9,465 research outputs found

    High Speed Test Interface Module Using MEMS Technology

    Get PDF
    With the transient frequency of available CMOS technologies exceeding hundreds of gigahertz and the increasing complexity of Integrated Circuit (IC) designs, it is now apparent that the architecture of current testers needs to be greatly improved to keep up with the formidable challenges ahead. Test requirements for modern integrated circuits are becoming more stringent, complex and costly. These requirements include an increasing number of test channels, higher test-speeds and enhanced measurement accuracy and resolution. In a conventional test configuration, the signal path from Automatic Test Equipment (ATE) to the Device-Under-Test (DUT) includes long traces of wires. At frequencies above a few gigahertz, testing integrated circuits becomes a challenging task. The effects on transmission lines become critical requiring impedance matching to minimize signal reflection. AC resistance due to the skin effect and electromagnetic coupling caused by radiation can also become important factors affecting the test results. In the design of a Device Interface Board (DIB), the greater the physical separation of the DUT and the ATE pin electronics, the greater the distortion and signal degradation. In this work, a new Test Interface Module (TIM) based on MEMS technology is proposed to reduce the distance between the tester and device-under-test by orders of magnitude. The proposed solution increases the bandwidth of test channels and reduces the undesired effects of transmission lines on the test results. The MEMS test interface includes a fixed socket and a removable socket. The removable socket incorporates MEMS contact springs to provide temporary with the DUT pads and the fixed socket contains a bed of micro-pins to establish electrical connections with the ATE pin electronics. The MEMS based contact springs have been modified to implement a high-density wafer level test probes for Through Silicon Vias (TSVs) in three dimensional integrated circuits (3D-IC). Prototypes have been fabricated using Silicon On Insulator SOI wafer. Experimental results indicate that the proposed architectures can operate up to 50 GHz without much loss or distortion. The MEMS probes can also maintain a good elastic performance without any damage or deformation in the test phase

    The Deformable Mirror Demonstration Mission (DeMi) CubeSat: optomechanical design validation and laboratory calibration

    Full text link
    Coronagraphs on future space telescopes will require precise wavefront correction to detect Earth-like exoplanets near their host stars. High-actuator count microelectromechanical system (MEMS) deformable mirrors provide wavefront control with low size, weight, and power. The Deformable Mirror Demonstration Mission (DeMi) payload will demonstrate a 140 actuator MEMS deformable mirror (DM) with \SI{5.5}{\micro\meter} maximum stroke. We present the flight optomechanical design, lab tests of the flight wavefront sensor and wavefront reconstructor, and simulations of closed-loop control of wavefront aberrations. We also present the compact flight DM controller, capable of driving up to 192 actuator channels at 0-250V with 14-bit resolution. Two embedded Raspberry Pi 3 compute modules are used for task management and wavefront reconstruction. The spacecraft is a 6U CubeSat (30 cm x 20 cm x 10 cm) and launch is planned for 2019.Comment: 15 pages, 10 figues. Presented at SPIE Astronomical Telescopes + Instrumentation, Austin, Texas, US

    Overview of sensors suitable for active flow control methods

    Get PDF
    Hlavným cieľom tejto bakalárskej práce bolo vytvorenie prehľadu vyvíjaných a už aplikovaných senzorov pre účely aktívneho riadenia prúdov. Senzory musia splňovať niektoré podmienky, preto výber senzorov bol naviazaný na reálnych výsledkoch testovacích programov, popis ktorých tvorí prvú časť tejto bakalárskej práce. Opis technológie a princíp fungovania senzorov je popísaný v druhej časti tejto práce.The main purpose of this bachelor thesis was to create the overview of the sensors developed for the future active flow control applications and overview the sensors already used in the active flow control applications. The sensors have to fulfil several requirements, so selection for the overview was based on the real flight test programs results, which were described in the first part of the thesis. The sensors technology description and operation principles were included in the second part of the thesis

    Mixed signal approach for rapid prototyping of a compact smart pebble for sediment transport monitoring in river beds

    Get PDF
    Low-cost accelerometers and gyro ICs were used to develop a smart sediment particle to study the sediment transport in rivers. With strap-down MEMS, battery, a processing subsystem and memory, this self contained unit captures semiprocessed data for durations up to 15 minutes. In a mixed-mode design, analog multiplier ICs with limited digital circuits transform the body frame data to a reference frame using Euler angles, with adequate accuracy despite cumulative errors. For 3D motion, up to nine sensor inputs from three orthogonal modules are coupled to a multiplexed analog processing module, and processed by a digital module for data conversion and storage. Despite the simplified mathematics used, experimental data from the proof-of-concept system provided adequate accuracy. Subsequent processing of the raw sensor data using an external PC program with smart algorithms allowed the comparison of accuracy of the mixed mode approach. The adopted mixed signal design approach helps the packaging requirements due to the specific nature of the problem with short recording durations

