multimodal problem. The primary reason standard evolutionary algorithms struggle within 

these environments is inherent in their fundamental architecture. The model combines 

stochastic search operators, to explore the problem space, with selective operators, to 

exploit profitable regions. This mechanism results in a tendency for the algorithm to focus 

on a single peak, which may be disadvantageous when the application domain is comprised 

of multiple high-fitness peaks. For the parameter estimation problem explored in this 

thesis, it is desirable to locate a diversity of solutions and not just one. Optimisation of 

multiple search space solutions enables a selection of sound matches to be optimised from 

which the synthesiser user is able to choose. This multiple solution proficiency has 

relevance to other application domains in which practitioners may require a variety of 

design solutions to facilitate better understanding of the underlying problem structure.  

 

In recent times, a variety of evolution-based optimisation techniques have been designed 

specifically for optimising solutions to multimodal problems. This thesis describes the 

application of advanced developments in evolutionary computation to the problem of 

sound synthesis parameter estimation. In doing so, new extensions to the evolutionary 

algorithm model are presented in which cluster analysis is incorporated within the standard 

generational model of the evolution strategy. Genetic operators are also developed that 

enable ‗species‘ to emerge within the evolving population. These extensions could be 

useful in wider fields of application; in particular, it is proposed that these algorithms 

provide a robust technique for real-valued multimodal function optimisation. 
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1.1.2 Frequency Modulation Audio Synthesis 

FM audio synthesis, presented originally by Chowning (1973), provides a computationally 

efficient means of creating complex sound timbres, which has seen wide application in 

commercial systems. In what is termed simple FM, the instantaneous frequency of one 

sinusoidal oscillator is modulated by another. A diagram of the simple FM model is 

provided in figure 1.1.  and  are known as the modulator and carrier frequencies 

respectively,  is the modulation index, and  controls the output amplitude. The amplitude 

function for simple FM is given by the formula: 

 

 

 

Figure 1.1: Simple FM model 

 

In equation 1.1,  is the modulated carrier output,  is the peak output amplitude,  and 

 are the carrier and modulator angular frequencies respectively. The modulating 

oscillator varies the carrier frequency in the range specified by the peak frequency 

deviation , which is the product of the modulation index  and the modulating frequency 

. When  is assigned a value of zero there is no modulation of the carrier oscillator 

frequency, and the generated signal equates to a sine wave at frequency . However, when 

, frequency partials are generated around the carrier at integer multiples of the 

modulating frequency as side-bands.  

Modulating 

Oscillator 

Carrier 

Oscillator 
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Figure 1.2: FM spectrum plots with increasing modulation index, adapted from Chowning (1973) 

 

As illustrated in figure 1.2, the bandwidth of the modulated signal varies in proportion to 

the modulation index and modulator frequency. Notice, however, that there is a complex 

relationship between partial amplitudes and the modulation index I  (the envelope of the 

spectrum is shaped by a non-linear function). The amplitudes of the partials are governed 

by Bessel functions of the first kind and order , denoted , where the argument to the 

Bessel function is the modulation index. The Bessel functions are described by the 

following equation: 
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The Bessel functions for  are shown in figure 1.3. 

 

 

Figure 1.3: Bessel functions of the first kind and order n 

 

The FM signal spectrum is shaped by the functions illustrated above. The amplitude of the 

partial at frequency  is scaled according to the value of , or  order function; the 

amplitude of the first pair of side frequency partials are scaled according to the  order 

function; the second pair of side frequency partials, by the  order function; and so forth. 

The trigonometric expansion of the simple FM function is given by the expression: 

 

        

     

    

    

 

The non-linear relationship between the synthesis parameters and the spectral form of the 

modulated signal can often complicate the process of sound design with FM. When 

parameters are altered by hand it can be difficult to find specific combinations of partials to 

produce a particular timbre. The sound design process is complicated further by the 

unintuitive effects of reflected side frequencies. That is, partials synthesised with negative 

frequencies  are directly mapped onto their positive values with negative phase. 

Reflected partials may then interact with positive components emphasising, or suppressing, 
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coinciding partials: constructive and destructive interference respectively. If the ratio of the 

carrier to modulating frequency is a rational number, these reflections produce an 

arithmetic series of sinusoidal partials with frequencies at integer multiples of a 

fundamental frequency: the so-called harmonic spectrum. Conversely, when the ratio is 

irrational, reflections are positioned between the positive frequency components to produce 

a non-harmonic spectrum. With so few parameters with which to control such a wide range 

of timbres, combined with the non-linear effects outlined above, FM has become widely 

regarded as a difficult synthesis type to control (Kronland-Martinet et al, 2001), (Horner, 

2003), (Delprat, 1997), (Payne, 1987). Consequently, a fair proportion of the work in this 

thesis is concerned with the development of algorithms that are designed to evolve 

solutions to complex real-world multimodal static optimisation problems. Thus, the 

fundamental research question that motivates this research is as follows: 

 

Can evolutionary algorithms be created and employed to locate multiple distinct 

matches of a given target sound, with conventional frequency modulation audio 

synthesis structures? 

 

1.2  Objectives 

To introduce the work set out in the following chapters, the principal objectives which 

have directed this research are enumerated below. 

 

1. To explore the potential for evolutionary computation as a mechanism for 

parameter estimation with frequency modulation synthesis. 

 

2. To assess and develop optimisation algorithms suitable for optimising multiple sets 

of frequency modulation synthesis parameters that approximate a given target 

sounds.  

 

3. To develop a testing method that enables algorithmic performance to be measured 

quantitatively in application to sound matching problems. 
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1.3  Contributions 

In satisfying the above objectives the following contributions to knowledge are included in 

this thesis: 

 In chapter four, a niching evolutionary algorithm is presented which incorporates k-

means clustering into the evolutionary cycle of a conventional evolution strategy to 

preserve population diversity and enable solutions at multiple distinct optima to be 

maintained. The algorithm is named the clustering evolution strategy (CES) 

(Mitchell and Creasey, 2007). 

 In chapter five, the CES architecture is included into the architecture of the 

cooperative coevolutionary algorithm, realised as a clustering cooperative 

coevolution strategy (CCCES), to again enable multiple distinct optima to be 

maintained while preserving the convergence characteristics of the standard 

architecture. 

 In chapter six, a windowed relative spectrum error measure is developed which 

addresses some of the difficulties associated with comparing sounds using 

conventional spectrum error measures (Mitchell and Pipe, 2005).  

 In chapter seven, a contrived testing method is developed which enables the 

optimisation component of the matching system to be analysed in isolation without 

interference from the synthesiser limitations. This enables effectiveness of each 

optimisation technique to be quantified and compared (Mitchell and Creasey, 

2007). 

 Also in chapter seven, the application of the developed algorithms to six standard 

and unsimplified continuous frequency modulation synthesisers for matching both 

static and dynamic sounds (Mitchell and Sullivan, 2005), (Mitchell and Pipe, 2006) 

and (Mitchell and Creasey, 2007). The developed matching system is then 

subjected to perceptual testing in chapter eight. 

 

1.4 Methodology  

The results presented in this thesis are empirical in nature. As the ultimate application 

domain forms a real-world problem, theoretical examination of the proposed algorithms is 

of limited practical use. In keeping with empirical evolutionary methods, the developed 

algorithms are examined comparatively in application to a variety of benchmark test 

functions over a number of runs. Results are plotted and results are compared for equality 

of means by t-test for bivariate data and ANOVA for multivariate data. In application to 
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the parameter estimation problem, algorithm performance is measured according to the 

matching method described in chapter seven.  

 

1.5 Thesis Structure 

The chapters of this thesis have been organised into sections which are largely self-

contained. To aid clarity, the algorithmic and application components of the system have 

been separated, such that chapters two–five concern the development and testing of the 

evolutionary algorithmic contributions of this thesis in isolation, and chapters six and 

seven extend their application to the real-world frequency modulation sound matching 

problem. In reality, the development of the matching system involved interplay between 

these two components, with evolutionary algorithms developed and tested in application to 

benchmark test functions, based upon problems that were encountered in the application 

domain.  

 

Chapters two and three provide a review of evolutionary computation, the major types of 

evolutionary algorithm and a variety of augmentations to these algorithms which are 

intended to enhance performance within rugged, multimodal search domains. The 

evolutionary algorithmic developments of this work are described in chapters four and 

five, while chapters six and seven provide further review of the frequency modulation 

sound matching problem and the performance of traditional and developed algorithms 

within this domain. Chapter eight describes a set of perceptual listening tests with a panel 

of expert listeners in which the perceived similarity of evolved matches are juxtaposed 

with their target sounds. 

 

1.6 Implementation  

Experimental results provided in this thesis have been produced by applications written by 

the author in C/C++ using GCC under the GNU/Linux operating system. A number of 

different synthesis configurations were examined initially using the graphical 

programming environment PD (Pure Data) prior to their implementation in C/C++. The 

evolutionary algorithms tested herein have been built according to the specifications 

described in the relevant literature. Statistical analysis is performed on all results with plots 

and comparisons generated by the SPSS statistical analysis software. The listening tests 

provided in chapter eight were performed using Max/MSP patches designed specifically 

for the task.   
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Chapter 2 

 

Background: Evolutionary Computation 

 

This chapter provides a brief introduction to the field of evolutionary computation, 

including a summary of the general evolutionary model, followed by a review of the major 

algorithms that embody this field of research.  

 

2.1 An Introduction to Evolutionary Computation 

Evolutionary computation (EC) is a broad research area within which the principles of 

Darwinian evolution (Darwin, 1859) are employed to offer insight and solutions to a wide 

range of problem domains. A major subset of this field is concerned with the application of 

evolutionary algorithms (EAs), adopting the principles of EC, to optimise the parameters 

of static objective functions. Three independent and, in some cases, contemporaneous 

interpretations of the evolutionary model have been developed for this purpose. The 

genetic algorithm (GA), the most widely known of all EAs, was developed originally by 

Holland (1975), and applied to parameter optimisation problems by De Jong (1975). 

However, much earlier than this, an adaptive system known as evolutionary programming 

(EP) was developed by Fogel et al (1966) and was reintroduced later as a more general 
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purpose function optimiser by Fogel (1992). Simultaneously, Rechenberg (1965) was 

working independently on an adaptive optimiser known as the evolution strategy (ES).  

 

Contemporary evolution-inspired function optimisers are descended from one of these 

three interpretations, which have, since their introduction, been applied to an ever-

increasing number of engineering problems. For a diverse list of applications the reader is 

directed to Schwefel and Bäck (1997), Bäck et al (1997a) and Rothlauf et al (2005).  

 

Although these three classes of EA are not without difference, each models the processes 

of evolution to some degree. At an abstract level, evolution can be regarded as the 

mechanism by which sophisticated and well adapted biological structures have come to 

exist: a process of natural selection which emerges when there is a superfluity of genetic 

material within an environment in which individuals struggle for existence. 

 

Just as a breeder chooses those individuals closest to his desired optimum, and 

discards the rest, so the natural environment improves the performance of a species 

by eliminating the less effective. Individuals possessing particular adaptations will 

survive better, and by virtue of the heritable nature of these adaptations, they will 

transmit them to their offspring. Gradually, the adaptations will spread and 

improve so that the species will become better suited to the environment which it 

inhabits. 

Parkin (1979) 

 

2.2 The Evolutionary Algorithm 

When the principles of evolution are simulated and used to optimise solutions to 

engineering problems, the individuals, referred to in the above quote, are represented by a 

population of potential solutions. The environment, which is defined by a given objective 

function, quantifies the relative worth or fitness of each solution. Adaptations are 

introduced by recombining and mutating individuals from one generation to produce the 

offspring that form the next. The elimination of less effective genetic material is facilitated 

by selecting those individuals with above average fitness to partake in reproduction more 

frequently than those with below average fitness. This selective bias introduces the notion 

of natural selection, enabling well adapted genes to propagate throughout subsequent 

generations. A simple representation of this evolutionary model is provided in figure 2.1. 
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Figure 2.1: The evolutionary model 

 

This figure illustrates the three core components of the evolutionary model: variation, 

selection and the reproductive cycle. Optimisation is achieved by maintaining a population 

of solutions, which are alternately subjected to variation and selection. Variation, as 

already stated, takes the form of recombination and mutation, and represents the birth of 

new individuals. Before individuals expire, they may be selected for variation based upon 

their performance within the test environment. The generational cycle repeats until some 

termination criterion is satisfied: either one or more adequate solutions are engendered, or 

a generational limit is reached. 

 

To demonstrate how this metaphor of evolution might be applied to optimisation problems, 

an objective function of the following form is considered: 

 

 

 

In this example, the goal of the evolutionary optimiser is to find , a vector of parameters, 

where , such that the function  is minimised (or alternately, maximised): 

 

 

 

The first step in applying the evolutionary model is to decide how search points within the 

objective space are represented. Typically, when optimising parameters of a real-valued 

objective function, there are two alternatives: 

 direct, real-valued representation. 

 mapped, binary-coded representation. 

 

When parameters are represented by real-valued numbers, population members directly 

represent solutions to the objective function. In other words, each individual contains a 

complete solution to the function . The ES and EP algorithms both operate directly on the 

 

Variation 

 

Selection 
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object parameters, within what is termed phenotype space. In contrast, traditional GAs 

employ a binary representation, in which object parameters are encoded into discrete, 

usually fixed length, bitstrings. These algorithms are said to work in genotype space, and 

require functions that map individuals between genotype and phenotype space.  

 

Before the reproductive cycle may begin, it is necessary to initialise the system‘s 

population by generating  separate random numbers for each individual. Thereafter, 

genetic material from the parent population is blended via recombination to generate 

offspring, which are subsequently varied by means of mutation. Mutation is implemented 

with the random perturbation of offspring, to introduce chance positive stochastic 

variation. Each offspring is then evaluated as a solution to the objective function  and 

assigned a fitness quotient in proportion to its performance. New parents are selected based 

on their relative fitness, ensuring that high-performing individuals are then chosen to take 

part in the next round of variation more frequently than low-performing individuals.  

 

A widely accepted viewpoint of the evolutionary process considers selection to encourage 

the exploitation of high-fitness regions of the solution space, while recombination and 

mutation facilitate the exploration of new regions which are not currently represented by 

population. This interplay of exploitation and exploration directs the evolving population 

towards higher levels of fitness, and thus, evolutionary computation has several advantages 

over more traditional optimisation methods. For example, enumerative and random-based 

optimisation techniques are only capable of exploration; consequently the process of 

optimisation is costly. Hill-climbing-based techniques only exploit and are therefore 

susceptible to becoming trapped within local optima. The implementation of both search 

tactics within EAs offers a heuristic optimisation method, which is both robust and 

efficient.  

 

However, EAs do not provide a universal solution to all optimisation problems; there are 

certain problem characteristics for which evolutionary algorithms are not well suited. In his 

study of epistasis, Davidor (1991) identifies two environmental extremes for which EAs 

have no advantage over more traditional optimisation methods. At one extreme the 

problem is so well structured and easy to solve that an EA would be unable to perform 

better than a hill-climber. At the other extreme, the problem domain is so complex and 

unstructured that an EA would be unable to perform better than a random strategy. Davidor 

concludes that application domains with characteristics between these two extremes are the 

types of problem for which optimisation by EA might be advantageous.  
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2.3 Canonical Evolutionary Algorithms 

Although the work presented throughout the later chapters of this thesis is largely built 

upon the theoretical framework of the ES (Beyer, 2001), it is sensible to first consider the 

general nature of parameter optimisation with EC. This section provides an introduction to 

GAs and ESs, concluding with a brief summary of their similarities and differences. 

Further review of EP is not included in this thesis as it is distinguished from the ES and 

GA, principally by the absence of recombination (Beyer, 2001, p3) (Bäck et al, 1993).  

 

2.3.1 The Genetic Algorithm 

The GA was originally developed by Holland to study and model the mechanisms of 

natural adaptive systems (Holland, 1975). Later, within his doctoral thesis, De Jong (1975) 

set out the framework for the application of Holland‘s adaptive model to the problem of 

parameter (function) optimisation. This application formed the precursor to a plethora of 

GA-based optimisers designed to improve performance when applied to new and 

specialised problem domains. This section will provide only a brief summary of the 

canonical GA; for a more comprehensive introduction with mathematical foundations, see 

Goldberg (1989) and Whitley (1994).  

 

The canonical genetic algorithm models evolution at the genotypic level, adopting a 

Boolean representation for the object parameters . The choice of binary-coded 

representation is inspired by the way in which biological structures are encoded into the 

low cardinality alphabet of DNA. Within the GA architecture, individuals are constructed 

from a single bitstring (chromosome)  which is divided into segments (genes) 

representing each object parameter. To facilitate the optimisation of the function , GAs 

require functions that map between genotype and phenotype space:  and 

 respectively. Often this mapping procedure is achieved by decoding each 

binary-represented gene from its integer value, which is then linearly scaled into the range 

of the corresponding object parameter.  

 

The canonical genetic algorithm is represented by the pseudocode shown in figure 2.2. 
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t = 0; 

initialise P(t); 

evaluate P(t); 

loop begin 

 P'(t) = select(P(t)); 

 P(t+1) = recombine(P'(t)); 

 P(t+1) = mutate(P(t+1)); 

 evaluate(P(t+1)); 

 t = t + 1; 

loop end; 

 

Figure 2.2: Canonical GA pseudocode 

 

Where P and P' denote the population and mating pool respectively at time t. Subsequent 

to initialisation (usually random), each individual of the population is decoded and applied 

to the objective function to retrieve a value of fitness. In the canonical GA, selection is 

facilitated probabilistically using the so-called roulette wheel selection mechanism. Each 

individual is represented by a sector of a notional wheel, sized in proportion to its fitness. 

A spin of the wheel yields a mating candidate, which is copied into a temporary mating 

pool (P') in preparation for variation by recombination and mutation.  

 

The recombination operator is termed crossover, and provides the primary source of 

variation within a GA. The most basic GA recombination technique is known as single-

point crossover, which operates by simply concatenating the first part of one parent string 

with the second part of another; where both the crossover point and the participating parent 

strings are chosen at random. Crossover is responsible for combining useful segments from 

the gene pool to form fitter solutions. This concept is otherwise known as the building 

block hypothesis, which states that short combinations of highly fit genes (building blocks) 

evolve simultaneously throughout the population (implicit parallelism). Well-adapted 

building blocks are assembled by recombination to create highly fit descendants 

(Goldberg, 1989). This also relates to Holland‘s schema theory, which states that an 

exponentially increasing number of trials are allocated to useful building blocks (or 

schemata) from one generation to the next (Holland, 1975).  

 

In the theory that relates to the canonical GA, it is considered that the genes of the optimal 

individual are distributed throughout the population from the outset. Optimisation is then 

the process of correctly assembling those genes, which is achieved principally by the 

recombination operator. The mutation operator is widely considered to be the background 

source of variation (Goldberg, 1989, pp14), as it has the potential to destroy building 

blocks through random change. However, it is possible that a 0 or 1 positioned at a certain 
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bit position (locus) may be absent or lost from the population which recombination would 

be unable to recover. To remedy this problem, mutation is applied by randomly inverting 

bit positions at a low probability, usually around 1% per bit (Schaffer et al, 1989), 

(Grefenstette, 1986).  

 

Subsequent to fitness evaluation, descendants entirely replace their progenitors to embody 

the succeeding generation of individuals; this replacement approach is often referred to as 

generational. Individuals are then selected from the new population in preparation for 

crossover, and the reproductive cycle continues.  

 

GA Performance and Augmentations 

The earliest analysis of GA objective function optimisation was performed by De Jong 

(1975). De Jong compiled a suite of diverse test functions, and introduced two measures to 

quantify performance:  

 an on-line measure, to indicate performance within real-world domains, where 

emphasis is placed on the rapid location of good results. 

 an off-line performance measure for simulations in which many function 

evaluations may be performed, and the best solution saved for use at the end of a 

run.  

 

The on-line performance is calculated from the mean average of all fitness evaluations, 

while the off-line performance is calculated from the mean average of the best solutions at 

each generation. De Jong also proposed numerous enhancements and modifications to the 

canonical GA to provide improved performance when applied to optimise a variety of 

different problem characteristics. These extensions included: 

 an elitist strategy, in which the fittest solution at each generation is preserved and 

copied directly into the next. 

 an expected value model, with a stable selection scheme to prevent loss of diversity 

throughout the early stages of evolution. 

 a generalised crossover operator, to enable multi-point crossover between 

bitstrings. 

 a crowding operator, to enhance performance in multimodal environments.  

 

The crowding operator is of interest to this work as it presents a method for preserving 

diversity by encouraging the formation of species, a concept which will be explored further 
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in chapter three. Diversity within the crowding model is maintained by adopting an 

overlapping (generational) strategy in which offspring replace their progenitors based not 

on fitness, but similarity in the genotype space.  

 

In the next section of this thesis, the state-of-the-art ES is briefly examined, providing the 

general framework on which the algorithms presented throughout chapters four and five of 

this thesis are based. 

 

2.3.2 Evolution Strategies 

While EP was being developed in the U.S.A., two engineers at the Technical University of 

Berlin were independently developing their own evolution-inspired parameter optimisation 

technique known as the evolutionsstrategie. The earliest ES, developed by Rechenberg 

(1965), implemented a set of simple rules for the sequential design and analysis of real-

world parametric engineering problems.  

 

The ES models the processes of evolution at the phenotypic level. As such, search points 

are represented directly as n-dimensional vectors of (usually) real-valued object variables 

. As well as representing object variables, individuals (denoted ) also include a set 

of endogenous strategy parameters , as well as a fitness value, equal to its objective 

function result : 

 

 

The original two-membered ES (the so-called  ES) employs a simple 

mutation/selection mechanism, in which a single parent is mutated to produce a single 

offspring. If the mutation is found to be profitable the offspring replaces its parent, 

otherwise, the offspring is discarded. Later, multi-membered ESs were developed in which 

populations of parent and offspring individuals are maintained by the algorithm. The two 

most notable of these population-based ESs were introduced by Schwefel (1981) and 

constitute: 

 the  strategy, in which  parents are varied to produce  offspring, and  

parents of the subsequent generation are selected from all  individuals.  

 the  strategy, in which selection is made among only the  offspring. Parents 

are systematically discarded regardless of their fitness value.  

 

The pseudocode for the basic multi-membered ES is provided in figure 2.3. 
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t = 0; 

initialise Pμ(t); 

loop begin 

 Pλ(t) = recombine(Pμ(t)); 

 Pλ(t) = mutate(Pλ(t)); 

 evaluate(Pλ(t)); 

 P(t+1) = select(Pλ(t) ( + Pμ(t))); 

 t = t + 1; 

loop end; 

 

Figure 2.3: Multi-membered ES pseudocode  

 

In this algorithm, Pμ and Pλ denote the parent and offspring populations respectively at 

time t. Following the random initialisation of   parent individuals, the generational cycle 

begins. Genetic information from the parent population is blended via recombination, and 

then varied by mutation to engender  offspring solutions. Thereafter, offspring are 

evaluated for fitness, and the top  individuals are selected deterministically as parents 

from which the subsequent generation will breed.  

 

2.3.2.1 Recombination  

Recombination is the process by which the genetic information is blended to ensure that 

descendants inherit the characteristics of their ancestors. In the ES, recombination 

techniques are divisible into two major classes:  

 intermediate recombination. In which offspring are generated with the mean 

average of their parents‘ parameters. 

 discrete/dominant recombination. In which offspring parameters (alleles) are 

chosen at random from parent candidates
1
.  

 

Each class has local and global variants. In the former only two parents are married in 

bisexual recombination, whereas in the latter, all parents partake in multisexual 

recombination. Schwefel and Rudolph (1995) extended the ES to include the concept of 

variable arity, introducing the exogenous parameter , to indicate the number of parents 

participating in the procreation of each descendant.  With this generalisation, arity is 

controlled by the mixing number  which may be set to any value in the range . 

All variants of the ES may then be realised as special cases of the more general  

                                                 
1
 This technique is comparable to uniform crossover in the genetic algorithm (Syswerda, 1989),where each 

bit is chosen at random between the parental candidates. 
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strategy, with  indicating a strategy with no recombination and  and  

equating to local and global recombination respectively.  

 

More formally, intermediate recombination amongst  parents, is given by: 

 

 

     

where  represents the  object parameter  of the   parent 

 , from which the recombinant object parameters , positioned at 

the centre of mass or centroid of the contributing parents, may be derived. Discrete 

recombination, on the other hand, is given by: 

 

 

 

with  chosen randomly anew for all .  

 

Both recombination methods may be applied to the mutation step-sizes  in addition to the 

object parameters .  

 

Eiben and Bäck (1997) empirically investigated the performance of a multi-membered ES 

in application to a series of test functions, while varying the parameter . The paper 

concludes that, in most cases, multisexual recombination of the object variables leads to an 

increase in performance over asexual recombination (no recombination), with optimal 

results often attained when  (global recombination). 

 

2.3.2.2 Genetic Repair 

Beyer (2001) formally confirmed the positive effects of multisexual recombination with a 

theoretical analysis of the  ES applied to a simple unimodal sphere function. An 

ES adopting global intermediate recombination was shown to provide an increase in 

progress rates when compared with an equivalent  ES without recombination. Beyer 

attributed this increased rate to the corrective effects of the recombination operator, which 

gave rise to the genetic repair hypothesis: 

 



20 

The benefit of (intermediate) recombination lies in genetic repair (GR). The effect 

of recombination is the extraction of similarities. 

Beyer (2001, p222) 

 

When  intermediate recombination is applied to a population of parent individuals, 

recombinants are situated at the centroid of the parent population. Mutation then serves to 

displace offspring from this centroid position normally at random. Beyer demonstrated that 

mutants deviate from their origin by a mutation vector which may be decomposed into an 

 component, in the direction of the optimum, and an  component, perpendicular to the 

direction of the optimum. Deterministic selection of the fittest mutants yields parents 

endowed with correlated positive  components, with relatively uncorrelated  

components. By interpreting the  component as the harmful effects of mutation (as it lies 

perpendicular to the beneficial  component), the subsequent application of recombination 

will tend to preserve the useful components of the parents (similarities), while cancelling, 

or repairing, their harmful components (differences). In other words, both the beneficial 

and harmful effects of mutation are averaged, but selection ensures that the beneficial 

effects are correlated, while the negative effects are not. Beyer reports that the  

component of the calculated centroid is smaller than the mean expected length of a single 

mutation by a factor of . Moreover, as the harmful component of mutation is reduced 

by the  intermediate strategy, the mutative strength may increase above that which 

is optimal for a  strategy, resulting in a larger improvement step and an overall 

increase in progress rate. 

 

Interestingly, the genetic repair hypothesis also holds when parents are recombined using 

the discrete recombination operator. In contrast to the intermediate operator, discrete 

recombinants are not positioned at the centroid of the parent population. Instead, 

descendants are constructed from a vector element chosen randomly from the parent 

population. This procedure is equivalent to randomly sampling the parents‘ genetic 

material, which is ultimately distributed around a statistical centroid. Thus, recombination 

can be viewed as a larger (surrogate) mutation from an estimated centroid (Beyer, 1995 

and Beyer, 2001). 

 

Although useful in understanding how recombination and mutation play different yet 

complementary roles in directing a population towards an optimum, it is not possible to 

extend Beyer‘s theory to non-spherical optimisation problems, not least real-world 
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problems with unknown characteristics. In rugged problem spaces comprising multiple 

peaks and flat plateaus, recombination and mutation are still beneficial to evolution; 

however, their benefits cannot be explained by the genetic repair hypothesis alone. 

 

2.3.2.3 Mutation  

In contrast to both the GA (in which recombination is widely regarded to be the primary 

variation operator) and EP (relying upon mutation alone), the ES takes an intermediate 

position: mutation and recombination are applied with equal importance (Beyer, 2001). 

However, the mutation operator does provide the primary source of variation, and thus 

exploration. Recombination works synergistically with mutation, reducing variation error 

and accelerating progress rates.  

 

Object Parameter Mutation 

Mutation is applied to the object parameters of each recombinant   with the addition of 

the mutation vector : 

 

 

 

This delivers the mutated object parameters . Each element of the mutation vector is 

drawn randomly from the standard normal distribution  and scaled according to 

the mutation strength specified by the strategy parameters of the recombinant individual. 

This mutation scheme ensures that mutative jumps through the search space are: 

 ordinal, favouring small jumps through the search space over large jumps.  

 scalable, according to the mutation strength , such that any point within the space 

may be reached. 

 unbiased, ensuring that, on average, mutants deviate from their point of origin 

isotropically.  

 

The lack of bias in the mutation operator ensures that that there is no deterministic drift 

without selection. 

 

Variations 

In its most rudimentary form, the mutation normal distribution is isotropic, i.e., only one 

step-size parameter  is required for the mutation of all object parameters . With an 

isotropic mutation scheme, the surface of mutation probability isodensity forms a circle, 
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sphere, or hypersphere, dependent upon , the problem dimensionality. This is depicted in 

figure 2.4a (with ).  

 

 

        (a)           (b)              (c)  

Figure 2.4: Two-dimensional probability isolines of (a) isotropic, (b) ellipsoidal and (c) rotated ellipsoidal 

mutation 

 

With an isotropic mutation mechanism the mutation vector is given by: 

 

 

 

As such, each individual within the system contains only one strategy parameter , which 

offers global control of the mutation step-size for each object parameter. 

 

In many applications it is beneficial to employ an individual step-size parameter for each 

object vector element, enabling the mutation density function to form an axis parallel 

ellipse, ellipsoid, or hyper ellipsoid dependent upon  (see figure 2.4b). This extension to 

the mutation operator requires each individual to contain a vector of endogenous step-size 

parameters  of length . The corresponding mutation vector is then given by:  

 

 

 

The most elaborate and general mutation scheme was proposed by Schwefel (1981) and 

incorporates the concept of correlated mutation angles, in which a rotation matrix enables 

the density (hyper-)ellipse to adaptively align itself to the topology of the objective 

function (see figure 2.4c). The corresponding mutation vector is given by: 

 

 

 

The rotation matrix  consists of  rotation angles , which are included within 
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each individual ( ) and adapted with the step-size parameters . For further reading and 

implementation details of this generalised self-adaptation mechanism, see (Schwefel, 

1981). 

 

When the endogenous strategy parameters ( , and ) are adapted along with the object-

variables, optimisation takes place simultaneously in both the object and strategy 

parameter spaces. This process ensures that high performing solutions are selected for 

reproduction along with their corresponding strategy parameters, which may go on to yield 

even stronger solutions throughout subsequent generations.  

 

Strategy Parameter Adaptation 

By selecting optimal values for the strategy parameters controlling the mutation strength, 

the maximum rate of progress can be maintained. The problem then arises as to how the 

strategy parameters may be continuously adapted throughout the course of evolution. For 

the ES there are two standard approaches for step-size adaptation: the  rule and self-

adaptation. 

 

The Rule 

By studying the dynamics of the  ES when applied to two differing objective 

functions, Rechenberg observed that the maximum rate of progress corresponds to a 

particular value for the probability of a successful mutation (Rechenberg, 1973, as cited in 

Beyer and Schwefel, 2002). As the mutation step-size tends to zero, the probability of 

success becomes very high; conversely, as the step-size tends to infinity, the probability of 

success becomes very low. In order to maintain an optimal rate of progress, the step-size 

parameter  should be adjusted to maintain a probability of success within these two 

extremes; a range that has become known as the evolution window. This observation led to 

the derivation of a general rule for the probability of success: mutation step-size adaptation 

by the  rule. Successful mutations are measured over several generations (often equal 

to the dimensionality of the problem) and if the probability of a successful mutation is 

found to be below , the mutation step-size is decreased. A recommended factor for the 

multiplicative/multiplicative inverse adaptation of the step-size parameter by the   

rule is 0.85 (Schwefel, 1995).  

 

However, there are certain limitations that apply when adapting the mutation step-size 

using the   rule:  
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 the rule may only be applied when all object parameters are controlled by a global 

mutation step-size parameter (isotropic mutation).  

 the rule is only accurate for the two-membered   ES. 

 the rule is only accurate for certain landscape characteristics.  

 

Schwefel (1987) subsequently introduced a more flexible adaptation scheme termed self-

adaptative mutation.  

 

Self-Adaptation 

In the self-adaptive mutation scheme, evolutionary search takes place simultaneously in 

both the object and strategy space. It is assumed implicitly that optimal step-sizes result in 

fitter descendants and thus will be selected more frequently than non-optimal step-sizes. 

This adaptation scheme has now become the standard modus operandi for the state-of-the-

art ES.  

 

In the self-adaptive method, a vector of step-size parameters  is included within each 

population individual, with the object parameters . Each element of the step-size vector 

specifies a unique mutation strength for each object parameter, thus facilitating the axis 

parallel ellipsoidal mutation scheme illustrated in figure 2.4b. To maintain optimal rates of 

progress, the mutation step-sizes must themselves be adapted along with the object 

parameters, by means of recombination and mutation.  

 

Step-Size Recombination  

Recombination of the step lengths is considered to be essential for the effective operation 

of the self-adaptive mechanism (Bäck and Schwefel, 1993). The intermediate and discrete 

recombination operators, identified above for the variation of object parameters, may be 

directly applied to vary the step-size parameters.  

 

The progress of the ES is often restricted by large fluctuations in the strategy parameters 

that occur throughout the course of evolution. This overadaptation effect is particularly 

prominent in cases where small values for  are assumed in conjunction with discrete 

recombination. For this reason, intermediate recombination of the strategy parameters is 

highly recommended as the effects of genetic repair attenuate these fluctuations (Beyer, 

2001).  
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Step-Size Mutation 

To ensure that step-sizes remain positive, the individual step lengths of the vector  are 

mutated by a multiplicative, rather than additive process (as is case for mutation of the 

object parameters). The principles derived for the mutation of object-variables also apply 

for the mutation of the strategy parameters. For example, mutations to the object 

parameters should be ordinal, scalable and unbiased. However, as mutations are applied 

multiplicatively they should be drawn from a random number source with expectation 1.0. 

For this reason the log-normal update rule is applied to the step-size vector  as follows: 

 

 

 

with  and . Schwefel and Rudolph (1995) 

recommend setting the learning parameters  and , according to: 

 

 

 

 

 

The order in which the evolutionary operators are applied to the object and strategy 

parameters is also an important factor in the successful application of self-adaptation. The 

step-size parameters should be mutated prior to the object parameters, to ensure that any 

useful mutative step made in the object space is directly attributed to the accompanying 

step-size vector. The intention here is that the useful strategy parameters that led to the 

adaptation of strong object parameters are inherited by descendent individuals to deliver 

even fitter solutions throughout subsequent generations. 

 

Derandomised Self-Adaptation 

Ostermeier et al (1994) presented a derandomised mutative step-size control procedure 

designed to improve the performance of the original self-adaptation mechanism. The 

traditional mutative self-adaptive mechanism (outlined above) has been shown to break 

down when small population sizes are employed (Schwefel, 1987). While these symptoms 

can be reduced with the use of intermediate recombination and larger population sizes, 

Ostermier et al (1994) set out to tackle the cause of these shortcomings. Two deficiencies 

in the traditional self-adaptive process were identified:  
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 Firstly, there is no guarantee that profitable variations in the object parameters will 

naturally correlate with an equivalent change in the mutation step-size. In other 

words, it is possible for a small step-size to yield a large parameter variation; if the 

resulting individual is subsequently selected, the step-size does not reflect the 

advantageous mutation. 

 Secondly, the amount of variation in the strategy parameters is the same throughout 

all generations; therefore, the procedure for adapting the strategy parameters is set 

to facilitate effective mutation irrespective of the distribution of the population 

throughout the search/strategy space. Consequently, the adaptive process produces 

a large enough variation in step-size parameters to ensure an appropriate selection 

difference between individuals. In smaller populations this level of variation can 

lead to large fluctuations in the strategy parameters that can impede the 

optimisation process. 

 

To ameliorate these problems, Ostermier et al derived a derandomised approach to self-

adaptation. In the traditional self-adaptive ES mechanism, object parameters are mutated 

with the addition of the mutation vector : 

 

 

 

The derandomised mutation vector  is given by: 

 

 

 

where  or  with equal probability determined for each offspring,   and z


 

is a normally distributed random vector. Derandomised mutative adaptation is then applied 

to the step-size vector  according to: 

 

 

 

in which  and , and the parameters  and  are the same parameters 

used to calculate the mutation vector for the corresponding object parameters. With the 

derandomised mutation operator, it is ensured that the step-size parameter values are 

always mutated in proportion to the object parameters, with minimal stochastic 

fluctuations.  
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For effective operation of the mutative self-adaptation mechanism, the  strategy is 

widely regarded to offer superior adaptive properties when compared with the  

alternative (Bäck and Schwefel, 1993). This is due to the possibility that a highly-fit 

offspring is generated with a step-size parameter that is entirely inappropriate for its new 

location. This may arise when a recombinant with a very large mutation step-size 

fortuitously jumps to a distant and highly fit region of the search space. If the offspring is 

able to pass directly into subsequent generations (elitism), optimization is likely to stagnate 

as further progress will be thwarted by the originally useful but now unsuitably large step-

size. This situation could not arise in the  strategy, as the anomalous offspring would 

expire after transmitting some of its strong genetic material through recombination.  

 

2.3.2.4  Selection 

The selection operator in the ES facilitates the drift of the population towards regions of 

increasing fitness within the parameter space. Selection works in an opposing yet 

complementary manner to the variation operators and identifies the direction in which 

search should proceed. As was discussed earlier in this section, selection in the ES is 

performed deterministically. In the case of the  comma (or extinctive strategy), the 

fittest individuals are chosen from the offspring; whereas in the  plus (or 

preservative strategy), selection is made amongst both the parent and offspring 

populations. Schwefel and Rudolph (1995) established the concept of maximal lifespan 

with the introduction of the exogenous parameter  to indicate the number of generations 

for which each individual is permitted to survive. The resulting  strategy provides 

a generalisation of the deterministic selection scheme, such that when  the ES 

presents an instance of the extinctive comma strategy; furthermore, when  the 

resulting ES is equivalent to the preservative plus strategy. The parameter  may also be 

set to any intermediary value in between these two extremes .  

 

2.4 EA Similarities and Differences 

Both the ES and GA derive inspiration from biological evolution; however, the specific 

implementation of each EA is quite different. For example, in the theory that relates to the 

GA it is assumed that the genes of the optimal solution are scattered throughout the 

population; evolution is then the process of recombining these genes to produce the 

optimum. ES theory, on the other hand, assumes that the optimum solution will be located 

through a processes of organised, but random, mutative leaps through the object space.  
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As the research field of evolutionary computation has developed, the boundaries that once 

existed between distinct classes of EAs have begun to erode. This section aims to 

summarise some of the more recent developments that bring these algorithms closer 

together. 

 

The canonical GA employs binary encoding for the representation of real-valued object 

variables. While this type of representation models the processes of biological evolution 

more closely than real-valued representation, encoding the search space into discrete 

intervals for binary representation can introduce harmful side effects, which may in turn 

increase the complexity of the search space (Bäck et al, 1997b). When continuous 

parameters are represented by bit-strings, there are often large discrepancies (Hamming 

cliffs) between the real and encoded parameter spaces. For example, two points might be 

separated by only a single bit mutation in the genotype space; however, in phenotype space 

the same points might be positioned very far apart. This problem may be reduced to some 

degree by employing a Grey coding, such that all adjacent points in the phenotype space 

are separated by one bit-shift in the genotype space. However, it is still possible that 

inversion of a single bit can result in a large transition in object space.  

 

EP and ESs, on the other hand, traditionally represent object parameters with real-valued 

numbers. This representational distinction between EAs has become blurred since Wright‘s 

(1991) investigation of real-coded GAs, with phenotypic crossover and (ordinal) mutation 

operators. This augmentation of the simple GA stimulated a succession of real-coded GA 

publications that circumvented the inherent precision, range-restriction, and Hamming cliff 

problems associated with binary-coded representation (Herrera et al, 1998) (Deb and 

Beyer, 1999). Conversely, ESs may also operate on bitstrings (Beyer, 2001, p3), (Beyer 

and Schwefel, 2002). An ES has even been adapted to model the neighbourhood 

distribution of the Grey-code (Rowe and Hidović, 2004). Consequently, individuals may 

be represented directly or mapped via binary-coding in either algorithm. 

 

The decision as to whether strategy parameters should be adapted as evolution takes place, 

or remain unchanged throughout the course of evolution was also once a distinguishing 

factor between different classes of EA. However, GAs have been developed that permit the 

variation of mutation rates by a form of self-adaptation (Smith and Fogarty, 1996), (Yang 

and Kao, 2000). Furthermore, an ES has also been developed that applies the traditional 

mutation scheme according to a GA-style fixed probability rate (Huband et al, 2003). 

Additional examples of self-adaptive genetic algorithms may also be found in Bäck and 



29 

Schutz (1996) and Bäck et al (2000). 

  

The selection operator may be distinguished from the mutation and recombination 

operators as it is entirely independent of the search space structure. As such, any selection 

operator from one evolutionary algorithm may be easily applied to any other. As was 

shown earlier, the GA traditionally employs a fitness proportionate probabilistic selection 

operator. However, tournament selection (Goldberg and Deb, 1991) as well as linear 

ranking selection (Baker, 1985) methods are also widely employed. On the other hand, the 

ES regularly adopts a deterministic scheme. However, selection operators have also been 

shared between these two classes: A truncation selection operator has been designed and 

implemented for use within the Breeder GA (Mtihlenbein and Schlierkamp-Voosen, 1993), 

which is based upon the deterministic techniques employed by human breeders. 

Furthermore, deterministic selection-based GA developments have also been developed by 

Affenzeller et al (2005) and Eshelman (1990). The tournament selection scheme employed 

by Goldberg and Deb (1991) for use within the GA has also been adopted by the ES, as 

described in Schwefel and Rudolph (1995). The ES plus selection strategy is also modelled 

by the elitist selection or generation gap scheme in GAs (De Jong, 1975).  

 

It is clear that the ideas and concepts that once separated the various implementations of 

the EA are now shared between them. In his book Beyer even goes so far as to state that 

the algorithms are only separated by the lack of theory that unites them (2002, p3).  Recent 

evolutionary computation publications are frequently concerned with hybrid or haptic 

algorithms with ideas gleaned from the optimisation literature without bias. The relative 

merits or detriments of one class of EA compared with another is a discussion which will 

not appear here. The EAs proposed throughout chapters four and five are applied within 

the framework of the ES; generalisation could easily be made to the GA but such 

developments are beyond the scope of this thesis. For a side by side comparison of the 

three main classes of EA (GA, ES and EP) see Bäck and Schwefel (1993).  

 

2.5 Summary of this Chapter 

In this chapter the computational model of evolution was reviewed, with details of how the 

model may be applied to optimise static real-valued problems. The specifics of the GA and 

ES were introduced with a brief summary of their historic developments and current state. 

Detailed implementation specifics were provided for ES, as this forms the theoretical 

framework within which the algorithmic developments documented in chapters four and 
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five of this thesis are based. The following chapter reviews a wide range of EA 

developments that are designed to improved optimisation performance in complex 

multimodal search environments. 
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Chapter 3 

 

Background - Multimodal Optimisation 

 

Since the introduction of EC over 40 years ago, there has been growing interest in the 

application of EAs to an ever-increasing range of parameter optimisation problems. EAs 

have been shown to be robust, reliable and straightforward to apply even when there is 

very little a priori knowledge of the underlying problem domain. However, in search space 

environments containing multiple distinct optima, EAs can often fail. This chapter reviews 

an EA pathology known as preconvergence and summarises the algorithmic attributes that 

result in this shortcoming. A range of techniques are then reviewed which have been 

designed to minimise the likelihood of preconvergence. 

