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ARCHITECTURE AND PROTOCOLS FOR SERVICE AND APPLICATION

DEPLOYMENT IN RESOURCE AWARE UBIQUITOUS ENVIRONMENTS

Anandha Gopalan, PhD

University of Pittsburgh, 2007

Realizing the potential of pervasive computing will be predicated upon the availability of

a flexible, mobility-aware infrastructure and the technologies to support seamless service

management, provisioning and delivery. Despite the advances in routing and media access

control technologies, little progress has been made towards large-scale deployment of services

and applications in pervasive and ubiquitous environments. The lack of a fixed infrastruc-

ture, coupled with the time-varying characteristics of the underlying network topology make

service delivery challenging. The goal of this research is to address the fundamental design

issues of a service infrastructure for ubiquitous environments and provide a comprehensive

solution which is robust, scalable, secure and takes into consideration node mobility and

resource constraints.

We discuss the main functionalities of the proposed architecture, describe the algorithms

for registration and discovery and present a power-aware location-driven message forwarding

algorithm to enable node interaction in this architecture. We also provide security schemes to
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ensure user privacy in this architecture. The proposed architecture was evaluated through the

use of simulations. The results show that the service architecture is scalable and robust, even

when node mobility is high. The comparative analysis shows that our message forwarding

algorithm consistently outperforms contemporary location-driven algorithms. Furthermore,

this research work was implemented as a proof-of-concept implementation and tested on a

real world scenario.
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1.0 INTRODUCTION

The vision of ubiquitous computing was first articulated in 1991 by Mark Weiser, then

chief technology officer for Xerox’s Palo Alto Research Center. In his paper, he stated that

“The most profound technologies are those that disappear. They weave themselves into the

fabric of everyday life until they are indistinguishable from it” [40]. Significant advances

in engineering and communication technologies over the past 16 years have made Weiser’s

vision a viable one. There are several ubiquitous computing projects in industry (AT&T,

Intel, HP and IBM), as well as academia (Project Oxygen at UC Berkeley [51], Endeavour

at MIT [15], Project Aura at CMU [50] and Portolano at the University of Washington [49])

that go a long way towards making pervasive and ubiquitous computing a reality.

Technological advances in engineering and communication have paved the way for a

new generation of embedded wireless devices. These devices range from small inexpensive

lightweight sensors, with limited memory and computational capabilities, to resource-rich

devices which can support significantly enhanced functionalities. A number of these devices

can be deployed on a large scale for sensing and in-situ processing of spatially and temporally

dense data, and for carrying out specialized functions. The objective of such infrastructure-

less networks is to support increased mobility, flexibility, and lower cost of managing the

resources in comparison to infrastructured networks. These networks are unique, in the

sense that a participating device can function both as a host as well as a router, thereby dy-

namically creating paths between network devices. Unlike a fixed wireless network, however,

locating a device becomes difficult as users may exhibit high levels of mobility.

These infrastructureless heterogeneous networks of embedded systems have great poten-

tial for significant impact on a wide range of time-critical applications, such as pervasive

health care, infrastructure protection, homeland security, and real-time environment mon-
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itoring. Demand for continuous real-time monitoring for critical infrastructure protection,

border control, and disaster management, among many other time-critical applications, has

become increasingly important. Continuous monitoring and control of key infrastructure,

such as power grid, transportation networks, water supply, oil and natural gas pipelines,

and major railroads, is crucial for protection against threats coming from natural causes,

by-products of human activities or from deliberate actions undertaken for criminal purposes.

Traditional monitoring technologies require considerable human intervention and are usually

inadequate to protect against unexpected failures and adversarial attacks, such as denial of

service. Rapidly deployable, self-configuring networks of wireless devices have the potential

for providing the information needed to assist rescue operations, by locating survivors, iden-

tifying affected areas, and organizing the collaborative efforts of the response team members.

There is an increase in the deployment of wireless devices for purposes of ubiquitous and

pervasive health care. This technology will simplify monitoring and treatment of patients by

providing the ability to monitor patients over long periods of time without the intervention

of medical or health-care professionals. Such up-to-date information on a patient’s condition

will enable both patients and medical professionals to better understand how to manage

their activity to avoid or anticipate problems and provide preemptive care.

There are typically three modes of data delivery: polling, continuous and event-driven.

In the polling mode, data is communicated only after a request is issued by a node indicating

its interest to receive the latest value of a particular attribute. In the continuous mode, data

is sent to devices in a periodic and continuous manner. The time interval for sending the

data periodically is typically application-dependent and negotiated between the sender and

the receiver. Finally, in the event-driven mode, communication between devices occurs only

in response to an event. These modes of data delivery are not necessarily exclusive of each

other, as a combination of the three modes may be required by the application.

The use of any one of the modes of data delivery or several of them depends on the

demands of the application. A doctor monitoring the heartbeat of a patient relies on polling

the device once in a while. If the doctor detects an anomaly and would like to get more

readings to preempt any potential problems he/she increases the rate of sending the request

for the required data. The file sharing application scenario also uses polling based data
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delivery, since nodes search for and retrieve files based on requests. An application to

maintain room temperature in the ICU (Intensive Care Unit) would use the continuous data

delivery mode to continuously monitor the state of the system. Such an application would

also make use of an event driven delivery mechanism when an unusual event happens, such

as the case when the temperature increases higher than a pre-determined threshold. This

event triggers the data delivery mechanism to alert the respective emergency response teams.

These three data delivery scenarios along with their interfaces and functions are depicted in

Table 1.1. These interfaces and functions provide the mechanism by which data delivery can

be controlled and changed to suit the application’s needs.

Table 1.1: Data Delivery Scenario Interfaces

Name Functionality

continuous send (ti) Continuously send data to the respective devices during

each time interval (ti)

change interval (newti) Set the new time interval for continuous send () to newti

poll send (request) Send a request for the data

poll respond (request) Respond to the request by sending the required data

event send (event) Respond to the event by sending the required information

The application scenarios mentioned above would require a mechanism for locating, re-

questing and downloading information. For this purpose, a service architecture is needed. A

service architecture is a collection of data structures, protocols and mechanisms that allows

heterogeneous devices in an ubiquitous environment to discover each other and discover the

resources and services available in the network. This also allows applications and devices

to register and discover the interfaces that allow them to choose the the best data delivery

scenario which suits their respective needs. This is achieved through the process of service

registration and discovery respectively. Service registration allows network entities to adver-

tise their presence when they enter the network. These advertisements include additional

contact information, and also the description and attributes of the entity. Service discovery

allows the nodes in the network to discover the registered services.
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Although typical service discovery frameworks work at a higher layer than routing, it

is imperative to integrate service registration and discovery with traffic forwarding. Unlike

traditional wireline networks, node mobility is a factor in wireless networks and has to be

accounted for while designing the protocols for service registration and discovery. The goal

of this research is to address the fundamental design issues of a service infrastructure for

ubiquitous environments and provide a comprehensive solution which takes into consideration

node mobility and resource constraints.

1.1 THESIS STATEMENT

The concepts of Most Likely Residence, Virtual Registry and Location Vector will enable the

development of a framework, a set of protocols and appropriate mechanisms that allow for

scalable, robust, resilient and secure service deployment in ubiquitous environments.

1.1.1 Validation

This work is validated through the design and evaluation of a service architecture for large-

scale service and application deployment in ubiquitous environments. More precisely:

1. It designs and develops an efficient, robust, scalable and secure framework for large-scale

service and application deployment in ubiquitous environments. This architecture is also

evaluated through the use of simulations.

• In order to understand and evaluate the performance of the service architecture, we

perform a sensitivity analysis of the proposed architecture. Extensive simulations for

a variety of node densities and node mobilities were performed to study the behavior

of the service architecture under different network settings.

2. It designs and develops a power, resource, and location aware traffic forwarding algorithm

for the service architecture. This algorithm uses a priority based scheme that imposes

a priority on the neighboring nodes such that nodes which are more in line with the

direction of the destination have higher probability to forward the message. This priority
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is also closely tied to the residual energy-level of the intermediary node to increase

network lifetime. The algorithm is evaluated through the use of simulations.

• In order to evaluate the performance of the message forwarding algorithm, its per-

formance will be compared to GPSR, LAR and AODV. Simulations were performed

to measure the throughput achieved for each protocol for a network consisting of

mobile nodes while varying different network parameters.

3. It designs a security scheme to ensure user privacy in the proposed service architecture.

Three schemes are developed, each of which serve a different purpose and the best scheme

can be chosen depending on the network conditions.

4. It provides a proof of concept implementation of the proposed architecture that shows

its ability to perform in a real world scenario.

• Architectures and protocols developed for ubiquitous environments are normally

tested using simulations. Without actual implementation, it is difficult to perceive

how efficient and effective the protocol would be in the real world. For this reason,

the proposed service architecture along with the message forwarding protocol were

implemented on Linux and tested under real world conditions.

There are several challenges that arise when trying to develop a framework for service

and application deployment in ubiquitous environments. These challenges are related to the

development of several capabilities, such as: object registration, object discovery, mobile

node location, and traffic routing and forwarding. The requirements and issues associated

with these capabilities are discussed below.

1.1.2 Object Registration and Discovery

Object registration is the mechanism by which a node, managing a collection of related

objects, registers these objects with the network. Typically, the object information along

with the node information are registered with some specific node (or nodes) in the network.

Object discovery is the mechanism by which nodes discover the objects of interest that are

available in the network. Typically, nodes attempt to locate the node with whom the object
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is registered with and queries for the object of interest. If a match occurs, the corresponding

information on locating a node that owns the object is returned.

Despite advances in areas of routing and media access technologies for pervasive and

ubiquitous computing, little progress has been made toward large-scale deployment of ser-

vices and applications in such environments. The lack of a fixed infrastructure, coupled with

the time-varying characteristics of the underlying network topology, makes service delivery

challenging.

Although typical service discovery frameworks work at a higher layer than routing, it is

imperative to integrate registration and discovery services with traffic forwarding. Unlike

traditional wireline networks, node mobility is a factor in wireless networks and has to be

accounted for while designing the protocols for object registration and discovery.

The existing service discovery protocols like the Service Location Protocol [14] and the

Simple Service Discovery Protocol [75] are designed for and work well in LANs, but are not

suitable for ubiquitous environments due to their reliance on an existing network structure.

Distributed Hash Table (DHT) based protocols such as, CAN [52], GHT [62], GLS [30] and

EKTA [23] provide distributed data indexing algorithms for ad-hoc networks. The limitation

of these research works is the fact that they do not consider node mobility. Also, in the case of

CAN and GLS, the DHT is based on virtual co-ordinates and does not reflect the underlying

physical topology of the network.

A new service architecture must be developed that allows the network to support the basic

functionalities necessary to enable a computational platform for node interaction without

compromising on the convenience offered by infrastructureless networks.

1.1.3 Traffic Forwarding

Traffic routing and forwarding is the mechanism by which application and control traffic

reaches the intended destination. Due to the lack of an existing infrastructure, traffic for-

warding in an infrastructureless network is of high priority. In an infrastructureless network,

forwarding traffic between the source and the destination would require the use of interme-

diary nodes. There are several routing protocols for infrastructureless networks that have
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been suggested by researchers [34, 46, 47, 41, 25] and these can be broadly categorized into

three main categories: pro-active routing protocols, re-active routing protocols and hybrid

routing protocols.

There is however, a new class of routing protocols that use the position of a node in space

rather than the topology of the network. These routing protocols are classified as location-

based routing protocols. Location-based routing protocols take advantage of the fact that

nodes know their location (using a service similar to GPS [13]) and use this information

to optimize the routing by sending messages in the direction of the destination rather than

broadcasting it. Examples of location driven routing protocols are: LAR [35], GPSR [6] and

DREAM [56]. LAR and DREAM cannot be used for ubiquitous environments since they

flood the network with location updates and hence are not scalable.

The strategy used to forward traffic efficiently in the service architecture must take

into consideration the time-varying dynamics of the network, node mobility and power-

consumption. The trade-offs between these important design factors and network character-

istics must be recognized and alternatives carefully evaluated.

1.1.4 Node Mobility

An ubiquitous computing environment consists of a collection of collaborative nodes. One

of the main defining characteristics of these nodes is their mobility. Unlike nodes in the

traditional LANs, where each computer/laptop is associated with a network port, nodes in

an infrastructureless network are free to move about. Nodes in the network can be static,

move once in a while or be continuously on the move.

Some schemes that have been developed to handle node mobility include [27, 26, 57].

These use the concept of home agents (or) home regions. Each node in the network is

mapped to an area (using a hash function) in the network that is designated as its home

agent (or) home region. The home region holds the location information about the mobile

nodes which map to this location. These schemes are expensive in terms of communication

costs, since a mobile node constantly updates its location information by sending updates

to its home region.
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Node mobility, coupled with the limitation of computational and communication re-

sources, bring about a new set of challenges that need to be addressed in order to enable an

efficient, robust and scalable architecture for service and application deployment in ubiqui-

tous environments. The mobility of nodes in the network requires information to be stored

in the network that clearly goes beyond the typical information stored for a service architec-

ture. In addition to the service information, the mobility information of a node must also

be stored in order to facilitate node interaction. This mobility information however, changes

dynamically, as the node moves from one location to another. Efficient mechanisms must,

therefore be in place to update this information as nodes move. Thus, it is imperative to

integrate mobility management with the traffic forwarding protocol and the protocols for

service registration and discovery.

1.1.5 Security

In an ubiquitous computing environment, users often interact directly with the environment

through portable devices that they carry. As the users move around, they can still keep

in touch and interact with the ubiquitous environment through the use of their portable

devices. The information exchanged between the user and the environment often consists

of user identity and location information. It is imperative to protect this information to

guarantee user privacy. The lack of user privacy may deter users from using the ubiquitous

computing environment.

Most of the research work done on security for pervasive and ubiquitous environments

has been in the area of secure routing, data integrity and key management. These include:

shared-key authentication [77, 22, 8], secure routing [16] and multi-path key establishment

schemes [21, 22]. These schemes are computationally expensive for our purpose of protecting

user privacy. To ensure user privacy in an ubiquitous computing environment, it is enough

to ensure that the location information of the user is protected. This can be achieved by a

“shadowing” mechanism whereby a user can be perceived to have multiple locations. The

schemes developed to ensure user privacy must also take into account node mobility and the

resource constrained environment.
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1.2 THESIS CONTRIBUTION

The objective of this thesis is to build a robust, scalable, efficient and secure framework

for service and application deployment in ubiquitous environments. We present the system

model in Section 1.2.1 and the guiding approach in Section 1.2.2, before listing the thesis

contributions in Sections 1.2.3 - 1.2.5.

1.2.1 System Model

In this section, we list the assumptions that the system model uses for all the algorithms and

protocols developed. The network service area spans a geographical area that consists of a

mix of both fixed, as well as mobile nodes. Some of the nodes in the network are assumed to

own objects (documents, music, patient reports, maps). Each entity (node or object) in the

network is uniquely identifiable by its id. Every node in the system knows its own location

(using global or local co-ordinates) and also the boundaries of the network service area. The

uniform hash function used to register and discover objects is known to all the nodes in the

network. Each node in the network has a public/private key pair and it is not possible to

guess the identity of the node from its public-key. Routing in the network is location based,

where the message is sent to an (x,y) location rather than a particular node.

1.2.2 Guiding Approach

The basic approach is to use “wired” services as and when available and augment this

by using “mobile” services when necessary. In an ubiquitous computing environment, it

is often the case that there are some tethered services available (e.g: patient monitoring

station, fixed sensors, desktops etc.). Availability of tethered services is an advantage to

the infrastructureless network since these services have long lives and have fixed points of

entry into the network. Rather than treating the mobility of the nodes in the network as a

hindrance, we use mobility as an advantage. The advantage of giving preference to tethered

services is the longevity of the service, while using “mobile” services in the absence of fixed

services provides us with a solution which is efficient and has predictable results.
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This thesis addresses the need for new service registration and discovery models and

proposes a mobility-aware service architecture that is well-suited for scalable, robust, effi-

cient and secure service deployment in pervasive and ubiquitous environments. The logical

organization of the proposed service architecture is shown in Figure 1.1.

Internet Protocol (IP)

Tables
Routing

User

Object
Registration

Mobility
Management

Data
Dissemination

Physical Layer MAC Protocol

PILOT

SARA

Object
Discovery

Figure 1.1: Overview of the Design

The highest layer in the framework is the user who uses the exported primitives of object

registration and discovery to either register his/her objects with the network or discover

objects from the network. Due to the mobility of nodes in the network, the object registration

and discovery components make use of the mobility management component to locate the

mobile node. These three components make use of the data dissemination (PILOT) layer

to be able to route application or control traffic to the intended destination. Once a packet

is available to be forwarded, the data dissemination layer passes the packet to the Internet

Protocol (IP) layer. This layer is responsible for creating IP packets that are directly sent

to the MAC layer, which in turn injects this packet into the network. At the lowest level in

the framework are the physical and medium access control (MAC) layers that interact with

each other to send/receive packets. Sections 1.2.3 - 1.2.5 now detail the contribution of this

thesis.
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1.2.3 SARA: A Service Architecture for Resource Aware Ubiquitous Environ-

ments

The first contribution of this thesis is SARA, a service-architecture for ubiquitous environ-

ments that does not assume a fixed infrastructure and imposes no location restrictions on

the nodes and objects in the network.

The basic tenet of this architecture revolves around the concepts of virtual registries, most

likely residence and location vector. A virtual registry is a dynamically created administrative

domain that enables object registration and discovery. The extent of a virtual registry is

such that it encompasses at least K (threshold) nodes. The information in a virtual registry

is maintained by its member nodes. The most likely residence of a node is the physical

area where the node is likely to be located most of the time. For example, the most likely

residence of a fixed node is its physical location. This is registered by the node with the

network and is used as a congregation point by nodes to contact other nodes. In the case of

a mobile node, the node also registers its location vector. The location vector of a mobile

node is a dynamic time-dependent vector that represents the most likely physical location

of the node at a given time, thus reflecting user activity. The primary advantage of this

approach is that each node can choose to provide its own mobility prediction model, which

it deems to be most appropriate to its current activity, rather than using a network-wide

model which may not be applicable to specific itineraries and situations.

Object registration and discovery are achieved by hashing the object id to obtain the

physical co-ordinates of a point (P ) within the network service area. The set of mobile nodes

in the virtual registry containing P assume the responsibility of maintaining information

about the object. The basic design principle for our scheme is to use geographical mapping

for the hashing as opposed to node mapping since nodes are mobile. While bootstrapping,

a node only needs to know the hash function that is used to register and locate objects in

the network. To ensure that there are no hot spots in the network due to hashing, the hash

function is chosen to be a uniform hash function [12].
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1.2.4 PILOT: A Power-Aware Location Driven Traffic Forwarding Algorithm

The second contribution of this thesis is PILOT, a new data dissemination and propaga-

tion algorithm for the proposed service architecture that forwards traffic in a power-aware

location-directed manner.

To limit flooding in the network, PILOT uses the knowledge about the location of the

source and the direction of the destination to forward traffic in a truncated cone-shaped

manner towards the destination. The intermediary node to forward traffic is chosen by using

a priority-based scheme that imposes a priority on the neighboring nodes in such a way that

nodes which are more in line with the direction of the destination have higher probability

to forward the message. This reduces the delay that traffic suffers on its way towards the

destination. This priority is also closely tied to the residual energy-level of the intermediary

node to maximize network lifetime. Consider the case of two nodes, similar with respect to

their position from the source and the destination; the node with higher energy will have a

higher probability to forward the message towards the destination.

1.2.5 Security

The third contribution of this thesis are schemes to ensure user privacy in the proposed

service architecture. These schemes are light weight and were developed while taking node

mobility and the resource constrained environment into consideration. The proposed security

mechanisms are divided into three schemes: Multiple Location Vector scheme, Node-Proxy

Based scheme and Random-Proxy Based scheme. The Random-Proxy Based scheme works

on the assumption that each node in the network has a public-key/private-key pair.

