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Abstract: The paper addresses the problem of effectively and robustly controlling a 3D overhead
crane under the payload mass uncertainty, where the control performance is shown to be consistent.
It is proposed to employ the sliding mode control technique to design the closed-loop controller
due to its robustness, regardless of the uncertainties and nonlinearities of the under-actuated crane
system. The radial basis function neural network has been exploited to construct an adaptive
mechanism for estimating the unknown dynamics. More importantly, the adaptation methods
have been derived from the Lyapunov theory to not only guarantee stability of the closed-loop
control system, but also approximate the unknown and uncertain payload mass and weight matrix,
which maintains the consistency of the control performance, although the cargo mass can be varied.
Furthermore, the results obtained by implementing the proposed algorithm in the simulations show
the effectiveness of the proposed approach and the consistency of the control performance, although
the payload mass is uncertain.

Keywords: 3D overhead crane; adaptive control; neural network; load uncertainty; sliding mode
control; Lyapunov theory

1. Introduction

A 3-dimensional (3D) overhead crane, also called a gantry crane, increasingly plays a crucial role
in lifting and transporting goods and containers at seaports or manufactories, where its operations
are required to be extremely precise and safe [1]. Nonetheless, an overhead crane is modeled as an
under-actuated mechanical system where the number of control signals it has is less than the number
of its degrees of freedom (DoF). The under-actuation can result in unexpected swings of the payload.
More importantly, given the uncertainty of the payload mass, the unexpected swings can endanger the
lives of people and demolish the surrounding machineries and goods [2]. In order to guarantee safety
and precision in operating a gantry crane, the reliability and stability of the control law for the crane
are indispensable indicators in designing a controller.

Many control strategies for a crane have been proposed in the past decades. A fairly simple
controller can be presented by the open-loop control law, where implementing it on a crane is
straightforward, since no sensor is required [3–6]. Nevertheless, the overhead crane relying on the
open-loop controller can be quite sensitive to external disturbances such as rain and wind when it is
operating in outdoor environments [7]. On the contrary, a closed-loop controller can use readings from
the integrated sensors to adjust the actuators of the crane so that its operations are stabilized, even
under external noises or system uncertainties [8]. The first example of a closed-loop controller is the
proportional-derivative control law based on LaSalle’s invariance set theorem, which was proposed for
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a two DoF crane [9]. Similarly, a nonlinear two feedback control scheme was proposed [10] to reduce
a crane’s swing angles when an object is transported to a new place. The authors of the work [11]
linearized the partial feedback of the nonlinear dynamics on a 2-dimensional (2D) crane, which allowed
them to design a controller to instantly control both the trolley position and sway angles. By extending
the 2D nonlinear partial feedback control approach from [11], Le et al. [12,13] designed asymptotically
stabilized control strategies for a 3D gantry crane.

In fact, it is highly-expected that a crane can be controlled robustly due to its nonlinearities
and uncertainties, including its under-actuated mechanism, its uncertain system parameters, and the
external disturbances from the working environment. To this end, some other works have proposed
to employ the sliding mode control (SMC) technique [14–22] in designing a robust controller for
a gantry crane. For instance, the authors in [17,19] proposed a control law with a sliding surface
linearly-constituted from the actuated state sliding subsurface and the under-actuated state errors.
Likewise, Qian et al. [18,23] utilized the state errors as an intermediate variable to develop the
second-order sliding surface. However, the hierarchical SMC (HSMC) technique has attracted more
attention from researchers, practitioners and engineers who have designed a robust controller for
an under-actuated system. Fundamentally, the HSMC method is formed by multiple layers of the
sliding surfaces. In [24], the authors proposed that the first-level sliding surface is constructed by the
state variable and their weights while the second-level one is simply linearly combined by multiple
first-order layers [24]. Some other researchers designed the HSMC scheme in a different manner.
For instance, Wang et al. [25] employed the sliding surfaces of the first and second subsystems to
build the second-order sliding surface; then, they utilized the formed second-order sliding surface and
the sliding surface of the third subsystem to build the third-order sliding surface. The construction
continued until the last subsystem, where they proved that the hierarchical sliding surfaces were stable.