 

3.1  Multimodal Problem  

Domains and Preconvergence  

As described in chapter two, EAs operate through the maintenance of a finite population of 

solution candidates. Each candidate represents a sample taken from the fitness landscape of 

the application domain. At the early stages of optimisation, samples are distributed 
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sparsely throughout the search space. On the basis of the topographical information 

afforded by the landscape samples, regions of the space are identified within which 

subsequent search will proceed. Through the process of selection (which over time allows 

fitter solutions to dominate the population), the population will gravitate towards regions 

of high cumulative payoff, enabling fitter regions of the search space to be sampled at 

increasing resolution.  

 

Consequently, standard evolutionary algorithms are easily deceived by multimodal 

problem domains in which a single optimal peak is located within a subspace of below 

average payoff (Whitley, 1991), (De Jong, 1993). This behaviour is not surprising; rather, it 

is a consequence of the underlying search process. The fitness landscape may only be 

observed though the search points of the population, if an optimal peak (or its surrounding 

gradient) is not sampled, it is effectively invisible. Even if the gradient of the optimal peak 

is sampled once, there is no guarantee that it will be sampled again throughout subsequent 

generations. If too much time is invested in finding the whereabouts of hidden peaks 

(exploration), progress rates are compromised. Conversely, if the population focuses on 

high performance regions too rapidly (exploitation), suboptimal convergence becomes 

highly probable, and the robustness of the EA is compromised. A balance must be struck 

between the interplay of exploration and exploitation. This precipitous focusing of the 

population is the fundamental cause of what is frequently referred to as premature 

convergence, or preconvergence. If the population preconverges at a suboptimal peak, 

further progress is precluded except as a result of random mutation. This problem is most 

prevalent when the application domain of the EA is highly multimodal.  

 

The propensity for traditional EAs to converge at a single point is endemic to their 

architecture and will arise even when search space optima are of equal magnitude. When 

there is no selective advantage between peaks, the choice will be arbitrary due to the 

stochastic nature of the variation operators (Schönemann et al, 2004). Even when peaks are 

unequal, optimal convergence is not guaranteed, due to sampling errors which may take 

place during the exploratory phase of optimisation (Preuss et al, 2005).  

 

Since the recognition of these preconvergence issues, a variety of techniques have been 

developed to enhance the performance of ESs within multimodal problem spaces. The 

principal aim of these techniques is to preserve a diverse selection of genetic material to 

facilitate sufficient exploration of the search domain prior to convergence.  
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3.2  Injecting Diversity 

Several variations on the traditional EA model counterbalance the loss of diversity (leading 

to convergence) with the continual introduction of novel genetic material.  

 

One approach is to ensure that each offspring satisfies a measure of uniqueness before 

being accepted into the population. Offspring that fail to meet the required criterion are 

systematically mutated until they are sufficiently different from the rest of the population. 

This technique was adopted by Whitley and Kauth (1988), and Mauldin (1984) to improve 

the performance of the simple GA. Mauldin‘s GA applies a variable uniqueness 

requirement which is decreased throughout the course of evolution; the assumption being 

that diversity is most important in the early stages of evolution. Gradually reducing the 

uniqueness level ensures the eventual convergence of the population at a single point. This 

approach was found to improve the off-line performance of the GA.  

 

Similar results may be achieved by adopting very high rates of mutation (Grefenstette, 

1986). Cobb (1990) introduced a hypermutation system which comes into effect when it is 

assumed that diversity is being lost. The traditional GA system is employed whilst fitness 

is progressing, but when there is a measured decline in progress (population convergence), 

the GA switches into a hypermutation mode (high mutation rate) to restore diversity.  

 

The sudden introduction of new genetic material has a similar effect to the complete re-

initialisation of the population, a method examined in Krishnakumar (1989) and Mathias et 

al (1998), termed cataclysmic mutation by Eshelman (1990). In other circumstances 

mutation has been substituted for an entirely stochastic system, in which randomly 

generated solutions are inserted directly into the population as evolution takes place 

(Bonham and Parmee, 2004).  

 

These injection approaches to diversity preservation have been criticised as addressing the 

symptom of the problem rather than the cause. The question then arises: what are causes of 

diversity loss in traditional EAs? In his PhD thesis Mahfoud (1995) extensively examined 

the primary causes of diversity loss within the GA. Shir and Bäck (2005) later reconsidered 

Mahfoud‘s observations from an ES perspective. There are three major factors that lead 

traditional EAs towards suboptimal convergence: 

 

 



34 

 Selection Pressure - The rate at which weaker individuals are discarded from the 

population is controlled by the selection pressure. Central to this theme is the 

concept of takeover time, introduced by Goldberg and Deb (1991), which is defined 

as the number of generations that have elapsed before the population contains only 

duplicates of the best individual (no population diversity). Raising the selection 

pressure will produce a corresponding reduction in takeover time, and 

consequently, an increase in the likelihood of suboptimal preconvergence. 

 Genetic Drift - Genetic drift describes the stochastic process that causes loss of 

diversity within finite populations, which is introduced by the selection operator. 

As a limit is placed on genes which propagate to succeeding generations, there is a 

tendency for the population to approach homogenisation. Subsequent 

recombination amongst a finite number of offspring can enable certain genes to 

dominate a population, even when there is no selective advantage (Schönemann et 

al, 2004).  

 Operator Disruption - Operator disruption describes the destructive effects that the 

variation operators can have on well adapted genes. This can simply occur when 

mutation has a negative affect on an individual, or when recombination yields 

offspring of lower fitness than their progenitors.  

 

From the factors summarised above, it is clear that injecting diversity into the population 

does not directly address the principal causes of diversity loss; indeed, the use of increased 

mutation rates serve only to aggravate problems associated with operator disruption. 

Furthermore, from the standpoint of the building block hypothesis (Goldberg, 1989), 

increasing the mutation rates can only be viewed as counter-productive (see section 2.3.1).  

 

Therefore, introducing diversity purely to prevent convergence is not the solution; as 

Goldberg and Richardson state: 

 

…we need to maintain appropriate diversity--diversity that helps cause (or has 

helped cause) good strings. 

Goldberg and Richardson (1987) 

 

The following sections review many augmentations of the traditional EA model, which 

seek to improve performance within multimodal problem domains through the 

maintenance of appropriate diversity. 
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3.3  Appropriate Diversity 

While the injection of novel genetic material does succeed in maintaining diversity, it fails 

to maintain appropriate diversity as described by Goldberg. As the selection and variation 

operators work to navigate the population towards ever-increasing regions of fitness, the 

application of high mutation rates serves only to hamper the optimisation procedure. The 

purpose of maintaining diversity is not just to delay convergence, but to ensure that the 

search space is sufficiently characterised prior to convergence. 

 

Central to the maintenance of appropriate diversity are the concepts of niche and species. 

Although loosely defined, the term species is used to refer to solutions that share similar 

characteristics, and niche to refer to the region within the search space that a species 

occupies.  

 

Numerous interpretations of these concepts have been implemented in the EA literature, all 

of which incorporate some notion of population division. Partitioning the population into 

groups of individuals encourages the parallel investigation of multiple distinct search space 

sub-domains, which often serves to delay convergence; however, it is important to note 

that this is not the aim. Restriction of local competition between population subdivisions 

(species) can result in an overall reduction in selection pressure, while local variation 

amongst subdivision members reduces operator disruption. 

 

3.4 Speciation  

If the intention is to maintain appropriate diversity, by encouraging the formation of 

population species, the traditional EA architecture must be adapted in some way. When 

applied to bimodal problems with equally sized peaks, traditional EAs are unable to 

maintain both optima, regardless of the population size (Mahfoud, 1995). As appropriate 

diversity could be maintained by enabling population members to form into species, a 

second question is raised: what are the properties of traditional EAs that prevent the 

formation of species? In essence, this question has been addressed implicitly in the 

literature that relates to niching and speciation EAs. The two major factors are as follows: 

 Optimistic Selection - Traditional EA selection operators consider only fitness 

when identifying those members of the population to partake in recombination. As 

such, it is possible for a single adaptation with high relative payoff to dominate the 

population before other regions of the space have been sufficiently explored. To 
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enable the formation of species, it is required that the selection/replacement 

operators consider not only fitness, but also the location of each individual with 

respect to the rest of the population; whether this spatial consideration be in the 

search domain or internal to the EA.  

 Recombination Disruption - Recombination has the power to destroy, as well as 

unite, the beneficial traits of individuals. When used to optimise a multimodal 

problem space, traditional recombination, acting globally on the population, will 

attempt to blend genetic material from individuals that represent independent 

search space peaks without bias. The corresponding recombinant will thus 

characterise some midpoint between contributing individuals, and is not guaranteed 

to occupy any of the peaks represented by the parental set. These disruptive effects 

of global recombination may be reduced by modifying the EA to ensure that mating 

only takes place locally between population members within the same niche, thus 

creating species. 

 

The remainder of this chapter considers a variety of speciation techniques that provide 

improved performance within multimodal problem domains by addressing one or both of 

the factors identified above. Frequently this results in more reliable location of the 

optimum, and/or the simultaneous maintenance of multiple solutions positioned at distinct 

peaks within the search space. 

 

3.4.1 Non Partition-Based Speciation Methods 

In the first group of speciation methods reviewed here, the notion of species is not imposed 

upon the evolutionary architecture in any way; rather, species are induced either by 

carefully selecting and replacing population members, or by warping the internal 

perception of the fitness landscape. 

 

3.4.1.1 Similarity-Based Selection/Replacement 

Species may be encouraged to form within the population by implementing a similarity-

based selection procedure to ensure that a diversity of genetic material is maintained within 

the population. While similarity measures were adopted in the mutation-based approaches 

reviewed in section 3.2, this approach differs as diversity is maintained by a controlled 

selection mechanism, rather than a stochastic mutation procedure. 
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Crowding 

In his doctoral thesis, De Jong (1975) developed a series of GA-based algorithms, to 

improve performance when facing a variety of problem characteristics. When 

experimenting with an elitist model, in which the fittest individual of one generation 

automatically passes into the next, De Jong noted a performance improvement over the 

baseline GA when optimising unimodal test functions. However, a performance decrease 

was observed when optimising a multimodal test function. Preservation of the fittest 

individuals was found to deliver improved local search at the expense of global search, and 

thus the likelihood of suboptimal preconvergence was increased. To generate improved 

results within a multimodal test environment, De Jong proposed an augmentation to the 

conventional GA mechanism called crowding, which formed one of the earliest attempts to 

preserve population diversity and thus promote increased search space exploration.  

 

The crowding scheme implements a steady-state GA, in which new offspring are accepted 

into the population immediately following their creation. To maintain a fixed population 

size, new offspring replace existing population members on the basis of a bit by bit 

(genotypic) comparison or Hamming distance measure. By replacing like with like, a 

diversity of genetic material is encouraged to persist within the population, facilitating the 

formation of multiple species.  

 

Deterministic Crowding  

To improve efficiency of the crowding technique, offspring may be compared for likeness 

with a set of randomly chosen individuals rather than the entire population. The size of the 

set is controlled by a crowding factor parameter. A low crowding factor leads to a degree 

of stochastic error in the replacement process: offspring frequently replace parents from a 

different niche or subspace of the application domain (replacement error). While crowding 

is, to some extent, successful at maintaining genetic diversity, this replacement error leads 

to the movement of the population towards fixed bit positions through genetic drift.  To 

circumvent these problems, Maulford (1992) presented a deterministic crowding scheme in 

which similarity is measured at the phenotypic level (Euclidian distance), and offspring 

may only replace their parents when there is an improvement in fitness. Deterministic 

crowding was found to provide a significant improvement over the original crowding 

method, resulting in the near extirpation of replacement errors, and the maintenance of 

solutions around all of the peaks in the tested multimodal functions. 
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3.4.1.2 Restricted Tournament selection  

As described in section 2.4, tournament selection provides a stable mechanism for 

identifying population members to take part in recombination. In stochastic binary 

tournament selection, pairs of randomly chosen population members compete for places in 

the mating pool. On average, the fittest individual is accepted twice, while the weakest 

individual is discarded. This procedure enables the selection pressure to be controlled 

(Miller and Goldberg, 1995), preventing the sudden proliferation (takeover) of a relatively 

strong individual; a problem to which roulette wheel selection is susceptible.  

 

Harik (1995) later developed a restricted tournament selection mechanism to enhance GA 

performance within multimodal problem domains. The model encourages the preservation 

of appropriate diversity by taking measures to restrict competition between individuals that 

do not belong to the same niche. As in the crowding approach, a steady-state GA is 

adopted in which each new offspring competes with selected population members for a 

place in the population. However, in the restricted tournament scheme, the competing 

individual is selected from  (windowsize) randomly chosen population members as the 

most (phenotypically) similar to the new offspring. 

  

3.4.2  Fitness Sharing  

In natural evolution, species develop as a result of conflict for finite resources. A species 

will grow until the environmental resources on which it relies for subsistence become 

scarce. When a niche becomes saturated, new species will emerge that exploit 

environmental resources which are relatively uninteresting to other species.  

 

Goldberg and Richardson (1987) modelled the processes of natural speciation within the 

GA by introducing a fitness sharing procedure that encourages population members to 

explore multiple search space optima simultaneously. Species are induced by devaluing the 

performance of each individual according to the quantity of neighbouring population 

members that fall within a defined sharing radius . Once a group of individuals are 

positioned within a high performance search space peak, the local resources are shared, 

encouraging the remaining population members to pursue alternative optima. This sharing 

procedure has the effect of adaptively warping the internal perception of the fitness 

landscape to promote increased exploration.  

 

It was later demonstrated by Deb and Goldberg (1989) that the fitness sharing GA was able 
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to maintain multiple distinct search space optima more reliably than De Jong‘s original 

crowding GA. Furthermore, to minimise the production of so-called lethal offspring, 

through disruptive recombination, a novel mating procedure was also introduced. 

Restricted mating operates by selecting an individual from the population, followed by a 

potential mate. If the chosen individual and mate occupy the same niche (i.e. within the 

predetermined sharing radius), recombination is performed, otherwise an alternative mate 

is chosen. Goldberg and Deb‘s restricted mating scheme was shown to provide an on-line 

performance improvement over the traditional GA recombination operator on the tested 

problem domains.  

 

Since its introduction, several drawbacks to the fitness sharing approach have been noted: 

 a priori knowledge of the application domain is required in order to select an 

appropriate value for  (Goldberg and Deb, 1989). 

 for the most effective results, optima should be distributed evenly throughout the 

search space (Hocaoglu and Sanderson, 1997) and of equal size (Gan and Warwick, 

1998). 

 sharing can often result in individuals forming around search space optima (Bäck, 

1996), due to the warping of the fitness landscape. 

 

Numerous efforts have since been developed which attempt to ameliorate one or more of 

the drawbacks identified above, notable authors include Yin and Germay (1993), Lin and 

Yang (1998), Lin et al (1998), Lin and Wu (2002), Miller and Shaw (1996), Goldberg and 

Wang (1997), Gan and Warwick (1998) and Gan (2001), some of which will be reviewed 

in section 3.6.1. 

 

3.5  Static Partition Speciation Methods 

Rather than promoting the formation of species through an inductive procedure, an 

alternative approach is to include a notion of parallelism within the EA model. Division of 

the population into isolated subpopulations which evolve concurrently directly addresses 

problems associated with optimistic selection and recombination disruption. 

 

As noted by Harik (1994), many of the methods for conserving diversity by dividing an EA 

population into spatially separated subpopulations (demes) derive inspiration from the 

Shifting Balance Theory posed by Sewall Wright (1969). Wright conjectured that, by 

separating the population into smaller subpopulations, individuals will range more widely 
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over the landscape, and the diluting effects of blending highly fit genes with the population 

at large are reduced. In other words, strong adaptations are more likely to persist within a 

deme than a global (panmictic) population. There are two major classes of static partition 

parallel population EAs: 

 Coarse-grained island models. 

 Fine-grained diffusion models. 

 

3.5.1 Coarse-Grained Parallel Population  

Methods: The Island Model 

Within a coarse-grained EA, each deme evolves in relative isolation except for the 

occasional exchange of individuals at a fixed rate of migration. Once a strong individual 

has dominated its respective deme, its spread is restricted until the subsequent migration 

phase, whereupon the genes of this well-adapted individual may permeate into 

neighbouring demes. This enables alternative evolutionary pathways to progress naturally, 

a process which may otherwise have been disrupted had all individuals been forced to 

compete globally. A visual representation of the island model is depicted in figure 3.1. 

 

 

Figure 3.1: Island model 
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Tanese (1989) compared a distributed GA with both a simple and partitioned GA (without 

migration), concluding that both the distributed and partitioned GAs outperform the simple 

GA to an equal extent. However, the distributed GA was found to position a higher 

proportion of individuals at the global optimum. In a more recent study, Whitley et al 

(1999) demonstrated that when optimising certain application domains, a partitioned 

system with migration possesses a significant advantage over a partitioned system without 

migration. 

 

A comparable GA-based model was presented by Whitley and Starkweather (1990), named 

GENITOR II. The migration procedure differed from that of the distributed GA as, upon 

migration, the k best individuals from the source deme are selected to replace the k weakest 

individuals of the destination deme. This optimistic migration method results in an 

increased selection pressure over the purely stochastic migration procedure of the 

distributed system.  

 

Island model EAs are not restricted exclusively to the GA paradigm; distributed versions 

of the ES have also been implemented, see for example Rudolph (1991) and Lohmann 

(1991). The major distinguishing factors between the various implementations of the island 

model are the quantity of demes and the choice of migration interval. Whitley et al (1999) 

investigated the effect that these factors have on the performance of an island model GA, 

concluding that the optimal settings are highly coupled with the underlying structure of the 

application domain. 

 

Herdy (1992) experimented with an adaptive migration interval (isolation period) within a 

hierarchically organised ES, which later became known as the Meta-ES (Beyer and 

Schwefel, 2002). At the lowest level of the Meta-ES hierarchy, a conventional ES 

maintains a population of candidate individuals. At the next level of abstraction, the 

species level, a number of competing populations are evolved, again using a conventional 

ES. At this level the individual is no longer the selective unit, selection acts at the 

population level, where a single species comprises multiple populations. At the uppermost 

level, the genus level, a population of species is maintained, and again optimised by ES, 

with selection favouring those species that contain populations performing the best. This 

rather complex arrangement is illustrated in figure 3.2. 
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Figure 3.2: Meta-ES 

 

A species may be considered analogous to an island; however, within the Meta-ES 

framework, species contain a pair (sometimes more) of competing subpopulations. Pairs of 

subpopulations within each species are arranged such that one subpopulation emphasises 

exploration, while the other emphasises exploitation. Upon migration, at the lowest level, 

members of the best subpopulation are duplicated to replace those of the worst 

subpopulation. Individual mutation step-sizes are then adjusted such that members of one 

subpopulation are assigned values above the average mutation step-size, while members of 

the other subpopulation are set below the average (exploration and exploitation 

respectively). At the species level migration interval, all species are set to the best, and the 

migration intervals are adapted such that the isolation period in one species is increased 

while the other is decreased. This complete process facilitates the self-adaptation of both 

the step-sizes and migration intervals. For fuller treatment see Herdy (1992). 

 

3.5.2 Fine-Grained Parallel  

Population Methods: The Diffusion Model  

Fine-grained EAs, like their coarse-grained counterparts, also divide the population to 

ensure that competition and mating take place only between individuals belonging to the 

same deme, or neighbourhood. Each individual occupies a unique neighbourhood, which 

includes population members positioned in the immediate locality, where the population is 

often arranged in a linear, planar or higher-dimensional spatial topology. Unlike the island 

model, demes are not entirely disjoint; rather, they overlap adjacent demes, and thus 

incorporate an implicit notion of migration. Highly fit individuals are able to pervade the 

population through a steady diffusion process. This architecture delays total population 

Species 1

Genus

Species 2
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convergence enabling genetic pathways to progress in relative isolation prior to global 

competition. A fine-grained EA population is illustrated in figure 3.3; the depicted model 

adopts a planar Moore neighbourhood. 

 

. 

Figure 3.3: Fine-grained architecture 

 

Gorges-Schleuter (1989) developed a fine-grained EA named ASPARAGOS, which was 

applied to optimise the Travelling Salesman problem. In the ASPARAGOS system the 

population is arranged on a toroidal ladder, and each deme is defined as the reproductive 

community that surrounds each population member. In turn, each individual is chosen from 

the population to act as a parent and paired with a mate from within its neighbourhood. 

Resulting offspring then replace the parent if they are of higher fitness, otherwise an 

alternative mate is selected and the process repeats.  

 

Several other derivatives of the fine-grained EA may be found in the literature; for 

example, GA- and ES-based diffusion models have been explored by Mühlenbein (1992), 

and Sprave (1994) respectively. Furthermore, a comparison between traditional and fine-

grained EAs may be found in Manderick and Spiessens (1989).  

 

3.5.3  Discussion 

The benefits of these diffusion and island models are twofold. Not only do they facilitate 

the preservation of diversity for a period that enables increased exploration of the search 

space, but these models may also be deployed easily on parallel computing hardware. The 

island model, for example, may be easily implemented on a coarse-grained computational 

architecture, in which each processor is allocated an entire deme for processing. The 
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diffusion model, on the other hand, is well suited for implementation on a fine-grained 

computational architecture, in which each individual is assigned to a processor within a 

massively parallel arrangement. Deployment of EAs on parallel computational hardware is 

not of interest here, so this subject is not addressed any further within this thesis. For more 

detailed information and a comparative analysis of these partitioned EAs, see Gordon and 

Whitley (1993). 

 

While these static partition models enable species to emerge throughout the course of 

evolution, migration (coarse-grained) and diffusion (fine-grained) will ultimately lead the 

population to a state of homogeneity. When migration is frequent, global convergence is 

accelerated. Conversely, when migration is omitted subpopulations are able to locally 

converge at independent optima (niching). However, without migration, the system is less 

robust and often highly redundant, as subpopulations may converge to the same niche 

independently. An alternative approach to population division is to derive partitions 

dynamically, based upon the distribution of the population within the search space. These 

methods can be grouped together and referred to as dynamic-partition speciation methods. 

 

3.6  Dynamic-Partition Speciation Methods 

Rather than educing species by warping the fitness landscape or by imposing a static 

geographic scenario upon the population, a third approach is to identify structure which 

may be emerging within the population and arrange partitions dynamically as evolution 

takes place. 

 

3.6.1  Cluster-Based Partition Methods 

By interleaving the evolutionary operators with a cluster analysis procedure, partitions may 

be defined that group individuals occupying the same niche. 

 

Clustering was first introduced to EC by Yin and Germay (1993) to ease the application of 

Goldberg and Richardson‘s (1987) fitness sharing procedure (see section 3.4.2) when there 

is little or no a priori landscape information. Two disadvantages of the original fitness 

method were identified:  

 the requirement for the parameter  to be set relative to the number of peaks.  

 the assumption that all peaks are equally distributed throughout the search space 

(Deb and Goldberg, 1989).  
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To alleviate these shortcomings, Yin and Germay incorporated an adaptive k-means 

clustering procedure within the traditional GA to identify individuals that belong to the 

same species. The fitness of each offspring is then abated according to the formula: 

 

 

with 

 

 

Where  is the number of individuals belonging to cluster ,  is the distance between 

the individual  and the centroid of the cluster, and  controls the linearity of the sharing 

function, which is set to 1 (linear) in Yin and Germay‘s experiments. The distance 

parameters  and , define the maximum and minimum cluster radii. Judicious 

choice of these parameters is necessary, as the algorithm is highly sensitive to error. For 

example, if  is too large, only a small number of clusters will form and fine peaks 

may be lost. Conversely, if the distance parameter  is too small, a superfluity of 

clusters may deteriorate the overall performance. A simple mating restriction scheme based 

upon the system employed in Deb and Goldberg (1989) was also applied to prevent inter-

species breeding which was found to produce improved results.  

 

Although Yin and Germay‘s clustering approach to sharing was repeatedly shown to 

outperform the original scheme presented by Goldberg and Richardson (1987), Lin and 

Wu (2002) noted shortcomings to the approach and proposed improvements. While 

clustering is appropriate for identifying distinct groups of individuals in the search space, it 

is unable to determine whether all members of a given cluster occupy the same niche (or 

peak). To circumvent this problem a niche identification technique was developed which 

groups individuals based upon their relative fitness
2
 as well as their search space 

proximity; for example, an individual with surrounding neighbours of lower fitness defines 

a niche centre, while an individual with surrounding neighbours of higher fitness defines a 

niche boundary (see figure 3.4). Subsequent to the niche identification procedure, the 

fitness of each individual is suppressed (shared) according to the number of population 

members belonging to the same niche. 

                                                 
2
  Several examples of algorithms in which diversity is preserved by observing the distribution of fitness 

throughout the population may be found in Ursem (1999) (reviewed in section 3.6.2), Hutter (2002) and 

Legg et al (2004). 
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Figure 3.4:  Niche identification technique 

   

Prior to the publication of the niche identification technique, Lin presented two alternative 

fitness sharing approaches. In the first approach (Lin and Yang, 1998), individuals are 

clustered according to their search space density with the application of a crowdedness 

function. In the second approach (Lin et al, 1998), the crowdedness function is reapplied in 

combination with a local search operator. At a time when either N generations have 

elapsed or a cluster has stabilised, a local search algorithm is seeded with the cluster 

centre. The located peak is then removed from the search space, and all individuals within 

the corresponding cluster are relocated at random.  

 

Hocaoglu and Sanderson (1997) incorporated minimal representation size cluster analysis 

(MRSC) into the GA for evolving unknown multimodal optimisation problems. This 

algorithm follows a comparable procedure to the island model, maintaining multiple 

subpopulations that evolve separately with the occasional Cross-Species-Interaction 

(crossover). However, unlike the island model, the number of subpopulations is not fixed, 

it is varied adaptively with the application of MRSC analysis to the merged population. 

This approach reduces redundancy in the parallel population model as subpopulations 

found to be converging upon the same optimum will be merged. Each subpopulation is 

assigned a fixed number of individuals, resulting in a general population size which varies 

according to the number of identified clusters. The periodic application of cluster analysis 

facilitates the formation of species at the cost of increased computational load. The MRSC 

GA was found to maintain distinct solutions for two multimodal test problems and to 

provide multiple distinct solutions to a mobile robot path-planning problem.  

 

An ES-based clustering optimiser was presented by Sullivan (2001) in which the local 

search properties of the ES were combined with the strengths of fuzzy cluster analysis. By 
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partitioning the search population into clusters of individuals that locally recombine and 

progress, it was demonstrated that the fuzzy clustering ES (FCES) was able to evolve 

optimal solutions when applied to a variety of multimodal test problems. Fuzzy clustering 

was applied previously for objective function optimisation to deliver multiple start points 

for a local (hill-climbing) optimiser (Törn, 1986). The FCES adopts the same approach, 

replacing the local optimisation algorithm with an ES. Optimisation then proceeds with 

alternate application of cluster analysis and the evolutionary operators. The fuzzy-

recombination operator enables species to form within the population by blending the 

genes of parents in proportion to their membership of a given cluster.  

 

The selection mechanism within the FCES conforms to the global procedure of the 

traditional ES; the consequent global selection pressure drives the population towards the 

niche that offers the highest payoff. FCES is therefore unable to optimise multiple distinct 

search space optima simultaneously, as only one of the factors precluding species 

formation is addressed (recombination disruption). Later, in section 4.2.1, the FCES model 

is extended with a local cluster-based selection procedure, to facilitate the long-term 

maintenance of multiple distinct search space solutions.  

 

A second of Törn‘s (1977) cluster-based global optimisers has also been adapted for 

evolutionary search. The original algorithm adopted a density-based clustering algorithm 

to extract seed points for the subsequent phase of local search. Cluster analysis identifies 

those search points approaching the same peak (niche), and reseeds all but the fittest search 

point, which is optimised locally thereafter. This technique was adapted by Hanagandi and 

Nikolaou (1998), to replace the local search operator with a GA, an approach which is also 

employed by Pétrowski (1996), and Damavandi and Safavi-Naeini (2003). 

 

A notable extension to the density-based clustering models identified above has been 

presented by Streichert et al (2003). This algorithm maintains a variable number of sub-

populations which are determined dynamically by cluster analysis. This is a technique 

which is comparable with the MRSC GA reviewed earlier (Hocaoglu and Sanderson, 

1997). Streichert‘s Cluster-Based Niching method begins with a single, undifferentiated 

population. The algorithm then enters a species differentiation phase in which 

subpopulations are derived by a density-based clustering procedure. Any population 

members not assigned to a cluster (loners) are aggregated and evolved within their own 

subpopulation. Evolution then proceeds with competition and recombination restricted 

between subpopulations. At the species differentiation phase, the clustering algorithm is 
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also applied within each subpopulation to identify new species which may have emerged. 

To counterbalance the division of subpopulations, species may also be merged if they are 

found to be converging towards the same niche. The density-based cluster analysis 

associates individuals within an Euclidean distance of less than , which was found to 

be quite sensitive to error.  With an appropriate setting for the parameter , the cluster-

based niching ES was found to perform well compared to a multi-start hill climber and a 

fitness sharing ES.  

 

3.6.2  Alternative Dynamic-partition Methods 

There are alternative approaches for adapting the location of subpopulation boundaries 

which do not rely on cluster analysis to derive subpopulations. 

 

The Multinational GA (Ursem, 1999) maintains multiple subpopulations, the positioning 

and quantity of which are determined dynamically as evolution progresses. Mating and 

selection are restricted between individuals belonging to different subpopulations, known 

as nations. To ensure that each nation only inhabits a single peak, the landscape topology 

between respective nations is examined by hill-valley detection. If multiple nations are 

approaching the same peak they are merged. To counterbalance the merging of nations, 

new subpopulations are created when multiple peaks are detected within the same nation, 

again using the hill-valley detection procedure. 

 

The forking GA (Tsutsui and Fujimoto, 1993) monitors a global population of individuals 

for the emergence of dominating schemata. When dominance is observed, a subpopulation 

is spawned composed from individuals exhibiting the identified schema. Search continues 

in the contracted search space of the non-fixed loci of the schema until a local optimum is 

found. The global population then pursues search within the remaining schemata.  

 

3.7 Multimodal Optimisation  

with Cooperative Coevolution 

Cooperative coevolution (Husbands and Mill, 1991) forms a multiple population 

optimisation method which differs significantly from those reviewed already within this 

chapter. In earlier examples, the definition of a species, in the context of parameter 

optimisation, is fairly consistent: a collection of potential solutions, which are in some way 

classified to be similar. Within the Cooperative coevolutionary paradigm, a species 
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represents a subcomponent of a complete solution to a given problem (Potter and De Jong, 

1994). A i decomposition for many optimisation problems is to define each parameter, or 

dimension of the problem, as a separate species, although alternative decompositions may 

be equally as valid. Each species is then assigned a subpopulation of competing solutions 

to the problem component. Each subpopulation is evolved concurrently, but in isolation 

from the rest; the assumption being that it is easier to find good components and assemble 

them, than it would be to solve the complete problem directly. The cooperative coevolution 

architecture is depicted in figure 3.5. 

 

Figure 3.5:  Cooperative coevolution architecture 

 

To evaluate each individual for fitness, subpopulation members are adjoined with 

collaborators chosen from each of the other subpopulations to construct a complete 

solution to the greater problem. In Potter and De Jong‘s (1994) cooperative coevolutionary 

model, initial fitness values are obtained by combining each subpopulation member with a 

randomly selected individual from each of the other subpopulations. The resulting solution 

is then applied to the target function to yield a corresponding fitness rating.  

 

In the first of two collaboration schemes, identified by Potter and De Jong (1994) (CCEA-

1), fitness evaluations are performed by amalgamating candidate offspring with the single-

best collaborators from neighbouring subpopulations. Each subpopulation is then 

sequentially coevolved by a traditional EA. In the same paper, Potter and De Jong describe 

an experimentally verified weakness in this credit assignment procedure, which appeared 

only to work well on problems with entirely independent function variables. In fact, for 

one test problem, exhibiting high inter-subpopulation dependencies, the CCEA-1 was 
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outperformed by a simple GA. A second scheme was thus proposed (CCEA-2), equipped 

with an enhanced credit assignment procedure. Candidate individuals are evaluated twice: 

once in combination with the best collaborators from each of the other subpopulations, and 

a second time in combination with randomly-selected collaborators from each 

subpopulation. The fitness of the better performing combined solution is then assigned as 

the individual‘s fitness.  

 

Experimental results were presented on a set of multimodal problems in which the 

cooperative coevolutionary algorithm was shown to outperform a traditional EA, in terms 

of both convergence speed and the quality of final solutions. By evolving each species in 

isolated subpopulations, selection pressure does not result in the convergence of all species 

toward the same niche; rather, they converge within their own individual niche, based upon 

their collaborations with other species. This evolutionary pressure encourages individuals 

to make a unique contribution to the larger problem by interacting cooperatively with 

neighbouring sub-populations, a process Potter and De Jong refer to as mutualism.  

 

When compared with traditional evolutionary algorithms, CCEAs have shown potential for 

tackling a variety of parameter optimisation problems; consequently, there is growing 

interest in the application of cooperative coevolution within the domain of function 

optimisation (Potter, 1994), (Jansen and Wiegand, 2004), (Bucci and Pollock, 2005) and 

(Iorio, 2002). However, only recently are researchers beginning to be understand how the 

model works, and when it may prove useful. The majority of this progress been presented 

by Wiegand et al. (2001), Jansen and Wiegand (2004), Wiegand (2004), and Jansen 

(2004). This work will be reviewed in chapter five, where an enhanced cooperative 

coevolutionary algorithm is presented and tested.  

 

3.8 Summary of this Chapter 

This chapter summarises the difficulties that EAs often face when optimising multimodal 

objective functions. The properties of EAs which often lead to suboptimal preconvergence 

were outlined and the importance of species and niche in the maintenance of appropriate 

population diversity were recognised. A review of different speciation and niching 

techniques was then followed by a brief discussion of the cooperative coevolutionary 

architecture. In chapters four and five, the concepts and ideas from this chapter are 

synthesised and developed to form two novel algorithms, designed to provide robust 

optimisation of multiple distinct solutions, in rugged, multimodal search environments.  



51 

 

 

 

 

 

 

 

Chapter 4 

 

A Clustering-Based Niching Evolution 

Strategy 

 

This chapter describes the first algorithmic contribution of this work: an ES-based niching 

optimiser. The algorithm develops Sullivan‘s Fuzzy Clustering Evolution Strategy (FCES) 

(reviewed in section 3.6.1) extending the model in such a way as to preserve diversity 

between clusters, facilitating the concurrent maintenance and optimisation of multiple 

distinct high-performance solutions.  

 

An extensive review of the FCES is provided, followed by a description of the new 

modifications and operators that offer improved performance over Sullivan‘s original. 

Thereafter, empirical analysis is provided documenting the performance of the new 

algorithm in application to selected benchmark test functions. In Section 4.3.1 the 

algorithm‘s ability to locate the global optimum within environments composed of many 

local optima is tested. In Section 4.3.2 the ability of the algorithm to identify multiple high 

performance optima is assessed. Finally, in section 4.3.3 the scalability of the algorithm to 

higher-dimensional search spaces is evaluated.  



52 

 

4.1 The Fuzzy Clustering  

Evolution Strategy (FCES) 

FCES is an evolutionary optimisation algorithm designed to reduce the likelihood of local 

preconvergence by incorporating the notion of species into the canonical ES model by 

means of cluster analysis, which takes place prior to recombination. The algorithm 

pseudocode is provided in figure 4.1: 

 

 

 

 

 

 

 

Figure 4.1: FCES pseudocode  

 

4.1.1 Cluster Analysis 

Cluster analysis is a generic term for a collection of unsupervised algorithms designed to 

identify structure within data (Bezdek and Pal, 1992). Because of its suitability for a 

variety of pattern recognition problems, cluster analysis has found extensive use in fields 

of image processing, data compression, data mining, statistics and natural sciences. More 

recently, as was seen in chapter three, clustering has also been incorporated into EAs to 

assist with the optimisation of multimodal search spaces. For a fuller discussion of 

clustering and a variety of cluster analysis methods, the reader is referred to the work of 

Kaufman and Rousseeuw (1990); the review in this chapter only considers those cluster 

analysis methods which are relevant to this work. 

 

Partitioning Data Objects 

Given a finite dataset of objects , the objective for a cluster analysis procedure is to 

identify   natural subgroups within the set. In objective function-based clustering, this 

process is itself an optimisation procedure, which seeks to minimise the function: 

 

 

t = 0 

initialise(μ(t)); 

loop begin 

 cluster(μ(t)) 

 λ(t) = recombine(μ(t)); 

 λ(t) = mutate(λ(t)); 

 evaluate(λ(t)); 

 μ(t+1) = select(λ(t) (+ μ(t))); 

 t = t + 1; 

loop end; 
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Where  is an element of the partition matrix , and  is any norm which acts as 

distance metric between , the  data object, and , the centroid of the  cluster. 

Frequently, the Euclidian distance metric is adopted as defined by: 

 

 

 

for n-dimensional Euclidean space. The Euclidian norm is employed in all experiments 

recorded here. When cluster centroids are located at positions that most accurately partition 

the data, a minimum value for this function is delivered. In other words, when  is small, 

data objects are positioned close, in Euclidean geometry, to their respective cluster 

centroids. The partition matrix  is populated with membership values that specify 

the cluster to which each data object belongs. When hard clustering is employed, the 

partition matrix contains binary values such that  is assigned a value of 1 when  is a 

member of the  cluster, and 0 otherwise; more formally: 

 

 

 

4.1.2 Clustering for Niche Identification 

In the context of evolutionary computation, the population constitutes the dataset, and 

cluster analysis provides a procedure for identifying species. With fixed geographic 

evolutionary methods (reviewed in section 3.5), a fixed notion of species is imposed upon 

the population, irrespective of the underlying problem structure. However, clustering 

enables species to be derived from the distribution of population members within the 

search space.  

 

4.1.2.1 Fuzzy Clustering 

The clustering method employed by Sullivan (2001) within the FCES is the fuzzy c-means 

technique, which was originally introduced by Bezdek (1973, 1981). Fuzzy clustering 

incorporates fuzzy set theory (Zadeh, 1965) to the cluster analysis model which, unlike 

alternative hard-clustering methods, ensures that all data objects have some degree of 
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membership to each cluster. In practice, this is achieved by enabling the partition matrix  

to contain real-values in the interval . The advantage of this approach is that outliers, 

or data points positioned on a cluster boundary, are correctly identified as such.  

 

The fuzzy clustering algorithm operates by iteratively minimising the following function. 

 

 

 

Where  is now an element of the fuzzy partition matrix  that specifies the degree to 

which data object  belongs to cluster set . The additional parameter  acts as a 

weighting exponent, controlling the degree of fuzziness between clusters. For the 

experimentation presented in this thesis,  is always set to a value of 2, as recommended 

by Sullivan (2001), based upon an empirical study presented in Xie and Beni (1991). 

 

The process for optimising equation 4.4 can be summarised by the following pseudocode: 

 

 

Figure 4.2: Pseudocode for the fuzzy centroid optimisation procedure 

 

Initially, the fuzzy partition matrix is randomly instantiated according to the condition: 

 

 

 

From which, cluster centroids  may be calculated by the equation: 

 

 

 

 

randomly initialise fuzzy partition matrix 

do 

{ 

 calculate cluster centroid locations 

 recompute fuzzy partition matrix 

} 

while(change in partition matrix > tolerance) 
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Elements of the fuzzy partition matrix  may then be recomputed by: 

 

 

 

These functions are alternately computed until the cluster centroid positions do not 

significantly change between consecutive iterations. This convergence check is performed 

using the infinity norm: 

 

 

In which  represents the current iteration of the clustering procedure. When the infinity 

norm produces a result less than a threshold set in the range , the iteration cycle 

terminates and clustering is complete.  

 

4.1.2.2 Partitioning Population Members  

Using C-Means Fuzzy Clustering 

The FCES clusters the parent population of an extinctive  ES to identify any 

organisation or structure which may be emerging amongst selected population members. 

The partition information is then accessed during recombination to ensure that offspring 

are generated by blending genetic material according to the information stored in the 

partition matrix. This process encourages recombination amongst individuals from within 

the same niche, and conversely, limits interspecies recombination between members of 

different niches. This approach is reminiscent of Deb and Goldberg‘s (1989) restricted 

mating scheme, which reinforces the formation and preservation of species when fitness 

sharing is employed (see section 3.4.2).  

 

Two fuzzy-recombination techniques are presented in Sullivan‘s thesis: 

 Fuzzy Discrete Recombination - In which offspring are constructed from alleles 

copied directly from randomly selected parents. This recombination technique is 

comparable with the probabilistic selection scheme often employed by genetic 

algorithms; however, each parent‘s selection probability is defined by partition 

information rather than fitness information. Thus, the likelihood of any parent 

individual being selected to participate in recombination is weighted in proportion 

to their fuzzy membership. 
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 Fuzzy Intermediate Recombination – In which the value at each offspring locus is 

calculated by the arithmetic average of all corresponding parent alleles, and the 

contribution of each parent is individually weighted in proportion to their fuzzy 

membership.  

 

The introduction of fuzzy clustering to the ES addresses one of the main factors identified 

in section 3.4, which precludes the formation of species within conventional evolutionary 

algorithms: Recombination Disruption. Strong genetic adaptations may be preserved by 

biasing the recombination operator such that the offspring of a selected cluster are 

comprised primarily from the genes of parents positioned closest to the cluster centroid. 

Consequently, the disruptive effects of cross-species recombination are reduced, and the 

likelihood of global optimisation in multimodal environments is increased (Sullivan, 

2001), (Mitchell and Pipe, 2006). 

 

However, the FCES is not a complete niching method as defined by Mahfoud (1995). 

Upon locating a global optimum within a given problem space, the population will begin to 

converge towards this single point through the pressure of global selection. However, if the 

problem space is composed from multiple peaks of equal magnitude it is possible that 

FCES will locate multiple optima. This is a special case in which FCES can function as a 

genuine niching algorithm. Sullivan thoroughly investigated the FCES when applied to 

Himelblau‘s function (Sullivan, 2001), a test example which exhibits these search space 

characteristics. 

 

In order to concurrently preserve and maintain multiple disparate solutions of varying 

fitness, the model must be augmented in some way. One approach is to observe the 

remaining factor that prevents the formation of species - optimistic selection - and modify 

the algorithm accordingly. Indeed, this refinement constitutes one of the contributions of 

this thesis: an extension of Sullivan‘s clustering algorithm to enable niching. 

 

4.2 Multiple Solution Clustering  

Evolution Strategy (CES) 

The principle cause of complete population convergence with FCES is the use of global 

selection when offspring are chosen to act as parents of the subsequent generation. Should 

a cluster of individuals be positioned at a region of relative high fitness, it is likely that 
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global selection, acting on the entire population, will favour descendants of this cluster 

over descendants of less well-positioned individuals of other clusters. Subsequent 

homogenisation of the population will render the clustering phase redundant, as all 

individuals will occupy the same subspace of the search environment, which may hinder 

subsequent progress rather than help.  

