
Received 13 December 2022, accepted 4 January 2023, date of publication 5 January 2023,
date of current version 10 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3234864

Model-Free Controller Design for Nonlinear
Underactuated Systems With Uncertainties and
Disturbances by Using Extended State Observer
Based Chattering-Free Sliding Mode Control
ÜMİT ÖNEN
Department of Mechatronics Engineering, Necmettin Erbakan University, 42100 Konya, Turkey

e-mail: uonen@erbakan.edu.tr

ABSTRACT Most of the control strategies require a mathematical model or reasonable knowledge that is
difficult to obtain for complex systems. Model-free control is a good alternative to avoid the difficulties
and complex modeling procedures, especially if the knowledge about the system is insufficient. This paper
presents a new control scheme completely independent of the systemmodel. The proposed scheme combines
sliding mode control (SMC) with intelligent proportional integral derivative (iPID) control based on a local
model and extended state observer (ESO). Although the iPID control makes the proposed method model-
free, it cannot guarantee that the tracking errors converge to zero asymptotically except the system is in
a steady-state regime. Therefore, the SMC is added to the control scheme to ensure the convergence by
minimizing the estimation errors of the observer. The proposed iPIDSMC controller is tested in the presence
of different parameter variations and external disturbances on an inverted pendulum - cart (IPC), which is a
highly unstable underactuated systemwith nonlinear coupled dynamics. The proposed controller is compared
with the PID, iPID and Hierarchical Sliding Mode Control (HSMC) for a clearer evaluation. Simulation
results showed that the proposed controller is extremely insensitive to parameter variations, matched and
mismatched disturbances and the control signal of the proposed method is chattering-free, even though it is
based on a discontinuous control action.

INDEX TERMS Extended state observer, external disturbance, intelligent PID, model-free control, robust
control, sliding mode control, uncertainties, underactuated system.

I. INTRODUCTION
Underactuated systems are used in many applications in
different fields due to their advantages of less complexity,
low cost and energy consumption. But, using a lower number
of actuators than the degree of freedom causes dynamic
coupling between the states and instability in the system
response. Inverted pendulums (IPs) are one of the most
known underactuated systems. Their nonlinear, coupled and
extremely unstable dynamic characteristics cause the control
of inverted pendulums a challenging task and make them
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an excellent tool for testing the performances of control
techniques. However, most of the electromechanical systems
used in practical applications have parameter uncertainties
and external disturbances because of the mass variations,
actuator saturation, external forces, damping, friction, sensor
noises, etc. Therefore, proposed controllers should be robust
and insensitive to the system uncertainties and external
disturbances as well as provide a fast system response and
good tracking performance.

Various control techniques have been proposed for the
stability control of IP systems. Linear controlmethods such as
Proportional Integral Derivative (PID) [1], [3], [4], Fractional
Order PID [2] and Linear Quadratic Regulator (LQR) [1], [4]
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have been used in the control of IPs. The linear controllers
are easy to implement and very effective in control of certain
systems but use of linearized model may cause to instability
and poor closed-loop behavior since it cannot fully represent
the dynamics of nonlinear systems. Furthermore, the linear
controllers are very sensitive the parameter uncertainties
and external disturbances in general. The performance of
the linear controllers directly depends on the controller
parameters and finding optimum parameters for complex
nonlinear systems is quite difficult task. Some researchers
have used meta-heuristic algorithms such as Adaptive Swarm
Learning Process [3], Genetic Algorithm [4], Particle Swarm
Optimization [4], Artificial Bee Colony [4] to find optimal
controller gains and weighting matrices. However, a set
of controller parameters is only effective under limited
conditions and the validity region is small. Some researchers
have combined PID control with fuzzy logic [5], neural
networks [6] and Lyapunov stability theory [7] to extend the
validity region and increase the robustness. Model predictive
control (MPC) that requires an accurate system model, has
been used for the stability control of IPs [8], [9], [10]. The
major disadvantage of the MPC control is the difficulty of
obtaining an accurate model for complex nonlinear systems.
Optimal control techniques based on the minimization of the
cost functional such as Linear Quadratic Gaussian (LQG),
H∞ and H2 has been used in the control of IPs [11].
But these controllers are only optimal with respect to the
defined cost function. Both MPC and Optimal controllers
can provide robustness against the model uncertainties and
the disturbances if a sufficiently accurate system model can
be obtained. Intelligent control techniques such as Neural
Networks (NN) [12], [13] and Fuzzy Logic (FLC) [14],
[15], [16] have been frequently used in the control of IP
systems due to less model dependency and low computational
requirements. But, the NN requires a large experimental
dataset and the FLC requires knowledge of the system’s
behavior and a complex rule base for higher order systems.
Nonlinear control techniques such as Backstepping [17] and
Sliding mode control (SMC) [18], [19], [20], [21], [22] have
been frequently used in the control of nonlinear systems
with both external and internal disturbances because of
their superior stability and robustness features. The major
disadvantages of the SMC are the difficulties encountered in
its application to underactuated systems and the chattering
phenomenon, which causing the instability and damage in
practical systems. Furthermore, the most of the existing
traditional SMC approaches are insensitive only to matched
disturbances and cannot attenuate mismatched disturbances
effectively. Various SMC methods such as Terminal SMC
[18], [19], Super-Twisting SMC [20], Disturbance observer
based integral SMC [21], Fractional order SMC [22] have
been proposed to overcome these problems. Some recent
advances on SMC for the systems subject to uncertainty
and disturbance are summarized in [23]. Active Disturbance
Rejection Control (ADRC) consisting of a tracking differen-
tiator, a state observer and an output feedback controller is

