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Abstract: The paper addresses a problem of efficiently controlling an autonomous underwater
vehicle (AUV), where its typical underactuated model is considered. Due to critical uncertainties
and nonlinearities in the system caused by unavoidable external disturbances such as ocean currents
when it operates, it is paramount to robustly maintain motions of the vehicle over time as expected.
Therefore, it is proposed to employ the hierarchical sliding mode control technique to design the
closed-loop control scheme for the device. However, exactly determining parameters of the AUV con-
trol system is impractical since its nonlinearities and external disturbances can vary those parameters
over time. Thus, it is proposed to exploit neural networks to develop an adaptive learning mechanism
that allows the system to learn its parameters adaptively. More importantly, stability of the AUV
system controlled by the proposed approach is theoretically proved to be guaranteed by the use of
the Lyapunov theory. Effectiveness of the proposed control scheme was verified by the experiments
implemented in a synthetic environment, where the obtained results are highly promising.

Keywords: hierarchical sliding mode control; autonomous underwater vehicle; adaptive learning;
neural network; under-actuated system; Lyapunov theory

1. Introduction

It is well-known that about 70% of our earth surface is covered by water, and there
are many underwater areas that have not been discovered by humans yet. For a long
history, humans have wanted to discover every corner of the earth but have not completely
been successful due to our own limited capability. More importantly, a lot of unexploited
resources and treasure covered by water have not been uncovered yet, which has triggered
many countries and organizations around the world to continuously invest their effort
and money to develop systems or devices that can enable them to efficiently explore
those. In fact, many manned underwater submersibles, where human pilots are required
to be on board, have been developed though they are not widely implemented due to
considerable life-threatening risks to the pilots if they are involved in long, deep and distant
journeys [1]. Therefore, more recently, there has been increasing attention in developing
unmanned autonomous underwater vehicles (AUVs). It is noted that in this work we
consider AUVs and underwater unmanned vehicles (UUVs) are similar. In other words,
these are underwater devices that can operate autonomously. For the simplicity purpose,
we now call these devices as AUVs.
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Since the AUV could operate autonomously, it promises potential to be efficiently
deployed in many underwater exploration and exploitation including scientific research
as well as military and civilian applications [2–4]. The potential applications of using
AUVs comprise exploring oil and gas resources [5] and building offshore industries [6],
monitoring ocean ecosystems [7,8], surveying and mapping sea floor [9] and inspecting
pipeline conditions [3]. In terms of scientific research, AUVs can be employed to collect
data for hydrological investigation [8] and monitor environmental parameters for marine
geosciences [5]. More importantly, AUVs are widely utilized in defense including surveil-
lance [10], rescue [3] or clearing sea mines installed by enemies [11]. Thus, continuous
improvement of efficiency of operations of AUVs is paramount in developing the devices.
It is noted that underwater environment is very uncertain and highly complicated due to
limited visibility. In ocean, for instance, environment for operations of AUVs is almost
unknown and unpredictable, where there are many unavoidable external disturbances
such as ocean currents.

One of the fundamental problems in an AUV is how to effectively and robustly con-
trol its motions given uncertainties including its own nonlinearities and unpredictable
ocean environment, where it is required to precisely present in both spatial and temporal
scales [4,12]. Controlling motions of an AUV is even more challenging due to complex-
ity of its internal electromechanical system and unavoidable but unpredictable external
disturbances including ocean currents [4,13]. In other words, in those conditions, many
parameters in the AUV system can not exactly be determined, which is burdensome for
controller design. Moreover, the AUV itself is underactuated; that is, the number of control
inputs is less than that of control outputs [14,15]. It is noted that designing controllers for
underactuated systems is a fundamental but challenging task [16–18].

In the past years, considerable research has been conducted to design motion controllers
for AUVs. For instance, the author of the work [19] proposed to exploit a proportional-integral-
derivative (PID) controller for controlling depth of Delphin2 AUV, where the parameters of
the control law are determined by the use of the Ziegler-Nichols technique. Wei et al. [20]
exploited the backstepping method to develop a control scheme based on linear state-
space dynamics to control AUVs in vertical direction, where a nonlinear observer was also
proposed to monitor disturbances in the system. In similar fashion of controlling vertical
motions of AUVs, the work [21] employs both the nonlinear H-infinity and backstepping
algorithms to develop the control law.

