595 research outputs found

    Hierarchical robust fuzzy sliding mode control for a class of simo under-actuated systems with mismatched uncertainties

    Get PDF
    The development of the algorithms for single input multi output (SIMO) under-actuated systems with mismatched uncertainties is important. Hierarchical sliding-mode controller (HSMC) has been successfully employed to control SIMO under-actuated systems with mismatched uncertainties in a hierarchical manner with the use of sliding mode control. However, in such a control scheme, the chattering phenomenon is its main disadvantage. To overcome the above disadvantage, in this paper, a new compound control scheme is proposed for SIMO under-actuated based on HSMC and fuzzy logic control (FLC). By using the HSMC approach, a sliding control law is derived so as to guarantee the stability and robustness under various environments. The FLC as the second controller completely removes the chattering signal caused by the sign function in the sliding control law. The results are verified through theoretical proof and simulation software of MATLAB through two systems Pendubot and series double inverted pendulum

    Adaptive fuzzy observer based hierarchical sliding mode control for uncertain 2D overhead cranes

    Full text link
    © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group. This paper proposes a new approach to robustly control a 2D under-actuated overhead crane system, where a payload is effectively transported to a destination in real time with small sway angles, given its inherent uncertainties such as actuator nonlinearities and external disturbances. The control law is proposed to be developed by the use of the robust hierarchical sliding mode control (HSMC) structure in which a second-level sliding surface is formulated by two first-level sliding surfaces drawn on both actuated and under-actuated outputs of the crane. The unknown and uncertain parameters of the proposed control scheme are then adaptively estimated by the fuzzy observer (FO), where the adaptation mechanism is derived from the Lyapunov theory. More importantly, stability of the proposed strategy is theoretically proved. Effectiveness of the proposed adaptive FO-based HSMC approach was extensively validated by implementing the algorithm in both synthetic simulations and real-life experiments, where the results obtained by our method are highly promising

    An Efficient Adaptive Hierarchical Sliding Mode Control Strategy Using Neural Networks for 3D Overhead Cranes

    Full text link
    © 2019, Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Gmbh Germany, part of Springer Nature. In this paper, a new adaptive hierarchical sliding mode control scheme for a 3D overhead crane system is proposed. A controller is first designed by the use of a hierarchical structure of two first-order sliding surfaces represented by two actuated and un-actuated subsystems in the bridge crane. Parameters of the controller are then intelligently estimated, where uncertain parameters due to disturbances in the 3D overhead crane dynamic model are proposed to be represented by radial basis function networks whose weights are derived from a Lyapunov function. The proposed approach allows the crane system to be robust under uncertainty conditions in which some uncertain and unknown parameters are highly difficult to determine. Moreover, stability of the sliding surfaces is proved to be guaranteed. Effectiveness of the proposed approach is then demonstrated by implementing the algorithm in both synthetic and real-life systems, where the results obtained by our method are highly promising

    An efficient adaptive fuzzy hierarchical sliding mode control strategy for 6 degrees of freedom overhead crane

    Get PDF
    The paper proposes a new approach to efficiently control a three-dimensional overhead crane with 6 degrees of freedom (DoF). Most of the works proposing a control law for a gantry crane assume that it has five output variables, including three positions of the trolley, bridge, and pulley and two swing angles of the hoisting cable. In fact, the elasticity of the hoisting cable, which causes oscillation in the cable direction, is not fully incorporated into the model yet. Therefore, our work considers that six under-actuated outputs exist in a crane system. To design an efficient controller for the 6 DoF crane, it first employs the hierarchical sliding mode control approach, which not only guarantees stability but also minimizes the sway and oscillation of the overhead crane when it transports a payload to a desired location. Moreover, the unknown and uncertain parameters of the system caused by its actuator nonlinearity and external disturbances are adaptively estimated and inferred by utilizing the fuzzy inference rule mechanism, which results in efficient operations of the crane in real time. More importantly, stabilization of the crane controlled by the proposed algorithm is theoretically proved by the use of the Lyapunov function. The proposed control approach was implemented in a synthetic environment for the extensive evaluation, where the obtained results demonstrate its effectiveness. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Consistency of control performance in 3d overhead cranes under payload mass uncertainty