an alternative control strategy used in the stability control
of pendulum systems [24], [25]. The total disturbance,
including the internal and external disturbances, is estimated
using the online state observer and decoupled from the
system by defining it as a new virtual state. This yields to
obtain a simplified system model since compensates for the
negative effects of modeling uncertainties in real time. Output
Feedback Control [26] and Event Triggered control [27], [28]
are the other methods proposed for the control of systems
affected by model uncertainties and disturbances.

Most of the aforementioned control strategies require a
system model or reasonably precise information about the
system. Based on the amount of physical and mathematical
information of the system, model-based controllers have
provided a successful control performance for many systems.
However, model-free control techniques can be used as an
effective alternative to avoid difficult and complex modeling
procedures or where there is insufficient knowledge of
the system. The model-free control techniques estimate the
dynamic behavior of the system without the requirement
of a mathematical model or any knowledge other than
input-output information and generate the appropriate control
inputs for upcoming time steps. Intelligent PID (iPID)
presented in [29], [30], and [31] is one of the most known
model-free control techniques. iPID control of inertia wheel
inverted pendulum and two-wheeled inverted pendulum is
presented in [32] and [33] respectively. Model-free control
of rotary pendulum based on classical PID and SMC is
presented in [34], Backstepping model-free control of rotary
inverted pendulum is proposed in [35] and model-free control
based on Legendre polynomials is presented in [36]. Some
intelligent techniques have been used for model-free control.
Model-free control of a single inverted pendulum based on
reinforcement learning is presented in [37], model-free adap-
tive control of rotary inverted pendulum based on long-term
predictor learning is proposed in [38] andmodel-free adaptive
output recurrent cerebellar model articulation control of
wheeled inverted pendulum is presented in [39]. All of these
studies have shown remarkable success of model-free control
techniques, especially on systems having model uncertainties
and external disturbance.

In this study, the design procedure of a novel model-free
control scheme based on the combination of iPID and SMC
control is presented. First, the iPID controller, consisting
of a local model and an extended state observer (ESO) is
designed. Then, the SMC is added to control scheme to
minimize the estimation errors of the ESO and ensures the
convergence of tracking errors to zero in finite time. Stability
analysis of the proposed controller based on Lyapunov theory
is given. The proposed control scheme is tested on a highly
unstable, nonlinear underactuated system in the presence of
diffrenet parameter variations and external disturbances. The
performance of the proposed controller is compared with
PID, iPID and HSMC controllers for a clearer evaluation.
The simulation results showed that the proposed controller is
extremely successful in terms of response speed, robustness
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and disturbance rejection ability. The main contributions of
the paper can be summarized as follows:
• Most of the control studies in the literature require
a linear/nonlinear system model or at least sufficient
information about the system. However, in practical
applications, modeling of complex systems is a very
difficult task and it is almost impossible to obtain
a precise system model after many assumptions and
linearization. In this study design procedure of a novel
model-free control methods is given. The proposed
controller does not require a system model or any
information about the system other than input-output
information. Therefore, it can be easily applied to any
complex system without complex modeling procedure.

• Most of the model-independent control methods avail-
able in the literature are learning-based methods. These
methods require complex network structures and rule
tables, as well as they have a large number of parameters
to be set and a heavy computational load. The proposed
control method is based on an extremely simple local
model compared to learning-based control methods.
This local model uses input-output information to
constantly update itself in a short time horizon and
requires much less computation.

• In addition to design procedure, the stability of the
proposed control scheme is proved based on Lyapunov
approach. Also, it is proven by the various simulation
studies that the proposed control scheme is completely
insensitive to parameter changes and it has a superior
disturbance rejection ability against the disturbances.
In most of the studies in the literature, model uncer-
tainties, parameter variations and matching disturbances
were taken into account when evaluating the controller
performance. The matched disturbances always get
involved the system via the same channel with the con-
trol input. On the other hand, mismatched disturbances
extensively exist in the real world. Different from the
matching disturbances, these disturbances act on the
system via the different channel from the control input
and dealing with them is more challenging. In this
study, a comprehensive simulation study is carried
out in which mismatched disturbances are taken into
account in addition to parameter changes and matched
disturbances. The simulation results showed that the
proposed controller is extremely effective, especially
against the mismatched disturbances.