 

One remedy to this global convergence problem is the use of a resources-sharing 

mechanism such as fitness sharing (Deb and Goldberg, 1989), which warps the fitness 

landscape, forcing individuals within the same niche to share the local resources. An 

alternative approach is to employ a selective replacement strategy to ensure that offspring 

only replace individuals from within the same niche, a concept originating from the 

crowding technique (De Jong, 1975).  

 

Both of these approaches have previously been applied to the ES to good effect by Shir and 

Bäck (2005). However, there is an alternative approach which neatly fits the existing 

clustering architecture. Inspired by Harik‘s (1995) restricted tournament selection scheme, 

diversity can be preserved by preventing members of one cluster competing with those of 

another. This is achieved using a novel cluster-based selection scheme in which the best 

 offspring are selected as parents from each cluster. Individuals belonging to distinct 

clusters may then pervade the course of evolution. 

 

4.2.1  Restricted Cluster Selection 

Before parental genetic information is recombined to produce offspring, it must first be 

decided from which cluster each offspring will originate. In the model presented in this 

thesis, offspring cluster membership is decided by random uniform selection amongst all 

clusters; however, alternative methods may also be applied. Offspring are then created by 

fuzzy recombination and traditional ES random mutation. This selection/recombination/ 

mutation cycle then iterates until a complete population of λ  offspring have been 

successfully bred.  

 

Selection then draws the fittest  offspring from the descendants of each cluster, to act 

as parents of the subsequent generation. Should the number of offspring produced by any 

cluster happen to be less than , additional cluster members are generated by mutating 

the cluster‘s fittest individual. This novel selection process is termed restricted cluster 

selection. 



58 

Parents are subsequently merged and cluster membership is recomputed. The reapplication 

of cluster analysis is paramount to the success of this niching algorithm, as it ensures that 

clusters converging upon the same niche merge to form a single cluster. Consequently, the 

remaining clusters will then be assigned elsewhere, promoting increased exploration and 

preventing the entire population from gravitating towards the same peak.  

 

In this respect, all evolutionary operators now consider the cluster membership, and the 

architecture may be interpreted as a fuzzy-multiple population algorithm in which 

subpopulations are re-established at each generation to reduce redundancy.  

 

4.2.2 Hard Clustering 

The application of fuzzy clustering is actually detrimental to the process of niching within 

the FCES. If each member of the population has some degree of membership to all 

clusters, highly fit adaptations are able to diffuse throughout the population, conflicting 

with the notion of multiple solution niching.  

 

For this reason, the improved niching ES presented in this chapter adopts a hard cluster 

analysis technique, known as k-means, which partitions the parent population such that 

individuals belong only to one cluster. As the fuzziness is removed from the FCES this new 

architecture is referred to as the clustering ES or CES. 

 

K-Means Clustering 

Bezdek‘s c-means fuzzy clustering technique is an extension to a precursory cluster 

analysis method known as k-means (Lloyd, 1982 and MacQueen, 1967). K-means analysis 

seeks to position  cluster centroids such that the value for  (equation 4.1, page 52) is 

minimised. The process is represented by the following pseudocode: 

 

 

Figure 4.3: Hard cluster centroid optimisation procedure 

 

Cluster centroids are usually initialised by random selection of objects from the dataset. 

Each remaining data object is then assigned to the cluster with the nearest (Euclidian 

Select data objects as initial cluster centroids 

do 

{ 

 assign each data object to the closest cluster centroid 

 recompute new cluster centroids 

} 

while(cluster membership is not stabilised) 
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distance) centroid. Cluster centroids are then recalculated according to:  

 

 

 

Data objects are subsequently reassigned to the nearest cluster and centroids are again 

recomputed. The process iterates until the centroid positions stabilise.  

 

Cluster Initialisation 

Despite its wide application, k-means analysis often fails to cluster data objects such that  

is optimally minimised. Repeated application of the assignment and centre calculations 

serve to navigate cluster centroids towards the nearest local minima (Peña et al, 1999). K-

means analysis is thus very sensitive to the positioning of the initial cluster centroids. This 

shortcoming has motivated a range of different initialisation techniques, some of which are 

reviewed and compared by Peña et al (1999) and He et al (2004)
3
.  

 

The furthest point algorithm (Gonzalez, 1985) guarantees a constant factor approximation 

of two, by compiling a maximally diverse subset of  objects from the data set . The 

initialisation begins by selecting a random object as the first centre. The second centre is 

then chosen as the point that maximises its distance from the first centroid. Subsequent 

centres are then chosen from the data set that maximise their distance from the nearest 

centroid already in the set, the so-called MaxMin criterion: 

 

 

 

This initialisation approach is also outlined by Katsavounidis et al (1994), and found to 

result in ‗significantly better cluster separation‘ (He et al, 2004), corroborating results 

attained by Snarey et al (1997). To ensure that population members are accurately grouped 

into diverse clusters, the k-means cluster centroids in the CES are initialised according to 

the furthest point algorithm.  

 

 

                                                 
3
 Interestingly, EAs have also been employed to compute optimal cluster partitions, see for example (Krishna 

et al, 1999).  
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4.2.3 New Recombination Operators 

The application of a hard cluster analysis renders Sullivan‘s fuzzy recombination operators 

incompatible with the CES. Thus, two new recombination operators are proposed that 

prohibit mating between parents belonging to different clusters:  

 Hard Discrete Recombination - In which offspring are engendered by copying 

alleles directly from randomly selected parents drawn from within the same cluster. 

Unlike the fuzzy variant, each cluster member has equal selection probability, and 

parents belonging to other clusters cannot be selected. 

 Hard Centroid Recombination - This recombination operator takes into account 

the work on genetic repair presented by Beyer (2001) reviewed in section 2.3.2. 

Beyer has demonstrated that progress rates can be significantly improved by setting 

the number of parents that partake in recombination as high as possible . 

Intermediate recombination is then the process of assigning each offspring 

individual to the centroid of the parent population. Within the CES, this procedure 

is already performed for each niche at the cluster interval. Therefore, hard centroid 

recombination automatically assigns the offspring of each cluster directly to the 

position of its parents‘ cluster centroid, discarding the need for recombination of 

object parameters entirely. The process of cluster analysis is therefore intimately 

linked with the recombination operator.  

 

4.2.4 Cluster Quantity – Selecting a Value for K 

As with other exogenous population parameters  and , the optimal value for is problem 

dependant; as such, no single value can be quoted that is appropriate for all classes of 

problem. When the composition of the problem space is known, it is useful to set  equal 

to the number of peaks. However, in most real-world applications, a priori domain specific 

knowledge is not available, and practitioners should derive an appropriate value for  by 

some other means. In his doctoral thesis, Sullivan recommends a minimum cluster 

cardinality of three for the FCES algorithm (Sullivan, 2001). That is, the parent population 

size  should be set to at least . Alternatively, the cluster quantity  should be set to at 

most . One approach is to set  equal to the number of desired independent solutions. 

However, a more general approach is to adjust  within the range  and select 

an appropriate value based upon performance. In this respect, the number of clusters may 

be determined directly from the parent population size: a value which must be chosen by 

the practitioner when optimising with conventional ESs.  
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A future development of this clustering approach would be to use an automatic means to 

set , for example the x-means cluster analysis method developed by Pelleg and Moore 

(2000). However, in the synthesis application domain presented within this thesis, a 

specific number of solutions is desired and thus automatic methods are not required here, 

but will be developed outside of this thesis 

 

In the following sections, the performance of the CES algorithm is compared with a 

selection of conventional ES-based algorithms in application to selected benchmark test 

functions.  

 

4.3 An Analysis of Performance  

in Selected Test Environments 

In the lore of evolutionary computation it has become common practice to assess EA 

performance by comparative analysis with alternative optimisers, in application to a wide 

range of benchmark test functions, see for example (Streichert et al, 2003). Many 

theoretical test functions have been devised that exhibit problem characteristics 

encountered in real engineering problem spaces. However, this approach must be used with 

caution. If it were possible to compare algorithmic performance within every possible test 

environment, it would be increasingly difficult to determine which algorithm performs the 

best; as proposed by the no free lunch theorem (Wolpert and Macready, 1997).  

 

The CES is a specialised optimiser which is designed to perform well on problems with 

certain search space characteristics which are shared by many different real-world 

problems including the parameter estimation problem analysed later in this thesis. Three 

performance attributes are thus identified, and relevant test functions are chosen for which 

algorithmic performance is quantified using standard test metrics. Algorithms are 

examined in application to a minimum of two test problems for each performance attribute 

to verify the consistency of the results.  

 

4.3.1 Experimental Introduction 

In the first experiments, the robustness of the CES algorithm is explored in application to a 

variety of test problems. There are three sections, each focusing on different optimisation 

attributes: 
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 Global - the ability of the algorithm to locate the global optimum within 

environments composed from many local sub-optima. This attribute is entitled 

Multimodal proficiency. 

 Multiple - the ability of the algorithm to locate and maintain multiple distinct 

solutions within multimodal environments. This attribute is entitled Multiple 

solution proficiency. 

 Multidimensional - the ability of the algorithm to find and maintain multiple high 

fitness solutions in problems of high-dimensionality. This attribute is entitled 

Multidimensional proficiency. 

 

While these attributes do not encapsulate every problem characteristic, they represent 

characteristics which are pertinent to many real-world problems including the sound 

synthesis application examined later in this thesis. The FM matching application presents a 

problem space that is highly complex and multimodal (Horner, 1997), the chosen optimiser 

is required to be able to locate a highly optimal solution; hence the identification of test 

attribute 1. However, the delivery of a variety of problem solutions is also of interest here; 

hence the inclusion of attribute 2. The final attribute is important as synthesisers present 

high-dimensional search spaces, within which the EA must scale well. 

 

4.3.1.1  Experimental Set-Up 

For the empirical results that follow, the performance of four ES-based algorithms are 

compared with the novel CES niching algorithm, proposed in the previous sections of this 

chapter. A brief summary of each algorithm is outlined below. 

 

Algorithm Selection 

Evolution Strategy (ES)  

The traditional ES as defined by Schwefel (1995), Beyer (2001) and Bäck (1996), see 

section 2.3.2 of this thesis. 

 

Multi Start  Evolution Strategy (MSES) 

A variant of the basic two-membered (1+1) ES as defined originally by Rechenberg 

(1973). Multiple instances of the algorithm are evolved concurrently; this algorithm is also 

referred to as a multi-start hill-climber (Streichert et al, 2003). Each (1+1) ES mutates 

object parameters isotropically according to a single mutation step-size, which is adapted 

by the 1/5
th

 rule (Schwefel, 1995, see section 2.3.2.3).  
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Cooperative Coevolution Strategy (CCES) 

An implementation of Potter and De Jong‘s (1994) cooperative coevolutionary algorithm, 

in which a conventional ES is employed as the underlying EA. This algorithm is consistent 

with the model described in section 3.7.  

 

Fuzzy Clustering Evolution Strategy (FCES) 

Sullivan‘s original EA employing fuzzy cluster analysis to partition the dataset, as 

described earlier in this chapter. Numerous variants of this algorithm are included in the 

subsequent experimentation, details of which are outlined in the next section.  

 

Clustering Evolution Strategy (CES).  

An implementation of the novel niching algorithm based upon FCES, proposed throughout 

the preceding sections of this chapter. Several variants of the algorithm are implemented, 

details of which will also be provided in the following section. 

 

4.3.1.2  Algorithm Structure and Parameters  

To ease accurate analysis of, and comparison between each algorithm, consistent 

parametric constraints are imposed across all experiments. Indicated results are produced 

from the mean average of 30 runs for each algorithm when applied to each problem. 

Performance differences are then discussed with claims backed by a statistical comparison 

of population means. The population is randomly initialised anew for each run and, where 

possible, the same random data set is used to initialise each algorithm, enabling observed 

performance differences to be attributed to each algorithm‘s interaction with the same 

initial perspective of the problem space.  

 

Many of the test functions employed in the subsequent analyses are maximisation 

problems; however, all of the ESs included here are object function minimisers. To ensure 

appropriate optimisation, each maximisation problem is simply adapted by negating the 

result produced by each test function accordingly. 

 

Runtime 

Experiments are executed for 50 generational cycles, except under circumstances in which 

comparison by generations does not provide a meaningful indication of optimisation time. 

For example, in cooperative coevolutionary algorithms, the term generation corresponds to 

the advancement of a single sub-population by one generation. Of more interest here is the 
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period in which all sub-populations have advanced by one generation, referred to as a 

round, according to (Jansen and Wiegand, 2004). In these instances a fitness evaluation 

counter is used to provide a meaningful comparison. 

 

Evolutionary Operators 

Mutation 

To ensure a fair comparative study, the same evolutionary operators are adopted for all 

algorithms. Mutation is provided by the derandomised mutation operator defined by 

Ostermeier et al (1994), with the exception of the MSES as described previously.  

 

Recombination 

Where relevant, EAs are tested using both discrete and intermediate recombination 

operators with all parents participating in the production of offspring, i.e., . The 

obvious exception to this rule is the CES, in which parents are chosen from within each 

cluster according to the selection and recombination operators described earlier. 

 

In applying the cooperative coevolutionary architecture, each test function is naturally 

decomposed into  subcomponents (Potter and De Jong, 1994), where  represents the 

dimensionality of the problem space. A separate subpopulation is then assigned to each 

component such that each individual represents a single object parameter of the greater 

problem. Discrete recombination of a single parameter is thus equivalent to no 

recombination, as genes are passed directly to descendants without variation. 

 

In the experiments presented throughout the remainder of this thesis, the selection pressure 

is maintained at a fixed ratio of  where applicable, as indicated to be optimal by 

Schwefel (1987). Population sizes vary in this proportion with exact figures indicated for 

each test case. For algorithms that employ cluster analysis, the cluster cardinality is set to 

five, such that ; Sullivan recommends a minimum cardinality of three (Sullivan, 

2001). Results are provided for both ‗ ‘ and ‗ ‘ (plus and comma) strategies for each 

algorithm, where Sullivan‘s original FCES only employed extinctive ‗ ‘ selection, which is 

widely accepted to be the superior selection strategy for the self-adaptive mutation 

mechanism (Schwefel, 1995), (Bäck et al, 1993). 
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Algorithmic Variation 

Summaries of the algorithmic variations for each algorithm are provided below. 

  

CES and FCES – Results are presented with both recombination types for each algorithm: 

discrete and centroid recombination; and discrete and intermediate recombination 

respectively. Sullivan‘s global selection operator is also compared, in collaboration with 

the k-means clustering, as well as the presented restricted cluster selection to provide fair 

comparison between the cluster analysis techniques. 

 

CCES – Results with both the single-best, and single-best plus one random credit 

assignment procedures are presented, as described in section 3.7, which are referred to as 

CCES1 and CCES2 respectively. Both intermediate and discrete recombination operators 

are tested. 

 

4.3.2 Attribute 1: Global Multimodal Proficiency 

In this section the ability of each evolutionary algorithm to locate the global optimum 

within three selected multi-modal environments is assessed. The benchmark test problems 

have been selected as they each exhibit landscape characteristics which are of relevance to 

the final FM application domain. The selected test functions are the multimodal problem, 

Langermann‘s function and the Maximum of Two Quadratics problem.  

 

Performance Criteria 

In the following experiments, each algorithm is applied to two-dimensional 

implementations of each problem, recording the proportion of 30 runs in which the 

optimum peak is successfully located.  

 

Each algorithm maintains an offspring population size of 140. For the MSES this 

corresponds to the concurrent execution of 140  ESs. For the multi-membered ESs, 

20 parents are selected at each generation;  in ES notation. In the clustering 

EAs, the parent population is partitioned into four clusters, such that five individuals are 

allocated to each cluster. 
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4.3.2.1 Experiments on the Multimodal Test Function 

The multimodal function is defined in n dimensions by: 

 

 

This test environment was originally introduced by Goldberg and Richardson (1987) for 

testing the effectiveness of their fitness sharing operator, and has since become a popular 

choice for the investigation of niching evolutionary algorithms, see for example the work 

of Shir and Bäck (2005) and Hocaoglu and Sanderson (1997). The problem is comprised of 

a sinusoid, shaped within the envelope of a decaying exponential. Parameter ranges are 

restricted to the interval  in which there are  equally spaced peaks, with one 

optimum located at . A landscape and contour plot of equation 4.3 is 

provided in figure 4.4. 

 

Figure 4.4: Multimodal landscape and contour plot 

 

The results from each experiment are provided in figure 4.5, where the y axis of each chart 

provides the algorithm type, in the format:  

 

(strategy type) / algorithm type / recombination type / selection scope 

 

If the selection scope is not indicated, global selection is assumed. The x-axis provides the 

number of successful runs in which the global optimum is located. 
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Results 

Figure 4.5: Results from experiments with the multimodal function 
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Discussion 

The canonical ES variants tested here have been found to perform well within the two-

dimensional multimodal problem; with the exception of the intermediate recombination 

variant with extinctive selection. By arithmetically averaging the entire parent population, 

offspring produced by intermediate recombination are biased towards the centre of the 

search space. Within the multimodal problem, this characteristic tends to guide the 

population away from the global optimum. The notable improvement in results when using 

intermediate recombination for the FCES and, better still, centroid recombination for the 

CES, confirm that this pathology is significantly ameliorated when clustering is 

incorporated into the ES architecture.  

 

It is clear that, in terms of optimal performance, there is a general improvement in the CES 

over that of the FCES for the multimodal function. This conclusion is evidenced by the 

five out of the eight test cases in which the hard clustering strategies outperform the fuzzy 

clustering strategies. The only test case in which the CES does not outperform the FCES is 

when discrete recombination with extinctive selection is employed.  

 

When the proposed restricted cluster selection (labelled ‗restricted‘) is used by the cluster-

based ESs, the likelihood of finding the optimum is also reduced. It may be that there is a 

trade-off between the quality of the best solution and the number of final solutions located. 

This may be because cluster-based selection intentionally preserves less well adapted 

offspring to retain diversity, which may restrict performance in terms of global 

optimisation. 

 

The CCES algorithm also performs well with discrete recombination, and also when the 

intermediate recombination operator is used in conjunction with preservative selection. 

The multimodal problem shares many characteristics with Schwefel‘s function in terms of 

modality, separability and optimal positioning, a test function to which Potter has 

previously applied the cooperative coevolutionary model with great success (Potter and De 

Jong, 1994).  
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4.3.2.2 Experiments on Langermann’s Function 

Langermann‘s function is defined by the following equation: 

 

 

 

where the matrices  and  can be found in the work of Bersini et al (1996). This test 

function provides a multimodal search space which, unlike the multimodal function, is 

irregular, non-separable and highly rugged. There are numerous local sub-optima and only 

one optimum. Langermann‘s function presents a search space that better characterises the 

search space of real-world problems: unevenly distributed local optima, a large flat noisy 

plain, and an optimum positioned towards the extremity of the fitness landscape –  

 for two dimensions. A landscape and contour plot is 

provided for the Langermann function in figure 4.6. 

 

Figure 4.6: Langerman‘s function with contour plot 

 

In the following experiments, the experimental procedure adopted for the preceding 

multimodal problem is reapplied with identical parameter settings and population sizes. 
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Results 

Figure 4.7: Results from experiments with Langermann‘s function 
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Discussion 

In all test cases in which the CES is applied to Langerman‘s function the optimum is 

successfully located. The performance of the FCES is also good; however, there is a small 

degradation in performance when compared with the CES. This differential is most notable 

between the intermediate recombination for FCES, and centroid recombination for the 

CES, with the latter shown to be consistently superior. 

 

A small yet consistent advantage may also be observed when using the restricted cluster 

selection method for the FCES, rather than the more standard global selection operator. As 

cluster-based selection facilitates the preservation of species, the population is not driven 

to converge towards a single optimum. In turn, this leads to increased exploration, which 

may account for the improvement in performance in this instance.  

 

Compared with the experiments on the multimodal function in the previous section, the 

CCES is shown to be significantly less successful at locating the global optimum within 

this environment. While cooperative coevolutionary algorithms are particularly efficient at 

identifying the global optimum in certain problems, they are quite poor in others. This 

behaviour has been thoroughly analysed by Wiegand et al (2001), and further details of his 

work will be provided later in this thesis. In fact, next test function to be explored was 

designed by Wiegand to illustrate a tendency for cooperative coevolutionary algorithms to 

optimise parameters that are relatively robust to change in other parameters, rather than 

parameters that are globally optimal. 

 

4.3.2.3 Experiments on the Maximum  

of Two Quadratics Function 

This section considers the Maximum of Two Quadratics function (MTQ) which was 

defined originally by Wiegand et al (2002) to test the performance of cooperative 

coevolutionary algorithms. The MTQ function presents a two-dimensional bimodal 

deceptive problem constructed from two quadratic functions defined as follows: 

 

 

 

where the parameters , , , and  control the height, width and vertex of each 
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function. The parameters for the first (suboptimal) and second (optimal) peak are set 

according to the values provided in table 4.1; the same values are employed in the work of 

Panait et al (2004) and Bucci and Pollack (2005). With these settings, the two peaks are 

positioned at near opposite corners of the search space. The narrow optimal peak is 

positioned at a low-performing region of the broader suboptimal peak. Consequently, 

search algorithms may be deceived by the large basin of attraction, which may draw search 

points away from the global optimum.  

 

Parameter Value 

  

  

  

  

  

   

Table 4.1: MTQ function parameters 

 

These values produce the landscape and contours shown in figure 4.8. 

 

Figure 4.8: Maximum of two quadratics function with contour plot 

 

In the experiments that follow, each algorithm is applied with the experimental procedure 

employed in the previous two problems, and the results are provided in figure 4.9. 
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Results 

Figure 4.9: Results from experiments with Maximum of Two Quadratics function 
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Discussion 

The results acquired from experiments performed when all algorithms are applied to 

optimise the MTQ test environment provide further empirical evidence to confirm that, 

within certain multimodal environments, the CES with hard clustering and restricted 

cluster selection exhibits superior performance when compared with the FCES with global 

selection. As fuzzy cluster analysis enables all individuals to participate in the 

recombination process, genes of individuals positioned at large regions of high fitness (the 

suboptimal peak in this instance) are able to diffuse into neighbouring subpopulations. 

With such a large basin of attraction drawing the population toward the sub-optimal peak, 

individuals located around optimal peak may be lost.   

 

Restricted cluster selection also provides enhanced performance, as solutions positioned 

near to the optimum compete only with their surrounding cluster members, and not with 

the entire population. Moreover, in all successful runs in which the optimum is located, the 

restricted cluster selection operator ensures that individuals located at the sub-optimum are 

also maintained. The location of multiple optima is a performance attribute which is 

examined in the next section of this chapter. 

 

The Maximum of Two Quadratics function was introduced by Wiegand et al (2002) to 

demonstrate one of the main pathologies that restrict the performance of CCEAs when 

applied to parameter optimisation problems. CCEAs do not optimise components that are 

optimal in terms of fitness; rather, they optimise components that are most resilient to 

change in other parameters, a behaviour which has been termed relative 

overgeneralisation. Wiegand‘s work is reviewed in more detail later in this thesis, when 

cluster analysis is included within the cooperative coevolutionary framework to reduce the 

effects of relative overgeneralisation, and therefore improve the parameter optimisation 

performance of the algorithm. 

 

In this test function, and also the multimodal and Langermann functions before, flawless 

global optimisation by the MSES is observed. This result is unsurprising, as the MSES 

included in these experiments is equivalent to running 140 hill climbers simultaneously. In 

each test run it is inevitable that one of the initial random seeds will be sown within the 

basin of the optimal peak. For the tested problems, it is clear that the MSES is the highest-

performing algorithm, however, this performance advantage may not extrapolate well to 

other test attributes or even measures. As will be shown in the following section, the 

convergence plots for the MSES indicate slower progress rates than the other algorithms. 



75 

4.3.2.4 Convergence Dynamics 

In addition to recording the number of successful runs for each algorithm, it is also useful 

to identify the rate at which optimal solutions are delivered. In the synthesis-matching 

problem application domain that motivates this work, finding multiple solutions to the 

problem in the least number of fitness evaluations is imperative. To facilitate comparison 

between the progress rates of each algorithm, the fitness of the best solution at each 

generation is plotted for each of the test functions explored in this section. For the purposes 

of brevity, only one example of each algorithm is plotted. Details of the algorithms and 

their operators are shown in table 4.2. 

 

Algorithm Variant Recombination Type Selection Type Selection Scope 

CCES1 discrete elitist (‗+‘) global 

CCES2 discrete elitist (‗+‘) global 

CES discrete extinctive (‗,‘) restricted 

ES discrete extinctive (‗,‘) global 

FCES discrete extinctive (‗,‘) global 

MSES none elitist (‗+‘) - 

Table 4.2: Algorithmic variations for convergence comparison 

 

Each figure displays the convergence velocities for the algorithms listed in table 4.2 when 

applied to the multimodal (figure 4.10), Langermann (figure 4.11), and MTQ (figure 4.12) 

functions. Each curve is generated from the average trajectories of five successful runs, 

except when five successful runs were not achieved, in which case the convergence of the 

five best runs are averaged.  

 

The results from multimodal and Langermann experimentation demonstrate the efficiency 

of CCES1, as it converges to the function minimum in the least number of fitness 

evaluations. The convergence velocity of the CES is relatively low when compared with 

other algorithms. This may be attributed to the reduction in selection pressure due to the 

maintenance of diversity through the restricted cluster selection operator which allocates 

population members uniformly between identified clusters. For all test cases in which a 

global selection scheme is adopted, the population naturally gravitates towards the region 

in which the highest-performing individuals are located. As an increasing number of trials 

are allocated to the niche of the global optimum, the progress rate is increased. Of all the 

optimisers, the MSES is found to be the most robust; however, in these examples it is also 

the least efficient, converging more slowly than all other algorithms. This is due to the 

absence of recombination. The MSES is consistently able to locate the global optimum in 
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these experiments as the quantity of parallel  ESs is more than adequate to ensure 

that at least one ES is seeded within the gradient of each peak. It is worth noting that, in 

section 4.3.4, the EAs are tested in an environment in which the search space is so vast that 

this initialisation condition cannot be guaranteed.  

 

 

Figure 4.10: Multimodal function convergence dynamics 

 

 

Figure 4.11: Langermann‘s function convergence dynamics 
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Figure 4.12: Maximum of Two Quadratics function convergence dynamics 

 

4.3.3 Attribute 2: Multiple Solution Proficiency 

In this section the ability of the proposed CES algorithm to locate and maintain multiple 

distinct solutions is assessed in application to three multimodal test environments: 

Himmelblau‘s function, the Multimodal function and the Waves function. As the ES and 

CCES are not capable of maintaining multiple distinct search space solutions, they are 

excluded from these experiments, and results are compared with only the FCES. 

Experimentation with the MSES is not included here as, in terms of multiple solution 

maintenance, the multimodal test functions employed in this section present a trivial 

problem for such an algorithm. The  ES exhibits behaviour which is similar to that 

of a hill climber: it will converge to optimum of the nearest peak. If parity were maintained 

between tested algorithms, such that the MSES executes an equivalent number of 

concurrent  ESs as there are offspring in the multimembered ESs, the number of 

hill climbers would considerably outnumber the number of optima within each test 

environment. Consequently, the likelihood of a strategy not being seeded within the basin 

of each peak is very small. In this respect the MSES will elicit flawless multiple solution 

performance in all test problems investigated here. It is worth noting that comparison with 

the MSES is resumed in section 4.3.3, where performance is examined within search space 

environments in which the number of peaks significantly outnumbers the individuals in the 

ES population.  
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Performance Criteria 

In assessing the performance of EA-based niching algorithms, a great deal of research 

focuses on drawing a comparison between the distribution of the final population set, and 

the ideal fitness-proportionate distribution, which may be derived per objective function 

prior to experimentation. The metric frequently adopted for this purpose is the chi-square-

like performance statistic, as originally defined by Deb and Goldberg (1989). This metric 

is ideal for measuring fitness sharing-based EAs, as it reflects the procedure by which the 

development of niche is promoted by fitness sharing: by allocating population members to 

each subspace in proportion to the available resources (fitness) (see section 3.4.2). Focus is 

placed on the ability of each algorithm to successfully identify multiple search space 

optima, with little interest in the actual distribution of solutions in the final population set. 

Moreover, the restricted cluster selection operators, proposed here, serve to distribute 

solutions uniformly amongst clusters, irrespective of the topology of the search space. 

Therefore, an alternative performance metric is employed here known as the maximum 

peak ratio, previously applied to assess the performance of niching algorithms, originally 

for the GA (Miller and Shaw, 1996), and later for the ES (Shir and Bäck, 2005). This 

performance measure quantifies both the number and quality of optima in the final 

population set, and is defined by: 

 

 

 

where  is a vector containing the fitness of the  optima, represented by the final 

population set, and  is the fitness of the  actual optima within the search space. In the 

results provided below the MPR is averaged over 30 runs.  

 

Furthermore, the performance for each test case is evaluated with three additional 

measures adopted previously by Shir and Bäck (2005) and Ursem (1999):  

 the Global optimum location performance: the number of runs, in which the 

optimum is successfully located. 

 the Total optima location performance: the number of runs in which all  optima 

are successfully identified and maintained. 

 the Optima location average: the actual number of separate optima located, 

averaged over all separate runs, with respect to the total number of peaks . 
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4.3.3.1 Experiments on Himmelblau’s Function 

In the first set of experiments, performance is assessed when the CES and FCES are 

applied to optimise the modified Himmelblau‘s function, originally presented by Deb and 

Goldberg (1989) as an augmentation of Himmelblau‘s original function (Himmelblau, 

1972). The two-dimensional problem space is expressed by the equation: 

 

 

 

The search space contains four peaks of equal magnitude as depicted in figure 4.13. While 

being a relatively simple problem to optimise, concurrent maintenance of all four optima 

can pose a challenge to evolutionary niching algorithms.  

 

Figure 4.13: Himmelblau‘s function landscape and contour plot 

 

The experimental procedure presented in the previous section is repeated, with offspring 

population sizes set to 140, parent sizes to 20 and cluster quantity set to five. Each 

algorithm runs for 50 generations, and results are drawn from statistical analysis of the 

final population set averaged over 30 runs. Results of the simulation are provided in table 

4.3 and plotted in figure 4.14. Details of each algorithm are presented in the format:  

 

(strat) recomb  sel  

 

in which strat refers to the strategy type indicating the population sizes and selection 

mechanism in traditional ES notation; recomb indicates whether intermediate or 
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discrete recombination is employed; and sel signifies the scope of the selection operator 

(global or restricted, where restricted is only applicable to the clustering-based algorithms. 

 

Results 

  Himmelblau’s Function 

 Algorithmic Parameters  Optima out of 4 MPR 

Algorithm (strat) recomb sel Global out of 30 Total out of 30 mean σ mean σ 

FCES 1 (200,1400) Discrete Restricted 
30 25 3.83 0.38 0.96 0.09 

CES 2 (200,1400) Discrete Restricted 
30 30 4.00 0.00 1.00 0.00 

FCES 3 (200,1400) Discrete Global 
30 2 2.63 0.72 0.66 0.18 

CES 4 (200,1400) Discrete Global 
30 1 2.50 0.68 0.63 0.17 

FCES 5 (200,1400) Intermediate Restricted 
30 25 3.83 0.38 0.96 0.09 

CES 6 (200,1400) Centroid Restricted 
30 27 3.90 0.31 0.98 0.08 

FCES 7 (200,1400) Intermediate Global 
30 0 2.57 0.50 0.64 0.13 

CES 8 (200,1400) Centroid Global 
30 4 2.93 0.58 0.73 0.15 

FCES 9 (200+1400) Discrete Restricted 
30 28 3.93 0.25 0.98 0.06 

CES 10 (200+1400) Discrete Restricted 
30 27 3.90 0.31 0.98 0.08 

FCES 11 (200+1400) Discrete Global 
30 0 1.53 0.57 0.38 0.14 

CES 12 (200+1400) Discrete Global 
30 0 1.33 0.48 0.33 0.12 

FCES 13 (200+1400) Intermediate Restricted 
30 25 3.83 0.38 0.96 0.09 

CES 14 (200+1400) Centroid Restricted 
30 28 3.93 0.25 0.98 0.06 

FCES 15 (200+1400) Intermediate Global 
30 0 1.93 0.69 0.48 0.17 

CES 16 (200+1400) Centroid Global 
30 0 1.73 0.52 0.43 0.13 

Table 4.3: Multiple solution results of experiments on Himmelblau‘s function 

 

 

Figure 4.14: Mean and 95% confidence intervals for Optima and MPR results on Himmelblau‘s function 

 

Discussion 

From the results provided above, the superiority in terms of niche maintenance of the 

restricted cluster selection operator is clear. The t-tests for equality of means revealed that 

the restricted selection operator offered a statistically significant (two-tailed) improvement 

over the global selection operator in both the mean Optima and mean MPR results. The 

best results overall were obtained by the CES when restricted selection was employed. 

Furthermore, in most test cases the CES was shown to outperform the FCES when the 
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restricted selection operator was used, and the reverse was evident when global selection 

was employed. However, this trend was not statistically significant across all test cases. 

These results suggest that the CES is better equipped to maintain multiple optima in 

conjunction with the restricted selection operator than the FCES. 

 

4.3.3.2  Experiments on the Multimodal Function 

In this round of experimentation, the niching algorithms are reapplied to optimise the 

multimodal function, details of which have already been provided in section 4.3.1. The 

testing method outlined above is repeated here; however, population sizes are scaled in 

accordance with the landscape topology. In the interval  the search space 

contains 25 peaks; thus, the parent population is partitioned into 25 clusters. With five 

parents per cluster and a selection pressure of , this leads to the exogenous 

strategy parameters  . All algorithm derivatives that employ global selection 

are excluded from this experimentation as total population convergence would take place 

as a result of the single search space optimum.  

 

As the optimisers minimise, the fitness value produced by the algorithms is negated, as 

described for the earlier experiments. However, for calculating the MPR there is an 

additional factor which should be considered. In the multimodal function, fitness results 

can vary in the range . As the MPR ratio is weighted to represent the quantity of 

located peaks in terms of their respective magnitudes, the fitness is modified such that the 

true fitness of a peak is subtracted from one, to ensure that the fitness of the highest peak 

contributes the most to the MPR, as should be the case. Results of the multimodal 

simulation are provided in table 4.4 and plotted in figure 4.15. 

 

  Multimodal Function 

 Algorithmic Parameters  Optima out of 25 MPR 

Algorithm (strat) recombination type Global out of 30 Total out of 30 mean σ mean σ 

FCES 1 (125, 875) Discrete 30 0 15.33 1.27 0.80 0.03 

CES 2 (125, 875) Discrete 30 27 24.87 0.43 1.00 0.01 

FCES 3 (125, 875) Intermediate 30 0 15.87 1.83 0.79 0.06 

CES 4 (125, 875) Centroid 30 28 24.93 0.25 1.00 0.00 

FCES 5 (125+ 875) Discrete 30 0 16.83 2.10 0.84 0.05 

CES 6 (125+ 875) Discrete 30 24 24.77 0.50 1.00 0.01 

FCES 7 (125+ 875) Intermediate 30 0 18.53 1.46 0.88 0.03 

CES 8 (125+ 875) Centroid 30 22 24.70 0.53 1.00 0.01 

 Table 4.4: Multiple solution results of experiments on the multimodal function 
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Figure 4.15: Mean and 95% confidence intervals for Optima and MPR results on the multimodal function 

 

Discussion 

An equality of means t-test confirms a statistically significant (two-tail t-test) advantage of 

the CES with k-means clustering initialised with MaxMin selection, over the Fuzzy c-

means clustering, for the identification and maintenance of species. With the CES 

maintaining on average 8.2 optima and scoring 1.6 more than the FCES for the Optima and 

MPR measures respectively. The high MPR results achieved by the CES indicate that those 

few peaks that were not located are of very low magnitude.  

 

4.3.3.3 Experiments on the Waves Function 

The final test function, on which the cluster-based niching algorithms are assessed for 

multiple solution proficiency, is known as the Waves function, previously employed by 

Ursem (1999) and Streichert et al (2003). This is defined in two dimensions as: 

 

 

 

This asymmetric test function features 10 unevenly distributed peaks, many of which are 

positioned at the extremities of the search space. The surface and contour plot are provided 

in figure 4.16. 

 

The experimental procedure expounded above is reapplied with the population sizes 

, in which the parent population is partitioned into 10 clusters. Again to ensure 

accurate MPR results, the fitness values are modified as described for the multimodal 

function. Results for each test case are provided in table 4.5 and plotted in figure 4.17. 
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Figure 4.16: Waves function landscape and contour plot 

 

Results 

  Waves Function 

 Algorithmic Parameters  Optima out of 10 MPR 

Algorithm (strat) recomb Global out of 30 Total out of 30 mean σ mean σ 

FCES 1 (50, 350) Discrete 30 0 6.10 1.24 0.69 0.16 

CES 2 (50, 350) Discrete 30 2 7.77 1.01 0.80 0.13 

FCES 3 (50, 350) Intermediate 30 0 6.57 0.90 0.56 0.15 

CES 4 (50, 350) Centroid 30 2 7.97 0.96 0.81 0.15 

FCES 5 (50+350) Discrete 30 0 6.53 1.14 0.74 0.17 

CES 6 (50+350) Discrete 30 1 8.03 1.03 0.83 0.14 

FCES 7 (50+350) Intermediate 30 0 6.90 1.30 0.66 0.20 

CES 8 (50+350) Centroid 30 2 8.17 1.05 0.84 0.15 

Table 4.5: Multiple solution results of experiments on the waves function 

 

 

Figure 4.17: Mean and 95% confidence intervals for Optima and MPR results on the waves function 
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Discussion 

These results corroborate the findings in earlier experiments: the CES algorithm repeatedly 

outperforms the FCES; again shown to be statistically significant by independent t-test for 

both the Optima and MPR measures. For this reason, results from the FCES are omitted 

from subsequent experiments. However, experimentation with the MSES is resumed for 

comparison with an alternative multiple solution algorithm.  

 

4.3.4 Attribute 3: Multidimensional Proficiency  

In this section, focus is placed on the performance of the CES as the dimensionality of the 

search domain is increased. Experiments are presented in which the algorithms are used to 

optimise solutions within two multi-dimensional test domains: the -dimensional sine and 

multimodal functions. In the former, performance is assessed in terms of the algorithms‘ 

ability to maintain all search space optima as the dimensionality is raised. In the latter, 

performance is assessed when the number of optima significantly outnumber the number of 

search points in the population. It is worth noting that one drawback to Sullivan‘s 

clustering method is the need to specify the quantity of clusters a priori. If there are fewer 

clusters than peaks, global optimisation cannot be guaranteed (Sullivan, 2001). In many 

real-world applications the number of peaks is unknown, and may be too numerous to 

feasibly allocate a cluster to each.  

 

Performance Criteria 

For each variant of the CES algorithm tested here, the performance measures introduced 

throughout earlier sections of this thesis are employed. Namely, the Global optimum 

location percentage, the Total optima location performance, the Optima location average 

and the MPR (maximum peak ratio) as defined previously in equation 4.13. For a fuller 

description of these measures see section 4.3.3. 

 

4.3.4.1 Experiments on the n-Dimensional Sine Function 

The n-dimensional sine function has been employed previously for the purposes of testing 

n-dimensional niching algorithms (Streichert et al, 2003). The surface is defined by the 

equation: 
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Within this multimodal hyperspace there are  evenly distributed optima of equal 

fitness. The corresponding landscape and contour plots are shown in figure 4.18. 

Figure 4.18: Two-dimensional sine function landscape and contour plot 

 

The CES and MSES are next applied to the above test function, with the problem 

dimensionality varied in the range . In each test case, the cluster quantity of the CES 

is adjusted to match the number of search space optima. The parent and offspring 

populations are scaled as before with five solutions per cluster and seven offspring per 

parent. To provide a fair comparison, the number of concurrent  ESs within the 

MSES is set to the offspring size of the equivalent CES. Results are provided in table 4.6 

and plotted in figure 4.19. 

 

Results 

   N-dimensional Sine Function 

Search Space 

n / qF 

 Algorithmic Parameters  Optima out of qF MPR 

Algorithm (strat) recomb clusts Global out of 30 Total out of 30 mean σ mean σ 

2 / 4 MSES 1 140 x (1+1) - - 30 30 4.00 0.00 1.00 0.00 

2 / 4 CES 2 (20, 140) discrete 4 30 30 4.00 0.00 1.00 0.00 

3 / 8 MSES 3 280 x (1+1) - - 30 30 8.00 0.00 1.00 0.00 

3 / 8 CES 4 (40, 280) discrete 8 30 27 7.90 0.31 0.99 0.04 

4 / 16 MSES 5 560 x (1+1) - - 30 30 16.00 0.00 1.00 0.00 

4 / 16 CES 6 (80,560) discrete 16 30 19 15.63 0.49 0.98 0.03 

5 / 32 MSES 7 1120 x (1+1) - - 30 30 32.00 0.00 1.00 0.00 

5 / 32 CES 8 (160,1120) discrete 32 30 9 30.90 0.96 0.97 0.03 

6 / 64 MSES 9 2240 x (1+1) - - 30 30 64.00 0.00 1.00 0.00 

6 / 64 CES 10 (320,2240) discrete 64 30 2 61.43 1.52 0.96 0.02 

Table 4.6: Multiple Solution results of experiments on the n-dimensional sine function 
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Figure 4.19: Mean and 95% confidence intervals for Optima and MPR results on the n-dimensional sine function 

 

Discussion 

From the results, a slight deterioration in performance of the CES is observed as the 

dimensionality of the problem space is increased. However, the location of, on average, 

96% of all optima in a six-dimensional space indicates good niching performance. The 

MSES, by contrast, exhibits flawless performance within this environment. This result is 

due to the quantity of concurrent strategies outnumbers the search space optima by a ratio 

of 35:1. With such a large number of strategies all peaks are easily found, as random 

initialisation ensures that at least one of the  strategies is seeded within the gradient 

of each optimum. In the next experiment, performance is assessed in the reverse situation: 

when the number of strategies/offspring are significantly outnumbered by the quantity of 

search space optima. 

 

4.3.4.2 Experiments on the Multimodal Function 

This experiment is intended to simulate the scenario in which little is known of the 

landscape topology, yet multiple high-fitness optima are still required. For all experiments 

the exogenous parameters are fixed at  with the parent population being 

partitioned into five clusters at each generation. The algorithm is then applied to the 

problem while the search space dimensionality is varied from three to 10. For comparison, 

the MSES, running 750  strategies is applied within the same domain. The results 

are provided in table 4.7, and plotted in figure 4.20. 
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Results 

   Multimodal Function 

Search Space 

n / qF 

 Algorithmic Parameters  Optima out of qF Best solution (min) avr 

Algorithm (strat) recomb clusts Global out of 30 mean σ mean σ 

3 / 125 MSES 1 750 x (1+1) - - 30 123.27 1.28 0.00 0.00 

3 / 125 CES 2 (150, 750) discrete 5 29 5.00 0.00 0.00 0.01 

4 / 625 MSES 3 750 x (1+1) - - 21 419.47 7.63 0.02 0.03 

4 / 625 CES 4 (150, 750) discrete 5 24 5.00 0.00 0.01 0.03 

5 /  3125 MSES 5 750 x (1+1) - - 5 660.27 7.57 0.08 0.04 

5 /  3125 CES 6 (150, 750) discrete 5 17 5.00 0.00 0.03 0.03 

6 / 15625 MSES 7 750 x (1+1) - - 1 730.60 3.65 0.13 0.07 

6 / 15625 CES 8 (150, 750) discrete 5 23 5.00 0.00 0.02 0.04 

7 / 78125 MSES 9 750 x (1+1) - - 0 745.83 2.23 0.26 0.08 

7 / 78125 CES 10 (150, 750) discrete 5 20 5.00 0.00 0.03 0.04 

8 / 78125 MSES 11 750 x (1+1) - - 0 749.43 0.82 0.36 0.12 

8 / 78125 CES 12 (150, 750) discrete 5 14 5.00 0.00 0.06 0.06 

9 / 1953125 MSES 13 750 x (1+1) - - 0 749.87 0.43 0.43 0.11 

9 / 1953125 CES 14 (150, 750) discrete 5 11 5.00 0.00 0.06 0.06 

10 / 9765625 MSES 15 750 x (1+1) - - 0 749.97 0.18 0.53 0.10 

10 / 9765625 CES 16 (150, 750) discrete 5 14 5.00 0.00 0.06 0.07 

10 / 9765625 CCES1 17 (30,210) intermediate - 30 1 0.00 0 0.00 

Table 4.7: Multiple Solution results of experiments on the multimodal function 

 

Figure 4.20: Mean and 95% confidence intervals for Optima and Best solution results on the multimodal function 

 

Discussion 

The weakness of the MSES is apparent in these results. In earlier experiments, the MSES 

performed well, however within such a vast multimodal space, such as this, the likelihood 

of an individual being seeded within the basin of the global optimum is negligible, and thus 

location of the global optimum becomes improbable.  

