
S C A L A B L E A N D S E C U R E M U LT I C A S T R O U T I N G
F O R M O B I L E A D - H O C N E T W O R K S

milan schmittner

Master Thesis

30. September 2014

Secure Mobile Networking Lab
Department of Computer Science

Scalable and Secure Multicast Routing for Mobile Ad-hoc Networks
Master Thesis
SEEMOO-MSC-0049

Submitted by Milan Schmittner
Date of submission: September 30, 2014

Advisor: Prof. Dr.-Ing. Matthias Hollick
Supervisor: Dipl.-Ing. Michael Noisternig

Technische Universität Darmstadt
Department of Computer Science
Secure Mobile Networking Lab

A B S T R A C T

Mobile Ad-Hoc Networks (MANETs) are decentralized and autonomous communica-
tion systems: They can be used to provide connectivity when a natural disaster has
brought down the infrastructure, or they can support freedom of speech in countries
with governmental Internet restrictions. MANET design requires careful attention to
scalability and security due to low-capacity and error-prone wireless links as well as the
openness of these systems.

In this thesis, we address the issue of multicast as a means to efficiently support the
MANET application of group communication on the network layer. To this aim, we first
survey the research literature on the current state of the art in MANET routing, and
we identify a gap between scalability and security in multicast routing protocols—two
aspects that were only considered in isolation until now. We then develop an explicit
multicast protocol based on the design of a secure unicast protocol, aiming to maintain
its security properties while introducing minimal overhead.

Our simulation results reveal that our protocol reduces bandwidth utilization in group
communication scenarios by up to 45% compared to the original unicast protocol, while
providing significantly better resilience under blackhole attacks. A comparison with
pure flooding allows us to identify a practical group size limit, and we present ideas for
better large-group support.

Z U S A M M E N FA S S U N G

Mobile Ad-hoc Netzwerke (MANETs) sind dezentrale und autonome Kommunikations-
systeme. Sie können z. B. genutzt werden, um die durch Naturkatastrophen zerstörte
Infrastruktur für sowohl Ersthelfer als auch die Bevölkerung (temporär) zu ersetzen. Sie
ermöglichen außerdem die Umgehung von Internetzensur im Sinne der Meinungsfrei-
heit. Bei der technischen Umsetzung solcher Systeme ist es wichtig, die Eigenheiten im
Bezug auf Skalierbarkeit und Sicherheit zu verstehen und zu beachten, welche haupt-
sächlich durch die Fehleranfälligkeit und die geringe Kapazität drahtloser Kommunika-
tionskanäle und die prinzipielle Offenheit von MANETs gegeben sind.

Diese Masterarbeit soll das Problem der effizienten Gruppenkommunikation mit Hil-
fe von Multicast auf der Vermittlungsschicht lösen. Dazu wurden zunächst aktuelle For-
schungsergebnisse im Bereich MANET-Routing ausgewertet und dabei erkannt, dass
noch keine Arbeiten zu gleichzeitig skalierendem und sicherem Multicast veröffentlicht
wurden. Das in dieser Arbeit entwickelte explizite Multicast-Protokoll basiert auf einem
sicheren Unicast-Protokoll, wobei versucht wurde, den zusätzlichen Kommunikations-
aufwand möglichst gering zu halten.

Die Simulationsergebnisse zeigen, dass die Multicast-Lösung, verglichen mit dem ur-
sprünglichen Unicast-Protokoll, den Bandbreitenbedarf um bis zu 45% reduziert und
gleichzeitig eine höhere Resistenz gegen Blackhole-Angriffe aufweist. Außerdem wurde
erkannt, dass expliziter Multicast ab einer gewissen Gruppengröße keinen Effizienz-
vorteil gegenüber einem einfachen Flooding-Protokoll aufweisen kann. Anhand dessen
wurden Lösungen vorgeschlagen, um die maximal unterstützte Gruppengröße weiter
zu erhöhen.

iii

E R K L Ä R U N G Z U R M A S T E R - T H E S I S

Hiermit versichere ich, die vorliegende Master-Thesis ohne Hilfe Dritter nur mit den
angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus
Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in
gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, 30. September 2014

Milan Schmittner

C O N T E N T S

1 introduction 1

1.1 Motivation . 1

1.2 Contribution . 1

1.3 Outline . 2

I state of the art :
scalability and security of manet routing 3

2 scalability of manet routing 5

2.1 Definition . 5

2.2 System Model . 5

2.3 Limits of Scalability . 6

2.3.1 Network Layer Scalability Limits Imposed by Lower Layers 6

2.3.2 Circumventing the Scalability Curse 7

2.4 Scalability of MANET Unicast Routing . 8

2.4.1 Fundamentals . 8

2.4.2 Improving Scalability . 10

2.4.3 Discussion . 20

2.5 Scalability of MANET Multicast Routing 23

2.5.1 Fundamentals . 23

2.5.2 Improving Scalability . 25

2.5.3 Discussion . 27

3 security of manet routing 31

3.1 Definition . 31

3.2 Assumptions . 31

3.2.1 Secure Neighbor Discovery . 31

3.2.2 Key Distribution and Management 32

3.2.3 Adversary Model . 32

3.3 Security of MANET Unicast Routing . 33

3.3.1 Attacks . 33

3.3.2 Securing Route Discovery . 35

3.3.3 Securing Data Transmission . 37

3.3.4 Discussion . 38

3.4 Security of MANET Multicast Routing . 39

3.4.1 Attacks on Multicast . 40

3.4.2 Securing Multicast . 40

3.4.3 Discussion . 40

II xcastor : a scalable and secure

explicit multicast routing protocol 43

4 design 45

4.1 Choosing the Substrate . 45

4.2 Castor in Detail . 46

4.2.1 Packet Format . 46

vii

viii contents

4.2.2 Cryptographic Mechanisms . 46

4.2.3 Forwarding . 47

4.2.4 Reliability Estimators . 47

4.3 Extending Castor with Multicast Support 48

4.3.1 A First Approach using Xcast . 48

4.3.2 Packet Merging . 48

4.3.3 Group Keys: Header Size Revisited 49

4.3.4 ACK Authentication Problem . 50

4.3.5 Optimizing PKT Size . 52

4.4 Summary: Xcastor . 52

4.4.1 Packet Format . 52

4.4.2 Packet Processing . 52

4.4.3 Xcastor Security . 53

5 implementation 55

5.1 The Click Modular Router . 55

5.1.1 Click Elements . 55

5.2 Implementing Xcastor in Click . 56

5.2.1 Packet Format . 56

5.2.2 Elements . 57

5.2.3 Interworking with the MAC Layer: Broadcast Reliability 62

6 evaluation 63

6.1 Goals . 63

6.2 Metrics . 64

6.2.1 Packet Delivery Rate . 64

6.2.2 Bandwidth Utilization . 64

6.2.3 Delay . 64

6.3 ns-3 Discrete Event Network Simulator . 65

6.4 Simulation . 65

6.4.1 Impact of Network Size . 65

6.4.2 Impact of Group Size . 68

6.4.3 Impact of Number of Groups . 68

6.4.4 Impact of Mobility . 68

6.4.5 Impact of Blackhole Attacks . 71

7 discussion 75

7.1 Xcastor has Lowest Delay . 75

7.2 Limited Bandwidth Utilization Gain . 75

7.2.1 Flow Size . 76

7.2.2 Hash Length . 76

7.2.3 Branching Factor of the Delivery Tree 76

7.3 Explicit Multicast vs. Flooding in Large Groups 77

7.4 MAC Layer Reliability is Important . 80

7.4.1 MAC Layer Multicast with Acknowledgments 80

7.5 Attack Resilience Improved . 80

8 conclusion 81

8.1 Outlook . 81

contents ix

III appendix 83

a build instructions 85

list of figures 86

list of tables 86

acronyms 87

bibliography 89

1
I N T R O D U C T I O N

Mobile Ad-Hoc Networks (MANETs) are a well-studied research field. Most work has
been carried out in trying to adapt classic routing paradigms towards operating more
efficiently in hostile, infrastructure-less, and resource-constrained environments. Scala-
bility issues such as the flooding problem have been identified and addressed in various
ways [96, 40, 95].

Whereas classic IP routers are usually operated by some trusted third party, e.g., an
Internet provider, security is of increased concern in MANETs where other (potentially
untrusted) parties take on the role of a router. An adversary that propagates false
routing information could single-handedly bring down such a network. As a result,
solutions towards secure routing have been proposed starting from around 2002. Often,
such solutions impose impractical security assumptions on the system or harden the
network only against a specific kind of attack. Approaches that follow the security-by-
design principle can achieve a more comprehensive attack resistance without becoming
impractical, e. g., [31].

1.1 motivation

Apart from the military domain, civil projects have recently deployed infrastructure-
less networks: Freifunk in Germany [28] is a movement towards creating an alternative
communication network, which shall be anonymous, free to use for everyone, and free
from discrimination (net neutrality). Freifunk routers are maintained by volunteers and
run MANET routing protocols to achieve interconnectivity. FireChat [75], as a second
example, is a MANET-based group chat application for mobile devices. It can be used
as a tool for emergency communication or even to circumvent governmental Internet
restrictions [7]. However, it is not secure [17].

Multicast is a mechanism that efficiently enables group communication: A sender can
address a single message to multiple destinations without the need for per-destination
transmissions (= unicast), reducing bandwidth utilization significantly. However, mul-
ticast poses its own challenges: How to find routes to all destinations? How is group
membership maintained? In particular, how can changes be handled efficiently? How
to make multicast robust against MANET deficiencies? How can such a protocol be
secured against adversaries?

1.2 contribution

In this thesis, we examine the state of the art of MANET routing in terms of scalabil-
ity and security in an orthogonal manner. We give a comprehensive overview and a
discussion of scalability improvement mechanisms for both unicast and multicast rout-
ing protocols. The various proposals are categorized according to their core ideas. We
investigate which concepts are promising and which could even be combined with oth-
ers for the construction of more sophisticated solutions. Security-related (unicast and

1

2 introduction

multicast) protocols are compared according to the protocol authors’ security assump-
tions. We also review the resistance of the various protocols against common attacks.
We conclude that secure MANET multicast routing is an understudied research area.

Following these findings, we design a scalable and secure multicast protocol based
on Castor [31], a promising unicast routing protocol for MANETs. We implement both
Castor and our multicast-enabled protocol Xcastor in the Click modular router frame-
work. We evaluate the performance of our protocol by comparing it to Castor and a
flooding protocol in ns-3.

1.3 outline

In Part I of this thesis (Chapters 2 and 3), we try to answer the following questions:
What is scalability? What problems do MANETs impose in terms of scalability? How
can we approach and eventually solve these issues? How is security affected by these
solutions?

The first two chapters of Part II (Chapters 4 and 5) present the design process and
the implementation of our protocol. We evaluate and discuss our results in Chapters 6

and 7. The thesis is concluded in Chapter 8.

Part I

S TAT E O F T H E A RT:
S C A L A B I L I T Y A N D S E C U R I T Y O F M A N E T R O U T I N G

2
S C A L A B I L I T Y O F M A N E T R O U T I N G

The main advantage of Mobile Ad-Hoc Networks (MANETs) is their capability of rapid
deployment and operation without a fixed infrastructure. It allows these networks to be
deployed in scenarios, where other means of communication are not feasible or simply
not available.

However, such networks are inherently poorly scalable. This has several reasons: For
one, the wireless channel is a shared medium. Therefore, participants mutually exclude
each other from concurrent transmission. Generally, wireless technology exhibits less
bandwidth and is less reliable due to channel errors than its wired counterpart. The
participating devices (nodes) are usually battery-powered, which means that they might
unexpectedly fail. Last but not least, node mobility causes frequent topology changes
which needs to be mitigated1.

This chapter is structured as follows: In Sections 2.1 and 2.2, we introduce the no-
tion of scalability and describe the system model considered. In Section 2.3, we review
general limitations of scalability in MANETs and based on which we analyze existing
approaches towards increasing scalability for unicast (Section 2.4) and multicast (Sec-
tion 2.5) routing protocols.

2.1 definition

We refer to scalability as the ability of a network to grow with the number of participating
nodes n while remaining operational and efficient. In particular, efficiency corresponds
to a low consumption of available bandwidth for non-user data transfer, and low pro-
cessing and memory requirements per node. In other words, in a scalable network, the
per-node bandwidth as well as processing and memory usage are not severely affected
by n. In a poorly scalable network, nodes either suffer from low available bandwidth,
high processing demands, full memory, or a combination of these as n grows.

Within this chapter, we consider the conservation of available bandwidth as the pri-
mary goal of a scalable routing protocol. The consumption of computing and memory
resources receives minor consideration but will be looked at in more detail in Chapter 3.

2.2 system model

For our system model that we consider in this thesis, we assume a MANET with the
following properties:

1. A shared communication channel. All nodes are using the same technology for wire-
less transmissions. This requires the presence of an access control mechanism at
the data link layer.

1 We will later see that scalability can actually benefit from mobility.

5

6 scalability of manet routing

2. Broadcast communication. All nodes are equipped with omnidirectional antennæ
so that a transmission can be overheard by any neighbor. The transmission range
does not vary, i. e., links are bidirectional.

3. Nodes can have different amounts of available resources in terms of battery, mem-
ory or processing power. This means that some nodes can have more capacities
than others and, thus, might be suitable to perform special tasks.

4. Continuously connected network. This means that there always exists a (multihop)
path between any two nodes in the network. This is in contrast to the notion of
Delay Tolerant Networks (DTNs), where network partitioning is expected and the
existence of end-to-end paths is the exception.

2.3 limits of scalability

In the introduction of this chapter, we have stated a number of limitations of MANETs
in terms of scalability. Below, we provide theoretical background explaining these
limitations—and also argue for approaches to circumvent them on the network layer.