• The proposed control scheme is chattering-free even
though it is based on a discontinuous control action. This
proves the proposed control scheme generates an ideal
sliding mode by successfully eliminating the effect of
uncertainties and disturbances that cause chattering.

II. PRELIMINARIES
A. PROBLEM STATEMENT
In real systems, unavoidable model uncertainties and dis-
turbances due to modeling simplifications, mass variations,

FIGURE 1. Schematic view of the inverted pendulum - cart system.

actuator saturation, damping, friction, sensor noise, etc. make
the control problemmuchmore difficult. One of the best ways
to deal with this problem is to design a controller that does not
require a system model.

An inverted pendulum-cart (IPC) system, one of the
best known examples of under-actuated systems, is used
to evaluate the performance of the model-free controller
proposed in this study. Because, it is an inherently highly
unstable system with nonlinear coupled dynamics in addition
to being extremely sensitive to uncertainties and disturbances.
In addition to these difficulties, since the IPC system is an
under-actuated system, two different state variables have to
be controlled with a single control signal.

In this study, the position and stability control of the IPC
system is considered. The aim of the control is to bring the
cart to the desired position in the shortest time while keeping
the pendulum stable in the vertical position, in the presence
of all model uncertainties and disturbances.

B. SYSTEM DESCRIPTION
The schematic view of the IPC system considered in this
study is given in 1. The equations of motion of the system
can be derived by Euler–Lagrange formulation as;

ẍ(t) =
(
−h12gcos(θ )sin(θ)− h1h3sin(θ )θ̇2

+ h3u(t)
)
/
(
h2h3 − h21cos

2(θ )
)

(1)

θ̈(t) =
(
−h12cos(θ )sin(θ)θ̇2 − h1h2gsin(θ)

+ h1cos(θ)u(t)
)
/
(
h2h3 − h21cos

2(θ )
)

(2)

where h1 = mpL, h2 = mc + mp, h3 = Ip + mpL2.
Here, mc and mp denotes the cart mass and the pendulum
mass, respectively, Ip denotes the moment of inertia of the
pendulum with respect to its axis on the cart. L is the
half-length of the pendulum, x(t) is the cart position and θ(t)
is the pendulum angle. u(t) is the control force applied to the
cart in x-direction.

Note that the dynamic model of the system is obtained
only for use in simulation studies and is not considered in
the controller design.

III. iPID CONTROLLER DESIGN
i-PID controller is a PID controller where the unknown
parts of the system are taken into account without any
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modelling procedure [29]. It is based on a local model which
is continuously updated via input-output information of the
system. So, the unknown ‘complex’ mathematical model is
replaced by an ultra-local model. The main advantages of
the i-PID controller can be summarized as: (i) It does not
require a system model or any knowledge about the system.
So, it can be easily implemented to every kind of complex
system which might be highly nonlinear and/or time-varying.
(ii) Besides having all the advantages of PID control, the
tuning of the gains is straight forward since the unknown
parts of the model is eliminated. (iii). Unlike many other
model-free control methods, i-PID control does not need a
large data set and complex algorithms to modelling system
behaviors. This feature makes it different from ‘‘black-box’’
models, which is valid within a certain operating range. For
a single input-single output (SISO) system, the local model
has been defined in [31] as follows:

y(v)(t) = ϕ(t) + αu(t) (3)

where y(t) is the output, u(t) is the control signal, v is the
derivation order selected as 1 or 2, α is a non-physical
constant parameter which can be chosen such that αu and yv

are of the samemagnitude. ϕ(t) is a function, which is the sum
of unknown dynamics and disturbances of the system. The
numerical value of ϕ(t) is determined at each time interval
from input-output behavior of the system. The system can be
divided into two subsystems as cart and pendulum. Based on
the iPID theory, the local models of the two subsystems can
be defined as follows.

ẍ(t) = ϕx(t)+ αxux(t) (4)

θ̈ (t) = ϕθ (t)+ αθuθ (t) (5)

Two different iPID controllers are designed for the two
subsystems as shown in Fig. 2. The first controller is
responsible for the cart position x(t) while the second one is
responsible for the pendulum angle θ (t). The control input of
the each iPID controller can be defined as;

ux(t) =
1
αx

(
Kp1ex(t) + Kd1ėx(t)

+Ki1

∫
ex(t) + ẍr (t) − ϕ̂x(t)

)
(6)

uθ (t) =
1
αθ

(
Kp2eθ (t) + Kd2ėθ (t)

+Ki2

∫
eθ (t) + θ̈r (t) − ϕ̂θ (t)

)
(7)

where Kp1,Kd1,Ki1 are the gains of the first PID controller,
Kp2,Kd2,Ki2 are the gains of the second PID controller, ϕ̂x(t)
and ϕ̂θ (t) are the estimated values of ϕx(t) and ϕθ (t)
respectively, ẍr (t) and θ̈r (t) are the second derivatives of
the reference trajectories of the state variables x(t) and θ (t) .
The state errors are defined as ex(t) = xr (t) − x(t) and
eθ (t) = θr (t)− θ(t).