The main drawback when employing the SMC method to design a controller, especially for an
overhead crane, is that all the model parameters are required to be deterministic. However, it is
transparent that the parameters on a crane system are highly uncertain and nonlinear, particularly
under the external disturbances. To address this impracticality of using the SMC control approach,
some adaptive strategies have been proposed to estimate the parameters of a crane online. For instance,
authors have [26] employed the Lyapunov theory to derive an adaptive technique to estimate the
unknown parameters of an overhead crane. Park et al. [27], proposed an observer-based fuzzy logic to
present the uncertainties and nonlinearities of the crane actuators. In addition, an adaptive SMC law
based on the fuzzy wavelet neural networks was proposed for a 3D gantry crane as discussed by other
authors [28]. In our previous works [29,30], we introduced the adaptive HSMC schemes for the 2D and
3D overhead cranes, respectively, where we employed the fuzzy observer and radial basis function
network to adaptively estimate the unknown and uncertain crane parameters. Nevertheless, to the
best of our knowledge, none of the previous adaptive control schemes for the 3D overhead crane
considered the consistency of the control performance of the closed-loop control system when the
payload mass is uncertain.

As a result, in this work, in order to effectively and robustly control a 3D overhead crane even
under uncertainty of the payload mass, we first propose to employ the radial basis function neural
network to adaptively estimate the unknown and uncertain system kinetic parameters of the controller,
which is designed based on the SMC technique. More importantly, we then propose to incorporate the
adaptation mechanisms [31] into the control law that allows the controller to adaptively estimate and
update the payload mass online in order to compute its other unknown parameters. The proposed
closed-loop control system is then mathematically proven to be stable by the using the Lyapunov
theory, which consolidates that the 3D gantry crane can robustly operate under uncertain payload
mass. The proposed algorithm was evaluated in the synthetic simulation experiments, where the
obtained results show that the control performance was consistent, although the payload mass varied.

The remainder of this paper is arranged as follows: Section 2 presents how to design a SMC
controller for a 3D overhead crane. Section 3 presents the proposed adaptive methods to estimate
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the unknown and uncertain system parameters, where the payload mass is updated online, and also
discusses the stability of the closed-loop control system for a 3D overhead crane. Section 4 provides
discussions of the validated results obtained by the proposed approach before conclusions are drawn
in Section 5.

2. A Sliding Mode Controller for Uncertain Payload-Mass 3D Overhead Cranes

2.1. 3D Overhead Crane Dynamic Model

Practically, a 3D gantry crane comprises of three main components as presented in Figure 1:
a bridge, which can move to the left or right; a trolley sliding forward or backward on the bridge; and
a hoist to carry objects or cargo. Let us denote the trolley mass as mc, the bridge lumped mass as mr,
the cargo mass as m and the length of the hoist cable is l. For the purposes of simplicity, we assume
that the hoist cable length is fixed. The forces exerted on the trolley in the x-direction and y-direction are
defined as ux and uy, respectively. We also denote θx as the sway angle of the payload and θy as the
indirect dependent parameter of the oscillation component of the crane. Without a loss of generality,
it is assumed that the static friction in the gantry crane is defined, and the mass of the hoist cable is
trivial and ignored. Both the trolley and cargo are considered as the material particles.

Figure 1. The physical model of a 3-dimensional overhead crane.