2.3.1 Network Layer Scalability Limits Imposed by Lower Layers

Gupta and Kumar have shown that a capacity boundary for routing in wireless ad hoc
networks exists [38]. This boundary derives from broadcast communication and the re-
sulting interference of concurrently transmitting nodes. The wireless channel is a shared
medium, so local concurrent transmissions cause collisions, or—if a medium access con-
trol scheme is deployed—nodes block each other from concurrent transmissions. Gupta
and Kumar have shown that even in the case of optimal node placement, traffic patterns
and scheduling, the global network capacity grows as ⇥(W

p
n), where W is the band-

width of a single node and n the number of nodes in the network. This means that the
average throughput for a single node reduces to the order of ⇥(W/

p
n). For random

networks, the per-node capacity even reduces to ⇥(W/
p
n log n): Even under optimal

circumstances, the per-node capacity approaches zero as the network grows.
From their findings, the authors see two solutions towards circumventing the capacity

problem: 1) to deploy networks with only a small number of nodes or 2) to deploy
networks that exhibit traffic locality; i. e., nodes may often communicate with other
nodes that are geographically close and transmissions to distant parts of the network
are scarce. This leads to less interference because intermediate nodes are not required
to relay messages so often.

In their model, Gupta and Kumar assume nodes to be static and do not allow topology
changes, which disregards node mobility altogether. However, mobility is an inherent
property of MANETs. Grossglauser and Tse show that mobility can in fact increase the
scalability of MANETs dramatically [36]. The rationale is the following: When nodes
move around, then, at some point in time, a source-destination pair will be close enough
to perform direct communication. This is when data can be exchanged—avoiding the
use of relays. Grossglauser and Tse show that using no relays at all is not sufficient in
order to achieve maximum throughput because the probability of such meetings is too
low. However, a single (and thus constant) level of relays, i. e., two-hop communication,
is sufficient to achieve a constant per-node throughput of O(W). The relays increase the

2.3 limits of scalability 7

Limited network size

Traffic locality Delay tolerance

Figure 2.1: Dimensions allowing for optimizing MANET scalability in the model by Gupta and
Kumar, Grossglauser and Tse.

probability of the source message being delivered to the destination. Note that the delay
introduced by this forwarding scheme is unbounded and increases with the network
size. Thus, the constant throughput achieved by mobility is a long-term average. Conse-
quently, trading off delay for throughput gains is only feasible for network applications
that can handle significant amounts of delay, e. g., E-mail.

From a theoretical point of view, we have now reviewed three factors that can inde-
pendently affect the capacity of MANETs: 1) The network size, 2) locality of the traffic,
and 3) delay tolerance (see Figure 2.1).

Let us investigate these factors more closely. The network size is usually dependent on
the application, e. g., whether the network is deployed in a large stadium with ten thou-
sands of nodes or in a small classroom. The network size is, in any case, not controllable
by the routing protocol. The locality of traffic is also dependent on the application, i. e.,
the generated traffic patterns [108] but it is also affected by the communication overhead
of the routing protocol. Thus, the locality of dissemination of routing information has
an impact on scalability, which can be dealt with. Whether network delay is acceptable
is equally application-dependent. This property can be exploited by routing protocols
to reduce the overall load on the network.

Since the discussion of DTNs is out of scope of this thesis due to the complexity of
this topic alone, the only optimization factor left is traffic locality. As a result, all further
discussion in this chapter is based on the principle of keeping traffic local with respect to
other transmissions by keeping path lengths short and minimizing the amount of overall data
dissemination.

2.3.2 Circumventing the Scalability Curse

The network layer limitations originate from the assumption that neighboring nodes can-
not transmit concurrently. If we remove these assumptions, the scalability curse on the
network layer vanishes. We mention two examples that allow concurrent transmissions.

Interference Alignment. Multiple (K) sender-receiver pairs can actually use the medium
at the same time by using a linear precoding technique called interference align-
ment [12]. In theory, a maximum of K/2 interference free links are achievable.
Work towards practical realization is currently carried out, e. g., [67].

MAC Capture Effect. The capture effect [103] is the observation that two concurrently
transmitted packets with different signal strengths do not necessarily cause packet

8 scalability of manet routing

loss: If the stronger packet is being received first, the second (and superimposed)
packet does not cause corruption. Sparkle [106], for example, exploits this effect to
enable fast and reliable communication in Wireless Sensor Networks.

These techniques are still under research. Current MANETs make use of Media Ac-
cess Control (MAC) mechanisms that strictly preclude concurrent transmissions, e. g.,
IEEE 802.11’s distributed coordination function (DCF) [46]. Thus, we assume the model
by Gupta and Kumar in this thesis.

2.4 scalability of manet unicast routing

This section explores scalability improvement mechanisms for the classical routing prin-
ciples: Distance Vector Routing (DVR), Link State Routing (LSR), and Source Rout-
ing (SR). Most of the work on MANET routing has been done in this area, and it is
protocols based on these principles that have been published in the IETF2 [87, 18, 54].

Surveys on MANET routing already exist, e. g., [41]. We argue that our more analytical
approach is necessary to understand state of the art MANET routing in the light of
scalability.

2.4.1 Fundamentals

Unicast routing is a communication technique that enables a node to communicate with
another node in the network, without requiring the other node to be within direct trans-
mission range, i. e., the two nodes need not to be neighbors. In this case, one or multiple
other nodes are required to act as relays and to forward the message to the destination.
A routing protocol is enacted to find such nodes, which comprise an ordered list of
neighboring relay nodes, and which we call route or path.

2.4.1.1 Routing Principles

Below, we briefly describe the classical routing principles (Distance Vector Routing, Link
State Routing and Source Routing) as well as more exotic ones.

Distance Vector Routing (DVR) is based on exchanging routing table entries (containing
distance vectors) between neighbors in a network. This enables a node to construct
a path to the destination by exploiting one of the neighbors’ paths. The basic idea
of finding routes in DVR is as follows: Let s and d be source and destination nodes,
respectively. If a neighbor h of s knows and announces some path p to d, then s

knows that it can reach d over h using the path p 0 = (h,p).

DVR suffers from slow convergence (because routing state updates are propagated
one hop at a time) and a tendency of creating routing loops when using hop
count as a metric [83]. However, such protocols are more efficient with respect to
message overhead compared to Link State Routing because no flooding is required.

The Destination-Sequenced Distance-Vector (DSDV) Routing [85] protocol is one of
the first proposed solutions for MANET routing. Its main optimization compared
to traditional DVR protocols is loop-freedom, achieved by introducing sequence

2 Experimental RFC

2.4 scalability of manet unicast routing 9

numbers. Another well-known protocol is Ad hoc On-Demand Distance Vector
(AODV) routing [86, 87]. It is similar to DSDV but makes use of on-demand
routing (which will be discussed later).

Link State Routing (LSR) is around since the 1980s [70] and has been successfully de-
ployed in the Internet in the form of the Open Shortest Path First (OSPF) [71] and
Intermediate System to Intermediate System (IS-IS) [22] protocols. LSR is based
on a periodical exchange of neighbor connectivity information, which is flooded
through the network in the form of Link State Update (LSU) packets. This enables
every node to receive a global view of the network topology, which allows it to
calculate shortest routes, e. g., using Dijkstra’s algorithm [25].

The main problem of deploying LSR in a MANET environment is the flooding
of link-state information: The communication overhead for an unmodified LSR
protocol is in the order of O(n2), i. e., n (re)broadcasts for n nodes (with n being
the number of nodes in the network).

The best-known example for MANET Link State Routing is the Optimized Link
State Routing (OLSR) [51, 18] protocol. It uses the concept of Multipoint Relays for
improving efficiency, which is explained in Section 2.4.2.

Source Routing. An alternative approach to DVR and LSR is so-called Source Routing
(SR). In SR, the source of a packet specifies the route the packet has to take to its
destination. This is in contrast to DVR and LSR where routing decisions are made
at the intermediate routers. With this control, a source is able to route around, e. g.,
“dangerous” territory, thus, enforcing certain route policies.

The best-known example in this category is the Dynamic Source Routing (DSR) pro-
tocol [53, 54].

Other. The open-source implementation of Better Approach To Mobile Ad-hoc Network-
ing (B.A.T.M.A.N.) [73] enables routing for low-power embedded devices by re-
moving the need for expensive recalculation of the topology map as in OLSR [76].
B.A.T.M.A.N. nodes periodically announce their presence by broadcasting light-
weight Originator Messages (OGMs) to their neighbors. Each OGM receiver locally
decides whether to forward the packet, based on whether the sender is considered
the best next hop to the OGM originator w. r. t. link quality3. This selective for-
warding results in full dispersion of OGMs in the network without the need for
expensive flooding. The resulting routing tables at each node contain next hop
information to every other node in the network. Thus, B.A.T.M.A.N. can be seen
as a relative to DVR.

Researchers have also considered routing based on ant colony optimization. The na-
ture inspired approach follows the observation of how ants find a shortest path
from their nest to a food source. An example ant colony optimization-based pro-
tocol is AntHocNet [13].

3 Note the difference between sender (any intermediate node forwarding an OGM) and originator (the source
of an OGM).

10 scalability of manet routing

2.4.1.2 Route Discovery Initiation

We describe the two principle ways of how route discovery can be initiated: proactively
and reactively.

Proactive. Traditional Internet routing protocols are proactive or table-driven protocols.
They are based on a periodical exchange of routing information from which each
router in the network can gather a broad view of the network topology and thus
can have routing entries to every destination readily available.

Examples for this type are DSDV and OLSR.

Reactive. Another class of MANET routing protocols have adopted the concept of re-
active or on-demand route discovery. The idea is based on the fact that keeping
routing tables up-to-date when they are not needed is inefficient. In addition, it is
unnecessary to have routes to all other nodes in the network because communica-
tion typically takes place only with a subset of nodes. Reactive protocols discover
routes when they are needed.

Two well-known protocols in this class are AODV and DSR. Both protocols rely on
a similar route discovery scheme that is based on Route Request (RREQ) and Route
Reply (RREP) packets. If no routing table entry exists to a specific destination prior
to sending out a data packet, a RREQ packet is flooded in the network specifying
the sought destination. In AODV, forwarding nodes will store the reverse path
in their routing tables, i. e., the previous hop of the packet. In DSR, on the other
hand, the list of intermediate nodes is stored and forwarded in the RREQ. In both
cases, if the RREQ reaches its destination, the destination generates a RREP packet
that is sent along the reverse path. In AODV, the RREP updates the routing tables
of intermediate nodes which then have a valid entry for the forward path to the
destination. In DSR, the source route is contained in the RREP which is routed
back over the reverse path.

Proactive routing maintains up-to-date state and is preferable if 1) many nodes ac-
tively communicate and 2) nodes frequently move in the network.

Reactive protocols, on the other hand, find routes only when needed. Consequently,
there is no overhead until data transmission takes place. However, they introduce a
delay because the route discovery process has to be run first4. Reactive routing should
thus be deployed if only few paths are in use.

Some protocols take a hybrid approach by combining the two strategies, e. g., by using
a proactive strategy in the close-by environment and relying on reactive routing for
remote destinations.

2.4.2 Improving Scalability

All of the above mentioned MANET routing protocols rely on some sort of flooding
mechanism. Proactive protocols use it for dissemination of routing information through-
out the network while on-demand protocols use flooding to find the destination in the
route discovery phase. Efficient packet dissemination is, hence, most crucial for network
performance as one message impacts the entire network.

4 This can partly be mitigated if piggybacking is used, i. e., user data is appended to the RREQ packets.

2.4 scalability of manet unicast routing 11

As discussed in Section 2.3.1, traffic has to remain local and sparse for a routing
protocol to be scalable. In the literature, there are two principle concepts aiming towards
this goal. All of the proposals optimize flooding in either or both of the following
dimensions:

Spatial limitation. Most proposals employ mechanisms that limit the number of nodes
involved in the flooding phase. This can be done either by limiting the flooding to a
certain geographical area, e. g., a circle around the source, or by selecting appropriate
forwarding nodes.

Temporal limitation. Some proposals reduce flooding overhead by lowering the frequency
at which packets are transmitted. On-demand routing, for example, can already be
seen as an optimization in this dimension. It avoids periodic updates and floods
the network only when a route request is emitted.

In the following subsections, we present various approaches and exemplary protocols
for implementing these concepts. We then discuss these approaches and compare them
w. r. t. applicability and compatibility.

2.4.2.1 Route Caching

On-demand protocols rely on a route discovery process that is initiated before user data
can be transmitted. This route discovery is costly for two reasons: 1) It introduces a
delay due to the preceding RREQ and RREP messages and, more severely, 2) requires
flooding of the entire network.

Caching of routing information at intermediate nodes can help to both speed up the
route discovery process and to spatially limit the scope of flooding: When receiving
a RREQ, any intermediate node with a fresh, that is, up-to-date route to the requested
destination may immediately reply with a RREP to the source, thus avoiding further dis-
semination of the RREQ and speeding up the route discovery process. This mechanism
is also known as Gratuitous Route Replies (an optimization proposed for AODV [8]).

Cache freshness is an issue, especially in volatile environments: Caches might be
out-dated, thus providing misleading routing information to querying nodes.

2.4.2.2 Expanding Ring Search

Expanding Ring Search is an optimization proposed for AODV [8] but is generally de-
ployable for any type of on-demand routing. The idea is to spatially limit the reach of
RREQs, for example, by using a Time To Live (TTL) hop counter. Upon route discovery,
a RREQ with a small TTL of 1 or 2 may be sent out. If the route discovery is unsuc-
cessful (because the destination is farther away than TTL hops), another RREQ with an
increased TTL is broadcast. This incremental process may continue until a certain TTL
threshold is reached and the protocol falls back to full flooding. Instead of TTL, one
could also use a distance boundary based on geographical coordinates.