TABLE 1. Characteristics of the desired step response.

Substituting (6) and (7) in (4) and (5) respectively, error
dynamics of the subsystems are obtained as follows.

ëx(t) + ϕx(t) − ϕ̂x(t) + Kp1ex(t)

+Kd1ėx(t) + Ki1

∫
ex(t) = 0 (8)

ëθ (t) + ϕθ (t) − ϕ̂θ (t) + Kp2eθ (t)

+Kd1ėθ (t) + Ki1

∫
eθ (t) = 0 (9)

Estimation errors can be defined as ϕ̃x(t) = ϕx(t) − ϕ̂x(t)
and ϕ̃θ (t) = ϕθ (t) − ϕ̂θ (t) ). It is obvious that the steady
errors of the closed loop system depend on the controller
gains Kp1,Kd1,Ki1,Kp2,Kd2,Ki2 and the estimation errors
ϕ̃x(t) and ϕ̃θ (t) .

Assumption 1: The unknown lumped disturbances ϕx(t)
and ϕθ (t) are continuous and their derivatives ϕ̇x and ϕ̇θ
satisfy ‖ϕ̇x(t)‖ ≤ γx and ‖ϕ̇θ (t)‖ ≤ γθ where γx and γθ are
unknown positive constants.

An Extended State Observer is designed to estimate ϕ̃x(t)
and ϕ̃θ (t) values. In addition, the controller gains are
optimized using ‘‘Simplex Search’’ algorithm. The gains
Kp1,Kd1 and Ki1 are optimized according to the desired step
response of the cart position x(t) whereas the gains Kp2,Kd2
andKi2 are optimized to keep the pendulum angle θ (t) within
a very limited range close to zero. Desired pendulum angle
range is selected as ±0.01 rad and the characteristics of the
desired step response are given in Table 1.
Besides having a simple structure, the ESO can efficiently

estimates both the system states and the total disturbance,
which is sum of the model uncertainties and external
disturbances. It only requires input-output information of the
system and can be expanded corresponding to the number of
system states.The subsystems in (4) and (5) can be written
in state-space form as follows by defining ϕx(t) and ϕθ (t)
as additional state variables such as x3(t) = ϕx(t) and
θ3(t) = ϕθ (t) .

ẋ1(t) = x2(t)
ẋ2(t) = ϕx(t) + αxux(t)
ẋ3(t) = ϕ̇x(t)

(10)


θ̇1(t) = θ2(t)
θ̇2(t) = ϕθ (t) + αθuθ (t)
θ̇3(t) = ϕ̇θ (t)

(11)
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FIGURE 2. iPID control scheme of the inverted pendulum system.

The extended state observers for the subsystems given in (10)
and (11) can be designed as

˙̂x1(t) = x̂2(t) + βx1x̃1(t)
˙̂x2(t) = x̂3(t) + βx2x̃1(t) + αxux(t)
˙̂x3(t) = βx3x̃1(t)

(12)


˙̂
θ1(t) = θ̂2(t) + βθ1θ̃1(t)
˙̂
θ2(t) = θ̂3(t) + βθ2θ̃1(t) + αθuθ (t)
˙̂
θ3(t) = βθ3θ̃1(t)

(13)

where x̂1(t), x̂2(t), θ̂1(t), θ̂2(t) are the estimations of
x1(t), x2(t), θ1(t), θ2(t) and x̂3(t), θ̂3(t) are the estimations
of ϕx(t) and ϕθ (t) respectively. βx1, βx2, βx3, βθ1, βθ2, βθ3
are the observer gains, x̃1(t) = x1(t) − x̂1(t) and θ̃1(t) =
θ1(t) − θ̂1(t) are the estimation errors of the x1(t) and
θ1(t) respectively. From (8)-(13), the estimation errors of the
observers can be defined as

˙̃x1(t) = x̃2(t) − βx1x̃1(t)
˙̃x2(t) = x̃3(t) − βx2x̃1(t)
˙̃x3(t) = ϕ̇x(t) − βx3x̃1(t)

(14)


˙̃
θ1(t) = θ̃2(t) − βθ1θ̃1(t)
˙̃
θ2(t) = θ̃3(t) − βθ2θ̃1(t)
˙̃
θ3(t) = ϕ̇θ (t) − βθ3θ̃1(t)

(15)

The state errors of the observers can be defined as X̃ =
[x̃1, x̃2, x̃3]T and θ̃ = [θ̃1, θ̃2, θ̃3]T . Now, the overall
estimation error dynamics for the subsystems in (4) and (5)
can be written in the following form.