In the Multiple Location Vector scheme, the node registers multiple location vectors with

the virtual registry. This allows the mobile node to “mask” its current location by using

multiple different locations in the network. When using the Node-Proxy Based scheme, a

mobile node registers the location vector of its proxies. These proxies are chosen by the

node during the bootstrap process. A node’s location vector is not associated to a particular

node since the id of a node is associated with the location vector of a proxy node. In the

Random-Proxy Based scheme, the virtual registry replying to a query for a node’s location
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vector constructs a “path” of nodes to traverse before reaching the destination node. In

this scheme, the location information of each node along the path is encrypted by using the

public-key of the preceding node.

Depending on the network conditions and the necessary constraints, anyone of the above

security schemes may be used to ensure user privacy in the service architecture.

1.3 THESIS ORGANIZATION

The rest of the thesis is organized as follows: Chapter 2 details the research related to this

thesis in the areas of: Medium Access Control (MAC), Distributed Hash Tables (DHT)s,

routing and service discovery in infrastructureless networks. In Chapter 3 we present SARA,

a resource and location aware framework to support service and application deployment in

ubiquitous environment. We present the components of SARA and detail the building blocks

of SARA (Section 3.2) along with the services used for registry creation and management,

object registration and discovery, mobile node location and node interaction (Section 3.3).

Chapter 4 details the power aware message forwarding algorithm used in SARA. Chapter 5

details the schemes used to ensure user privacy in SARA. Chapter 6 contains the implemen-

tation details of the proof-of-concept implementation of SARA with PILOT as its underlying

message forwarding protocol. Chapter 7 details the simulation environment and provides a

sensitivity analysis of SARA and a comparative analysis of PILOT. Chapter 8 concludes this

thesis by outlining the contributions of this thesis and providing directions for future work.
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2.0 BACKGROUND AND RELATED WORK

This purpose of this chapter is to present a detailed review of the literature and the back-

ground that are related to this thesis. The field of pervasive and ubiquitous computing is

relatively new, yet the available literature has grown appreciably in the recent past. As

a growing number of applications of ubiquitous computing become apparent, the available

literature continues to grow rapidly. The growth of ubiquitous and pervasive computing has

been rapid, aided mainly by the advances in hardware systems, availability of unlicensed

radio spectrum, high cost and limitations of infrastructured wireless networks, advances

in routing, advances in MAC (Medium Access Control) layer technology, and advances in

security for infrastructureless networks.

The background and literature directly related to this thesis has been split into differ-

ent sections. Section 2.1 details the background and advances in Medium Access Control

technology. The available body of literature ranges from the traditional CSMA/CA MAC

protocols to energy efficient MAC protocols such as, SMAC [73]. Section 2.2 details the

research work related to Distributed Hash Table (DHT)-based systems. In this section, we

provide a brief overview of DHTs and provide the examples of CAN, GLS and GHT. Section

2.3 describes the research work related to routing protocols for infrastructureless networks.

In this section, we break up the body of routing protocols into different categories, namely:

pro-active, re-active, hybrid and location-based. Examples are provided for each of these

different kinds of routing protocols. Section 2.4 concludes this chapter by providing in detail

the research advances related to service discovery in infrastructureless networks.
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2.1 MEDIUM ACCESS CONTROL (MAC)

The Medium Access Control (MAC) layer provides the functionality using which access to

the shared medium is granted in a fair and efficient manner. The earliest wireless networks

were packet radio networks that used protocols such as ALOHA to grant access to the

wireless channel [5]. ALOHA was not effective in allocating access to the wireless channel,

since the probability of collision was high. Other techniques included time division multiple

access and frequency multiplexing.

An improvement on the above schemes was the carrier sense multiple access scheme,

in which nodes listen to the channel and transmit only if the channel is free. The nodes

that wish to participate in a wireless communication negotiate a RTS (request-to-send)-CTS

(clear-to-send) handshake before transmission. This handshake is to ensure that the wireless

channel is free and is necessary since collision detection is very difficult in wireless networks.

This protocol is called: carrier sense multiple access with collision avoidance (CSMA/CA)

and is used in the IEEE 802.11 standard for wireless networks [28].

A major challenge for the 802.11 standard is the range of the wireless signal. Typically,

the wireless signal from a 802.11 device ranges upto 300 feet using a clear line-of-sight.

The signal suffers greatly from physical obstacles and distance between devices. In order to

provide a large-scale wireless network, an Internet service provider would need to set up a

lot of access points so that users can stay connected to the network as they move from one

location to another. To alleviate this problem, a new standard called WiMAX [70, 74] has

been developed. WiMAX stands for Worldwide interoperability for Microwave Access and

is a wireless metropolitan-area network technology that provides interoperable broadband

wireless access to users. The service area of WiMAX extends upto 50 km and allows users

to get network connectivity without the need for direct line-of-sight with the access point.

Also, the throughput provided by WiMAX is as high as 75 Mbps.

Due to the computation and communication limitation of the nodes in a wireless network,

there have been considerable developments in the field of energy-efficient MAC protocols.

These protocols aim to save energy by periodically setting the interface to sleep, thus con-

serving the energy of the node and hence increasing the lifetime of the network [73]. Some
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MAC protocols adaptively adjust the RTS-CTS handshake to mitigate the effect of hidden

and exposed terminals.

In this section, we detailed the advances in the Medium Access Control technology

for infrastructureless networks. The MAC layer provides fair and efficient access to the

shared wireless medium. Advances in MAC protocols include TDMA, CDMA, FDMA and

CSMA/CA and energy aware MAC protocols such as SMAC [73]. This research does not

take into consideration the MAC protocol used by the wireless devices. Depending on the

requirements of the network, any of the discussed MAC protocols for 802.11 can be used

in conjunction with PILOT. PILOT is primarily a forwarding protocol and relies on the

underlying MAC protocol to mitigate message collision and exposed terminal problems, as

well as regulate energy consumption due to forwarding or receiving messages.

2.2 DISTRIBUTED HASH TABLES (DHTS)

Every DHT supports one basic operation lookup (key). Given a key, this function returns

the identity of the location of the key. Hence, routing messages efficiently between the

node that issues the query lookup (key) and the actual node that holds the key assumes

paramount importance. The scalability and performance of a DHT is thus directly related

to the routing algorithm employed. Examples of P2P systems that use a DHT are: Chord

[63], Grid Location Service (GLS [30]), Pastry [54], Tapestry [76], FreeNet [9], Geographic

Hash Table (GHT [62]) and Content Addressable Networks (CAN [52]). We will discuss

CAN, GHT and GLS since they are most similar to this research.

CAN (Content Addressable Network) [52] provides a distributed, Internet-scale hash

table. The key space in CAN is divided into a d-dimensional virtual Cartesian coordinate

space. Each node contains a part of the distributed hash table, termed as a zone. Each node

also holds information about adjacent nodes in the virtual network. In case of a request for

a particular key, this request is routed to the node whose zone contains that key. Given a

(key,value) pair, CAN maps the key to a point P in the co-ordinate system using a uniform

hash function. The corresponding (key,value) pair is stored at the node that owns the zone
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in which P is located. To retrieve a value corresponding to a key, a node can apply the

same hash function to obtain a point P . The request is routed to the zone which contains

P . CAN uses a simple greedy forwarding algorithm by routing the request to the peer that

is closest to the destination co-ordinates. The performance of CAN is closely related to the

efficiency of the underlying routing protocol for the DHT.

The Grid location service (GLS) [30] provides distributed location information service in

mobile ad-hoc networks. GLS combined with geographic forwarding can be used to achieve

routing in the network. In GLS, nodes in the network use location servers distributed through

the network to maintain their current location information. These location servers are not

specifically designated and each node in the network acts as a location on behalf of some

other node in the network. A node X recruits nodes that are “closest” to its own ID (least

ID greater than X) in the ID space to act as its location servers. A node N trying to locate

node X uses the same protocol as above to send a request to one of X’s location servers.

Upon receipt of this request from N , the location server forwards this request to X. Using

the information about the position of N from its request node X uses geographic forwarding

to initiate interaction with N .

GHT (Geographic Hash Table) [62] is a distributed data centric storage (DCS) system

for sensor networks. GHT works by hashing keys into geographical co-ordinates and stores

the (key,value) pair at the sensor node geographically closest to the hash of its key. GHT

supports two basic operations: put(k,v), that stores the value v that is associated with

key k; get(k), that retrieves the value that is associated with key k. This allows GHT to

provide a hash-table based DCS interface for sensor networks that uniformly distributes load

throughout the network. To ensure the availability of data due to node failures, GHT locally

replicates the stored data. Also, GHT has a built-in mechanism which ensures that the

key-value pairs are stored at the appropriate locations even after topology changes. GHT

uses the Greedy Perimeter Stateless Routing (GPSR) [6], a geographic routing algorithm for

wireless networks as its underlying routing algorithm.

In this section, we detailed the research work in Distributed Hash Table (DHT)-based

systems that are similar to this thesis. CAN and GLS divide the network into zones based on

a logical topology. In CAN, the overall logical co-ordinate space is dynamically partitioned
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among all the peers in the network. Each peer is responsible for a particular zone in the

network. In GLS, the network is divided into a hierarchy of grids of increasing sizes. Both

CAN and GLS use greedy forwarding to route messages from the source to the destination.

Nodes use a scheme similar to GPS [13] to determine their geographic position. The logical

topology is de-coupled from the physical topology and this can lead to inefficient routes in

the network since a node that is “closer” in the logical topology may actually be quite far in

terms of the physical topology. Similar to CAN and GLS, SARA also divides the network into

zones, but unlike these schemes, this division is based on the physical topology of the network.

Also, unlike CAN, when a new node arrives in the network, a zone is not split into two and

this overhead is avoided. Mobility is also incorporated into the service architecture by using

the concepts of most likely residence and location vector of a mobile node. Furthermore,

the proposed research seamlessly integrates a power-aware data forwarding protocol into

the architecture. This protocol uses the knowledge about the location of the source and

the direction of the destination to forward traffic in a location-directed manner to reduce

flooding in the network. The Geographic Hash Table (GHT) scheme is a distributed data

centric algorithm that hashes keys into geographical co-ordinates and stores the (key,value)

pair at the node geographically closest to the hash of its key. Similar to GHT, our approach

also hashes keys into geographical co-ordinates, but instead of using one node in the network

to hold the object information, a group of nodes are selected from within an area to hold the

required information. Also, this information is stored in a manner such that only a fraction

of it is necessary to re-construct it. The information about the registered entities is still

available even after some nodes become mobile and leave the area where the information is

registered.

2.3 ROUTING

Due to the lack of an existing infrastructure, routing in an ad-hoc network is of a very

high priority. In an ad-hoc network, nodes cannot rely on base stations or access points to

relay information from one node to another; routing between two nodes (assuming that the
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nodes are not in the direct vicinity of each other) would need to use the intermediary nodes

for forwarding information from the source to the destination and vice versa. There are

several routing protocols that have been suggested by researchers and these can be broadly

categorized into four categories: pro-active routing protocols, re-active routing protocols,

hybrid routing protocols and location-based routing protocols.

2.3.1 Pro-Active Routing Protocols

Pro-active routing protocols establish and maintain routes periodically. Routes are usually

available before they are needed and route maintenance is of the highest priority with such

protocols. The overhead can be very high for maintenance, but it can be offset if we have

a network where communication between nodes is quite high. An example of a pro-active

ad-hoc routing protocol is Destination Sequenced Distance Vector Routing (DSDV) [47].

DSDV is a pro-active routing protocol designed specifically for infrastructureless net-

works. Every node has its own copy of the routing table that lists all the available destina-

tions and the number of hops it takes to reach each destination. Routing table information is

exchanged periodically when every node broadcasts/multicasts its routing table along with a

initiator-tagged sequence number. Each routing table entry in DSDV is assigned a sequence

number so that nodes can easily distinguish between an old route (an invalid route) and a

new route. On receipt of the routing table, the receiver node will check its routing table and

replace all those entries whose sequence number is older than the one just received. If the

sequence numbers are the same, then those with the smallest hop count are preferred.

2.3.2 Re-Active Routing Protocols

Re-active routing protocols establish routes as and when needed by a node. Route main-

tenance is very minimal and a route is usually maintained only for the lifetime of the con-

nection. Re-active protocols reduce the load on each node and hence tend to be power

conserving. These protocols perform well when the nodes do not communicate often. Oth-

erwise, they tend to introduce a high latency due to the formation of routes. Examples of

re-active routing protocols are: Ad-hoc On Demand Distance Vector Routing (AODV) [46]
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and Dynamic Source Routing (DSR) [34].

AODV is a re-active routing protocol for infrastructureless networks that creates and

maintains routes as and when needed by the source nodes. When a source node needs a

route to a destination for which it does not already have a route, it broadcasts a route

request (RREQ) message. This broadcast is received by the other nodes who update their

routing tables by inserting reverse pointers (along the backward direction). The RREQ is

re-broadcast by nodes that receive them. Each RREQ is forwarded only once. If an RREQ is

received again, then it is discarded. When the destination node receives the RREQ, a Request

Reply (RREP) is initiated by the destination node. The path followed by the RREP to the

source node is back along the same path that was followed by the initial RREQ.

DSR is a re-active routing protocol for infrastructureless networks that was developed to

have a very low overhead and yet react quickly to changes in the topology of the network so

as to be able to ensure successful delivery of packets. When a source node needs a route to a

destination node, it broadcasts a route request. If the destination node hears the broadcast

directly, it replies back, else all the nodes that have heard the route request broadcast do

a limited broadcast of the request. A limited broadcast is when a node does re-broadcast

a request, but discards it if it has already been processed. Any node that rebroadcasts the

request adds itself to the path that the request has traversed. The reply follows the path to

the source as it knows the route traversed by the request.

2.3.3 Hybrid Routing Protocols

Hybrid routing protocols use a combination of pro-active and re-active routing protocols.

The highly mobile elements of the network are grouped into “clusters” and a pro-active

scheme is used to route within a cluster, while routing between clusters is taken care off by a

re-active scheme. Examples of hybrid routing protocols are: Zone Routing Protocol (ZRP)

[25] and the (α, t)-Cluster [41, 1].

ZRP is a hybrid routing protocol that divides the network into overlapping zones [25].

Routing between and within zones are handled differently. Intra-Zone protocol (IARP)

takes care of routing with a zone, while Inter-Zone protocol (IERP) deals with routing from
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a source node to a destination node not located in the same zone. Intra-Zone protocol can

be any routing protocol that is pro-active. In this case, all nodes in a zone know the zone

topology. Different zones can use different intra-zone routing protocols. In the Inter-Zone

protocol a route to the destination node is found by first sending a Route-Request (RREQ)

message to all the border nodes in the zone. This continues until the destination is found.

The (α, t)-Cluster routing protocol is a hybrid routing protocol that utilizes adaptive

clustering to organize nodes into clusters in which the probability of path failure due to node

movement can be bounded over time [41]. This metric allows for the dynamic balancing

of the trade-offs according to temporal and spatial dynamics of the network. Intra cluster

routing is done on a pro-active basis using a table driven pro-active routing algorithm.

The (α, t)-Cluster framework is flexible and independent of the specific intra-cluster routing

algorithm and hence, any pro-active routing algorithm designed for ad-hoc networks can be

used for routing within a cluster. Inter cluster routing strategy tries to take advantage of the

cluster topology and the intra-cluster routing tables. The Inter Cluster Routing Protocol

(ICRP) is a fully reactive cluster based routing protocol that discovers and maintains routes

on an on-demand basis. In ICRP, the central coordinator node for each cluster cooperates

to control the route query process to avoid flooding the network.

2.3.4 Location-Based Routing protocols

Location-based routing protocols rely on the position of a node in space rather than on

the topology of the network. These protocols take advantage of the fact that nodes in the

network know their location (using a service similar to GPS [13]) and use this to optimize

the protocol by sending the routing information in the direction of the destination rather

than broadcasting it.

Location Aided Routing (LAR) [35] is a location-based routing protocol uses the location

information of the nodes to improve the performance of routing protocols for infrastructure-

less networks. LAR uses the concept of a request zone, an area within which the routing

request is forwarded towards the destination. Nodes outside of this area drop the request.

This helps in reducing the number of routing messages that are sent in the network. Two
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algorithms are provided to calculate the request zone. In the first algorithm, the source S

calculates the request zone to be the smallest rectangle that contains S and the expected

region of the destination D. This information is embedded in the route request and only

nodes in the request zone forward this request. In the second scheme, S embeds its distance

from D along with the position of D. An intermediate node forwards the route request only

if it is “closer” to D as compared to S.

The Distance Routing Effect Algorithm for Mobility (DREAM) [56] is a location-based

routing protocol in which each node in the network maintains a routing table that contains

the location information about every other node in the network. A source S wishing to

send a message to a destination D uses D’s location information to send the message in the

direction of D. This location information stored at nodes is updated as nodes move. The

rate of updation is a function of the node’s mobility rate (the speed of the node). The rate of

location updates for a node increases as the speed of the node increases. Since the location

updates are pro-active, this can lead to a large number of location update messages for a

network consisting of highly mobile nodes.

Global Perimeter Stateless Routing (GPSR) [6] is a new kind of location-based routing

algorithm that uses only the “local” neighboring information in its decision to forward the

message to the next hop. The next hop node is chosen from a set of neighboring nodes

by using a greedy forwarding scheme in a manner such that this node is the closest to the

destination. This mechanism that the message is always forwarded closer to the destination.

In the event when greedy forwarding fails (for example, it reaches a local maximum when

there exists no neighboring node whose distance to the destination is closer), GPSR switches

to recovery mode. In the recovery mode, the message is forwarded along the faces of the

planar sub-graph, that are successively closer to the destination. This continues on until

the message reaches a node closer to the destination than the source node, wherein greedy

forwarding resumes.

In this section, we have described the research work related to routing protocols for

infrastructureless networks with respect to pro-active, re-active, hybrid and location-based

routing protocols. Pro-active routing protocols such as, DSDV [47] establish and maintain

routes periodically. Routes are usually available before they are needed and route mainte-
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nance is of the highest priority. The overhead of these protocols though, can be very high

since periodic updates require excessive bandwidth and processing, and frequently use scarce

resources to maintain routes that may seldom be used. Re-active routing protocols such as,

AODV [46] and DSR [34] establish routes as and when needed by a node. Route maintenance

is very minimal and a route is usually maintained only for the lifetime of the connection.

These protocols perform well when the nodes do not communicate often, otherwise they

tend to introduce a high latency due to the formation of routes. Hybrid routing protocols

such as, ZRP [25], (α, t)-Cluster [41, 1] use a combination of pro-active and re-active routing

protocols. They abstract the highly mobile elements of the network into “clusters”, and

use a pro-active scheme to route within a cluster, while routing between clusters is taken

care off by a re-active scheme. The disadvantage of all the above schemes is that none of

them use the location information about the nodes in the network. To take advantage of

the location information available, we have designed PILOT to be a location-driven routing

protocol. Location-based routing protocols such as, LAR, DREAM and GPSR rely on the

position of a node in space rather than on the topology of the network. These protocols

use this location information to optimize the protocol by sending the routing information in

the direction of the destination rather than broadcasting it. Due to the pro-active flooding

of updates to a node’s location information, both LAR and DREAM do not scale. PILOT

differs from DREAM and LAR by not flooding the network with location updates; rather,

messages are forwarded by intermediary nodes on a piece-meal basis (where the position

of the destination is re-calculated and hence the direction of forwarding is changed to suit

the direction of the destination). This leads to PILOT being more scalable when compared

to DREAM and LAR. GPSR relies on the information about the neighboring node to be

able to select the next hop to forward the message to. This information needs to be kept

up-to-date for the correct performance of GPSR. PILOT, which is primarily a forwarding

protocol forwards the message towards the destination and any node within this range (based

on its probability of forwarding) picks up the message to forward this information. Also,

unlike GPSR, which can hit a local maximum, PILOT has a built-in mechanism by which

the probability of forwarding for intermediate nodes increases over time, thus ensuring that

one of the nodes does indeed forward the message.
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2.4 SERVICE DISCOVERY IN UBIQUITOUS ENVIRONMENTS

Service discovery provides an interface by which clients and servers discover each other

and also the services that are available in the network. Service discovery for ubiquitous

environments is still a very new area of research. There have been some protocols for

service location and discovery that have been developed for LANs, namely: Service Location

Protocol (SLP) [14] and Simple Service Discovery Protocol (SSDP) [75]. SLP relies on

agents to search for and locate services in the network. The SLP framework consists of three

agents, namely: : a user agent, a service agent and a directory agent. The user agent is

used on behalf of a user to search for the required services. The service agent advertises the

available services on behalf of a server. The directory agent collects the advertisements that

are sent out by the service agent. SSDP uses HTTP UDP on the reserved local multicast

address 239.255.255.250 and the SSDP port while searching for services. The ideas of SLP

and SSDP cannot be directly applied to service discovery in ubiquitous environments due to

their reliance on an existing network structure.