Expanding Ring Search can increase scalability if the destinations are close-by most of
the time so that the destination is found in an early iteration. If this is not the case, i. e.,
if it falls back to flooding most of the time, then the mechanism can actually perform
worse than flooding because of the previous unsuccessful iterations. Furthermore, the
mechanism adds additional delay to the search, growing with the number of iterations.

12 scalability of manet routing

2.4.2.3 Myopic Dissemination

Some proactive protocols reduce the frequency at which routing updates are dissemi-
nated to distant nodes. This limits the dissemination in a temporal and spatial manner.
The literature refers to it as “myopic dissemination”. Protocols incorporating this mech-
anism have the drawback of relying on possibly imprecise routing information about
distant nodes. However, this is not a severe problem as route information becomes
more precise as a packet is approaching its destination.

fsr Fisheye State Routing (FSR) [50, 83] exchanges link-state information only with
direct neighbors. Similar to proactive DVR (such as DSDV), LSU packets in FSR contain
accumulated link-state information of all node pairs in the network. To decrease LSU
packet sizes, FSR less frequently includes link-state entires of more distant5 nodes. In
FSR, information propagation converges slowly, i. e., by one hop per update interval.

fsls The Fuzzy Sighted Link State (FSLS) protocol [96] sends out LSUs to distant
nodes at a lower frequency. The authors derived an optimal solution in terms of over-
head, the Hazy Sight Link State algorithm: The hop count of the LSU packet is set to 2i

for i = 1, 2, 3, . . . after every 2i-1 time units.

dream Basagni et al. introduced the Distance Routing Effect Algorithm for Mobility
(DREAM) [5], which features a dissemination technique similar to FSLS. The main differ-
ence is that DREAM relies on the Global Positioning System (GPS) and limits the spread
of update packets in terms of geographical distances, i. e., only nodes that are closer than
some distance r are allowed to re-broadcast packets. Also, the update packets contain
the nodes’ locations rather than link-state information. Connectivity information is only
kept to 1-hop neighbors. DREAM is based on what the authors call the “distance ef-
fect”: Distant nodes appear to move slower relatively to each other than close-by nodes.
Consequently, update packets to distant nodes are sent out less frequently. Based on the
“mobility rate”, i. e., how fast a node is moving, a node can autonomously determine
the overall frequency of update packets. The actual routing procedure is GPS-aided and
explained in Section 2.4.2.8.

zrp The Zone Routing Protocol (ZRP) [39] is a hybrid approach that uses proactive
and on-demand protocols on two levels. Proactive routing is used within a predefined
radial zone around the node, i. e., a predefined maximum number of hops h: Periodic
flooding of routing updates is restricted to nodes that are at most h hops away. ZRP
uses an on-demand routing protocol to enable communication with nodes outside the
radial zone. Even though ZRP establishes a hierarchy, it is not classified as a clustering
protocol: The hierarchy is created locally per-node and does not require inter-node
communication.

2.4.2.4 Clustering

Clustering introduces a hierarchy between nodes, i. e., there are usually two or more
groups (or levels) of nodes with different responsibilities. This is in contrast to other

5 outside a predefined scope

2.4 scalability of manet unicast routing 13

protocols that have a flat structure. We first give some examples of clustering-based
protocols and then discuss their benefits and drawbacks.

cgsr The Clusterhead-Gateway Switch Routing (CGSR) protocol [15] is based on DS-
DV. The protocol clusters the network by assigning two special roles to the nodes: clus-
terheads and gateways. Clusterheads are responsible for routing all traffic to and from
nodes in the cluster. They are decentrally elected based on the proposed Least Clus-
terhead Change algorithm, which favors stable clusterheads in order to avoid frequent
re-elections. Gateway nodes are members of more than one cluster: They act as con-
nectors between the clusterheads. As a result, packets are routed alternatingly between
clusterheads and gateways, which places significant load on these nodes. The authors
propose a clusterhead-oriented token scheme on the data link layer to give priority to
the clusterheads.

CGSR uses two tables for routing: A cluster member table and a DV table listing all
clusterheads. Routing is then performed by looking up the responsible clusterhead for
the destination node.

lanmar Landmark Ad Hoc Routing (LANMAR) [84] incorporates similar concepts.
In LANMAR, clusters are formed according to nodes’ group mobility, i. e., nodes that
travel together form a group. One of the nodes in each group is elected as a landmark.
Each landmark node represents its group and corresponds to an entry in a global dis-
tance vector routing table. Nodes within a group are reached via their corresponding
landmark nodes. Within a group, a myopic link-state-based protocol (here: FSR) is used.
Having only clusterheads (CGSR) or landmark nodes (LANMAR) in the DV entries has
two positive side effects: It decreases local memory usage (less nodes in the routing
tables) and it reduces bandwidth consumption due to smaller DV update packet sizes.

hsr Clustering can also be applied to proactive LSR protocols. Hierarchical State
Routing (HSR) [50, 82] introduces a multilevel recursive clustering scheme: On each
level, clusterheads are elected which, in turn, become members of the next higher level.
The virtual connectivity6 defines the neighborhood relation between the clusterheads on
the next higher layer, which in turn dictates how higher-layer clustered are formed. The
authors leave the choice of clustering algorithm open but refer to CGSR as one possible
option.

In HSR, link-state information is broadcast only within a cluster. The clusterheads of
each cluster accumulate the link-state information of all cluster members and distribute
it only among their neighbor clusterheads. Conversely, accumulated link-state informa-
tion is pushed down the logical hierarchy.

In conclusion, protocols based on clustering bypass the flooding problem by introduc-
ing a node hierarchy that spatially limits the flooding scope. This gain comes at the cost
of 1) increased bandwidth consumption for hierarchy maintenance (election schemes);
2) suboptimal routes w. r. t. to the distance metric (traffic is routed over the clusterheads);
and 3) introduction of single points of failure (clusterheads) which can be a problem in

6 Virtual connectivity refers to two nodes not being within wireless transmission range but rather being
indirectly connected via gateway nodes.

14 scalability of manet routing

highly volatile or hostile environments, in case of congestion, and due to energy drain-
ing.

2.4.2.5 Gossiping

Gossiping is a probabilistic forwarding concept where each node individually tosses a
coin for whether or not it should forward a message. Gossiping—an epidemic algorithm—
was first applied to networking in 1987 for database replication [24].

Haas et al. propose gossip-based routing [40] as an extension to on-demand routing
protocols such as AODV. Their idea is to probabilistically reduce the number of rebroad-
casts caused by flooding. The proposed scheme is simple: A source node broadcasts a
message with probability p = 1. Every node receiving such a message forwards it with
probability p < 1 and discards it with 1- p. For the case that a source node has only
few neighbors, this scheme causes the “gossip” to die early, reducing the reliability of
the scheme. As a countermeasure, a forwarding probability of p = 1 is maintained for
the first k hops. The authors show that with p = [0.6, 0.8], a message is almost fully dis-
persed in a dense and large network (1000 nodes with 4 neighbors each), while reducing
the number of rebroadcasts significantly (up to 35%).

2.4.2.6 Multipoint Relaying

Multipoint Relaying [91] is a technique that minimizes the number of rebroadcasts for
flooding while assuring that every node still receives the message. For multipoint relay-
ing to work, each node selects a minimal set of its 1-hop neighbors through which it can
reach all of its 2-hop neighbors. When flooding a message to the network, the message
is first received by all 1-hop neighbors while only the nodes flagged as multipoint relays
will rebroadcast it. The concept is visualized in Figure 2.2.

(a) Flooding without MPRs, so all 1-hop
neighbors forward, yielding in a total of
8 rebroadcasts.

(b) With Multipoint Relaying, four of the
1-hop neighbors are selected as MPRs,
yielding in a total of 4 rebroadcasts.

Figure 2.2: Schematic comparison of flooding without and with Multipoint Relays.

2.4 scalability of manet unicast routing 15

2.4.2.7 Cognitive Routing

Cognitive routing approaches lend themselves machine learning techniques to make rout-
ing aware of history.

scrp An example is the Scalable Cognitive Routing Protocol (SCRP) [55]. SCRP is an
on-demand protocol that aims towards limiting RREQ flooding to stable links with good
radio frequencies. The resulting routes are potentially longer but comprised of better
links which should lead to generally increased throughput. The protocol consists of two
mechanisms: Space Flooding and Frequency Flooding. The Space Flooding protocol
uses a proposed throughput increment metric to rate links based on their predicted capac-
ity. The authors suggest the use of four link quality levels. When flooding, SCRP first
chooses only links that are rated with a high (‘4’) level. When this fails, flooding starts
again, but this time also allowing the flooding of links with rating ‘3’. As the protocol
gradually includes links with a lower ranking if the destination could not be reached
over higher-quality links, it eventually falls back to full flooding. This concept is simi-
lar to expanding ring search. The second protocol, Frequency Flooding, is a means to
account for varying channel conditions on different frequencies in the wireless medium.
Here, SCRP chooses frequencies based on packet delay, which is an “excellent metric”
as the authors claim.

SCRP requires feedback from the lower layers in order to work. Unfortunately, the
paper [55] does not clearly state how the throughput increment metric and packet delays
are calculated.

Even though SCRP is an on-demand protocol, the basic ideas could also be applied to
proactive protocols.

2.4.2.8 Directed, GPS-aided Flooding

GPS-aided flooding is a natural way of spatially limiting the search scope. The rationale is
the following: When a sender already knows the geographical position of the destina-
tion, it can query a route request directed towards that destination, omitting relays that
do not reside in the vicinity of the line of sight. Such protocols have the drawback of
relying on the availability of geographical location information. Therefore, all protocols
presented below require a mechanism to distribute location information, which in itself
poses a challenge in terms of efficient dissemination. A specific distribution mechanism
was described for the DREAM protocol [5] in Section 2.4.2.3. The other protocols dis-
cussed below assume the existence of an “oracle” that can be queried for the coordinates
of any node.

dream DREAM’s routing algorithm is briefly described as follows: Knowing the
current trajectory7 of the destination, the source node can compute the sector in which
it expects the destination to currently reside. Packets are flooded only to nodes which
are located in that sector. Only if no such neighbors exist or the routing fails, the protocol
falls back to a recovery scheme, e. g., full flooding.

7 Using the periodical updates about node locations and their timestamps, the current trajectory of remote
nodes can be approximated.

16 scalability of manet routing

gpsr The Greedy Perimeter Stateless Routing (GPSR) protocol [57] choses next hops
based on their geographical distance to the destination. The next hop based on greedy
forwarding is the neighbor that is 1) the closest neighbor to the destination and 2) is
closer to the destination than the forwarding node itself. If no such neighbor exists, i. e.,
the forwarding node is already closer than all its neighbors, the packet would be stuck
at the current node. In this case, the protocol recovers with perimeter forwarding: The
packet is routed around a face8 using the “right-hand rule”, i. e., counterclockwise along
the face, until it is received by a node closer to the destination, in which case greedy
forwarding is resumed.

lar The Location-Aided Routing (LAR) [59] protocol is based on DSR. LAR intro-
duces two schemes for selecting the geographical flooding area: The first scheme is
similar to DREAM’s sector calculation. It estimates the position of the destination as a
circular area. The smallest rectangular area that covers both the circle and the source
position is the request area which will be flooded with the RREQ. The second scheme is
similar to greedy forwarding in GPSR. Only nodes that are closer to the destination than
the previous hop will relay the RREQ, hence the request will iteratively get closer to
the destination. Although LAR was presented as an extension to DSR, it is possible to
deploy its concepts in other on-demand routing protocols.

2.4.2.9 DHT-based Routing

Distributed Hash Tables (DHTs) emerged from the area of peer-to-peer networks. A DHT
can be thought of as a scalable and distributed lookup service. In a DHT, every partic-
ipating node is responsible for a portion of the global ID space. The major feature of
DHTs is its efficiency: querying for a certain ID has a bandwidth complexity of O(logn)
(flooding would be O(n)), while memory consumption at a single node is low with a
complexity of O(logn) (flooding would be in O(0), i. e., no state needs to be stored).

air and prose In their two 2009 papers, Garcia-Luna-Aceves and Sampath intro-
duced two similar DHT-based routing protocols: Automatic Incremental Routing (AIR) [33]
and Prefix Routing Over Set Elements (PROSE) [95]. The protocols assign prefix labels to
each node using a distributed assignment algorithm. The prefix labels are rooted at one
node in the network so that the prefix label assignment follows a tree structure of the
network topology graph. Assuming that the root node has the label ‘0’ and the protocol
uses a prefix label alphabet of ⌃ = {0, 1, 2}; three child nodes receive ‘00’, ‘01’, and ‘02’ as
their prefix labels. In turn, node 00 assigns ‘000’, ‘001’, and ‘002’ to its child nodes. This
scheme is recursively applied until every node in the network is labeled.

Routing then follows the prefix labels instead of network addresses or identifiers
(NIDs). Hashing9 a node’s NID yields a logical address in the prefix label space. The
node with the longest prefix matching this hash is called the node’s anchor. Upon join-
ing the network, a node publishes its prefix label to its corresponding anchor. If a source
node now wants to communicate with a destination, it needs to contact the destination’s
anchor node first. The source node does so by hashing the destination’s NID and send-
ing a query to that address (= the prefix label of the node’s anchor). The anchor will, in

8 In graph theory, a face is an edge cycle surrounding a region without any edges inside that region. In this
case, it refers to the area free of nodes between the node itself and the destination.

9 The authors propose a common hash function such as SHA-1.

2.4 scalability of manet unicast routing 17

turn, reply with the destination node’s prefix label. Retrieving a node’s prefix label is
termed subscribing. In order to deal with node mobility (or topology changes in general)
the protocols provide appropriate mechanisms, basically making a moving node re-join
the network with a new prefix label: The incurred overhead is lower than for OLSR and
AODV.