If the positions of the trolley on the xy plane of the Cartesian coordinate system are defined by x
and y, then an overhead crane is a multiple input multiple output (MIMO) system, where the inputs

and outputs are f
1
=

[
ux uy

]T
∈ R2 and q =

[
x y θx θy

]
∈ R4, respectively. Given its inputs

and outputs, the overhead crane evidently has an under-actutated mechanical system.
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Given the aforesaid definitions, the dynamic model of a 3D overhead crane can be presented by
the use of Lagrange’s equations of motion of second kind, as follows,

d
dt

∂L
(
q,

.
q
)

∂
.
q


T

−

∂L
(
q,

.
q
)

∂q


T

= u, (1)

where
L = 1

2 (mc + m)
.
x2

+ 1
2 (mc + m + mr)

.
y2

+ 1
2

(
ml2

) .
θ

2
x+

1
2

(
ml2 sin2 θx

) .
θy

2 + ml
.
x

.
θx cosθx cosθy −ml

.
x

.
θy sinθx sinθy+

ml
.
y

.
θy cosθx sinθy + ml

.
y

.
θy sinθx cosθy + mgl cosθx

(2)

and q =
[

x y θx θy
]T

is the system state vector.
By taking the derivative of (1) with respect to q, it yields the dynamic model of the 3D gantry

system in the matrix form specified by

M(q)
..
q + C(q,

.
q)

.
q + D

.
q + g(q) = u (3)

where M
(
q
)

is the inertia matrix, C
(
q,

.
q
)

is the Coriolis matrix, g
(
q
)
=

[
0 0 mgl sinθx 0

]T
is the

gravitational vector and u =
[

ux uy 0 0
]T

is the control vector. These matrices and vectors are
computed by

M =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

 C =


0 0 c13 c14

0 0 c23 c24

0 0 0 c34

0 0 c43 c44

 D =


Dx 0 0 0
0 Dy 0 0
0 0 0 0
0 0 0 0


m11 = mc + m; m12 = 0; m13 = ml cosθx cosθy; m14 = −ml sinθx sinθy;
m21 = 0; m22 = mc + mr + m; m23 = ml cosθx sinθy; m24 = ml sinθx cosθy;
m31 = ml cosθx cosθy; m32 = ml cosθx sinθy; m33 = ml2; m34 = 0;
m41 = −ml sinθx sinθy; m42 = ml cosθx sinθy; m43 = 0; m44 = ml2 sin2 θx

c13 = −ml
.
θx sinθx cosθy −ml

.
θy cosθx sinθy; c14 = −ml

.
θx cosθx sinθy −ml

.
θy sinθx cosθy;

c23 = −ml
.
θx sinθx sinθy + ml

.
θy cosθx cosθy; c24 = ml

.
θx cosθx cosθy −ml

.
θy sinθx sinθy;

c34 = −ml2
.
θy sinθx cosθy; c43 = ml2

.
θy sinθx cosθy; c44 = ml2

.
θx sinθx cosθy

2.2. A Sliding Mode Controller for a 3D Overhead Crane

Robustly controlling a 3D overhead crane is to effectively drive both the bridge and trolley onto
the predefined paths in x-direction and y-direction, and efficiently minimize the payload swings (θx,θy),
given the unknown cargo mass and uncertain matrices M

(
q
)
, C

(
q,

.
q
)
, g

(
q
)
. To deal with a system with

the high uncertainties of a 3D gantry crane, the SMC approach would provide remarkable robustness
in the control performance [30]. If we divide the matrices and vectors in (3) into the submatrice R2×2

and the subvector R2×1 then (3) can be represented by[
M11 M12

M21 M22

]
..
q

1..
q

2

+ [
C11 C12

C21 C22

]
.
q

1.
q

2

+ [
D11 D12

D21 D22

]
.
q

1.
q

2

+ [
G1
G2

]
=

 f
1

0

 (4)

where M11, M12, M21, M22 ∈ R2×2, C11, C12, C21, C22 ∈ R2×2, D11, D12, D21, D22 ∈ R2×2, and G1, G2 ∈ R2×1.
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Note that

M =

[
M11 M12

M21 M22

]
,

M11 =

[
m11 m12

m21 m22

]
, M12 =

[
m13 m14

m23 m24

]
, M21 =

[
m31 m32

m41 m42

]
, M22 =

[
m33 m34

m43 m44

]