    Service-Oriented Multigranular Optical Network Architecture for Clouds

    Get PDF
    This paper presents a novel service-oriented network architecture to bridge the informational gap between user applications and optical networks providing technology-agnostic multigranular optical network services for clouds. A mediation layer (service plane) between user applications and network control is proposed to facilitate a mapping process between user application requests and the network services. At the network level, a multigranular optical network (MGON) is proposed and implemented to support dynamic wavelength and subwavelength granularities with different transport formats [optical burst switched (OBS), optical burst transport (OBT)], reservation protocols (one-way, two-way), and different quality-of-service (QoS) levels per service type. The service-oriented multigranular optical network has been designed, implemented, and demonstrated on an experimental testbed. The testbed consists of service and network resource provisioning, service abstraction, and network resource virtualization. The service-to-network interoperation is provided by means of a gateway that maps service requests to technology-specific parameters and a common signaling channel for both service and network resource provisioning

    An Indoor Navigation System Using a Sensor Fusion Scheme on Android Platform

    Get PDF
    With the development of wireless communication networks, smart phones have become a necessity for people’s daily lives, and they meet not only the needs of basic functions for users such as sending a message or making a phone call, but also the users’ demands for entertainment, surfing the Internet and socializing. Navigation functions have been commonly utilized, however the navigation function is often based on GPS (Global Positioning System) in outdoor environments, whereas a number of applications need to navigate indoors. This paper presents a system to achieve high accurate indoor navigation based on Android platform. To do this, we design a sensor fusion scheme for our system. We divide the system into three main modules: distance measurement module, orientation detection module and position update module. We use an efficient way to estimate the stride length and use step sensor to count steps in distance measurement module. For orientation detection module, in order to get the optimal result of orientation, we then introduce Kalman filter to de-noise the data collected from different sensors. In the last module, we combine the data from the previous modules and calculate the current location. Results of experiments show that our system works well and has high accuracy in indoor situations

    Preparation of NiO catalyst on FeCrAI substrate using various techniques at higher oxidation process

    Get PDF
    The cheap nickel oxide (NiO) is a potential catalyst candidate to replace the expensive available platinum group metals (PGM). However, the current methods to adhere the NiO powder on the metallic substrates are complicated. Therefore, this work explored the development of nickel oxide using nickel (Ni) on FeCrAl substrate through the combination of nickel electroplating and oxidation process for catalytic converter application. The approach was started with assessment of various nickel electroplating process based on the weight gain during oxidation. Then, the next experiment used the best process in which the pre-treatment using the solution of SiC and/or Al2O3 in methanol. The specimens then were carried out to short term oxidation process using thermo gravimetric analysis (TGA) at 1000 o C. Meanwhile, the long term oxidation process was conducted using an automatic furnace at 900, 1000 and 1100 o C. The atomic force microscopy (AFM) was used for surface analysis in nanometer range scale. Meanwhile, roughness test was used for roughness measurement analysis in micrometer range scale. The scanning electron microscope (SEM) attached with energy dispersive X-ray (EDX) were used for surface and cross section morphology analysis. The specimen of FeCrAl treated using ultrasonic prior to nickel electroplating showed the lowest weight gain during oxidation. The surface area of specimens increased after ultrasonic treatment. The electroplating process improved the high temperature oxidation resistance. In short term oxidation process indicated that the ultrasonic with SiC provided the lower parabolic rate constant (kp) and the Al2O3 and NiO layers were also occurred. The Ni layer was totally disappeared and converted to NiO layer on FeCrAl surface after long term oxidation process. From this work, the ultrasonic treatment prior to nickel electroplating was the best method to adhere NiO on FeCrAl substrate

    Design of an embedded microcomputer based mini quadrotor UAV

    Get PDF
    This paper describes the design and realization of a mini quadrotor UAV (Unmanned Aerial Vehicle) that has been initiated in the Systems and Control Laboratory at the Computer and Automation Research institute of the Hungarian Academy of Science in collaboration with control departments of the Budapest University of Technology and Economics. The mini quadrotor UAV is intended to use in several areas such as camera-based air-surveillance, traffic control, environmental measurements, etc. The paper focuses upon the embedded microcomputer-based implementation of the mini UAV, describes the elements of the implementation, the tools realized for mathematical model building, as well as obtains a brief outline of the control design

    The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock

    Get PDF
    In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode
    corecore