 

The CES performs consistently well in all test cases; even with a relatively small number 

of clusters the global search capabilities are good. In the 10-dimensional space, the 

optimum is located in almost 50% of the test cases. Even when the optimum is not found, 

the value of the average final best solution is near-optimal. Note that with the population 
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partitioned into five clusters, the CES is only able to maintain five distinct optima. 

 

For comparison, and to lead into the next chapter, a similar experiment is run for the 

CCES1 cooperative coevolution strategy. Within this particular problem domain, the 

CCES performs exceptionally well, locating the global optimum in every test case. The 

CCES is clearly scalable and fast when applied to certain separable problems (Potter and 

De Jong, 1994). However, under the CCES architecture, the population will ultimately 

converge to a single optimum. In this work, locating the global optimum is not the only 

interest, it important that multiple high fitness solutions are also evolved. Indeed, this is the 

subject matter for the following chapter, in which a CES/CCES hybrid is synthesised, 

providing the first cooperative coevolutionary optimiser designed to maintain multiple 

search space optima, for fast and robust multimodal optimisation.  

 

4.4 Summary of this Chapter 

In this chapter, a novel niching algorithm called CES was developed and assessed. The 

specifics of the FCES, on which the novel algorithm is based, was described and reviewed. 

The factors precluding the maintenance of multiple distinct solutions in the FCES were 

indicated and discussed, subsequent to which a niching algorithm was developed which 

addressed each of these factors. An ES-based algorithm was developed which incorporates 

k-means cluster analysis with furthest point initialisation into the evolutionary cycle, with 

hard cluster recombination and a new restricted cluster selection operator to ensure that 

population species are preserved throughout the course of evolution. The resulting 

algorithm was termed clustering evolution strategy (CES). 

 

The CES was then empirically examined in comparison with four other ES-based 

algorithms, including the FCES. Performance of each optimiser was tested in terms of their 

global optimisation, multiple distinct solution and multidimensional capabilities. The CES 

was found to be the most robust EA when all attributes were considered, although the 

reduction in selection pressure due to the properties of the niching operators resulted in a 

minor increase in convergence time. In terms of multiple solution performance, the novel 

recombination and selection operators, as well as the use of k-means cluster analysis, were 

confirmed statistically to improve the niching capabilities of the ES. In the last section the 

CES was demonstrated to scale well in multidimensional environments.  
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Chapter 5 

 

Clustering Cooperative Coevolution Strategies 

– a New Synthesis 

 

Coevolution is the biological term ascribed to a natural phenomenon in which there is 

reciprocal evolutionary adaptation between interacting species. Examples of specialisation 

due to coevolution are evident in the myriad predator-prey, host-parasite and mutual 

relationships exemplified in nature.  

 

In the field of evolutionary computation, coevolution is used as a general term to refer to a 

particular type of evolutionary algorithm in which fitness is determined through the 

interaction of individuals within the evaluation environment (Ficici, 2004), (Bull, 2001). 

There are two categories of coevolutionary algorithms: Cooperative and Competitive 

Coevolution. The distinction between these two classes is a subject of much debate; 

however, explicitly defined examples of both are available in the literature, see for 

example the work of Potter and De Jong (2000) and Rosin and Belew (1997) respectively. 

Such discussion will not appear here, as the ultimate application domain presents a static, 

single objective parameter optimisation problem, an application domain for which the 

cooperative coevolutionary framework is most applicable. 
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However, the question arises as to what relevance cooperative coevolution has here? After 

all, traditional cooperative coevolutionary algorithms tend to converge towards a state of 

balance rather than optimality (Wiegand, 2004). The answer lies in the structure of the 

sound synthesis application domain considered here. Synthesisers, including the FM model 

adopted within this work, are often constructed from modular components, the parameters 

of which are easily decomposed into separate subcomponents suitable for optimisation by 

cooperative coevolution. In other words, the representational structure of the 

coevolutionary algorithm may be easily matched with the architecture of the underlying 

synthesis model, and thus parameter optimisation with this architecture may prove 

advantageous. 

 

This chapter, therefore, begins with a brief introduction to the cooperative coevolutionary 

framework, followed by a short review of recent findings and refinements that bias the 

model towards more robust global optimisation. The motivation for creating a new 

multiple distinct solution cooperative coevolutionary model is then provided, followed by 

the introduction of a novel niching-based cooperative coevolutionary architecture designed 

to optimise multiple distinct solutions to complex function optimisation problems and 

improve the optimisation capabilities of the cooperative model. Thereafter, some empirical 

analysis is provided for the proposed algorithm when applied to a variety of test functions 

to demonstrate the general applicability of the architecture. 

 

5.1 Cooperative Coevolutionary Algorithms 

Cooperative coevolution is the name given to a particular type of EA in which individuals 

are assessed based upon their interaction with other individuals within the evolutionary 

system. In this chapter, focus is placed on the cooperative coevolutionary algorithm 

(CCEA) as defined by Potter and De Jong (1994) and Potter (1997)
4
. A brief review of the 

CCEA has already been provided in chapter three, in the context of multimodal static 

optimisation. While this is the application domain of interest here, the scope of CCEAs is 

much broader than this: CCEAs have been applied to many different types of learning 

problem; for example see the work of Potter and De Jong (1998), Potter and De Jong 

(2000) and Roberts and Claridge (2004).  

 

When applying CCEAs for the purposes of parameter optimisation, the search space must 

be decomposed into separate subcomponents. A standard approach is to decompose the 

                                                 
4
  Although some researchers prefer the name compositional coevolution (Wiegand, 2005) 
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problem space such that each object parameter represents a separate subcomponent of the 

problem. This is referred to as a natural decomposition. Each subcomponent is then 

assigned and explored concurrently by an independent subpopulation of potential 

(component) solutions, which are varied in isolation by a conventional EA. In order to 

determine the fitness of a subpopulation individual, it must be adjoined with a member 

drawn from each of the other subpopulations to form a complete solution. The assembled 

solution is then evaluated as normal, in application to the problem, to yield a fitness value. 

It is through this collaboration mechanism that subpopulations are encouraged to cooperate 

with each other, to coordinate towards a common goal. 

 

5.1.1 Collaboration 

The process by which candidates are chosen and fitness is allocated is referred to as 

collaboration. Through the interaction space of the collaborative process, subpopulations 

are able to retrieve information about the underlying structure of the problem domain. 

There exists a selection of alternative collaboration techniques, from which the correct 

choice is an important factor in successful application of the CCEA. The subjective fitness 

rating that each individual receives is indicative of its performance in combination with 

collaborators from neighbouring subpopulations. In light of this, collaboration may be 

viewed as the process of sampling the interaction space between subpopulations 

(Wiegand, 2004). In some applications, the interaction space may be sufficiently 

characterised by a single collaboration between subpopulations; in others, more 

sophisticated schemes may be required. Consequently, there is a variety of collaboration 

techniques, and selection of an appropriate method should be chosen according to the 

topology of the problem domain. Comprehensive studies of many different collaboration, 

or partnering, strategies have been conducted by Bull (1997) and Wiegand (2001). In 

Weigand‘s study, three collaboration attributes were examined for the CCEA:  

 collaboration pool size. 

 collaborator selection pressure. 

 collaborator credit assignment. 

 

The collaboration pool size indicates the number of collaborations an individual undergoes 

before a final fitness value is assigned. The collaborator selection pressure controls the 

amount of bias towards collaboration amongst the best individuals of each subpopulation. 

The collaborator credit assignment determines the method by which resulting fitness 

values are aggregated to yield the final value.  
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The most consistent finding of Wiegand‘s study was in the credit assignment procedure. 

When agglomerating fitness, the most effective strategy is to discard all but the result of 

the most profitable collaboration. This method was first introduced by Potter (CCEA-2) 

(Potter, 1994), and shown to produce good results in Bull (1997). Wiegand refers to this 

assignment method as optimistic.  

 

The selection pressure is controlled by selecting collaborators according to their rank 

within their respective subpopulations. Selection of the best collaborator (as in CCEA-1) 

constitutes the most extreme selection pressure, and conversely, selecting the worst 

constitutes the weakest pressure. Potter‘s single-best plus one random collaboration 

method (CCEA-2) therefore represents a slightly weakened version of the single-best 

collaboration method, as the second collaborator is chosen randomly. Interestingly, 

Wigand‘s method for varying the selection pressure had little effect on the outcome of his 

experiments in both separable and inseparable problems. The main factor that was found to 

affect the performance of the CCEA was the collaboration pool size. 

 

In most instances, it was shown that increasing the collaboration pool size results directly 

in an observed performance improvement. This result is perhaps unsurprising, as multiple 

collaborations sample more information from the interaction space at the cost of additional 

objective function evaluations. However, when the problem is linearly separable, no 

improvement in performance over the single-best collaboration strategy (CCEA-1) can be 

attained; an observation again corroborated by Bull (1997). 

 

While Wiegand‘s study does provide useful information regarding the role of collaboration 

within CCEAs, it does not directly address which collaboration methods are most suitable 

for different types of problem. Popovici and De Jong (2005) have made recent progress to 

this end, by analysing the runtime dynamics of CCEAs on simple two-dimensional 

optimisation problems. Through visualisation of the best-of-generation dynamics on top of 

a problem‘s best-response curve (Popovici and De Jong, 2004), it is possible to predict 

how different collaboration methods may affect algorithm behaviour in other search 

domains. While this work is beginning to explain the runtime behaviour of CCEAs, 

significant analysis of the search space is required to produce best-response curves, and 

application to more complex, high-dimensional real-world problems remains as future 

work.  
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5.2 CCEAs For Parameter Optimisation 

As was confirmed in chapter four, CCEAs are capable of performing both better and worse 

than traditional EAs. The question then arises: under which circumstances is there a CCEA 

advantage? It is still unclear exactly which search properties are most suited for 

optimisation with CCEAs. As such, this question remains open; however some progress 

has recently been made.  

 

Wiegand identifies that any performance disparity between traditional EAs and CCEAs 

can only be attributed to the two real differences between them: the division of the problem 

into multiple subspaces, and the subsequent increased effects of the search operators within 

these contracted spaces. Wiegand refers to these properties as partitioning and focusing 

(Wiegand, 2004). By dividing the problem into subcomponents there is an exploratory 

advantage, as each component may be varied with less risk of disrupting an entire solution. 

In other words, the notion of divide and conquer is embedded within the architecture. 

 

5.2.1 Separability, Decomposition  

and Cross-Subpopulation Epistasis 

It was originally contended that CCEAs are most suited for application domains that are 

divisible into independent subcomponents, between which there are no epistatic 

interactions (i.e. separable problems) (Potter and De Jong, 1994) (Bull (1997). While 

separability is certainly a relevant factor, Wiegand et al have demonstrated that search 

space attributes which directly affect the performance of CCEAs are more complex than 

merely the absence, or presence, of separability alone (Jansen and Wiegand, 2003), (Jansen 

and Wiegand 2004) and (Wiegand, 2004).  

 

When a CCEA is tuned such that the problem decomposition matches the problem‘s 

separability, the representation ensures that there is no cross-subpopulation epistasis, and 

the single-best collaboration strategy is all that is required to yield a good solution. 

However, if there are non-linear interactions between parameters, represented by differing 

subpopulations, there may be a certain degree of cross-subpopulation epistasis, which may 

require more complicated collaboration strategies in order to infer any useful gradient from 

the interaction space. To further complicate matters, the mere presence of cross-

subpopulation epistasis does not alone justify the use of more complicated collaboration 

strategies; it is the type of epistasis that must be considered (Wiegand, 2004). 
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Wiegand demonstrated that a pseudo-boolean TRAP function was particularly damaging to 

cooperative coevolution, as it exhibits a characteristic known as contradictory cross-

[sub]population epistasis. In application to this particular problem, Wiegand proved that, if 

component solutions are not present within the subpopulations at initialisation, the problem 

cannot be solved; the mechanism of the algorithm will itself preclude global optimisation. 

This is because the coevolutionary algorithm conducts its search by locking all but the 

currently evolving subcomponent. In certain environments this approach is advantageous, 

in others it can be disastrous. As Wiegand describes: 

 

It is not hard to see that the same partitioning process that assists the CCEA in 

gaining advantage against the EA in certain situations can become its Achilles heel 

in the presence of this [contradictory cross-subpopulation epistasis] deception 

Wiegand (2004, p.94) 

 

However, Popovici and De Jong (2005) have since established that contradictory cross-

subpopulation epistasis is not always a good indicator of problem difficulty. This finding 

was demonstrated on two simple real-valued functions, both of which exhibit contradictory 

cross-subpopulation epistasis. While it is possible to solve both functions with a CCEA, 

the more interesting outcome of this work was the observation that the collaboration 

method that most effectively solved one problem was the least effective at solving the 

other. Moreover, when solving the first (oneRidge) test problem, it was found that the 

greedier the collaboration scheme and the larger the subpopulation sizes, the worse the 

results (Popovici and De Jong, 2005). This work indicated that tactics frequently employed 

to enhance the performance of conventional EAs are not always transferable to CCEAs.  

 

5.2.2 Relative Overgeneralisation 

Relative overgeneralisation is a phenomenon which occurs as a result of the subjective 

nature in which fitness is assessed within the CCEA model (Wiegand, 2004). Each 

individual is assessed in terms of its performance when collaborating with only a subset of 

the potential interaction space. Search is then conducted through projections along the 

dimensions of the search space, which may preclude optimal collaboration by rendering 

regions of the space inaccessible. Within each subpopulation, selection will tend to favour 

those individuals that project search across distributions of high average, and not 

necessarily optimal fitness. In other words, deceptive landscapes with broad suboptimal 

peaks (of high average fitness) and a narrow optimal peak (of lower average fitness) are 
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problematic for cooperative coevolutionary algorithms: CCEAs have a propensity for 

consensus over optimality. These observations lead to the conclusion that CCEAs are not 

static optimisers of optimal collaboration, but rather optimisers of robust collaboration. 

They optimise collaborators that offer the most resilience to variation in other parts: the so-

called robust resting balance (Wiegand, 2004). However, for certain applications, 

practitioners may actually be interested in optimising for robustness rather than maximum 

payoff. This may go some way to explain why CCEAs have been found to produce good 

results in multi-agent team environments (Potter et al, 2001), (Wiegand, 2006). 

 

To demonstrate the tendency of CCEAs to converge to a robust resting balance, Wiegand 

devised the Maximum of Two Quadratics (MTQ) function, which exhibits exactly the 

properties described above: a broad suboptimal peak and a narrow optimal peak (see figure 

4.8, page 72). When applied to this problem the CCEA was found to converge to the 

suboptimal peak; results which were repeated in chapter four. 

  

5.2.3 Modified CCEAs for Single  

Objective Static Optimisation 

In the final chapter of his doctoral thesis, Wiegand (2004) offers two methods by which the 

static optimisation performance of CCEAs might be improved: biasing for optimal 

collaboration and balancing evolutionary change. 

 

Biasing for Optimal Collaboration 

The first of Wiegand‘s suggestions modifies the credit assignment procedure to bias the 

model toward the discovery of optimal collaborators. This is achieved by computing the 

fitness of an individual by the weighted sum of two terms: the first, ascertained via the 

usual collaboration procedure; and the second, by estimating an individual‘s maximum 

possible fitness, had it interacted with its optimal collaborators (Wiegand, 2004), (Panait et 

al, 2004). While this method has sound theoretical grounding, it is not immediately 

obvious how a solution‘s best possible fitness can be approximated. In fact, if it were 

possible to generate an accurate estimate, there would be no need for any interaction 

between subpopulations at all (reducing each subpopulation to a conventional EA). One 

approach is to produce estimates based on historical data gathered during the run (Panait et 

al, 2003). This is achieved by dividing a solution‘s search space into discrete intervals; 

each interval may then be assigned a MaxReward value, which is equal to the highest 

fitness it has been rewarded so far. Obviously, the MaxReward values give an increasingly 
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accurate approximation of an interval‘s maximum possible reward as the search proceeds, 

and, to account for this, the contribution of the MaxReward value is increased accordingly 

throughout the run. This relatively straightforward mechanism was found to offer 

improved performance over the vanilla CCEA on a simple two-dimensional problem by 

Panait et al (2003).  

 

Balancing Evolutionary Change 

Wiegand‘s second approach augments the original model by imposing a spatial embedding 

on each coevolving subpopulation, see also Wiegand and Sarma (2004). This embedding is 

synonymous with the diffusion model, reviewed in section 3.5.2, whereby each 

subpopulation individual is distributed on a toroidal grid. Reproduction takes place within 

a pre-defined neighbourhood (deme) on the grid, and collaboration is similarly confined 

between members of the corresponding demes of the other subpopulations. This provides 

some notion of linkage between the neighbourhoods of each population, which are able to 

explore the space quasi-independently. Strong adaptations are able to pervade the 

populations by diffusion in a controlled fashion, leading to a steady and symmetrical rate 

of convergence between coevolving subpopulations. The maintenance of symmetry in the 

convergence dynamics is one of the key motivations behind this approach, as it retains 

comparable levels of diversity between cooperating populations. Should one population 

totally converge before the rest, there may be a loss of gradient in the interaction space, 

which may ultimately lead to poor optimisation performance (Wiegand, 2004). Wiegand 

implemented a simple example, demonstrating improved performance when applied to the 

MTQ function over the baseline CCEA.  

 

Optimal Collaboration by Finer-Grained Comparison 

A further adaptation of the standard cooperative coevolutionary model, also designed to 

improve global optimisation performance, has been developed by Bucci and Pollack 

(2005). This approach employs Pareto dominance comparison, borrowed from 

Multiobjective optimisation (Deb, 2001). Individuals are selected based upon which 

solutions (Pareto) dominate the remainder of the population. By selecting with Pareto 

dominance, the CCEA becomes more sensitive to informational differences within the 

population (due to multiple peaks in the search environment), where conventional CCEAs 

are only sensitive to relative fitness ratings. It was demonstrated that the Pareto CCEA 

(pCCEA) was able to locate the global optimum of the MTQ function more reliably than a 

conventional CCEA-2 and a complete mixing CCEA. Although not stated in their paper, 
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Bucci and Pollack‘s pCCEA was also capable of maintaining multiple solutions at distinct 

optima as a result of the underlying selection techniques (Bucci, 2007). However, there is a 

considerable computational impact as a result of the Pareto dominance procedure. To 

facilitate Pareto dominance selection, it is required for subpopulation individuals to 

participate in every possible combination of collaborations with members of the other 

subpopulations (complete mixing) within the system, a process which requires a significant 

increase in fitness evaluations at each generation, which is combinatorial with the number 

of subpopulations.  

 

5.2.4 A Practical Alternative 

The theoretically sound methods for optimal collaboration identified above, have been 

shown to provide excellent results when applied to simple two-dimensional optimisation 

problems that otherwise pose a problem for conventional CCEAs. However, their practical 

application to larger, more complicated problem domains is not entirely clear. For 

example, Panait et al‘s (2004) paper, documenting the application of Wiegand‘s biasing 

method, is closed with the recognition that application to larger continuous problems will 

require further exploration. Additionally, the use of complete mixing in Bucci and 

Pollack‘s (2005) Pareto CCEA, requires  function evaluations per individual, where 

 is the number of parent individuals in each population and  is the number of 

subpopulations. A computational overhead which becomes impractically large as the 

problem dimensionality (and thus ) is increased.  

 

To provide an alternative, practical and scalable solution, it is possible to glean ideas from 

these methods and take a utilitarian approach. The desirable attributes of the system 

required here are as follows: 

 to deliver multiple solutions at distinct optima in multimodal problem domains. 

 to provide improved optimal collaboration over the baseline CCEA. 

 to retain the fast convergence properties of cooperative coevolution. 

 

To enable the CCEA to maintain multiple independent search optima, inspiration is drawn 

primarily from the spatial embedding model proposed originally by Wiegand (2004). 

Wiegand‘s adapted model is designed to improve the likelihood of optimal collaboration 

by introducing, to the CCEA model, a diversity preservation technique often applied to 

improve the performance of conventional EAs. A similar approach is adopted here by 

utilising the k-means clustering-based niching method of chapter four to partition each 
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cooperating subpopulation into multiple clusters. This synthesis forms the second 

algorithmic contribution of this work: the clustering cooperative coevolution strategy or 

CCCES. 

 

In the following sections a new cooperative coevolutionary model is introduced, and 

experimental evidence is provided to demonstrate its niching and improved optimal 

collaboration capabilities over the traditional CCEA. It will also be demonstrated that the 

proposed model maintains the fast convergence characteristics of the conventional CCES.  

 

5.3 Niching in Coevolutionary Algorithms 

The distributed population structure, employed by Wiegand (2004), is not the first instance 

in which coevolution researchers have adopted diversity preservation techniques to 

improve the performance of their algorithms. There are many examples in which 

competitive coevolutionary algorithms have benefited from similar techniques to evolve 

strong solutions to test-based problems, for example, evolving game players and sorting 

networks. For example, an early coevolutionary application for evolving minimal sorting 

networks by coevolution is described by Hillis (1989). Near optimal results are attained 

when the genetic diversity is maintained with the use of a diffusion style population 

structure, an approach adopted also by Husbands (1994) in application to a generalised 

version of the job shop scheduling problem. Fitness sharing methods have also been 

applied for this purpose in order to evolve well rounded game-players by Smith and Gray 

(1994), Darwen (1996), Rosin and Belew (1995) and Cartlidge (2003).  

 

Interest in the maintenance of diversity in this thesis stems from the desire to maintain 

multiple distinct solutions to the problem, and by doing so, it is hoped that sufficient 

adaptive balance is maintained between populations to induce improved optimal 

collaboration performance.  

 

5.3.1 The Niching Cooperative  

Coevolutionary Algorithm (NCCEA) 

In this section, a novel coevolutionary algorithm called the niching cooperative 

coevolutionary algorithm (NCCEA) is proposed. The NCCEA follows largely the same 

procedure as a conventional CCEA with one important difference: the underlying 

algorithm is a niching EA. To facilitate the concurrent maintenance of solutions in distinct 
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regions of the component space, the individuals belonging to each coevolving 

subpopulation must be partitioned in to subgroups. To avoid confusion, these (within 

subpopulation) subgroups are referred to as species, henceforth. A diagram of the model is 

provided in figure 5.1. 

 

 

Figure 5.1: Two population NCCEA 

 

For the purposes of evaluating fitness, there are several alternatives. One possible approach 

is to associate, or link, each subpopulation species (as shown) with the corresponding 

species of the other coevolving subpopulations. In this configuration each individual, 

belonging to a given species collaborates with individuals drawn from the linked species of 

the neighbouring populations. Any existing collaboration strategy may be adopted for this 

purpose; e.g. the single-best or single-best plus one random methods may be easily 

implemented. 

 

In this respect, Wiegand and Sarma‘s (2004) spatially embedded CCEA may be considered 

a special case of this model, in which the geographic structure of the subpopulations and 

the linkage between each species is fixed. However, Wiegand‘s algorithm is unable to 

deliver multiple solutions at distinct optima as the underlying algorithm is not a niching 

EA.  
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5.3.1.1 Collaboration 

One notable drawback of a fixed linkage model is the situation in which optimal, or at least 

near-optimal, component solutions exist within the system but are unable to collaborate as 

their species are not linked. For optimal collaboration to subsequently take place, these 

adaptations must either survive within their current linkage configuration, propagating to 

surrounding species by some mode of immigration (diffusion in Wiegand‘s model); or 

emerge independently within the neighbouring species.  

 

However, an alternative technique is available that reuses the available niching information 

to derive the linkage configuration that achieves maximum payoff. The procedure is as 

follows:  

 every possible linkage combination between subpopulation species is considered a 

valid link (complete linkage).  

 fitness for each offspring is then assigned as the maximum fitness achieved when 

all possible linkage collaborations have taken place. 

 

In the model depicted in figure 5.1, this method corresponds to the pairing of each 

offspring individual for Component x with the best
5
 individual from each species of 

subpopulation for Component y; four collaborations in total. 

 

5.3.1.2 Diverse Collaboration 

When applied to a problem in which a more complicated collaboration procedure is 

necessary to ensure sufficient characterisation of the interaction space, the NCCEA 

provides a more methodical technique for selecting multiple collaborators than simply 

selecting collaborators arbitrarily (random mixing) (Wiegand et al, 2001), and a more 

efficient method for guaranteeing collaboration between diverse subpopulation members 

than exhaustive selection methods (complete mixing) (Bucci and Pollack, 2005). Random 

selection of individuals does, to some extent, increase the probability of selecting a 

diversity of collaborators. However, given that the underlying niching algorithm is itself 

designed to identify and preserve diversity, each species represents clusters of population 

members that are similar to each other and different from the rest. Therefore, collaboration 

between representatives from each species ensures diverse collaboration. However, as 

noted earlier, additional collaborations are costly and should be minimised. Pareto 

cooperative coevolution was previously discarded due to the computational impracticalities 

                                                 
5
 if a single-best collaboration procedure is employed 



101 

of complete mixing in high-dimensional problem domains. This factor is considerably 

reduced in the proposed niching method in which  function evaluations are required 

per offspring (where  represents the number of species) rather than . However, as the 

maximal linkage is established anew for each generation, the number of required fitness 

evaluations can be reduced further still by enabling the linkage configuration to adapt as 

the system evolves, a procedure termed dynamic linking. 

 

5.3.1.3 Dynamic Linking  

Dynamic linking is a process by which representatives drawn from each species are 

evaluated to establish a single linkage configuration that produces the highest payoff. The 

configuration then defines how each offspring within the algorithm should collaborate with 

members of adjacent subpopulations. 

  

The maximal-reward inter-subpopulation linkage configuration for each species can be 

established by assessing every possible collaborative combination of individual 

representatives chosen from each species. The linkage configuration may then be used 

when assessing the fitness of new individuals. The offspring of a particular species are 

each adjoined with a combination of representatives from neighbouring species that were 

identified to be most profitable during the linkage configuration. For example, the 

maximal-reward inter-species linkage at a given generation may be consistent with the 

configuration depicted in figure 5.1. However, for the subsequent generation, the linkage 

depicted in figure 5.2 may be found to be maximal. By recalculating the linkage 

configuration at each generation, the strongest collaborative links between species are 

identified and maintained.  

 

 

Figure 5.2: NCCEA showing different linkage arrangement 
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If one representative is selected from each species, this procedure reduces the number of 

generational objective function evaluations to one per offspring (the same as the single-

best strategy of the conventional CCES), in addition to  evaluations required to compute 

the linkage table. 

 

5.3.1.4 Maintaining Diversity with Exclusive Linkage 

If all linkage permutations are considered to be valid, it is possible that the dynamic 

linkage procedure may deliver a configuration similar to that depicted in figure 5.3. 

Figure 5.3: NCCEA with common linkage 

 

In this situation all species in the  component subpopulation are found to produce 

maximal results in collaboration with the representative of the first species in the  

component subpopulation. In this linkage configuration the likelihood of every species 

converging toward the same point is significantly increased, as all subpopulation species 

are evaluated along the same projection. By prohibiting many-to-one linkage arrangements, 

such as this, all subpopulation species are forced to link exclusively with only one species 

from each subpopulation. To ensure that the maximal link is kept intact, the first link is set 

between the highest-scoring representatives and subsequent links between remaining 

species are set in order of fitness.  

 

Within the framework of the proposed NCCEA there is potential for a variety of 

implementations. For example, any niching EA may be adopted as the underlying 

algorithm, and alternative techniques for deriving the linkage configuration may also be 

considered. Analysis of the multifarious incarnations of this model is beyond the scope of 

this work; only one example of the model is implemented here, based upon the principles 

presented earlier in this chapter. In the next section, an instance of the NCCEA is 
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introduced, which implements the CES to evolve separate subpopulation species. Details 

of the algorithm are provided, followed by an empirical analysis in application to a variety 

of test problems.  

 

5.3.2 A Niching Cooperative  

Coevolutionary Algorithm – The CCCES 

To test the NCCEA concepts which were set out in previous sections, an ES-based instance 

of this model will be examined that employs the clustering-based niching method 

introduced in chapter four. Recall the CES model, in which the parent population of the ES 

is partitioned into separate species by k-means cluster analysis. In the proposed algorithm 

each coevolving subpopulation is evolved independently by a separate CES; this 

implementation of the model is referred to as the Clustering Cooperative Coevolution 

Strategy or CCCES.  

 

The algorithm is defined by the following pseudocode:  

 

 

Figure 5.4: NCCEA pseudocode 

 

 

initialise (μ); 

for each subpopulation p 

 evaluate_initial(μp); 

 cluster (μp); 

 Rp = select_reps(μp); 

 

L = calc_linkage(R); 

 

round loop begin 

 for each subpopulation p 

  λp = recombine(μp); 

  λp = mutate(λp); 

  evaluate(λp , L); 

  μp = select(λp ( + μp)); 

  cluster(μp); 

  Rp = select_reps(μp); 

  L = calculate_linkage(R); 

round loop end; 
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The CCCES algorithm begins by initialising all parent subpopulation members with a 

number drawn randomly from within its object range. Individuals of each subpopulation 

are then evaluated for fitness in collaboration with individuals selected at random from 

each of the other populations within the system. All populations are subsequently 

partitioned into species by k-means cluster analysis and species representatives are selected 

as the fittest individual belonging to each cluster. Thereafter, representatives are used to 

compute the maximal linkage configuration according to the exclusive-linkage method 

outlined earlier. The generational cycle of the CCCES may now commence.  

 

Individuals of the currently evolving subpopulation are first recombined, according to the 

cluster-based recombination operators presented in chapter four, and then mutated using 

Ostermeier‘s (1994) derandomised self-adaptive mutation operator. Offspring are 

subsequently evaluated in collaboration with species representatives according to the 

linkage table L and then selected as parents by restricted cluster selection. Finally, the 

subpopulation cluster membership is recomputed, new representatives are selected and the 

linkage configuration is updated.  

 

In the system proposed here, the exclusive-linkage is calculated by evaluating every 

collaboration permutation between the representatives of each species to produce a table of 

fitness results. The first link is then defined as the fittest collaboration in the table. To 

ensure exclusivity, any collaboration in the fitness-table that specifies species connected by 

the first link are removed, and the fittest remaining collaboration is assigned as the second. 

The procedure then continues until each representative is exclusively linked.  

 

5.3.2.1 CCCES Parameters: Cluster  

Quantity and Problem Decomposition 

In the CES, the value of the clustering parameter  specifies the number of species into 

which the population is partitioned, and thus the number independent solutions the 

algorithm is able to maintain. The same applies to the CCCES, where  specifies the 

number of species into which each coevolving subpopulation is divided, and again the 

number of solutions the algorithm is able to optimise concurrently at distinct optima. As 

such, the guidelines set out for the CES when choosing an appropriate value for this 

parameter also apply here to the CCCES. However, there are additional, computational 

factors that should be considered when optimising with the CCCES.  
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As discussed earlier, the number of fitness evaluations required to calculate the linkage 

configuration at each generation is , where  is the number of species and , the number 

of coevolving subpopulations. Increasing either parameter will raise the number of 

evaluations required to compute the linkage configuration.  

 

The optimum value for  is problem dependant, so should be set either equal to the number 

of desired independent solutions or adjusted within the range  (see section 

4.2.4). As the number of fitness evaluations required to compute the linkage configuration 

is combinatorial with the number of coevolving subpopulations, increasing the parameter  

should be done with caution. The number of subpopulations within a cooperative 

coevolutionary system relates directly to the decomposition of the problem space. As with 

the number of subpopulation species, the optimum decomposition is closely coupled with 

the characteristics of the problem domain. Consequently, there are no guidelines 

appropriate for all classes of problem. The value for this parameter must again be chosen 

by the practitioner as with conventional CCEAs, and kept as small as possible. 

 

5.4 An Analysis of Performance  

in Selected Test Environments 

In the following sections the performance of CCCES is tested in application to a variety of 

test problems, comparing results with the baseline CCEA, in terms of multiple distinct 

solution maintenance, optimal collaboration and convergence velocities. 

 

Experimental Set-up  

In the first set of experiments focus is placed on the ability of the CCCES to locate the 

global optimum while simultaneously maintaining multiple distinct suboptima. Two 

multimodal problem domains are chosen that were introduced in chapter four of this thesis: 

Himmelblau‘s function and the multimodal function. In the second set of experiments, 

performance of the CCCES is examined in comparison with several variants of the 

conventional CCES model in which a variety of collaboration strategies are adopted. The 

test environment of this comparison is the Maximum of Two Quadratics function, as it has 

previously been shown to exacerbate the relative overgeneralisation pathology of the 

traditional CCES. The results of these experiments should indicate whether the niching 

model provides improved optimal-collaboration performance. 
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For the subsequent experiments, the test procedure employed in chapter four is reapplied. 

Results are averaged over 30 runs, in which each algorithm is executed for 50 rounds
6
. As 

in previous experiments, a selection pressure is maintained at a ratio of . The 

cluster cardinality, or number of individuals per species, is given by the formula , and 

exact subpopulation sizes are indicated for each experiment.  

 

5.4.1 Experiments on Himmelblau’s Function 

The modified Himmelblau function was previously introduced in section 4.3.2, in which 

the ability of the CES algorithm to maintain multiple solutions at distinct optima was 

examined. The function is defined by equation 4.14 (page 79) which produces a landscape 

that features four equally sized peaks, as depicted in figure 4.13. In the experiments that 

follow, the CCCES is repeatedly applied to Himmelblau‘s function with increasing 

subpopulation sizes.  

 

As with the experimentation with CCES in chapter four, the problem space of each test 

function is decomposed naturally, such that each parameter is represented by a separate 

subpopulation (two for all experiments here). Each individual encapsulates only one 

parameter. Discrete recombination, as in chapter four, is equivalent to no recombination, 

where parameters are varied only by mutation between successive generations. 

 

Previous performance metrics are employed to indicate the number of runs in which all 

optima are successfully identified and maintained (Optima), and the actual number of 

separate optima located, averaged over all test runs (Total). 

 

The results from each test case are provided in table 5.1. Details of each algorithm are 

presented in the format:  

 

 

In which strat indicates the subpopulation size and selection mechanism in traditional  

 ES notation; recomb indicates the recombination type (centroid or discrete); clusts 

indicates the number of clusters, or species, within each subpopulation.  

 

Results 

The results are shown in Table 5.1 and plotted in figure 5.5. 

                                                 
6
 i.e. in one round all subpopulations have advanced by one generation. 

(strat) recomb  clusts 
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  Himmelblau’s Function 

 Algorithmic Parameters  Optima out of 4 

Algorithm (strat) recomb clusts Total out of 30 mean σ 

CCCES 

1 (8,56) centroid 4 19 3.63 0.49 

2 (8,56) discrete 4 18 3.60 0.50 

3 (8+56) centroid 4 23 3.77 0.43 

4 (8+56) discrete 4 21 3.70 0.47 

5 (12,84) centroid 4 16 3.53 0.51 

6 (12,84) discrete 4 22 3.73 0.45 

7 (12+84) centroid 4 21 3.70 0.47 

8 (12+84) discrete 4 20 3.67 0.48 

9 (16,112) centroid 4 18 3.60 0.50 

10 (16,112) discrete 4 21 3.70 0.47 

11 (16+112) centroid 4 24 3.80 0.41 

12 (16+112) discrete 4 25 3.83 0.38 

13 (20,140) centroid 4 18 3.60 0.50 

14 (20,140) discrete 4 19 3.63 0.49 

15 (20+140) centroid 4 24 3.80 0.41 

16 (20+140) discrete 4 24 3.80 0.41 

17 (40,280) centroid 4 26 3.87 0.35 

18 (40,280) discrete 4 24 3.80 0.41 

19 (40+280) centroid 4 29 3.97 0.18 

20 (40+280) discrete 4 26 3.87 0.35 

21 (80,560) centroid 4 30 4.00 0.00 

22 (80,560) discrete 4 30 4.00 0.00 

23 (80+560) centroid 4 29 3.97 0.18 

24 (80+560) discrete 4 29 3.97 0.18 

Table 5.1: Results of CCCES on Himmelblau‘s function 

 

Figure 5.5: Mean and 95% confidence intervals for Total results on Himmelblau‘s function 
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Discussion 

The results shown in table 5.1 and figure 5.5 indicate that the CCCES is indeed capable of 

locating and maintaining multiple search space optima. This niching behaviour is a 

consequence of the introduction of speciation and inter-species collaboration to the CCEA 

model, which would otherwise only be capable of maintaining one solution. 

 

When applied to Himmelblau‘s function, the results indicate a positive linear association 

between the population size and the Optima and Total measures. Statistical analysis 

confirms this observation with a Pearson correlation of 0.77, significant at the 0.01 level 

(two-tailed). Furthermore, the multiple solution performance of the CCCES is also 

frequently enhanced when an elitist strategy is adopted; however, this trend was not found 

to be statistically significant.  

 

In many of the test cases only three of the four optima are maintained; when subpopulation 

sizes are small, species frequently converge towards the same peak. To assist in 

understanding exactly why the CCCES fails to consistently maintain all four optima, the 

best response curves for Himmelblau‘s function are plotted in figure 5.6.  

 

Figure 5.6: Best response curves for Himmelblau‘s function 
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The BestResponseX curve is easily obtained by plotting for each x-value the best y 

collaboration value; conversely, the BestResponseY curve is obtained by plotting for each 

y-value the best x collaboration value. Popovici introduced the concept of best response 

curves (Popovici and De Jong 2004) to analyse the convergence dynamics of competitive 

coevolution, but has since observed that the behaviour of CCEAs are heavily influenced by 

the best response curves of the application domain (Popovici and De Jong, 2005), 

(Popovici and De Jong, 2005b). In this instance the best response curves are plotted to 

identify complications that NCCEAs may face when optimising multimodal functions. 

 

By decomposing the objective space of Himmelblau‘s function naturally into two 

components, the coevolutionary algorithm alternately freezes and explores the x and y 

dimensions of the search space. As illustrated in figure 5.6, pairs of optima are positioned 

along approximately (although not exactly) the same line. This topographic structure is 

evident from the large transitions in response curves as the position of the maximum 

collaborator swings between near and far peaks.  

 

When a subpopulation is partitioned into separate species, there is no guarantee that 

individuals representing separate peaks are correctly divided into separate species. If there 

is sufficient separation between individuals representing peaks separated by a transition 

line, cluster analysis will be able to correctly partition the subpopulation in to 

corresponding species. However, if the separation is blurred, it is possible that individuals 

representing both peaks are incorrectly assigned to the same species. In the event that 

individuals are incorrectly assigned, a peak may be lost and individuals belonging to an 

incorrectly allocated cluster may converge to an already occupied peak. The close 

proximity of the peaks along the same line is better visualised using a maximum-fitness 

curve as provided for the x parameter in figure 5.7. Notice two pairs of peaks separated by 

a broad valley; individuals positioned at peaks either side of the valley may be easily 

differentiated; however, representatives of the closely positioned peaks may not. 

 

In terms of niche maintenance this search space property is problematic for the NCCEA 

architecture, and in the most extreme case, when peaks are positioned along exactly the 

same projection, there is no way to differentiate between peaks at all. This property will be 

investigated further in the following section.  
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Figure 5.7: Maximum-fitness curve for x dimension for Himmelblau‘s function 

 

Improving Performance on Himmelblau’s Function 

To ameliorate this problem, subpopulation sizes may be increased (as exemplified by the 

results in table 5.1 and figure 5.5) or, alternatively, the number of species may be specified 

in excess of the number of peaks. Table 5.2 and figure 5.8 show the results when each 

subpopulation is divided into first five and then six species, with subpopulation sizes 

adjusted to maintain a cluster cardinality of five.  

 

  Himmelblau’s Function 

 Algorithmic Parameters  Optima out of 4 

Algorithm (strat) recomb clusts Total out of 30 mean σ 

CCCES 1 (25,175) centroid 5 30 4 0 

2 (25,175)  discrete 5 25 3.83 0.38 

3 (25+175) centroid 5 29 3.97 0.18 

4 (25+175)  discrete 5 30 4 0 

5 (30,210) centroid 6 30 4 0 

6 (30,210) discrete 6 30 4 0 

7 (30,210) centroid 6 30 4 0 

8 (30,210) discrete 6 30 4 0 

Table 5.2: Results of CCCES on Himmelblau‘s function with increased cluster quantity 

For relatively small population sizes there is a notable improvement in performance with 

five clusters and even more so with six. By clustering each subpopulation into more 

species, the likelihood of assigning individuals representing distinct peaks to the same 

cluster is reduced. 
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Figure 5.8: Mean and 95% confidence intervals for Total results on Himmelblau‘s function 

 

However, due to the line search characteristics of cooperative coevolution, reliable location 

of multiple optima along the same projection cannot be guaranteed. By adopting the 

exclusive linkage procedure (defined in section 5.3.1), it can be ensured that, for each link, 

the peak in the region of the highest scoring collaboration is maintained. This behaviour is 

further explored in the following section, in which the CCCES is applied to the multimodal 

function, an environment in which many peaks are positioned along the same projection.  

 

5.4.2 Experiments on the Multimodal Function 

The multimodal function presents a search space in which there are many local-suboptima 

and one optimum positioned at the corner of the search space. Further details of the test 

function have already been provided in section 4.3.2.1. As the multimodal function 

exhibits many in-line optima, the CCCES is expected to consistently locate the global 

optimum, and then allocate species to the next highest peaks that are not in line with the 

global optimum.  

 

For the experimental results that follow, the CCCES is repeatedly applied to the two-
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dimensional multimodal function with an increasing number of species in each test case. 

To maintain consistency, the population sizes are adjusted to ensure that the cluster 

cardinality is maintained at approximately five. As in previous experimentation, the 

problem space is decomposed naturally, such that each parameter is explored by a separate 

population. Each test case comprises an average of 30 runs executing for 50 generations. 

Performance is indicated using three measures: 

 the Global optimum location performance: the number of runs, in which the 

optimum is successfully located.  

 the Optima location average: The number of separate optima located, averaged over 

all runs. 

 the average Sum of all peaks located: The average fitness of all located peaks. 

Indicated values are the equivalent maximisation figures, larger values are therefore 

preferred. 