C =

[
C11 C12

C21 C22

]
, C11 =

[
0 0
0 0

]
, C12 =

[
c13 c14

c23 c24

]
, C21 =

[
0 0
0 0

]
, C22 =

[
0 c34

c43 c44

]

D =

[
D11 D12

D21 D22

]
, D11 =

[
Dx 0
0 Dy

]
, D12 =

[
0 0
0 0

]
, D21 =

[
0 0
0 0

]
, D22 =

[
0 0
0 0

]
Thus, we can now present (4) into the two matrix equations as follows,

M11
..
q

1
+ M12

..
q

2
+ C11

.
q

1
+ C12

.
q

2
+ D11

.
q

1
+ G1 = f

1
(5)

M21
..
q

1
+ M22

..
q

2
+ C21

.
q

1
+ C22

.
q

2
+ G2 = 0 (6)

Since M22 is positive, the equation (6) can be rewritten by

..
q

2
= −(M22)

−1
(
M21

..
q

1
+ C21

.
q

1
+ C22

.
q

2
+ G2

)
(7)

From (5) and (7), it yields

M11
..
q

1
+ M12

−(M22)
−1

 M21
..
q

1
+ C21

.
q

1
+C22

.
q

2
+ G2


+ C11

.
q

1
+ C12

.
q

2
+ D11

.
q

1
+ G1 = f

1
(8)

or
M1

..
q

1
+ C1

.
q

1
+ C2

.
q

2
+ D

.
q

1
+ G1 = f

1
(9)

where

M1 = M11 −M12(M22)
−1M21 =

 mc + m sin2 θx cos2 θy −m cosθy sinθy
(
1 + cos2 θx

)
−m cosθy sinθy

(
1 + cos2 θx

)
mc + mr + m sin2 θx sin2 θy

,
C1 = C11 −M12(M22)

−1C21 =

[
0 0
0 0

]
,

C2 = C12 −M12(M22)−1C22

=

 −ml
.
θy sinθy cosθy ml

.
θy sinθx cosθx cos2 θy −ml

.
θx sinθy cosθy

−ml
.
θy cos2 θy ml

.
θy sinθx cosθx sinθy cosθy −ml

.
θx cos2 θy


G1 = G1 −M12(M22)

−1G2 =

[
−mg cosθx cosθy sinθx

−mg cosθx sinθy sinθx

]
,

D = D11 =

[
Dx 0
0 Dy

]
.
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If the sliding surface is defined by

s =
.
q1 + λ(q1 − q1d) + αq2 (10)

where q
1d

is the desired position of the trolley that is constant in a duty cycle, then λ and α are positive
diagonal matrices. Therefore, the derivative of the sliding surface is

.
s =

..
q

1
+ λ

.
q

1
+ α

.
q

2
=

(
M1

)−1
(

f
1
−C2

.
q

2
−G1 −D

.
q

1

)
+ λ

.
q

1
+ α

.
q

2
(11)

If we choose the control law
.
s = −M1(K1sgn(s) + K2s) where K1, K2 ∈ R2×2 are positive diagonal

matrices and sgn() is the sign function, then the control input that can maintain the stability of the
sliding surface is given by

f
1
= C2

.
q

2
+ G1 + D

.
q

1
−M1

−1
(
λ

.
q1 + α

.
q2 + K1sgn(s) + K2s

)
(12)

In practice, to reduce the chattering phenomenon, the saturation function is used instead of the
sign function as follows,

τs =


τmax if τ > τmax

τ if τmin < τ < τmax

τmin if τ < τmin

where τs and τ are the actuator output and control input, respectively. τmax and τmin are the upper and
lower bounds of τ. For more information about the saturation function in designing a SMC scheme,
interested readers are referred to our previous works [30].