The Bluetooth Service Discovery Protocol (SDP) [24] is a mechanism by which devices

enabled by Bluetooth discover the services provided by other Bluetooth devices. Each Blue-

tooth device maintains service records, each of which describes an available service. The

service records contain information about the type of service, the necessary protocols for

communicating with the service and location of appropriate documentation. To find services

of interest, Bluetooth devices search the available space of services to find the service match-

ing the required attributes. The Bluetooth Service Discovery Protocol is designed for small,

personal-area networks with a small number of nodes.

Wibree [68] is a new interoperable low power radio technology for small devices such as,

wrist watches, gaming and sports sensors that was developed by Nokia. Wibree allows these

small battery operated devices to connect to host devices such as mobile phones, PDAs and

personal computers. It is the first open technology offering such connectivity. In a press

release dated June 12, 2007, it was announced that the Wibree forum was merging with the

Bluetooth Special Interest Group (SIG) [69]. The fallout from this announcement meant

that the Wibree specification will now become a part of the Bluetooth specification as an
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ultra low power Bluetooth technology. Wibree thus provides a natural low cost, low power

extension to Bluetooth’s Personal Area Network (PAN) by allowing for connectivity between

small battery powered devices and Bluetooth enabled devices such as phones and PDAs.

Jini [65] is a service discovery protocol developed by Sun Microsystems is an agent-based

service discovery protocol that is based on Java. A lookup service that is part of the service

discovery framework is responsible for maintaining information about the services in the

network. Services are registered with the lookup service by the service provider as and when

they become available in the network. Clients wishing to avail of services in the network

query the location service, which provides them with information about the service and also

the means of contacting the server providing the required service.

Universal Plug and Play is a set of network protocols for service discovery developed by

the Universal Plug and Play Forum [67]. The goal of UPnP is to allow for seamless integration

of devices for the purpose of implementing small personal area networks (in home or office).

UPnP device and service definitions and definitions are defined in XML and are built on

open, Internet-based communication protocols such as: HTTP and SOAP. Service discovery

requests are made on demand and services are advertised as and when necessary.

Konark [60] is a service discovery and delivery protocol for ad-hoc networks that is

geared towards device independent services. The Konark architecture is operating system

and programming language independent since it is built above the network layer and uses

XML. Each device in Konark is treated as a client as well as a server and include a Konark

application that facilitates service advertising and discovery along with an SDP manager and

registry that maintain service information about services offered by peers in the network.

In addition to this, each Konark device runs a micro-HTTP server that acts as a handler

for service delivery requests. Service information in the registry is stored in the form of

a service tree with the leaf nodes representing service names while the root and internal

nodes represent service types. Services are advertised periodically to the entire network. To

discover a service, a client sends a discovery request to its local multicast group.

Ekta [23] integrates DHTs (akin to peer-to-peer systems such as [63, 76, 53, 9, 42, 55])

into MANETs. This provides an efficient architecture for constructing distributed applica-

tions and services in MANETs. Two different approaches are studied: a layered approach
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that directly overlays a DHT on top of the existing multi-hop routing protocol used for

the infrastructureless network and an approach that directly integrates the DHT with the

multi-hop routing at the network layer, thus maximizing the advantages created by their

interaction. The layered approach is implemented by layering Pastry [54] on top of DSR

[34], while the integrated approach integrates Pastry and DSR at the network layer.

Twins [72] provides an architecture for addressing and locating nodes in large networks.

Twins uses a DHT-based architecture for location management in self-organizing networks.

Twins employs a dual addressing space (logical and geographical) to achieve this purpose.

This multidimensional space is a strict mathematical representation of the network geo-

graphic space. The logical space is partitioned among the network nodes and is used for

locating nodes in the network based on the partitions assigned to the nodes. Geographic

forwarding is achieved by using a simple forwarding mechanism that assumes that all the

nodes know their location information using a mechanism such as GPS [13]. The logical

space is mapped onto the network geographic space by using a multi-to-one dimensional

mapping that is based on the concept of Hilbert space-filling curves.

A cross layer approach to service discovery in MANETs is provided in [4]. This provides

a routing protocol independent library, called the Service Discovery Library (SDL), that

works at the user level and is responsible for service registration and discover and a Routing

Layer Driver (RLD) that closely interacts with the routing protocol to keep track of topology

changes and also to propagate service discovery requests. Service registration and discovery

matching are based on simple string based comparison. Two prototypes are presented,

namely: CLdsr, which uses DSR [34] as its underlying routing protocol, and CLdsdv, that

uses DSDV [47] as its underlying routing protocol.

GSD (Group Service Discovery) [11] uses the Web Ontology Language (OWL) [43] to

describe service and resources that are available with the network nodes in an ad-hoc network

environment. Based on the service description, the available services are organized into a

hierarchy of “groups”. Services are advertised periodically to other nodes in the network.

Apart from advertising its own services, a node also advertises the service groups that it has

seen around its neighborhood. When a node requires a service, it first initiates a service

request locally by querying its 1-hop neighbors. In the event when a service request is not
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resolved by a node’s neighbors, this request is selectively forwarded to other nodes who

belong to the same service group in order to increase the probability of finding information

about the requested service.

A scalable service discovery protocol for MANETs is provided in [18]. Service regis-

tration and discovery services are provided by a set of co-operating directories that form a

virtual network. These directories are formed by network nodes that maintain a cache of

the available web services within their vicinity. To allow for global discovery of services,

each directory summarizes its content and periodically broadcasts this information to the

other directories in the network. 2-hops bordercasting is used for the purpose of reducing

the network traffic. To reduce the size of the directory summaries, Bloom filters [7] are used.

In order to perform a service discovery, a client node queries its local directory. In the event

that the information is not available in the local directory, the query is forwarded to the

other appropriate directories in the network.

In this section we have described in detail the research advances related to service dis-

covery in infrastructureless networks. SSDP [75] and SLP [14] provide service location and

discovery in LANs and they cannot be directly applied to service discovery in ubiquitous

environments due to their reliance on an existing network structure. The Bluetooth Service

Discovery Protocol [24] along with Wibree [68] is designed for small, personal-area networks

consisting of a small number of battery powered devices as well as Bluetooth enabled devices

such as phones and PDAs. Bluetooth technology cannot be applied to large-scale ubiquitous

environments. Jini [65] is an agent-based service discovery protocol responsible for main-

taining information about the services in the network. The ideas of Jini cannot be directly

applied to service discovery in ubiquitous environments due to its reliance on a centralized

location server. Another deterrent to using Jini is the requirement that devices in the net-

work be Java enabled. Furthermore, Jini uses a RPC mechanism (the Java Remove Method

Invocation (RMI)) that consumes a lot of network resources. UPnP is a service discovery

protocol developed by the Universal Plug and Play Forum [67]. UPnP uses a lot of band-

width due to duplicate message and hence is not a suitable solution for resource constrained

ubiquitous environments. Konark [60] is a service discovery and delivery protocol for ad-

hoc networks that is geared towards devices independent services. Though Konark provides
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an architecture for service discovery in infrastructureless networks, it is expensive in terms

of communication costs due to the number of messages sent and hence does not consider

energy constraints or delay. Our service architecture, SARA contains an integrated power-

aware message forwarding protocol that takes into consideration the residual energy level at

an intermediary node while forwarding messages towards the destination, thus maximizing

network lifetime. Ekta [23] provides an efficient architecture for constructing distributed

applications and services in MANETs. Our service architecture, SARA differs from Ekta,

since it does not use Pastry for the purpose of its DHT. The Virtual-DHT is constructed

in a manner such that it is able to take advantage of the location information provided in

the network. Our DHT scheme is more lightweight when compared to Pastry and also takes

node mobility into consideration. SARA also contains an integrated power-aware message

forwarding algorithm that is more efficient than DSR since it uses location information pro-

vided in the network. Twins [72] provides an architecture for addressing and locating nodes

in large infrastructureless networks. Our approach differs from TWINS, in that we do not

use multiple address spaces. This overhead of mapping one space onto another is avoided by

directly mapping the DHT onto the physical structure of the network. Node mobility is also

incorporated into the framework by using the location vector of the mobile node. [11] uses

a cross layer approach to service discovery in MANETs. Though the cross layer approach

is similar to our research, the authors do not consider node mobility and rely on the under-

lying routing protocol to route traffic. We incorporate node mobility into SARA by using

the location vector of the mobile node. Both GSD [11] and [18] provide service discovery in

MANETs by using local broadcasts for service advertisements. In the event that a service is

not available locally or with the local directory as in the case of [18], the request is forwarded

through the network or to the next directory. These schemes do not take node mobility into

consideration. The mobility of nodes causes frequent service advertisements which results in

an implosion of messages in the network that uses valuable network resources. The schemes

described in [33, 71, 48] focus on resource discovery in MANETs. Similar to these research

works, our scheme also provides support for resource discovery in ubiquitous environments,

but uses the concept of virtual residences to bootstrap the resource discovery process. Our

architecture also contains a power-aware data forwarding scheme.
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2.4.1 Home Region/Agent based schemes

Mobile IP [17] was developed to facilitate mobile computing. The main idea was to allow

users the ability to take their computing environment along with them and continue their

work without having to change their configurations. The only requirement was that the user

have a connection to the Internet in the new location. The mobility of the users is handled

by allowing the mobile node to have two IP addresses: a home-address and a care-of address.

The home-address of the node is the fixed IP address of the node, while the care-of address

is the address that the node acquires at its new location. Traffic intended for the mobile

node (that was held up) is forwarded by its home agent, upon receipt of the node’s care-of

address. While mobile IP solves the problem arising due to the mobility of the nodes in the

network; services that are provided are not continuous, owing to the fact that the node has

to register its care-of address with its home-agent.

[27, 59, 26, 57] use the concept of home agents (or) home regions. Each node in the

network is mapped to an area (using a hash function) in the network that is designated as

its home region. The home region holds the location information about the mobile nodes

which map to this location. A mobile node updates its location information by sending

updates to its home region. We differ from the above schemes by not updating a node’s

home region. Instead, we used the location vector of a node to leave behind it’s mobility

information using which other nodes can locate it.

2.5 SUMMARY

This chapter presented an overview of the research related to this thesis in the areas of:

Medium Access Control (MAC), Distributed Hash Tables (DHT)s, routing and service dis-

covery in ubiquitous environments. Section 2.1 provided a background and listed the ad-

vances in Medium Access Control technology. The available body of literature ranges from

the traditional CSMA/CA MAC protocols to energy efficient MAC protocols such as, SMAC

[73]. Section 2.2 detailed the research work related to Distributed Hash Table (DHT)-based
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systems. In this section, a brief overview of DHTs was provided along with examples DHTs

such as, CAN, GLS and GHT. Though our work is similar to GLS, CAN and GHT in terms

of mapping services to zones, in our approach the zones are divided based on the physical

topology. Also, our work seamlessly integrates a power-aware message forwarding protocol

into the framework. Section 2.3 described in detail the research work related to routing

protocols for infrastructureless networks. In this section, the body of related work was

broken up into into different categories, namely: pro-active, re-active, hybrid and location-

based routing protocols. Examples were provided for each of these different kinds of routing

protocols. Section 2.4 concludes this chapter by providing in detail the research advances

related to service discovery in infrastructureless networks. In this section, a brief overview

of infrastructured service discovery protocols, such as SLP and SSDP was provided. The

rest of the section was dedicated to the discussion of existing service discovery protocols for

infrastructureless networks.

30



3.0 SARA: A SERVICE ARCHITECTURE FOR RESOURCE AWARE

UBIQUITOUS ENVIRONMENTS

In this chapter, we present SARA, a novel resource and location aware framework to support

large-scale deployment of service and applications in resource aware ubiquitous environments.

We begin by examining the characteristics of the service architecture and then present the

components of SARA. Section 3.2 details the building blocks used in SARA while Section 3.3

details the services of SARA and provides the algorithms used in SARA for virtual registry

creation and management, location registration, object registration and discovery, mobility

management and node interaction.

3.1 OVERVIEW

The goal of SARA is to address the fundamental design issues of a service infrastructure for

ubiquitous environments and provide a comprehensive solution which takes into consideration

node mobility and resource constraints. To this end, there are several challenges that must

be addressed in order to develop such an architecture. These challenges are related to the

development of several capabilities necessary to support node interaction in SARA. These

capabilities include: object registration, object discovery, mobility management and data

dissemination. SARA is divided into four components (as shown in Figure 3.1) with each

component responsible for one of the above capabilities. Each of the components export

certain pre-specified interfaces which the other components use to interact with it. This

allows for easy and flexible access within and between components.

SARA is visualized as an underlying system that exports certain well-defined primitives
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Figure 3.1: SARA Architectural Components

that allow users to register or discover objects in the network. A user wishing to utilize

the system can choose to perform either an object registration or an object discovery by

using the exported interface. Unlike traditional wireline networks, node mobility is a factor

in wireless networks and has to be accounted for. In a network like this, not only do we

need to account for node mobility, we also have to take into account the issues with respect

to change in network density and network eccentricity. As in real life, networks are rarely

uniformly distributed. An efficient way to build and sustain the network is important, for

most nodes in the network have limited energy resources. To account for node mobility, the

registration and discovery components use the mobility management component to be able

to locate a mobile node. The underlying data dissemination protocol is then used to route

application or control traffic to the intended destination.

3.1.1 Object Registration

Object registration is the process by which a node, containing a set of objects that are of

interest to other network nodes, registers its objects with the network. It is necessary for the
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node to locate the node or nodes in the network with which it must register this information.

This information typically contains the object id, its name and its relevant attributes. A

user performing an object registration uses the exported interface to send and exchange

information with this component.

The lack of a fixed infrastructure and the mobility of nodes in the network makes object

registration challenging. Due to the lack of a fixed infrastructure, there is no central directory

available to register services. To facilitate registration services in such a network, the schemes

developed must be distributed and be immune to the mobility of nodes in the network. Also,

node mobility makes it difficult to locate the node that owns the required object. To allow

for locating mobile nodes in the network, a node must also register its location information

while registering its objects, to facilitate node interaction. The schemes developed must also

take into consideration the resource constrained environment.

3.1.2 Object Discovery

Object discovery is the mechanism by which nodes in the network discover the objects of

interest that are available in the network. Typically, nodes try and locate the node or nodes

with whom the object is registered (registry nodes) and queries for the object of interest.

If a match occurs, the registry nodes reply to the query with a list of nodes in the network

that own that object. Using this information, the node can choose to establish a connection

with any one of the nodes on the list to request the object. A user performing an object

discovery uses the pre-defined interface exported by this component to interact with it.

The challenges faced for object discovery in infrastructureless networks are very similar

to those faced by object registration. To locate a mobile node (after a successful query for

an object), the discovery component makes use of the mobility management component to

locate the required mobile node.

3.1.3 Mobility Management

Mobility management is an important aspect of this framework, since nodes in an infras-

tructureless network can be mobile. An efficient mechanism must be in place whereby nodes
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in the network can locate, with high probability, the mobile node. The scheme developed to

locate a mobile node must be resource aware. Due to the mobility of nodes in the network,

both the object registration and discovery components need to interact with this component.

This interaction is achieved through the use of the exported primitives of each component.

To track mobile nodes, the network requires information to be stored that clearly goes

beyond the typical information stored for a service architecture. In addition to the object

information, the mobility information of a node must also be stored in order to facilitate

interaction between nodes. This node information, however, changes dynamically, as the

node moves from one location to another. Efficient mechanisms must, therefore be in place

to update this information as nodes move.

3.1.4 Data Dissemination

Data dissemination is the mechanism by which application and control traffic reaches its

intended destination. The strategy used to forward traffic efficiently must take into consid-

eration the time-varying dynamics of the network, node mobility and power-consumption.

The tradeoffs between these important design factors and network characteristics must be

recognized and alternatives carefully evaluated. This component is used by the registration,

discovery and mobility management components to send and retrieve traffic from the net-

work. This component uses the primitives provided by the underlying network layer to send

and receive packets from the network and exports its own interfaces to the layers above it.

To limit flooding in the network, the data dissemination protocol uses the knowledge

about the location of the source and destination to forward traffic in a directional manner

towards the destination. The intermediary nodes that forward traffic are chosen based on a

priority-based scheme that imposes a priority on the neighboring nodes in a way, such that

nodes which are more in line with the direction of the destination have higher priority to

forward the message. This reduces the delay that traffic suffers on its way to the destina-

tion. Chapter 4 talks in detail about PILOT, the data dissemination protocol used in this

architecture.
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3.2 SARA BUILDING BLOCKS

This section details the building blocks of SARA. The main building blocks of SARA are

virtual registries and the virtual anchor forwarding path. A virtual registry in SARA repre-

sents a physical area to which objects are mapped and it acts as a “reference point” between

the nodes that provide objects and the nodes that request objects. The virtual anchor for-

warding path is a global structure that spans the network service area, and consists of a set

of landmark points where each landmark represents a physical location in the network. The

virtual anchor forwarding path determines the path to follow to locate the next available

virtual registry.

3.2.1 Virtual Registries (VRs)

Consider a ubiquitous networking environment covering a specific geographical area, denoted

by Λ. The network service area is sub-divided into regions according to the coverage of

network nodes by using a Voronoi Diagram. The network consists of a collection of entities

(E), E = {Et
i , i = 1, ..., M ; t = 1, ..., K}, where t: entity type and i: number of entities of

each type. Types of entities in the network include nodes (users) and objects. Each entity is

associated with a unique id and metadata. Entity metadata consists of the type of entity, its

attributes and information about the node that owns the entity. Entities are mapped into

the network by using a Distributed Hash Table (DHT) that uses geographic mapping for its

DHT as opposed to node mapping.

A node (user) in the network is characterized by its unique id, its most likely residence

(MLR), its location vector (LV) and the collections of objects owned by it. The MLR of a

node is the physical location where the node is expected to spend most of its time and is

used as a congregation point by nodes to contact other nodes. The location vector (LV) of

a mobile node is a dynamic time-dependent vector that represents the most likely physical

location of the node at a given time, thus reflecting user activity. The location vector of a

node, N , is represented as: LVN = {LN(t1), LN(t2), ..., LN(tn)}, where LN(t1) is the most

likely physical location of node N during time period t1. The location vector is generated by
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using a user-defined schedule that comprises of dates, times, and events. The location vector

typically depicts the everyday behavior of the user. For example, users can specify that

during a specific time of day they are available at home, at work or out shopping. However,

incidental events may occur that impact this location vector. These changes are conveyed

to the user schedule and the location vector is appropriately updated to capture the specific

events that occur that day and reflect the new user activity. The user-defined schedule can

easily be composed and modified by using a calendar based system.

The collection of objects owned by node N , is represented as a list: ON = {ON
i , i =

1...number of objects}. Objects in the network are of two types: pre-existent and on-

demand. Pre-existent objects are those that are carried by mobile devices belonging to

users. Types of such objects include: documents, music, video, medical information, maps.

On-demand objects are objects that are created as and when necessary. Types of such objects

include data gathered as a result of a query. Each object is mapped into geographical co-

ordinates in the network, Λ by using a Distributed Hash Table. This mapping is achieved

using a dual-valued hash function H(), such as H(Oi) = [x, y]. The mobile nodes in the

virtual registry containing [x, y] are responsible for maintaining and managing information

related to Oi. This responsibility includes resolving requests regarding the current location

of the node which owns the object along with any other relevant attributes.