In short, the DHT-based protocols introduce a new addressing scheme, which re-
flects the network topology. Featuring a distributed publish-subscribe scheme, AIR and
PROSE avoid flooding completely. They combine proactive and reactive schemes: Pub-
lishing is based on soft-state signaling (proactive) while subscribing is on-demand. The
trade-offs are possibly suboptimal path lengths and increased load at the prefix label
root.

2.4.2.10 Network Coding

The notion of Network Coding was first introduced by Ahlswede et al. [2] for point-to-
point multicast packet networks. The basic idea is to maximize the information flow
between a source and multiple receivers. This is achieved by coding packets together at
intermediate nodes before forwarding their information to the next hop.

cope In 2006, the first practical network coding-based forwarding scheme, COPE,
was proposed by Katti et al. [58]. COPE uses network coding to reduce the number of
transmissions by exploiting the broadcast nature of the wireless medium. In contrast to
the work of Ahlswede et al., COPE is designed to improve unicast rather than multicast
routing. The basic concept is illustrated in an example (Figure 2.3): Assume a simple
network consisting of nodes A, B and C. Assume further that A wants to communicate
with C and at the same time C wants to transmit a packet to A, while B serves as a relay.
In traditional forwarding, four transmissions are required to deliver a packet from A to C

and vice versa (A to B, C to B, B to C, and B to A). In COPE, only three transmissions are
necessary: After A and C have sent their packets, pA and pC, to relay B, B computes a
combined packet pAC = pA� pC of equal length10. pAC is then transmitted (broadcast)
to both nodes, A and C. Using its information about pA, A is able to decode C’s packet
as pC = pAC � pA. Decoding of pA at C is performed analogously.

COPE operates in an opportunistic manner. It codes only packets together that are in
a node’s local queue. It does not wait for packets to arrive, and thus does not introduce
a significant forwarding delay.

Assume that a node has received packets p1,p2, . . . ,pk that it needs to forward to
nodes n1,n2, . . . ,nk, respectively. If the node can be sure that every node nl has already
“seen” all packets pm,m 6= l, then it can serve all recipients with a single packet p =
p1 � p2 � · · ·� pk. Hence, the throughput gain for a single coding opportunity is—in
theory—unlimited. In order to determine which neighbors have already seen which
packets, COPE relies on three mechanisms: 1) Periodic broadcasts, where each node
lists hashes of seen packets; 2) if node ni sent a packet p to nj, then nj knows that ni

has seen p; 3) if nj cannot be confident using the previous two mechanisms, it computes
a probability that ni has also received p from another neighbor.

COPE does not rely on a specific routing protocol, i. e., how next hop decisions are
made. As such, COPE can be seen as an orthogonal scalability-improving approach to

10 The � operator stands for a bitwise XOR operation.

18 scalability of manet routing

A B C

pA

(1) pA

pC

(2) pC

(a) Nodes A and C send their packets to the relay B.

A B C

pA

(3) pAC

pC

(3) pAC

pA

pC

(b) Relay B broadcasts the coded packet pAC.

A B C

pA

pApA

pC pC

pC

(c) A and C have both received pAC and decoded pC and pA, respectively.

Figure 2.3: Demonstrating the core concept of COPE with a simple topology and a total of three
transmissions (compared to four with traditional forwarding).

routing and could consequently be applied to any routing protocol presented in this
chapter.

Sengupta et al. term a routing protocol that uses coding as a forwarding mecha-
nism but otherwise does not make choices based on coding opportunities as coding-
oblivious routing. In their paper [99], they promote coding-aware routing protocols because
throughput gains can be substantial: up to 40 % over coding-oblivious routing depend-
ing on the network topology and traffic patterns. Such improvement is achieved by
maximizing coding opportunities while minimizing interference. A practical evaluation
is missing since the paper is of a theoretical nature.

2.4.2.11 Alternative Routing Metrics

The goal of a routing protocol is not only finding any route but also selecting the “best”
one when there are multiple options available. Most popular MANET routing protocols
rely on an Internet-like [71] routing metric, i. e., shortest-path, as a selection criterion.
Shortest path can be defined as fewest number of hops, most available bandwidth or
lowest delay. These performance-related metrics can fluctuate dramatically in a mobile
environment causing frequent route re-discoveries.

Continuously Adapting Secure Topology-Oblivious Routing (Castor) [31, 30], for ex-
ample, uses reliability estimators as a primary metric for next-hop selection. The ratio-
nale is simple: reliable routes are stable, and there is less need for route repairs11.

11 The reliability estimators are also key ingredients for Castor’s excellent performance as a secure routing
protocol, which will be discussed in Section 3.

2.4 scalability of manet unicast routing 19

In DTNs, the notion of shortest paths does not even exist due to the potential lack
of available paths altogether. As a result, the DTN research community is forced to
investigate alternative metrics for selecting next hops [100]. Most DTN metrics are
destination-dependent, i. e., are based on the likelihood of a node meeting a specific desti-
nation (history of last encounters, social networks, etc.). The one-to-one applicability of
these metrics to MANETs is limited, but the ideas can be transferred. Instead of using
the history of last encounters (which is correlated to the probability of that node meet-
ing the destination again), we can use delivery probabilities of a node to a destination
based on past behavior as in Castor. Other metrics are destination-independent: Move-
ment patterns could be used to determine the likelihood of a node remaining within
transmission range and hence being able to continue to act as an next hop. This way,
a node can proactively switch to another route before packets are dropped and would
have to be retransmitted. Similarly, node resources can affect the suitability to act as a
relay: If a node’s battery is to drain out soon, it should be avoided as a next hop.

In conclusion, alternative routing metrics can improve scalability by avoiding frequent
route repairs and thus flooding, especially in highly dynamic networks. Destination-
independent metrics can be used as a secondary metric if multiple paths to a destination
are known.

2.4.2.12 Infrastructure Support

MANETs do not rely on a predefined communication infrastructure. However, they
could make opportunistic use of such infrastructure when available.

A practical example for infrastructure-supported mobile networks are Vehicular Ad-
Hoc Networks (VANETs). Such networks consist of mobile nodes (the vehicles) and also
fixed infrastructure nodes (roadside equipment). One scenario is that of vehicles com-
municating with each other to avoid large rear end collision by transmitting breaking
signals to other proximate cars whose drivers cannot see the breaking lights ahead yet.
Roadside equipment can provide the mobile nodes with additional information, such as
upcoming roadwork or traffic jams, or they could even provide uplinks to the Internet.

In summary, infrastructure nodes can provide information that otherwise would have
to be retrieved using flooding. However, their applicability is limited to special scenarios.
Thus, in this thesis, we will not consider infrastructure support as a means for improving
the scalability of a MANET routing protocol.

2.4.2.13 Multipath Support

Most protocols such as for example AODV and DSR are designed to find (at most) one
route to a destination. However, due to the unreliable nature of MANETs, knowing
(and concurrently using) multiple routes to a destination can result in better scalabil-
ity. Multiple paths can provide load balancing, fault-tolerance (redundancy, thus less
retransmissions) and a higher aggregated bandwidth (helps to avoid congestion) [72].
Depending on the expected reasons of packet loss, paths should be either link-disjoint
or node-disjoint, which provide resilience against link failure or node (and link) failure,
respectively.

smr Split Multipath Routing (SMR) [64] is based on DSR. In contrast to DSR, SMR
does not discard duplicate RREQs at intermediate nodes if they are received over differ-

20 scalability of manet routing

ent links. The destination will immediately answer the first RREQ it receives (a RREP is
sent back to the source) to minimize route discovery delay. It then waits for other incom-
ing RREQs for a certain period of time. From all further RREQs, it selects the k- 1 (k
being the desired number of paths) routes that are maximally link-disjoint12 to the route
with the shortest delay. The authors set k = 2 in the paper, i. e., only two routes are
discovered.

aomdv Ad hoc On-demand Multipath Distance Vector (AOMDV) routing [69] ex-
tends AODV with multipath routing. It aims to discover node-disjoint paths, but also
accepts (the weaker) link-disjointness if not enough node-disjoint paths exist. AOMDV
includes the first hop (a neighbor of the source) in each RREQ. Forwarding nodes record
neighbors that sent a RREQ with an unseen “first hop” field. However, only the first
received RREQ is forwarded. This way, each node maintains a set of node-disjoint paths
to the source. A destination replies to a RREQ with up to k RREPs (k indicates the de-
sired number of paths, but is bound by the number of neighbors from which it received
a RREQ). When an intermediate node receives more than one RREP, it will forward it
over node-disjoint paths as recorded from the received RREQs.

2.4.3 Discussion

In the following, we discuss applicability and compatibility of the scalability improving
mechanisms. The questions we try to answer are: Which mechanisms can be applied to
which type of general routing protocol? Which mechanisms can be combined in order
to achieve even better scalability? Which mechanisms are universally applicable? Which
combinations might even be harmful to routing performance?

2.4.3.1 Applicability

Table 2.1 summarizes the applicability of the various mechanisms to the different types
of routing principles introduced in Section 2.4.1, i. e., proactive vs. reactive routing, and
the Distance Vector Routing (DVR), Link State Routing (LSR) or Source Routing (SR) pro-
tocols. We denote the applicability as either yes (⌅) or no (⇤). We note that clustering-
based protocols follow a proactive strategy as they need to exchange information to
maintain the hierarchy. We further note that DHT-based routing is deemed not applica-
ble to any of the standard routing protocols as DHTs fundamentally change the routing
process (new identifiers, distributed lookups, implicit routing based on the identifiers).

2.4.3.2 Compatibility

Below, we discuss the compatibility of the various mechanisms from the previous section.
Table 2.2 is meant as a visual guidance to the reader.

As a first remark, some are mechanisms are incompatible (⌅) with each other, e. g., the
ones for reactive and proactive routing. Others, such as route caching and expanding
ring search can be a powerful combination: If appropriately distributed through the
network, route caches increase the probability that expanding ring search experiences a

12 The authors do not clearly state whether they attempt to create link-disjoint or node-disjoint paths. How-
ever, since RREQs are forwarded multiple times, the forwarder is contained in different reverse paths and
so the returned paths will most likely not be node-disjoint.

2.4 scalability of manet unicast routing 21

R
ou

te
C

ac
hi

ng

Ex
pa

nd
in

g
R

in
g

Se
ar

ch

M
yo

pi
c

D
is

se
m

in
at

io
n

C
lu

st
er

in
g

G
os

si
pi

ng

M
ul

tip
oi

nt
R

el
ay

in
g

C
og

ni
tiv

e
R

ou
tin

g

G
PS

-a
id

ed
Fl

oo
di

ng

D
H

T-
ba

se
d

R
ou

tin
g

N
et

w
or

k
C

od
in

g

R
ou

tin
g

M
et

ri
cs

In
fr

as
tr

uc
tu

re
Su

pp
or

t

M
ul

tip
at

h
Su

pp
or

t

Proactive

DVR ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅
LSR ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅

Reactive

DVR ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅
SR ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅

Table 2.1: Applicability of unicast routing schemes.

R
ou

te
C

ac
hi

ng

Ex
pa

nd
in

g
R

in
g

Se
ar

ch

M
yo

pi
c

D
is

se
m

in
at

io
n

C
lu

st
er

in
g

G
os

si
pi

ng

M
ul

tip
oi

nt
R

el
ay

in
g

C
og

ni
tiv

e
R

ou
tin

g

G
PS

-a
id

ed
Fl

oo
di

ng

D
H

T-
ba

se
d

R
ou

tin
g

N
et

w
or

k
C

od
in

g

R
ou

tin
g

M
et

ri
cs

In
fr

as
tr

uc
tu

re
Su

pp
or

t

M
ul

tip
at

h
Su

pp
or

t
Route Caching ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅

Expanding Ring Search ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅
Myopic Dissemination ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅

Clustering ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅
Gossiping ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅

Multipoint Relaying ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅
Cognitive Routing ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅

GPS-aided Flooding ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅
DHT-based Routing ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅

Network Coding ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅
Alt. Routing Metrics ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅

Infrastructure Support ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅
Multipath Support ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅

Table 2.2: Compatibility of unicast routing schemes.

22 scalability of manet routing

cache hit in an early iteration (⌅). Most of the combinations are neither extreme, i. e.,
mechanisms that can be deployed in combination but might yield in different levels of
scalability gain (⌅, ⌅, ⌅, from high to low).

Myopic dissemination, gossiping and multipoint relaying are all mechanisms that
aim for scoped flooding. Even though gossiping was introduced as a means to improve
on-demand routing, the concept can easily be applied to proactive dissemination of
link-state information. As a result, they are compatible with each other. However, in
combination, they might limit flooding too much so that network-wide packet disper-
sion is hardly possible. We do not see how these three approaches can be improved by
infrastructure support (⌅).

Cognitive routing can be combined with other mechanisms but the improvement is
questionable. Expanding ring search, for example, limits the search space to a circular
area while the cognitive protocols restrict the search space to reliable links. In combi-
nation, the cognitive scheme might downgrade its link quality requirements because
RREQs might not reach the destination due to the hop count limit. The same reasoning
applies to gossiping (⌅).

GPS support can basically enhance any on-demand protocol with directional search.
It cannot improve (proactive) LSR since LSR requires network-wide flooding. Unfortu-
nately, the usage of GPS requires a means of distributing initial location information
among network nodes which leads to similar problems already encountered in routing,
i. e., how to distribute information efficiently.

Network Coding is shown to be universally applicable. This is due to the fact that
it does not interfere with routing decisions but only affects packet forwarding (⌅).
Combining DHTs and Network Coding might yield in limited gain compared to other
schemes with Network Coding: with DHTs, there will be no flooding, thus less coding
opportunities might arise (⌅).

DHT-based protocols are, in contrast, basically incompatible with most other mecha-
nisms (⌅). This arises from the fact that DHTs abandon flooding altogether, which is
what other mechanisms try to improve. Route caching seems to be a compatibility can-
didate. However, since DHT lookups are already very cheap in terms of communication
cost, caches can only marginally improve performance. On the contrary, caches might
actually degrade performance due to outdated information (⌅). DHTs cannot be used
in conjunction with alternative routing metrics either since next hop selection is dictated
by the prefix labels.