˙̃X = AxX̃ + Bx (16)

Ax =

−βx1 1 0
−βx2 0 1
−βx3 0 0

 ,Bx =

 0
0
ϕ̇x

 (17)

and
˙̃
θ = Aθ θ̃ + Bθ (18)

Aθ =

−βθ1 1 0
−βθ2 0 1
−βθ3 0 0

 ,Bθ =

 0
0
ϕ̇θ

 (19)

From (16) and (17), it is obvious that Ax is a Hurwitz matrix
under the condition that βxi > 0, i = 1..3, so there exists a
positive definite matrix Px such that

AxTPx + PxAX = −Qx (20)

for any given positive definite matrix Qx. Defining a
Lyapunov candidate

V̇ ˜(X) = X̃
T
PxX̃ (21)

and evaluating V̇ ˜(X) along (21)

V̇ ˜(X) = ˙̃X
T
PxX̃ + X̃

T
Px
˙̃X

= (AxX̃ + Bx)TPxX̃ + X̃
T
Px(AxX̃ + Bx)

= X̃
T
AxTPxX̃ + X̃

T
PxAxX̃ + 2BxTPxX̃

= −X̃
T
QxX̃ + 2BxTPxX̃

≤ −λmin(Qx)‖X̃‖2 + 2γx‖Px‖‖X̃‖
= ‖X̃‖(λmin(Qx)‖X̃‖ − 2λx‖Px‖ (22)

Therefore, the norm of the estimation error X̃ is bounded by

‖X̃‖ ≤
2γx‖Px‖
λmin(Qx)

(23)

within finite time where λmin(.) is the smallest eigenvalue
of a matrix. If the same process is applied to the second
subsystem, whose error dynamics is given in (18) and (19),
it can be seen that norm of the estimation error θ̃ is bounded
within finite time by

‖θ̃‖ ≤
2γθ‖Pθ‖
λmin(Qθ)

(24)

Lemma 1: [40] Given a differentiable continuous function
9(t),∀t ε [t0, t1] satisfying δ1 ≤ ‖9(t) ‖ ≤ δ2 with
the positive constants δ1 and δ2. Its derivative 9(t) is also
bounded according to ‘‘Mean Value Theorem’’. Therefore,
the estimation errors of the lumped disturbances ϕx(t) and
ϕθ (t) are bounded.

Assumption 2: For ∀t ε R+, the unknown lumped distur-
bances ϕx(t) and ϕθ (t) of the subsystems are bounded. That
is to say there exists positive constants that the inequalities
‖ϕ̃x‖ ≤ ϕxup and ‖ϕ̃θ‖ ≤ ϕθup are satisfied.
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The observer gains βx1, βx2, βx3, βθ1, βθ2, βθ3 can be
computed from the characteristic polynomial of the ESO. The
observer pole ωESO is usually placed 3 - 10 times to the left of
the closed loop pole ωC to ensure that the observer dynamics
are fast enough. The respective solutions for the observer
gains are as follows.

βx1 = βθ1 = 3ωESO,

βx2 = βθ2 = 3ωESO2,

βx3 = βθ3 = 3ωESO3

ωESO = (3− 10)ωc

(25)

It should be noted that the estimation error of the ESO
monotonically decreases with increasing observer bandwidth
in the absence of an accurate system model.

IV. iPIDSMC CONTROLLER DESIGN
The effectiveness of the control scheme depends on the
success of the observer. As the estimation error increases,
the control performance will decrease. Therefore, a SMC
controller has been added to control scheme in order to
minimize the observer errors.The proposed iPIDSMC control
scheme is shown in Fig. 3. A separate SMC controller was
designed for each subsystem and added to the corresponding
iPID controller.

SMC control law consists of two parts as equivalent control
and switching control. Equivalent control drives the system
states to the sliding surface and switching control keeps the
system states on the sliding surface. The total control input of
the SMC is defined as;

us(t) = ueq(t) + usw(t) (26)

where ueq(t) denotes the equivalent control signal and usw(t)
denotes the switching control. Now the control inputs for the
subsystems are written as follows.

ux(t) =
1
αx

(
Kp1ex(t) + Kd1ėx(t)

+Ki1

∫
ex(t) + ẍr (t) − ϕ̂x(t)

)
+ usx(t) (27)

uθ (t) =
1
αθ

(
Kp2eθ (t) + Kd2ėθ (t)

+Ki2

∫
eθ (t) + θ̈r (t) − ϕ̂θ (t)

)
+ usθ (t) (28)

Substituting (6) and (7) into (4) and (5) respectively, the
error dynamics of the subsystems are obtained as follows.