In order to balance the distribution of service information among the network zones, the

hash function, H(), must be uniform [12]. Furthermore, it is desirable that the computational

cost and collision of H() be minimal. To meet these requirements, the function H() is defined

as follows:

H(Oi) =





Hx(Oi) = bL ∗ (Oi ∗ A− bOi ∗ Ac)c
Hy(Oi) = bM ∗ (Oi ∗ A− bOi ∗ Ac)c,

(3.1)

where: Oi is a m-bit object id, 0 < A < 1 is a constant, Λ is a network area of size MxN

and Hx() and Hy() are uniform hash functions. It is shown in [12] that a good choice for A

is: (
√

5− 1)/(2).

The network service area, Λ consists of several virtual registries. A virtual registry

(V R) is a dynamically created administrative domain that enables entity registration and

discovery. Information is managed in a virtual registry by a collection of mobile nodes within
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that area. A virtual registry is characterized by its id and its member nodes. The extent of

a virtual registry is such that it encompasses at least K threshold neighboring nodes. This

is to ensure that there exists enough number of nodes in the virtual registry to register and

discover entity information. The process of creating a virtual registry and managing it is

detailed in Section 3.3.1.

3.2.2 Virtual Anchor Forwarding Path

The Virtual Anchor Forwarding Path (VAFP) provides a path that spans the network service

area, Λ. This path is created off of a set of landmark points, where each landmark point

represents a physical location in the network. These landmark points determine the path to

follow to locate the next virtual registry. To locate the next available virtual registry, the

nearest landmark is located and the VAFP is traversed in the direction indicated. Such a

structure ensures that there is no data loss in the event of a virtual registry disbanding or

when there are no virtual registries at the registering point. An example of such a structure

is shown in Fig. 3.2 and the algorithm to traverse the VAFP is provided in Algorithm 1.

Figure 3.2: Virtual Anchor Forwarding Path
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Algorithm 1 Forwarding along the VAFP

Vafp-Fwd(x, y, msg)

Input: x, y, msg

Output: Result

1: Locate closest landmark (Bi) to [x, y] along the VAFP

2: Forward msg towards Bi

3: Traverse the VAFP

4: Register (or request information) with (from) the first available registry

5: if VAFP traversed completely then

6: Drop msg

7: end if

8: return

3.3 SARA SERVICES

This section details the services provided in SARA, with respect to virtual registry creation

and management, location vector registration, object registration and discovery and mobile

node location. Registration and discovery are achieved by hashing the entity id to obtain the

physical co-ordinates of a point (P ) with the network service area. The set of mobile nodes

in the virtual registry containing P assume the responsibility of maintaining information

about the object. The basic design principle for our scheme is to use geographical mapping

for the hashing as opposed to node mapping since nodes are mobile.

3.3.1 Virtual Registry Creation and Management

Virtual registries are dynamically created in a region when there are at least K threshold

nodes available. Consider the scenario when a node starts up in its most likely residence.

Initially, it tries to register itself to the network by registering its location vector and its

objects. While registering, a node also indicates if a virtual registry exists in the region
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where its MLR is located or not. Information about the regions where a registry does not

exist is exchanged asynchronously amongst the available registries in the network through

the use of the VAFP. The information exchanged contains the location of the region and the

number of nodes in the region that declare this region to be their MLR. Once the number

of such nodes crosses the threshold value, K, a message indicating to the nodes to form a

virtual registry is sent to the corresponding region. During network startup, the first node

to register itself with the network will not be able to locate any registry in the network and

hence will form a registry of its own that acts as a “temporary” registry that bootstraps

the registry creation process. The process of creating a new virtual registry is shown in

Algorithm 2.

Algorithm 2 Virtual Registry creation

VR-Create(K)

Input: K
Output: Result

1: LV-Register(Nid, H, LVN)

2: Register information about registry status

3: Exchange information about regions that do not have a registry using the VAFP

4: Update the number of nodes in a region based on above information

5: if Number of nodes in a region ≥ K then

6: Send message to region to form virtual registry

7: end if

8: return

The id of the newly created virtual registry is the [x, y] physical location of the landmark

that exists in this region. Area of VR coverage is the area of the region in which this registry

exists. The virtual registry registers information about all entities whose hash value falls

within its coverage area. After a new VR is created, the VAFP is traversed completely to

find the subsequent VRs along the VAFP to collect any information pertaining to it and as

well as its preceding areas.

The information in a virtual registry is managed in a manner such that k out of N
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(number of nodes) nodes are enough to re-construct the original entity information. This is

to ensure that the information about the entities registered at this registry is still available

even when a few nodes decide to leave the registry ([39] Defines a key encoding scheme

that can be used for this purpose). In a virtual registry, every node is aware of every other

node and nodes update each other through the use of HELLO messages. If the number of

nodes belonging to a virtual registry is close to falling below the threshold, K, the registry

attempts to recruit new nodes to maintain the threshold. If the number of available nodes

in the registry does go below K, the virtual registry is dissolved and the existing information

about the entities is forwarded along the VAFP to the next available registry.

3.3.2 Location Vector Registration

Before registering its objects, a node registers its location vector with the network. The

advantage with this is that objects need not be re-registered even in the event of a change

in the node’s location vector. It only needs to “correct” its location vector at the registry

where it registered. To register its information, a node, N performs a hash on its id (Nid) to

get a hash value. This hash value maps to the physical co-ordinates of a point (P ) within

the network service area. Using directional routing, N sends information in the direction of

P to register its LV. The set of nodes in virtual registry containing P register the location

vector of N . If there exists no registry containing P , the information is forwarded to the

next registry along the VAFP. Algorithm 3 details the process by which a mobile node N

registers its location vector with the network (H is the uniform hash function).

The duration for which a location vector is registered depends on the mobility of the

node. An almost static node will be able to provide the location vector for a longer duration

as compared to a highly mobile node.

3.3.3 Object Registration

A node N , that owns a collection of objects must register its objects with the network in

order for other nodes in the network to locate its objects. A node registers its objects one

at a time by first hashing the object id to obtain a hash value. This hash value maps to
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Algorithm 3 Location Vector Registration

LV-Register(Nid, H, LVN)

Input: Nid, H, LVN

Output: Result

1: Calculate H(Nid) = [xi, yi]

2: Let [xi, yi] be the physical co-ordinates of a point P within Λ

3: Compose message (msg) consisting of Nid and its location vector, LVN

4: Use directional routing to send msg towards P

5: if ∃ VR containing P then

6: Register LVN and acknowledge

7: else

8: Vafp-Fwd(xi, yi, msg)

9: end if

10: if LVN not Registered then

11: Try again after a timeout

12: end if

13: return
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the physical co-ordinate of a point (P ) within the network service area. Using directional

routing, N sends information in the direction of P to register the object. The information

consists of the object id and its metadata. The set of nodes in virtual registry containing P

register the object information. If there exists no registry containing P , the information is

forwarded to the next registry along the VAFP. Algorithm 4 details the process by which a

mobile node N registers information relevant to object ON
i .

Algorithm 4 Object Registration

Obj-Register(ON
i , H)

Input: ON
i , H

Output: Result

1: Calculate H(ON
i ) = [xi, yi]

2: Let [xi, yi] be the physical co-ordinates of a point P within Λ

3: Compose message (msg) consisting of ON
i and its metadata

4: Use directional routing to send msg towards P

5: if ∃ VR containing P then

6: Register ON
i and acknowledge

7: else

8: Vafp-Fwd(xi, yi, msg)

9: end if

10: if ON
i not Registered then

11: Try again after a timeout

12: end if

13: return

As shown in Algorithm 5, node N repeatedly uses Algorithm 4 to register multiple

objects.
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Algorithm 5 Multiple Object Registration

Mult-Obj-Register(ON , H)

Input: ON , H

Output: Result

1: i = 0

2: while i < number of objects do

3: Obj-Register(ON
i , H)

4: i++

5: end while

6: return

3.3.4 Object Discovery

Object discovery follows a procedure similar to object registration. A node D, that wishes

to locate the object(s) of interest in the network first performs a hash on the the object id to

obtain a hash value. This hash value maps to the physical co-ordinate of a point (P ) within

the network service area. Using directional routing, D sends a request in the direction of

P for information about the object. The nodes in the registry containing P reply with the

object information. If there exists no registry containing P , the request is forwarded to

the next registry along the VAFP. The object information includes: object id and object

metadata. Using the object metadata, node D obtains the virtual registry with which the

node that owns the object (N) registered its location vector (LVN). Let V RN be the virtual

registry with which node N registered its location vector. D sends a message to V RN to

procure LVN . Using LVN , node D can now initiate communication with node N . Algorithm

6 details the process by which a mobile node D discovers information relevant to object Oi

in SARA.

It should be noted that in the above example, we assumed that the reply about Oi

contained information about only one node that owns it. This reply typically consists of a

list of nodes that own Oi. Node D can choose to establish connection with any one of the
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Algorithm 6 Object Discovery

Obj-Discover(Oi, H)

Input: Oi, H

Output: Result

1: Calculate H(Oi) = [xi, yi]

2: Let [xi, yi] be the physical co-ordinates of a point P within Λ

3: Use directional routing to send request towards P

4: if ∃ VR containing P then

5: Reply with Oi and its metadata

6: else

7: Vafp-Fwd(xi, yi, request)

8: end if

9: if Response received before timeout then

10: Send request for LVN towards V RN

11: if V RN exists then

12: V RN replies with LVN

13: Establish connection with N

14: else

15: Vafp-Fwd(xi, yi, request for LVN)

16: end if

17: else

18: Try again after timeout

19: end if

20: return
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nodes on that list. This decision can be made based upon several factors: prior knowledge

of node, distance to virtual registry and actual distance to the node.

3.3.5 Mobile Node Location

Mobile nodes in the network register their location vectors to facilitate node interaction. In

the event that a node deviates from its location vector, it re-registers its location vector.

Consider the scenario when a node, A becomes mobile and leaves its current location for a

brief period. It is quite expensive to re-register the new mobility pattern every time a node

moves. Unless the deviation from the current location is for a long duration or a repeated

event, it is more efficient for a node to provide a temporary mobility profile. Node A has

knowledge about its intended destination and hence its direction and speed of travel. Node

A leaves behind this information in the form of a mobility profile with select proxy nodes that

act as the Mobility Profile Management Base (MPMB). Nodes that wish to contact A can

predict the new location of A based on its mobility profile and the elapsed time since this

information was provided [2]. Algorithm 7 details the steps using which a node C establishes

contact with node A. The components of the mobility profile in Algorithm 7 are: t0: starting

time, V (t0): expected starting speed, D(t0): expected initial direction, Pv(t): Predictor for

speed after t time units since A’s departure, Pd(t): Predictor for direction after t time units

since A’s departure.

To allow for more flexible node mobility and accommodate random mobility, a node also

sends back corrections with regards to its mobility profile to the MPMB. The MPMB updates

the mobility profile of A to reflect this change. The mobile node A needs to find the set of

proxy nodes that form the MPMB in its virtual registry to leave its mobility profile with. To

recruit proxy nodes, node A sends out a broadcast message within its registry and waits for

replies from the other nodes. The mobility profile is encoded in a manner such that k out

of N (number of replies) fragments are enough to re-construct the original profile. This is

to ensure that the mobility profile is still available even when a few proxy nodes decide to

leave the registry ([39] Defines a key encoding scheme that can be used for this purpose).

The steps involved in building the MPMB are described in Algorithm 8.

45



Algorithm 7 Handling node mobility

Node-Mobility()

Input: Void

Output: Result

1: C receives LVA from V RA

2: Using directional routing, C sends message towards A’s current location

3: if A is in its correct location then

4: Connection established between C and A

5: else

6: The MPMB replies with the mobility profile of A, a metric:

[t0, V (t0), D(t0), PV (t), PD(t)]

7: end if

8: C uses the mobility profile of A to determine with high probability its current position

and sends messages in this direction

9: A upon receiving the messages by C acknowledges it and initiates a conversation with C

10: return

Algorithm 8 Building the MPMB

Build-MPMB(k)

Input: k

Output: Result

1: Broadcast request MPMB FORM

2: Let number of replies be N

3: Encode mobility profile such that k out of N fragments are enough to re-construct the

original profile

4: Send encoded parts to the N nodes

5: return
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3.4 SUMMARY

This chapter presented the complete specification of SARA, a novel resource and location

aware framework to support large-scale deployment of service and applications in resource

aware ubiquitous environments. First, the requirements of a service architecture were de-

tailed in Section 3.1. Each of the components required for a service architecture were elab-

orated upon. Section 3.2 detailed the building blocks used in SARA while Section 3.3

detailed the services used in and provided the algorithms used in SARA for registry creation

and management, object registration, discovery and mobile node location services.

The basic tenet of SARA revolves around the concepts of virtual registries, most likely

residence and location vector. A virtual registry is a dynamically created administrative

domain that enables object registration and discovery. The extent of a virtual registry is

such that it encompasses at least K (threshold) nodes. The information in a registry is

maintained by its member nodes. The most likely residence of a node is the physical area

where the node is likely to be located most of the time and is used as a congregation point by

nodes to contact other nodes. In the case of a mobile node, the node also registers its location

vector. The location vector is a dynamic time-dependent vector that represents the physical

location of the node at a given time, thus reflecting user activity. The primary advantage

of this approach is that each node can choose to provide its own mobility prediction model,

which it deems to be most appropriate to its current activity, rather than using a network-

wide model which may not be applicable to specific itineraries and situations.

Object registration and discovery are achieved by hashing the object id to obtain the

physical co-ordinates of a point (P ) within the network service area. The set of mobile nodes

in the virtual registry containing P assume the responsibility of maintaining information

about the object. The basic design principle for our scheme is to use geographical mapping

for the hashing as opposed to node mapping since nodes are mobile. While bootstrapping,

a node only needs to know the hash function that is used to register and locate objects in

the network. A sensitivity analysis of SARA through simulation is provided in chapter 7.

SARA is also integrated with a power aware message forwarding protocol. This protocol,

called PILOT is presented in chapter 4.
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4.0 PILOT: A POWER-AWARE LOCATION DRIVEN TRAFFIC

FORWARDING ALGORITHM

In this chapter, we present, PILOT, a data-forwarding algorithm for ubiquitous environments

that is used by the service architecture, SARA. PILOT forwards traffic in a power-aware

location-directed manner. We start by providing an overview of PILOT and detail the

characteristics of PILOT in Section 4.1. Section 4.2 describes in detail the protocols used

to make the traffic forwarding algorithm power-aware by tying the probability of forwarding

to the residual power at an intermediary node and Section 4.3 concludes this chapter by

providing a probabilistic analysis of PILOT.

4.1 OVERVIEW

In this section, we provide a brief overview of PILOT and its characteristics. To limit

flooding in the network, PILOT uses the knowledge about the location of the source and the

direction of the destination to forward traffic in a truncated cone-shaped manner towards the

destination. The intermediary nodes that forward traffic are chosen by using a priority-based

scheme that imposes a priority on the neighboring nodes in a way, such that nodes which

are more in line with the direction of the destination have higher priority to forward the

message. This reduces the delay that traffic suffers on its way towards the destination. As

traffic progresses towards the destination, the highest priority node responsible for forwarding

traffic calculates a new cone and re-iterates the process.

PILOT is also power-aware and it ties the probability of forwarding of an intermediate

node to its residual energy level, to maximize network lifetime. To reduce computational
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costs while calculating the probability of forwarding with respect to the residual energy level,

a power matrix that is calculated offline is used.

4.1.1 PILOT Characteristics

Let us consider a scenario when a node S tries to contact another node D. Using the

knowledge about the position of D and its expected direction and speed, node S tries to

route the traffic to node D. To reduce flooding in the network, the traffic is limited to

a truncated, cone-shaped region whose central-line is directed towards the direction of D,

as shown in Figure 4.1, (similar to [56], but here all the nodes need not know about the

position of every other node in the network). Nodes in region 1 have the highest probability

to forward the traffic, while nodes in region 2 have a lower probability. If no nodes are

currently available in region 1, the transmission area is expanded to include region 2, after

a timeout. This strategy imposes a priority on neighboring nodes in such a way that, nodes

more in line with the direction of the destination have higher probability to forward the

message, thereby reducing the delay that traffic suffers on its way towards the destination.

This priority is also closely tied to the energy-level of the intermediary node to maximize

network lifetime. Consider two nodes, similar with respect to their position from S and D;

the node with higher energy will have the higher probability to forward the message towards

D.

The nodes that receive the message sent by S calculate their probability of forwarding

and based on this information, they either listen or forward the message. Furthermore,

upon hearing a transmission within the zone, the remaining eligible nodes drop the message.

As the message progresses toward its destination, the node responsible for forwarding the

message calculates a new cone and re-iterates the process. This forwarding mechanism is

detailed in Algorithm 9.

An important aspect of Algorithm 9 is to calculate the probability used by the nodes

to decide whether to forward the message or not. Pn is the probability of forwarding (for

an intermediary node, N) and is dependent on αn (the angle N makes with S, as shown

in Figure 4.1) and dn (distance of N from S). Let the angle of the truncated cone be αc.
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Algorithm 9 Forwarding Messages

Forward-Msg(αn, dn, τ(n), M(D))

Input: αn, dn, τ(n), M(D)

Output: Result

1: Calculate Pn using αn, dn, τ(n)

2: while ! success do

3: Generate a random number P ∈ [0, 1]

4: if 0 ≤ P ≤ Pn then

5: Calculate VL(D), the expected location of D

6: Send limited-directed broadcast of [VL(D),M(D), L(N)], where M(D) is the mes-

sage and L(N) is the location of this node N

7: success = true

8: else

9: Wait for the next time slot

10: if Msg-Sent by another node before timeout then

11: Drop request

12: return Success

13: else

14: continue

15: end if

16: end if

17: end while

18: return Success
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Figure 4.1: Directional Routing

Based on Figure 4.1, it is clear that, if all nodes had equal energy reserves, node I is the

best node in zone 1 to forward the message and hence must have the highest probability.

We must choose a node within the cone that is the farthest away from the source and is also

in the direction of the destination. Let τ(n) be the residual power at the intermediary node.

Furthermore, the probability function must also provide flexibility to balance each factor in

the formula. Let R be the transmission range of S. The formula for calculating Pn is given

by:

Pn = w1 ∗ dn

R
+ w2 ∗ (αc − αn)

αc

+ w3 ∗ τ(n) (4.1)

w1, w2 and w3 are weights such that, w1 + w2 + w3 ≤ 1; Pn = 0, d > R or αn > αc. If

all nodes have similar residual power, notice that the value of Pn is highest for a node I (as

illustrated in Figure 4.1) whose αI = 0 and dI = R.

To calculate Pn, an intermediary node needs to calculate αn. An intermediary node,

N only needs to know its relative position with respect to the source and hence, does not

require the use of GPS [13]. Consider Figure 4.2; for node N to calculate the value of αn, it

needs to know dn, R and x. Using a local co-ordinate system such as the one in [58], node S
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calculates the co-ordinates of I (I is the point on the edge of the broadcast radius of S in the

direction of D). This information can be embedded in the message to be forwarded. Node N

can now calculate its position in the local co-ordinate system of S. Using this information,

N calculates dn, R and x. Now, using the cosine formula, we can derive the value of αn:

αn = acos

(
d2

n + R2 − x2

2 ∗R ∗ dn

)
(4.2)

Another important piece of the algorithm is the directional routing that requires each

node along the path to re-calculate the cone used to forward the message to the destination

(shown in Figure 4.3 (part A)). Consider the timeline in Figure 4.3 (part A). At time T0,

node D is at position D0, at time T , the node is at position D and at time T +4, node D

is at position D1. Now, consider the situation, when source S wants to send a message to

D. It calculates with a certain probability [2], a region where node D can reside. Node S

now calculates the angle α and hence derives the cone and sends the message towards the

destination. Node S1 upon receipt of this message, calculates the angle δ and re-calculates

a new cone (based on the probability of the new position of D) and sends the message.