We realize that least-hop-count routing metrics are not necessarily best-suited for ap-
plication in MANETs. Alternative metrics can actually improve the throughput of the
discovered paths [19]. With the exception of DHTs, alternative routing metrics can be
applied to virtually any reviewed mechanism. For example, cognitive and GPS-aided
routing protocols already apply alternative routing metrics: reliable links and geograph-
ical distance to a location, respectively. Schemes with infrastructure support can benefit
from alternative routing metrics, e. g., if infrastructure nodes are more powerful and
reliable than other nodes in the network, a routing metric could give priority to routing
over these nodes (⌅).

Infrastructure support has a potentially positive effect in schemes where certain nodes
take special roles, e. g., in clustering. Infrastructure nodes could improve the perfor-
mance of cognitive protocols because they could increase the reliability of chosen paths
(assuming that infrastructure nodes are more reliable than regular nodes). In GPS-

2.5 scalability of manet multicast routing 23

supported schemes, infrastructure nodes could act as location databases which can be
queried for coordinates of remote nodes. This could solve the problem of disseminating
the location information as mentioned earlier.

Multipath support is another approach that can be applied to a variety of routing
protocols. The only requirement for the routing protocol is to return more than one
route to a destination. Enabling DHT-based protocols PROSE and AIR with multipath
support is not trivial since the routing approach is based upon the prefix labeling scheme
(⌅).

2.5 scalability of manet multicast routing

In this section, we discuss the fundamentals of multicast, i. e., one-to-many communica-
tion, and present techniques for improving the scalability of multicast routing protocols
in MANET environments. Similarly to Section 2.4, we conclude with a discussion of the
proposed solutions.

2.5.1 Fundamentals

Multicast is used to address several recipients with a single message. In a simple solu-
tion, an existing unicast protocol is used to transmit the same message multiple times,
one for each intended receiver. This approach is highly inefficient, especially for appli-
cations such as live-TV streaming, because the same data would be transmitted multiple
times over the same link(s). Dedicated multicast protocols remove this redundancy, thus
improving the scalability of such applications. In order to efficiently address multicast
groups, i. e., the group of intended receivers, various mechanisms have been proposed.

2.5.1.1 Stateful vs. Stateless Multicast

We differentiate two general types of multicast protocols: stateful and stateless [23].

Stateful Multicast. Several MANET protocols adopt the concept of Internet multicast pro-
tocols. The basic idea is to construct an optimal distribution graph, which covers
all group members and can then be used for communication. This can be seen
as the equivalent of route discovery for unicast routing protocols. Typically, these
distribution networks have a tree or mesh structure. However, hybrid approaches
have been proposed as well.

Tree-based. Tree structures are—from a graph theory point of view—the most effi-
cient structure for message delivery. For example, if we create a minimum
spanning tree covering all group members, the number of links used for dis-
persion of a multicast message should be minimized. However, in a volatile
environment with high mobility, having only single paths to each destination
is insufficient for robust operation [65].

Trees can either be source-initiated, i. e., the source acts as the root of the de-
livery tree, or shared (core-based [4]), i. e., some central node at a rendezvous
point acts as the root.

The Multicast Ad Hoc On-Demand Distance Vector (MAODV) protocol [94] is
an example for a tree-based protocol. It creates multicast trees through RREQ

24 scalability of manet routing

flooding, directly following the concept of AODV. Each receiver replies with
a unicast RREP to indicate its desire to join the multicast group. MAODV fol-
lows a hard-state approach, meaning that topology and membership changes
have to be actively detected and mitigated.

Mesh-based. In the MANET domain, exploiting the mesh structure of the network
can improve the robustness of multicast. Typically, several routes to any
group member are available. By maintaining alternative paths, mesh-based
schemes are able to deliver packets even if individual links fail. These ap-
proaches can be seen as the multipath supporting equivalent of unicast rout-
ing.

Unlike MAODV, On-Demand Multicast Routing Protocol (ODMRP) [66] uses
a soft-state approach for group membership. As long as a source wants to
transmit data, it floods the network with Join Queries indicating its presence.
If the query is received by a group member, it broadcasts a Join Reply mes-
sage. This way, multiple paths from source to receivers are set up (in contrast
to MAODV where single routes are set up). Periodic flooding assures that
topology changes are implicitly mitigated.

The major drawback of ODMRP is that it requires periodic flooding13 of Join
Queries, leading to scalability problems.

Stateless Multicast. Apart from the traditional, stateful approaches, some research has
gone into investigating stateless multicast. The rationale behind this is the avoid-
ance of expensive group management (tree or mesh) which can cause excessive
overhead [37]. Instead, those protocols rely on unicast routing.

A specific class of stateless multicast schemes is Explicit Multicast (Xcast). In Xcast,
sources list all destinations explicitly in the header of every packet to the group.
This implicates increased bandwidth usage because the header size grows linearly
with the group size. This is why Xcast is intended for small groups, and hence
sometimes referred to as Small Group Multicast (SGM) in the literature.

We have to refine our definition of scalability for multicast: Stateless multicast proto-
cols do not scale well with large group sizes; however, a large number of frequently-
changing groups are better supported. On the other hand, stateful approaches are de-
signed to support larger groups but maintenance overhead increases with the number
of groups in the network. Frequent membership changes incur additional overhead. We
summarize: Multicast protocols can 1) scale with the group size or 2) scale with the number
of multicast groups in the network.

2.5.1.2 Overlay Multicast

Overlay multicast builds a virtual topology layered over the physical MANET topology,
e. g., AMRoute [105]. The edges of an overlay multicast tree are tunneled unicast links:
Multicast traffic is sent from group member to group member using some underlying
unicast routing protocol. This provides the following advantages: 1) The virtual topol-
ogy does not need to change, i. e., it can remain static because physical topology changes
are handled by the underlying unicast protocol. 2) Nodes not interested in multicast

13 while sending

2.5 scalability of manet multicast routing 25

communication do not need to support the multicast protocol since it is encapsulated in
the unicast traffic.

However, this comes at cost of inefficiency and increased delays: Since the tree con-
struction itself is oblivious to the physical network topology, neighbors in the virtual
topology might in fact reside in distant parts of the physical network. This leads to
packets being routed across the network. Furthermore, different tunnels might share the
same physical links which leads to redundant transmission of the multicast packets—
diminishing what multicast set out to improve.

2.5.2 Improving Scalability

A plethora of work has been carried out to improve the performance of MANET multi-
cast routing [23, 56]. Here, we extract some of the core concepts of these protocols.

2.5.2.1 Multiple Core Based Tree

The notion of Core Based Trees (CBTs) was introduced for multicast tree creation in
wired networks [4]. The idea is to have one shared tree created for the entire multicast
group, i. e., not every sender is required to set up its own tree. This is done by selecting a
single router as the “core” of the tree. The core presents itself as a single point of failure
for the multicast group. This makes traditional CBTs inappropriate for the MANET
domain where the likelihood of node failure is high.

camp Core-Assisted Mesh Protocol (CAMP) [32] tackles this problem by using multi-
ple cores. The cores are used as landmarks for joining nodes and thus avoid flooding of
the network with control messages (such as in ODMRP). Since CAMP uses a mesh for
transmitting multicast packets, it is able to cope with node mobility or link breakage.

CAMP assumes that cores are statically pre-configured and does not provide a dy-
namic core selection algorithm.

2.5.2.2 Soft-State Forwarding Group

The Forwarding Group Multicast Protocol (FGMP) [16] introduces the concept of For-
warding Groups (FGs). Multicast packets are solely forwarded by members of the FG.
This makes FGs implement a sort of scoped flooding. Selection of FG nodes is based on
either receiver or sender advertisement. In receiver advertisement, all receivers period-
ically advertise their membership information in the network. The sender receives all
advertisements, computes a forwarding table from it and sends this information to all
its neighbors. The neighbors, in turn, determine for which nodes they act as forwarders.
Sender advertisement works the other way round, letting senders periodically indicate
their presence.

FG nodes have an expiration timer for every member they forward packets to. If this
timer expires (and no update was received in the meantime), the member is removed
from the table. This soft state approach makes FG suitable for MANET environments.

ODMRP uses the Forwarding Group concept to set up the meshes for every group.

26 scalability of manet routing

2.5.2.3 Directed, GPS-aided Multicast

GPS can be used to improve the creation of multicast delivery trees. The same general
drawbacks as for GPS-aided unicast routing apply here, namely the problem of location
information distribution in the network.

geocast Geocast [48] is a well-known example for GPS-based multicast. It differs,
however, from the other multicast mechanisms discussed in this section. Geocast is
used to address a geographical area, or more precisely, all nodes that reside within the
addressed area. While useful for some applications, it is not possible to address an
arbitrary group of nodes that is scattered around the network with Geocast. Due to this
limitation, it is not further discussed, but mentioned here for the sake of completeness.

lgk and lgs Chen and Nahrstedt propose two location-guided overlay multicast
tree construction algorithms: location-guided k-ary (LGK) tree and a location-guided
Steiner (LGS) tree [14]. Both algorithms attempt to create least-cost delivery trees based
on geographic distances and a greedy heuristic. The proposed schemes are stateless
in the sense that the source lists the receivers in each data packet header. Upon recep-
tion, each node locally decides where to forward the packet to based on geographical
closeness. In LGK, each node selects the k closest next hops. LGS, in contrast, creates
delivery trees with variable fan-out. According to the authors’ simulation results, LGS
incurs lower bandwidth cost than LGK.

Overlay trees usually have the problem of creating topology-oblivious trees, which
makes multicast routing inefficient. However, by using location information, LGK/LGS
become somewhat aware of the physical topology, thus mitigating the problem.

2.5.2.4 Hierarchy

hierarchical sgm Gui and Mohapatra propose a hierarchical multicast scheme
that allows for applying SGM to larger groups [37]. The basic idea is to partition the
multicast group into smaller and better manageable subgroups. Each subgroup selects
a head node that will be part of a higher level group. The approach is similar to the
concept of HSR for unicast routing (Section 2.4.2.4).

e2m Extended Explicit Multicast (E2M) [35] introduces the notion of Xcast Forwarders
(XFs). The idea is based on the observation that all group members can be reached over
just a few outgoing links. This means that a single neighbor might be responsible for
forwarding messages to a larger portion of the group. XFs announce themselves as
proxies to a subgroup (or subtree) of the forwarding tree. This way, the source only
needs to include a few XFs in the header in each message. When an XF receives a
multicast message, it will expand the destination list in the header by the downstream
group members.

Each node can autonomously decide whether to become an XF. The authors propose
a selection strategy that is based on 1) the number of downstream group members, and
2) whether the node itself is a branch in the tree.

2.5 scalability of manet multicast routing 27

2.5.2.5 Membership Caching

The main drawback of Xcast is the inherently large header size (all members are listed
in every packet header). Different approaches for reducing the header size have been
proposed to improve the performance of Xcast in larger groups. One solution lets inter-
mediate nodes cache group memberships.

ddm The Differential Destination Multicast (DDM) [52] protocol is, to our knowledge,
the first concrete suggestion of stateless multicast for MANETs. DDM attempts to cir-
cumvent the drawback of increased header sizes by introducing a “soft-state” operation
mode. In this mode, nodes remember where multicast packets for a particular session
were routed to the last time. Thus, the complete destination list does not need to be
included in every packet: After a full list has been sent, only changes in the destination
list or routing tables are encoded in the header. Since nodes might miss some updates,
the full list should occasionally be included in the headers.

The authors propose the soft-state mode in networks with relatively small number of
multicast groups such that state information stored at every node is kept low.

2.5.2.6 Gossiping

rdg Route Driven Gossip (RDG) [68] is a stateless multicast protocol. In RDG, every
group member has a (partial) view on the multicast group membership, i. e., every node
knows at least some other nodes that are in the same group. RDG is oblivious to the
network topology (overlay routing) and implements a random infection of nodes. The
basic idea of RDG’s packet distribution is as follows: 1) The source chooses a random
subset of the group members from its view; 2) it transmit the message to every chosen
group member using an underlying unicast routing protocol; 3) the receivers are now
infected and in turn select subsets from their views; 4) the procedure continues until the
message has been dispersed in the multicast group.

Since RDG is oblivious to the network topology, the random transmission of messages
across the network is inefficient. An example protocol run in the authors’ paper14 reveals
that it can degenerate to full flooding, meaning that almost all nodes in the network
eventually participate in packet forwarding in at least one of the iterations. Therefore,
the authors propose an optimization for RDG such that path lengths are considered
when choosing the group member subset for forwarding. This way, nodes that are
closer to the transmitter will be chosen with a higher probability.

According to the authors’ simulation results, RDG is able to operate sufficiently reli-
able even under high node mobility.

2.5.3 Discussion

We discuss applicability and compatibility of the scalability improvement mechanisms
for multicast, similarly to Section 2.4.3. Analogously, we try to answer the following
questions: Which mechanisms can be applied to which type of general routing protocol?
Which mechanisms can be combined in order to achieve even better scalability? Which
mechanisms are universally applicable? Which combinations might even be harmful to
the routing performance?

14 Figure 5 of the RDG paper [68]

28 scalability of manet routing

2.5.3.1 Applicability

Table 2.3 summarizes the applicability of the mechanisms presented in the previous
subsection to the basic multicast schemes. We denote the applicability as yes (⌅) and no
(⇤). Multiple Core Based Tree and Soft-State Forwarding Group are concepts to improve
tree-based and mesh-based protocols, respectively. GPS support can be added to any
multicast type, while hierarchies, caching and gossiping are all stateless approaches.