To maintain robustness in operations of an AUV given nonlinearities in its internal elec-
tromechanical systems and uncertainties caused unpredictable but unavoidable external
disturbances, sliding mode control (SMC) has attracted much attention from practitioners,
engineers and researchers [22]. For instance, the authors of the work [23] proposed a
second order SMC scheme for a four degrees of freedom (DoFs) Cyclops AUV though
the internal stability of the proposed system has not been proved yet [2]. Yan et al. [24]
took the parameter uncertainties and the external disturbances caused by oceanic waves
into consideration when they designed an integral fast terminal SMC algorithm for a three
DoFs linear motion AUV. Recently, Tran et al. [25] developed an indirect control strategy
to adjust vertical motions of a hybrid AUV where the pitch angle was considered. The
results demonstrate simplicity of the proposed controller; however, it was not verified
under conditions of the system parameter uncertainties [2].

Nevertheless, in the SMC schemes, it is assumed that all the parameters are determined
and certain, which is not the case for AUVs. AUVs themselves are highly nonlinear
and operate in extremely uncertain environments, e.g., deep oceans. In other words,
the parameters of the AUV and control systems are highly uncertain and impractical to
be exactly determined. Therefore, it is practically expected that those parameters are
adaptively estimated online [26,27]. Theoretically, the unknown, uncertain and nonlinear
parameters can be learned through some adaptive strategies such as neural networks and
fuzzy logic systems [25]. For instance, Chen et al. [28] exploited the radial basis function
neural network to estimate the unknown parameters in a system, which could then be used
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in a dynamic surface controller for a class of uncertain strict-feedback nonlinear systems.
In the work of synchronizing multiple mobile platforms in trajectory tracking [29], the
authors employed an adaptive neural network to learn the unknown functions. A recurrent
neural network was also utilized in designing a predictive feedback control strategy for a
class of uncertain, time-delay, dynamic and nonlinear systems [30].

By bringing robust control and adaptive learning together, in this paper, we propose
to employ the hierarchical sliding mode control (HSMC) technique to develop a robust
control scheme for AUVs. There are two levels in the proposed controller. In the first level,
there are two sliding surfaces designed for controlling the fully actuated and underactuated
outputs, respectively. To handle nonlinearities and uncertainties in the AUV systems, it is
proposed to exploit neural networks to adaptively learn the system parameters over time.
More importantly, by the use of the Lyapunov theory, we theoretically prove that stability
of the proposed control system is guaranteed. The proposed approach was validated by
the different scenarios in the synthetic simulation experiments, where the obtained results
demonstrate its practicality.

The remaining of the paper is arranged as follows. A model of an AUV is introduced
in Section 2. Section 3 presents the proposed controller, where its adaptive learning
mechanism and stability analysis are also discussed. Evaluation of the proposed algorithm
is summarized in Section 4 before conclusions are drawn in Section 5.

2. Autonomous Underwater Vehicle Model
2.1. Motion Modelling

In order to efficiently control motion of an autonomous underwater vehicle (AUV),
we consider a model with six degrees of freedom (DoFs) including surge, sway, heave, roll,
pitch and yaw [31,32], which present for both the position and orientation of the marine
device. Parameters of the model are summarized in Table 1.

Table 1. The parameters in an autonomous underwater vehicle model.

Parameters Force and Moments Velocities Positions and Angles

Motion in x direction (surge) X u x
Motion in y direction (sway) Y s y
Motion in z direction (heave) Z w z

Rotation about x axis (roll) - p -
Rotation about y axis (pitch) - q -
Rotation about z axis (yaw) N r ψ

From Table 1, it can be seen that the first three rows present positions, coordinates,
linear velocities and corresponding translational motions of a marine AUV along three x, y
and z directions. Moreover, the last three rows present its rotations, coordinates, angular
velocities and rotational motions. It is noted that controlling an AUV with six DoFs is
very complicated while in most applications roll (i.e., rotating about x axis) and pitch (i.e.,
rotating about y axis) rarely happen [23] since either roll or pitch is applied, it may cause
upside down everything inside the body of AUVs and hurt pilots. Therefore, in this work
we propose to consider a model of four DoFs including three translational motions in x, y
and z directions and rotational motion about z axis, which is presented as follows [1].

m[u̇− sr + wq− xg(q2 + r2) + yg(pq− ṙ) + zg(pr + q̇)] = X, (1)

m[ṡ− wp + ur− yg(p2 + r2) + zg(pr− ṗ) + xg(qp + ṙ)] = Y,

m[ẇ− uq + sp− zg(q2 + p2) + xg(rq− q̇) + yg(rq + ṗ)] = Z,

Izz ṙ + (Iyy − Ixx)qp + m[xg(ṡ− wq + ur)− yg(u̇− sr + wq)] = N,

where m is mass of the marine vehicle.
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Let η = [x, y, z, ψ]T define a vector of its positions along x, y and z axes and rotation
about z axis while we denote v = [u, s, w, r]T as a vector of the marine device’s linear
velocities along x, y and z axes and angular one around z axis, respectively. Hence, the
nonlinear dynamic equations in (1) can be rewritten in a matrix form as follows.{

η̇ = J(η)v,
M(v)v̇ + C(v)v + D(v)v = τ,

(2)

where τ is a vector of the control signal inputs.