Consider part B of Figure 4.3, this shows the movement of the destination from position

D to D1. Assume the expected direction of travel to be β with respect to the x− axis and

the expected speed of travel to be v. Let D be the point (x1, y1) and D1 be the point (x2, y2)
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in the Cartesian co-ordinate system. We know the position D and we need to find out the

new location D1 in terms of D. This is accomplished using the following equations:

d = v ∗ (T − (T +4)) =⇒ d = v ∗ 4 (4.3)

x2 = x1 + d ∗ cosβ (4.4)

y2 = y1 + d ∗ sinβ (4.5)

Consider the scenario when node S1 receives a message from S that is intended for the

destination. S1 needs to calculate the angle for the cone. Now that we have the position

D1 and the value for d, we need to calculate δ based on these values. Let S1 be the point

(sx1, sy1). The following sets of equations help us derive δ:

Using the values of x2 and y2 from equations 4.4 and 4.5 respectively, we get:

R =
√

(x2 − sx1)2 + (y2 − sy1)2 (4.6)

Using the value of R from equation 4.6 and the value of d from equation 4.3, we get:

δ = asin
(

d
R

)
(4.7)

4.2 POWER-AWARE FORWARDING

As discussed in section 4.1.1, the probability Pn, of a node to forward a message to the

destination depends both on the distance from the source node and the angle of deviation

from the center line of the cone. However, Pn defines only the initial forwarding probability at

the instant when a message arrives at the relay node. If the message has not been forwarded

the probability of forwarding the message should increase as time elapses. The forwarding

probability has to reach 1 by S time slots, where S is a design parameter.

For choosing the next relay node to forward the message to the destination, the best

candidate is the node with the maximum Pn. However, the current energy level of the relay

node is also important. Letting nodes deplete their energy and die may cause a network

partition. The goal is to construct the best available route from the source to the destination
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while maximizing network lifetime. From the network lifetime point of view, the low energy

nodes are the most important and also the most critical. These nodes have used their energy

either because they have a lot of data to send or due to the fact that they are located at

the confluence of many routes. Letting these critical nodes deplete their energy may cause a

network partition and some sources might be unable to reach other destinations, or at least

there is an energy and bandwidth overhead associated with re-routing the messages after

discovering a broken link (dead nodes). The bottom line is to construct the most efficient

route from the source to the destination while maximizing network lifetime.

As a result, in our design, the current energy level of a node affects the probability of

choosing this node as the next relay host. This is done by making the rate of increase of Pn,

a function of the node’s energy level. The higher the energy level, the faster the probability

increase rate and vice versa. For example, consider the case when a message arrives at 2

nodes, node A, a high-energy node and node B that has a lower energy level but a higher

initial probability of forwarding (Pn). Though node B has an initial higher probability, as

time goes by, the probability of forwarding for A increases at a faster rate; as a result of

which node A may forward the request message sooner than B and, consequently, it may be

chosen as the next relay node instead of B. The probability of forwarding function (Γ(e, t)),

thus depends on the energy e and the time slot t at a node and has the following properties:

Γ(e, 1) = Pn (4.8)

Γ(e + 1, t) > Γ(e, t) (4.9)

Γ(e, t + 1) > Γ(e, t) (4.10)

Γ(e, S) = 1 (4.11)

Since the forwarding probability has to reach 1 by S slots, we have to derive it as a

strictly increasing function that starts from Pn and reaches 1 as t → S. Also, the function

must produce a family of curves depending on the power at a node. Equation 4.12 has the

requisite property and produces a family of curves that start at 0 and reach 1 depending on

the value of e.

F (x) = 1− (1− x)e, 0 < x ≤ 1 (4.12)
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To illustrate the property of this function, we plot this function for varying values of e,

as shown in Figure 4.4.
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Figure 4.4: F(x) with variable e

Equation 4.12 however, does not satisfy constraint 4.8. Hence, we add the following

constraints and substitute x = t
S

(t = time slot and S = max time slot).

F

(
t

S

)
=





Pn t = 1

1 t = S
(4.13)

While obeying the constraints in equation 4.13, we can solve Equation 4.12 to get the

overall probability of forwarding Γ(e, t), which is given in equation 4.14.

Γ(e, t) = 1−
(

S ∗ (1− Pn)
1
e ∗ ( t

S
− 1)

(1− S)

)e

(4.14)

where Pn = initial forwarding probability as defined by equation 4.1, t = elapsed time

slots since the instant of message arrival. Using equation 4.14, we can plot Γ(e, t) as shown

in Figure 4.5 by varying the value of e from 0.25 to 4 and setting Pn to 0.2. We can observe

from Figure 4.5 that equation 4.14 observes the properties stated in equations 4.8 - 4.11. It

also has the property that the probability increases faster for a higher value of v and vice

versa.
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Figure 4.5: Probability of forwarding while changing the value of e

The parameter e in equation 4.14 is a function of the current energy level of the node.

When the node has a low energy level, e should be low, which forces the forwarding prob-

ability to increase at a slow rate. Also, when the node has a high energy level, e must be

high, thus forcing the forwarding probability to increase at a higher rate. It should be noted

that, for mid-range energy level the increase of the forwarding probability is almost linear

with time. The parameter e can be computed from the node’s current relative energy level

as follows:

en = 24·(En−0.5) (4.15)

where En is the relative energy level of node n.

It should be mentioned that, although equation 4.14 is a computationally expensive

function to evaluate, the wireless node does not need to compute its value online. A matrix

π(K,S), which defines the function value at each S and for K different energy levels and

different probabilities can be computed offline and then used by the wireless node. A node

chooses to use the table whose probability is closest to its own Pn. The values of both K

and S can be determined at design time. Table 4.1 presents an instance of this matrix when

we have K = 5, S = 5 and Pn = 0.2.

Using the knowledge of the energy at a node and the matrix in table 4.1, Algorithm 9

can now be re-written as Algorithm 10.
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Algorithm 10 Power-Aware Forwarding

Power-Forward-Msg(αn, dn, τ(n), M(D))

Input: αn, dn, τ(n), M(D)

Output: Result

1: Calculate Pn using αn, dn, τ(n)

2: while ! success do

3: Generate a random number P in [0, 1]

4: if 0 ≤ P ≤ Pn then

5: Forward-msg

6: success = true

7: else

8: Wait for the next time slot

9: Update Pn for that time slot according to the current residual power of the node

(table 4.1)

10: if Msg-Sent by another node before timeout then

11: Drop request

12: return Success

13: else

14: continue

15: end if

16: end if

17: end while

18: return Success
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Table 4.1: Γ(e, t) with K = 5, S = 5 and Pn = 0.2

t = 1 t = 2 t = 3 t = 4 t = 5

En = 0 0.2 0.255 0.327 0.434 1

En = 0.25 0.2 0.307 0.434 0.6 1

En = 0.5 0.2 0.4 0.6 0.8 1

En = 0.75 0.2 0.55 0.8 0.95 1

En = 1 0.2 0.746 0.95 0.996 1

4.3 ANALYSIS OF PILOT

In this section, we analyze PILOT using a probabilistic approach. Consider the total network

area to be Λ and the number of network nodes to be N . The distribution of nodes in the

network follows a uniform distribution. We would like to calculate the probability of a

message reaching the destination. This probability is related directly to the availability of

an intermediate node to forward the message towards the destination (the probability is

1 if there does exist an intermediary node). Consider the source S. Let the angle of the

truncated code be α and the transmission range be R.

Node Density(ND) = N
Λ

(4.16)

P (intermediary node) = min
(

α
2π
∗ πR2 ∗ND, 1

)
(4.17)

Assuming that there are k intermediary nodes (including the source) and each node i

has the angle of the truncated cone as αi and transmission range Ri, we get the probability

of the message reaching the destination, P (msg) as:

P (msg) = min

(
k∏

i=1

αi

2π
∗ πRi

2 ∗ND, 1

)
(4.18)

To observe the effect that node density and the number of hops have on the the ability

of the message to reach the destination, we plot the probability while varying the network
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density and the number of hops (as shown in Figure 4.6). For Figure 6(a), we assume an

average of 4 hops between the source and the destination and vary the number of nodes from

25 - 300. For Figure 6(b), we fix the number of nodes in the network to be 175 and vary the

number of hops from 0 to 10. Both the figures are plotted by setting value of the angle of

the truncated cone to 60 degrees.
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Figure 4.6: Probability of Message Reaching the Destination

We can notice from Figure 4.6 that as the network density increases, the probability also

increases and finally reaches 1 when the network has enough number of nodes to ensure that

the message would reach the destination. Also, in the case when the number of hops to the

destination increases, the probability decreases smoothly.

We will now analyze the performance of PILOT by changing the value of the angle of

the truncated cone to observe its effect. For this analysis, the angle of the truncated cone

is varied using the values from 30, 45, 60 and 90 degrees. To analyze the probability of

forwarding with respect to the number of hops, we set the number of nodes in the network

to 125. The result of these analysis is provided in Figure 4.7.

Figure 7(a) shows that as the angle of the truncated cone increases, the performance

of PILOT becomes better. This is due to the availability of more nodes to forward the

traffic towards the destination. Even in the case when the angle of the truncated-cone is

60
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Figure 4.7: Probability of Message Reaching the Destination (Multiple Truncated Cones)

low (45 degrees), the probability of forwarding the message towards the destination reaches

1 as the density of the network grows (> 275 nodes). From Figure 7(b), we can see that

the probability of forwarding when the angle of the truncated cone is low falls faster as the

number of hops increases. This is due to the lack of nodes available within the truncated

cone to forward the message towards the destination.

An important result that we gain from this analysis is the fact that the probability of

forwarding in PILOT converges faster when the density of neighboring nodes is high (even

when the message needs to traverse a higher number of intermediary nodes). This higher

density of nodes available to forward the message can be achieved by using a higher value for

the angle of the truncated cone (αc). During the functioning of PILOT, if there are no nodes

available in the primary region (region 1 in Figure 4.1) the transmission area is expanded

after a timeout (thus increasing the value of αc and hence including more neighboring nodes

in the decision to forward the message). We can conclude that the message forwarding

protocol, PILOT converges, even when the number of available nodes in the network is low.

Given the fact that wireless networks are infrastructureless, the presence of obstacles

along the path can lead to network disruption and loss of messages. To observe the effect
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of obstacles in PILOT, we will now analyze it when there is an obstacle to the message

transmission. Let the area blocked (within the truncated cone) due to the transmission

hindrance be B. Consider the source S. Let the angle of the truncated code be α and the

transmission range be R.

Area of truncated cone (A) = α
2π
∗ πR2 (4.19)

P (intermediary node) = min ((A− B) ∗ND, 1) (4.20)

Assuming that there are k intermediary nodes (including the source) and each node i

has the angle of the truncated cone as αi, transmission range Ri and area blocked Bi, we

get:

Area of truncated cone (Ai) = αi

2π
∗ πR2

i (4.21)

P (msg) = min
(∏k

i=1(Ai − Bi) ∗ND, 1
)

(4.22)

To analyze the performance of PILOT in the presence of network obstacles, we analyze

PILOT with respect to a small obstacle (Figure 4.8) as well as a large obstacle (Figure 4.9).

An average of 4 intermediary hops between the source and the destination is assumed while

the number of nodes is varied from 25 - 300 in steps of 25. For the analysis with a small

obstacle, the obstacle is assumed to be of size 20 degrees (with respect to the angle of the

truncated cone). To observe the effect of this obstacle, the size of the truncated cone is

varied by using the values 30, 45, 60 and 90 degrees. For the analysis with a large obstacle,

the size of the obstacle is assumed to be 60 degrees. In this case, the value of the size of the

truncated cone is varied by using the values: 90, 120, 150 and 180 degrees. In both analyses,

the probability of forwarding is measured with respect to the network density.

Figure 4.8 shows that as the network density increases, the performance of PILOT in-

creases and it reaches 1 when the angle of the truncated cone is either 60 or 90 degrees. The

performance of PILOT is poor when the angle is either 30 or 45 degrees since area formed

by the truncated cone is small and the obstacle takes up almost 50% of the area within the

truncated cone. This significantly reduces the chances of finding a node to forward the mes-

sage to the destination since the available area within the truncated cone is so little. Since

the probability considerably increases as the angle of the truncated cone increases, over time
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Figure 4.8: Probability of Message Reaching the Destination (Small Obstacle)

a node will be available to circumvent the obstacle and forward the message towards the

destination. This follows directly from the architecture of PILOT, where the angle of the

truncated cone is increased (after a timeout) if no nodes are available in region 1 to forward

the message.

Figure 4.9 shows that the probability of forwarding increases and reaches 1 as the network

density increases in all cases, except when the angle of the truncated cone is 90 degrees. The

reason for this is that the obstacle takes up 66% of the area within the truncated cone.

When the area within the cone is increased by increasing the angle to 120, the probability

of forwarding shows a marked improvement and reaches 1 as the density of the network

increases. This increase in the angle of the truncated cone helps even in cases when the

density of the nodes is not very high (< 150 nodes in the network).

From the analysis of PILOT while using obstacles, we show that the probability of

forwarding of PILOT does converge as the density of neighboring nodes in the network

increases. In the case, when the obstacle occupies most of the area within the truncated cone,

an increase in the angle of the truncated cone results in a higher probability of the message

reaching the destination. This increase in the angle of the truncated cone is automatically
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Figure 4.9: Probability of Message Reaching the Destination (Large Obstacle)

achieved by PILOT, when it detects that there are no available nodes in the primary region.

4.4 SUMMARY

This chapter presented in detail the data forwarding algorithm for SARA that forwards

traffic in a power-aware location-directed manner. An overview of PILOT was provided

in Section 4.1, while Section 4.2 detailed the protocols used to make the traffic forwarding

algorithm power-aware by tying the probability of forwarding to the residual power. Section

4.3 concluded this chapter by providing a probabilistic analysis of PILOT.

To limit flooding in the network, PILOT uses the knowledge about the location of the

source and the direction of the destination to forward traffic in a truncated cone-shaped

manner towards the destination. The intermediary node to forward traffic is chosen by using

a priority-based scheme that imposes a priority on the neighboring nodes in a way, such that

nodes which are more in line with the direction of the destination have higher probability

to forward the message. This reduces the delay that traffic suffers on its way towards the
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destination. This priority is also closely tied to the residual energy-level of the intermediary

node to maximize network lifetime. A probabilistic analysis of PILOT showed that PILOT

converged, even when the network density is quite low. When the density of nodes in the

network is low, the probability of finding a neighboring node to forward the traffic towards

the destination can be increased by increasing the size of the truncated cone. The analysis

was also carried out for a network in the presence of obstacles and it also showed that

PILOT converged. Due to the presence of network obstacles, however, the average size of

the truncated cone needed to be much higher to ensure the presence of neighboring nodes

to forward the traffic towards the destination, as compared to the previous case. To further

evaluate the performance of PILOT, a simulation analysis comparing PILOT to GPSR [6],

AODV [46] and LAR [35] under different network scenarios is provided in Chapter 7.
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5.0 USER PRIVACY IN SARA

In this chapter, we present the different schemes that work towards ensuring user privacy

in the proposed service architecture. To ensure user privacy in an ubiquitous computing

environment, it is imperative to protect the location of the user. The schemes developed

to ensure user privacy must also take into account the node mobility and the resource

constrained environment. This chapter is divided into four sections: Section 5.1 provides an

overview of the security concerns and details related work in this area while Sections 5.2 - 5.4

detail the proposed security mechanisms. Section 5.2 details the Multiple Location Vector

scheme, while Section 5.3 details the Node-Proxy based scheme and Section 5.4 details the

Random-Proxy based scheme. Section 5.5 provides a complexity analysis of each of the

proposed schemes. All these schemes work on the assumption that each node contains a

public/private key-pair. For the purpose of generating public/private key-pairs and key pre-

distribution, any of the schemes described in [38, 8, 22, 21] can be used. It is also assumed

that nodes that are a part of the virtual registry perform their required tasks correctly while

replying to discovery requests.

5.1 OVERVIEW

In an ubiquitous computing environment, users often interact directly with the environment

through portable devices that they carry. As the users move around, they can still keep

in touch and interact with the ubiquitous environment through the use of their portable

devices. The information exchanged between the user and the environment often consists of

user identity and location information. It is important to be able to protect a user’s identity
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and location information to ensure user privacy. The lack of user privacy may deter users

from using the ubiquitous computing environment.

The common method used to protect a user’s identity and location information is to

encrypt the content information and the traffic to and from the user’s portable device. Given

the resource constrained environment, this scheme may prove to be infeasible. Another

technique is to remove all references to the user’s identity while communicating with the

ubiquitous environment. It is however, much more difficult to “hide” the location information

of the user as well as the source and destination addresses. One scheme to hide the addresses

of the source and destination is to use broadcast messaging. This is not a feasible solution due

to the large number of messages generated in the network and the consequent communication

cost. Another scheme to protect node addresses is through the process of anonymization.

The simplest anonymization technique is to use a “proxy” node to relay the traffic to/from

the intended recipient. To increase the security of the scheme, multiple “proxy” nodes could

be used to forward traffic in the network.

There are several recent projects that protect user identity through anonymity in ubiq-

uitous environments [20, 32]. These schemes extend the rules and practices established in

Internet Privacy [37, 29] (which focus on obscuring a user’s IP address) to allow for them to

be used in ubiquitous environments. [32] provides a scheme for anonymizing user’s commu-

nication in ubiquitous environments by using a hierarchy of “Mist Routers” that preserve

privacy and hide information about the source and destination.

Though proxy based schemes provide a solution to protect user identity, they are still

vulnerable to traffic analysis and hence are not suited for protecting the location information

of users. To overcome the limitations of proxy based solutions, we create multiple “dummy”

user locations in the network and use a routing scheme similar to [10]. Messages are forwarded

to a particular location, rather than a node. To forward a message, multiple messages

are created such that they appear to originate from the different user locations and these

messages follow a sequence of locations (similar to Landmark Routing [45, 44]) consisting

of different landmark points before arriving at the destination location. Figure 5.1 has an

example of this scheme where there are 5 different routes between node N and node C, with

each route visiting different landmark points (L1 to L11). A node forwarding the message
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only knows the next location, but does not know which location the message originated

from. This kind of routing is also referred to as onion routing, where each hop peels a layer

of the route to find out the next hop. Information about the destination and the packet

payload are encrypted using the public-key of the recipient node. The destination node

decrypts the message using its private-key to retrieve the information. Algorithm 11 details

the mechanism by which a node N responds to a node C (using the location vector of C)

by building K-different onion routes.
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Figure 5.1: Onion Routing using Landmarks

5.2 MULTIPLE LOCATION VECTOR

In this section, we detail the Multiple Location Vector scheme, wherein the node registers

multiple location vectors with the virtual registry. This allows the mobile node to “mask”

its current location by using multiple locations in the network.

While registering its location vector with the virtual registry, a node N registers upto K

different location vectors. It is the responsibility of node N to pre-calculate the other K − 1
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Algorithm 11 Multiple Replies

Onion-Reply(K, LVC)

Input: K, LVC

Output: Result

1: Build onion routing path for each of the K paths that consists of a set of landmark

points to traverse before reaching the location of C

2: Send the reply along each of the K paths

3: return

locations and make sure that those locations are plausible. It should also not be possible

to predict the correct location vector from the K registered location vectors. Algorithm 12

details the steps by which a node N registers K different location vectors by making use of

Algorithm 3.

Algorithm 12 Register K-different LVs

Reg-Mult-LVs(H, K, LVN)

Input: K, LVN

Output: Result

1: Generate K-different location vectors (LV i
N i = 1..K) using LVN

2: for i = 1 ... K do

3: LV-Register(Nid, H, LV i
N)

4: end for

5: return

When a query for the location vector of N is received by the virtual registry, the registry

replies with the K-different location vectors of N . A node C that wishes to establish a

connection with N must now send its request to all K locations. Node N upon receipt of

the query uses Algorithm 11 to reply to C. Thus, the location of N is hidden from node C

since C does not know which of the K locations of N is the correct one.