2.5.3.2 Compatibility

In the following, we discuss the compatibility of scalability improvement mechanisms
for multicast. Table 2.4 acts as a visual guidance for the reader. We look at stateless
multicast approaches only, since we identified only a single mechanism for each of the
two stateful approaches, i. e., tree-based and mesh-based protocols.

Hierarchies and membership caching both attempt to reduce the header size of Xcast
messages for improving the scalability within larger groups. Caches help to further
reduce the header size of Xcast packets. However, if the network exhibits high mobility,
caches will often contain outdated information, leading to packet loss. Thus, deciding
for the use of caches should be carefully weighed up (⌅). Hierarchies are based on the
idea of header expansion at intermediate nodes. Xcast Forwarders appear to be better
suited for highly dynamic networks since intermediate nodes can autonomously decide
whether to be come a proxy or not, depending on the stability of downstream members.
A multi-level hierarchy requires more coordination among nodes so maintenance may
become an overhead problem if the topology changes often; however, they are able to
support even larger groups than XFs.

Gossiping also achieves a reduction in header size. It is based on the assumption that
membership information is not completely available at the source but instead probabilis-
tically shared among all group members. Thus, the delivery scheme is different from
the other two stateless approaches and compatibility low (⌅). GPS information could be
used to choose next hops in the topology-aware variant of RDG.

Geographical information could further facilitate the creation of hierarchies (⌅). In
general, location information would be helpful to support directed flooding, especially
for the stateless approaches (⌅).

2.5 scalability of manet multicast routing 29

M
ul

tip
le

C
or

e
Ba

se
d

Tr
ee

So
ft

-S
ta

te
Fo

rw
ar

di
ng

G
ro

up

G
PS

-a
id

ed
M

ul
tic

as
t

H
ie

ra
rc

hy

M
em

be
rs

hi
p

C
ac

hi
ng

G
os

si
pi

ng

Stateful
Tree-based ⌅ ⌅ ⌅ ⌅ ⌅ ⌅

Mesh-based ⌅ ⌅ ⌅ ⌅ ⌅ ⌅
Stateless ⌅ ⌅ ⌅ ⌅ ⌅ ⌅

Table 2.3: Applicability of multicast routing schemes.
M

ul
tip

le
C

or
e

Ba
se

d
Tr

ee

So
ft

-S
ta

te
Fo

rw
ar

di
ng

G
ro

up

G
PS

-a
id

ed
M

ul
tic

as
t

H
ie

ra
rc

hy

M
em

be
rs

hi
p

C
ac

hi
ng

G
os

si
pi

ng

Multiple Core Based Tree ⌅ ⌅ ⌅ ⌅ ⌅ ⌅
Soft-State Forwarding Group ⌅ ⌅ ⌅ ⌅ ⌅ ⌅

GPS-aided Multicast ⌅ ⌅ ⌅ ⌅ ⌅ ⌅
Hierarchy ⌅ ⌅ ⌅ ⌅ ⌅ ⌅

Membership Caching ⌅ ⌅ ⌅ ⌅ ⌅ ⌅
Gossiping ⌅ ⌅ ⌅ ⌅ ⌅ ⌅

Table 2.4: Compatibility of multicast routing schemes.

3
S E C U R I T Y O F M A N E T R O U T I N G

In this chapter, we summarize and discuss literature work towards securing MANET
routing.

3.1 definition

Buttyan and Hubaux [11] define three fundamental security operations for Wireless
Mesh Networks: 1) securing routing, 2) enforcing fairness, and 3) detecting corrupted
nodes.

In this thesis, we will refer to secure Mobile Ad-Hoc Networks as systems implement-
ing the first operation, securing routing. From the six security goals authentication,
access control, confidentiality, integrity, non-repudiation [49], and availability [102], we
consider only authentication, availability, and integrity1. Fairness/quality of service (QoS)
and detection of corrupted nodes is out of scope of this thesis.

We can break down the task of securing MANET routing into securing the three core
components: neighbor discovery, route discovery [11] and data transmission [80]. Neighbor
discovery is used to find other nodes within direct transmission range. Route discovery
is the process of finding routes, i. e., the mechanisms discussed in Chapter 2. When
route discovery succeeds, nodes can send the actual user data (data transmission). We
consider a routing protocol secure if it remains operational even when attacked on any
or all components. For example, if neighbor discovery fails, then route discovery might
fail as well if it relies on correct information about the neighborhood. A protocol that is
able to securely discover routes, i. e., implements secure neighbor and route discovery is
of no use if the actual data transmission remains insecure: a malicious node might play
along in the route discovery phase but start dropping data packets later.

In the following, we refer to an adversary as an entity that wishes to impair MANET
routing (on any component). A malicious node is a node controlled by an adversary; an
adversary can control multiple nodes. An attack is a method to achieve an adversary’s
goal, e. g., Denial of Service (DoS).

3.2 assumptions

Security, especially in MANETs, is a complex issue. We state assumptions on the system
and define adversary capabilities in order to define the scope of this chapter.

3.2.1 Secure Neighbor Discovery

Neighbor discovery is used to find other nodes within direct transmission range. Some
protocols or applications require the existence of such a component in order to be secure.

1 Access control and non-repudiation are only meaningful on the application layer. Confidentiality could be
achieved on the network layer to secure higher-layer protocol traffic which is not considered a necessity
here.

31

32 security of manet routing

Secure neighbor discovery is usually implemented by a distance bounding protocol such
as [10]: Nodes try to estimate the physical distance to some other node using the signal
propagation delay between them. Only if the estimated distance is below a certain
threshold, a node is deemed a neighbor. Poturalski et al. propose a framework towards
provably secure neighbor discovery protocols [89].

In this thesis, we only consider secure route discovery and data transmission: In-depth
discussion of secure neighbor discovery mechanisms is not considered since a secure
routing protocol can be built without the assumption of a secure neighbor discovery
protocol, as we will show in Chapter 4.

3.2.2 Key Distribution and Management

All secure routing protocols presented here rely on Security Associations (SAs) between
certain nodes, e. g., end-to-end. SAs can be based on two types of keys:

Public keys. Every node in the network has a public key which has to be known by the
communicating party and vice-versa.

Symmetric keys. Every communicating node pair has a shared secret that is exclusively
known to them.

Computational overhead for symmetric cryptography is lower than for asymmetric
cryptography. However, SAs based on public keys are cheaper to set up in terms of
bandwidth consumption. A key distribution and management facility is required in
either case. Both enumerated approaches (pre-distribution and on-demand distribution)
exhibit their own scalability trade-offs.

Pre-distribution. Before joining the network, nodes are supplied with the required keys,
e. g., public keys of all other participating nodes. This is a practicable approach
if all nodes are known beforehand. In self-organizing networks, however, it lacks
the flexibility to accommodate new nodes and to safely remove old nodes (key
revocation).

On-demand distribution. If keys are not pre-distributed, we can either

– query a (designated) network entity which is responsible for key manage-
ment, e. g., a Certificate Authority (CA) (single point of failure), or

– send signed keys opportunistically in the routing packets (overhead increases
linearly with route length).

Designing secure and reliable on-demand key distribution and management for
MANET environments is a challenging topic by itself and has acquired substantial
research interest (e. g., [104]). The issue of key revocation persists here as well.

In this thesis, we leave aside the problem of key distribution. We assume that all
required keys are pre-distributed and SAs are readily set up.

3.2.3 Adversary Model

We now describe our adversary model, which is based on Buttyan and Hubaux [11] and
Galuba et al. [31], and which will be used in the following discussions. We basically as-

3.3 security of manet unicast routing 33

sume a weaker variant of the Dolev-Yao “man in the middle” adversary [26]. Specifically,
the adversary

• can be a valid member of the network taking part in the protocol execution (inter-
nal) or not (external);

• can interfere with the protocol operation by message manipulation or forgery (ac-
tive or Byzantine) or just eavesdrop on the communication (passive);

• can control only a portion of the communication links, e. g., by controlling a por-
tion of the participating nodes. Control of all links as in the Dolev-Yao model is
too strong since we are concerned with availability. If an attacker had access to all
links then there would be no reasonable way to thwart Denial of Service attacks;

• cannot break cryptographic primitives.

The strongest model is the internal active adversary, which is able to conduct all attacks
presented below. The weakest model is external passive. Note that we do not focus on
a fully passive adversary who could perform traffic analysis. Protection mechanisms
against this kind of attack are beyond the scope of this thesis.

3.3 security of manet unicast routing

In this section, we summarize popular attacks on the network layer, particularly on
route discovery and data transmission. Recall that we are not concerned with attacks on
neighbor discovery. We focus on attacks that tamper with routing itself, e. g., attempt
to produce fake routes. Other attacks such as RREQ flooding achieve DoS by brute-
force resource consumption, do not target the correctness of the routing protocol. Rate
limiting schemes can be applied to mitigate such attacks. An extensive survey of attacks
on MANETs covering all layers was conducted by Sen [98].

Based on the attacks described, we then review selected MANET routing protocols
that have been designed with security in mind. We briefly describe a number of proto-
cols that we consider exemplary for the academic research that has been carried out on
secure route discovery and data transmission, respectively.

3.3.1 Attacks

Attacks on route discovery aim towards controlling discovered routes, i. e., placing ma-
licious nodes on routes that the adversary wishes to control. Such an adversary could
then, for example, start a passive traffic analysis attack or stop forwarding data packets
on that route (DoS).

There may be several other subtle attacks based on the interaction of the routing
protocol with a higher-layer transport protocol, e. g., the Jellyfish attack [1] on the con-
gestion control mechanism of the Transport Control Protocol (TCP) [88]. Since we do
not consider a transport protocol in our model, such attacks shall not be a focus in this
thesis.

34 security of manet routing

3.3.1.1 Spoofing Attack

The spoofing attack is based on fabricating routing information, i. e., RREPs or LSUs.
Sources in on-demand protocols usually use the first RREP received for route selection.
So, if a malicious node directly replies to a RREQ and no benign node has a fresh route to
the requested destination, chances are high that the adversary’s RREP is received before
any other (legit) reply. This attack basically “attracts” traffic towards the malicious node.

3.3.1.2 Sybil Attack

The Sybil attack [27] is not specific to MANETs but to distributed systems in general.
The basic idea is that a single node has multiple virtual identities so that the relation-
ship between entity and identity is one-to-many instead of one-to-one which would be
the usual case. The credentials (key material) for the identities could be taken from
compromised nodes.

The consequences of a successful Sybil attack depend on the system being attacked.
For example, if a system deploys a reputation scheme where each node is rated based
on its forwarding reliability, a Sybil adversary can switch between its multiple identities
to elude bad ratings. Another example is multipath routing: the adversary masquerades
as different nodes on each path during route discovery. This gives it full control over
the transmission, thus, jeopardizing the sought-for robustness of node-disjoint paths.

3.3.1.3 Rushing Attack

Rushing attacks [44] target on-demand protocols. During route discovery, intermediate
nodes only relay the first RREQ they receive in order to minimize the flooding impact.
This means that if a node is fast in relaying the RREQ, it will be likely included in the
discovered route. To be faster than non-attacking nodes, the adversary ignores delays
that are typically used at the link and network layers for collision avoidance.

3.3.1.4 Wormhole Attack

A wormhole attack (Figure 3.1) is more sophisticated than a rushing attack and requires
two or more colluding malicious nodes. A wormhole is set up using high speed (possibly
out-of-band, wired or directed RF) links between the colluding nodes. RREQs from
benign nodes are forwarded along those high speed links. Thus, route discovery will
most likely return a route containing the wormhole link if a shortest path routing metric
(Section 2.4.2.11) is used for route selection. This way, an adversary can control large
parts of the global network traffic using few, properly placed nodes.

Wormholes are hard to detect because they do not forge RREQs or RREPs which could
be thwarted with authenticity checks. Wormholes are hardly distinguishable from very
fast but valid links. Options to counter wormhole attacks include the use of geographical
or temporal packet leashes [43].

3.3.1.5 Tunneling Attack

A tunneling attack is conceptually similar to a wormhole attack. However, in this case,
the colluding nodes do not use out-of-band links to communicate. Instead, RREQs and
RREPs are encapsulated in new data packets and transmitted between the colluding

3.3 security of manet unicast routing 35

s
d

W
o

ormh le

Figure 3.1: Example of a wormhole attack: Source s reaches destination d with only 3 hops.

nodes using the existing network. This makes the attack weaker than the wormhole
attack in the sense that transmission of (encapsulated) packets cannot be faster than the
actual network permits. However, the target is different to wormhole attacks: Tunnels
attack the topology metric (such as hop counter) of RREQ or LSU packets. Since packets
are packed on one side of the tunnel and unpacked at the other side, the hop counter of
the original packet is not changed during transit. This deceives a receiver into believing
that the source is much closer (w. r. t. the topology metric) than it really is. Consequently,
the attack only affects protocols based on such a topology metric (packet delay cannot
be attacked by tunneling).

3.3.1.6 Blackhole Attack

If a malicious node has placed itself on some forwarding path (either because it has
compromised route discovery or was legitimately selected as part of the route), then it
may conduct a blackhole attack. A blackhole (or sinkhole) adversary simply drops all
packets that it is supposed to forward, resulting in DoS.

3.3.1.7 Grayhole Attack

A grayhole attack is a variation of a blackhole attack in which the adversary drops
packets selectively, either 1) for certain nodes only, 2) for a limited amount of time only,
or 3) a combination of both.

This adversarial behavior is hardly predictable, making grayhole attacks difficult to
detect since selective drops could also be caused by regular link quality fluctuations or
node movement.

3.3.2 Securing Route Discovery

We now review some protocols that attempt to secure the route discovery process of
Source Routing, Distance Vector Routing and Link State Routing.