ëx(t) + ϕ̃x(t) + Kp1ex(t) + Kd1ėx(t)

+Ki1

∫
ex(t) + αxusx(t) = 0 (29)

ëθ (t) + ϕ̃θ (t) + Kp2eθ (t) + Kd2ėθ (t)

+Ki2

∫
eθ (t) + αθusθ (t) = 0 (30)

Sliding surfaces of the cart and pendulum subsystems can
be defined as,

sx(t) = c1ex(t) + ėx(t) (31)

sθ (t) = c2eθ (t) + ėθ (t) (32)

where c1 and c2 are positive constants. Derivatives of (31)
and (32) are as follows.

ṡx(t) = c1ėx(t) + ëx(t) (33)

ṡθ (t) = c2ėθ (t) + ëθ (t) (34)

If we subtract ëx(t) in (29) and ëθ (t) in (30) and substitute
them into (33) and (34) respectively and then equate to zero,
the equivalent control laws can be obtained as follows.

ueqx (t) =
1
αx

(
c1ėx(t) − ϕxup − Kp1ex(t)

−Kd1ėx(t) − Ki1

∫
ex(t)

)
(35)

ueqθ (t) =
1
αθ

(
c2ėθ (t) − ϕθup − Kp2eθ (t)

−Kd2ėθ (t) − Ki2

∫
eθ (t)

)
(36)

In order to satisfy the reaching conditions, switching
control laws are selected as,

uswx (t) =
1
αx

(
κxsx(t) + ηxsgn

(
sx(t)

))
(37)

uswθ (t) =
1
αθ

(
κθ sθ (t) + ηθ sgn

(
sθ (t)

))
(38)

where κx , κθ , ηx and ηθ are positive constants.
The total SMC input for the cart subsystem can be obtained

by substituting (37) and (38) in (26) as follows.

usx(t) =
1
αx

(
c1ėx(t) ϕxup − Kp1ex(t) − Kd1ėx(t)

−Ki1

∫
ex(t) + κxsx(t) + ηxsgn

(
sx(t)

))
(39)

Similarly, total SMC input for the pendulum subsystem is
obtained as

usθ (t) =
1
αθ

(
c2ėθ (t) − ϕθup − Kp2eθ (t) − Kd2ėθ (t)

−Ki2

∫
eθ (t) + κθ sθ (t) + ηθ sgn

(
sθ (t)

))
(40)

Substituting (39) into (27) and (40) into (28), the total control
inputs of the cart and pendulum subsystems are obtained as

ux(t) =
1
αx

(
ẍr (t) − ϕ̂x(t) − ϕxup + c1ėx(t)

+ κxsx(t) + ηxsgn
(
sx(t)

))
(41)

uθ (t) =
1
αθ

(
θ̈r (t) − ϕ̂θ (t) − ϕθup + c2ėθ (t)

+ κθ sθ (t) + ηθ sgn
(
sθ (t)

))
(42)

Finally, the total control input of the system can be as follows.

u(t) = ux(t) + uθ (t)
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FIGURE 3. iPIDSMC control scheme of the inverted pendulum system.

=
1
αx

(
ẍr (t) − ϕ̂x(t) − ϕxup + c1ėx(t)

+ κxsx(t) + ηxsgn
(
sx(t)

))
+

1
αθ

(
θ̈r (t) − ϕ̂θ (t) − ϕθup + c2ėθ (t)

+ κθ sθ (t) + ηθ sgn
(
sθ (t)

))
(43)

Substituting (41) into (4) and (42) into (5) yields

ëx(t) + ϕ̃x(t) − ϕxup + c1ėx(t)

+ κxsx(t) + ηxsgn
(
sx(t)

)
= 0 (44)

ëθ (t) + ϕ̃θ (t) − ϕθup + c2ėθ (t)

+ κθ sθ (t) + ηθ sgn
(
sθ (t)

)
= 0 (45)

In order to analyze the stability of the system, Lyapunov
function candidate can be selected as

V (t) =
1
2
(sx2 + sθ 2) (46)

From (33), (34), (44) and (45), derivative of the Lyapunov
function candidate is written as,

V̇ (t) = sx ṡx + sθ ṡθ
= sx

(
ϕxup − ϕ̃x − κx − ηxsign(sx)

)
+ sθ

(
ϕθup − ϕ̃θ − κθ − ηθ sign(sθ )

)
= −κxsx2 − sx

(
ηxsign(sx)− (ϕxup − ϕ̃x)

)
− κθ sθ 2 − sθ

(
ηθ sign(sθ )− (ϕθup − ϕ̃θ )

)
≤ −κxsx2 − |sx |

(
ηx − |ϕxup − ϕ̃x |

)
−κθ sθ 2 − |sθ |

(
ηθ − |ϕθup − ϕ̃θ |

)
(47)

Therefore, according to boundedness of ϕ̃x and ϕ̃θ , it is
ensured that V̇ (t) < 0 in case of ηx > 2ϕxup and ηθ > 2ϕθup.