J(η) =


cos(ψ) − sin(ψ) 0 0
sin(ψ) cos(ψ) 0 0

0 0 1 0
0 0 0 1

 (3)

presents rotation about z axis while

M(v) =


m + Xu̇ 0 Xẇ −myg

0 m + Yv̇ 0 Yṙ + mxg
Zu̇ 0 m + Zẇ 0
−myg mxg + Nv̇ 0 Iz + Nṙ

 (4)

is the system inertia matrix. Moreover,

C(v) =


0 −mr 0 −mxgr− a2

mr 0 0 −mygr + a1
0 0 0 0

mxgr + a2 mygr− a1 0 0

 (5)

presents the Coriolis and system radial force matrix, and

D(v) =


Xu + Xu|u||u| 0 0 0

0 Yv + Yv|v||v| 0 0
Z0|u| 0 Zw + Zw|w||w| 0

0 0 0 Kp + Kp|p||p|

 (6)

is the hydrodynamic attenuation matrix. It is noticed that the matrices J(η), M(v), C(v),
D(v) hold the following properties.

• M(v) = MT(v) > 0.
• C(v) = CT(v).
• D(v) > 0.
• J(η) is the orthogonal matrix as J−1(η) = JT(η).

2.2. Dynamics of Under-Actuated AUV Systems

It is assumed that in the proposed system one will provide control signals for driving
the marine vehicle along x and y axes. That is, there are two inputs in the control system.
However, as presented in the model (1) the system has four outputs including x, y, z and ψ,
which leads to an AUV to be considered as an underactuated device (i.e., the number of
inputs is smaller than that of outputs). To effectively deal with an underactuated control
system, we propose to mathematically split its model into fully actuated subsystem and
underactuated one. In other words, we define η = [η1, η2]

T and v = [v1, v2]
T , where

η1 = [x, y]T and η2 = [z, ψ]T denote the output states of fully actuated and underactuated
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subsystems, respectively, while v1 = [u, s]T and v2 = [w, r]T denote the corresponding
input states. The split subsystems of the model (1) are now specified by

η̇1 = J11v1 + J12v2

η̇2 = J21v1 + J22v2

M11v̇1 + (C11 + D11)v1 + M12v̇2 + (C12 + D12)v2 = τ

M21v̇1 + (C21 + D21)v1 + M22v̇2 + (C22 + D22)v2 = 0,

(7)

where

M11 =

[
m + Xu̇ 0

0 m + Yv̇

]
,

M12 =

[
Xẇ −myg
0 Yṙ + mxg

]
,

M21 =

[
Zu̇ 0
−myg Nv̇ + mxg

]
,

M21 =

[
m + Zẇ 0

0 Iz + Nṙ

]
,

C11(v) =
[

0 −mr
mr 0

]
,

C12(v) =
[

0 −mxgr− a2
0 −mygr + a1

]
,

C21(v) =
[

0 0
−mxgr + a2 −mygr− a1

]
,

C22(v) =
[

0 0
0 0

]
,

J11(v) =
[

cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
,

J12(v) =
[

0 0
0 0

]
,

J21(v) =
[

0 0
0 0

]
,

J22(v) =
[

1 0
0 1

]
,

D11(v) =
[

Xu + Xu|u||u| 0
0 Yv + Yv|v||v|

]
,

D12(v) =
[

0 0
0 0

]
,

D21(v) =
[

Z0|u| 0
0 0

]
,

D22(v) =

[
Zw + Zw|w||w| 0

0 Kp + Kp|p||p|

]
.
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Since M22 is a positive definite matrix, from (7) it yields

v̇2 = −M−1
22 [M21v̇1 + (C21 + D21)v1 + (C22 + D22)v2]. (8)

In other words,
M11v̇1 + (C11 + D11)v1 + (C12 + D12)v2 −M12M−1

12 [M21v̇1 + (C21 + D21)v1 + (C22 + D22)v2] = τ. (9)

(9) can be rewritten in a simplified form as follows.

M̄v̇1 + C̄1v1 + C̄2v2 = τ, (10)

where

M̄ = M11 −M12M−1
22 M21,

C̄1 = C11 + D11 −M12M−1
22 (C21 + D21),

C̄2 = C12 + D12 −M12M−1
22 (C22 + D22).