 

  Multimodal Function 

 Algorithmic Parameters  Optima out of 25 Sum 

Algorithm (strat) recomb clusts Global out of 30 mean σ mean σ 

CCCES 

1 (5,35) centroid 1 15 1.00 0.00 0.95 0.07 

2 (5,35) discrete 1 25 1.00 0.00 0.99 0.03 

3 (5+35) centroid 1 30 1.00 0.00 1.00 0.00 

4 (5+35) discrete 1 29 1.00 0.00 1.00 0.01 

5 (10,70) centroid 2 26 2.00 0.00 1.78 0.11 

6 (10,70) discrete 2 30 2.00 0.00 1.79 0.11 

7 (10+70) centroid 2 30 2.00 0.00 1.87 0.00 

8 (10+70) discrete 2 30 2.00 0.00 1.83 0.07 

9 (15,105) centroid 3 30 3.00 0.00 2.24 0.17 

10 (15,105) discrete 3 29 3.00 0.00 2.21 0.16 

11 (15+105) centroid 3 29 3.00 0.00 2.34 0.28 

12 (15+105) discrete 3 30 3.00 0.00 2.23 0.24 

13 (20,140) centroid 4 30 4.00 0.00 2.66 0.21 

14 (20,140) discrete 4 30 4.00 0.00 2.69 0.14 

15 (20+140) centroid 4 29 3.97 0.18 2.50 0.26 

16 (20+140) discrete 4 30 2.62 0.24 4.00 0.00 

17 (30,210) centroid 5 30 5.00 0.00 2.97 0.22 

18 (30,210) discrete 5 30 4.97 0.18 2.93 0.18 

19 (30+210) centroid 5 29 5.00 0.00 2.65 0.16 

20 (30+210) discrete 5 30 5.00 0.00 2.71 0.17 

21 (50,350) centroid 10 30 5.40 0.50 3.30 0.50 

22 (50,350) discrete 10 30 5.20 0.48 3.08 0.39 

23 (50+350) centroid 10 30 8.13 0.97 4.09 0.71 

24 (50+350) discrete 10 30 7.90 1.16 4.03 0.66 

25 (75,525) centroid 15 30 5.50 0.51 3.38 0.43 

26 (75,525) discrete 15 30 5.40 0.50 3.24 0.43 

27 (75+525) centroid 15 30 10.03 1.75 4.87 0.80 

28 (75+525) discrete 15 30 10.20 1.40 5.08 0.66 

Table 5.3: Results of CCCES on the multimodal function 
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Figure 5.9: Mean and 95% confidence intervals for Optima results on the multimodal function  

Figure 5.10: Mean and 95% confidence intervals for Sum results on the multimodal function  
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From the results shown in Table 5.3 and plotted in figures 5.9 and 5.10, it is evident that 

increasing the number of species beyond five does not result in a proportional increase in 

located optima. This is because there are rows of five peaks exactly aligned along each 

dimension of the problem space. As established in section 5.4.1, it cannot be guaranteed 

that more than one peak will be identified when multiple peaks lie along the same 

projection due to the search characteristics of the CCCES. Therefore, for the multimodal 

function, it cannot be guaranteed that more than five peaks in each run will be located. As 

predicted, the CCCES is excellent at locating a single optimum along each line of peaks 

the space. In the final set of results (algorithms 25-28), populations are divided into 15 

species, yet, with extinctive selection, the average number of located peaks is only slightly 

greater than five. However, when elitist selection is employed, the number of maintained 

peaks is increased – an equality of means independent t-test on the results of algorithms 

25-28 revealed a statistically significant (two-tailed) increase of 4.67 peaks with the elitist 

selection operator.  

 

Maintenance of more than five peaks indicates that multiple species have been assigned to 

the same niche, but are linked differently than their cohabitating species. In most runs in 

which the number of clusters is equal to or greater than five, the located optima are 

positioned along the  diagonal through the search space, as illustrated in figure 5.11.  

 

Figure 5.11: Contour plot of the multimodal function indicating final CCCES solutions 
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Although the located peaks do not represent the most optimal five peaks (although one of 

them is the global optimum), they do represent the five most optimal peaks that are not in 

line with any larger peaks already located by the algorithm. The CCCES thus searches for 

a set of diverse peaks that includes the global optimum.  

 

n-Dimensional Multimodal Space 

The examination of the CCCES is now extended to the -dimensional case of the 

multimodal function. Throughout all test cases five species per population are maintained 

as the CCCES is repeatedly applied to the multimodal function over an increasing search 

space dimensionality. Each dimension naturally introduces a new subpopulation to the 

system. Results are provided in Table 5.4, in which the dimensionality of the function is 

indicated as , and number of peaks within the space, . Means and confidence intervals 

for the Optima and Sum measures are plotted in figure 5.12. 

 

   n-dimensional Multimodal Function 

Search Space 

n / qF 

 Algorithmic Parameters  Optima out of qF Sum 

Algorithm (strat) Recombination type cluster quantity Global out of 30 mean σ mean σ 

3 / 125 CCCES 1 (25,175) centroid 5 30 5.00 0 2.65 0.30 

4 / 625 CCCES 2 (25,175) centroid 5 30 5.00 0 2.30 0.17 

5 /  3125 CCCES 3 (25,175) centroid 5 30 5.00 0 2.12 0.11 

6 /  3125 CCCES 4 (25,175) centroid 5 30 5.00 0 1.95 0.09 

Table 5.4: Results of CCCES applied to the n-dimensional multimodal function 

 

 

Figure 5.12: Mean and 95% confidence intervals for Optima and Sum results on the multimodal function 

 

Discussion 

As the dimensionality of the search space is increased, there is no deterioration in either the 

algorithm‘s ability to find the global optimum or locate multiple distinct solutions. 

However, there is a gradual, but consistent reduction in the sum measure. This indicates 
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that, as the dimensionality of the space increases, the algorithm is less able to identify the 

largest optimum in each row of peaks (although it always finds the global optimum).  

 

The linkage configuration procedure ensures that each offspring partakes in only one 

collaboration per fitness evaluation, equating to  function evaluations per round. 

However,  evaluations are also required to configure the linkage table,  

evaluations in total. If a high-dimensional search space is decomposed naturally, such that 

, computation of the linkage configuration is very costly. Although significantly less 

costly than the  evaluations required when a complete mixing CCES is employed 

(given that , for the majority of experiments documented here ). Several 

optimisations could be made to improve this problem. For example, the linkage 

configuration may be computed only once per round, or only before subpopulations have 

evolved to distinct species. In the latter case, neither cluster analysis nor linkage 

computation is necessary. However, for the work presented throughout the remainder of 

this thesis, the proposed exclusive linkage procedure is recalculated at the turn of each 

subpopulation generation.  

 

5.4.3 Experiments on the Maximum  

of Two Quadratics Function  

The Maximum of Two Quadratics (MTQ) function was originally developed by Wiegand 

(2004) to demonstrate the tendency for conventional CCEAs to optimise robust, rather 

than optimal collaborators. The proposed CCCES is principally designed to generate 

multiple solutions at distinct optima, but in doing so it is hoped that the effects of relative 

overgeneralisation will be lessened through the maintenance of population diversity 

(Wiegand and Sarma, 2004), resulting in an algorithm that is also better suited to function 

optimisation. Previous CCEA augmentations for improved optimal collaboration have been 

reviewed in section (5.2.3), in which the Maximum of Two Quadratics function is 

employed as a testing environment by Bucci and Pollack (2005) and Panit et al (2004). As 

demonstrated in chapter four, the MTQ function presents a particularly problematic search 

space for conventional CCESs, as it features one broad sub-optimal peak, and a second 

narrow optimal peak. The deceptive structure of the search space exasperates the relative 

overgeneralisation pathology, resulting in consistently poor results (see figure 4.9). 

 

To establish whether the proposed CCCES algorithm increases the likelihood of optimal 

collaboration, a set of experiments are constructed to facilitate comparison between the 
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proposed CCCES and a set of CCES variants equipped with more traditional collaboration 

techniques. Throughout subsequent experiments, the subpopulation size for each algorithm 

is fixed, and the CCES and CCCES are applied to the MTQ function with various 

parameter, and collaboration settings. Three variants of the CCCES are applied with the 

subpopulation divided into two, four and six species respectively.  

 

For comparison, three collaboration techniques are employed for the conventional CCES:  

 CCES1 – Offspring collaborate with the best individual from the other populations. 

 CCES2 – Offspring take the highest reward in collaboration with the best and 

random individuals of each population. 

 CCES-µ – Offspring take the highest reward of all possible collaborations.   

 

For each test case, algorithms run for 50 generations and results reflect the outcome of 30 

runs. Performance is tabulated for the number of runs in which the optimum peak is 

successfully located (Global), and the number of function evaluations required for a 

complete run of each algorithm (Evals).  

 

 Algorithmic Parameters MTQ function 

Algorithm (strat) Recombination type cluster quantity Global out of 30 Evals 

CCES1 (12,84) intermediate - 0 8424 

(12,84) discrete - 2 8424 

CCES2 (12,84) intermediate - 0 16824 

(12,84) discrete - 9 16824 

CCES-µ (12,84) intermediate - 2 100824 

(12,84) discrete - 19 100824 

CCCES (12,84) centroid 2 9 8828 

(12,84) discrete 2 7 8828 

(12,84) centroid 4 27 10040 

(12,84) discrete 4 27 10040 

(12,84) centroid 6 30 12060 

(12,84) discrete 6 30 12060 

Table 5.5: Results of CCES (various) and CCCES applied to the MTQ function 

 

Discussion 

It was hoped that, in addition to being able to locate multiple search space optima, the 

modifications made to the CCEA in this chapter would also facilitate improved 

performance in terms of global optimum discovery. Indeed, it is clear from the results 

provided in table 5.5 that this is the case. The MTQ is a function that presents deceptive 

characteristics which are known to be problematic for the CCEA. Equipped with an 

adequate number of species, the CCCES is consistently able to locate the optimum with 
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only a moderate increase in fitness evaluations. Additionally, it is important to note that in 

all successful runs, the sub optimal peak is also maintained.  

 

The conventional CCES, equipped with intermediate recombination, consistently exhibits 

poor performance, even when the complete mixing collaboration method is employed. This 

is presumably as a result of the averaging effects of the intermediate recombination of all 

parents: the consensus is favoured over the best. As the majority of the parents occupy the 

local optima, their mass will draw individuals away from the narrow optimal peak. 

Discrete recombination improves performance somewhat, but even with complete mixing 

only 63% of runs are successful. 

 

Performance of the CCCES with two species is relatively poor, although significantly 

better than the CCES-1 with a comparable number of function evaluations. This suggests 

that with a similar quantity of collaborations, the CCCES extracts more useful information 

from the interaction space through the introduction of niching and exclusive linkage. This 

is further substantiated by the performance of the CCCES with four and six species when 

compared with the CCES-µ. With less collaborations, there is a significant improvement in 

performance. The tendency for the model to distribute solutions along the component 

space ensures that sufficient subpopulation diversity is maintained in order to locate the 

optimum in all runs.  

 

In a comparable study, Bucci and Pollack (Bucci and Pollack, 2005) observed good results 

when applying the Pareto CCEA (pCCEA) to the MTQ function. To draw direct 

comparison between the algorithms is misleading as it is impossible to match the 

population sizes between the algorithms as pCCEA is a GA-based algorithm. However, the 

authors did experiment with a second MTQ function (MTQ2) in which the performance of 

a CCEA with complete mixing was found to deteriorate further, while the pCCEA did not. 

The MTQ2 function is identical to the MTQ function, with the exception of the  

parameter (see table 4.1), which is set to 125. Comparable results are achieved by the 

CCCES and shown in table 5.6. 

 

 Algorithmic Parameters MTQ Function 

Algorithm (strat) recomb clusts Global out of 30 Evals 

CCES-µ (12,84) intermediate - 1 100824 

(12,84) discrete - 14 100824  

CCCES (12,84) centroid 6 30 8828 

(12,84) discrete 6 30 8828 

Table 5.6: Results of CCCES applied to the MTQ2 function 
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The results for the CCCES remain unchanged, while the performance of the CCES-MU is 

reduced. 

 

5.5 Convergence Dynamics 

The CCCES was designed to ensure that the rapid convergence properties of the 

conventional CCES are preserved, while the robustness and niching abilities of the search 

are improved. To illustrate and compare convergence characteristics, the trajectory of the 

best collaborators is plotted at each generation for all algorithms in figure 5.13. Each curve 

is generated from an average of up to five successful plots from each algorithm when 

applied to the MTQ function with discrete recombination. The algorithms are minimising, 

therefore 0 represents optimum fitness. 

 

 

Figure 5.13: Convergence trajectories for all algorithms when applied  

to the MTQ function with discrete recombination 

 

As the CCCES requires only one collaboration per offspring, the convergence velocity is 

comparable with the CCES-1, exhibiting faster convergence than all other CCEA variants. 

From the results provided in this section, it is evident that the CCCES presents a niching 

algorithm that is both fast and robust.  
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It is interesting that the results presented here show similarities to the work of Bucci. The 

motivation here is to locate multiple optima; however, in doing so, the optimum 

collaboration performance is enhanced. The work of Bucci and De Jong (2005) was 

motivated by the desire to achieve optimum collaboration within the CCEA and, as a side 

effect, the multiple solution performance was enhanced (Bucci, 2007). Perhaps these two 

techniques have common properties that bring about similar effects, despite the differences 

between them. Further comparison between these methods is beyond the scope of this 

work; however it is certainly a topic for future research.  

 

5.6 Summary of this Chapter 

In this chapter, the second algorithmic contribution of this work was introduced in the form 

of a niching cooperative coevolutionary algorithm named CCCES. A review of cooperative 

coevolution for parameter optimisation was provided in which a variety of alternative 

collaboration techniques were discussed. Relative overgeneralisation, a property of CCEAs 

that limits the likelihood of optimal collaboration, was also reviewed along with various 

techniques which have been proposed to counter its effects. The ideas from these 

techniques were considered and a novel cooperative coevolution algorithm was developed 

that implements the CES (developed in chapter four) to provide a niching cooperative 

coevolutionary algorithm designed to maintain multiple solutions at distinct optima, and 

also improve the likelihood of optimal collaboration.  

 

An instance of the niching cooperative coevolution algorithm named CCCES was 

presented and examined in application to a selection of test environments. It was 

demonstrated that the algorithm was able to maintain multiple distinct solutions and 

consistently locate the global optimum, when the dimensionality of the problem domain 

was increased. In the final set of experiments the CCCES was applied to the maximum of 

two quadratics function to establish whether the effects of relative overgeneralisation had 

been lessened through the maintenance of subpopulation species. The novel algorithm was 

compared with the traditional CCES equipped with a variety of different collaboration 

methods, and shown to be the most reliable at locating the optimum peak, while still 

maintaining convergence velocities comparable with the original CCES-1. 
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Chapter 6 

 

The Exploration of FM Parameter Space with 

Evolutionary Computation 

 

The previous two chapters focused primarily on the design and development of niching 

EAs for optimising multiple distinct solutions to highly-rugged, multimodal engineering 

problems. The potential application domains for these algorithms are numerous, but the 

aim in this work is to evolve solutions to an unsupervised sound matching problem: the 

process of deriving parameters that cause a synthesiser to reproduce a given target sound. 

 

The three performance attributes for which each algorithm has been tested correlate with 

the intended application. That is, a sound matching device that is intended to assist in 

relating synthesis parameters to sonic character. Each algorithmic attribute has benefits 

within this context: 

 Optimality – by locating highly-fit solutions, it is ensured that derived synthesis 

parameters give rise to sounds that most accurately resemble their targets. That is, 

high fitness (optimal) solutions will represent matches at the limit of matching 

synthesiser‘s capabilities. 
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 Niching – it is desirable that multiple high fitness solutions are located, in order to 

provide users with a variety of match candidates, which may assist in the sound 

design process. 

 Dimensionality – typically, the interface to a synthesiser presents a multitude of 

parameters that together specify the characteristics of the generated sound. 

Parameters affect the (time-varying) characteristics of the synthesised sound and, in 

many instances, there are complicated interactions between the parameters 

(epistasis). Therefore, it is important that the optimisation algorithm is able to 

exploit rugged search spaces that span multiple dimensions.  

 

In chapter seven an experimental method is described which tests the ability of six ES-

based optimisers to produce matches to a variety of target tones using a frequency 

modulation (FM) audio synthesiser. This chapter contextualises this work introducing FM 

synthesis and previous sound matching work. 

 

6.1 Introduction 

There is a considerable variety of synthesis architectures, each of which is capable of 

producing a wide range of timbres (sound characters). Often a synthesiser control interface 

is a reflection of the underlying synthesis process, and rarely relates to sound in human 

terms. As a consequence of the complex mapping between the dimensions of the synthesis 

parameter space and the perceived sound space, synthesiser control is often unintuitive and 

difficult to learn. Synthesiser users/programmers would benefit from a procedure that aids 

the process of mapping timbral qualities on to synthesis parameter values.  

 

Previous studies have attempted to establish more intuitive synthesis control with the 

development of a timbre-based lexicon (Johnson, 2006), or a parametric representation of 

timbre space
7
 (Nicol et al, 2004). Further examples include Vertegaal and Bonis (1994) 

and Ashley (1986), in which synthesis parameters were ascribed timbre labels that 

described their perceived effect, and Miranda (1998) in which subtractive synthesis 

parameter settings were represented by a set of non-numeric attributes.  

 

Many of these control techniques attempt to map timbral attributes directly onto the 

parameters of the associated synthesis technique. The control technique is therefore 

inextricably linked with the form of the underlying synthesiser. If the process could be 

                                                 
7
 A multidimensional space in which perceptually similar sounds are positioned close together (Grey, 1978). 
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divided such that the control interface targets a generic intermediate representation of 

sound, the control domain could be detached from the synthesis domain. Thus, any control 

technique that is compatible with the intermediate sound representation might be used to 

control any synthesis technique for which parameters may be derived from the 

intermediate representation. This system is shown in figure 6.1. 

 

 

Figure 6.1: Control to synthesis mapping via intermediate representation 

 

Etherington and Punch (1994) developed a system that resembled the first part of this 

control process by enabling separate temporal regions of an additive synthesised sound to 

be controlled via a set of timbral features. Additive synthesis is frequently referred to as 

Fourier synthesis, as the sound synthesis parameters reflect the spectral form of the 

synthesised sound. Since different timbres may be identified by spectrum analysis (Roads, 

1996), the spectral representation of sound is considered sufficiently generic to act as the 

intermediate representation of the system depicted in figure 6.1. A search procedure is then 

required that can efficiently locate specific spectral (and thus timbral) attributes within the 

synthesis parameter space.  

 

Etherington and Punch note in their conclusion that, in order to apply the system to 

alternative synthesis architectures, a translation method is required that is able to map the 

additive synthesis parameters produced by their system onto the parameters of other 

synthesis techniques. This translation method forms the second part of the control process 

and represents the procedure that is explored within this thesis: the mapping of spectral 

information onto the parameters of a non-additive synthesis type (FM). By viewing the 

first part of the process as specifying a target spectral profile, the second part leads 

naturally to the idea of sound matching: searching for parameter values which cause the 

synthesiser to create a sound that matches the target profile. As the development of an 

intuitive synthesiser interface is beyond the scope of this work, target profiles here are 

constructed from the frequency analysis of pre-existing sounds, enabling algorithm success 

to be determined by comparison between target sounds and their corresponding matches.  

 

 

 

Control Domain Intermediate Representation Synthesis Domain
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6.2 Synthesiser Choice 

Since the focus of this work is the derivation of parameters for standard synthesis 

techniques, it is necessary to choose one with which to work. Frequency Modulation (FM) 

synthesis has been selected for multiple reasons: 

 FM synthesis presents a method for generating sound which has seen wide 

application in commercial systems, and thus represents a real-world synthesis 

technique. 

 since its introduction, there have been many efforts in which FM synthesis has been 

employed to simulate specific sound types; see for example Schottstaedt (1977), 

Delprat (1997) and Risberg (1980). This provides a historical context for the sound 

matching problem. 

 the synthesis space is non-linear. A synthesis model is considered to be non-linear 

when the perceived timbre does not change in a consistent and proportional manner 

as the synthesis parameters are varied; there is a complex parameter space 

mapping, as described earlier. For example, the linear incrementation of a single 

parameter may cause a sound to move through many dimensions of the timbre 

space with a complex trajectory. Moreover, this trajectory may be entirely different 

when other synthesis parameters are changed. For fuller description of these issues 

see Ashley (1986). 

 with only a limited number of parameters, it is possible to generate a wide range of 

complex time-varying sound textures with as little as two sinusoid calculations, two 

multiply and one addition operation for each synthesis sample (Roads, 1996). The 

FM synthesis model is compact and efficient. 

 

6.3 Frequency Modulation Synthesis 

FM audio synthesis provides a neat synthesis method by which complex sound forms can 

be created simply and efficiently. This section will further expand the method, reviewing 

developments since Chowning‘s (1973) original simple FM model which was reviewed in 

section 1.1.2 of this thesis. 

 

6.3.1 FM Extensions 

Schottstaedt (1977) developed two extensions to Chowning‘s simple FM arrangement in 

which the carrier wave is modulated by a complex (i.e. non-sinusoidal) modulating wave. 

In the first extension, called double-modulator FM, the carrier frequency is modulated by 
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the sum of two sinusoids: 

 

 

 

where  and  represent the modulation indices of each modulating sinusoid, and  

and  represent their angular frequencies. With double-modulator FM, the spectrum 

that results is as though each partial produced by the modulation of the carrier by one 

modulating oscillator, is modulated by the second. In other words, each partial produced by 

the modulation of the carrier by the first modulating oscillator exhibits its own side 

frequency partials as if modulated individually by the second modulating oscillator. For the 

mathematical expansions of the double-modulator FM spectrum, in terms of the Bessel 

Functions, the interested reader is referred to LeBrun (1977). 

 

The second of Schottstaedt‘s expansions, nested-modulator FM, operates by modulating 

the instantaneous frequency of the carrier with a sinusoidal oscillator, which is itself 

modulated by a second modulating oscillator; given by the equation: 

 

 

 

The sidebands that result are identical to simple FM, only each side frequency partial 

exhibits its own set of side bands with partials distributed at frequency intervals of the 

second modulating oscillator frequency. The trigonometric expansion of the nested-

modulator spectrum can be found in Horner (1998).  

 

From the models presented by Schottstaedt, the FM model may be extended inductively to 

form any combination of nested and/or parallel arrangements. Nonetheless, while the 

author has experimented previously with both the nested and multi-modulator synthesis 

models (Mitchell and Sullivan, 2005), the work presented here uses a standard expansion 

of the most fundamental FM synthesis form, in which multiple simple FM elements are 

accumulated in parallel, see section 7.1 for further discussion of this synthesis model. This 

arrangement is shown in figure 6.2. 

 



126 

 

Figure 6.2: Parallel Simple FM model 

 

6.3.2 Target Matching with FM Synthesis 

Due to the non-linear relationship between the FM synthesis parameters and the spectral 

shape of the synthesised sound, it is often difficult to achieve desired target sounds through 

manual control of the parameters (without extensive mathematical analysis). This 

drawback has been noted by numerous researchers: 

 

 ―It is difficult to control the shaping of the sound‖ 

Kronland-Martinet et al (2001) 

 

 ―It is notoriously difficult to make a sound like a given instrument‖ 

Horner (2003)  

 

 ―It is not easy to determine the values of the synthesis parameters‖ 

Delprat (1997)  

 

The desire to achieve ‗natural‘ tones with FM space has motivated a series of studies intent 

on providing a systematic means by which FM synthesis can be employed to simulate real 

acoustic instruments. Chowning‘s original paper initiates interest in this direction, 

providing example parameters that simulate brass, woodwind and percussive tones with the 

simple FM architecture. Schottstaedt (1977) later provided example parameters for 

simulating stringed instruments, including piano and violin tones. Subsequently, many 

researchers set out to develop a system to automatically derive FM synthesis parameters to 

reproduce particular target sounds.  
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One of the earliest attempts to automate sound design with FM was proposed by Risberg 

(1980). Risberg‘s system employs a stochastic filtering technique to decompose target 

sounds into FM synthesis parameters. The technique is effective, provided the target sound 

is simple and not rapidly changing. However, at the end of the paper, Risberg notes that 

matching complex sounds is beyond the capabilities of the system, stating also that it 

would not be possible to expand the model to support more complex FM arrangements. 

 

An alternative target matching system for FM was developed by Justice (1979), in which 

parameters were derived using a phase-analysis procedure based on the Hilbert transform. 

To verify the success of the algorithm, Justice presented some successful experimentation 

retrieving parameters that reproduce contrived FM target signals (matching sounds that 

originate from within the synthesis space). However, the procedure is specific to nested-

modulator FM, works only sounds that develop slowly and does not make allowances for 

reflected side-frequency partials. Some theoretical analysis is provided for the application 

of the model to general signals, but further experimentation is left as future work. Justice 

suggests that such a system may provide users with a means of jumping to approximate 

regions of the synthesis sound space, leaving finer adjustment to be performed by hand. 

 

Justice‘s analytical process was later extended by Payne (1987) to process multiple 

(parallel) carrier nested-modulator FM arrangements. The paper outlines numerous 

restrictions to which the target signal should conform, but, even when all constraints are 

met, the process is not always successful. A comparable technique for FM parameter 

decomposition, called FM law extraction, was also proposed by Delprat (1997). FM law 

extraction estimates synthesis parameters by interpreting formations in the Gabor 

transform coefficients of the target signal. Experimental results are presented that show 

promising partial interpretation of the coefficients. However, the system is not complete 

and, like many of the procedures outlined in this section, full development is left as future 

work.  

 

More recent advances in sound matching with FM synthesis have used evolutionary 

algorithms to optimise synthesis parameters. This work is reviewed in section 6.4.4 of this 

chapter, after related research in which EC has also been applied within the context of 

sound synthesis has been discussed. 
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6.4 Sound Synthesis Applications 

of Evolutionary Computation 

Research at the intersection of artificial intelligence and sound synthesis has produced a 

collection of studies in which EC has been used to provide more intuitive synthesis control. 

This is generally in one of two forms: interactive evolution, in which the user controls the 

direction of the search as evolution takes place; or autonomous sound matching, where the 

evolutionary search explores the space, without supervision, to find a close match to a 

given target sound.  

 

6.4.1 Interactive Evolutionary Synthesis 

Interactive evolution is a method of search in which human evaluation is included within 

the reproductive cycle of a conventional EA; a procedure exemplified by Dawkins‘ (1986) 

biomorph software for evolving complex two-dimensional image structures. Population 

members are selected based upon the user‘s subjective preferences and recombined to 

create offspring. Such a model is easily augmented to evolve sounds rather than images, 

and this is the approach adopted in several studies. Interactive evolutionary synthesis 

enables users to explore complicated synthesis spaces without the need for expert 

knowledge of the underlying system. Examples in the literature include Johnson (1999, 

2003) in application to granular synthesis; Yee-King (2000) for evolving or growing 

synthesis structures; and Mandelis (2002, 2003a, 2003b, 2004), and Dahlstedt (2001) for 

exploring the sound space of commercial synthesisers.  

 

6.4.2 Evolutionary Sound Matching 

There are many benefits to the interactive model outlined above. However, the method is 

not without its drawbacks. The progress of the search is significantly impaired by the 

bottleneck of user evaluation. As each offspring must be examined independently by hand, 

the rate at which generations elapse is low, and the population size must be significantly 

constrained compared to an autonomous system. Furthermore, the interactive procedure 

does not provide an efficient method for directly achieving specific sound timbres, should 

a user have a clear requirement for the type of sound that they wish to create. Non-

interactive evolutionary sound matching attempts to automate the search procedure by 

enabling a target sound to be specified by the user. The matching system then sets about 

locating a synthesis parameter set that best approximates the characteristics of the target.  
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The earliest evolutionary sound matching systems were presented by Horner for matching 

sounds produced by real acoustic instruments with FM and wavetable synthesis
8
; see for 

example Horner et al (1993a) and Horner et al (1993b) respectively. Horner has since 

focused primarily on wavetable matching techniques; a comprehensive summary of this 

research can be found in Horner (2003). 

 

6.4.3 A Conspectus of Non-FM  

Evolutionary Sound Matching Research 

Wavetable Synthesis - For matching brass, string and voice sounds, Horner et al (1993b) 

and Horner (1995) used a GA to select a small number of spectral snapshots (wavetable 

basis spectra), taken from the original sounds, that may be combined to accurately 

reproduce the entire target sound. Results in this study were presented in the form of 

spectrum error curves, and time/frequency plots to provide visual comparison between the 

target and corresponding matched sounds. 

 

Plucked String Physical Modelling Synthesis - Riionheimo and Välimäki (2003) applied 

EC to match target sounds using a plucked string physical model, defined originally by 

Karjalainen et al (1998). The nine-dimensional parameter space of this synthesis model 

was contracted by encoding parameter ranges into discrete steps. Significant knowledge of 

the model was applied in this process to ensure that the parameter intervals were set just 

below the threshold of perceptual discrimination. A GA was then employed to optimise the 

synthesis parameters to reproduce three target sounds, two of which originated from the 

matching synthesis model itself (contrived targets), and a third sound recorded from a real 

string instrument. Good results were reported and visualised with time and time/frequency 

plots. 

 

Alternative Synthesis Structures – EAs have also been employed to evolve and grow 

modular synthesis circuits. For example, Wehn (1998) evolved the arrangement and 

interconnection of different signal elements (oscillators, noise generators, filters, etc) to 

reproduce target sounds. Synthesis arrangements were represented as graphs, the structure 

of which was varied and optimised by GA. In a related system, Garcia (2000, 2001, 2002) 

evolved representations of synthesis models, referred to as expression trees, by Genetic 

Programming (Koza, 1992). Matches were performed using piano and FM target sounds 

                                                 
8
 For fuller treatment on wavetable synthesis see the work of Bristow-Johnson (1996) 
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with results again presented using time and frequency visualisation. 

 

6.4.4 Evolutionary Sound Matching  

with Frequency Modulation Synthesis 

In addition to matching instrument tones with wavetable synthesis, Horner also studied the 

application of GAs to FM synthesis parameters for the same purpose. Horner‘s (1993a) FM 

matching algorithm optimises a set of static basis-spectra, produced by FM synthesis, 

which are dynamically recombined to simulate time-variant harmonic sounds. The 

amplitude envelopes for the basis-spectra are then determined by a direct least-squares 

solution. The synthesis process is thus equivalent to wavetable synthesis, with FM used 

only in the production of basis-spectra.  

 

The wavetable basis-spectra are generated by a special configuration of the simple FM 

model, known as formant FM, in which the modulator frequency is tied to the fundamental 

frequency, and the carrier frequency is restricted to integer multiples thereof. Restriction of 

the carrier frequency to integer multiples of the modulating frequency ensures that only 

harmonic basis-spectra are considered (see section 1.1.2).  

 

Horner‘s hybrid FM/wavetable synthesis model provides a means by which dynamic 

sounds may be generated from static FM spectra. However, FM arrangements that 

synthesise dynamic sounds have existed for many years. A simple model is provided in 

Chowning‘s original paper, which formed the precursor to the models implemented by 

commercial FM synthesiser manufacturers. Consequently, Horner‘s model cannot be 

applied directly to explore the sound space of conventional FM synthesisers as it adopts an 

alternative synthesis paradigm. Nonetheless, excellent results were achieved when 

matching certain acoustic instrument tones with results provided in the form of error and 

spectral envelope plots. 

 

Later, Horner (1998) extended his FM/wavetable model by employing the larger double- 

and nested-modulator FM arrangements to generate matches to trumpet, tenor voice and 

Chinese pipa sounds. Again, good results were achieved and presented in terms of error 

measures and spectral envelope plots. Also included in this study was a simple 

comparative listening test, in which five participants were asked to differentiate an equal 

number of synthetic matches from their real targets. For all three sounds, indistinguishable 

matches were achieved when synthesis models constructed from between three and five 
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double- or nested-FM arrangements were used to generate each basis spectrum.  

 

Tan and Lim (1996) developed a novel EA based on the GA with a modified crossover 

operator that incorporated a simulated annealing procedure. The Genetic Annealing 

Algorithm (GAA) was applied to match a selection of static tones taken from real acoustic 

instruments with a basic double-FM (DFM) (Tan et al, 1994) synthesis model. Results 

were presented in the form of spectrum error results, indicating a performance advantage 

of the GAA when compared with the equivalent results produced by simple GA. 

 

Tan later extended his model to facilitate the matching of dynamic sounds (Lim and Tan, 

1999). Time-varying sounds were treated as a time extension of the static tone matching 

procedure outlined above (Tan and Lim 1996). A static match was performed for the 

frequency spectrum extracted from each timeframe of the target sound. The accuracy of the 

model when applied to five acoustic target sounds was calculated using the mean average 

of the spectrum error at each frame. Exactly how the sequential static matches were 

blended to reproduce the target sound is not indicated. Also included in Lim and Tan‘s 

article is a three-dimensional plot of a sub-space of the problem domain. The topology of 

the search space is shown to be extensively multimodal, with significant variation in the 

landscape when the model is applied to match different target sounds.  

 

In a more recent study, the author of this thesis compared the performance of several ES-

based EAs for matching a set of static target tones with the simple FM model (Mitchell and 

Pipe, 2006). The target set consisted of tones generated by the matching synthesiser, 

enabling the performance of the EAs to be measured quantitatively in terms of the number 

of successful parameter retrievals that were achieved. The EA designed for multimodal 

optimisation was found to perform the best. The same testing method is employed for the 

experimentation documented in chapter seven. 

 

6.4.5 New Developments in  

Evolutionary Sound Matching 

The articles reviewed above provide confirmation that EAs can be successfully applied to 

assist in the process of matching target sounds with FM. However, all of these examples 

impose limitations on the parameter ranges of synthesis models and, for matching time-

varying sounds, employ non-standard synthesis structures to make the problem space more 

tractable. As such, sound matching with existing time-varying FM synthesis models, 
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employed by commercial synthesis manufacturers, has not yet been addressed in the 

literature. The majority of reviewed articles use a hybrid FM/wavetable synthesis form, as 

their intention is to produce matches which are indistinguishable from their targets. From 

this perspective, development of the matching synthesiser structure is a natural 

progression, as exact target reproduction is often beyond the capabilities of existing FM 

synthesis forms.  

 

The motivation behind the work presented in this thesis differs from the existing body of 

work in this area. The intention here is to develop an unsupervised sound-matching tool for 

existing, commercially implemented FM structures, with no restrictions placed on the 

parameters of synthesis. The goal is to evolve the most accurate match within the limits of 

the synthesiser, and not matches which are indistinguishable from their target sound. 

Consequently, the synthesis models are not developed beyond their traditional forms here, 

emphasis is instead placed on the development of an improved matching technique; hence 

the extensive algorithmic developments already presented in chapters four and five.  

 

The author of this thesis has previously published the results of early experiments applying 

a clustering EA to match dynamic-sounds produced by the matching synthesiser (Mitchell 

and Sullivan, 2005). These experiments involve the simple, double and nested time-

varying FM synthesis models. Results were presented in terms of spectrum error results, 

time and frequency plots and some informal listening tests. It was determined that it is 

easiest to retrieve sounds generated by the simple-FM matching synthesiser, referred to as 

contrived sound. 

 

The complexity of the objective space is ultimately linked with three components of the 

sound matching process:  

 the synthesis model being employed. 

 the method for deriving the quality of a given match. 

 the characteristics of the target sound.  

 

The following section considers several possibilities for assessing the quality of a match. 
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6.5 Sound Similarity Measures 

To perform unsupervised sound matching, it must be possible to determine the quality of a 

sound simulation in the absence of human listeners. A metric is then required that indicates 

the ‗distance‘ between a target sound and its synthesised match; where a good match is 

positioned close to its target. This distance measure may then be used to indicate fitness, 

enabling strong individuals to be identified, selected and bred to produce new matches. 

 

6.5.1 Content-Based Analysis 

Content-based analysis of music is a rapidly growing field of research, which is likely to 

expand in the coming years as personal digital audio devices and computers continue to 

become the central medium for the access, dissemination and storage of music. There is an 

increasing requirement for large music repositories to be organised automatically, enabling 

music to be browsed by the content of the audio, rather than the appended data tags (artist 

name, song title, genre and so forth). A good introduction to this field has been compiled 

by Downie (2003, 2004), and for a comparison between a variety algorithms has been 

conducted Typke (2005). 

 

Within the field of automatic music information retrieval, a large body of work is 

concerned with the generalisation of entire compositions into useful groups (audio 

taxonomies). This is often achieved by identifying characteristics that are shared by pieces 

of music that are considered similar by the subjective consensus of listeners. This process 

facilitates the automatic identification of genre and, in some instances, composer (Cilibrasi, 

2004). However, for the purposes of sound matching, a very specific means to identify the 

character of short, single-voiced, quasi-periodic sounds is required.  

 

A subset of the music information retrieval research is concerned with the identification of 

timbral sound features. A selection of potential metrics is listed in Burred (2004), and 

McDermott et al (2006), and examples include: 

 Zero Crossings – the number of time domain polarity switches in a given frame. 

 Centroid – the centre of gravity of the frequency spectrum. 

 Rolloff – the frequency below which the majority of the spectrum is concentrated. 

 Flux – the rate of change of the spectral form between successive time frames. 

 Spread – the distribution of the spectrum around the centroid. 

 Flatness – the deviation of the signal spectrum from that of a flat response. 

 Harmonic Ratio – the proportion of harmonic partials in the signal spectrum. 
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While these metrics are able to successfully identify attributes of timbre, they do not 

provide sufficient discrimination between sounds to facilitate accurate matching. For 

example, two sounds may be perfectly correlated in terms of their spectral centroids, but 

perceptually, they may be very dissimilar. This shortcoming can be demonstrated with a 

simple visualisation of the FM search space. Figure 6.3 illustrates two landscape plots of a 

simple FM synthesiser, where target sound is chosen from within the same space (i.e. there 

is only one search space optimum) with the following parameters: , 

,  and . The parameters  and  are plotted against fitness, which is 

measured according to the zero crossings (figure 6.3a) and centroid (figure 6.3b) difference 

metrics as defined in (Burred, 2004); the remaining parameters (  and ) are fixed to 

match those of the target tone. 

 

 

(a)      (b) 

 

Figure 6.3: Simple FM landscapes with contrived target at fc = 1760Hz, fm = 1760Hz, I = 4.0 and   

A = 1.0 produced by the Zero Crossing fitness function (a), and Centroid function (b) 
 

No clear optimum is visible in either the zero crossings or the centroid fitness landscape. 

There are, however, several regions within the space that do appear to be optimal. For 

example, both functions exhibit a strong ridge along I, which extends towards low values 

for  at higher  values. The explanation for this landscape structure is fairly intuitive if 

the effect of the FM synthesis parameters on the spectral form of the synthesised tone is 

recalled (figure 1.2, page five). The carrier frequency intuitively relates to the centre of 

gravity and fundamental frequency of the synthesised tone, which results in a strong ridge 

at  for all I. The ripples in the surface of the landscape are caused by reflected 

sideband partials, which are more pronounced at higher values of .  

 

Neither the centroid nor zero-crossings metrics provide an accurate indication of sound 

similarity for all parameters. This property is illustrated in figure 1.2, in which the centroid 

of each spectrum is identical (at the carrier frequency), when clearly the spectra are not. By 

focusing on individual characteristics which are known to be of perceptual significance, 
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the metrics identified above only provide a limited measure of difference/similarity. Better 

results could, perhaps, be achieved by combining metrics to produce composite fitness 

functions (McDermott et al, 2005, 2006). However, preliminary experimentation by the 

author of this thesis with weighted metrics resulted in a considerable increase in 

computational expense with negligible improvements in match quality.  

 

6.5.2 Spectrum Error 

For the evolutionary matching systems presented in this thesis, sound similarity is 

measured by computing the relative spectral error between spectra of the target and 

candidate sounds. This error measure, and variations thereof, has proved effective in 

previous evolutionary matching studies and offers an excellent balance between detail and 

execution speed ; see for example the efforts of Wehn (1998), Garcia (2000), Horner et al 

(1993a and 1993b), Horner (1998) and Riionheimo and Välimäki (2003). 

 

The relative spectral error is computed by accumulating the normalised difference between 

each frequency component of the candidate spectrum against their corresponding 

components in the target spectrum, both of which are extracted by Short-Time Fourier 

Transform. The error metric is defined by: 

 

 

 

where  is the relative error,  is a vector of target spectrum amplitude coefficients,  a 

vector of synthesised candidate spectrum amplitude coefficients,  the number of 

static spectra analysed over the duration of the sound and  the number of frequency 

bins produced by spectrum analysis. A relative error of zero indicates an exact match, and 

comparison between the target sound and silence results in an error of 1.0. A match that 

achieves an error of 0.1 indicates an average difference of 10% between the target and 

candidate spectra. Studies performed by Beauchamp et al (Beauchamp and Horner, 2003), 

(Horner et al, 2006) with acoustic musical instrument sounds have established that the 

relative spectral error delivers the best correspondence to average discrimination data 

extracted from human listeners, when compared with alternative measures of spectrum 

error. Furthermore, when the relative error was calculated using less than 10 frames of 

each sound, the correlation compared favourably with those attained when the entire frame 

set was used.   
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Unlike the metrics considered in section 6.5.1, the relative spectrum error is able to 

indicate when an exact match is achieved. However, this increased detail results in a 

significantly more rugged landscape than those depicted in figure 6.3; an equivalent 

landscape plot for the relative spectrum error is provided in figure 6.4. This landscape plot 

was created using exactly the same target sound as was used to produce figures 6.3a and b. 

Despite the same target sound, the landscape characteristics are significantly different.  

 

Figure 6.4: Relative spectral error landscape with contrived target at fc = 1760Hz, fm = 1760Hz,  

I = 4.0  and A = 1.0 

 

The landscape comprises a series of peaks and troughs running along the modulation 

index. This is because partials in the candidate spectrum only result in a fitness 

improvement when they exactly coincide with partials found in the target spectrum. This 

property is illustrated in figure 6.5. 

 

Figure 6.5: Frequency spectra of three FM tones 
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In figure 6.5, the three FM tones (a), (b) and (c) are identical in all parameters apart from 

the carrier frequency . If (a) represents the target spectrum, it might be considered that 

the spectrum (b) is closer to the target than that of tone (c). However, the metric defined by 

equation 6.3 will classify spectrum (c) to be a more accurate match than spectrum (b). This 

is because none of the frequency partials in spectrum (b) correspond exactly with the 

partials of the target spectrum (a), whereas, some of the outer partials of tone (c) are 

coincident with the target side-frequencies of (a). This effect results in the landscape 

depicted in figure 6.4.  

 

Interestingly, this is a problem that was faced by Horner (1993a, 1998), but was largely 

avoided by restricting the carrier and modulator frequencies to integer multiples of the 

target fundamental frequency. This has the effect of removing the troughs in the landscape, 

resulting in a more tractable problem. However, as a consequence of this limitation, the 

majority of the FM sound space is omitted from the search, precluding non-harmonic 

sound matches. In this work, emphasis is placed on managing the synthesis space as is, 

modifying the search operators to work with the standard architecture, and not the other 

way around.  