3.3.2.1 Securing Route Discovery for Source Routing Protocols

srp The Secure Routing Protocol (SRP) by Papadimitratos and Haas [77] is an ex-
tension for Source Routing protocols such as DSR. SRP relies on Message Authenti-
cation Codes that are checked at the end-points to assure the correctness of topology

36 security of manet routing

information retrieved by the route discovery protocol. It assumes existing SAs for every
source-destination pair. The use of symmetric cryptography is computationally efficient:
Message Authentication Codes [61] are calculated once for every RREQ and RREP; and
verified (again only once) at the destination and source, respectively. Relaying nodes
only check the protocol format and the forwarding list. The authors claim that their
scheme is secure against multiple non-colluding malicious nodes. Colluding nodes can
successfully mount a tunneling attack.

ariadne Ariadne by Hu et al. [45] is an approach towards more strongly securing
DSR. The main goal is the identification of malicious nodes on routes and, thus, the
ability to route around them in subsequent protocol runs. It uses message authenti-
cation codes to achieve end-to-end authentication of RREQs and RREPs. In addition,
Ariadne provides authentication for nodes on the path (using keyed hash chains, digital
signatures or message authentication codes) to prevent adversaries from removing valid
nodes from the returned source route. This does not provide resilience against worm-
hole attacks. In contrast to SRP, Ariadne requires SAs between all nodes on the path
including source and destination which can be a scalability problem.

Ács et al. propose a provably secure routing protocol called endairA [20] based on
Ariadne.

3.3.2.2 Securing Route Discovery for Reactive Distance Vector Routing Protocols

saodv Zapata and Asokan propose a security extension to AODV [107]: Their SAODV
protocol provides authentication of RREQ and RREP packets using digital signatures
and lightweight integrity protection of the mutable hop count field with hash chains.
Thus, it achieves security against message spoofing. Protection of the hop count is
limited since attackers can forward messages without increasing the field. As a result,
returned routes might appear shorter than they really are. The maximal possible length
reduction depends on the number of malicious nodes on the path. Two colluding nodes
can also mount a tunneling attack to reduce the returned path length even further.

aran Authenticated Routing for Ad hoc Networks (ARAN) by Sanzgiri et al. [97]
is an example for a secure DVR protocol. It secures the traversals of RREQ and RREP
packets using public-key cryptography. A source node signs a RREQ with its own
private key. At each hop, the signature of the preceding node is verified and the own
signature is appended to the packet. On the one hand, this approach gives an attacker
no chance to alter the packet content, but it is quite expensive: Public-key cryptography
is used at every hop which places a heavy computational burden on relaying nodes.

Instead of using hop count as routing metric, ARAN uses timestamps which prevent
successful tunneling attacks; attackers can still establish a tunnel but cannot achieve
faster delivery times, i. e., create “shorter” routes. ARAN’s timestamps do not protect
against wormhole attacks.

castor In their 2010 paper, Galuba et al. proposed Continuously Adapting Secure
Topology-Oblivious Routing (Castor) [31, 30]. It is a reactive routing protocol but differs
from other protocols in this class in various ways. It is based on the following core
concepts:

3.3 security of manet unicast routing 37

Implicit Route Discovery. Castor does not have an explicit route discovery phase. Instead,
Data Packets (PKTs) are flooded through the network if no route is known to the
destination. The routes are then built using Acknowledgments (ACKs) that are
replied by the destination upon PKT reception.

Reliability as Distance Metric. Castor attempts to find the most reliable route, tackling ac-
cidental as well as deliberate packet loss. Reliability is defined as the past behavior,
i. e., packet delivery rate for a single neighbor.

The authors show that Castor is resilient against all attacks presented in Section 3.3.1
while requiring only end-to-end SAs. We discuss Castor in more detail in Section 4.2.

3.3.2.3 Securing Route Discovery for Proactive Distance Vector Routing Protocols

Hu et al. have proposed Secure Efficient Ad hoc Distance vector (SEAD) protocol [42],
which is based on DSDV. SEAD secures the sequence numbers and metric fields of
DSDV route state messages, thus, preventing non-colluding malicious nodes from de-
creasing the advertised distance to other nodes in the network. This prevents adversaries
from attracting traffic because they cannot forge better, i. e., shorter, routes. Security is
achieved using efficient one-way hash chains and Merkle hash trees, obviating the need
for expensive public-key cryptography.

3.3.2.4 Securing Route Discovery for Link State Routing Protocols

The Secure Link State Routing Protocol (SLSP) [78] was proposed by Papadimitratos
and Haas and secures the exchange of LSUs within a certain hop count radius around
the source. Similarly to SEAD, hash chains are used to secure the hop count field. LSUs
are signed using the nodes’ private keys. The corresponding public keys are distributed
in separate packets which are broadcast regularly to a node’s neighborhood (within the
specified hop count radius). This way, nodes only need to validate a limited amount of
signatures and store a limited amount of public keys.

3.3.3 Securing Data Transmission

Castor, as we have introduced in Section 3.3.2.2, does not use an explicit route discov-
ery phase but rather combines secure route discovery and data transmission. It uses
acknowledgments and reliability metrics to correlate failures with specific routes. Two
precursory protocols to Castor exclusively deal with the issue of secure data transmis-
sion.

smt and ssp Papadimitratos and Haas have developed the Secure Message Trans-
mission (SMT) and Secure Single-Path (SSP) protocols [79, 80]. SMT is a multipath
routing protocol that is largely independent of the underlying route discovery mecha-
nism. One requirement is that it returns multiple routes to a destination. SMT disperses
messages using erasure coding: m out of n pieces suffice to reconstruct the message
at the destination. The n pieces are transmitted over node-disjoint paths to achieve ro-
bustness against (adversary induced) losses and avoid the need for retransmissions if at
least m pieces are received at the destination. SMT uses message authentication codes
to validate the integrity and authenticity of the individual pieces at the destination. The

38 security of manet routing

destination then provides positive feedback for the received pieces. This feedback is
used for 1) determining the paths to be used and 2) dynamically adjusting the parame-
ters m and n.

SSP can be seen as a SMT configuration with fixed m = n = 1. This relaxes the
requirements for the route discovery scheme because it only needs to discover a single
route. Due to the redundancy and lower delay (fewer retransmissions), SMT is better
suited for applications that require real-time communication. On the other hand, SSP
exhibits less overhead while still operating securely.

3.3.4 Discussion

Here, we discuss the security properties of the protocols presented above. In Table 3.1,
we give a graphical overview of the protocols and their resistance against the various
attacks. Resistance is rated from very strong (⌅) to completely vulnerable (⌅). Attacks
that have no effect on a certain protocol are marked with (⌅).

Most protocols, i. e., SRP, Ariadne, SAODV, SEAD, ARAN and SLSP, secure the route
discovery process with a focus on the spoofing attack. Blackhole and greyhole attacks on
route discovery do not have a severe impact on these protocols as an adversary basically
removes itself from the view of other nodes (⌅, ⌅). However, they cannot thwart the
same attacks on data transmission. They can provide secure data transmission in con-
junction with SMT or SSP. This requires interaction between both protocols: Consider
the situation where an adversary always plays along during route discovery but mounts
a blackhole attack against data traffic. SMT/SSP will detect the misbehaving node(s)
and trigger the route discovery mechanism. If the route discovery protocol does not
receive any information about the misbehaving nodes from SMT/SSP, the same routes
will be returned because the adversary will, again, adhere to the protocol.

Route Discovery Data Transmission

Sp
oo

fin
g

Sy
bi

l

R
us

hi
ng

W
or

m
ho

le
Tu

nn
el

in
g

Bl
ac

kh
ol

e
G

re
yh

ol
e

Sp
oo

fin
g

Sy
bi

l

R
us

hi
ng

W
or

m
ho

le
Tu

nn
el

in
g

Bl
ac

kh
ol

e
G

re
yh

ol
e

SRP ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅
Ariadne ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅
SAODV ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅

ARAN ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅
Castor ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅
SEAD ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅
SLSP ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅

SMT/SSP ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅

Table 3.1: Resistance of unicast routing protocols against various attacks.

3.4 security of manet multicast routing 39

Sybil attack resilience is an issue of trust. If an adversary has been able to compromise
the cryptographic material (private keys) of multiple nodes, it can consequently oper-
ate under multiple identities. All protocols presented here provide no means of Sybil
detection and are, thus, unable to validate if a one-to-one mapping of entity to identity
exists. Detection schemes based on distributed packet monitoring have been proposed,
e. g., [101], but they can only provide reactive security. In addition, such schemes intro-
duce overhead for exchanging monitoring messages and a non-negligible probability of
false positives.

All reactive protocols are vulnerable to the rushing attack as long as they deploy the
duplicate suppression mechanism for flooding. A counter-measure introduced by Hu
et al. [44] is based on randomized RREQ forwarding and secure route delegation in
which neighboring nodes verify that a node is a legitimate forwarder (⌅). Rushing has
no effect on proactive protocols because no RREQs are transmitted that can be “rushed”
to the intended receiver. Consequently, SEAD and SLSP are immune to this type of
attack (⌅).

We note that all route discovery protocols can—in theory—be secured against worm-
hole attacks with packet leashes [43]. However, the use of packet leashes imposes new
system requirements: Geographical leashes require each node to know its own geoloca-
tion and assume loosely synchronized clocks among all nodes. Temporal leashes, on the
other hand, require tightly synchronized clocks, which could be achieved using proto-
cols such as Network Time Protocol (NTP) assuming the availability of an appropriate
server. The problem is that both methods introduce new attack surfaces [81, 9]. A sim-
ple DoS attack on GPS and NTP could jeopardize the scheme (⌅). Packet leashes cannot
be used for preventing tunneling attacks. However, ARAN is able to defend against
tunneling without modification due to the use of timestamps in its RREQ packets.

Castor is a peculiar protocol in the way it secures route discovery and data trans-
mission. Instead of deploying mechanisms to explicitly detect specific attacks such as
wormholes or tunnels, Castor uses the (possibly high) capacity of adversary links oppor-
tunistically. As long as ACKs are received over the reverse path, data packets continue
to be transmitted over the corresponding links. As soon as the adversary starts to drop
packets, however, the reliability for this node decreases until either another reliable
neighbor is chosen or the protocol falls back to flooding. Similarly, the ratings of the
multiple identities of a Sybil adversary will gradually decrease when it starts dropping
packets. In summary, Castor is vulnerable to “traffic attracting” attacks such as rushing
and wormholes per se (⌅). However, routing is only negatively affected when combined
with, e. g., a blackhole attack. In this case, Castor is able to recover quickly if an alter-
native path exists. This property makes Castor the only standalone protocol reviewed
here that—by design—withstands most of the presented attacks.

3.4 security of manet multicast routing

While a lot of work has been carried out in the area of secure unicast routing, the litera-
ture on secure multicast in MANETs is sparse.

A significant portion of the available work in this area has considered the issue of
group key management, e. g., [92]. While key management, especially for multicast,
is an important and complex issue, we reiterate that we are not concerned with key
management in this thesis. Instead, we focus on securing the routing mechanism.

40 security of manet routing

3.4.1 Attacks on Multicast

Nguyen and Nguyen have identified fundamental attacks on MANET multicast routing
[74]. Their findings include attacks such as rushing, blackholes and tunneling which we
have discussed in Section 3.3.1.

3.4.2 Securing Multicast

We identify two basic operations for multicast routing: 1) group discovery and main-
tenance, and 2) data transmission. These operations are similar to route discovery and
data transmission for unicast routing.

3.4.2.1 Securing Group Discovery and Maintenance

s-maodv Roy et al. provide an extensive security analysis of the Multicast Ad Hoc
On-Demand Distance Vector (MAODV) routing protocol [93]. They identify attacks on
MAODV, which are specific to tree-based multicast: In particular, the authors describe
attacks on tree pruning, link repair and the partition merge process. They all result
in some kind of DoS such as preventing nodes from joining the multicast group or
forcefully partitioning the multicast tree.

The authors propose an authentication framework for MAODV which is based on
neighbor authentication, group leader authentication, tree-key dissemination for group
members and hop count authentication. We will refer to this secured version of MAODV
as S-MAODV.

bsmr Byzantine-Resilient Secure Multicast Routing (BSMR) is a secure on-demand
tree-based multicast protocol [21]. The authors use an authentication framework, pro-
tecting multicast groups from external adversaries, similar to S-MAODV. In BSMR,
RREQs and RREPs are always flooded so the protocol is able to find an adversary-free
path if one exists. BSMR introduces MRATE messages, which contain a source’s current
transmission rate, and which are flooded periodically to all multicast members. Us-
ing the advertised transmission rate and the locally perceived rate of incoming packets,
nodes are able to detect data transmission attacks of upstream tree members. This way,
BSMR remains resilient even against blackhole attacks.

3.4.3 Discussion

Security in MANET multicast routing is clearly an understudied research area. We
identified two papers that consider this topic. Both publications address the problem
of securing tree-based multicast [93, 21]. Work on secure mesh-based and stateless
multicast seems to be missing.

Curtmola and Nita-Rotaru [21] provide simulation results on the resistance of S-
MAODV and BSMR against various attacks. Both protocols withstand spoofing attacks
due to their authentication frameworks. BSMR withstands rushing, tunneling2 and
blackhole attacks (⌅), while S-MAODV’s performance drops significantly even with

2 The authors use the term “wormhole attack” to describe an attack we termed as tunneling (“The adversaries
use the lowcost appearance of the wormhole [. . .]”)

3.4 security of manet multicast routing 41

Sp
oo

fin
g

Sy
bi

l

R
us

hi
ng

W
or

m
ho

le
Tu

nn
el

in
g

Bl
ac

kh
ol

e
G

re
yh

ol
e

S-MAODV ⌅ ? ⌅ ⌅ ⌅ ⌅ ⌅
BSMR ⌅ ? ⌅ ⌅ ⌅ ⌅ ⌅

Table 3.2: Resistance of multicast routing protocols against various attacks.