If one assumes that the parameters are chosen so that M̄ is a positive definite matrix,
from (10) it has

v̇1 = M̄−1(−C̄1v1 − C̄2v2) + M̄−1τ, (11)

which results in

v̇2 = −M−1
22 [M21M̄−1(τ − C̄1v1 − C̄2v2) + (C21 + D21)v1 + (C22 + D22)v2]. (12)

Substituting (11) and (12) into (7), the dynamic equations of an underactuated AUV
can be represented as follows.

η̇1 = J11v1,
v̇1 = M̄−1(−C̄1v1 − C̄2v2) + M̄−1τ,
η̇2 = J22v2,
v̇2 = −M−1

22 [M21M̄−1(C̄1v1 − C̄2v2) + (C21 + D21)v1 + (C22 + D22)v2]−M−1
22 M21M̄−1τ,

(13)

where

J12(v) =
[

0 0
0 0

]
,

J21(v) =
[

0 0
0 0

]
.

3. Adaptive Hierarchical Sliding Mode Control Law

In order to design a control system to effectively control a multi-input multi-output
(MIMO) underactuated AUV, in this section a controller based on the sliding mode control
(SMC) method is first introduced. Though the SMC is robust [26], its parameters are
required to be known. Nevertheless, in practice all the parameters in an AUV are nonlinear,
unknown and uncertain due to external disturbance such as ocean currents. Therefore, an
adaptive learning scheme to adaptively learn those parameters by using neural networks
is also presented. More importantly, stability of the proposed approach is then theoretically
analysed by the use of the Lyapunov theory.
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3.1. Control Scheme

Without loss of generality, the dynamic model of an AUV (13) can be represented in a
form of a MIMO underactuated system as follows.

η̇1 = J11v1,
v̇1 = f1(X) + g1(X)τ,
η̇2 = J22v2,
v̇2 = f2(X) + g2(X)τ,

(14)

where

X = [η1 v1 η2 v2]
T

f1(X) = M̄−1(−C̄1v1 − C̄2v2)

g1(X) = M̄−1

f2(X) = −M−1
22 [M21M̄−1(C̄1v1 − C̄2v2) + (C21 + D21)v1 + (C22 + D22)v2]

g2(X) = −M−1
22 M21M̄−1.

Now let us define the vectors of errors between the system responses and the desired
references by

e(t) =


e1
e2
e3
e4

 =


η1 − η1d

v1
η2 − η2d

v2

, (15)

where η1d is a vector of the desired translational position references of the marine device
along x and y axes while η2d is a vector of the desired translational position and rotational
angle references along and about z axis, respectively. Given the model in (14), a hierarchical
SMC (HSMC) can be designed by defining two first level sliding surfaces for the fully
actuated output η1 and the underactuated output η2, specified by{

s1 = k1e1 + e2

s2 = k2e3 + e4
(16)

where k1 and k2 are positive constants. The second level sliding surface for the whole
control system is then added by

S = λs1 + βs2, (17)

where λ and β are positive parameters. In the control context, if a HSMC law is appro-
priately designed, the second level sliding surface can eventually converge to zero [33].
In other words, the HSMC scheme should be given by two laws including switch and
equivalent control ones as follows.

τ = τeq + τsw (18)

Theoretically, the switch control law τsw is used to navigate the system states to a
particular sliding surface whilst the equivalent control law τeq is utilized to maintain those
states on the sliding surface.

Now, in order to ensure stability of the underactuated AUV given the proposed control
law, a Lyapunov function candidate of the second level sliding surface is considered by

V =
1
2

STS. (19)

To analyse the stability, first derivative V with respect to time can be computed by
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dV
dt

= ST Ṡ (20)

= ST [λṡ1 + βṡ2]

= ST [λ(k1 J11v1 + f1 + g1τ − k1η̇1d) + β(k2 J22v2 + f2 + g2τ − k2η̇2d)]

= ST
[

λ(k1 J11v1 + f1 + g1(τeq1 + τsw1 + τeq2 + τsw2)− k1η̇1d)
+β(k2 J22v2 + f2 + g2(τeq1 + τsw1 + τeq2 + τsw2)− k2η̇2d)

]
= ST

[
λ(k1 J11v1 + f1 + g1τeq1 − k1η̇1d) + β(k2 J22v2 + f2 + g2τeq2 − k2η̇2d) + τsw1(λg1 + βg2)
+τsw2(λg1 + βg2) + λg1τeq2 + βg2τeq1 + kS + σsgn(S)− (kS + σsgn(S))

]
,

where τeq = τeq1 + τeq2, τsw = τsw1 + τsw2 and sgn(·) is a sign function. k is chosen so that
the chattering phenomena can be eliminated. To guarantee stability of the underactuated
AUV, the control laws are proposed to be computed by

τeq1 = −g−1
1 (k1 J11v1 + f1 − k1η̇1d),

τeq2 = −g−1
2 (k2 J22v2 + f2 − k2η̇2d),

τsw2 = −τsw1 − (λg1 + βg2)
−1(λg1τeq2 + βg2τeq1 + kS + σsgn(S)),

(21)

which leads to
dV
dt

= ST Ṡ = −(kSTS + σSTsgn(S)) ≤ 0. (22)

Therefore, the total control signal in the proposed control approach for a marine
underactuated AUV is summarized as follows.