3. An Adaptive Sliding Mode Controller for Uncertain Payload-Mass 3D Overhead Cranes

Though the SMC controller designed in the previous section provides the robustness and stability
of a crane system with uncertainties and nonlinearities, it does not have a mechanism to estimate the
uncertain and unknown system parameters, which prevents it from practicality in real-life control
applications, especially a 3D overheard crane. To this end, we propose to employ the radial basis
function neural network (RBFNN) to adaptively estimate the unknown and uncertain parameters for
the designed SMC controller.

3.1. An Adaptive Controller

In estimation of the nonlinear characteristics of a system, a two-layer RBFNN is frequently utilized,
where the input layers are the radial neurons while the output layers are the linear neurons. In this work,

we define the inputs for the RBFNN as q =
[

x y θx θy
]T
∈ R4 and

.
q =

[ .
x

.
y

.
θx

.
θy

]T
∈ R4

for the position vector and the velocity vector, respectively. And δ̂ =
[
δ̂1 δ̂2

]T
∈ R2 is defined as the

output of the RBFNN. Inside the RBFNN, we denote W ∈ Rl×2 as the ideal weight matrix, where l is
the number of the neurons in a hidden layer. Moreover, the activation functions are summarized by

h =
[

h1 h2 . . . hl
]T
∈ Rl, where their component is computed by

hi =

exp

−
∥∥∥∥q−c1i

∥∥∥∥2
+

∥∥∥∥ .
q−c2i

∥∥∥∥2

b2
i


l∑

j=1
exp

−
∥∥∥∥q−c1 j

∥∥∥∥2
+

∥∥∥∥ .
q−c2 j

∥∥∥∥2

b2
j


(13)

The structure of a RBFNN is visually demonstrated in Figure 2.
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Figure 2. A radial basis function neural network.

We define the uncertainty as follows,

δ =
1
m

(
C2

.
q

2
+ G1

)
.

Since C2 and G1 are uncertain and unknown, we propose to employ the RBFNN to estimate them.
Ideally, the output of the RBFNN is presented by δ = WTh + εwhere ε is the infinitesimal error. If Ŵ is
the estimation of W, the RBFNN output is δ̂ = ŴTh. Then W̃ = W − Ŵ is the error of the weight matrix.

In fact, the payload mass m is unknown and varies over time. If we assume m̂ as the approximation
of m, which is adaptively estimated and updated online, the approximate matrices in (9) can be given by

M̂1 = m̂

 mc
m̂ + sin2 θx cos2 θy − cosθy sinθy

(
1 + cos2 θx

)
− cosθy sinθy

(
1 + cos2 θx

)
mc+mr

m̂ + sin2 θx sin2 θy


Ĉ2 = m̂

 −l
.
θy sinθy cosθy l

.
θy sinθx cosθx cos2 θy − l

.
θx sinθy cosθy

−l
.
θy cos2 θy l

.
θy sinθx cosθx sinθy cosθy − l

.
θx cos2 θy


Ĝ1 = m̂

[
−g cosθx cosθy sinθx

−g cosθx sinθy sinθx

]
As a result, the control input (12) can be approximately calculated by

f
1
= D

.
q

1
+ m̂δ̂− M̂1

−1
(
λ

.
q

1
+ α

.
q

2
+ K1sgn(s) + K2s

)
(14)

We now define a Lyapunov function as follows,

V =
1
2

sTM1s +
1
2
γm̃2 +

1
2

tr(mW̃TF−1W̃) (15)

where m̃ = m− m̂, γ is a positive number, and F ∈ Rl×l is a positive diagonal matrix. Then the derivative
of the Lyapunov function, with respect to time, is computed by

.
V =

1
2

sT
.

Ms + sTM
.
s− γm̃

.
m̂− tr(mW̃TF−1

.
Ŵ) (16)
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By utilizing the control input (14), the derivative of the Lyapunov function can be rewritten
as follows,

.
V = sT

 M̃1

(
−λ

.
q

1
− α

.
q

2
−K1sgn(s) −K2s

)
−m̃δ̂−mδ̃−M1K1sgn(s) −M1K2s

+ 1
2

sT
.

Ms− γm̃
.

m̂− tr(mW̃TF−1
.