This scheme, however, has a drawback since node C can launch a timing attack. Consider
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the scenario when node C sends requests to each of the K locations of node N one after

another, rather than simultaneously. C waits for an amount of time after sending out a

request. If it receives a response from sending the message to that location, it can infer the

correct location of N and hence its location vector. This attack can however be mitigated,

if the source node N chooses a random delay before replying to C.

Lemma 5.1. In the absence of the timing attack, the Multiple Location Vector scheme

ensures the user privacy of a node in the event of an “attacker” compromising a set of

nodes in the network (except the source and destination).

Proof: By compromising nodes in the network, an attacker can gain access to traffic

between the source and the destination node. The information gained by the attacker con-

tains the destination location information, but this location information contains multiple

locations where the destination can potentially exist. Even if the attacker captures a node

along each of the multiple different paths, the attacker has no method of verifying whether

the destination does indeed lie along that path. The location of the source is protected in

a similar manner. The correctness of this scheme follows from the fact that even though

an attacker has the location information of the destination, he/she does not know the exact

location and hence cannot predict the location of the user.

5.3 NODE-PROXY BASED

In this section, we detail the Node-Proxy Based security scheme used in SARA to ensure

user privacy. A node using this scheme registers the location vectors of its proxies, rather

than its own location vector. These proxies are recruited by the node by using Algorithm

13. A node’s location vector cannot be associated with a particular node since the ID of the

node is associated with the location vector of a proxy, thus preserving node anonymity.

Before registering its location vector, a node N needs to recruit its proxies. Node N

broadcasts a message (PROXY RECRUIT ) with its unique id (IDN) to recruit proxies.

Nodes that choose to act as a proxy on behalf of N reply to the request by providing their
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location information. A proxy node (NP ) can choose to provide K-different location vectors.

There is no way to associate a location with a particular node, since the ID of the proxy

node is not available. Upon receiving replies from the proxy nodes, node N sends its location

vector to the proxies. Since a node can serve as a proxy for more than one node, there is a

need to index the location vector information. Since each node in the network has a unique

id, the id of the node is used as an index for the location vector information. Algorithm 13

details the mechanism by which a node N recruits proxies, while Algorithm 14 details the

steps involved when a node accepts the proxy request and becomes a proxy (IDN is the id

of node N).

Algorithm 13 Recruit Node Proxy

Recruit-Proxy()

Input: Void

Output: Result

1: Broadcast request PROXY RECRUIT along with IDN and LVN

2: if ((n = recv reply()) ≤ 1) then

3: Reg-Mult-LVs(H, K, LVN)

4: else

5: Reg-Mult-LVs(H, K, LVNP )

6: end if

7: return

When a query for the location vector of N is received by the virtual registry, the registry

replies with the location vector of the one of the proxies of N (NP1). A node C that wishes

to establish a connection with N must now send its request to all K locations of NP1. Node

C now constructs a message that contains its request (encrypted using the public key of N)

and the public key of N and forwards this message to NP1. The id of N (IDN) is used

by NP1 as an index to retrieve the location vector of N and the message is forwarded to

N . Algorithm 15 details the steps involved when a node C tries to contact a node N (It is

assumed that node C has queried for LVN and has received the location vector (LVNP1) of

node proxy NP1, PKN is the public-key of node N).
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Algorithm 14 Accept Node Proxy

Accept-Proxy()

Input: Void

Output: Result

1: Recv PROXY REQUEST

2: if accept then

3: Store IDN and LVN

4: Reply back to N with msg PROXY ACCEPT along with LVNP

5: end if

6: return

Algorithm 15 Contact Node (Node Proxy based scheme)

Contact-Node-NP(LVNP1)

Input: LVNP1

Output: Result

1: Construct a msg CONTACT NODE containing the request (encrypted using PKN) and

IDN

2: Forward msg to NP1

3: NP1 receives the msg

4: Lookup (IDN) to get LVN

5: Forward msg to N

6: return

72



The Node-Proxy based security scheme has several advantages. During subsequent

queries for the location vector of node N , the registry can randomly select any of the

available proxies for N . The location information of the proxy is hidden from the node

and vice-versa. Node C cannot collude with the nodes from the virtual registry since the

registry only contains the location information of the proxy nodes. Node C and the proxy

nodes cannot collude with each other since the identity of the proxy is not known to node

C and vice-versa. Also, the timing attack (mentioned in Section 5.2) does not work, since

the message to N goes through a proxy.

The Node-Proxy based security scheme does have a few disadvantages though. In the

event that a proxy node changes its location vector, the proxy would need to contact all

the nodes for which it acts as a proxy and update this information. These nodes must

in turn update this change in the location vector at their respective virtual registries. In

case a node is not able to recruit proxies due to a lack of neighboring nodes or due to

the unwillingness of neighboring nodes to serve as proxies, this scheme degenerates to the

Multiple-Location Vector scheme. Also, the location information of the node N is available

to the proxy node and a proxy can perform a timing attack to locate N . One method to

mitigate this attack is through the use of trusted proxies. If the network does not provide

the availability of trusted proxies, the timing attack from the proxy node can be mitigated

through the use of multiple proxies. Consider the scenario when node N recruits multiple

proxies (NP1, NP2, NP3). Node N could provide NP1 with the location vector of NP2,

while providing NP2 with the location vector of NP3 and providing LVN to node NP3

(C → NP1 → NP2 → NP3 → N). This increases the security of the scheme, since

the proxy nodes only contain the location information about the next node and they do not

know whether the next “hop” node is the destination node (N) or not. In this manner, the

location information of node N is hidden from the proxies.

Lemma 5.2. The Node-Proxy Based scheme ensures the user privacy of a node in the

event of an “attacker” compromising a set of nodes in the network (except the source and

destination).

Proof: By compromising nodes in the network, an attacker can gain access to traffic
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between the source and the proxy or between the proxy and the destination. If the attacker

succeeds in capturing an intermediary node between the source and the proxy or the proxy

and the destination, the information gained contains the location information to send the

message to. The attacker does not know if the location information belongs to the destination

or the proxy. Also, each message can be sent along K different paths (due to the proxies

and the destination registering upto K different location vectors). In case the attacker

compromises a proxy node, he/she has access to the identity of the destination and its

location information. The attacker can then choose to perform the timing attack. This

scheme can be mitigated by using multiple proxy indirections. In each of the above cases,

the attacker either knows the id (in the case of the destination) or the approximate location

information. The correctness of the scheme follows from the fact that the attacker cannot

locate a user since it has either the id or the location information, but not both.

5.4 RANDOM-PROXY BASED

This section details the Random-Proxy Based security scheme used in SARA to ensure user

privacy. In this scheme, the virtual registry replying to a query for a node’s location vector

constructs a “path” of nodes to traverse before reaching the destination node. The location

information of each node along the path is encrypted by using the public-key of the preceding

node. Similar to the Multiple Location Vector scheme (Section 5.2), a node N registers upto

K different location vectors by using Algorithm 12. The difference between the Random-

Proxy based scheme and the Multiple Location Vector scheme lies in the discovery phase.

Consider the scenario when a node C tries to locate a node N and sends a query to

the virtual registry containing the location vector of N . The nodes in the registry reply

with a path to N , where the path is a list of randomly chosen proxy nodes (each of which

have registered their location vector at this registry). These proxy nodes act as a redirec-

tion and each one of these proxies can have upto K different location vectors (as per their

registrations). Each node belonging to the list (other than the destination) is referred to

as a random proxy (RP ). This proxy list is encrypted (using the public-key of the proxies)
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in a way such that a node in the list only knows the location of the next hop. This entire

message is encrypted using the public-key of C. Upon receipt of the reply from the virtual

registry, node C decrypts the message using its private-key to get the location vector of the

first proxy (LVRP1). Node C now constructs a message that contains its request (encrypted

using the public key of N), the public key of N and the proxy list and forwards this message

to RP1. Node RP1 decrypts the proxy list to get LVRP2 and sends the message to RP2.

Continuing in this manner, the message finally reaches the destination node N .

Consider an example where the path from C to N uses random proxies RP1 and RP2

such that: C → RP1 → RP2 → N . In the given proxy list, the list is encrypted using:

EPKC

(
LVRP1|EPKRP1

(
LVRP2|EPKRP2

(LVN)
))

. To forward the message (msg) C decrypts

the proxy list to get LVRP1 and forwards the msg to RP1; RP1 then decrypts the proxy list

to get LVRP2 and forwards the msg to RP2; RP2 decrypts the proxy list to get LVN and

forwards the msg to N . Algorithm 16 details the steps involved when a node C attempts to

contact another node N .
Algorithm 16 Contact Node (Random Proxy based scheme)

Node-Contact-RP()

Input: Void

Output: Result

1: V R receives the LV DISCOVER request from C

2: Construct the path consisting of a set of randomly selected “proxy” nodes from among

those nodes that have registered their LV s with this registry

3: Encrypt the LV of each proxy with the preceding proxy’s public-key

4: Encrypt the proxy list with the public-key of C

5: C constructs a msg CONTACT NODE containing the request (encrypted using PKN),

proxy list and IDN

6: C decrypts the proxy list and forwards the msg to the location of the first proxy

7: Continuing in this manner, the message finally reaches N

The Random-Proxy based scheme has several advantages. During subsequent queries

for the location vector of node N , the registry can alter the sequence of the proxies in the
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proxy list or chose a different set of proxy nodes. The location of the proxies are hidden from

each other and also from the source and destination nodes. Node C and the proxy nodes

cannot collude since the identity of the proxy is not known to node C and vice-versa. Also,

the timing attack (mentioned in Section 5.2) does not work, since the messages from C to

N must go through a proxy. Each of the random proxy nodes can choose to register upto

K-different location vectors, thus enhancing the security of this scheme.

This security scheme does have a few disadvantages though. Due to the fact that the

proxy list is generated using random proxy nodes that have registered their location vectors

at this registry, it may so happen that there may not be enough proxy nodes available (due to

the fact that not many nodes may have “hashed” to this registry). In the scenario that there

are no nodes available to act as proxies, this scheme degenerates to the Multiple-Location

Vector scheme. If node C and the nodes belonging to the registry (storing LVN) collude

together, the registry nodes could just send the location vector of LVN directly to C. This

enables C to launch a timing attack (mentioned in Section 5.2). Also, the indirection due to

the proxies will lead to delays in traffic reaching the destination.

Lemma 5.3. In the event of an “attacker” compromising a set of nodes in the network

(except the source and the destination), the Random-Proxy Based scheme ensures the user

privacy of a node is preserved.

Proof: information that an attacker can gather by compromising nodes in the network is

the traffic between source and the proxy or traffic between proxy and destination or traffic

between proxies. In each of the aforementioned scenarios, the information contains the ID

of the source and destination and the location information of the intermediate proxy nodes.

The privacy of the proxy node is preserved since the identity of the proxy is never revealed.

The location of the destination is protected from the source since the source only knows the

location information of the first proxy node (this is due to the fact that the “path” to the

destination consisting of random intermediate proxy nodes is encrypted using the public-keys

of the nodes in a manner such that, upon decryption of the message, the corresponding node

only knows the location of the next hop). The location of the destination is protected from

the proxy node since the proxy node only knows the location information of the next “hop”
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and it does not know if the next hop node is the destination or not. The source location

information is protected in a similar manner. If the attacker succeeds in capturing a proxy

node, he/she only knows the location of the next node along the path, but not its identity

(since the information is encrypted using public-keys). The correctness of this scheme follows

from the fact that a node’s id and its location information cannot be verified together.

5.5 COMPLEXITY ANALYSIS

In this section, we compare the three proposed schemes with respect to their communication

costs. Three metrics are chosen, namely: set up communication cost (cost to set up the

scheme), update communication cost (cost to update the location vector of the node) and

the generic communication cost for node interaction. We assume the average path length to

be m and the number of average location vector updates to be u.

In the Multiple Location Vector scheme, the set up communication cost is zero since the

node follows the normal procedure of registering its location vector and its objects. The

only difference is in registering the location vector, where instead of registering one location

vector, the node registers upto p different location vectors. The communication cost to

update a node’s location vector is O(u ∗m). The generic communication cost is related to

the number of different routes followed along with the average path length and is O(p ∗m).

For the Node-Proxy Based scheme, the set up cost is directly related to the number of

neighboring nodes that agree to serve as a proxy. Assuming that the number of proxies is

k, the set up cost is O(k + 1) (1 broadcast message along with k replies from the proxies).

To update the location vector of a proxy, the proxy needs to contact all the nodes for which

it is serving as a proxy and each of those nodes must in turn update this information at

the location they registered. The cost associated with this is given to be O(u ∗ k ∗m). The

generic communication cost is just the cost of sending the message from the source to the

proxy plus the cost of sending the message from the proxy to the destination and it works

out to be O((k + 1) ∗ p ∗m) (assuming k intermediate proxies).

Similar to the Multiple Location Vector scheme, the set up cost for the Random-Proxy
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Based scheme is zero and the communication cost to update a node’s location vector is

O(u ∗m). The generic communication cost, however depends on the number of proxies that

need to be traversed before reaching the destination. Let the number of intermediary proxies

be n. The generic communication cost is then given as O((n + 1) ∗ p ∗m).

Table 5.1 lists the costs associated with each of the three different schemes. In the

table, m represents the average path length, p represents the number of location vectors, k

represents the average number of node proxies, u represents the average number of location

vector updates per node and n represents the average number of random proxies.

Table 5.1: Comparison of the communication costs

Multiple Location Vector Node-Proxy Random-Proxy

Set up 0 O(k + 1) 0

LV Update O(u ∗m) O(u ∗ k ∗m) O(u ∗m)

Node Interaction O(p ∗m) O((k + 1) ∗ p ∗m) O((n + 1) ∗ p ∗m)

From Table 5.1, we can see that the Multiple Location Vector scheme is the most resource

conscious since it does not incur a large cost for node interaction. Also, there is no set up

cost for this scheme. Both the Random-Proxy Based scheme and the Node-Proxy Based

scheme have a much larger communication cost associated with them. The Node-Proxy

Based scheme does have a higher cost associated with setting up the scheme (which is

still linear with respect to the number of neighboring nodes). The cost of location vector

update however, is quite high for the Node-Proxy Based scheme. In a network, where the

location vectors of the nodes is mostly accurate and does not change often, this cost becomes

negligible.

5.6 SUMMARY

This chapter presented the different schemes developed to ensure user privacy in SARA.

Section 5.1 provided an overview of the privacy and security concerns in ubiquitous environ-
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ments along with the related work in this area. Section 5.2 detailed the Multiple Location

Vector scheme, while Section 5.3 detailed the Node-Proxy based scheme. Section 5.4 con-

cluded this chapter by detailing the Random-Proxy based scheme. Section 5.5 provides a

complexity analysis of each of the proposed schemes.

In the Multiple Location Vector scheme, the node registers multiple location vectors with

the virtual registry. This allows the mobile node to “mask” its current location by using

multiple locations in the network. When using the Node-Proxy Based scheme, a mobile node

registers the location vector of its proxies. These proxies are chosen by the node during the

bootstrap process. A node’s location vector is not associated with a particular node since

the node registers the location vector of its proxies during the registration process. In the

Random-Proxy Based scheme, the virtual registry replying to a query for a node’s location

vector constructs a “path” of nodes to traverse before reaching the destination node. In

this scheme, the location information of each node along the path is encrypted by using the

public-key of the preceding node. Depending on the network conditions and the resource

constraints, any one of the above security schemes may be chosen to ensure user privacy in

SARA.
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6.0 DESIGN AND IMPLEMENTATION

This chapter details the design and implementation of the proposed service architecture. Ar-

chitectures and protocols developed for infrastructureless networks are normally tested using

simulations but without actual implementation; it is difficult to perceive how efficient and

effective the protocol would perform in the real world. Design factors involved in designing

a working model of the proposed service architecture are detailed in Section 6.1. Section

6.2 presents the overall design and talks in detail about the different components associated

with the implementation. Section 6.3 details the various modules and data structures that

are used as part of this implementation along with their interactions. This chapter concludes

with Section 6.4, which talks in detail about how the implementation tried to closely follow

the software engineering methodologies outlined in Section 6.1.1.

6.1 DESIGN CONSIDERATIONS

6.1.1 Software Design Principles

Any complex implementation is both time consuming and expensive in terms of the resources

involved. It is necessary to adhere to some basic software engineering principles so as to

minimize the effort required and the risks involved. The basic tenets of a well designed

software system are emphasized below.

• Software Modularity: As a piece of software grows in size, the complexity and the de-

pendencies between the various parts of the software increases. This will adversely affect

the reliability of the software unless the complexity can be reduced. Modularity is a
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software engineering concept by which a complex piece of software is broken down into a

number of smaller logically related units. Controlled access to the services (routines, as

well as data objects) provided by the module is through a well defined interface, which

is exported by the module. The interface, thus exported should be flexible and easy to

use. Using modularity, it is possible to develop a complex software system incrementally,

by testing each module separately before incorporating them in the main system.

• Software Reuse: A well defined modular system allows for re-usability of code in the

same module as well as in other modules. Software reuse allows for cutting down on

development and testing costs, thus increasing productivity, quality and reliability. In-

creasing reuse of software results in the software being better tested and debugged, thus

leading to an improvement in the quality of the software.

• Software Portability: With increasing number of hardware platforms available, it is im-

portant for any software implementation to take into account the issue of portability.

Portability is the ability to take a piece of software written for one platform and make

it run on another platform. This is a desirable criteria to have in any software system,

because it allows for the software to be written once and used on many different hardware

platforms without too many modifications.

• Software Efficiency: To achieve maximum efficiency, parts critical to the performance of

a software system are written in a way so as to exploit the existing hardware. But, this

comes at a cost to portability and becomes a major issue if the majority of the software

is system dependent. The easy way around it is to try and confine system dependent

code only to the very essential sections and write more portable code on top of it.

• Software Maintenance: During the course of building a complex software system, many

components are added or dropped. This leads to constant changes in the software, that

may or may not be reflective of the original design. As the complexity increases, it

becomes more and more difficult to comprehend and keep track of the changes, due to

which bugs may be introduced inadvertently. Keeping the software modular reduces

the complexity of maintenance, since changes can be incorporated at the module level

without having to worry about changes to the complete system. Only the interfaces that

the module exports need to be changed, if at all.
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The main goal while implementing such a large and complex system was to keep it

simple so that future ideas could be incorporated easily. After reading the literature on

the implementation of routed and ospfd [64] for Linux, we decided to implement the system

predominantly in user space. Implementation of the system in user space has the advantage

of being able to use user level libraries, thus making the task of writing the program easier.

It also means that the system would be easily portable to other architectures.

6.1.2 Implementation Platform

The choice of the operating system to implement the protocol would be critical in the long

run, as we would be using some of the services offered by it. Also, since we would be working

closely with the kernel for some aspects of the implementation, it was important for us to

choose the operating system carefully. We used the following guidelines as markers while

choosing Linux as our operating system of choice for this implementation.

Linux is emerging as a strong contender for mainstream operating systems. Increasing

number of hardware manufactures have begun to recognize the potential of Linux, as a result

of which more and more hardwares are now being supported. Over the last few years, Linux

has also emerged as a platform of choice for embedded systems. PDAs and smaller devices

are being equipped with Linux as the operating system. This means that Linux is and will

be a widely supported platform.

In the course of development, we had to interact closely with some aspects of the kernel

(like RAW sockets and routing tables), which meant that having access to the source code and

good documentation to go along with that to understand the source code was imperative.

The Linux kernel is freely available under GNU’s Public License (GPL) [19]. It provides

extensive documentation and help from other developers. Also, any system developed under

the GPL can be distributed freely.

Linux is constantly evolving with more and more features being added. With the utilities

and development libraries available, Linux offers a rich platform for software development.

The GPL allows us to make the protocol available freely. This would help in improving the

protocol as other users can deploy the system, suggest changes and modify the system.
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6.2 OVERALL DESIGN

The overall design on which this implementation is based on is shown in Figure 6.1. This

design mirrors the logical organization of the service architecture that was presented in

Figure 1.1 in Chapter 1.