τ =τeq1 + τeq2 + τsw1 + τsw2 (23)

=− g−1
1 (k1 J11v1 + f1 − k1η̇1d)− g−1

2 (k2 J22v2 + f2 − k2η̇2d)

− (λg1 + βg2)
−1(λg1τeq2 + βg2τeq1 + kS + σsgn(S)).

3.2. Adaptive Learning

As presented in Section 2, in the model of the marine AUV, it is assumed that the
matrices C and D are constant. Nonetheless, in fact, accurately determining the parameters
in those two matrices given the system nonlinearity, noise and external disturbances such as
ocean currents is impractical. Thus, in this paper, it is proposed to exploit neural networks
to approximately estimate these uncertain matrices.

To this end, let us rewrite f2(X) in (14) as follows.

v̇2 = f2(v) + g2(v)τ, (24)

where

f2(v) = −M−1
22 [M21M̄−1(−C̄1v1 − C̄2v2) + (C21 + D21)v1 + (C22 + D22)v2],

g2(v) = −M−1
22 M21M̄−1.

If an approximate nonlinear function can be defined by

ς = WTh(HTv2) + ε(v), (25)

where W is an ideal weight matrix and h(·) is a Gaussian activation function, then f2(v)
can be formulated by

f2(v) = Av2 + ς(v), (26)
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where A ∈ Rn×n is a Hurwitz matrix. The definition leads to

v̇2(t) = Av2 + WTh(HTv2) + g2(v)u + ε(v) (27)

If a neural network with n neurons and N inputs is designed to approximately estimate
the weight Ŵ ∈ RN×n, (27) can approximately be presented by

˙̂v2(t) = Av̂2 + ŴTh(ĤT v̂2) + g2(v̂)u + Cṽ2(t) (28)

The errors between the exact values in (27) and their approximate estimation in (28)
can be calculated by

˙̃v2 = Acṽ2(t) + W̃Th(ĤT v̂2) + σ(v) (29)

σ(v) = WT [h(HTv2)− h(ĤT v̂2)] + [g2(v)− g2(v̂)]u + ε(v),

where Ac = A− C, ṽ2(t) = v2(t)− v̂2(t) and W̃ = W − Ŵ.

3.3. Stability Analysis

In the controller design, it is critical to analyse stability of the proposed control
algorithm, which can be used to guarantee its effectiveness in controlling an underactuated
AUV. We mathematically demonstrate stability of our proposed approach as follows.

We first define a Lyapunov function as

V =
1
2

ṽT
2 Pṽ2 + tr(W̃T F1W̃) + tr(H̃T F2H̃). (30)

We then split the Lyapunov function into two sub-functions as follows.

V1 =
1
2

ṽT
2 Pṽ2, (31)

V2 = tr(W̃T F1W̃) + tr(H̃T F2H̃). (32)

Now we compute first derivative of V1 as given by

V̇1 =
1
2
[ ˙̃vT

2 Pṽ2 + ṽT
2 P ˙̃v2] (33)

=
1
2
[(Acṽ2)

T + (W̃Th(ĤT v̂2))
T + σT(v)]Pṽ2 +

1
2

ṽT
2 P[Acṽ2 + W̃Th(ĤT v̂2) + σ(v)]

=
1
2
[ṽT

2 AT
c Pṽ2 + (W̃Th(ĤT v̂2))

T Pṽ2 + σ(v)Pṽ2 + ṽT
2 PAcṽ2 + ṽT

2 PW̃Th(ĤT v̂2) + ṽT
2 Pσ(v)]

In general, one has

XT AY = X(AY) = (AY)X = (AY)TX = YT ATX = YT AX ∀X, Y ∈ Rn×1,

AT
c P + PAc = −θ In,

where θ ≥ 0, In is an n× n identity matrix while P ∈ Rn×n is a positive definite symmetric
matrix, which leads to (33) to be simplified by

V̇1 = − θ

2
ṽT

2 ṽ2 +
1
2

ṽT
2 P[W̃Th(ĤT v̂2) + σ(v)].