Ŵ) (17)

where M̃1 = M1 − M̂1 = m̃Λ and

Λ =

 sin2 θx cos2 θy − cosθy sinθy
(
1 + cos2 θx

)
− cosθy sinθy

(
1 + cos2 θx

)
sin2 θx sin2 θy

.
Therefore,

.
V = sT

(
1
2

.

M1 −M1K2

)
s− sTM1K1sgn(s) − sTmε

+m̃
(
sTΛ

(
−λ

.
q1 − α

.
q2

−K1sgn(s) −K2s

)
− sTδ̂− γ

.
m̂
)
+ tr

(
−mW̃T

(
hsT + F−1

.
Ŵ

)) (18)

If the adaptation mechanisms for the payload mass and weight matrix are chosen by

.
m̂ = γ−1

(
sTΛ

(
−λ

.
q1 − α

.
q2 −K1sgn(s) −K2s

)
− sTδ̂

)
, (19)

.
Ŵ = −FhsT, (20)

then
.

V = −sT
(
M1K2 −

1
2

.

M1

)
s− sTM1K1sgn(s) − sTmε

≤ −sT
(
M1K2 −

1
2

.

M1

)
s−

∥∥∥s
∥∥∥(λmin −m‖ε‖)

(21)

where λmin is the smallest value of the matrix M1K1.

3.2. An Adaptive Controller

The effectiveness of the proposed adaptive uncertain payload mass controller for a 3D overhead
crane can be mathematically demonstrated by the stability of the closed-loop control system in the
following theorem:

Theorem 1: Given the uncertainty component δ approximated by the RBFNN with the adaptation
mechanisms (19) and (20) to update online the unknown and uncertain payload mass and RBFNN
weight matrix, the closed-loop control system (4) employing the designed adaptive controller (14) will

be asymptotically stable if λmin −m‖ε‖ > 0 is the smallest value of the matrix M1K1 and M1K2 −
1
2

.

M1 is
the positive define matrix.

Proof : Let us consider the Lyapunov function candidate

V =
1
2

sTs + tr
(
W̃TF−1W̃

)
, (22)

from (14), (19), (20) and λmin −m‖ε‖ > 0 one has

.
V ≤ −sT

(
M1K2 −

1
2

.

M1

)
s−

∥∥∥s
∥∥∥(λmin −m‖ε‖) ≤ 0. (23)
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In other words, the closed-loop control system is asymptotically stable. Nonetheless, since M1K1

is the positive diagonal matrix, to guarantee λmin > m‖ε‖, K1 must be large enough. On the other hand,

as M1K2 −
1
2

.

M1 is the symmetric matrix, it can be represented by

M1K2 −
1
2

.

M1 =

[
a b
b c

]
, (24)

where
a = m11k11 −

1
2

.
m11; b = −

1
2

.
m12; c = m22k22 −

1
2

.
m22, (25)

and k11, k22 are the elements of the diagonal matrix K2.

Furthermore, if M1K2 −
1
2

.

M1 is positive, the polynomial det
(
M1K2 −

1
2

.

M1 − λI
)

must have two

positive roots. That is,
a, c > 0; ac− b2 > 0. (26)

Combining (25) and (26), it yields

m11k11 −
1
2

.
m11 > 0; m22k22 −

1
2

.
m22 > 0

(m11k11 −
1
2

.
m11)(m22k22 −

1
2

.
m22) −

1
4

.
m12

2 > 0
(27)

As m11, m22 are positive numbers, if k11, k22 are large enough, the inequations (27) are held. In other

words, there always exists a positive diagonal matrix K2 so that M1K2 −
1
2

.

M1 is positively defined. �

4. Simulations and Experimental Results

To demonstrate the effectiveness of our proposed algorithm, adaptive neural network-based
sliding mode controller (ANNSMC), in controlling a 3D overhead crane under the payload mass
uncertainty, we conducted the experiments in the synthetic simulation environment and the obtained
results are presented in this section. It is noted that the control performance is measured by how
efficiently the bridge, trolley and hoist of the 3D gantry crane respond to a control action and whether
the trolley can be driven to the desired position with the minimal sway angles.

