33 research outputs found

    A one hop overlay system for Mobile Ad Hoc Networks

    Get PDF
    Peer-to-Peer (P2P) overlays were initially proposed for use with wired networks. However, the very rapid proliferation of wireless communication technology has prompted a need for adoption of P2P systems in mobile networks too. There are many common characteristics between P2P overlay networks and Mobile Ad-hoc Networks (MANET). Self-organization, decentralization, a dynamic nature and changing topology are the most commonly shared features. Furthermore, when used together, the two approaches complement each other. P2P overlays provide data storage/retrieval functionality and MANET provides wireless connectivity between clients without depending on any pre-existing infrastructure. P2P overlay networks can be deployed over MANET to address content discovery issues. However, previous research has shown that deploying P2P systems straight over MANET does not exhibit satisfactory performance. Bandwidth limitation, limited resources and node mobility are some of the key constraints. This thesis proposes a novel approach, OneHopOverlay4MANET, to exploit the synergies between MANET and P2P overlays through cross-layering. It combines Distributed Hash Table (DHT) based structured P2P overlays with MANET underlay routing protocols to achieve one logical hop between any pair of overlay nodes. OneHopOverlay4MANET constructs a cross-layer channel to permit direct exchange of routing information between the Application layer, where the overlay operates, and the MANET underlay layer. Consequently, underlay routing information can be shared and used by the overlay. Thus, OneHopOverlay4MANET reduces the typical management traffic when deploying traditional P2P systems over MANET. Moreover, as a result of building one hop overlay, OneHopOverlay4MANET can eliminate the mismatching issue between overlay and underlay and hence resolve key lookups in a short time, enhancing the performance of the overlay. v In this thesis, we present OneHopOverlay4MANET and evaluate its performance when combined with different underlay routing protocols. OneHopOverlay4MANET has been combined with two proactive underlays (OLSR and BATMAN) and with three reactive underlay routing protocols (DSR, AODV and DYMO). In addition, the performance of the proposed system over OLSR has been compared to two recent structured P2P over MANET systems (MA-SP2P and E-SP2P) that adopted OLSR as the routing protocol. The results show that better performance can be achieved using OneHopOverlay4MANET

    Structured Peer-to-Peer Overlay Deployment on MANET: A Survey

    Get PDF
    There are many common characteristics between Peer-to-Peer (P2P) overlay networks and Mobile Ad-hoc Networks (MANET). Self-organization, decentralization, dynamicity and changing topology are the most shared features. Furthermore, when used together, the two approaches complement each other. P2P overlays provide data storage/retrieval functionality, and their routing information can complement that of MANET. MANET provides wireless connectivity between clients without depending on any pre-existing infrastructure. The aim of this paper is to survey current P2P over MANET systems. Specifically, this paper focuses on and investigates structured P2P over MANET. Overall, more than thirty distinct approaches have been classified into groups and introduced in tables providing a structured overview of the area. The survey addresses the identified approaches in terms of P2P systems, MANET underlay systems and the performance of the reviewed systems

    Architecture and Protocols for Service and Application Deployment in Resource Aware Ubiquitous Environments

    Get PDF
    Realizing the potential of pervasive computing will be predicated upon the availability of a flexible, mobility-aware infrastructure and the technologies to support seamless service management, provisioning and delivery. Despite the advances in routing and media access control technologies, little progress has been made towards large-scale deployment of services and applications in pervasive and ubiquitous environments. The lack of a fixed infrastructure, coupled with the time-varying characteristics of the underlying network topology, make service delivery challenging. The goal of this research is to address the fundamental design issues of a service infrastructure for ubiquitous environments and provide a comprehensive solution which is robust, scalable, secure and takes into consideration node mobility and resource constraints. We discuss the main functionalities of the proposed architecture, describe the algorithms for registration and discovery and present a power-aware location-driven message forwarding algorithm to enable node interaction in this architecture. We also provide security schemes to ensure user privacy in this architecture. The proposed architecture was evaluated through theuse of simulations. The results show that the service architecture is scalable and robust, even when node mobility is high. The comparative analysis shows that our message forwarding algorithm consistently outperforms contemporary location-driven algorithms. Furthermore, thisresearch work was implemented as a proof-of-concept implementation and tested on a real world scenario

    Hybrid Routing in Delay Tolerant Networks

    Get PDF
    This work addresses the integration of today\u27s infrastructure-based networks with infrastructure-less networks. The resulting Hybrid Routing System allows for communication over both network types and can help to overcome cost, communication, and overload problems. Mobility aspect resulting from infrastructure-less networks are analyzed and analytical models developed. For development and deployment of the Hybrid Routing System an overlay-based framework is presented

    Hybrid routing in delay tolerant networks

    Get PDF
    This work addresses the integration of today\\u27s infrastructure-based networks with infrastructure-less networks. The resulting Hybrid Routing System allows for communication over both network types and can help to overcome cost, communication, and overload problems. Mobility aspect resulting from infrastructure-less networks are analyzed and analytical models developed. For development and deployment of the Hybrid Routing System an overlay-based framework is presented

    Scalable and Secure Multicast Routing for Mobile Ad-hoc Networks

    Get PDF
    Mobile Ad-Hoc Networks (MANETs) are decentralized and autonomous communication systems: They can be used to provide connectivity when a natural disaster has brought down the infrastructure, or they can support freedom of speech in countries with governmental Internet restrictions. MANET design requires careful attention to scalability and security due to low-capacity and error-prone wireless links as well as the openness of these systems. In this thesis, we address the issue of multicast as a means to efficiently support the MANET application of group communication on the network layer. To this aim, we first survey the research literature on the current state of the art in MANET routing, and we identify a gap between scalability and security in multicast routing protocols–two aspects that were only considered in isolation until now. We then develop an explicit multicast protocol based on the design of a secure unicast protocol, aiming to maintain its security properties while introducing minimal overhead. Our simulation results reveal that our protocol reduces bandwidth utilization in group communication scenarios by up to 45 % compared to the original unicast protocol, while providing significantly better resilience under blackhole attacks. A comparison with pure flooding allows us to identify a practical group size limit, and we present ideas for better large-group support