 

6.4.3 Windowed Relative Spectrum Error 

To restrict the problems associated with frequency bin alignment a windowing function has 

been developed by the author that is designed to smooth the surface of the landscape by 

identifying when frequency components are in the proximity of, and not just directly 

coincident with, target partials. This function forms one of the minor contributions of this 

work, which was published previously in Mitchell and Pipe (2005). Prior to comparison by 

relative spectral error, both the target and candidate spectra are modified by the formula: 

 

 

 

Where  represents the bth frequency bin of the frequency spectrum ,  controls the 

width of the proximity window (measured in frequency bins), and  represents the bth 

bin of the windowed spectrum . This function allows the energy from each frequency 

partial to bleed into surrounding bins. 
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Figure 6.6 provides a plot of the landscape using the same target sound as in figures 6.3 

and 6.4 with the difference measured by relative spectrum error when both the target and 

candidate spectra are modified by equation 6.4 with .  

 

Figure 6.6: Equivalent windowed relative squared error landscape with contrived target at fc = 1760Hz, fm = 

1760Hz, I = 4.0 and A = 1. 0 

 

Unlike the metrics considered earlier in this section, the global-optimum can be observed 

as a clearly visible peak within the landscape. The windowing function enables error to be 

measured across a weighted band, which has a smoothing effect on the fitness landscape. 

However, the optimum window size is largely dependent upon the distribution of the target 

frequency components and the size of the Fourier transform. As such there is no general 

value for  that can be recommended for matching all applications. If the window size is 

set too small, the corresponding search space may be too rugged to optimise and, 

conversely, if the window size is set too large, detail in the spectrum may be lost, which 

may preclude an accurate match. For the experimental work performed here, the sample 

rate is set at 44.1kHz with a Fourier transform size of 1024. For the forthcoming 

experimentation the proximity window was set to an initial value of , thus including 

a weighted sum of 2% of the frequency spectrum within each window.  

 

Further analysis of the search space is difficult to perform, as its topology is entirely 

dependent on the spectral form of the target sound. However, some preliminary analysis of 

the FM search space has been performed by Horner (1997). Horner compared the search 

space characteristics of several wavetable-based synthesis methods in which the basis 

spectra originate from several sources, one of which was FM synthesis. Thousands of 

randomly generated tones from each synthesis method were compared with two target 

sounds produced by a trumpet and pipa to indicate the availability of good matches within 

each synthesis space. The accuracy of a match was determined using the relative spectral 
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error metric (equation 6.3). Of the synthesis methods that were compared, basis spectra 

chosen from the FM-based models produced the least accurate simulations, with the 

double-modulator FM model performing worst of all. Tones matching those of the tested 

sound targets were least abundant in the FM sound space. These results correlate well with 

the results in Mitchell and Sullivan (2005) in which experimentation with the double-

modulator FM model produced significantly poorer results than the simple FM equivalent.  

 

Also included in Horner‘s analysis of the FM search space was a basic one-dimensional 

visualisation, created by plotting the relative error against the modulation index. 

Comparable analysis of the alternative synthesis methods produced plots which contained 

significantly less local optima. Horner concludes from these visualisations that a simple 

hill-climbing search strategy would be insufficient for successful exploitation of the FM 

parameter space.  

 

6.4.4 Perceptual Error 

When measuring similarity between two sounds, it is generally the case that a small 

relative spectral error results in a better subjective match (Horner et al, 2006). However, as 

noted by several authors, this is not always true (Horner,1997), (Wun and Horner, 2001) 

and (Riionheimo and Välimäki, 2003). The relative spectral error provides an analytical 

indication of spectral similarity and does not directly reflect the properties of auditory 

perception. For example, in equation 6.3 all frequency components are considered to be of 

equal importance; however, in terms of perception, the ear is more sensitive to frequency 

partials positioned at the lower range of the audio spectrum (Zwicker and Fastl, 1999). 

Furthermore, including the psychoacoustic effects of frequency masking within the 

similarity measure may result in an improved correlation between measured error and 

perceived error. This is an approach that has been adopted by Wun and Horner (2001) and 

also by Riionheimo and Välimäki (2003). However, the calculation of a perceptual error 

measure introduces additional complexity to the matching process with reports of 

‗relatively small‘ improvement (Wun and Horner, 2001). This thesis, therefore, considers 

matching experiments with only the relative spectral error as an indicator of sound 

similarity. Further investigation into perceptual metrics, especially their relative effects on 

the tractability of the synthesis search space, is an area of interest for future research.  
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6.5 Summary of this Chapter 

In this chapter, the application domain for the FM synthesis matching problem was 

introduced. Included is a short introduction to FM synthesis, different FM synthesis models 

and arrangements, as well as a review of previous research that attempts to address the 

problems of locating specific sound timbres within the synthesis space. A review of work 

in which EC has been applied to assist in the use of sound synthesisers is also included, 

along with the previous sound matching research on which this work is built. Several 

metrics for quantifying sound similarity have been reviewed, and an extension to the 

relative spectral error, known as the windowed relative spectral error, was introduced.  

 

Chapter seven develops the work reviewed in this chapter by examining the performance 

of multiple ES-based algorithms in application to the FM synthesis parameter estimation 

problem. A test method is developed that enables the performance of different optimisation 

algorithms to be compared by their ability to exploit the synthesis problem. To maintain a 

general approach to sound matching, no knowledge of the problem domain is used to 

derive parametric representation; all synthesis parameters may take any value within their 

specified range. Furthermore, the algorithms are applied to optimise the parameters of 

known FM synthesis forms, capable of producing time-varying sounds. This shifts the 

emphasis from complete and accurate sound matching, to effective synthesis space 

navigation. That is, the ultimate goal here is not to exactly reproduce targets but to find 

synthesis parameters that produce the most accurate simulation of the target, given the 

capabilities of the matching synthesiser.  
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Chapter 7 

 

Experiments in Evolutionary Sound  

Matching with FM Synthesis 

 

In this chapter, the architecture and testing method for the FM sound matching problem are 

formally introduced. Thereafter, the performance of six ES-based optimisers will be 

examined and compared in application to this problem domain. Included amongst the 

tested algorithms are the novel niching EAs introduced in chapters four and five of this 

thesis: the clustering evolution strategy (CES) and the clustering cooperative coevolution 

strategy (CCCES). In addition to setting forth a novel application and testing method for 

sound matching with EC, the experimentation in this chapter also represents a real-world 

testing ground for the EAs, which have been tested within only theoretical environments 

previously in this thesis.  

 

Experimentation is divided into two parts. The first part considers the matching of static 

spectrum tones, with an FM synthesis model in which the parameters remain stationary 

throughout the synthesis process. The second part is concerned with matching time-

varying, dynamic spectrum sounds, by allowing certain parameters to change as synthesis 

takes place. This terminology is maintained in this chapter, referring to timbres with a 
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constant spectral form as static tones, and dynamic timbres in which the spectrum changes 

as time-varying sounds. The division of the experimental results into these two parts 

represents natural progression in tackling the synthesis matching problem, and corresponds 

directly to the chronological development of this work. Sections 7.1 – 7.4 will introduce 

both the static and time-varying FM synthesis models, matching algorithms and testing 

method employed, while sections 7.5 onwards will outline the experimental work with 

initially static target tones and then time-varying target sounds. 

 

7.1 Evolutionary FM Matching System 

A significant motivation for this work has been the desire to produce a sound matching 

procedure that may be used to match sounds with existing FM synthesisers. Three 

synthesis forms are therefore examined which are constructed from parallel extensions of 

the simple FM model. These configurations are depicted in figure 7.1 and follow the 

notation set out in chapter six (see figure 6.2, page 126). 

             (a)      (b)          (c) 
 

Figure 7.1: (a) single, (b) double and (c) triple parallel static simple FM arrangements 

 

Figure 7.1 illustrates the three static FM synthesis models which will be employed in 

section 7.6.1. Figure 7.1a represents the simple FM model in its most fundamental form, as 

defined originally by Chowing (1973) in his canonical FM synthesis paper. Figures 7.1b 

and c represent parallel extensions, composed of two and three simple FM elements 

respectively. These latter models equate to the synthesis models employed by Winduratna 

(1998), and, more importantly, represent FM synthesis configurations available on the DX 

and TX series Yamaha synthesisers (without feedback) (Anon, 1987), (Massey, 1986), 

(Chowning and Bristow, 1986). Throughout the remainder of this work these synthesis 

models are referred to as single, double and triple simple FM respectively.  
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Each square block in figure 7.1 represents a sinusoidal oscillator, whose input parameter 

determines the instantaneous frequency of oscillation and which produces a wave with 

peak amplitude . Notice that the amplitudes of the modulating oscillators are computed 

from the product of the modulation index  and the modulation frequency . The 

amplitude of the modulating oscillator controls the degree to which the frequency of the 

carrier oscillator is varied above and below  (see section 1.1.2), and is thus referred to as 

the frequency deviation ( ). To aid clarity, complete synthesis structures are referred to as 

models, and individual simple FM structures, which are internal to each synthesis model, 

are referred to as elements. That is, each FM model is constructed from one to three 

parallel simple FM elements. Figure 7.2 illustrates the three time-varying FM synthesis 

models which will be employed in section 7.6.2.  

 

Figure 7.2: (a) single, (b) double and (c) triple parallel time-varying simple FM arrangements 
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Figure 7.2a represents the most fundamental time-varying simple FM synthesis model, also 

defined originally by Chowing (1973). In the time-varying synthesis models the carrier 

amplitude A and modulation index I are controlled by a simple synthesis component 

known as an envelope generator. Each envelope generator introduces the four parameters 

 (attack, decay, sustain and release), which enable the envelope modulated parameters 

to change over time. This temporal control results in the production of time-variant sound 

textures
9
 and is implemented in many commercial synthesisers (including the Yamaha 

DX/TX series).  

 

The general form of the adsr envelope is depicted in figure 7.3. The attack parameter  

sets the time taken for the output of the envelope generator to reach the value of 1.0 from a 

starting value of 0.0. The decay parameter  controls the time taken for the output to fall 

from 1.0 to the value specified by the sustain parameter . Finally, the release parameter  

controls the time taken for the output to reach 0.0 from , after the sustain period is 

complete. Typically, the duration of the sustain period is controlled by the user as a 

performance parameter, ending when a note is released. However, since the matching 

procedure is automated, the overall duration of the envelope is matched to that of the target 

sound, and sustain time is set equal to the period that remains between the end of the decay 

period and the beginning of the release period.  

 

 

Figure 7.3: adsr envelope generator 

 

Later in this chapter a complete FM matching system is developed and tested. When 

matching static tones, the system will employ the synthesis models depicted in 7.1; when 

matching time-varying sounds, the models depicted in figure 7.2 will be employed. 

 

                                                 
9
 It should be noted that this method of dynamic sound production differs significantly from the 

FM/Wavetable synthesis models implemented by Horner (Horner et al, 1993a, and Horner 1993). 
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7.1.1 FM Synthesis Parameter Ranges 

The function and range of each synthesis parameter for the matching models used in the 

experiments presented here are summarised in table 7.1. For the experimentation, the 

fundamental frequency is fixed at 440Hz (concert pitch).  

 

 

Parameter Function Range 

 
Frequency of the carrier and modulator sinusoid oscillators, specified as 
multiples of the synthesiser fundamental frequency (440Hz) 

0.0 – 8.0 

 Amplitude of the carrier oscillator 0.0 – 1.0 

 Modulation index, to control the amplitude of the modulating oscillator 0.0 – 8.0 

 Attack parameter for the envelope generator 0 – 50% target duration 

 Decay parameter for the envelope generator 0 – 25% target duration 

 Sustain parameter of the envelope generator 0.0 – 1.0 

 Release parameter of the envelope generator 0 – 25% target duration 

Table 7.10: Synthesis parameter summary 

 

7.2 EA Representation 

Unlike previous matching studies, including Horner et al (1993a), Horner (1993) and 

Riionheimo and Välimäki (2003), the matching system is not tuned for matching particular 

types of sounds (harmonic or otherwise) by configuring the parametric representation with 

knowledge of the underlying problem domain. Each synthesis parameter is represented by 

a real number, which may take any value in the range specified in table 7.1.  

 

The number of synthesis parameters (the problem dimensionality) is indicated in table 7.2 

for each FM synthesis model depicted in figures 7.1 and 7.2. Each oscillator in the static 

model requires two parameters, while each oscillator in the time-varying model requires 

six parameters. 

 

Model Static Time-varying 

Single simple FM (Fig 7.1a) 4 12 

Double simple FM (Fig 7.1b)       8 24 

Triple simple FM (Fig 7.1c) 12 36 

Table 7.11: Problem space dimensionality summary 
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7.3 Evolutionary Matching Synthesis Procedure 

The sections that follow empirically analyse the performance of six ES-based algorithms 

when applied to optimise the FM synthesis matching problem. The evolutionary sound 

matching procedure is represented by the block diagram depicted in figure 7.4. 

 

 

Figure 7.4: Evolutionary sound matching model 

 

Initially, the system is supplied with a target sound to be matched. A frequency domain 

representation of the target is then extracted by Short-Time Fourier Transform (STFT). 

This is achieved by dividing the continuously-sampled target signal  into frames, 

which are transformed into the frequency domain data by Discrete Fourier Transform 

(DFT): 

Error Calculation
Relative spectral 

error between candidate 

and target sounds

Analysis
Decomposition of sound into

frequency domain components (STFT)

Target Sound 

Synthesis Analysis

 

Fitness Function

EA

Time/Frequency Representation 
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where  is the STFT of the signal , with integers  and  referring to the 

frame index and frequency bin respectively.  is the DFT frame size,  is the step-size 

between successive time frames, and  is a window function. 

 

If  for , the rectangular window is assumed and the continuously 

sampled signal frame is transformed directly. However, if the signal contains frequencies 

which are not periodic with the transform size (N), discontinuities are likely to occur at 

frame boundaries. These discontinuities result in unwanted artefacts across all frequencies 

of the output spectrum, an effect referred to as spectral leakage (Harris, 1978). When  

is a non-rectangular symmetrical function that attenuates the signal at frame boundaries, 

the effects of spectral leakage are suppressed. There is a plethora of windowing shapes, 

none of which may be considered optimal for all signals and transform settings (Roads, 

1996). For the forthcoming experiments in this thesis, the widely used and often cited 

Hamming function is employed to reduce boundary discontinuities (Miranda, 2002), 

(Ifeachor and Jervis, 2002), (Smith, 2003). The Hamming window is defined by the 

equation: 

 

 

 

The frame size of the transform determines the resolution of the frequency spectrum. If N 

is set too small, insufficient frequency resolution will preclude an accurate match. The 

same is true for time resolution: when matching time-varying sounds, multiple spectra are 

required to capture the development of the frequency spectrum. Previous matching efforts 

have utilised the complete set of short-time spectra, measuring the average error computed 

for all frames (Riionheimo and Välimäki, 2003). However, since many musical sounds 

develop slowly with time, often only a small number of frames are required to sufficiently 

represent the target sound (Beauchamp and Horner, 2003). This has been exploited 

previously by Horner et al (1993a and b), Horner (1993) and Mitchell and Sullivan (2005). 

Both the quantity ( ) and the size ( ) of the frames must therefore be assigned 

values that enable the target tone to be sufficiently characterised by its transform data.  
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If the frame size  is assigned a power of two, the frequency transformation may be 

computed more efficiently by Fast Fourier Transform (FFT) (Cooley and Tukey, 1965). 

Typical values include 256, 512, 1024, 2048, 4096 and 8192 (Zolzer, 2002). For the 

presented experimentation with time-varying sounds, 10 frames of size 1024 are taken at 

uniform intervals throughout the duration of the target. For static tones, a single frame of 

size 1024 is taken. These values were shown to be adequate for producing accurate 

matches in preliminary investigations. Furthermore, from a practical standpoint, it is 

desirable to keep these values as small as possible due to the computational advantage 

which ultimately results in faster matching.  

 

However, it should be noted that with this computational advantage comes certain 

limitations. For example, 10 frames may be inappropriate for characterising target sounds 

with very complex variations. Moreover, their uniform distribution may be sub-optimal for 

target sounds that vary rapidly. There are certainly alternative placement strategies that 

might prove more suitable in certain applications. For example, Horner (1993) biases 

frame placement at the beginning of the sound to ensure that the perceptually significant 

initial transients of acoustic instrument sounds are well represented. However, this 

specialisation is inappropriate when critical time-varying components may be present 

elsewhere in the target sound. Furthermore, given the simplicity of the time-varying 

synthesis components of the matching system, and the unbiased nature of this preliminary 

exploration, this frame size and positioning configuration is considered appropriate. This 

subject is revisited in chapter eight where system limitations and improvements are 

discussed in greater detail.  

 

Following the analysis of the target signal, its spectral representation is inserted into the 

error metric for subsequent comparison with potential matches (fitness evaluation). The 

EA population is then randomly initialised and optimised, in a cycle of variation and 

selection, to breed increasingly closer matches to the target signal. Fitness for each 

individual is determined by the following procedure: 

 Insert candidate solution into the FM model to synthesise a corresponding 

waveform. 

 Transform waveform into frequency domain representation by spectrum analysis. 

 Compute fitness by comparing the target and synthesised candidate spectra using 

the relative spectral error metric. 

 

The procedure then iterates until an error or generational threshold is reached.  
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7.4 Contrived Sound Matching –  

An Experimental Test Method 

In this section, a test method is presented that enables the performance of different 

optimisation algorithms to be assessed comparatively in application to the FM synthesis 

matching problem. One of the principal goals is to measure the ability of each EA to access 

all regions of the synthesis space, and consistently identify high fitness matches.  

 

In previous research, the performance of sound matching systems was frequently 

quantified by measuring the quality (fitness) of the optimised solutions when matching 

arbitrary target sounds. Target sounds may be real dynamic sounds originating from 

acoustic instruments (Horner, 1993 and 1998), or simple periodic tones generated by 

additive synthesis (McDermot et al, 2005). An alternative method is proposed here, 

whereby performance is measured by the ability of each optimiser to match randomly 

generated contrived targets. This approach is inspired by the early FM matching work 

presented by Justice (1979) and Payne (1987), and compares favourably with the approach 

adopted by Riionheimo and Välimäki (2003).  

 

A contrived target is a sound or tone that originates from within the search space of, and is 

generated by, the matching synthesiser. This approach has been adopted by the author of 

this thesis in previous studies to assess the performance of the FCES when applied to 

optimise three different FM synthesis models (Mitchell and Sullivan, 2005), and to 

compare the performance of three evolutionary algorithms for matching tones with the 

simple FM arrangement (Mitchell and Pipe, 2006). 

 

Contrived target sounds provide two significant advantages over experimentation with 

non-contrived alternatives, both related to easing the task of benchmarking the 

performance of the matching system: 

 firstly, it is simple to determine when an optimal solution has been evolved as it 

matches the target sound exactly, achieving a relative spectral error of zero. If non-

contrived target sounds are chosen as test specimens, confirmation of optimal 

convergence is not as easy. For example, the matching synthesiser may not be 

capable of exactly reproducing a particular target sound recorded from a real 

acoustic instrument, in which case a match delivering a relative error of zero cannot 

be achieved. In these circumstances an optimal match may only be confirmed when 
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an exhaustive search yields no better result. An approach which becomes infeasible 

as the problem dimensionality increases. 

 secondly, producing targets by randomly generating points within the synthesis 

space ensures that the test set constitutes a diversity of search space positions, and 

thus assesses performance on a variety of search space landscapes, as the topology 

of the landscape is dependent upon the properties of the target sound. Moreover, 

repeated matching of random contrived targets demonstrates that it is possible to 

access all regions of the search space.  

 

In this context, the contrived sound matching method becomes a retrieval problem: the 

target is known to exist within the search space, and the ability of each EA to retrieve its 

location is tested. The results of this experimentation may then be used as an indicator of 

the system‘s ability to find the most accurate match of any sound type, and not just the 

limited scope of musical instruments. It may then be postulated that, if it is possible to 

consistently and accurately match contrived targets, the system will be capable of evolving 

an optimal match of any arbitrary target sound. This is confirmed later in this chapter by 

matching a selection of sounds originating from non-FM synthesis models and real 

acoustic instruments.  

 

7.5 An Analysis of Evolutionary FM  

Synthesis Sound Matching Performance  

In this section, a comparative analysis of a set of ES-based algorithms is performed when 

applied to the FM matching problem. The intention is to identify the algorithms most 

suited to this real-word problem domain, and to provide an environment in which the 

performance of the EAs proposed earlier in this thesis can be assessed. 

 

Algorithm Selection 

Six evolutionary algorithms are tested and compared in the following experimentation: 

1. Evolution Strategy (ES) 

2. Multi Start (1+1) Evolution Strategy (MSES) 

3. Cooperative Coevolution Strategy (CCES) 

4. Fuzzy Clustering Evolution Strategy (FCES) 

5. Clustering Evolution Strategy (CES) 

6. Clustering Cooperative Coevolution Strategy (CCCES) 
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Algorithms one to four were briefly described in section 4.3 while algorithms five and six 

correspond to the niching evolution and coevolution strategies presented in chapters four 

and five. In the later experimentation, a random search algorithm (RAND) is also included 

for comparison in which solutions are generated completely at random. 

 

Algorithm Structure and Parameters  

To ensure parity across all experiments, consistent algorithmic parameters and operators 

are fixed for all test cases. Indicated results are calculated by the mean average of 30 runs, 

matching 30 randomly generated contrived targets. Each algorithm is tested when 

matching the same target set and, where possible, populations are initialised with the same 

random data points, enabling observed differences between results to be attributed to the 

search properties of the EAs. Each algorithm runs for exactly 50 generations, except the 

cooperative coevolutionary algorithms, which run for approximately the same number of 

fitness evaluations, unless indicated otherwise. Where applicable, both intermediate (or 

centroid for the CES and CCCES) and discrete recombination are employed. Exceptions to 

this include the CCES in which only the discrete recombination operator is adopted (based 

upon the outcome of earlier experimentation in chapter four), the MSES and RAND 

algorithms, in which there is no recombination. For the purposes of brevity only results 

from experimentation with extinctive (comma) selection are included, as performance was 

found to be superior to the elitist (plus) selection strategy. It has been widely accepted, that 

the extinctive selection mechanism is most appropriate when a self-adaptive mutation 

operator is adopted (Schwefel, 1995), (Bäck and Schwefel, 1993). As in previous 

experimentation, selection pressure is maintained at a constant ratio of , with 

exact figures indicated for each run. The objective of each algorithm is to minimise the 

relative spectral error (equation 6.3). All population sizes for each algrothm type are set 

relative to an ES population size of (200, 1400). Cooperative coevolutionary algorithm 

subpopulations are scaled to produce comparable fitness evaluations in an equivalent 

number of rounds.  

 

Algorithmic Variation 

Two variants of the cooperative coevolutionary algorithm are included in the results that 

follow: the conventional CCES and the proposed CCCES. In all experimentation with the 

CCES, results are provided for both the single-best and single-best plus one random 

collaboration strategies (Potter and De Jong, 1994), referred to as CCES1 and CCES2 

respectively. Furthermore, a natural decomposition is adopted for the both variants of 
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CCES, in which each dimension of the problem space is considered to be a separate 

subproblem, optimised independently by a dedicated subpopulation of potential component 

solutions. Due to the linkage procedure (see section 5.3.1), it is impractical to implement a 

natural decomposition for the CCCES in high-dimensional problem spaces; consequently, 

an alternative decomposition is adopted here. Given that the FM synthesis architecture is 

inherently modular it is possible to identify natural parameter groupings that guide the 

chosen decomposition. For example, the synthesis models that feature in subsequent 

experimentation are differentiated by the number of simple FM synthesis elements that 

make up their structure. The parameters of each element do not directly affect other 

elements, therefore it is sensible to decompose the problem space such that each synthesis 

element is considered as a separate subproblem. The problem space for the synthesis model 

can be decomposed further still, such that the oscillator parameters of each element 

constitute separate subproblems. In general, each synthesis problem space can be 

decomposed into the number of separate FM synthesis oscillators or FM synthesis 

elements that make up their structure. Exact parameter decompositions are indicated for 

each experiment.  

 

The FCES included in the subsequent experiments is of the original type proposed by 

Sullivan in his PhD thesis (Sullivan, 2002), in which a global selection scheme is used. 

Consequently, the model is only capable of resolving a single solution to the matching 

problem. The CES, on the other hand, employs the restricted cluster selection procedure, 

defined in chapter three, facilitating the concurrent maintenance of multiple distinct search 

space solutions (niching). In both algorithms the cluster cardinality is fixed at five.  

 

7.6 A Performance Analysis of  

Evolutionary Static Tone Matching  

In this section, the performance of each EA on the static tone FM matching problem is 

assessed, according to the contrived matching method introduced above. Thereafter, results 

when matching non-contrived target tones that do not originate from the matching 

synthesiser are provided. Matches are performed using two types of non-contrived tones, 

the first of which originates from a simple exciter/resonator synthesis system, and the 

second of which is extracted from the sustained period of real acoustic trumpet and oboe 

sounds. 
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7.6.1 Experiments with Static  

Tone Contrived Targets  

In this first group of experiments, each evolutionary algorithm is applied to match 30 

randomly generated contrived targets, using the three simple FM synthesis models depicted 

in figure 7.1. Each contrived target sound is created by drawing synthesis parameters 

uniformly at random from within the object range of each parameter. The procedure is 

repeated for all evolutionary algorithm variants, notated in the results according to the 

following format: 

 

(strat) algo recomb  gens evals sel  clusts subpops 

 

in which strat refers to the strategy type indicating the population sizes and selection 

mechanism in the regular  ES notation; algo specifies to the type of evolution 

strategy; recomb indicates whether intermediate (int), centroid (cent) or discrete (disc) 

recombination is employed; gens specifies the number of generations for which the 

algorithm runs (or rounds in the case of CCES-based algorithms); evals provides the 

corresponding number of objective function calls for each run; sel signifies the scope of the 

selection operator (global (glob) or restricted (rest), where restricted is only applicable to 

the clustering-based algorithms); clusters specifies the number of clusters, again only 

applicable to cluster-based strategies; and subpopulations specifies the number of 

coevolving populations, applicable only to the cooperative coevolution algorithms.  

 

Performance Criteria 

Results are presented for the single, double and triple FM matching models, according to 

the following criteria:  

 Success - The number of runs in which the contrived targets are accurately 

retrieved. 

 Average - The mean average relative spectrum error of the best solutions located 

for each of the 30 runs. 

 Remaining - The mean average of the best solutions for all unsuccessful matches. 

 

In the results that follow, a successful match is considered to be achieved when at least one 

of the population members delivers a relative spectral error below 0.01, i.e. the spectrum is 

99% matched. A successful match then ensures that all parameters have been successfully 

retrieved.  
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7.6.1.1 Contrived Matching with Single Simple FM 

The static tone single simple FM model presents a four-parameter synthesis model as 

depicted in figure 7.1a. This model constitutes the most fundamental FM network and is 

constructed from two sinusoidal oscillators. The data retrieved from the experiments with 

this synthesis model are tabulated and plotted below.  

 

  Single Simple FM (n = 4) 

 Algorithmic Parameters  Average Remaining 

Algorithm (strat) algo recomb gens evals sel clusts subpops Success mean σ mean σ 

CCES 
1 (50,350) CCES1 disc 50 70200 glob - 4 2 0.43 0.23 0.46 0.20 

2 (50,350) CCES2 disc 25 70200 glob - 4 15 0.19 0.23 0.37 0.18 

ES 
3 (200,1400) ES disc 50 70200 glob - - 13 0.25 0.26 0.44 0.19 

4 (200,1400) ES int 50 70200 glob - - 6 0.46 0.27 0.58 0.15 

MSES 

5 1400×(1+1) MSES - 50 70000 - - - 0 0.16 0.11 0.16 0.11 

6 350×(1+1) MSES - 200 70000 - - - 6 0.12 0.13 0.15 0.13 

7 175× (1+1) MSES - 400 70000 - - - 8 0.10 0.12 0.14 0.12 

8 100× (1+1) MSES - 700 70000 - - - 9 0.15 0.18 0.22 0.18 

FCES 
9 (200,1400) FCES disc 50 70200 glob 40 - 27 0.04 0.12 0.40 0.03 

10 (200,1400) FCES int 50 70200 glob 40 - 14 0.27 0.27 0.50 0.14 

CES 
11 (200,1400) CES disc 50 70200 rest 40 - 29 0.00 0.01 0.03 0.00 

12 (200,1400) CES cent 50 70200 rest 40 - 19 0.05 0.12 0.12 0.17 

CCCES 

13 (50,350) CCCES disc 50 45200 rest 10 2 24 0.02 0.07 0.12 0.13 

14 (50,350) CCCES cent 50 45200 rest 10 2 18 0.05 0.10 0.13 0.13 

15 (50,350) CCCES disc 100 90200 rest 10 2 25 0.02 0.07 0.14 0.14 

16 (50,350) CCCES cent 100 90200 rest 10 2 24 0.03 0.16 0.17 0.16 

Table 7.12: Results when matching Single Simple FM contrived tones 

 

Figure 7.5: Mean and 95% confidence intervals for Average and Remaining  

error results when matching Single Simple FM contrived tones 

 

Discussion 

As indicated in figure 7.5 and confirmed by running a one-way ANOVA on these results, 

the average error values are not equal across all algorithms, there are clear performance 

differences between them.  
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A post hock comparison between means indicated that algorithms one and four, the CCES1 

and ES with intermediate recombination, produced larger errors than all other algorithms 

(significant at the 0.05 level). Compared with the CCES1, the CCES2 demonstrated a 

considerable performance improvement, retrieving exactly half of the contrived target 

tones while also reducing the average error of the unsuccessful matches, again significant 

at the 0.05 level. Similar comparisons indicated significant improvements for the canonical 

ES when the discrete recombination operator is employed, successfully retrieving more 

than double the number of target tones than the intermediate algorithm.  

 

Several instances of the MSES algorithm are included in these results. As was established 

in chapter four, the MSES progresses at a lower rate than the other EAs as recombination 

is omitted. Consequently, four MSES test cases were included in the experimentation, 

varying in the number of generations for each run. To maintain parity, the population sizes 

were adjusted to ensure that the same number of fitness evaluations was computed for each 

variant. In terms of successful tone retrieval, the MSES does not compare favourably with 

other algorithms. However, in terms of the average error, the MSES delivers results that 

tend towards the more successful algorithms included in this comparison. This behaviour 

suggests that, within this domain, the MSES is unable to retrieve optimal matches 

consistently but it is able to consistently locate closer matches than the conventional ES, 

especially when the number of  strategies is set to 175.  

 

The cluster-based algorithms are clearly advantageous within this problem domain, 

confirming that the search space is well suited to a speciation-type EA. The results indicate 

that the novel CCCES architecture, specifically algorithm 13, produced a smaller mean 

error than all other algorithms except the discreet recombination CES (significant at the 

0.05 level against algorithms one, two, three, four, five and 10). Algorithm 13 (CCCES) 

was also able to successfully retrieve more target tones than either instance of the CCES in 

considerably fewer fitness evaluations. The CES and FCES both performed well, with the 

discreet recombination CES retrieving the highest number of target tones and achieving the 

smallest mean error (significant at the 0.05 level against algorithms one, two, three, four, 

five, six, seven, eight and 10).  

 

Unlike the FCES, both the CES and CCCES are able to extract multiple solutions from the 

search space. The fittest solution from each CES cluster provides a selection of alternative 

matches of varying accuracy. Example matches extracted from one of the CES runs are 

provided in table 7.4. For this run, 40 separate matches were extracted, of which the 
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relative spectral error ranged from 0.0 to 1.0. For brevity, only the top ten solutions are 

tabulated. The parameters of the first match are identical to those used to synthesise the 

target tone and thus achieve a relative spectral error of zero. 

 

 Synthesis Parameters  

Cluster fc A fm I Error 

14 1.580 2.682 6.146 2.222 0.000 

28 4.582 2.870 3.080 2.901 0.228 

10 7.681 2.478 3.070 1.356 0.355 

30 4.745 2.906 3.068 4.470 0.373 

29 1.728 2.527 3.064 3.227 0.428 

15 4.634 2.650 3.052 1.398 0.500 

20 6.161 2.397 1.603 1.889 0.532 

21 7.813 2.852 3.081 6.097 0.562 

25 3.159 2.805 2.635 4.563 0.569 

5 3.041 2.643 3.718 3.261 0.586 

Table 7.13: Top 10 multiple solutions delivered by the CES for a contrived match 

 

Each solution in table 7.4, and the 30 solutions that are not shown, are positioned at 

different regions of the search space, indicating that each cluster has converged to an 

independent niche. The equivalent solutions from the CCCES are provided in table 7.5. 

 

Synthesis Parameters Error 

fc A fm I 

1.580 2.682 6.146 2.222 0.000 

4.584 2.568 3.078 4.358 0.314 

7.713 2.061 6.140 4.023 0.640 

4.607 2.397 1.527 3.789 0.683 

6.142 1.884 1.555 2.040 0.711 

0.692 2.003 1.416 7.582 0.732 

1.575 1.664 6.145 5.691 0.785 

3.073 1.575 7.645 1.888 0.808 

4.540 1.278 4.632 3.600 0.829 

0.458 1.475 4.105 2.364 0.833 

Table 7.14: 10 multiple solutions delivered by the CCCES for a contrived match 

 

These CCCES solutions represent the final results extracted by exclusive linkage amongst 

representatives of each species (section 5.3.1). The table represents the complete set of 

final solutions, which produce a higher mean error than the top ten solutions produced by 

the CES (significant at the 0.05 level).  

 

The convergence characteristics of the CCCES and CES are plotted in figure 7.6, with 

variation performed by discrete recombination for both algorithms. Plots are averaged over 
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five matches performed on the same set of five randomly generated target sounds. Both 

strategies exhibit comparable rates of convergence, with the CES producing less error in 

the early stages of the search.  

 

 

Figure 7.6: Convergence plot for the CCCES and CES 

 

7.6.1.2 Contrived Matching with Double Simple FM 

The static tone double simple FM model (figure 7.1b) presents an eight-dimensional FM 

synthesis matching problem. Composed of four sinusoidal oscillators, this synthesis model 

represents a parallel extension of the basic simple FM network. The results from the 

contrived-target experimentation with this model are provided in table 7.6 and plotted in 

figure 7.7.  

 

Discussion 

Compared with results obtained with the single simple FM model, the results indicate 

larger errors with fewer successful matches for all algorithms. This is principally because 

the search space is much larger than the single simple FM space, while the parameters of 

each evolutionary algorithm remain exactly the same.  

 

Due to the parallel double simple FM arrangement, the search space may be considered to 

be symmetrical. That is, for any given contrived target, there exist two zero error search 

space optima. The first, where parameters match those used to generate the target tone, and 
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the second, where the parameters for each of the parallel simple FM elements are swapped. 

So while the space is larger, there are more potential solutions within it.  

 

  Double Simple FM (n = 8) 

 Algorithmic Parameters  Average Remaining 

Algorithm (strat) algo recomb gens evals sel clusts subpops Success mean σ mean σ 

CCES 
1 (25,175) CCES1 disc 50 70200 glob - 8 4 0.35 0.20 0.41 0.15 

2 (25,175) CCES2 disc 25 70200 glob - 8 6 0.27 0.13 0.34 0.13 

ES 
3 (200,1400) ES disc 50 70200 glob - - 2 0.32 0.15 0.34 0.15 

4 (200,1400) ES int 50 70200 glob - - 0 0.50 0.18 0.50 0.18 

MSES 

5 1400 x (1+1) MSES - 50 70000 - - - 0 0.38 0.10 0.38 0.10 

6 350 x (1+1) MSES - 200 70000 - - - 0 0.38 0.13 0.38 0.13 

7 175 x (1+1) MSES - 400 70000 - - - 0 0.41 0.15 0.41 0.15 

8 100 x (1+1) MSES - 700 70000 - - - 0 0.40 0.13 0.40 0.13 

FCES 
9 (200,1400) FCES disc 50 70200 glob 40 - 1 0.31 0.15 0.32 0.14 

10 (200,1400) FCES int 50 70200 glob 40 - 0 0.49 0.16 0.49 0.16 

CES 
11 (200,1400) CES disc 50 70200 rest 40 - 1 0.20 0.10 0.21 0.10 

12 (200,1400) CES cent 50 70200 rest 40 - 1 0.31 0.14 0.32 0.13 

CCCES 

13 (50,350) CCCES disc 50 45200 rest 10 2 2 0.18 0.13 0.19 0.13 

14 (50,350) CCCES cent 50 45200 rest 10 2 1 0.23 0.13 0.24 0.13 

15 (50,350) CCCES disc 100 90200 rest 10 2 8 0.15 0.14 0.21 0.13 

16 (50,350) CCCES cent 100 90200 rest 10 2 6 0.17 0.14 0.21 0.13 

Table 7.15: Results when matching Double Simple FM contrived tones 

 

 

Figure 7.7: Mean and 95% confidence intervals for Average and Remaining error  

results when matching Double Simple FM contrived tones 

 

As with the previous results, the ANOVA confirms a disparity of means across all 

algorithms, with the CES and CCCES algorithms delivering the smallest average errors. A 

post-hock comparison indicated that algorithm 11, the discreet recombination CES, 

produced a smaller mean error than all algorithms but the CCCES (significant at the 0.05 

level against algorithms four, five, six, seven, eight and 10). Similar tests revealed that 

algorithm 15, the discreet recombination CCCES, produced a smaller mean error than all 
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other algorithms (significant at the 0.05 level against algorithms one, two, three, four, five, 

six, seven, eight, nine, 10 and 12). In this respect, the FCES performs relatively badly, as 

does the ES, CCES and also the MSES, in which no parametric variation appears to result 

in any significant improvement. Although the CCES2 does successfully retrieve six of the 

30 contrived targets, the quality of the remaining unsuccessful matches is poor, lowering 

its mean error considerably. The minimum average error of all tested algorithms is 

achieved by the CCCES followed by the CES. It should be noted that this small average 

error is achieved by the CCCES in significantly fewer fitness evaluations than the 

competing algorithms. Furthermore, when permitted to run for 100 generations, this error 

is further reduced, and the number of successful matches, increased.  

 

7.6.1.3 Contrived Matching with Triple Simple FM 

The contrived matching experimentation is now repeated using the last of the static 

synthesis models: the static tone triple simple FM model, as depicted in figure 7.1c. This 

adds a set of four parameters to the previously tested model, increasing the search space 

dimensionality to 12. The results are tabulated below. 

 

  Triple Simple FM (n = 12) 

 Algorithmic Parameters  Average Remaining 

Algorithm (strat) algo recomb gens evals sel clusts subpops Success mean σ mean σ 

CCES 
1 (17,119) CCES1 dis 50 71604 glob - 12 0 0.29 0.13 0.29 0.13 

2 (17,119) CCES2 dis 25 71604 glob - 12 0 0.23 0.13 0.23 0.13 

ES 
3 (200,1400) ES dis 50 70200 glob - - 0 0.28 0.14 0.28 0.14 

4 (200,1400) ES int 50 70200 glob - - 0 0.45 0.14 0.45 0.14 

MSES 

5 1400 x (1+1) MSES - 50 70000 - - - 0 0.41 0.11 0.41 0.11 

6 350 x (1+1) MSES - 200 70000 - - - 0 0.39 0.12 0.39 0.12 

7 175 x (1+1) MSES - 400 70000 - - - 0 0.40 0.10 0.40 0.10 

8 100 x (1+1) MSES - 700 70000 - - - 0 0.43 0.15 0.43 0.15 

FCES 
9 (200,1400) FCES dis 50 70200 glob 40 - 0 0.34 0.17 0.34 0.17 

10 (200,1400) FCES int 50 70200 glob 40 - 0 0.47 0.13 0.47 0.13 

CES 
11 (200,1400) CES dis 50 70200 rest 40 - 0 0.27 0.08 0.27 0.08 

12 (200,1400) CES cent 50 70200 rest 40 - 0 0.36 0.10 0.36 0.10 

CCCES 

13 (30,210) CCCES dis 50 64206 rest 6 3 0 0.22 0.09 0.22 0.09 

14 (30,210) CCCES cent 50 64206 rest 6 3 0 0.25 0.09 0.25 0.09 

15 (30,210) CCCES dis 100 128106 rest 6 3 0 0.21 0.09 0.21 0.09 

16 (30,210) CCCES cent 100 128106 rest 6 3 1 0.18 0.08 0.18 0.08 

Table 7.16: Results when matching Triple Simple FM contrived tones 
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Figure 7.8: Mean and 95% confidence intervals for Average and Remaining error  

results when matching Triple Simple FM contrived tones 

 

Discussion 

The results of table 7.7 again indicate a general increase in error when compared with the 

results of the previous experimentation, with the exception of the CCES1. Interestingly, 

within this higher-dimensional problem space, the CCES1 achieves a lower mean error 

than either of the previous two rounds of experiments with the smaller synthesis models. 

The algorithms delivering the strongest performance are the CCES2, CES, and CCCES. In 

this larger problem domain, the CCES2 has outperformed the CES (significant at the 0.05 

level for the centroid recombination CES), while the CCCES, most notably algorithm 13, 

outperforms all other algorithm types in fewer fitness evaluations (significant at the 0.05 

level for algorithms one, four, five, six, seven, eight, 10 and 12).  

 

The general increase in error correlates with an increase in search space complexity, which 

raises the question: are these results good enough? After all, a good match is a rather 

subjective quality. In Horner‘s (1998) article, human listeners were unable to distinguish 

between acoustic instrument matches achieving a relative spectrum error of less than 

approximately 0.15 from their targets. By this comparison, the matches attained by both 

the discrete recombination based CES and CCCES may be considered to be acceptable. 

However, it cannot be assumed that the figures produced by Horner‘s study are 

transferable to the static contrived FM sounds matched here. While a match might be 

mathematically accurate, it is difficult to determine whether it is perceptually accurate. An 

alternative visualisation of match difference is provided in figure 7.9, where the spectrum 

of a randomly generated triple FM target tone is plotted against an example match 

produced by the CES. This particular match achieves a relative spectrum error of 0.113. 
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Figure 7.9: Static triple FM target (top) and corresponding CES match (bottom) 

 

The FM target tone has a broad spectral envelope with partials distributed across the entire 

frequency spectrum. Many of the frequency partials are non-harmonic, range widely in 

amplitude and are reflected around 0Hz. Despite these characteristics, the CES match is 

accurate, with all target partials well represented in the match. There are only minor 

amplitudinal differences, with some additional low-amplitude partials present in the match. 

Erroneous partials may be observed in the match at approximately 1.5kHz, 3kHz and 

6kHz. These differences are more apparent in figure 7.10 in which both spectra are 

overlaid on a logarithmic amplitude scale. 

 

 

Figure 7.10: Static triple FM target and corresponding CES match with log amplitude scale 

 

Despite the visible similarities between the target and match spectra, neither the low 

relative spectrum error nor the plots above constitute a perceptual test with human 

listeners. Given the quantity of target sounds and matches in this chapter, listening tests are 

deferred until chapter eight, where the correlation between discrimination by perceptual 
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and relative spectrum error is examined. Thereafter, the sounds produced by the final 

matching system are analysed qualitatively by a panel of expert listeners.  

 

In general, the final matches produced by the experimentation with the triple simple FM 

model indicate higher average error results than the earlier experimentation with the 

simpler FM models. However, the overall quality of the multiple solutions produced by the 

niching EAs are significantly improved with this more complex synthesis model. This is 

illustrated in table 7.8, where a list of 10 final CES solutions with the smallest relative 

spectral error is tabulated. For this particular run, the best individuals of all 40 clusters 

produce error results in the range [0.09, 0.6].  