The highest layer in the framework is the user running applications on their device.

The user may choose to perform an object discovery or an object registration by using the

interface exported by these modules. To allow for and incorporate mobility in the network,

these modules interact with the mobility management module. These three modules use the

message forwarding protocol, PILOT, to be able to route traffic to the intended destination.

The implementation details for the service architecture containing object registration and

discovery services, mobility management and PILOT are further extrapolated in Section 6.3.

Once a packet is available to be forwarded, PILOT uses RAW sockets to create its own IP

header in the packet before sending the packet directly to the MAC layer, which in turn

injects this packet into the network.

The reason for using RAW sockets to build and send packets is the flexibility provided

by them, since they allow applications to handle IP packets directly by bypassing upper

layer protocols, such as TCP (Figure 6.2). The application can choose to form the IP header

and the payload by itself. Using RAW sockets, we can construct our own payload and add

protocol headers to the packets before they are sent out. This allows us to create a protocol

type that is used by the system (MSG PROTO). Another advantage of using RAW sockets

is the fact that the system can be built in user space while the RAW socket functionality

can be accessed by using well-defined system calls into the Linux kernel.

6.3 IMPLEMENTATION MODULES

In this section, we detail the implementation modules used and their interaction. The

overall design of the system was modularized to allow for ease of implementation and testing.

Each main component of the service architecture was implemented as a separate module.
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Figure 6.1: Design of the Implementation (u = user level, k = kernel level)
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Figure 6.2: RAW Sockets

In the case of the object registration and discovery modules and the daemon, they were

implemented as separate processes. Figure 6.3 shows the different modules in the system

and their interaction with each other. Sections 6.3.1 - 6.3.4 provide a detailed description

about each of the modules.

6.3.1 Shared Memory

This module is central to the system implementation. It is used as an inter-process com-

municating tool to interact between the registration and discovery modules and the daemon

module. The shared memory is created during the bootstrapping phase and is deleted when

the program quits. It is modeled as a queue and has the following data structure:

typedef struct SERDATA_LIST

{

int last;

struct ser_data msg[MAX_VALUE];

}
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The shared memory contains a queue of structures, each of which are of type ser data and

the size of the queue is set to MAX VALUE. The variable last maintains the current offset

in the queue, which indicates the location where a new element can be added to the queue.

Any time a new element is added to the queue or deleted from the queue, the index last is

appropriately incremented or decremented. To ensure that the queue is not full, the index

last is checked every time an element is added to the queue. When the queue is created for

the first time, last is set to -1. The datatype ser data has the following structure:

struct ser_data

{

MSG_TYPE type; // Type of the message

int id; // Entity ID

int x; // X co-ordinate of the destination

int y; // Y co-ordinate of the destination

}

Due to the fact that this module is shared between the other 3 modules, it is imperative

to ensure that the data in the queue is accessed and changed by atmost one process at a

time. To ensure that only one process accesses the shared memory at anytime, semaphores

were used. The major functions used in this module are provided in Table 6.1.

6.3.2 Object Registration

This module is responsible for registering the objects with the network and is invoked in

the event when a user wants to register their objects with the network. This module is

modeled as a separate process that uses the network-wide hash function to calculate the x

and y co-ordinate to send the required information to. This information is inserted into the

shared memory (along with the appropriate message type REGISTER) using the function

insert msg() provided by the shared memory module and a signal is sent to the daemon

process. Upon receipt of the signal, the daemon process processes the message from the

shared memory and creates an appropriate packet before using PILOT to forward the packet

to the destination.
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Table 6.1: Important Functions in the Shared Memory module

Function Description

insert msg() Insert a message into the shared memory queue.

remove msg() Remove a message from the shared memory queue.

print msg() Print the existing messages in the shared memory queue.

sem create() Create the semaphore.

sem wait() Wait on a semaphore.

sem signal() Signal the semaphore.

sem close() Destroy the semaphore.
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6.3.3 Object Discovery

This module is responsible for discovering objects in the network and is invoked in the event

when a user wants to discover an object in the network. This module is modeled as a separate

process that uses the network-wide hash function to calculate the x and y co-ordinate to send

the required information to. This information is inserted into the shared memory (along with

the appropriate message type DISCOVER) using the function insert msg() provided by the

shared memory module and a signal is sent to the daemon process. Upon receipt of the

signal, the daemon process processes the message from the shared memory by creating the

appropriate packet before using PILOT to forward the packet to the destination. Since the

functioning of this module is very similar to the Object Registration module, they share a

reasonable amount of code space.

6.3.4 Daemon

This module is the most important process in the system. The Daemon works asynchronously

in a distributed fashion as it is always running on every node in the network. During the

bootstrapping process, the Daemon process initializes the system by creating and initializing

the shared memory, creating the RAW socket for communication and by initializing the other

required data structures. Its primary functions are: (i) process the signals received; (ii)

process the object registration and discovery requests, and finally (iii) process the packets

received. We will look at each one of the functions separately in the following paragraphs.

Upon receipt of a signal, the daemon checks the shared memory for the message. De-

pending on the type of the message (REGISTER or DISCOVER), the daemon creates the

appropriate IP headers for the packet and constructs the packet before sending the packet

out into the network by using PILOT. The format of the packet header used is shown in

Figure 6.4, while the format of the packet body is shown in Figure 6.5.

The important fields in the message header packet are:

• Version: Contains the version number of the protocol.

• Source Address: Contains the address of the node from which this packet originated.

• Destination Address: Contains the address of the node to which this packet is addressed.
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32 bits
8 bits

TTL ChecksumVersion

X co−ordinate of Intermediary Node

Y co−ordinate of Intermediary Node

X co−ordinate of Destination

Y co−ordinate of Destination

Destination Address

Source Address

Sequence Number

Figure 6.4: Format of message header

• X co-ordinate of Destination: Contains the x co-ordinate of the destination node.

• Y co-ordinate of Destination: Contains the y co-ordinate of the destination node.

• X co-ordinate of Intermediary Node: Contains the x co-ordinate of the most recent node

along the path.

• Y co-ordinate of Intermediary Node: Contains the y co-ordinate of the most recent node

along the path.

Extra Information

Object ID

Message Type

Location Information of Source

Figure 6.5: Format of message body

The important fields in the message body packet are:

• Message Type: Contains the type of the message.

• Object ID: Contains the ID of the object that is to be registered or discovered.
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• Location Information: Contains the location information of the source node from which

this packet originated.

• Extra Information: Contains required information that differs according to the message

type. In the case when the message type is REGISTER, this information contains the

location vector of the node. In the case when the message type is DISCOVER ACK,

this information contains the list of nodes that own this object along with their location

information.

In the event when the Daemon process receives a registry or discovery request, the process

checks to see whether it can accommodate this request. The Daemon maintains a table that

contains a list of objects registered with this node (along with information about the nodes

that own them). In the event of an object registry, information is added to the table, while

in the case of an object discovery, the table is queried and the appropriate information is

returned. The table consists of a collection of objects each of which is of type objectEntry.

The data structure of the table and objectEntry is given below:

typedef struct objectEntry

{

int objId; // Object ID

NODE nodeList[MAX_VALUE]; // Collection of nodes that own this object

int nodeIndex; // Number of nodes that own this object

} OBJ_ENTRY;

OBJ_ENTRY objTable[MAX_VALUE]; // Table of objectEntry’s

A variable, called objTableIndex maintains the current offset in the table and indicates

the location where a new element can be added to the table. Any time a new element is

added to or deleted from the table, the index objTableIndex is appropriately incremented

or decremented. To ensure that the table is not full, the index objTableIndex is checked

every time an element is added to the table. When the table is created for the first time,

objTableIndex is set to -1.

In the event when a packet is received by the Daemon that is not indented for this node,

the Daemon process uses the information in the packet about the location of the destination
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and the intermediary node to forward the packet. The Daemon uses PILOT to calculate the

truncated cone and uses this to create the appropriate IP headers for the packet and sends

the packet into the network. The major functions that are used in the Daemon module are

provided in Table 6.2.

6.4 SUMMARY

This chapter presented in detail the design and implementation of the proposed service

architecture. The design factors involved in designing a working model of the proposed

service architecture were elaborated in Section 6.1. The important components of the overall

design shown in Figure 6.1 were highlighted and a brief explanation of each component was

provided in Section 6.2. Section 6.3 provided a detailed overview of the implementation

architecture (shown in Figure 6.3) by detailing the various modules and data structures

along with their interactions.

The implementation has tried to closely follow the software engineering principles out-

lined in Section 6.1.1. The software has been constructed in a way that it is modular. It was

developed almost extensively in C using good procedural techniques, except for some sections

which were written as part of a test application. Each major component detailed in Figure

6.1 has been implemented as a separate module (as shown in Figure 6.3). Each of these mod-

ules export certain pre-specified interfaces which the other modules use to interact with it.

An example of this is the shared memory module. It exports the insert msg(), remove msg()

and print msg() functions. These functions are used by all the other three modules, namely:

registration, discovery and daemon. The code has been written in a manner such that it

can be reused over and over again. It was a design concern to try and keep the code as

portable as possible. The code has been completely developed in user space, thus enhancing

the portability of this implementation. To port this implementation to another platform

would only require some fine tuning. Maintenance of the software is very easy because of

the high modularity of the software. As long as the interaction between the modules uses

only the exported interfaces, any changes in one module will not affect the other modules.
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Table 6.2: Important Functions in the Daemon module

Function Description

build packet() Build a packet with the appropriate information.

recv packet() Receives a packet from the RAW socket.

broadcast msg() Broadcasts the given message.

unicast msg() Unicasts the given message to the intended destination.

existEntry() Checks if the given entry is already in the object table.

insertEntry() Inserts the given entry in the object table.

removeEntry() Removes the given entry from the object table.

printEntry() Prints the given entry from the object table.

printTable() Prints all the entries in the object table.
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7.0 EXPERIMENTS AND RESULTS

This chapter details the experimental setup and the analysis of the proposed service architec-

ture and the message forwarding algorithm. Any architecture or protocol that is developed

must be tested and evaluated before we can predict the usefulness of the architecture. The

remainder of this chapter is organized as follows. Section 7.1 talks about the experimental

setup used to analyze the service architecture and the message forwarding protocol. Section

7.2 details the experimental results and their analysis. This section is sub-divided into two

sections: Section 7.2.1 details the sensitivity analysis performed on SARA, while Section

7.2.7 details the comparative analysis of PILOT.

7.1 EXPERIMENTAL TESTBED

The service architecture and the message forwarding protocol were implemented in the Glo-

mosim network simulator [36] on Linux and tested under different network conditions. The

first set of tests were conducted as part of the sensitivity analysis of SARA. The second set of

tests compared the performance of PILOT to GPSR [6], LAR [35] and AODV [46]. We chose

to compare PILOT to GPSR, LAR and AODV because, GPSR is a location-based routing

protocol that uses greedy forwarding (similar to PILOT); LAR is an on-demand location-

based routing protocol and has been used as a benchmark for comparing location-based

routing protocols and AODV is an on-demand routing protocol of a different nature.

In order to understand and evaluate the performance of SARA, we performed a sensitivity

analysis of the service architecture. We ran extensive simulations for a variety of node

densities and node mobilities to study the behavior of SARA under different network settings.
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For the second part of the simulation, we did a comparative study by comparing PILOT

to GPSR, LAR and AODV in terms of the throughput achieved for a network consisting

of mobile nodes by varying different network parameters. The statistics collected for LAR

and AODV were available as part of their implementations that are provided in Glomosim.

GPSR was implemented in Glomosim for the purpose of our experimental study. For all

experiments, the Random Trip mobility model was used.

Nodes are assumed to be stationary at the start of the simulation and are associated with

the usual limitations on energy and radio communication. We denote the network service

area by Λ. In all our experiments, nodes are assumed to be uniformly distributed in Λ.

Furthermore, the wireless medium is assumed to be reliable and does not contribute to any

packet loss. Each node is assumed to know the uniform hash function used in the network.

Also, a node is assumed to know its location and the approximate boundaries of the network

service area, Λ. Note that SARA can fully work with logical-coordinates since a node only

needs to know its physical or logical locations and the hash function.

To evaluate the scalability of SARA and PILOT, we ran simulations of networks of sizes

varying between 100 and 1000 nodes. The network simulated was thus varied from a sparsely

populated network to a densely populated network. The network service area, Λ spanned a

square of size 3000x3000m.

To evaluate the effect of mobility on this architecture, mobility was incorporated into the

simulation by using the Random Trip mobility model. The most commonly used mobility

model for wireless networks is the Random Waypoint model, which is easy to simulate but

does not produce realistic scenarios [31]. We used the Random Trip mobility model because

it is a generic mobility model that achieves realistic scenarios. A tool has been provided by

which the Random Trip model can be incorporated for use with the ns-2 network simulator

[66]. The tool produces a perfect sample of the node mobility state and can be used as an

input to ns-2 [61]. The ns-2 input file was converted to input files that could be used with

Glomosim using the tools provided by [3]. During the course of the simulation, some nodes

were selected at random to be mobile. Two different node speeds were studied, namely, 5

m/s (a patient being wheeled around in a hospital) and 10 m/s (an emergency situation).
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7.2 RESULTS

7.2.1 Sensitivity Analysis of SARA

At the start of every simulation, the VAFP is formed and landmarks are fixed. Network nodes

are picked at random to form the virtual registries. Traffic was generated in the network by

simulating object registration and discovery requests. At the start of each simulation, some

nodes were chosen at random to register and discover objects.

The metrics that we focused on during this simulation were: impact of the threshold value

K on the number of virtual registries created, latency of object registration and discovery, %

of success for object registration and discovery, and the ratio of successful object discoveries

versus successful object registrations. Table 7.1 presents a summary of the different design

parameters used during the sensitivity analysis portion of the simulation.

Table 7.1: Summary of simulation parameters for sensitivity analysis of SARA

Name Value

No. of nodes 100 - 1000

Transmission range 250m

Network Size 3000x3000m

Node Mobility Yes

Mobility Pattern RANDOM-TRIP

Node Speed 5 m/s and 10 m/s

Node Pause Time 10s

Simulation Time 1H

No of experimental runs 10

Simulation results are presented in the following subsections. In each of the graphs

presented in this section, a point represents the average of 10 experimental runs. It is worth

mentioning that we were aware of the standard deviation in all simulation runs and we did

not encounter a relatively large variance in any of simulations. In the next few sections we

will discuss the experimental results.
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7.2.2 Number of Virtual Registries

In the first set of simulations, we evaluated the effect of the threshold K on the number of

virtual registries that are created in the network. Having an appreciable number of virtual

registries in the network is needed to aid object registration and discovery and mobile node

location. This experiment will helps us determine the value of K that would work well for

both static and mobile networks. For the mobile network, the speed of the nodes was set

to 10 m/s. The results of the experiments for static and mobile networks are depicted in

Figure 7.1 and Figure 7.2 respectively.
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Figure 7.1: Number of Virtual Registries (Static Network)

Figure 7.1 shows that the number of virtual registries in the network does not grow

exponentially even when the density of nodes in the network grows. This shows that nodes

in SARA do not create new registries if they are already part of an existing one. The number

of registries does increase as expected in all cases and is nearly equal when the density of

nodes in the network is very high. From the graph, we can observe that the best performance

is given when K ≤ 5.

From Figure 7.2, we can observe that the number of virtual registries drops when com-
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Figure 7.2: Number of Virtual Registries (Mobile Network)

pared to the static case. The presence of mobile nodes in the network leads to some virtual

registries disbanding due to the departure of such nodes. Even in this scenario, the number

of virtual registries is not very high as the density of nodes increases. This shows that mobile

nodes find and join existing virtual registries rather than create new ones. One interesting

fact to take from this graph is that, as the network density increases, the number of virtual

registries is higher for K = 3 and 4 as compared to K = 2. The reason for this is that having

a threshold of 2 results in nodes forming registries with only 2 nodes and such a registry

quickly disbands when any one node leaves the registry. Having a very high threshold (e.g:

K = 10) results in very few registries, but finding so many nodes in the network to form a

registry is not practical. Using these experiments as a benchmark, we set K to 4 for the rest

of the experiments.

The intuition that we take away from this experiment is that having a high value of

K results in fewer registries, but this also leads to a high number of registries disbanding

due to the difficulty in maintaining the high number of mobile nodes as members of this
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registry. Having a very low value of K (K = 2) leads to more registries being formed in the

network, but they also disband and need to re-form even if only one node leaves the registry.

A compromise between having a high value of K and a low value of K is needed. Having an

adaptive scheme where the value of K is high while recruiting nodes to form a registry, but

is lower for the purpose of maintaining the registry would work well in the face of mobile

nodes in the network. This results in a scheme where the number of registries in the network

is low, but the lifetime of each registry is high.

7.2.3 Latency of Object Registration

In this experiment, we observe the impact of mobility on the latency for object registration

(since object discovery follows the same procedure, we only measure the latency for object

registration) as the number of nodes in the network increases. Nodes are picked at random

and they register a total of 30 objects with the network. The time measured is the time

taken for a “successful” object registration. Each point in the graph shows the average time

taken across all successful object registration attempts. We compare the performance of

SARA in three different cases: a static network, a mobile network, when the nodes move at

the speed of 5 m/s and a mobile network, when the nodes move at the speed of 10 m/s. The

result of this experiment is shown in Figure 7.3.

Figure 7.3 shows that the difference in latency for a network of static nodes and a network

of mobile nodes is not very high. An important implication of this result is that SARA does

not impose a large degradation as the mobility of the nodes in the network increases. Another

interesting observation is the fact that latency is almost a constant as the node density in the

network increases. This observation makes SARA an attractive choice for use by applications

expecting some appreciable level of QoS.

7.2.4 Success of Object Registration

For any service discovery architecture, an important evaluation metric is the number of

successful registration/discovery requests. For this purpose, we evaluate the % of successful

object registrations in SARA as the number of nodes in the network increases. Nodes are
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Figure 7.3: Latency of Object Registration

picked at random and they register a total of 30 objects with the network. Each point in the

graph represents the percentage out of the 30 objects that were successfully registered with

the network. We compare the performance of SARA in three different cases: a static network,

a mobile network, when the nodes move at the speed of 5 m/s and a mobile network, when

the nodes move at the speed of 10 m/s. The result of this experiment is shown in Figure 7.4.

From Figure 7.4, we observe that in all cases the ratio of successful object registrations

increases quickly and finally reaches 100%. This can be attributed to the fact that as the

network density grows, the number of virtual registries also increases. This results in the

availability of more registries to hold object and node information. The success is always

lower for a network of mobile nodes since the mobility of nodes directly impacts the ability

to successfully route messages in the network. Also, node mobility impacts the creation and

maintenance of the virtual registries in the network. We can also observe from the figure

that node mobility does not adversely affect the performance of SARA and the difference

is on average less than 20%. As the density of the network increases, the performance of

SARA in the mobile case is closer to the performance in the static case.
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Figure 7.4: Success of Object Registration

7.2.5 Ratio of Object Discovery vs Registration

Another important evaluation metric for a service architecture is the ratio of successful object

discoveries with respect to the number of successful object registrations. This metric shows

the ability of the service architecture to discover the registered objects in the network. For

this experiment, while calculating the required ration we only take into consideration the

objects that are “successfully” registered with the network. We compare the performance

of SARA in three different cases: a static network, a mobile network, when the nodes move

at the speed of 5 m/s and a mobile network, when the nodes move at the speed of 10 m/s.

The result of this experiment is shown in Figure 7.5.

Figure 7.5 shows that the ratio becomes 1 as the density of nodes in the network increases.

This implies that all the objects that are registered with the network are successfully dis-

covered. In the case of low network density, the ratio for the network consisting of mobile

nodes is lower than the ratio for the network of static nodes. In a low density network,

there is a scarcity of nodes to form and maintain virtual registries to hold node and object

information. Also, there is a paucity of nodes that are available to successfully forward

messages. As the network density increases, the overall performance also improves and the
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Figure 7.5: Ratio of Object Discovery vs Registration

ratio reaches 1. We can also observe that the ratio for a mobile network is lower (though

not by much, on average around 20%), especially in the high mobility case. Node mobility

impacts the creation and maintenance of virtual registries in the network. As the density

increases, though, the availability of more nodes results in more stable registries and hence

the performance improves and finally the ratio reaches 1.