V. RESULTS AND DISCUSSION
Various simulation studies are carried out to examine the
response speed, robustness and disturbance rejection ability
of the proposed controller. For a clearer evaluation, control

results of the proposed iPIDSMC controller are compared
with the classical PID, iPID and hierarchical sliding mode
control (HSMC) results. The parameters of the system used
in the simulation studies are, mc = 0.5 kg, mp = 0.2
kg, L = 0.3 m. The controller gains of the PID and iPID
are optimized by ‘‘simplex search’’ algorithm in Matlab
Response Optimizer Toolbox whereas the parameters of the
HSMC and the proposed iPIDSMC controller are determined
by trial and error method. As a result of the optimization,
parameters of the PID and iPID controller are found as Kp1 =
2.2, Kd1 = 2.3, Ki1 = 0.01, Kp2 = 1, Kd2 = 1.1, Ki2 = 0.1,
αx = 2.5, αθ = 33.4. The parameters of the iPIDSMC are
determined as c1 = 1.5, c2 = 31, κx = 20, κθ = 20, ηx =
0.5, ηθ = 0.5 by trial and error method. The upper limits
of the disturbances and the observer frequency are selected
as, ϕxup = 0.1, ϕθup = 0.05, ωESO = 20 respectively. All
the simulations are started from the vertical upward position
where the pendulum was unstable. The initial conditions of
the system are x = 0, θ = 0o, ẋ = 0, θ̇ = 0. In all of the
simulation studies, the reference position was taken as 0.5 m
step input for the cart and 0o for the pendulum.
Simulation 1: The performances of the controllers are

tested under the ideal system conditions without param-
eter variations or external disturbances and the controller
responses are given in Fig. 4. In terms of the response speed,
it is clearly seen that the HSMC and the iPIDSMC shows a
better performance than the PID and the iPID controllers. For
both the cart position and the pendulum angle, the iPIDSMC
and the HSMC reached the reference about one second before
the PID and iPID controller. Also, no steady-state errors are
observed in any of the controller responses.
Simulation 2: The robustness of the controllers against the

parameter variations are tested in the second simulation study.
Controller responses when the cart and pendulum masses
are increased by 100% (mp = 0.4 kg, mc = 1 kg) and
200% ( mp = 0.8 kg and mc = 2 kg) are given in Fig. 5
and Fig. 6 respectively. It is seen that the PID controller is
extremely sensitive to parameter variations, shows excessive
oscillations in the response at 100% mass increase and
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FIGURE 4. Controller responses in the ideal conditions (no parameter
changes or external disturbances).

FIGURE 5. Control responses when the cart and pendulum masses are
increased by 100%.

becomes unstable at 200% mass increase. Although the
iPID controller is less sensitive to parameter variations than
the PID controller, there is a significant overshoot in the
cart position and some oscillation at the pendulum angle.
However, both the iPIDSMC and the HSMC appears to
be extremely robust to the parameter variations. Although
the cart and the pendulum masses are increased by 200%,
no oscillation is observed neither in the cart position nor in
the pendulum angle. On the other hand, in both cases, the
HSMC appears to be slightly faster than the iPIDSMC.

Simulation 3: The disturbance rejection ability of the
controllers against the matched disturbances are tested in the

FIGURE 6. Control responses when the cart and pendulum masses are
increased by 200%.

third simulation study. First, d(t) = 0.1sin(π t) sinusoidal
disturbance is applied to the system for 10 seconds and than a
pulse disturbance with a width of 0.05 andmagnitude of 0.2 N
was applied to the system at the 5th second. The controller
responses are given in Fig. 7 and Fig. 8, respectively. It can
be seen from Fig. 7 that the PID control response has
a significant amount of oscillation in case of sinusoidal
disturbance. Although the iPID controller can suppress
the disturbance a bit, there is still a significant amount
of oscillation in the response. The iPIDSMC can largely
suppress the disturbance except very small oscillations.
On the other hand, it can be seen from Fig. 7 that the HSMC
can greatly suppress the sinusoidal disturbance and provide
an almost smooth response. It can be seen from Fig. 8 that the
PID and the iPID responses shows large deviations in case of
the pulse disturbance but the iPIDSMC can largely eliminates
the disturbance. On the other hand, the best performance is
achieved from the HSMC.