 

Cluster fc1 A1 fm1 I1 fc2 A2 fm2 I2 fc2 A2 fm2 I2 Error 

27 4.206 0.746 1.545 5.412 5.776 0.382 1.882 3.465 7.121 2.766 0.501 0.206 0.088 

24 2.704 0.575 3.083 1.877 2.067 0.617 1.880 4.281 7.114 2.787 3.236 0.149 0.135 

25 1.833 0.444 1.944 4.030 7.125 2.543 0.199 0.212 4.894 0.646 1.727 8.000 0.144 

19 6.575 0.407 3.780 1.399 7.123 2.766 1.386 0.109 2.105 0.684 1.876 4.513 0.148 

5 1.794 0.525 1.467 5.101 7.126 2.749 7.891 0.043 1.778 0.651 1.436 7.856 0.151 

10 1.823 0.559 2.146 6.167 7.130 2.743 0.513 0.162 7.647 0.583 2.038 2.481 0.154 

2 7.271 0.650 1.611 0.865 7.101 2.264 0.310 0.149 7.751 0.668 0.839 7.286 0.160 

4 7.119 2.751 4.751 0.114 0.369 0.836 1.537 6.198 1.087 0.158 7.040 4.178 0.163 

7 6.308 0.745 0.660 6.067 1.955 0.356 4.970 3.250 6.933 2.496 0.042 5.133 0.164 

29 7.125 2.704 1.406 0.156 4.094 0.229 6.386 2.801 6.357 0.732 0.726 6.210 0.167 

Table 7.17: Top 10 multiple solutions delivered by the CES for a contrived match 

 

Each tone match in table 7.8 achieves a low relative spectral error despite being situated at 

independent points in the search space. Compared with the equivalent data for the single 

simple FM model (table 7.4), the overall quality of the solutions is significantly improved, 

despite the absence of an exact match. These results suggest that the larger model presents 

a problem domain in which the optimum is more difficult to locate, but high fitness 

solutions are more readily abundant.  

 

7.6.2 Experiments with Static  

Tone Non-Contrived Targets  

In the previous section, it was demonstrated that it is possible to optimise good matches to 

randomly generated contrived target tones using EAs to derive the parameters of the 

matching synthesiser. The algorithms shown to be most effective at exploiting the 

parameter space of the matching synthesiser were the CES and CCCES. In this section, 
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these two derivatives of the FM matching system are applied to match non-contrived target 

tones originating from non-FM sources. Examples are presented with two sound types. The 

first set of target tones are synthesised using a simple additive-subtractive system and the 

second set are taken from recordings of real classical instrument sounds produced by 

Opolko and Wapnick (1989). Both of these tone types represent a more typical musical 

target than the randomly generated FM tones tested in the previous section. The relative 

spectral error measure is used to determine the quality of the match, and visualisations are 

provided in the form of frequency spectrum plots.  

 

7.6.2.1 Evolutionary Synthesis Matching of  

Additive-Subtractive Synthesis Tones 

The first of the non-contrived matching experiments applies the evolutionary matching FM 

synthesis model to three separate target tones generated by a simple additive-subtractive 

system. This synthesis model is analogous to the sound production form of many musical 

instruments: the tone of a broadband energy source vibration (additive synthesis 

component) is shaped by the modes of a connected resonant body (subtractive synthesis 

component) (Howard and Angus, 2000). Real world examples of this form include the 

source vibrations produced by an air jet across the mouthpiece of a flute which is coupled 

to a resonating column of air, or a hammer striking a piano string which is coupled to a 

resonant frame. Target tones are produced by a synthesis model based loosely on this form: 

a broadband spectrum is created by additive synthesis (Roads, 1996), which is 

subsequently shaped by a (subtractive) bandpass filter-bank (Roads, 1996). The broadband 

tone is generated using a 16-part sinusoidal additive synthesiser, with equally weighted 

partials positioned at intervals of 440 Hz. A single period of the corresponding waveform 

is depicted in figure 7.11. 

 

Figure 7.11: Unfiltered additive synthesis tone 

am
p
li

tu
d
e
 

time 



164 

The flat spectrum produced by the additive synthesiser is then passed through a subtractive 

bandpass filter network to shape the tone. The complete additive-subtractive synthesis 

model from which the non-FM target tones originate is depicted in figure 7.12.  

 

 

Figure 7.12: Additive-subtractive target tone synthesis model 

 

For target tone one, only one bandpass filter is active; for tone two, two bandpass filters are 

active; and for tone three, all three filters are active. The bandpass filter parameters are 

centre frequency (f), Q factor (ratio of the filter centre frequency to the width of the pass 

band), and gain (g). The values for the additive-subtractive target tones are provided in the 

table 7.9; the corresponding spectra are plotted in figure 7.13. 

 

 

 Bandpass 1 Bandpass 2 Bandpass 3 

Target Name f1 Q1 g1 f2 Q2 g2 f3 Q3 g3 

Tone 1 440 2 1 - - - - - - 

Tone 2 440 2 1 1760 10 0.5 - - - 

Tone 3 440 2 1 1760 10 0.5 3520 20 0.25 

Table 7.18: Additive-subtractive target tone specifications 
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Figure 7.13: Additive-subtractive target tone spectra 

 

Additive-Subtractive Tone Matching Results 

In the previous section of this chapter, the CES and CCCES were found to be the most 

advantageous for matching contrived FM target tones, especially when discrete 

recombination operators were used. These algorithms are now applied to derive FM 

synthesis parameters that render tones matching the three additive-subtractive targets, 

introduced above. In addition, a random search is also included for comparison (RAND). 

Discrete recombination is employed for the evolutionary algorithms, with the exact same 

parametric settings as with the contrived experiments. Results are presented when 

matching each target tone with all three FM synthesis models depicted in figure 7.1. The 

accuracy of each match is indicated in terms of the relative spectral error, averaged over 

five independent runs. The results in table 7.10 and figure 7.14 illustrate some consistent 

trends. In all test cases, the CES and CCCES produce more accurate matches than the 

RAND algorithm, shown to be significant at the 0.05 level by a post hock ANOVA. 

 



166 

   Error 

Matching 

Model 

Test 

Case 

Algorithmic Parameters Tone 1 Tone 2 Tone 3 

(strat) algo gens evals sel clusts subpops mean σ mean σ mean σ 

Single 

Simple 

FM 

1 (200,1400) CES 50 70200 rest 40 0 0.14 0.01 0.23 0.00 0.30 0.00 

2 (50,350) CCCES 50 45200 rest 10 2 0.14 0.02 0.23 0.00 0.30 0.00 

3 - RAND - 70000 - - - 0.27 0.04 0.35 0.06 0.40 0.05 

Double 

Simple 

FM 

4 (200,1400) CES 50 70200 rest 40 0 0.09 0.02 0.13 0.02 0.19 0.02 

5 (50,350) CCCES 50 45200 rest 10 2 0.06 0.01 0.11 0.03 0.17 0.05 

6 - RAND - 70000 - - - 0.28 0.02 0.39 0.03 0.42 0.03 

Triple 

Simple 

FM 

7 (200,1400) CES 50 70200 rest 40 0 0.06 0.01 0.11 0.01 0.15 0.02 

8 (30,210) CCCES 50 64206 rest 6 3 0.05 0.01 0.10 0.02 0.12 0.02 

9 - RAND - 70000 - - - 0.38 0.01 0.48 0.03 0.50 0.03 

Table 7.10: Additive-subtractive target tone results 

 

Figure 7.14: Mean and 95% confidence intervals for error when  

matching additive-subtractive target tones 

  

The CCCES and CES often produced equivalent results; however, when the mean error 

was different, the CCCES was found to be consistently more accurate in fewer fitness 

evaluations, although the difference was not statistically significant. When matching with 

the most simple synthesiser model, the CES and CCCES error results are equivalent 

(significant at the 0.05 level) and both algorithms converge to the same optima, which may 

be the global optimum for all three target tones. For the evolutionary algorithms, there is 

an overall decrease in match error as the complexity of the matching synthesiser increases. 
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These results therefore exhibit the opposite characteristic to those produced by the RAND 

algorithm and, more interestingly, the contrived matching experiments of section 7.6.1.  

 

Previously, it was shown that when both the target and match are created by the same 

synthesis model, the average relative error increases with the complexity of the synthesis 

model, whereas here, the error decreases with the larger synthesis model. These results 

illustrate the opposing limitations of the matching process. As shown in table 7.3, the CES 

is well suited to the problem domain of the single simple FM model. However, in 

attempting to match target tone one, the CES is likely to have reached the limitations of the 

matching synthesiser. It would not be possible to improve on this match until a more 

elaborate matching synthesiser is employed. Indeed this is evidenced by the smaller errors 

achieved when the double and triple parallel simple FM matching models are used. In the 

previous experimentation with contrived targets, the CES and CCCES were shown to be 

less effective at retrieving accurate matches as the model complexity was raised, but 

clearly, when the limitations of a simple matching synthesiser are reached, more elaborate 

FM synthesis structures are beneficial.  

 

 

7.6.2.2 Evolutionary Synthesis Matching  

of Acoustic Instrument Tones 

The experimentation performed above is now repeated, substituting the synthetic additive-

subtractive tones with real tones extracted from the sustain (relatively stable, middle 

section) of three acoustic instrument sounds. The target tones originate from an oboe, 

trumpet and muted trumpet produced by Opolko and Wapnick (1989). Details of the three 

tones are provided in table 7.11, and their corresponding spectra are plotted in figure 7.15.  

 

 Pitch frequency (Hz) 

Oboe G5 783.99 

Trumpet C5 523.25 

Muted Trumpet F5 698.46 

Table 7.11: Acoustic target fundamental frequencies 
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Figure 7.15: Acoustic target spectra 

 

Acoustic Target Matching Results  

As in the previous section, the CES, CCCES and RAND algorithms are applied to optimise 

the synthesis parameters of the FM models depicted in figure 7.1 to match the acoustic 

target tones plotted in figure 7.15. Results are provided in table 7.12 and plotted in figure 

7.16 in terms of the relative spectral error, averaged over five runs, for each configuration.  

 

   Error 

Matching 

Model 

Test 

Case 

Algorithmic Parameters Oboe Trumpet Muted Trumpet 

(strat) algo gens evals sel clusts subpops mean σ mean σ mean σ 

Single 

Simple 

FM 

1 (200,1400) CES 50 70200 rest 40 0 0.22 0.00 0.19 0.03 0.18 0.01 

2 (50,350) CCCES 50 45200 rest 10 2 0.24 0.01 0.18 0.03 0.26 0.08 

3 - RAND - 70000 - - - 0.37 0.05 0.44 0.05 0.41 0.06 

Double 

Simple 

FM  

4 (200,1400) CES 50 70200 rest 40 0 0.14 0.01 0.15 0.03 0.14 0.02 

5 (50,350) CCCES 50 45200 rest 10 2 0.11 0.02 0.14 0.03 0.12 0.02 

6 - RAND - 70000 - - - 0.39 0.06 0.54 0.05 0.42 0.04 

Triple 

Simple 

FM 

7 (200,1400) CES 50 70200 rest 40 0 0.12 0.01 0.13 0.02 0.13 0.02 

8 (30,210) CCCES 50 64206 rest 6 3 0.07 0.03 0.13 0.01 0.08 0.03 

9 - RAND - 70000 - - - 0.49 0.06 0.62 0.05 0.52 0.05 

Table 7.12: Acoustic target tone matching results 
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Figure 7.16: Mean and 95% confidence intervals for error when  

matching acoustic target tones 

 

Discussion 

The results from these experiments further corroborate the experiments recorded in the 

previous section: 

 the evolutionary algorithms outperform the random algorithm, with a statistical 

significant difference between the mean errors of two types of algorithm. 

 for the double and triple simple FM models, the CCCES consistently produces a 

lower mean error than the CES in fewer fitness evaluations, although the 

differences between the mean errors produced by the two algorithms are not 

statistically significant. 

 the double and triple simple FM models consistently match the target tones more 

accurately than the single simple FM model, with mean error differences significant 

at the 0.05 level. 

 

These tests also confirm that the matching system is able to produce good simulations of 

non-contrived target tones. Figure 7.17 shows the spectrum of the muted trumpet and an 

example match synthesised by the triple simple FM model. The parameters here were 

optimised by the CCCES. 
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Figure 7.17: Muted trumpet tone (top), and corresponding match (bottom) 

 

All partials towards the lower end of the spectrum are quite accurately matched by the 

system, with only minor differences in the higher frequency components. The differences 

are more apparent in figure 7.18, in which both the target and matched spectra are overlaid 

on a log amplitude scale.  

 

 

Figure 7.18: Muted trumpet tone and corresponding match with log amplitude 

 

Figure 7.18 enables the limitations of the match to be more easily observed. All of the 

peaks in the matched tone coincide with partials of the target spectrum, matching the 

amplitudes and frequencies accurately. However, several higher-frequency harmonic 

partials (eighth, 11
th

, 12
th

 and 15
th

 harmonics) are absent or poorly rendered in the matched 

(l
o

g
) 
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tone. Since fitness is computed from the spectral difference between target tones and their 

match candidates, partials with the highest magnitude are prioritised by the matching 

algorithm, as they have the largest impact on fitness. Perhaps the spectrum error could be 

reduced further by using a more elaborate matching synthesiser. It is clear, however, that 

the ability of the EA to effectively navigate the synthesis space diminishes as the 

complexity of the search space is increased, while the EA parameters remain constant.  

 

7.7 A Performance Analysis of  

Evolutionary Time-Varying Matching  

In this section, the experimental work performed above is developed, expanding the 

application to include time-variant sounds. For this purpose, the dynamic-sound FM 

synthesis models of figure 7.2 are employed. The performance of each evolutionary 

algorithm is assessed and compared according to the contrived matching method 

introduced earlier in this chapter. Experimentation is then extended further to include the 

matching of non-contrived dynamic sounds originating from recordings of the trumpet, 

French horn and oboe.  

 

7.7.1 Experiments with Time- 

Varying Contrived Targets  

In this first set of experiments, each evolutionary algorithm is applied to match 30 

randomly generated contrived target sounds using the three simple FM synthesis models 

illustrated in figure 7.2. Each contrived target sound is created by drawing synthesis 

parameters at random from within the object range of each parameter (table 7.1).  

 

The parameters for each EA are again annotated in the results according to the following 

format: 

 

(strat) algo recomb  gens evals sel  clusts subpops 

 

For a fuller description of each attribute, see section 7.6.1. 
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Performance Criteria 

As before, results are presented for the single, double and triple FM matching models, 

according to the following criteria:  

 Success - the number of runs in which the contrived targets are accurately 

retrieved. 

 Average - the mean average relative spectrum error of the best solutions located for 

each of the 30 runs. 

 Remaining - the mean average of the best solutions for all unsuccessful matches. 

 

Matches are again classed as successful when at least one population member achieves a 

relative spectral error below 0.01. That is, the spectra of the target sound are 99% matched.  

 

7.7.1.1 Contrived Matching with  

Time-Varying Single Simple FM 

The time-varying single simple FM model constitutes the most fundamental time-varying 

synthesis structure described originally by Chowning (1973). This two-oscillator model 

presents a 12-parameter arrangement as depicted in figure 7.2a. The author has previously 

examined evolutionary sound matching with this architecture in Mitchell and Sullivan 

(2005). The data retrieved from the contrived sound matching experimentation with this 

model is provided in table 7.13 and plotted in figure 7.19.  

 

  Single Simple FM (n = 12) 

 Algorithmic Parameters  Average Remaining 

Algorithm (strat) algo recomb gens evals sel clusts subpops Success mean σ mean σ 

CCES 1 (20,140) CCES1 dis 50 84240 glob - 12 6 0.13 0.15 0.17 0.15 

 2 (20,140) CCES2 dis 25 84240 glob - 12 13 0.04 0.04 0.06 0.04 

ES 3 (200,1400) ES dis 50 70200 glob - - 11 0.03 0.03 0.04 0.03 

 4 (200,1400) ES int 50 70200 glob - - 0 0.27 0.15 0.27 0.15 

MSES 5 1400 x (1+1) MSES - 50 70000 - - - 0 0.15 0.08 0.15 0.08 

 6 350 x (1+1) MSES - 200 70000 - - - 0 0.13 0.08 0.13 0.08 

 7 175 x (1+1) MSES - 400 70000 - - - 0 0.13 0.08 0.13 0.08 

 8 100 x (1+1) MSES - 700 70000 - - - 0 0.13 0.09 0.13 0.09 

FCES 9 (200,1400) FCES dis 50 70200 glob 40 - 12 0.03 0.04 0.04 0.04 

 10 (200,1400) FCES int 50 70200 glob 40 - 0 0.25 0.13 0.25 0.13 

CES 11 (200,1400) CES dis 50 70200 rest 40 - 3 0.03 0.03 0.04 0.03 

 12 (200,1400) CES cent 50 70200 rest 40 - 2 0.08 0.06 0.09 0.06 

CCCES 13 (50,350) CCCES dis 50 45200 rest 10 2 10 0.02 0.02 0.03 0.02 

 14 (50,350) CCCES cent 50 45200 rest 10 2 2 0.04 0.03 0.04 0.03 

 15 (50,350) CCCES dis 100 90200 rest 10 2 21 0.01 0.02 0.03 0.02 

 16 (50,350) CCCES cent 100 90200 rest 10 2 9 0.03 0.03 0.04 0.03 

Table 7.13: Results when matching time-varying single simple FM contrived sounds 
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Figure 7.19: Mean and 95% confidence intervals for Average and Remaining error  

results when matching time-varying single simple FM contrived sounds 

 

Discussion 

Overall, there are fewer successful matches when compared with the single simple FM 

results of the static tone experimentation, and again, the discrete recombination operator is 

found to consistently outperform the intermediate and centroid techniques. T-tests between 

the results of the recombining algorithms support this observation with a statistically 

significant (two-tailed) improvement when discrete recombination is employed. 

 

As observed in earlier experimentation, the CCES performs best when the simple best plus 

one random collaboration strategy is adopted (CCES2). Interestingly, if the average error 

delivered by both variants of the CCES is compared with the equivalent results of the static 

tone experiments (table 7.3), a statistically significant (two-tailed) improvement in 

performance is observed, despite the considerable increase in the dimensionality of the 

problem space. This suggests that the time-varying domain presents characteristics that 

benefit the CCES. This improvement is also statistically significant in the results produced 

by the ES which also demonstrates a considerable improvement in this domain. It may be 

that the temporal parameters are easy to retrieve, and much of the problem complexity is 

introduced by the carrier/modulator frequency parameters and the modulation index. The 

multiple spectral snapshots then provide the optimiser with multiple samples through 

which these principal parameters may be retrieved, subsequent optimisation of the 

temporal parameters is then a simple task.  

 

The remaining EAs produce results that partially reflect those seen in the static tone 

experiments. A post-hock ANOVA revealed that the MSES was significantly less effective 

than at least the best performing instance of all other algorithms. The analyses also 
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indicated the discreet recombination CCCES (algorithm 13) produced the smallest mean 

error and was thus more effective than all other types of algorithm in fewer fitness 

evaluations, significant at the 0.05 level against all but algorithms two, three, nine and 11. 

Interestingly, in this instance, the CES produces lower average errors and makes less 

successful retrievals than the FCES. As was shown in chapter four, the hard speciation 

architecture of the CES algorithm prolongs convergence. The low average error suggests 

that, with increased generations, the CES would make further successful retrievals. Indeed, 

running the CES for 100 generations resulted in 16 successful retrievals and a remaining 

error of 0.031.  

 

7.7.1.2 Contrived Matching with  

Time-Varying Double Simple FM 

The time-varying double simple FM model (figure 7.2b) presents a 24-dimensional 

synthesis matching problem domain. This model forms a parallel extension of the single 

simple FM arrangement and is constructed from four sinusoidal oscillators. The results of 

the contrived-target experimentation performed with this model are provided in table 7.14 

and plotted in figure 7.20.  

 

  Single Simple FM (n = 24) 

 Algorithmic Parameters  Average Remaining 

Algorithm (strat) algo recomb gens evals sel clusts subpops Success mean σ mean σ 

CCES 
1 (10,70) CCES1 dis 50 84240 glob - 24 4 0.08 0.09 0.09 0.09 

2 (10,70) CCES2 dis 25 84240 glob - 24 7 0.06 0.09 0.08 0.10 

ES 
3 (200,1400) ES dis 50 70200 glob - - 0 0.08 0.07 0.08 0.07 

4 (200,1400) ES int 50 70200 glob - - 0 0.29 0.14 0.29 0.14 

MSES 

5 1400 x (1+1) MSES - 50 70000 - - - 0 0.22 0.10 0.22 0.10 

6 350 x (1+1) MSES - 200 70000 - - - 0 0.18 0.10 0.18 0.10 

7 175 x (1+1) MSES - 400 70000 - - - 0 0.18 0.10 0.18 0.10 

8 100 x (1+1) MSES - 700 70000 - - - 0 0.18 0.11 0.18 0.11 

FCES 
9 (200,1400) FCES dis 50 70200 glob 40 - 0 0.09 0.08 0.09 0.08 

10 (200,1400) FCES int 50 70200 glob 40 - 0 0.28 0.12 0.28 0.12 

CES 
11 (200,1400) CES dis 50 70200 rest 40 - 0 0.10 0.08 0.10 0.08 

12 (200,1400) CES cent 50 70200 rest 40 - 0 0.14 0.10 0.14 0.10 

CCCES 

13 (50,350) CCCES dis 50 45200 rest 10 2 0 0.06 0.06 0.06 0.06 

14 (50,350) CCCES cent 50 45200 rest 10 2 0 0.08 0.07 0.08 0.07 

15 (50,350) CCCES dis 100 90200 rest 10 2 8 0.04 0.06 0.05 0.06 

16 (50,350) CCCES cent 100 90200 rest 10 2 2 0.06 0.06 0.06 0.06 

Table 7.14: Results when matching time-varying double simple FM contrived sounds 

 

Discussion 

These results again indicate that the CCES produces a mean error value that that tends 

towards, and frequently outperforms the most successful algorithms when matching 
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dynamic sounds. This improved matching performance, however, is not unique to the 

CCES; the ES with discrete recombination performs significantly better on the time-

varying target sound problem than the equivalent static tone problem tested earlier – 

statistically significant mean difference of 0.24 (t-test). 

 

 

Figure 7.20: Mean and 95% confidence intervals for Average and Remaining error  

results when matching time-varying double simple FM contrived sounds 

 

As the ES is more susceptible to becoming trapped at local optima than the niching-based 

algorithms, this result again suggests that the time-variant FM search space is more 

tractable than the equivalent static tone space. This difference in search space 

characteristics may also explain the improved CCES performance. However, the poor 

performance of the MSES, combined with the convergence of each CES and CCCES 

cluster to an independent niche (not shown), suggests that there are still many potential 

matches for each target sound, and thus the matching space is extensively multimodal.  

 

If high-fitness solutions are easier to locate, why is it that the dynamic search space is more 

tractable than the static space? As discussed previously, the introduction of the time 

dimension must introduce search space characteristics that are beneficial to the EAs. Time-

variation in the target sound is sampled by taking multiple spectrum snapshots through 

time. Error is then averaged across difference measurements between the target and 

candidate spectra. In the static experiments, there is only one target snapshot with which to 

perform the match. The averaging of multiple snapshots for dynamic sounds must, then, 

enable population members positioned closer to the optimum to be selected more easily. 

While the CCES2 retrieves the highest number of contrived sounds, CCCES also performs 

well achieving the lowest overall mean error (albeit in the highest number of evaluations). 

A post hock ANOVA supports this observation, confirming that the CCCES produces a 

lower mean error than algorithms four, five, six, seven, eight, 10 and 12 at the 0.05 level. 
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7.7.1.3 Contrived Matching with  

Time-Varying Triple Simple FM 

The contrived matching experimentation is repeated for the triple simple FM model, 

depicted in figure 7.2c. This adds an additional pair of oscillators to the previously tested 

model, increasing the dimensionality of the search domain to 36. Results are provided in 

table 7.15 and plotted in figure 7.21. 

 

  Single Simple FM (n = 36) 

 Algorithmic Parameters  Average Remaining 

Algorithm (strat) algo recomb gens evals sel clusts subpops Success mean σ mean σ 

CCES 
1 (6,42) CCES1 dis 50 75816 glob - 36 4 0.10 0.09 0.12 0.09 

2 (6,42) CCES2 dis 25 75816 glob - 36 6 0.08 0.09 0.10 0.09 

ES 
3 (200,1400) ES dis 50 70200 glob - - 0 0.14 0.08 0.14 0.08 

4 (200,1400) ES int 50 70200 glob - - 0 0.32 0.10 0.32 0.10 

MSES 

5 1400 x (1+1) MSES - 50 70000 - - - 0 0.27 0.09 0.27 0.09 

6 350 x (1+1) MSES - 200 70000 - - - 0 0.24 0.08 0.24 0.08 

7 175 x (1+1) MSES - 400 70000 - - - 0 0.24 0.08 0.24 0.08 

8 100 x (1+1) MSES - 700 70000 - - - 0 0.25 0.09 0.25 0.09 

FCES 
9 (200,1400) FCES dis 50 70200 glob 40 - 0 0.13 0.08 0.13 0.08 

10 (200,1400) FCES int 50 70200 glob 40 - 0 0.31 0.11 0.31 0.11 

CES 
11 (200,1400) CES dis 50 70200 rest 40 - 0 0.14 0.07 0.14 0.07 

12 (200,1400) CES cent 50 70200 rest 40 - 0 0.20 0.09 0.20 0.09 

CCCES 

13 (30,210) CCCES dis 50 64206 rest 10 3 0 0.11 0.06 0.11 0.06 

14 (30,210) CCCES cent 50 64206 rest 10 3 0 0.15 0.08 0.15 0.08 

15 (30,210) CCCES dis 100 128106 rest 10 3 0 0.07 0.05 0.07 0.05 

16 (30,210) CCCES cent 100 128106 rest 10 3 0 0.12 0.07 0.12 0.07 

Table 7.15: Results when matching time-varying triple simple FM contrived sounds 

 

Figure 7.21: Mean and 95% confidence intervals for Average and Remaining error  

results when matching time-varying triple simple FM contrived sounds 

 

Discussion 

The results on the largest FM model exhibit a similar trend to the previous experiments, 

albeit with slightly larger error values. As before the CCES and CCCES are most effective 
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at successfully retrieving matches from the FM search space. The CCES also appears to be 

relatively robust to the reduction in subpopulation size that occurs due to the increased 

problem dimensionality. 

 

For the triple simple FM model, only the CCES-based algorithms are able to retrieve 

matches successfully. For the first time, the CCES1 has outperformed the CCES2 in this 

matching domain, although their mean errors are not statistically different. It is presumed 

that this is principally because the CCES2 runs for only half the number of rounds as the 

CCES1 in the same number of fitness evaluations. Had the CCES2 been able to continue, 

the advantage of the single best plus one random strategy would be clear. 

 

Overall the smallest error results are achieved by the CCCES, where comparisons by post 

hock ANOVA revealed a statistically significant performance advantage over algorithms 

four, five, six, seven, eight, 10, 11, 12 and 14. However, in order to achieve these low-error 

ratings, the CCCES required more fitness evaluations than the other algorithms.  

 

7.7.1.4 Time Waveform and Frequency  

Spectrogram Plots with Contrived Targets 

Figure 7.22 provides time waveforms and frequency spectrograms for an example of 

contrived target sound and its corresponding match produced with the time-varying triple 

simple FM model and optimised by the CCES. The spectrogram enables time variation to 

be visualised in terms of the signal‘s spectral content. The frequency content of the signal 

is plotted against time, and the amplitude is indicated by the darkness of the trace. The 

relative spectral error for this particular match is 0.064.  

 

In the time waveform plots (Figure 7.22a and b) the amplitude envelopes of the sounds are 

similar: both exhibit long attack, short decay, long sustain and short release periods. 

However, there are subtle differences. For example, the attack period of the target sound 

lasts approximately 0.45s, whereas the matched sound appears to reach maximum 

amplitude at approximately 0.35s. To compensate for this difference, the decay period of 

the matched sound lasts approximately 0.1s longer than that of the target, as such, the 

sustain period for both sounds begins at approximately 0.5s.  
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(a): Target sound time waveform 

 

(b): Match sound time waveform 

 

(c): Target sound frequency spectrogram (log amplitude scale) 

 

(d): Match sound frequency spectrogram (log amplitude scale) 

Figure 7.22: Contrived time-varying triple simple FM target and CCES evolved match 

 

Due to the fixed positions of the 10 sample points, it is likely that rapid changes in the 

target sound are under-sampled in the analysis procedure. As such, these minor differences 

are present because sample points are positioned either side of this rapid change. At the 

fixed positions the amplitude envelope may correlate well, however the changes that occur 
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in between the sample points are interpolated by the matching process, and are not 

guaranteed to match the original target.  

 

The spectrogram plots (figure 7.22c and d) also correspond well; however again there are 

subtle differences between the spectral envelopes of the two sounds. For example, the 

matched sound contains marginally more high-frequency content than the target during the 

sustain section. Furthermore, the matched sound features a low-amplitude partial at 

approximately 1.9kHz that does not feature in the target spectrum. 

 

7.7.2 Experiments with  

Time-Varying Acoustic Targets  

In the contrived experimentation above, the algorithms shown to be most effective at 

exploiting the parameter space of the time-varying matching synthesiser were the CCES 

and CCCES. In this section, these two algorithms plus the CES and RAND derivatives of 

the time-varying FM matching system are used to optimise matches to non-FM dynamic 

sounds. The target set is comprised of three acoustic instrument samples produced by 

Opolko and Warpnick (1989): muted French horn, trumpet and oboe. Details of each sound 

are provided in the table 7.16. All EAs optimise a match for each target sound using the 

dynamic-spectra FM synthesis models depicted in figure 7.2. The mean relative spectral 

error of the best individual for each test case is provided in table 7.17 and plotted in figure 

7.23; results are computed from the average error of five independent and randomly 

initialised runs.  

 

Target sound Pitch frequency (Hz) 

Muted French Horn D5 587.33 

Trumpet F5 698.46 

Oboe F#5 739.99 

Table 7.16: Acoustic target fundamental frequencies 

 

Discussion 

When matching dynamic acoustic target sounds with FM synthesis, the evolutionary 

algorithms show a statistically significant performance advantage over the random search 

algorithm. Within the EA-based optimisers, there are no consistent findings that indicate 

the superiority of one particular type of algorithm.  
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   Target Tone 

Matching 

Model 

Test 

case 

Algorithmic Parameters French Horn Trumpet Oboe 

(strat) algo gens Evals sel clusts subpops mean σ mean σ mean σ 

Single 

Simple 

FM 

1 (20,140) CCES2 25 84240 glob - 12 0.19 0.04 0.21 0.00 0.15 0.00 

2 (200,1400) CES 50 70200 rest 40 0 0.16 0.00 0.21 0.01 0.15 0.00 

3 (50,350) CCCES 50 45200 rest 10 2 0.16 0.00 0.20 0.00 0.15 0.00 

4 - RAND  70000 - - - 0.31 0.03 0.31 0.03 0.27 0.01 

Double 

Simple 

FM 

5 (10,70) CCES2 25 84240 glob - 24 0.07 0.01 0.11 0.05 0.07 0.01 

6 (200,1400) CES 50 70200 rest 40 0 0.11 0.02 0.13 0.01 0.10 0.01 

7 (50,350) CCCES 50 45200 rest 10 2 0.11 0.02 0.13 0.01 0.10 0.01 

8 - RAND - 70000 - - - 0.27 0.01 0.27 0.01 0.27 0.01 

Triple 

Simple 

FM 

9 (6,42) CCES2 25 75816 glob - 36 0.11 0.03 0.13 0.03 0.10 0.03 

10 (200,1400) CES 50 70200 rest 40 0 0.12 0.01 0.13 0.01 0.11 0.01 

11 (30,210) CCCES 50 64206 rest 6 3 0.12 0.02 0.15 0.01 0.11 0.01 

12 - RAND - 70000 - - - 0.28 0.02 0.29 0.01 0.23 0.02 

Table 7.17: Acoustic target time-varying matching results 

 

Figure 7.23: Mean and 95% confidence intervals for error when  

matching acoustic time-varying sounds 

 

When matching with the single simple FM model, the CCCES consistently produced the 

smallest mean error for all three target sounds in less fitness evaluations and the CCES2 

consistently produced the largest error. A post hock comparison of means analysis by 

ANOVA only detected a statistically significant difference at the 0.05 level between the 

CCCES and CCES2 on the results of the oboe sound, with no significant difference 
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between any of the other algorithms. This finding suggests that all three EA-based 

algorithms produce approximately the same error results when matching with the single 

simple FM model. It is presumed that all EAs converged to the limitations of the matching 

synthesiser, and in order to produce better results, a more elaborate synthesiser would be 

required.  

 

Indeed, matches produced with the double FM model result in smaller errors. In contrast to 

the single simple FM model, on this larger synthesis model the CCES2 consistently 

produced the smallest error results and the CES consistently produced the largest error. A 

post hock ANOVA again confirmed this difference to be statistically significant at the 0.05 

level for all target sounds. The difference between the CCES2 and CCCES was only 

significant when matching the French horn; however, the difference was not significant for 

the other sounds due to the large variance in the CCES2 results.  

 

The reduction in error observed between the matches produced on the single and double 

simple FM models does not extend further when matches were performed using the triple 

FM model, where results indicate marginally less accurate matches (although not 

statistically significant). Again the CCES2 produces the smallest mean error and this time 

the CCCES produces the largest, however there are no statistically significant differences 

between the algorithms. It is suggested that the CCES2 advantage is, in part, due to the 

additional number of fitness evaluations performed by this algorithm, and the faster 

convergence rates noted earlier in this thesis.  

 

The larger triple FM model is obviously capable of producing more exact matches than the 

smaller models, but the EAs are unable to exploit this advantage in these tests. This is 

particularly prevalent in the results produced by the CCCES, and is due to the maintenance 

of fixed population or scaled subpopulation sizes while the search space dimensionality is 

increased. This hypothesis can be tested by repeating all three algorithms with population 

sizes scaled in proportion to the problem dimensionality and by doubling the number 

generations for which each algorithm runs to allow each algorithm to adequately converge. 

The results from the average of five runs are tabulated below when matching the oboe 

sound with the triple simple FM model with all three EAs and the RAND algorithm for 

comparison; population sizes are indicated with the results below.  
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 Algorithmic Parameters Oboe Target Tone 

Matching Model (strat) algo recomb  gens evals sel  clusts subpops mean error σ error 

Triple Simple FM (10,70) CCES2 Discrete 50 252360 global - 36 0.07 0.01 

(300,2100) CES Discrete 100 210300 restricted 60 0 0.08 0.01 

(40,280) CCCES Discrete 100 238744 restricted 8 3 0.08 0.00 

- RAND - - 230000 - - - 0.23 0.01 

Table 7.18: Oboe matching results 

 

Figure 7.24: Mean and 95% confidence intervals for error when  

matching an acoustic time-varying oboe sound 

 

These results confirm that optimisation with larger population sizes leads to an improved 

match. 

 

7.7.2.1 Time Waveform and Frequency  

Spectrogram Plots with Non-Contrived Targets 

The accuracy of the non-contrived time-varying matches may be compared visually by 

observing time waveform and frequency spectrograms of a specific target sound and its 

corresponding match. Figure 7.25 plots the F#5 oboe target sound, with a CCCES match 

using the triple FM synthesis model. This particular example achieves a relative spectral 

error of 0.078. The general amplitude envelopes of the time waveform plots, while 

noticeably different, indicate similar characteristics. For example, both sounds have 

reached full magnitude at 0.04 seconds, and fade to silence at similar rates. However the 

shape of the sustain tones appear quite different. The real oboe sound exhibits a steady fall 

in amplitude from approximately 0.4 seconds, while the matched sound amplitude 

development is different, rising until 0.8 seconds.  
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(a): Target sound time waveform 

 

(b): Match sound time waveform 

 

(c): Target sound frequency spectrogram 

 

(d): Match sound frequency spectrogram 

Figure 7.25: Oboe target sound and time-varying triple simple FM match evolved by CCCES 
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The frequency spectrograms are plotted on a log amplitude scale to enable the higher 

frequency, low magnitude harmonics to be compared. Both the target and matched sounds 

show good correlation in the lower frequency components, with harmonics well matched 

until the fifth harmonic. The seventh to ninth harmonics are also present, as are some 

higher harmonics. However, there are some partials absent from the matched sound.  

 

In terms of time variation, the target spectrogram indicates two regions at which the 

spectrum is shown to be changing. Firstly, the initial onset of the target sounds (0.0 - 0.02 

seconds) features many additional partials before settling into a harmonic tone. Secondly, 

the high frequency partials fade from the target prior to the lower frequency partials. This 

temporal variation is only partially represented in the matched sound. The exact variation 

of each partial is better represented in the three-dimensional spectrogram shown in figure 

7.26.  

 

To understand why certain features of the target sound are matched and others are 

overlooked, it is important to establish how each element of the synthesiser contributes to 

the final oboe match. Figures 7.27 - 7.29 provide output plots from each of the three 

parallel simple FM elements in isolation. Figure 7.27 plots the time-domain waveforms, 

figure 7.28 plots the frequency spectrograms, and figure 7.29 plots the long-term average 

spectrum of the simple FM elements that combine to form the final match. 

 

 

Figure 7.26: 3D- Spectrogram of oboe target sound and CCCES evolved match 
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Figure 7.27: FM oboe simulation, isolated time domain waveform produced by simple FM  

element one (top), element two (middle) and element three (bottom) 

 

Figure 7.27 illustrates the relative contribution that each simple FM element makes to the 

composite oboe match. In terms of peak amplitude, each element contributes to a 

decreasing extent. Element one has the most amplitude and also exhibits the fastest attack 

and release periods. Element three, on the other hand, has the least amplitude and has 

comparatively long attack, decay and release periods.  

 

Figure 7.28 illustrates that the frequency-bands produced by the three elements are 

significantly interleaved. Element one positions a large proportion of its partials at the 

lower end of the spectrum. Element two adds to these lower frequency components, while 

element three positions its partials farther apart where they extend into the higher 

frequencies. These relationships are also represented in figure 7.29, which provides the 

long term average spectrum of each element. The carrier frequencies of each element are 

centred at the first, second and fourth harmonics of the original oboe sound. The side 

frequencies produced by element one reflect around 0Hz and coincide with the odd 

harmonics of the target sound. The second element generates the second harmonic of the 

target sound, and the first pair of side frequencies contributes to the fifth and, by reflection, 

the first harmonics. Element three then fills the reaming gaps, providing the fourth, eighth 

and 12
th

 harmonics.  
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Figure 7.28: FM oboe simulation, isolated frequency spectrograms produced by simple  

FM element one (top), element two (middle) and element three (bottom) 

 

Each element plays an essential role in the matching process, filling gaps in the frequency 

domain left by the other elements. As was noted in the experimentation with static sounds, 

fitness is computed from the spectral difference between target tones and their match 

candidates, partials with the highest magnitude are therefore prioritised by the matching 

algorithm. The composite long-term average frequency spectrum for the entire triple FM 

synthesis model is provided in figure 7.30 above the equivalent plot for the original oboe 

target sound.  
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Figure 7.29: FM oboe simulation, isolated long-term average frequency spectrum produced by  

simple FM element one (top), element two (middle) and element three (bottom) 

 

Many of the low frequency high amplitude harmonics are present and quite well matched 

in amplitude. However, the sixth harmonic is missing. With the decomposition of the 

matching synthesiser, it is possible to see why the sixth harmonic is unmatched. The carrier 

and modulator frequencies of the three elements have evolved such that it is not possible to 

position a partial at approximately 4.4kHz. Each simple FM element is already matching 

between one and three harmonics of greater amplitude, and therefore higher priority, than 

the fifth harmonic. This also goes some way to explain why the more complex elements in 

the onset of the target sound are overlooked in the match. 
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Figure 7.30: Long-term average frequency spectrum for triple simple FM oboe  

simulation (top) and original oboe sound (bottom) 

 

Even the largest of the three FM synthesis models tested here is only capable of generating 

three overlapping bands of frequency partials. Matching the high frequency partials in the 

oboe target sound would require a more capable synthesis model.  

 

7.8 Summary of this Chapter 

In this chapter, details of the evolutionary FM matching system were introduced along with 

a contrived testing method that enables the capabilities of different optimisation algorithms 

to be compared in application to the parameter estimation problem. Experimentation was 

then presented in which six ES-based algorithms were applied to optimise the parameters 

of three FM synthesis models. Two experimental sections were included which explored 
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two types of target sound with differing temporal characteristics: time invariant static tones 

and time variant dynamic sounds.  

 

Experimentation began with the static target tones, matching initially contrived tones 

produced by the matching synthesiser, and then non-contrived tones produced by additive-

subtractive synthesis and real acoustic instruments. Results from the contrived 

experimentation identified that the speciation EAs were the most consistent at retrieving 

contrived target sounds, when compared to the less sophisticated EAs. The CES and 

CCCES produce consistently more accurate matches for the three tested FM models. With 

the double and triple parallel FM models the CCCES was able to outperform all other 

algorithms in approximately 35% fewer fitness evaluations. The CES and CCCES systems 

were then used to match non-contrived additive-subtractive and acoustic instrument tones. 

The results of which confirmed that the CCCES is able to outperform the CES in fewer 

fitness evaluations in this domain. In the experiments with non-contrived target tones, it 

was demonstrated that the average relative spectrum error is reduced by increasing the 

complexity of the matching synthesiser, even when the algorithmic settings remain 

constant.  

 

Performance of the EA-based systems was subsequently assessed when matching time-

varying sounds, again matching initially contrived targets and then acoustic target sounds. 

The contrived matching experimentation highlighted some differing trends to the similar 

experiments with static tones. For example, the single solution produced by the CCES2 

and ES was often found to be comparable with the solutions produced by the CCCES, 

which was again found to be the most accurate, robust and reliable algorithm. The 

improved performance of the less sophisticated algorithms suggested that the introduction 

of time-variation to the target sound improves the tractability of the search space. Matching 

was then performed with time-varying acoustic instrument tones, using the CCES2, 

CCCES and CES. Interestingly CCES2 was found to perform favourably with the CCCES 

and occasionally produced the smallest error, although the matches produced by the tested 

algorithms were not statistically different. Errors were again shown to be reduced when 

matching was performed by the larger synthesis models.  

 

In the last section, match deficiencies were explored by decomposing an oboe simulation 

produced by the CCCES into the contributions of each synthesis element. It was shown 

that the amplitude and frequency characteristics of the acoustic instrument sound exhibit 

more complex variations than the FM synthesis model is capable of reproducing.  



190 

 

 

 

 

 

 

 

Chapter 8 

 

Listening Tests 

 

Despite the graphical analysis of the sound matches performed in chapter seven, neither the 

time and frequency plots, nor the computed relative spectrum error can confirm that the 

matches achieved are perceptually accurate. The ultimate judges of perceptual quality are, 

of course, human listeners. This chapter documents two perceptual listening tests, to 

support the empirical work performed earlier in this thesis.  

 

8.1  Introduction 

It is well understood that sound timbre can be related to the frequency spectrum of musical 

sounds (Roads, 1996). For this reason the spectrum error has been employed as an 

indicator of sound match accuracy in a range of studies; see for example Wehn (1998), 

Garcia (2000), Horner et al (1993a and 1993b), Horner (1998), Riionheimo and Välimäki 

(2003), McDermot et al (2005) and Mitchell and Pipe (2006). However, it has been noted 

that spectral difference is not always an exact indicator of perceptual difference (Yang, 

2001), (Wun and Horner, 2001). In chapter seven, it was shown in the oboe example that 

certain partials may be neglected in the matching process in favour of those partials that 

contribute more to the overall spectrum match. However, it may be the case that some 
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harmonics are perceptually more critical than others, and should not be considered with 

equal priority. An extensive examination of these perceptual cues is well beyond the scope 

of this thesis, however, it is important to confirm that the FM experimentation presented 

here has perceptual validity, and to establish the limits of the techniques that have been 

developed. 