In other words,

V̇1 ≤ −
θ

2
‖ṽ2‖2 + ‖ṽ2‖‖P‖(‖W̃‖h(ĤT v̂2) + σm) (34)
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In similar fashion, first derivative of V2 can be also calculated by

V̇2 = tr(W̃T F−1
1

˙̃W) + tr(H̃T F−1
2

˙̃H) (35)

= tr(W̃T F−1
1 (Ẇ − ˙̂W)) + tr(H̃T F−1

2 (Ẏ− ˙̂H))

= tr(−W̃T F−1
1

˙̂W) + tr(−H̃T F−1
2

˙̂H)

If the weight parameters can be estimated through a neural network as follows

˙̂W = −F1h(ĤT v̂2)ṽT
2 A−1

c − ψ1‖ṽ2‖Ŵ,
˙̂H = −F2sgn(v̂2)ṽT

2 A−1
c ŴT [IN − φ(ĤT v̂2)]− ψ2‖ṽ2‖Ĥ,

then V̇2 can be represented by

V̇2 =tr(W̃Th(ĤT v̂2)ṽT
2 A−1

c +
ψ1

F1
‖ṽ2‖W̃TŴ)

+ tr(ỸTsgn(v̂2)ṽT
2 A−1

c ŴT [IN − φ(H̃T ṽ2)] +
ψ2

f2
‖ṽ2‖H̃T Ĥ)

=tr(W̃Th(ĤT v̂2)ṽT
2 A−1

c +
ψ1

F1
‖ṽ2‖W̃T(W − W̃))

+ tr(ỸTsgn(v̂2)ṽT
2 A−1

c (H − H̃)T [IN − φ(H̃T ṽ2)] +
ψ2

f2
‖ṽ2‖H̃T(H − H̃)).

By using some following properties of a matrix

tr(XYT) = tr(YTX) = YTX ∀X, Y ∈ Rn×1,

tr(Z̃T(Z− Z̃T)) ≤ ‖Z̃T‖F‖Z‖F − ‖Z̃T‖2
F ∀Z, Z̃ ∈ RN×n,

(36) can be rewritten by

V̇2 =ṽT
2 A−1

c W̃Th(ĤT v̂2) +
ψ1

F1
‖ṽ2‖tr(W̃T(W − W̃)) + ṽT

2 A−1
c (W − W̃)[IN0 − φ(H̃T v̂2)]H̃Tsgn(ṽ2)

+
ψ2

F2
‖ṽ2‖tr(H̃T(H − H̃)),

which leads to

V̇2 ≤αh(ĤT v̂2)‖ṽ2‖‖W̃‖+
ψ1

F1
‖ṽ2‖(‖W̃T‖‖W‖ − ‖W̃T‖2) + α‖IN − φ(H̃T v̂2)‖‖ṽ2‖(‖W‖+ ‖W̃‖)‖H̃‖

+
ψ2

F2
‖ṽ2‖(‖H̃T‖‖H‖ − ‖H̃T‖2),

or

V̇2 ≤αhm‖ṽ2‖‖W̃‖+
ψ1

F1
‖ṽ2‖(W̄‖W̃T‖ − ‖W̃T‖2) + α‖IN − φ(H̃T v̂2)‖‖ṽ2‖(W̄ + ‖W̃‖)‖H̃‖ (36)

+
ψ2

F2
‖ṽ2‖(‖H̃T‖H̄ − ‖H̃T‖2),

where hm, W̄ and H̄ are positive bounds of h(ŶT v̂2), ‖W‖ and ‖H‖, respectively.
‖IN − φ(H̃T v̂2)‖ ≤ 1 and α = ‖A−1

c ‖.
Combining (34) and (36), one has

V̇ ≤ − θ

2
‖ṽ2‖2 + ‖ṽ2‖

(
‖P‖σm + ‖W̃‖((‖P‖+ α)hm + ψ1

F1
W̄) + (αW̄ + ψ2

F2
H̄)‖Ỹ‖

−(ψ1
F1
− α2

4 )‖W̃‖2 − (ψ2
F2
)‖H̃‖2 − ( α

2‖W̃‖ − ‖H̃‖)2

)
. (37)
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If we define

β1 =
(‖P‖+ α)hm + ψ1

l1
W̄

2
(

α2

4 −
ψ1
F1

) =
2F1‖P‖+ α)hm + 2ψ1W̄

α2F1 − 4ψ1

β2 =
αW̄ + ψ2

F2
H̄

2
(

1− ψ2
F2

) =
αF2W̄ + ψ2H̄

2(F2 − ψ2)
,

then (37) can be represented by

V̇ ≤ − θ

2
‖ṽ2‖2 + ‖ṽ2‖

(
‖P‖σm + (ψ1

F1
− α2

4 )β2
1 + (ψ2

F2
− 1)β2

2 − (ψ1
F1
− α2

4 )(‖W̃‖+ β1)
2

−(ψ2
F2
− 1)(‖H̃‖+ β2)

2 − ( α
2‖W̃‖ − ‖H̃‖)2

)
. (38)

On the other hands, if we choose

ψ1 ≥
F1α2

4
,

ψ2 ≥ F2.