    Get PDF
    The paper addresses the problem of effectively and robustly controlling a 3D overhead crane under the payload mass uncertainty, where the control performance is shown to be consistent. It is proposed to employ the sliding mode control technique to design the closed-loop controller due to its robustness, regardless of the uncertainties and nonlinearities of the under-actuated crane system. The radial basis function neural network has been exploited to construct an adaptive mechanism for estimating the unknown dynamics. More importantly, the adaptation methods have been derived from the Lyapunov theory to not only guarantee stability of the closed-loop control system, but also approximate the unknown and uncertain payload mass and weight matrix, which maintains the consistency of the control performance, although the cargo mass can be varied. Furthermore, the results obtained by implementing the proposed algorithm in the simulations show the effectiveness of the proposed approach and the consistency of the control performance, although the payload mass is uncertain. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    An adaptive hierarchical sliding mode controller for autonomous underwater vehicles

    Get PDF
    The paper addresses a problem of efficiently controlling an autonomous underwater vehicle (AUV), where its typical underactuated model is considered. Due to critical uncertainties and nonlinearities in the system caused by unavoidable external disturbances such as ocean currents when it operates, it is paramount to robustly maintain motions of the vehicle over time as expected. Therefore, it is proposed to employ the hierarchical sliding mode control technique to design the closed-loop control scheme for the device. However, exactly determining parameters of the AUV control system is impractical since its nonlinearities and external disturbances can vary those parameters over time. Thus, it is proposed to exploit neural networks to develop an adaptive learning mechanism that allows the system to learn its parameters adaptively. More importantly, stability of the AUV system controlled by the proposed approach is theoretically proved to be guaranteed by the use of the Lyapunov theory. Effectiveness of the proposed control scheme was verified by the experiments implemented in a synthetic environment, where the obtained results are highly promising. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Linh Nguyen" is provided in this record*

    Input-Shaped Model Reference Control Using Sliding Mode Design for Sway Suppression of An Industrial Overhead Crane

    Get PDF
    Input-shaped model reference control using sliding mode design is a proven method for controlling systems with parameter variations and disturbance. However, this method has never been reported for an industrial overhead crane, which is operated under nonlinear elements such as acceleration and deceleration limits caused by inverters for driving a crane in speed control mode. The successful implementation of this method will allow the crane to be operated in “hybrid mode”, which results in the fastest response from the feedforward control technique, unity magnitude zero vibration (UMZV) and tracking performance from the feedback control. This paper shows the implementation and experimental result of the input-shaped model reference control using sliding mode design for sway suppression of an industrial overhead crane. The control scheme was implemented on an industrial grade 1-ton overhead crane using a PLC and inverters. The experiments compared the control results of the UMZV and the presented control scheme on the industrial overhead crane in the cases that the system parameters are known and uncertain. When the parameters are uncertain, the presented method, with the feedback elements, provided the advantage of reducing residual vibration, while keeping the benefits of the UMZV performance

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Model-free controller design for nonlinear underactuated systems with uncertainties and disturbances by using extended state observer based chattering-free sliding mode control

    Get PDF
    MakaleWOS:000912458400001Most of the control strategies require a mathematical model or reasonable knowledge that is difficult to obtain for complex systems. Model-free control is a good alternative to avoid the difficulties and complex modeling procedures, especially if the knowledge about the system is insufficient. This paper presents a new control scheme completely independent of the system model. The proposed scheme combines sliding mode control (SMC) with intelligent proportional integral derivative (iPID) control based on a local model and extended state observer (ESO). Although the iPID control makes the proposed method model-free, it cannot guarantee that the tracking errors converge to zero asymptotically except the system is in a steady-state regime. Therefore, the SMC is added to the control scheme to ensure the convergence by minimizing the estimation errors of the observer. The proposed iPIDSMC controller is tested in the presence of different parameter variations and external disturbances on an inverted pendulum - cart (IPC), which is a highly unstable underactuated system with nonlinear coupled dynamics. The proposed controller is compared with the PID, iPID and Hierarchical Sliding Mode Control (HSMC) for a clearer evaluation. Simulation results showed that the proposed controller is extremely insensitive to parameter variations, matched and mismatched disturbances and the control signal of the proposed method is chattering-free, even though it is based on a discontinuous control action
    corecore