7.2.6 Effect of the Virtual Anchor Forwarding Path

In the next set of experiments, we evaluated the effect of adding the virtual anchor forwarding

path to the service architecture. The VAFP was modeled as an ordered set of landmark points

(physical locations) that spans the network service area. The VAFP determines the path

to follow to locate the next virtual registry to store/retrieve information object and node

information. The VAFP is fixed at the beginning of the simulation and does not change

through the course of the simulation.

To evaluate the performance of SARA with and without the effect of the VAFP, the

set of metrics include: % of successful object registrations and ratio of object discovery vs

registration. In each of the experiments, the density of nodes in the network was varied from
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a sparsely populated network (100 nodes) to a densely populated network (1000 nodes).

Also, each experiment was performed for a network of static nodes and a network of mobile

nodes. In the case of the network of mobile nodes, the speed of the nodes was set to 10 m/s.

In the first set of experiments, we observe the impact of node density on the percentage

of successful object registrations for a network with and without the VAFP. The results of

this experiment for a network with static nodes is provided in Figure 7.6, while Figure 7.7

depicts the result for a network containing mobile nodes.
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Figure 7.6: Success of Object Registration (Static Network)

From Figure 7.6, we can see that the performance of SARA with the virtual anchor

forwarding path is always better and on an average it performs atleast 15 - 20% better than

SARA without the VAFP. The VAFP aids in locating the next virtual registry to register the

object information with, which might otherwise have been lost due to the non-availability

of a virtual residence at the location of the hash value of the object. The improvement

for a sparse network is not that much due to the paucity of neighboring nodes to forward

information along the VAFP to the next available registry. As the density of the network

increases, the performance of the VAFP also increases.

Figure 7.7 depicts the result for a network of mobile nodes. It is clear from the graph

that the VAFP directly results in increasing the success of object registration. Node mobility

causes frequent changes to virtual registry membership, thus causing registries to disband.
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Figure 7.7: Success of Object Registration (Mobile Network)

Using the virtual anchor forwarding path proves effective in locating the next available

registry to register the object information with.

In the second set of experiments, we observe the impact of node density on the ratio

of successful object discoveries versus successful object registrations for a network with and

without the VAFP. Figures 7.8 and 7.9 depict the results of this experiment for a static

network and a network of mobile nodes respectively.

Figure 7.8 shows that the ratio of object discovery with respect to object registration is

higher for the architecture that is augmented with the VAFP. This is a direct effect of using

the virtual anchor forwarding path to locate and query other available virtual registries in

the network for the object information. For a network with a low density of nodes, we see

that the performance gain is not very high. This is due to the scarcity of nodes that are

available to forward messages along the VAFP.

Figure 7.9 shows that the VAFP also helps to increase the ratio of object discovery with

respect to registration in the case of a network consisting of mobile nodes. The VAFP helps

in performance gains of around 15-25% on average. As the density increases, the network

augmented with the VAFP approaches the ratio of 1 faster and ensures that there is no
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Figure 7.8: Ratio of Object Discovery vs Registration (Static Network)
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Figure 7.9: Ratio of Object Discovery vs Registration (Mobile Network)
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information loss in the network.

The results of our experiments clearly show the benefit of using the virtual anchor forward

path to augment the service architecture. In each of the scenarios, SARA with the VAFP

always outperforms SARA without the VAFP. An interesting study that can be performed

as part of the future work is to evaluate the structural properties of the virtual anchor

forwarding path. Depending on the coverage and geometrical shape of the network service

area, the size and structure of the VAFP would change. The VAFP should be optimized

to cover the network service area so as to avoid any “black holes” (areas that can contain

virtual registries, but are not covered by the VAFP) and also make sure that the VAFP is

traversed in the correct direction.

7.2.7 Analysis of PILOT

In this section, we perform a comparative analysis of PILOT. Traffic is generated in the

network by simulating traffic from a source to a destination. It is assumed that a node has

queried for and received the location of the destination and can now send traffic directly to the

destination. Traffic generated was CBR traffic with two different sources and two different

destinations, to ensure some congestion in the network. Traffic statistics are collected at the

destination by measuring the total time taken (in nano− seconds) for the packets to reach

the destination. At the start of each simulation, some nodes are chosen at random to act

as source and destinations. During the course of the experiments, PILOT was compared to

AODV, LAR and GPSR.

In all the experiments, we measured the throughput while varying different network

characteristics. The metrics that we focused on during this simulation were: impact of

transmission range on the throughput, impact of node density on the throughput and the

impact of average speed on the throughput. Table 7.2 presents a summary of the different

design parameters used in the comparative analysis.

Simulation results are presented in the following subsections. In each of the graphs

presented in this section, a point represents the average of 10 experimental runs. It is worth

mentioning that we were aware of the standard deviation in all simulation runs and we did
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Table 7.2: Summary of simulation parameters for the comparative analysis of PILOT

Name Value

No. of nodes 100 - 1000

Transmission Range 100 - 500m

Network Size 3000x3000m

Node Mobility Yes

Mobility Pattern RANDOM-TRIP

Node Speed 5 m/s and 10 m/s

Node Pause Time 10s

Simulation Time 1H

No of experimental runs 10

not encounter a relatively large variance in any of simulations. In the next few sections we

will discuss the experimental results.

7.2.8 Impact of Transmission Range

In the first set of experiments, we evaluated the effect of the node transmission range on the

throughput for each of the protocols. The number of nodes in the network was set to 500.

The transmission range was varied from 100 - 500m. The experiments were conducted with

the average speed of the nodes being 5 m/s and 10 m/s. The result of the experiments are

depicted in Figures 7.10 (node speed = 5 m/s) and 7.11 (node speed = 10 m/s) respectively.

From Figure 7.10, we can notice that the throughput is very low for all protocols when

the transmission range is very low. This is to be expected, since the number of nodes in

the vicinity of the source to forward traffic to the destination is very low, given the low

transmission range. We can concur from this experiment that both PILOT and GPSR

perform much better when compared to AODV and LAR. Both PILOT and GPSR forward

messages using a greedy forwarding mechanism and do not incur the overhead of creating
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Figure 7.10: Impact of Transmission Range (avg speed: 5 m/s)

and managing routes. As the transmission range increases, PILOT consistently outperforms

GPSR too. Unlike GPSR, PILOT does not reach a local maximum and hence it is able to

sustain a higher throughput.

From Figure 7.11, it can be seen that PILOT out-performs all other routing protocols.

The throughput of all the routing protocols though, is lower than in the previous case when

the average speed was 5 m/s. The increased mobility causes frequent changes in the network

topology and hence leads to lower throughput. As the transmission range increases, the

throughput of all the protocols also increases. This is due to an increase in the number of

available nodes in the network that can forward traffic towards the destination. Both PILOT

and GPSR out-perform LAR and AODV. This is due to the lower overhead with respect

to creating and repairing routes. As before, PILOT performs better than GPSR due to its

ability to locate a neighboring node that can forward the traffic towards the destination.

7.2.9 Impact of Node Density

In the next set of experiments, we measure the impact of node density on the routing

protocols. This experiment allows us to measure the scalability of the routing protocol. The
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Figure 7.11: Impact of Transmission Range (avg speed: 10 m/s)

number of nodes in the network is varied from 100 to 1000. The network simulated thus was

varied from a sparsely populated network to a densely populated network. The transmission

range was set to 250m. The experiments were conducted with the average speed of the nodes

being 5 m/s and 10 m/s. The result of the experiments are depicted in Figures 7.12 (node

speed = 5 m/s) and 7.13 (node speed = 10 m/s) respectively.

From Figure 7.12, we notice that PILOT performs better than GPSR, LAR and AODV.

Due to node mobility, routes that were discovered by LAR at the beginning of the simulation

may not be valid later and hence another route discovery must be performed. This overhead

increases the latency to send packets from the source to the destination. PILOT and GPSR

are primarily forwarding protocols and hence they do not incur the cost associated with

forming and repairing routes. At 1000 nodes (highly dense network), PILOT achieves the

maximum throughput. The denser the network becomes, the better PILOT performs due

to the availability of more nodes that can forward the packet towards the destination.

Figure 7.13 shows that the throughput drops slightly when compared to the previous

case. This is to be expected due to the higher average speed of the nodes. We notice

that PILOT performs better than GPSR, LAR and AODV and at 1000 nodes achieves its
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Figure 7.12: Impact of Node Density (avg speed: 5 m/s)
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Figure 7.13: Impact of Node Density (avg speed: 10 m/s)
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highest throughput. As the number of nodes increases in the network, both PILOT and

GPSR perform better due to the availability of more nodes to forward the traffic towards

the destination. Also, PILOT outperforms GPSR by more in this experiment as compared

to the case when average speed is 5 m/s. experiment. Due to the increased mobility, the

neighbor list used by GPSR to decide the next hop node may not be up-to-date. This in turn

leads to a degradation in performance of GPSR. PILOT does not incur this overhead since

it forwards traffic in a truncated cone-shaped manner and any node within this area (whose

probability of forwarding is high enough) can forward the traffic towards the destination.

7.2.10 Impact of Average Speed

In this experiment, we measure the impact of the average speed on the throughput for the

different routing protocols. For this experiment the transmission range was set to 250m.

The number of nodes is set to 500. The average speed of the nodes was varied from 10 m/s

to 50 m/s. The result of this experiment is depicted in Figure 7.14.
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Figure 7.14: Impact of Average Speed

Figure 7.14 shows that, as the average speed of the nodes increases, the throughput

goes down in all cases. This can be attributed to the increased mobility in the network

due to an increase in the average speed. In this scenario, we can observe that PILOT and
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GPSR perform better than both LAR and AODV. This is because, even with increased

mobility, there is still a high enough possibility finding a node that can be used to forward

the traffic from the source towards the destination. As the average speed increases, the

overhead associated with maintaining and discovering routes in the network increases, thus

considerably decreasing the throughput for both AODV and LAR. The drop in throughput

is not much for both GPSR and PILOT since they do not incur the overhead of creating

and maintaining routes.

7.3 SUMMARY

This chapter presented in detail the simulation setup and the analysis of SARA and PILOT.

Section 7.1 detailed the experimental testbed used to perform a sensitivity analysis of SARA

and a comparative analysis of PILOT. Section 7.2.1 detailed the results of the sensitivity

analysis of SARA, while Section 7.2.7 detailed the results of the comparative analysis of

PILOT.

The sensitivity analysis of SARA provided us with a method to evaluate the performance

of SARA under different network conditions. The virtual registry test showed us that an

adaptive scheme (higher number of nodes required to create a registry versus the number

required to maintain it) works much better than a scheme that has a fixed value of K. The

tests for latency and ratio of object registration versus discovery showed us that SARA is

robust and scalable and performs particularly well as the density of the nodes in the network

increases. The tests to evaluate the performance of the VAFP proved the effectiveness of the

VAFP since the performance of SARA with the virtual anchor forwarding path was more

than 10-20% better than SARA without the VAFP.

During the comparative analysis of PILOT, we compared PILOT with GPSR, AODV

and LAR. The experiments were conducted while varying the transmission range of the

nodes, number of nodes in the network and the average speed. In each of the cases, PILOT

and GPSR performed much better when compared to AODV and LAR, especially in the case

of high mobility. Both PILOT and GPSR use a greedy forwarding mechanism to forward
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messages and hence do not incur the overhead of creating and maintaining routes. The

results also show that PILOT always outperforms GPSR. Unlike GPSR, PILOT does not

need to maintain a neighbor list to select the best possible neighbor node to forward the

traffic to. Due to the increased mobility, the neighbor list used by GPSR to decide the next

hop node may not be up-to-date. This in turn leads to a degradation in the performance

of GPSR. PILOT does not incur this overhead since any node in the truncated cone-shaped

area (whose probability of forwarding is high enough) can forward the traffic towards the

destination.
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8.0 CONCLUSION AND FUTURE WORK

Recent technological advances in engineering and communication have paved the way for a

new generation of embedded wireless devices. The capabilities of these devices range from

small inexpensive lightweight sensors, with limited memory and computational capabilities,

to resource-rich devices, which can support significantly enhanced functionalities. A number

of these devices can be deployed on a large scale for sensing and in-situ processing of spatially

and temporally dense data, and for carrying out specialized functions. These heterogeneous

networks of embedded systems offer the capability to gather critical, real-time information

for remote surveillance, collaborative tracking, and distributed control.

The objective of such infrastructureless networks is to support increased mobility, flexi-

bility, and lower cost of managing the resources in comparison to infrastructured networks.

These networks are unique, in the sense that a participating device can function as a host

as well as a router, thereby dynamically creating paths between network devices. Unlike a

fixed wireless network, however, locating a device becomes difficult as users may exhibit high

levels of mobility.

Despite advances in areas of routing and media access technology for pervasive and ubiq-

uitous computing, little progress has been made towards large-scale deployment of services

and applications in such environments. The lack of a fixed infrastructure, coupled with

the time-varying characteristics of the underlying network topology, makes service delivery

challenging.

Although typical service discovery frameworks work at a higher layer than routing, it

is imperative to integrate service registration and discovery with traffic forwarding. Unlike

traditional wireline networks, node mobility is a factor in wireless networks and has to be

accounted for while designing the protocols for service registration and discovery.
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The basic tenet of this thesis is that service discovery is a key enabling technology to

support interactions among heterogeneous devices in ubiquitous and pervasive environments.

This thesis takes a unique approach by integrating the different components of a service

architecture into a seamless power and location-aware architecture that is well-suited for

scalable, robust, large-scale service deployment in pervasive and ubiquitous environments.

The contributions of this thesis are:

1. SARA: An efficient, robust, scalable and secure framework for large-scale service and

application deployment in ubiquitous environments. The basic tenet of this architecture

revolves around the concepts of virtual registries, most likely residence and location vector.

A virtual registry is a dynamically created administrative domain that enables object

registration and discovery. The extent of a virtual registry is such that it encompasses

at least K (threshold) nodes. The information in a virtual registry is maintained by its

member nodes. The most likely residence of a node is the physical area where the node

is likely to be located most of the time. For example, the most likely residence of a fixed

node is its physical location. This is registered by the node with the network and is

used as a congregation point by nodes to contact other nodes. In the case of a mobile

node, the node also registers its location vector. The location vector of a mobile node

is a dynamic time-dependent vector that represents the physical location of the node at

a given time, thus reflecting user activity. The primary advantage of this approach is

that each node can choose to provide its own mobility prediction model, which it deems

to be most appropriate to its current activity, rather than using a network-wide model

which may not be applicable to specific itineraries and situations. Object registration

and discovery are achieved by hashing the object id to obtain the physical co-ordinates

of a point (P ) within the network service area. The set of mobile nodes in the virtual

registry containing P assume the responsibility of maintaining information about the

object. The basic design principle for our scheme is to use geographical mapping for the

hashing as opposed to node mapping since nodes are mobile. While bootstrapping, a

node only needs to know the hash function that is used to register and locate objects in

the network. To ensure that there are no hot spots in the network due to hashing, the

hash function is chosen to be a uniform hash function [12].
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2. PILOT: A power, resource, and location-aware traffic forwarding algorithm for the service

architecture. This algorithm uses a priority based scheme that imposes a priority on the

neighboring nodes in a way, such that nodes which are more in line with the direction

of the destination have higher probability to forward the message, thereby reducing the

delay that traffic suffers on its way towards the destination. The priority is also closely

tied to the residual energy-level of the intermediary node to increase network lifetime.

3. Security schemes to ensure user privacy in the proposed service architecture. Three

schemes are developed, each of which serve a different purpose and the best scheme can be

chosen depending on the requirements and constraints of the network. These schemes are

light weight and were developed while taking node mobility and the resource constrained

environment into consideration. The proposed security mechanisms are divided into

three schemes: Multiple Location Vector scheme, Node-Proxy Based scheme and Random-

Proxy Based scheme. All these schemes work on the assumption that each node has a

public-key/private-key pair and the identity of a node cannot be ascertained by using its

public-key.

4. A proof of concept implementation for the proposed architecture that shows its ability

to perform in a real world scenario.

In order to evaluate the performance of SARA and PILOT, we simulated them by im-

plementing and evaluating them using the Glomosim network simulator. We performed a

sensitivity analysis of SARA by running extensive simulations for a variety of node densities

and node mobilities to study its performance under different network settings. To evaluate

the performance of PILOT, we performed a probabilistic analysis and also a comparative

analysis by comparing its performance with respect to throughput to GPSR, LAR and AODV

for a network consisting of mobile node while varying different network parameters.

The sensitivity analysis of SARA provided us with a mechanism to evaluate the per-

formance of SARA under different network conditions. The tests showed that an adaptive

scheme that manages the virtual registry threshold K is best suited for ubiquitous environ-

ments. The performance of SARA is particularly good for networks with higher density

due to the availability of more nodes to maintain object and registry information. In the

absence of a lot of nodes in the network, the virtual anchor forwarding path provides a useful
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alternative to ensure that information loss in the network is kept to a minimum.

The probabilistic analysis of PILOT showed that PILOT converges, even when the den-

sity of the network is not very high. The probability of a message reaching the destination

converges fast for a network where the density of neighboring nodes is high. In the event

when the neighboring density is low, the probability can be increased by increasing the angle

of the truncated cone (which automatically happens in PILOT, if there are no available nodes

in the primary region to forward the message). Using the analysis of PILOT in the presence

of network obstacles, it can be seen that the probability of forwarding of PILOT converges

as the density of neighboring nodes in the network increases. Even in the case when the

obstacle occupies most of the area within the truncated cone, an increase in the angle of the

truncated cone results in a higher probability of the message reaching the destination.

The comparative analysis of PILOT with GPSR, LAR and AODV showed that PILOT

performed better than all of them, especially so in the case when the density of nodes in the

network is high. Both PILOT and GPSR use a greedy forwarding mechanism to forward

messages and hence do not incur the overhead of creating and maintaining routes as is the

case with LAR and AODV. Unlike GPSR, PILOT does not maintain a neighbor list to decide

the best neighbor to forward the packet to. In the event of increased mobility, the neighbor

list used by GPSR may not be up-to-date causing a degradation in the performance. PILOT

is also power-aware by tying the probability of forwarding to the residual energy of the

intermediate nodes.

8.1 FUTURE WORK

Demand for continuous real-time monitoring for critical infrastructure protection and home-

land security, disaster management, tether-free health care, and real-time environment mon-

itoring, among many other time-sensitive applications, has become increasingly important.

Generally, time-sensitive applications have strict quality of service (QoS) and timing require-

ments that need to be met to ensure correct functioning of the application. In an emergency

situation in the health care sector, for example, delivery of vital signs to the doctor in charge
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cannot be delayed beyond a specified amount of time in order to avoid irreparable damage

to the health of the patient. The ability to select the correct set of devices and services also

plays an important part in satisfying the QoS requirements of an application. Given a list of

services and their constraints, the best possible service that meets the requirements of the

application must be selected. Meeting the performance requirements of these applications

depends on the ability of the ubiquitous computing environment to fulfill the demands of

the application, even in the presence of failures.

To meet these challenges and achieve an acceptable level of reliability, robustness and

fault-tolerance, new paradigms for energy-efficient data management and communication

protocols must be studied. In particular, we need to develop (i) models that capture the

unpredictable properties of time-critical applications due to failures, (ii) efficient and scalable

protocols that allow for data transmission in a timely manner, (iii) robust and efficient

protocols to ensure that data fidelity is not compromised, and (iv) selection protocols that

select the best service or device available to ensure that the QoS requirements are met.

The solutions investigated must obey the timing and QoS requirements of the application

and also take into consideration the resource constrained environment. The approach is to

develop novel adaptive schemes which seek to identify the most efficient mode of operation

given the context, current network conditions, resource constraints, and timing and QoS

requirements of the application.
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