Derivative of the Lyapunov function in (38) is simplified to

V̇ ≤ − θ

2
‖ṽ2‖2 + ‖ṽ2‖

(
‖P‖σm + (

ψ1

F1
− α2

4
)β2

1(
ψ2

F2
− 1)β2

2

)
(39)

Ultimately, by choosing

‖ṽ2‖ ≥
2
[
‖P‖σm + (ψ1

F1
− α2

4 )β2
1(

ψ2
F2
− 1)β2

2

]
θ

, (40)

it yields

V̇ ≤
(
− θ

2
‖ṽ2‖+ ‖P‖σm + (

ψ1

F1
− α2

4
)β2

1(
ψ2

F2
− 1)β2

2

)
‖ṽ2‖ ≤ 0, (41)

which theoretically guarantees stability of the underactuated AUV control system, follow-
ing the Lyapunov criteria.

4. Simulation Results and Discussions

In order to illustrate effectiveness of the proposed control scheme in controlling an
underactuated AUV, we conducted experiments in a synthetic environment. It is noted that
in the experiments, we selected a marine glider, a typical AUV, where its parameters are
summarized in Table 2. It is noted that these parameters were obtained from our designed
and fabricated AUV [32].

The parameters of the hierarchical SMC law were set to λ = 600, β = 2.5, k = 100,
σ = 5, k1 = 0.1 and k2 = 0.05. The other parameters in the adaptive learning mechanism

were also selected as F1 = 2, F2 = 0.2, ψ1 = 1, ψ2 = 0.3 and Ac =

[
4 2
1 3

]
. It is noted

that we employed 25 neural components in the neural network to adaptively estimate
the parameters.

To measurement the control performance, we run the simulations in 200 s and then
compared the system’s out responses with the desired references. The results are presented
in the following.

There are three scenarios that were considered in our experiments.

• In the first scenario, the desired references were set to constants and the system was
noiseless.
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• In the second scenario, the desired references were still set to constants but the system
operated under an external disturbance.

• In the last scenario, the desired references along x and y axes were set to the predefined
sinusoidal signals while the desired references along and about z axis were set to
constants. In this experiment, the system was also assumed to operate under an
external disturbance.

Table 2. The parameters of AUV system.

Parameters Values

m 18.5 (kg)
k 100
σ 5
k1 0.05
k2 5
λ 500
β 2.5
xg 0.5
yg 0.5
Xu 6.53
Ẋu 6.83× 10−6

Xu|u| −0.58
Ẋw −1.13× 10−6

Ys 0.08
Yr −1.03
Ẏs −0.85

Ys|s| −0.62
Zw 4.57
Żu 0.32
Żw −0.32× 10−6

Z0 0
Zw|w| 1.15× 10−6

Nr −12.32
Nr|r| 0.5× 10−6

Ṅs 0.32
Ṅr −2.15
Iz −12.32

It is noted that by utilizing the external disturbance, we had opportunity to verify
stability of our proposed control algorithm when the AUV system operates under noise. We
understand that the most critical external disturbance in oceans influencing on operations of
the marine devices is ocean currents. Therefore, in this work, we approximately mimicked
ocean currents by the sinusoidal noises as ∆ = [20 sin(0.01t), 10 cos(0.01t)]T for both x and
y directions, respectively. The external disturbance is depicted in Figure 1.

It is also noted that this work only focuses on a controller for AUVs. Thus, sensor
perception for obstacle detection, environment mapping and path planning is beyond scope
of this work. In other words, one can assume that those sensors are already embedded on
AUVs to serve those perception purposes.

4.1. First Scenario

In all the first experiment, it was assumed that origin of the coordinate was set to the
current location of the glider. It was then expected the marine device navigated to 11 m
and 8 m along x and y directions, respectively. The AUV was also required to sink down
5 m from the current water level while rotating about z axis at an angle of 0.6 rad once it
reached the desired location. The obtained results are demonstrated in Figure 2.
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Figure 1. An external disturbance used in the experiments.

(a) Position along x direction (b) Position along y direction

(c) Position along z direction (d) Rotation about z axis

(e) Norm of weight parameters

Figure 2. The out responses of the AUV system in the first experiment.