    Evaluation of on-demand routing in mobile ad hoc networks and proposal for a secure routing protocol

    Get PDF
    Secure routing Mobile Ad hoc Networks (MANETs) has emerged as an important MANET research area. Initial work in MANET focused mainly on the problem of providing efficient mechanisms for finding paths in very dynamic networks, without considering the security of the routing process. Because of this, a number of attacks exploit these routing vulnerabilities to manipulate MANETs. In this thesis, we performed an in-depth evaluation and performance analysis of existing MANET Routing protocols, identifying Dynamic Source Routing (DSR) as the most robust (based on throughput, latency and routing overhead) which can be secured with negligible routing efficiency trade-off. We describe security threats, specifically showing their effects on DSR. We proposed a new routing protocol, named Authenticated Source Routing for Ad hoc Networks (ASRAN) which is an out-of-band certification-based, authenticated source routing protocol with modifications to the route acquisition process of DSR to defeat all identified attacks. Simulation studies confirm that ASRAN has a good trade-off balance in reference to the addition of security and routing efficiency

    Data Storage and Dissemination in Pervasive Edge Computing Environments

    Get PDF
    Nowadays, smart mobile devices generate huge amounts of data in all sorts of gatherings. Much of that data has localized and ephemeral interest, but can be of great use if shared among co-located devices. However, mobile devices often experience poor connectivity, leading to availability issues if application storage and logic are fully delegated to a remote cloud infrastructure. In turn, the edge computing paradigm pushes computations and storage beyond the data center, closer to end-user devices where data is generated and consumed. Hence, enabling the execution of certain components of edge-enabled systems directly and cooperatively on edge devices. This thesis focuses on the design and evaluation of resilient and efficient data storage and dissemination solutions for pervasive edge computing environments, operating with or without access to the network infrastructure. In line with this dichotomy, our goal can be divided into two specific scenarios. The first one is related to the absence of network infrastructure and the provision of a transient data storage and dissemination system for networks of co-located mobile devices. The second one relates with the existence of network infrastructure access and the corresponding edge computing capabilities. First, the thesis presents time-aware reactive storage (TARS), a reactive data storage and dissemination model with intrinsic time-awareness, that exploits synergies between the storage substrate and the publish/subscribe paradigm, and allows queries within a specific time scope. Next, it describes in more detail: i) Thyme, a data storage and dis- semination system for wireless edge environments, implementing TARS; ii) Parsley, a flexible and resilient group-based distributed hash table with preemptive peer relocation and a dynamic data sharding mechanism; and iii) Thyme GardenBed, a framework for data storage and dissemination across multi-region edge networks, that makes use of both device-to-device and edge interactions. The developed solutions present low overheads, while providing adequate response times for interactive usage and low energy consumption, proving to be practical in a variety of situations. They also display good load balancing and fault tolerance properties.Resumo Hoje em dia, os dispositivos móveis inteligentes geram grandes quantidades de dados em todos os tipos de aglomerações de pessoas. Muitos desses dados têm interesse loca- lizado e efêmero, mas podem ser de grande utilidade se partilhados entre dispositivos co-localizados. No entanto, os dispositivos móveis muitas vezes experienciam fraca co- nectividade, levando a problemas de disponibilidade se o armazenamento e a lógica das aplicações forem totalmente delegados numa infraestrutura remota na nuvem. Por sua vez, o paradigma de computação na periferia da rede leva as computações e o armazena- mento para além dos centros de dados, para mais perto dos dispositivos dos utilizadores finais onde os dados são gerados e consumidos. Assim, permitindo a execução de certos componentes de sistemas direta e cooperativamente em dispositivos na periferia da rede. Esta tese foca-se no desenho e avaliação de soluções resilientes e eficientes para arma- zenamento e disseminação de dados em ambientes pervasivos de computação na periferia da rede, operando com ou sem acesso à infraestrutura de rede. Em linha com esta dico- tomia, o nosso objetivo pode ser dividido em dois cenários específicos. O primeiro está relacionado com a ausência de infraestrutura de rede e o fornecimento de um sistema efêmero de armazenamento e disseminação de dados para redes de dispositivos móveis co-localizados. O segundo diz respeito à existência de acesso à infraestrutura de rede e aos recursos de computação na periferia da rede correspondentes. Primeiramente, a tese apresenta armazenamento reativo ciente do tempo (ARCT), um modelo reativo de armazenamento e disseminação de dados com percepção intrínseca do tempo, que explora sinergias entre o substrato de armazenamento e o paradigma pu- blicação/subscrição, e permite consultas num escopo de tempo específico. De seguida, descreve em mais detalhe: i) Thyme, um sistema de armazenamento e disseminação de dados para ambientes sem fios na periferia da rede, que implementa ARCT; ii) Pars- ley, uma tabela de dispersão distribuída flexível e resiliente baseada em grupos, com realocação preventiva de nós e um mecanismo de particionamento dinâmico de dados; e iii) Thyme GardenBed, um sistema para armazenamento e disseminação de dados em redes multi-regionais na periferia da rede, que faz uso de interações entre dispositivos e com a periferia da rede. As soluções desenvolvidas apresentam baixos custos, proporcionando tempos de res- posta adequados para uso interativo e baixo consumo de energia, demonstrando serem práticas nas mais diversas situações. Estas soluções também exibem boas propriedades de balanceamento de carga e tolerância a faltas
    corecore