 

Test one is designed to measure the correlation between the relative spectrum error metric, 

and perceptual discrimination of human listeners on a set of FM synthesis tones. Test two 

is designed to obtain feedback on the effectiveness of the FM synthesis matching technique 

in application to acoustic instrument sounds.  

 

8.2  Listening Panel and Test Conditions 

The listening panel for both experiments consisted of six subjects all of whom were 

familiar with a wide range of synthesis techniques, including FM synthesis. A brief 

background is provided for each participant below: 

 Subject one is an experienced keyboardist who has studied music theory and 

composed/produced a variety of electronic and acoustic musical styles.  

 Subject two is an experienced guitarist, keyboardist and band member who has 

released multiple electronic compositions. 

 Subject three is a senior lecturer in music systems, plays a variety of instruments, 

and is an experienced researcher in the analysis of sound timbre. 

 Subject four is an experienced keyboardist and band member, who has released 

multiple electronic compositions. 

 Subject five is a senior lecturer in information systems as well as an experienced 

guitarist, singer and song writer. 

 Subject six is a senior lecturer in music systems, with over 25 years experience in 

music production and recording.  

 

Tests were performed in a quiet environment using Beyerdynamic DT100 headphones 

connected to the headphone output of a MacBook Pro computer. Sound samples were 

stored on hard disk in monaural 44.1kHz 16-bit integer format, and played back by 

listeners using a dedicated interface built using Max/MSP. Each test lasted for 

approximately 10-20 minutes. Participants were provided with a set of written instructions 

prior to each test and were provided with an opportunity to ask questions.  
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8.3 Listening Test One – Similarity Ranking 

Listening test one was a tone similarity survey in which subjects were required to rank a 

set of static FM tones by their perceived similarity to a given target tone. Target tones were 

created by synthesising five sets of randomly generated parameters for the static tone 

double parallel simple FM model, depicted in figure 7.1b. As multiple matches were 

required of varying degrees of relative spectral error, each target tone was matched by the 

CES, and five matches were chosen from the final set of clustered solutions. Matches were 

chosen to be at least 0.05 from one another (a full breakdown of the relative errors for each 

match and the test results are provided in appendix one). An example target spectrum with 

five selected matches are plotted in figure 8.1, in order of increasing relative spectrum 

error. Subjects were required to rank the matched tones by their perceived similarity to the 

target tone.  

   

(a) Target sound        (b) Match 1 – relative spectrum error = 0.179469 

   

(c) Match 2 – relative spectrum error = 0.258194    (d) Match 3 – relative spectrum error = 0.357446 

   

(e) Match 4 – relative spectrum error = 0.507881    (f) Match 5 – relative spectrum error = 0.794542 

Figure 8.1: Example target sound and five matches with increasing relative spectral error 
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8.3.1  Test Interface and Instructions 

Playback and rank order was controlled from a simple Max/MSP patch designed especially 

for the task. Tones could be played in any order and for any duration required by the 

subject without time restraints. The degree to which each match resembled the target was 

specified by clicking a button numbered one to five from a mutually exclusive vertically 

aligned radio group. The interface was configured such that none of the sounds could be 

ranked at the same level of similarity, forcing subjects to differentiate between tones. The 

interface for listening test one is depicted in figure 8.2.  

 

 

Figure 8.2: Listening test one interface 

 

Matches one to five were ordered randomly with respect to their error, and in a different 

order for each of the five target tones. Each subject was provided with a set of instructions, 

given the opportunity to ask questions, and was not disturbed until the test was complete. 

At the end of the test, results were automatically written to a text file for subsequent 

analysis. The instruction sheet for test one is provided in figure 8.3.  
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Figure 8.3: Listening test one instruction sheet 

Listening Test One - Similarity Ranking 
 

In this test you will be ranking a set of five sounds by how accurately you feel they simulate a 

target sound. The test will be repeated for five different target sounds. Please make sure you 

understand these instructions before beginning the test. 

 

Playing sounds 

The target sound may be played by pressing (and holding) one of the  buttons 

located at the top and bottom of the interface.  

 

The five simulation sounds may be played individually by pressing (and holding) their 

corresponding  buttons. 

 

Ranking Sounds 
 

Each simulation sound should be ranked from 1 – 5 starting with 1 for the sound that is most 

similar to the target through to 5 for the sound that is least similar to the target. All 

sounds must be assigned a unique rank. It is not possible to rate more than one sound at the 

same level of similarity, nor is it possible to proceed until all sounds have been assigned a 

rank. 

 
 

 Most similar to target. 

 

 

 

 

 

 

 

 

 

 Least similar to target. 

 

 

 

 

Moving On 

 

When each simulation sound has been assigned a unique rank you may proceed to the next set 

of target and simulation sounds by pressing the button labelled .  

 

Thank you for your time and help with this project.  

Thomas Mitchell 
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8.3.2  Results and Discussion 

Each target tone was accompanied by five tones of varying match accuracy, which were 

ranked in order of target sound similarity by the relative spectrum error metric and each 

test subject. The results shown in table 8.1 provide a breakdown of the correlation 

(Spearman‘s rho) between metric ranking, and test subject ranking where ** indicates a 

result that is significant at the 0.01 (two-tailed) and * indicates a result that is significant at 

the 0.05 level. The ranks provided by subjects four and six correlate exactly with the 

metric for target tones one and two. The last column shows the internal consistency 

reliability of all participants (Cronbach‘s alpha).  

 

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Reliability 

Target Tone 1 0.9* 0.9* 0.8 1.0** 0.9* 1.0** 0.979 

Target Tone 2 0.7 1.0** 1.0** 1.0** 1.0** 1.0** 0.982 

Target Tone 3 0.9* 0.9* 0.9* 0.9* 0.9* 0.9* 1.0 

Target Tone 4 1.0** 0.9* 0.9* 0.9* 1.0** 0.9* 0.983 

Target Tone 5 1.0** 1.0** 1.0** 0.9* 1.0** 1.0** 0.994 

Table 8.1: Listening test one correlation and reliability results. 

 

These results show a strong positive linear association between the perceived and 

analytical ranking, supporting the use of the relative spectrum error metric as an indicator 

of perceived similarity. Matched tones were ranked in exactly the same order by both the 

test subjects and the analytical measure almost 50% of the time. However, there is clearly 

some variation both in correlation with the metric and internally between participants 

(appendix one), suggesting that the analytical measure differs somewhat from the 

perceptual criteria of the test subjects. The variations between participants suggest that 

perceived differences between the matched tones are prioritised differently by different 

subjects.  

 

The results for tone three were ranked similarly by subjects yet different from the metric. 

In this particular tone, matches ranked second and third by the metric were consistently 

ranked third and second by the test subjects. The spectrum plots for theses two sounds and 

the target are provided in figure 8.4.  

 

The target illustrates a strong band of midrange partials between 2 and 3kHz with evenly 

distributed harmonics at intervals of approximately 2.45kHz. Match one also exhibits a 

large band of midrange partials, however only very few of the high frequency partials 

coincide with those of the target. Match two on the other hand, matches the higher 
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frequency harmonics well but the midrange partials are only partially represented. In terms 

of relative spectrum error, match one is ranked highest as a large proportion of the spectral 

energy is contained within the midrange band. However, to the test subjects, this midrange 

correlation was not sufficient to distinguish match one as the superior simulation. Any 

differences between the midrange partials combined with the high frequency differences 

clearly tips the perceptual scales in favour of match two. It is clear from these experiments 

that the process of auditory perceptual discrimination is more complex than the unbiased 

view of relative spectral error. However despite these minor discrepancies and the small 

sample size, the results provide overwhelming evidence that the relative spectrum error 

acts as a good indicator of perceptual similarity.  

 

 

 

 

Figure 8.4: Tone three target (top), match one(middle) analytically ranked second
 
perceptually  

ranked third, match two (bottom) analytically ranked third perceptually ranked second. 
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8.4 Listening Test Two  

– General Sound Simulations 

Listening test two was a discussion-based qualitative analysis of the subjects‘ responses to 

a set of time-varying sound matches performed by the FM matching systems developed in 

this thesis. A set of four acoustic instrument sounds were matched using the time-varying 

triple parallel simple FM model (figure 7.1c), with parameters optimised by the CCCES. 

Algorithmic parameters were identical to those employed in section 7.7.2 to produce the 

results shown in table 7.16. All target sounds were produced by Opolko and Wapnick 

(1989), and included recordings of the piano, trumpet, violin and cymbal. All subjects have 

prior experience of FM synthesis, and were aware of its limitations.  

 

8.4.1  Test Interface and Instructions 

Playback of each target sound and match was controlled by a simple Max/MSP patch 

designed specifically for the task. Subjects were able to playback the sounds at any point 

during the discussion. The interface for listening test two is shown in figure 8.5. 

 

 

Figure 8.5: Listening test two interface 

 

Subjects were provided with a set of instructions and given an opportunity to ask questions 

prior to the test. Subsequent to the discussion of each match, subjects were instructed to 

provide a general ‗feel‘ mark for the quality of the match, with an awareness of the 

underlying synthesis model, according to their own subjective criteria on a six-pioint 

semantic differential scale with the opposing statements Good and Bad (Brace, 2004). The 

discussion was recorded using an Edirol R-09 audio recorder. Instruction sheets for test 

two are provided in figures 8.6a, b and c.  
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Figure 8.6a: Listening test two instruction sheet one 

 

 

 

 

Listening Test Two – General Sound Simulations 
 
In this test you will be listening to set of four acoustic instrument tones and commenting 

(verbally) on the accuracy of their simulations which have been created using an FM 

synthesiser. Finally you will be asked to grade the quality of the match on a six-point scale. 

 

Please note that you are not commenting on the absolute exactness of the match, but how well 

the sound is simulated, given the limitations of the FM synthesiser being employed - See the 

attached FM synthesiser spec sheet.   

 

Playing sounds 
 

Pressing the top (purple) target button on the interface will play the target sound. The middle 

(white) button will play the FM simulation.  

 

 

  Target sound 

 
 

 

    

 FM simulation 

 

 

 

 

 

Discussion 
  

Please comment on any differences that you notice. Please consider: 

 

1) the time varying aspects of the sounds. 

 

2) the frequency domain aspects of the sounds. 

 

3)  any other aspects of the sounds on which you would like to comment. 

 

Rating 
 

Please tick the box overleaf that most accurately describes your feelings on the quality of the 

match for each of the four sounds. 

 

Moving On 

 

Press the  button to advance to the next target sound.  

 

Thank you for your time and help with this project.  

Thomas Mitchell  
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Figure 8.6b: Listening test two instruction sheet two 

 

  

FM Synthesiser Specification  
 

The specification of the FM synthesiser, which has been used to simulate the target sounds, is 

as follows.  

 

Triple Simple FM Model 
The synthesis model is constructed from three simple-FM arrangements which are connected in 

parallel, as illustrated in figure 1.  

   

 
Figure 1: Parallel triple FM model 

 

Simple FM Synthesis 
Each of the three simple FM arrangements is composed from a two sinusoidal oscillators, 

which are connected such that the instantaneous amplitude of the one oscillator (modulator) 

varies the frequency of the other oscillator (carrier). This configuration is shown in figure 2.  

 

 
Figure 2: Simple FM block diagram 

 

A simple ADSR envelope generator varies both the carrier amplitude and modulation index. If 

you have any further questions regarding this synthesis model please ask the interviewer.  
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Figure 8.6c: Listening test two instruction sheet three 
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8.4.2 Results and Discussion 

8.4.2.1 Piano  

The time domain waveforms, frequency spectrograms, and long-term average spectrum of 

the target piano sound at 185Hz (F#3) and the evolved triple simple FM match are 

provided in figure 8.7. The match was evolved by the CCES and achieved a relative 

spectrum error of 0.26547. 

 

  

(a) Piano target sound time-waveform           (b) FM piano match time waveform 

  

(c) Piano target sound frequency spectrogram     (d) FM piano match frequency spectrogram 

     

(e) Piano target sound long-term average spectrum         (f) FM piano match long-term average spectrum 

Figure 8.7: Piano target and matched sound time and frequency plots 
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The FM sound produced by the matching system in this experiment was noted by several 

participants to contain characteristics of the target piano sound. Subjects one, two, three 

and five, for example, noted that the certain aspects of pitch, amplitude envelope, timbre 

and character, were reproduced. These observations can be confirmed in figure 8.7. The 

overall amplitude envelope of the target and matched sounds show clear similarities, with 

maximum amplitude occurring at the onset of the sound. Each of the three simple FM 

elements within the matching synthesiser is unable to produce non-linear amplitude 

transitions independently; however, a reasonable approximation is achieved in the 

composite output. The distribution and amplitude of the lower harmonics are also well 

represented in the match. However some partials are missing and others are over-

emphasised in the match. Subject three also identified a subtle modulation in the target 

sound due to the stiffness of the piano strings, and was impressed that the matching system 

had reproduced this variation. However subject three did add that this variation was ‗over 

the top‘ and ‗too fast in the FM sound.‘ This observation is confirmed in the time 

waveforms as a somewhat periodic fluctuation in the amplitude envelope, which is faster 

and larger in magnitude in the matched sound.  

 

All subjects could identify clear differences between the sounds, stating that the FM sound 

could be easily distinguished as a synthesiser. The match was betrayed by two significant 

time-varying features. Subjects one, three, four, five and six noted that the attack segment 

of the matched sound contained a ‗frequency sweep‘ (subject one) that was not present in 

the target. The beginning of the match was identified to be ‗brassy‘ by subjects three, four 

and six, where higher frequency partials swept into the sound over a longer duration in the 

target. The second major difference was in the movement of the higher frequency 

harmonics. These artefacts are visible in the spectrogram plots as two distinct groups of 

harmonics that end abruptly approximately one and two seconds into the match. These 

harmonics were described by test subjects as ‗a sound playing backwards‘ (subject three), 

‗sweeping tones‘ (subject one), ‗FM noise‘ (subject two), ‗extra frequencies‘ (subject five) 

and ‗rogue frequencies‘ (subject six). Subject four identified that these harmonics were in 

the target sound, but not as important as other components that were missing.  

 

It is suggested that these ‗rogue harmonics‘ are caused by the under-sampling of the target 

sound in the time domain. Certain harmonics gradually rise and fall in the target sound, 

which can be observed in the spectrogram at the 15
th

 harmonic. As only 10 uniformly 

spaced frames are matched, the system has no way of knowing how partials transit 

between frames, and consequently provides its own transition. In this case the high 
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frequency harmonics recede unnaturally compared with the target sound.  

 

Results from the semantic differential ratings are provided in table 8.2 where a rating of 

one is classed as good and a rating of six, bad.  

 

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Average 

2 3 3 3 3 2 2.6 

Table 8.2: Piano semantic differential results 

 

8.4.2.2 Trumpet 

The time-domain waveforms, frequency spectrograms, and long-term average spectrum of 

the target trumpet sound at 349.23Hz (F4) and the evolved triple simple FM match are 

provided in figure 8.8. The match was evolved using the CCCES and achieved a relative 

spectrum error of 0.105399. 

 

The FM sound produced by the matching system elicited a positive reaction from all 

participants. The match was described as ‗really similar‘ (Subject one), ‗quite good‘ 

(subjects two and five) and ‗excellent‘ (subject six).  However, subject three remarked that, 

given the design of the matching synthesiser, the match was ‗not as good as it possibly 

could be‘. All participants noted that the overall pitch, timbre and amplitude envelope was 

reproduced in the target and many of the time varying attributes were also matched. 

Subject three commented on the spectral development of the match as follows: 

 

―The character in the sustain portion does actually develop in a slightly similar 

way to the original. If you listen to the original brass sound, there is actually a 

slight modulation in character as it progresses and you can hear that in the FM 

one.‖ 

 

Subject three also expressed how the match exhibits certain characteristics of a wind 

instrument at the onset of the sound. Adding that the elements of breath, identifying the 

target as a brass sound, are not represented in the match.  

 

All participants remarked upon a harmonic imbalance in the higher frequencies in the 

match that differentiated it from the target. For example, subject two described the match 

as ‗slightly too bright,‘ with ‗an extra dominant pitch‘. Subject three described a ‗strong 

octave‘ in the match as though the ‗second harmonic is standing up too much‘. Subject 
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four described an upper harmonic ‗that makes it sound metallic in the simulation‘. These 

observations can be related to the spectral analysis in figure 8.8. The long-term average 

spectrum, for example, shows that the partials above 4kHz have much larger amplitudes in 

the match than in the target. Furthermore, many of the high frequency partials are missing 

in the matched sound.  

 

  

(a) Trumpet target sound time-waveform             (b) FM trumpet match time waveform 

   

(c) Trumpet target sound frequency spectrogram        (d) FM trumpet match frequency spectrogram 

    

(e) Trumpet target sound long-term average spectrum          (f) FM trumpet match long-term average spectrum 

Figure 8.8: Trumpet target and matched sound time and frequency plots 
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Results from the semantic differential ratings are shown in table 8.3.  

 

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Average 

1 2 2 2 2 2 1.833 

Table 8.3: Trumpet semantic differential results 

 

Given the quantity of harmonics, and the shape of the spectral envelope, and the relative 

simplicity of the triple FM synthesis model, many of the harmonics are well represented in 

the match. 

 

8.4.2.3 Violin 

The time-domain waveforms, frequency spectrograms, and long-term average spectrum of 

the target violin sound at 880Hz (A5) and the evolved triple simple FM match are provided 

in figure 8.9. The match was evolved using the CCES and achieved a relative spectrum 

error of 0.163790. 

 

Several participants commented that the FM sound produced by the matching system 

accurately simulated certain characteristics of the target violin sound. For example, 

subjects one, two, three, four and five remarked on how aspects of the pitch, amplitude 

envelope and timbre of the synthesised sound matched the original violin sound. This 

correlation is evidenced in the long-term average spectrum provided in figure 8.9. The 

harmonics from the fundamental to the eighth harmonic are synthesised in the match, with 

the fourth harmonic emphasised in both sounds.  

 

Subject four perceived a longer attack time in the simulation than in the target which can 

be confirmed in the time-waveform plot of figure 8.9. Subjects one and three observed 

‗small pitch fluctuations‘ and a ‗subtle twisting in the character‘ of the target sound, which 

was also present in the match. Furthermore, subject three also commented that the system 

‗would have difficulty doing any better than that, given the complexity of the model‘. 

However, all participants noticed an absence of noise and high frequency content in the 

match, which can be observed in figure 8.9c. Remarks included, ‗the simulation seems 

duller... it‘s missing the scraping of the bow‘ (subject one), ‗the simulation isn‘t quite harsh 

enough‘ (subject two), ‗there are slightly less high frequencies in the simulation than in the 

target... the target has got a scrape, that isn‘t in the simulation‘ (subject three), ‗there 

should be a bit more high frequency content‘ (subject four) and ‗no bowing sound really on 

the simulation but that would be quite hard to get I would think‘ (subject five). 
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(a) Violin target sound time-waveform            (b) FM violin match time waveform 

 

   

(c) Violin target sound frequency spectrogram       (d) FM violin match frequency spectrogram 

     

(e) Violin target sound long-term average spectrum        (d) FM violin match long-term average spectrum 

Figure 8.9: Violin target and matched sound time and frequency plots 

 

The matching system had placed focus on the low-frequency high amplitude components 

of the frequency spectrum and ignored the noise produced by the bow entirely. Some 

participants agreed that the absence of the bowing noise made the target sound ‗better‘ or 

‗purer‘ than the target (subjects two and three), while others found the missing 

characteristics to be an essential component of the target violin (subjects one, four and six). 

Consequently, the values on the semantic differential scale varied significantly due to the 

polarised viewpoints of the test subjects.  

 

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Average 

3 1 1 5 1 4 2.5 

Table 8.4: Violin semantic differential results 
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8.4.2.4 Cymbal 

The time-domain waveforms, frequency spectrograms, and long-term average spectrum of 

the target cymbal sound and the evolved triple simple FM match are provided in figure 

8.10. The match was evolved using the CES and achieved a relative spectrum error of 

0.20456. 

 

   

(a) Cymbal target sound time-waveform             (b) FM cymbal match time waveform 

   

(c) Cymbal target sound frequency spectrogram       (d) FM cymbal match frequency spectrogram 

   

(e) Cymbal target sound long-term average spectrum        (d) FM cymbal match long-term average spectrum 

Figure 8.10: Cymbal target and matched sound time and frequency plots 

 

The cymbal tone produced a less positive response from the participants, with general 

comments including: ‗they are obviously not the same‘ (subject two), ‗I don‘t think there‘s 

anything in that FM simulation that was like a cymbal‘ (subject six) ‗[the match does not] 

sound particularly like the target‘ (subject five). The plots in figure 8.10 indicate a 

significant amount of complexity in the target sound, with inharmonic partials distributed 

throughout the frequency spectrum. The complexity of the target sound far exceeds the 
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capabilities of the triple simple FM matching synthesiser, a restriction noted by subjects 

three, four and six.  

 

Many participants compared the target and match by their amplitude functions. In figure 

8.10, the target sound follows an exponential decay with the amplitude decreasing faster at 

the beginning than at the end. The matched sound amplitude envelope is clearly shaped by 

three linear sections that approximately fit the shape of the target. Subjects two and five 

remarked that the decay time on the matched sound was too short, and subject six noted 

that the sustain period was too long.  

 

Subject three described the spectral development of the target sound to be ‗noisy 

inharmonic‘, whereas the FM sound was ‗constant inharmonic‘. This effect was also 

observed by subject six, who commented that the simulation had discernable pitch that the 

target did not. The spectrogram plots shown in figure 8.10 indicate that target sound does 

exhibit inharmonic peaks, but the energy of the partials is distributed across all 

frequencies. However, the match clearly targets certain frequencies and not others. Given 

that the FM parameters only enable the variation of partial amplitudes at fixed frequencies, 

this characteristic is endemic to the synthesis model; broadband noise, as featured in the 

target sound, exceeds the capabilities of the matching synthesiser.  

 

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Average 

5 5 5 2 5 6 4.667 

Table 8.5: Cymbal semantic differential results 

 

8.5  Chapter Summary and Conclusions 

Two experiments have examined the relationships between the results produced by the 

matching system developed in previous chapters and the judgements of perceived 

similarity by expert listeners. In the first test, a group of static FM tones were ranked by 

the relative spectrum error metric and by six human listeners. The results indicated 

significant positive correlation between the subjective evaluations of the test participants 

and the automatic measure of error employed by the matching system. Some variation 

between the two suggested that the metric could not be assumed as a direct measure of 

perceptual similarity. The relative spectrum error measure presents an unbiased 

comparison in the frequency-domain. However, the human auditory system uses a more 

sophisticated form of analysis. A better matching system might be achieved by 

incorporating bias toward spectral features which are important to the human auditory 
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system. This may include considerations for frequency masking and equal loudness curves 

(Zwicker and Fastl, 1999), as considered by Riionheimo and Välimäki (2003), the balance 

and significance of harmonics and inharmonics (So and Horner, 2004), critical bands, 

noise bands and spectral envelopes, for example. Due to an unbiased view of similarity, the 

system may currently be misled by partials of large magnitude but limited perceptual 

significance.  

 

The second test gathered feedback on the performance of the system when matching 

acoustic target sounds. The test produced a generally positive reaction from participants 

and enabled system limitations to be recognised. Match inaccuracies can be attributed to 

different types of limitations in the system. For example, the inability of the system to 

match the exponential decay and noisy components of the cymbal sound can be attributed 

to the limitations of the matching synthesiser. It is asking a great deal of the simple parallel 

FM synthesiser to produce a high quality recreation of sounds such as the cymbal 

considered in 8.4.2.4. However, there were test cases in which subjects noted that a better 

match might have been possible with the matching synthesiser. Under these circumstances, 

it is clearly the capabilities of the matching technique that limits the quality of the match. 

For example, the piano match exhibited unnatural characteristics as a result of the limited 

temporal representation of the target sound. With target variation only captured by 10 

uniformly spaced sample-points, transitions that occur between these points will be 

interpolated by the matching synthesiser and may not accurately match the development of 

the target sound. Furthermore, rapidly changing target sounds will not be sufficiently 

characterised to ensure an accurate match, which may also contribute to the poor results 

with the cymbal sound and the missing transients in the piano, violin and trumpet sounds.  

 

However, there is an additional factor in the matching technique, and that is the ability of 

the underlying optimiser to effectively control the parameters of the matching synthesiser. 

It is this last factor on which a significant proportion of the work presented on this thesis 

has been focussed. These three factors correspond directly with the components of the 

synthesis matching problem identified in section 6.3.5: the synthesis model, the similarity 

metric and the characteristics of the target sound. Future development in each of these 

components will be central to future work in synthesis parameter estimation.  
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Chapter 9 

 

Conclusions and Further Work 

 

Within this thesis, the central focus has been on the application of evolutionary 

computation to assist in the process of sound matching with the highly complex and non-

linear Frequency Modulation (FM) synthesis technique (Chowning, 1973). Consequently, 

work from both of these fields have been reviewed, explored and built upon.  

 

9.1 Thesis Summary and Conclusions 

In chapter one, the context, motivation, objectives and research question for this work were 

introduced in order to set the scene for the following chapters. A general background to the 

field of evolutionary computation was provided in chapter two, in which the principal EAs, 

intended for static objective function optimisation were introduced. Emphasis was placed 

on the ES, the framework within which the algorithms developed in later chapters were 

built. Issues relating the preconvergence issues of evolutionary algorithms in multimodal 

search spaces were reviewed in chapter three, along with the efforts which have been made 

to prevent suboptimal convergence. The concepts of species and niche were introduced and 

the factors that limit their concurrent maintenance in traditional EAs were summarised.  
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The architecture for a novel niching EA was introduced in chapter four, which extended 

the capabilities of the FCES algorithm in light of the work reviewed in chapter three. This 

algorithm was named the Clustering Evolution Strategy (CES), which was comparatively 

examined in application to a series of well known real-valued test functions. The first set of 

experiments in section 4.3.1 set out to determine the ability of the CES to locate the global 

optimum when applied to the Multimodal, Langerman and Maximum of Two Quadratics 

functions. Of all tested multimembered algorithms, the CES was shown to be the most 

robust to change in the search environment. 

 

In the second set of experiments, the niching capabilities of the CES were examined, by 

recording the number of optima maintained in comparison with the closely related FCES 

developed by Sullivan (2001). Results were produced using well known performance 

measures, and the CES was again found to consistently locate significantly more optima 

than the Fuzzy Clustering alternative. However, although the FCES exhibited significantly 

improved performance when adopting the proposed restricted cluster selection of the CES, 

with identical selection operators, the CES still demonstrated superior performance. This 

performance improvement was attributed to differences in clustering and recombination 

mechanisms.  

 

In section 4.3.3, the CES was assessed in application to high-dimensional search space 

problem domains. Performance was compared with a multi-start hill climber algorithm, 

which was composed of multiple  ESs which would have matched the CES 

performance in the earlier experimentation. The CES was demonstrated to consistently 

outperform its competitor in the higher-dimensional multimodal problems, in which the 

number of search space peaks significantly outnumbered the search points sampled at each 

generation. 

 

In chapter five, the principles of niching were applied to the CCEA architecture to enable 

the location and concurrent maintenance of multiple search space solutions at distinct 

optima. A general model for the Niching Cooperative Coevolutionary Algorithm 

(NCCEA) was introduced with a corresponding collaboration technique to enable species 

to form within each subpopulation. The intention was to preserve the benefits of parameter 

optimisation with CCES, while limiting the effects of relative overgeneralisation 

(Wiegand, 2004). Thereafter, an instance of the NCCEA model, named the Clustering 

Cooperative Coevolution Strategy (CCCES), adopting the CES as the underlying niching 

algorithm, was implemented and tested within several multimodal search space 
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environments. It was shown that the new operators, which encourage the development of 

subpopulation species, were also found to reduce the effects of relative overgeneralisation, 

and increase the likelihood of ideal (optimal) collaboration. This result was demonstrated 

in application to the MTQ function, which is known to exacerbate this pathology 

(Wiegand, 2004). Interestingly, the CCCES with six subpopulation species was found to 

outperform all multimembered algorithms, including those tested throughout chapter four. 

This performance improvement was attributed to the partitioning of the coevolving 

subpopulations into separate species, and the subsequent diverse collaboration procedure 

that provides a more methodical technique for selecting multiple collaborators than the 

simple stochastic methods adopted in previous studies (Wiegand, 2001). 

 

A review of FM synthesis and related work was provided in chapter six, forming a real-

world test environment within which to examine the performance of the developed niching 

algorithms. The application of EC to the dynamic-sound FM synthesis model itself 

constitutes a major contribution, and the ultimate motivation for this work. A contrived 

sound matching method was introduced that enables the matching technique be isolated 

from the synthesiser limitations by factoring out sounds that the synthesiser is incapable of 

matching. This enables the effectiveness of each optimisation technique to be quantified.  

The experiments reported in chapter seven of this thesis concern the application of a 

variety of EAs to the problem of sound matching with FM synthesis. Both of the novel 

algorithms proposed in this thesis, CES and CCCES, were found to consistently deliver 

multiple potential high-quality solutions, as well as the closest matches to both contrived 

and non-contrived targets, with the CCCES shown to be the most robust for navigating the 

domain of static tones and time-varying sounds. The simple CCES was also found to yield 

strong results, but only when matching time-varying sounds.  

 

It has been established that FM provides a difficult search domain, but, when the EA 

techniques are applied to a parallel implementation of the simple FM arrangement, it is 

possible to retrieve synthesis parameters that produce tones that match 75-95% of the 

spectra of the real acoustic instrument tones that were tested. For this purpose, the CCCES 

was found to be the most robust algorithm when matching both static tones and time-

varying sounds.  

 

The experimental work in chapter eight involved two listening tests with a panel of six 

subjects experienced with FM synthesis. The first test confirmed the significant positive 

relationship between spectral similarity (established by relative spectrum error), and 
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perception. However, variation in the results confirmed that the relative spectrum error 

cannot be assumed as an exact measure of perceptual similarity. Human listeners use a 

more complex analysis technique when ranking sound similarity, which is not truly 

reflected by the relative spectrum error metric. The second test explained the effectiveness 

of the most elaborate synthesis model in matching a selection of musical-instrument 

sounds. The qualitative feedback was, in general, positive and enabled limitations in the 

system to be highlighted. 

 

9.2 Contributions 

The work documented in this thesis provides several contributions to the knowledge base 

of evolutionary computation and sound synthesis and specifically the field of unsupervised 

sound matching that intersects these two fields. 

 In chapter four, a niching evolutionary algorithm was presented incorporating k-

means cluster analysis into the evolutionary cycle of a conventional evolution 

strategy to preserve population diversity and enable solutions at multiple distinct 

optima to be optimised. The algorithm was named the clustering evolution strategy 

(CES) (Mitchell and Creasey, 2007). 

 In chapter five a general model for a niching cooperative coevolutionary algorithm 

NCCEA was introduced that enables the baseline CCEA architecture to 

concurrently optimise and maintain multiple solutions at distinct optima. 

 An instance of the NCCEA was also presented in chapter five which includes the 

CES within the architecture of the cooperative coevolutionary algorithm. The 

resulting algorithm was named the clustering cooperative coevolution strategy 

(CCCES).The CCCES was then demonstrated to optimise multiple distinct optima 

while preserving the convergence characteristics of the standard architecture. 

 In chapter six, a windowed relative spectrum error measure was developed which 

addressed some of the difficulties associated with comparing sounds using 

conventional spectrum error measures (Mitchell and Pipe, 2005).  

 In chapter seven, the contrived testing method was developed that enabled the 

matching method to be viewed and tested without interference from the synthesiser 

limitations. This testing method therefore enables effectiveness of each 

optimisation technique to be quantified and compared (Mitchell and Creasey, 

2007). 
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 Also included in chapter seven, was a comparative study between standard EAs and 

the presented algorithms (CES and CCCES). The experiments revealed the 

capabilities of each algorithm when used to optimise the parameters of six 

frequency modulation synthesisers when matching both static and dynamic sounds 

(Mitchell and Sullivan, 2005), (Mitchell and Pipe, 2006) and (Mitchell and 

Creasey, 2007). Unlike previous studies, the synthesis models employed here were 

standard with unsimplified continuous parameters. 

 

The EAs proposed within this thesis contribute to the field of evolutionary computation. 

Specifically, it is hoped that these contributions will assist practitioners to find multiple 

high-fitness solutions to complex, real-world problem domains. The application work 

detailed in chapters six and seven contributes to the field of sound synthesis, using EAs to 

derive synthesis parameters that reproduce given target sounds. The contrived matching 

method may be easily implemented in future studies to enable EAs to be compared 

quantitatively in application to related matching problems. In addition to the novel 

synthesis application and algorithmic contributions of this thesis, it is hoped that the 

contrived sound matching test method will serve as a useful tool in future matching 

developments. Furthermore, the method may also be used to estimate the relative difficulty 

in matching sounds with different synthesis types.  

 

The proposed CES algorithm implements a speciation procedure by incorporating MinMax 

initialised k-means cluster analysis within the generational model of the ES. The resulting 

algorithm has been shown to produce particularly robust results when applied to complex, 

multimodal, multidimensional optimisation problems. The principles of the algorithms 

precursor, FCES, have been expanded into a novel niching algorithm that is able to 

preserve multiple solutions located at diverse regions of the search space. This diversity is 

preserved with the introduction of the new operators: restricted cluster selection, hard 

intermediate recombination, and hard centroid recombination, which enable clusters of 

solutions to evolve in isolation.  

 

The CCCES provides a new cooperative coevolutionary development that facilitates the 

concurrent optimisation of multiple search space solutions at distinct optima. This was 

achieved with the introduction of a subpopulation niching algorithm, combined with a 

collaborative procedure that encourages the maintenance of diverse solutions. The diverse 

collaboration method maximises the amount of information extracted from the interaction 

space between coevolving subpopulations to promote increased performance when applied 
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to multimodal function optimisation problems. The CCCES was found to consistently 

locate the optimum on the MTQ function, which was designed specifically to expose a 

weakness within the cooperative coevolutionary framework. The CCCES has been found 

to be particularly robust throughout all of the presented experiments, while exhibiting very 

fast rates of progress. The performance advantage is attained through the dynamic linkage 

procedure which samples the interaction space to determine optimal linkage between 

subpopulation species, such that each offspring need only participate in one collaboration 

when evaluated for fitness. This produces a cooperative coevolutionary algorithm, tuned 

for optimal collaboration, which has strong potential for optimisation in other real-world 

applications.  

 

9.3 Future Work 

This work presents an exploration of evolutionary computation applied to automatic sound 

matching with FM synthesis. As a complete system for matching sounds, some further 

development would have to be completed before the system could be used in a musical 

context, possibly in conjunction with an alternative user interface. At present, the 

computational implication of performing matches with dynamic sounds presents a major 

drawback. For example, in the final set of experiments in chapter seven, each generation of 

the CES requires the synthesis and analysis of exactly 2100 one second waveforms per 

generation. Each waveform requires the computation of six amplitude-weighted sinusoids 

and envelope generators. A single match required approximately 20 minutes computation 

using a Pentium 4 2.4GHz computer. However, as computational optimisation was not a 

priority in this work, there are numerous optimisations that could be applied to this model. 

Some ideas might be gleaned from Winduratna (1998), in which the Bessel function 

coefficients were encoded into the matching program, such that the spectra of the candidate 

sound could be synthesised directly into the frequency domain, circumventing the need for 

synthesis and time-frequency analysis. Additionally, within the same work, matches were 

performed using one simple FM configuration at a time, matching remaining partials with 

additional simple FM networks. Progressive matching techniques may prove more 

advantageous than evolving the entire synthesis space at once. However, this approach 

would require the model to be specialised, using domain-specific knowledge to enhance 

system performance; an approach which has been largely avoided in this research to keep 

the system as general as possible.   

 

A further avenue for future work is the development of synthesis interfaces that use the 



216 

matching algorithm to probe the underlying synthesis space. Some example interfaces were 

reviewed in chapter six, which could be employed to build a spectral profile for the 

proposed system to match. With sufficient optimisation, commands like more brassy, 

brighter and less harmonic may easily become available through the matching system.  

 

Through analysis of the results in this thesis, the inability to effectively match target 

sounds may be attributed to the limitations of the underlying synthesiser and the 

effectiveness of the matching technique. The contrived matching method enables the 

capabilities of the matching synthesiser to be isolated from the matching technique. By 

focusing on sounds which can be achieved by the matching synthesiser, the effectiveness 

of different matching techniques can be examined. Once an effective sound navigation 

technique is confirmed, the next limitation in matching generalised sounds is the 

capabilities of the matching synthesiser. The accuracy of the evolved match is 

circumscribed by the capabilities of the synthesiser. It has been demonstrated that, with 

fixed population size, more accurate simulations can be evolved when the complexity of 

the synthesiser is increased. There are a number of ways the FM synthesiser could be 

further enhanced to improve the quality of matches. For example, the model could be 

enlarged with additional parallel simple FM elements, oscillators could be improved to 

include feedback and non-sinusoidal waveforms and time-variation could be enhanced 

with more sophisticated envelope generators. Furthermore, due to the generalised approach 

adopted here, in which target sounds are matched via an intermediate spectral 

representation without any FM-specific knowledge, the system could be easily modified to 

optimise the parameters of alternative synthesis techniques. For example, the FM 

synthesiser could be replaced by a physical modelling, waveshaping, granular or 

subtractive synthesiser, with only minor modifications to the rest of the system.  

 

Closely related to the system limitations is the chosen representation of the target sound. In 

this study, the relative spectrum error is taken at 10 uniformly distributed time intervals. 

However, as noted in the listening tests in chapter eight, this approach may not be 

sufficient to characterise the changes in rapidly changing target sounds. Previous research 

has attempted to improve results by employing the full Short-Time Fourier Analysis 

representation (Riionheimo and Välimäki, 2003) or by biasing the distributions of time 

intervals such that more samples are positioned at the beginning of the sound (Horner, 

1998). The former of these techniques may provide unnecessarily precise target sound 

representation when target sounds develop very slowly, while the latter presupposes that 

target sounds change fastest at the beginning, which may not be the case. A more 
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‗intelligent‘ solution is to analyse the target sounds and place samples at regions of rapid 

change, to ensure that targets are represented to the required accuracy.  

 

Different analysis techniques and similarity measures may also yield results that correlate 

more accurately with the perceptual distinctions of human listeners. As demonstrated in 

chapter eight, and also noted by Hon and Horner (2001), a small relative spectrum error 

between the target and candidate sound is not always a reliable indicator of perceived 

similarity. Better matches may be achieved when the similarity measure considers other 

factors of sound timbre that may include harmonics, spectral and amplitude envelope, 

inharmonics, noise components, equal loudness contours, masking and critical-bands. The 

intermediate representation of the target sound may also be derived by alternative analysis 

procedures to the Fast Fourier Transform; for example, the constant-Q transform (Brown, 

1991), waveguide analysis (Tzanetakis et al, 2001) or Wigner Distribution (Preis and 

Georgopoulos, 1999) may result in a more tractable problem domain, and/or more accurate 

matching. Certainly, a comparative analysis between many of these different methods, and 

their corresponding affect on the complexity of the parameter-sound space mapping, would 

make a useful contribution to both the synthesis matching and content-based analysis 

research areas.  

 

There is also a significant amount of development work to be completed with the proposed 

Niching Cooperative Coevolutionary Algorithm (NCCEA) architecture, specifically the 

CCCES, developed in this thesis. Further analysis could establish exactly what advantages 

this architecture might offer over the traditional CCEA architecture. Wiegand and Sarma 

(2004), in their analysis of spatially embedded CCEAs, attribute the observed performance 

increase over the baseline CCEA, to the model‘s ability to retain diversity within 

subpopulations, thus maintaining symmetrical rates of evolutionary change in the 

coevolving subpopulations. While this might also be the case for the CCCES, it is likely 

that the dynamic linking procedure introduces an additional factor. For example, Bucci and 

Pollack (2005) propose that traditional CCEA ‗misbehaviour‘ is often caused by a lack of 

informativeness in the population. The maintenance of diversity by clustering 

subpopulations may then serve to retain information which, in turn, increases the 

likelihood of ideal collaboration. Further examination of the cooperative coevolution 

strategy could also be pursued in this context, as the rate of evolutionary change is 

intimately connected with the self-adaptive mutation operator, it may be that evolutionary 

balance, and/or informativeness are better retained using some alternative self-adaptation 

method.  
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The author hopes that this work goes some way to explore the potential of automatic self-

programming synthesisers and can imagine a time when the synthesiser interface is entirely 

detached from underlying scientific processes of sound generation. The user may then use 

their preferred sound specification or navigation interface to control any known synthesiser 

type. 
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Appendix 1 - Listening Test 1 – Results 

This appendix provides the full rests to the listening test described in section 8.3. Listed is 

the relative spectrum error of each tone, the analytical ranking results (performed by 

relative spectrum error) and the ranking results of each test subject. 

 

Target Sound 1 

Relative 

Spectrum Error 

Ranking 

Analytical Subject: 1 Subject: 2 Subject: 3 Subject: 4 Subject: 5 Subject: 6 

0.000578 1 1 1 1 1 1 1 

0.30887 2 2 2 3 2 3 2 

0.505066 3 3 3 2 3 2 3 

0.815398 4 5 5 5 4 4 4 

0.915851 5 4 4 4 5 5 5 

 

Target Sound 2 

Relative 

Spectrum Error 

Ranking 

Analytical Subject: 1 Subject: 2 Subject: 3 Subject: 4 Subject: 5 Subject: 6 

0.179469 1 1 1 1 1 1 1 

0.258194 2 2 2 2 2 2 2 

0.357446 3 5 3 3 3 3 3 

0.507881 4 3 4 4 4 4 4 

0.794542 5 4 5 5 5 5 5 

 

Target Sound 3 

Relative 

Spectrum Error 

Ranking 

Analytical Subject: 1 Subject: 2 Subject: 3 Subject: 4 Subject: 5 Subject: 6 

0.148244 1 1 1 1 1 1 1 

0.27958 2 3 3 3 3 3 3 

0.444212 3 2 2 2 2 2 2 

0.668059 4 4 4 4 4 4 4 

0.851414 5 5 5 5 5 5 5 

 

Target Sound 4 

Relative 

Spectrum Error 

Ranking 

Analytical Subject: 1 Subject: 2 Subject: 3 Subject: 4 Subject: 5 Subject: 6 

0.103175 1 1 1 1 1 1 1 

0.200043 2 2 2 2 3 2 2 

0.529532 3 3 3 3 2 3 3 

0.621401 4 4 5 5 4 4 5 

0.728357 5 5 4 4 5 5 4 

 

Target Sound 5 

Relative 

Spectrum Error 

Ranking 

Analytical Subject: 1 Subject: 2 Subject: 3 Subject: 4 Subject: 5 Subject: 6 

0.000578 1 1 1 1 1 1 1 

0.30887 2 2 2 2 2 2 2 

0.505066 3 3 3 3 3 3 3 

0.815398 4 4 4 4 5 4 4 

0.915851 5 5 5 5 4 5 5 

 