From Figure 2 it can be seen that all the motions of the glider happened simulta-
neously. As compared to the set point, the device reached the desired locations along
x and y directions after about 30 and 50 s, respectively. The AUV could sink down the
required depth after about 15 s while it rotated to the pre-set angle after approximately 40 s.
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There is no overshoot in motions along x and z axes as illustrated in Figure 2a,c though
the overshoots in translational and rotational motions along y axis and about z axis are
approximate 11% and 21%, respectively as shown in Figure 2b,e. More importantly, the
parameters of the system were adaptively learned over time. The learning obtained by the
adaptive learning mechanism as demonstrated in Figure 2e shows that norm of the weight
parameters reached to zero once the marine vehicle reached to the desired references.

4.2. Second Scenario

Similar to the first scenario, in the second experiment, the glider was expected to be
driven to 8 m and 5 m along x and y axes, respectively, from its current location while being
submerged down 12 m from the current water level. Though the vehicle was not set to
rotate about z axis, it operated under the external disturbance as illustrated in Figure 1. Not
surprisingly, as the obtained results are shown in Figure 3, the proposed control algorithm
controlled the marine device very well, which allowed the vehicle to be able to reach the
desired destination in less than 40 s. Interestingly, there is no overshoot in the motions
along x, y and z directions. However, under influence of the external disturbance, there
is overshoot in the rotational motion as illustrated in Figure 3e though the AUV was not
required to rotate at all. Though the peak overshoot was suppressed quickly, the rotational
motion was still fluctuated over time as a result of the external disturbance interference.
Nevertheless, the vibration over time in the rotational motion is negligible; that is, stability
of the control system was guaranteed.

4.3. Third Scenario

In the third experiment, a more complicated scenario was set up. From its current
location that was considered as the origin of the coordinate, the glider was expected to
be driven along sinusoidal trajectories [3 sin(0.01t), 2 cos(0.01t)]T in x and y directions.
However, its underactuated outputs including the translational and rotational motions
along and about z axis were set to constants of −10 m and 0 rad, respectively. In other
words, the AUV was required to be submerged down 10 m from the current water level. In
this experiment, the marine vehicle also operated under the external disturbance as shown
in Figure 1.

Being controlled by our proposed control scheme, the output responses of the AUV
over time in four DoFs (the motions along x, y, z axes and the rotation about z axis) are
demonstrated in Figure 4. It can be clearly seen that the vehicle could track the desired
references very well. Moreover, the device could submerge to the set point within first
20 s without overshoot as illustrated in Figure 4c. Regarding the rotational motion about
z axis as shown in Figure 4d, there was overshoot in the response though it happened
in very short period of time. This overshoot could be considered as noise as in practice
the corresponding actuators could not respond in that short period of time. The noise
could be caused by not only the external disturbance as can be seen in Figure 3d but more
importantly also the pre-set sinusoidal references for the motions in both x and y directions.
More interestingly, regarding adaptively learning the system parameters over time as can
be seen in Figure 4e, norm of the weight parameters could not be suppressed down to zero
as compared with those in Figures 2e and 3e but was maintained around 2 over time. The
difference was resulted in by the fact that the AUV was required to track the sinusoidal
trajectories in x and y directions, which was not the case in the first two experiments.
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(a) Position along x direction (b) Position along y direction

(c) Position along z direction (d) Rotation about z axis

(e) Norm of weight parameters

Figure 3. The out responses of the AUV system in the second experiment.

(a) Position along x direction (b) Position along y direction

Figure 4. Cont.
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(b) Position along z direction (c) Rotation about z axis

(d) Norm of weight parameters

Figure 4. The out responses of the AUV system in the third experiment.

5. Conclusions

The paper has discussed a new approach to efficiently and adaptively control AUVs. A
four DoF AUV model is considered, where the vehicle is controlled to move along x, y and z
directions and rotate about z axis to reach a desired destination. The hierarchical SMC algo-
rithm is exploited to design the control law, where its unknown and uncertain parameters
are adaptively learned by the use of neural networks. The adaptive learning mechanism
allows the marine device to robustly operate under unavoidable external disturbances such
as ocean currents. The proposed method was verified in three different possible scenarios
in a synthetic environment, where the obtained results are highly practical.

Overall, the simulation results has verified effectiveness of our proposed controller. In
other words, two levels in the sliding surfaces of our control scheme guarantee robustness
of AUV operations. Moreover, the adaptive mechanism in our design ensures AUVs
to efficiently operate in unknown and uncertain conditions. In future works, we will
implement our controller in a real-life AUV [32].
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