Simulation 4: In the fourth simulation study, the distur-
bance rejection abilities of the controllers are tested against
the mismatched disturbance that acts from a different channel
than the control input. First, d(t) = 0.1sin(π t) sinusoidal
disturbance and than pulse disturbance with a width of
0.05 and magnitude of 0.2 N is applied to system and
the controller responses are given in Fig. 9 and Fig. 10,
respectively. It can be seen from Fig. 9 that the PID, iPID
and HSMC controllers gave a highly oscillatory response
against to sinusoidal disturbance but the iPIDSMC controller
largely eliminated the mismatched disturbance and provided
an almost smooth response for both the cart position and
the pendulum angle. Similar results are obtained for the
pulse disturbance as seen from Fig. 10. While the iPIDSMC
provides an almost smooth response by greatly suppressing
the pulse disturbance, there are large deviations in the PID,
iPID and HSMC controllers responses.
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FIGURE 7. Control responses in case of matched sinusoidal disturbance.

FIGURE 8. Control responses in case of matched pulse disturbance.

Simulation 5: As the final simulation study, all of the
matched and unmatched sinusoidal and impact disturbances
in the previous simulations are applied to the system at the
same time, and in addition, the cart and the pendulum masses
are increased by 100%. Control responses and control forces
are given comparatively in Fig. 11 and Fig. 12 respectively.
This simulation clearly demonstrates the superior success
of the proposed iPIDSMC controller in terms of robustness
and disturbance rejection ability. As can be seen from
Fig. 11, both the PID and iPID controllers give a highly
oscillating response to disturbance inputs and mass increase.
Although the HSMC controller has somewhat eliminated the
effects of disturbances and mass increase, there is still some
oscillation in both the cart and pendulum angle response.

FIGURE 9. Controller responses in case of mismatched sinusoidal
disturbance.

FIGURE 10. Controller responses in case of mismatched pulse
disturbance.

On the other hand, the proposed controller gives an almost
smooth response by largely eliminating the disturbances and
parameter variations.

It can be seen from Fig. 12 that all control forces are
within the applicable actuator limits. Furthermore, although
both are based on a discontinuous control law, it can be
seen that chattering occurs in the HSMC control signal, but
the proposed control method is chattering-free. The term
chattering describes the phenomenon of finite-frequency,
finite-amplitude oscillations appearing in many sliding mode
implementations. These oscillations are caused by the high
frequency switching of a sliding mode controller exciting
unmodeled dynamics in the closed loop [41]. An asymptotic
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FIGURE 11. Control responses when the cart and pendulum masses are
increased by 100% in addition to the total disturbance (sum of the
matched and mismatched sinusoidal and pulse disturbances).

FIGURE 12. Control forces in case of increasing the cart and pendulum
masses by 100% in addition to the total disturbance (sum of the matched
and mismatched sinusoidal and pulse disturbances).

observer in the control loop can eliminate the chattering
despite discontinuous control laws. The key idea is to gen-
erate an ideal sliding mode in the observer loop rather than in
the main control loop, and this is possible since the observer
loop does not contain any unmodeled dynamics [41]. The
results indicate that the proposed control method successfully
eliminates all unmodeled dynamics, resulting in an ideal
sliding mode that ensures that the control signal is chattering-
free.

VI. CONCLUSION
External disturbances and parameter variations often encoun-
tered in practical applications always cause adverse effects
to the stability and performance of control systems. In this
study, we proposed a model-free control scheme based on
iPID and SMC for the systems with parameter variations
and external disturbances. The proposed control scheme
is basically built on the iPID control theory. Since the
effectiveness of the iPID control depends on the success of the

observer, the SMC controller was added to the control scheme
in order to minimize the estimation errors and guarantee
that the tracking errors converge to zero asymptotically.
Stability of the proposed control scheme has been proven
by Lyapunov stability analysis. An inverted pendulum - cart
system was selected to investigate the performance of the
proposed controller because, in addition to underactuated,
unstable, and non-linear properties, unmodeled dynamics,
load variations, and external disturbances make the systems
much more difficult to control. The proposed control scheme
has been tested in terms of response speed, robustness
and disturbance rejection ability with different simulation
studies, including parameter variations and disturbances and
its performance has been compared with the conventional
PID, HSMC and iPID controllers. Simulation results show
that the performance of the proposed controller is much better
than the other controllers. Also it is seen that the proposed
controller is totally insensitive to parameter variations as
well as it has a superior disturbance rejection ability against
the matched and mismatched disturbances. Furthermore, the
control signal of the proposed method is chattering-free, even
though it is based on an SMC using discontinuous control
action. On the other hand, although the proposed control
method is based on a simple theory, it has a large number of
parameters that must be adjusted to achieve the proper control
effect. The biggest challenge in this study was the proper
determination of control parameters by trial and errormethod.
In future works, it is aimed to systematically determine the
controller parameters by using genetic algorithm, particle
swarm optimization, bee algorithm or similar optimization
methods.
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