In the experiments, it was assumed that the masses of both the trolley and bridge were known.
The length of the hoist cable was also known, although it was supposed to be massless. Some constant
parameters of the proposed adaptive controller were given. Those parameters are summarized in Table 1.

Table 1. The parameters of a 3D overhead crane and its controller characteristics.

Parameters Values

Crane’s dynamic model properties

mr 50 (kg)

mc 30 (kg)

l 1 (m)

g 9.81(m/s2)

Adaptive controller characteristics

K1 diag
(

100 100
)

K2 diag
(

50 50
)

α diag
(
−5 −5

)
λ diag

(
0.5 0.5

)
γ 1
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It is important to note that in our experiments we assumed that the payload was unknown and
that the controller had to adaptively estimate it.

In order to estimate the uncertain and unknown parameters, we designed a two-layer RBFNN
with ten neural components. All the weights of the RBFNN were initialized by 0.1. The simulation
block diagram in our experiments is demonstrated in Figure 3.

Figure 3. The simulation block diagram.

In order to verify the consistency of the control performance in the 3D crane system given
the uncertainty of the payload mass, we set the two different cargo mass values at 10kg and 20kg,
respectively, in the two different transporting operations, which were unknown to the controller. It can
be seen that though the payload mass was unknown, in both of the transporting operation scenarios,
the control force signals in each direction as demonstrated in Figure 4 were quite similar. That is,
the control input was mostly independent from the payload mass.

Figure 4. The control force signals.

Now let us examine the outputs of the 3D overhead crane system in the two transporting operation
scenarios conducted. This under-actuated mechanical system has four outputs, including the two
coordinates of the trolley positions as shown in Figures 5 and 6, and the two sway angles in each
experiment as demonstrated in Figures 7 and 8, for the simulations of the payload masses of 10 kg and
20 kg, respectively.
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From Figures 5 and 6, it can be clearly seen that after about 5 s, in both scenarios, the trolley
reached within 99% of the desired position. More importantly, in both of the illustrated examples,
the responses of the trolley were highly comparable, although the crane transported the different
payload masses. The similarity in the trolley responses was a result of the similar control inputs,
which were adaptively computed by the RBFNN and adaptation mechanisms, as demonstrated in
Figure 4.

Figure 5. The trolley position when the payload mass is 10 kg.

Figure 6. The trolley position when the payload mass is 20 kg.

Figure 7. The swing angles when the payload mass is 10 kg.
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Figure 8. The swing angles when the payload mass is 20 kg.

In addition to the positions of the trolley, the two other outputs of the gantry crane included
the payload swing angles, as illustrated in Figure 7, and the consistency of the control performance,
as shown in Figure 8, where the maximum sway angles in the two presented directions in any scenario
were about 8 and 4 degrees. These characteristics of the proposed control algorithm are practically
crucial in terms of maintaining the reliability, stability and robustness of the closed-loop control system.
In other words, the designed controller is highly applicable.

5. Conclusions

This paper has proposed an adaptive control scheme based on the SMC structure for the 3D
uncertain overhead crane under the payload mass uncertainty. Moreover, the unknown and uncertain
parameters of the system dynamics are proposed to be adaptively estimated by the use of the RBFNN.
By proposing the adaptation mechanisms derived from the Lyapunov theory to approximate the
unknown payload mass and weight matrix, the paper mathematically proves the stability of the
closed-loop control system. The results obtained by implementing the proposed algorithm in the
simulations have shown that the trolley could reach the reference position within 5 s, and the maximum
sway angles in both directions are 8 and 4 degrees, respectively. More importantly, the results were
not dependent on the payload, which has demonstrated the consistency of the control performance,
although the crane transported the payloads with the different masses. In future works, we will verify
the method in the real-life systems.
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