G
ro

up
D

is
co

ve
ry

an
d

M
ai

nt
en

an
ce

D
at

a
Tr

an
sm

is
si

on

Stateful
Tree-based ⌅ ⌅

Mesh-based ⌅ ⌅

Stateless ⌅ ⌅

Table 3.3: Addressed issues of secure MANET multicast in the literature.

a small fraction of malicious nodes present in the network (⌅). However, BSMR incurs
more overhead: 40–100% more than S-MAODV due to the flooding of RREQ, RREP and
MRATE packets, depending on the attack scenario. The authors do not provide em-
piric proof of how their protocols handle Sybil, tunneling and greyhole attacks. We do
not predict the resistance against Sybil attacks (marked with ‘?’). We expect resistance
against wormhole attacks to be similar to that against tunneling since both attacks target
the protocols’ hop counter. Greyhole resistance is expected to be weaker than blackhole
resistance since greyholes are more difficult to detect.

With BSMR, a full-fledged solution for secure tree-based multicast was proposed (⌅),
but work on secure mesh-based and stateless protocols is missing (⇤; Table 3.3). It seems
contradictory that even though mesh-based and stateless multicast schemes appear to
be the go-to candidates for MANETs in terms of scalability (Section 2.5), security-related
work has not been carried out for these types of protocols.

Part II

X C A S T O R : A S C A L A B L E A N D S E C U R E
E X P L I C I T M U LT I C A S T R O U T I N G P R O T O C O L

4
D E S I G N

This chapter addresses the core problem of the thesis:

The design of a secure and scalable routing protocol for MANETs.

We discuss why an existing secure unicast protocol presents itself as a substrate for a
scalable and secure multicast extension. We develop such an extension and describe the
design process and the choices that we made.

4.1 choosing the substrate

Currently, no multicast routing protocol for MANETs exists that is both scalable and
secure. As a result, we can either extend existing solutions with the desired properties
or create a new protocol from scratch. In particular, we consider the following options:

1. Choose a scalable multicast routing protocol and make it secure; or

2. choose a secure multicast routing protocol and make it scale; or

3. choose a secure and scalable unicast routing protocol and add multicast support1; or

4. design a secure and scalable multicast protocol from scratch.

We consider security by design as a fundamental approach towards designing our mul-
ticast protocol. Castor, as an example for security-by-design unicast routing, was shown
to be very robust even against strong attacks. In contrast, mechanisms that retrospec-
tively add robustness against attacks can introduce new unexpected attack surfaces (Sec-
tion 3.3.4). By this, we exclude option 1 (securing a previously unsecured multicast
protocol) from further investigation.

In Section 3.4, we have seen that previous work on secure multicast is sparse. Only
tree-based multicast has been considered in literature. However, tree-based approaches
inherit some drawbacks [56]: 1) They tend to be unreliable, especially in volatile en-
vironments, since only a single path to each destination is known; and 2) coping with
node mobility requires tree maintenance mechanisms, which are frequently triggered
under high node mobility. Since tree-based protocols are less suitable for dynamic envi-
ronments, and due to the lack of secure mesh-based or stateless multicast protocols, we
disregard option 2.

This leaves us with options 3 and 4. Since security in routing protocols is not trivially
achieved (Section 3.3), we decide against an approach requiring a from-scratch design.
We favor to build upon a secure unicast protocol instead. We have identified Castor as
the only protocol providing comprehensive security properties among all secure unicast
routing protocols. For this reason, we choose Castor to serve as a substrate for achieving
our goal of a secure and scalable multicast routing protocol.

1 We do not imply that scalable multicast automatically follows from scalable unicast. Retaining scalability
requires a careful design of the multicast extension.

45

46 design

4.2 castor in detail

A rough introduction of Castor was given in Section 3.3.2.2. It is necessary to understand
Castor’s design in detail before diving into solutions for multicast extensions. What
follows is a short summary of the protocol details [31].

4.2.1 Packet Format

Castor does not have an explicit route discovery phase. Instead, when attempting to
communicate with a destination, user data is directly distributed within Data Pack-
ets (PKTs). Acknowledgments (ACKs) are returned by the destination and used as
feedback.

PKT. The Data Packet is a tuple pkt = hs,d,H,bk, fk, ek,Pi: s and d are the source
and destination identifiers, respectively; H is the flow identifier; bk is the PKT
identifier; fk is the flow authenticator; ek is the PKT authenticator; and P is the
user payload, which may be encrypted and must be integrity-protected. The index
k denotes the kth PKT of flow H.

ACK. The Acknowledgment consists of only one field: ack = haki: ak is the unen-
crypted version of ek.

4.2.2 Cryptographic Mechanisms

Castor maintains correct routing state by a scheme that satisfies two properties: 1) Only
the source node is able to generate packet ids bks belonging to flow H. 2) Valid ACKs
can only be received by intermediate nodes if the destination has actually received the
corresponding PKT. The here scheme discussed here is based on Merkle hash trees.
We denote EncKsd

(·) and DecKsd
(·) as a pair of symmetric encryption and decryption

functions; Ksd is a shared key between s and d. H(·) is a cryptographic hash function,
i. e., it is hard to compute preimages.

pkt generation If s wants to communicate with d, s pre-computes a “flow”: 1) gen-
erated random nonces ha1, . . . ,awi act as ACK authenticators, where w is the number of
PKTs that can be sent with this flow; 2) the PKT identifiers are calculated as bk = H(ak);
3) a Merkle hash tree with hH(b1) , . . . , H(bw)i as leaves is built, where its root becomes
the flow identifier H.

For every PKT, s 1) sets fk = hx1, . . . , xlog2w
i (siblings on the path from leaf H(bk) to

the root H), and 2) computes ek = EncKsd
(ak).

flow verification Upon reception of a new PKT, each node verifies that the
packet identifier bk actually belongs to flow H by calculating2

H
⇣
. . .H(H(H(b1) ||x1) ||x2) || . . . xlog2w

⌘
!
= H. (4.1)

2 Equation 4.1 is only an example illustrating the calculation of the tree’s root starting from b1. For other bk
with k > 1 the concatenation order depends on the position of bk in the Merkle hash tree, i. e., whether xi
is a sibling to the left or right.

4.2 castor in detail 47

If the verification fails, the PKT is dropped. Otherwise, bk is stored and the PKT is
forwarded.

pkt verification The destination d performs source authentication in addition to
flow verification:

H(DecKsd
(ek))

!
= bk. (4.2)

If the verification succeeds, the destination generates an ACK with ak = DecKsd
(ek).

ack verification Nodes receiving an ACK compute H(ak) and check whether it
belongs to any previously seen bk. If this is the case, the routing state is updated, ak is
stored, and the ACK is rebroadcast. Otherwise, the ACK is discarded.

4.2.3 Forwarding

Each node maintains a reliability estimator sH,j 2 [0, 1] for every encountered flow H

and every neighbor hj. When receiving a PKT, the forwarding node performs flow
verification and, if successful, determines the most reliable node ĥ according to the
reliability estimator with p = maxj sH,j. A node will broadcast a PKT with a probability
of e-�p to all neighbors or unicast to ĥ with probability 1- e-�p. The parameter � > 0

controls the bandwidth investment for discovering new routes. Note that initially p = 0,
and thus a PKT is always broadcast. Upon forwarding, a timer Tbk

is started that times
out after TACK.

handling of duplicates Duplicate PKTs, i. e., PKTs containing a previously seen
triple hbk, ek,Pi, will be dropped. If bk has been seen before but either or both other
fields are new, the PKT needs to be forwarded because intermediate nodes cannot verify
the integrity and authenticity of ek and P, that is, they cannot differentiate between
legitimate and illegitimate eks and Ps. Duplicate ACKs are always dropped.

If a node receives a duplicate PKT from a new neighbor and if a valid ACK has already
been received, the ACK will be retransmitted to that neighbor.

4.2.4 Reliability Estimators

Castor’s reliability estimator sH,j is an arithmetic average of two parameters, saH,j and
sfH,j. The two values are exponential averages of packet delivery rates. Let ↵a

H,j and
�a
H,j be running averages of successful and failed deliveries, respectively. Then saH,j =
↵a

H,j
↵a

H,j+�a
H,j

. saH,j is decreased as

↵a
H,j = �↵a

H,j,
�a
H,j = ��a

H,j + 1,

and increased as

↵a
H,j = �↵a

H,j + 1,
�a
H,j = ��a

H,j,

with 0 < � < 1 defining how fast the values will change. sfH,j is updated analogously.

48 design

updating Two events can trigger an update in the reliability estimators:

1) A nodes receives a valid ACK (ak) from a neighbor hj before Tbk
times out: If the

PKT (bk) has been broadcast by the node and ak was not (!) the first ACK received
for bk, only saH,j is increased. Otherwise, both saH,j and sfH,j are increased. The
superscripts a and f refer to an update on “all” or “first” ACKs, respectively.

2) Tbk
times out before a valid ACK was received: If the PKT was broadcast, no estima-

tor changes. Otherwise, both saH,j and sfH,j are decreased.

By using the second estimator sfH,j, Castor gives preference to low-latency routes that
typically consume less bandwidth.

4.3 extending castor with multicast support

We aim towards extending Castor with multicast support while maintaining its simplic-
ity and security features. Explicit Multicast (Xcast) appears to be a suitable approach for
Castor since it allows sender-side verification of ACKs, which is necessary for selective
PKT retransmissions.

In the following sections, we present the design process and discuss various alterna-
tives. The final design of our Xcastor protocol is summarized in Section 4.4.

4.3.1 A First Approach using Xcast

We apply the Xcast concept on Castor routing. First of all, we need to extend the Castor
header so that it can accommodate multiple destinations D = {d1,d2, . . . ,dn} (n = |D|).
The source will include all multicast group members in the header of each multicast
packet.

Upon reception, intermediate nodes need to decide how to further process the packet.
In Castor, nodes can choose to either unicast or broadcast. We generalize this approach
to cope with PKTs addressed a set of destinations D (pkt(D)): We let Castor decide
whether to unicast or broadcast pkt(D) for each d 2 D. But instead of transmitting n

individual packets, i. e., one for every d, we transmit messages with the same next hop
hi 2 N (with N being the neighbor set) as a single packet (we denote all destinations
with the same next hop hi as forwarder set Fi, with i = 1, . . . , |N|). Similarly, for all
destinations that Castor chooses to broadcast to (denoted as the broadcast set B), we
perform a single broadcast including all d 2 B in the header. The pseudocode of this
scheme can be found in Algorithm 1. The checks for empty set ; are included to avoid
transmissions with no receivers.

In the case that Castor selects a single neighbor as the next hop for all destinations,
the protocol issues a single unicast transmission to that neighbor. Similarly, in the case
that no reliable routes to any destination are known, a single broadcast message is
transmitted. In any other case, more than one transmission takes place.

4.3.2 Packet Merging

In Algorithm 1, a node hi might receive two packets: a unicast transmission including
the forwarder set Fi as well as a broadcast transmission including the (disjoint) broad-

4.3 extending castor with multicast support 49

Algorithm 1 Straightforward Xcast on Castor
function forward_multicast_packet(pkt(D))

for all Fi {d 2 D : next_hop(d) = hi} do

if Fi 6= ; then

unicast pkt(Fi) to hi

end if

end for

B {d 2 D : d /2
S
Fi}

if B 6= ; then

broadcast pkt(B) (to N)
end if

end function

cast set B (Fi \ B = ;). In that case, we need to make sure that every neighbor has
received both packets before further processing so that it learns all destinations it is
supposed to forward pkt to. There are several options to achieve this:

1. Upon receiving a unicast PKT, wait for a certain delay �t for a potential subse-
quent broadcast transmission. If the latter is received, the destinations of both
packets have to be merged before passing pkt (Fi [B) to forward_multicast_-
packet. Upon receiving a broadcast PKT, a node is not required to wait since
broadcast is (in the algorithm) always preceded by unicast. We assume that
packet reception adheres to the sending order.

2. Unite the broadcast set B and Fi so that F 0
i = Fi [B and include it in unicast

PKTs. This avoids the need of introducing a reception delay: the first PKT already
contains all relevant destinations for hi, and thus a subsequent broadcast can be
ignored.

3. Transmit each packet exactly once by including a mapping for all hi ! Fi as well
as for N ! B in the header so that the payload is transmitted only once. Using
these mappings, each node needs to check its forwarding responsibility: Node hi

is responsible for destinations Fi [B. If Fi = ; and B = ;, the PKT is dropped.

We favor option 3: it is maximally efficient w. r. t. data transmission overhead since
the payload is only transmitted once at each forwarding node.

4.3.3 Group Keys: Header Size Revisited

The Xcast header size problem is amplified in Algorithm 1: Since Castor uses PKT
authenticators ek = EncKsdi

(ak), each PKT needs to include an encrypted version of ak

for every member di of the multicast group. More formally, we change the original ek
to a list

e 0k =
D

EncKsd1
(ak) , . . . , EncKsdi

(ak) , . . . , EncKsdn
(ak)

E
.

Assuming a ciphertext size of |EncKsdi
(ak) | = 32 bytes = 256 bits and a group size of

n = 8 members, this yields a total overhead of 32 bytes⇥ n = 256 bytes—just for the
PKT authenticators. This is already ~ 17% of the maximally allowed Ethernet frame
payload (1500 bytes) [47]. We present a solution that reduces this overhead:

50 design

group keys Group keys [3] are symmetric keys that are shared with every member
of a group. The ACK authenticator is encrypted with a group key KG and, thus only
needs to be included once. We set

e 00k = EncKG
(ak) . (4.3)

This approach allows the header to retain its size except for the additional destination
addresses. Note that Ksdi

s are required in any case as the source needs to distribute the
group key over a secure channel prior to the multicast communication.

With group keys, insider adversaries3 become a problem [6]: They can easily imperson-
ate any other group node and forge messages, e. g., such that they appear to originate
from the legitimate multicast source4.

However, if we assume a trust relationship between all group members, then this is
no longer an issue. For now, we accept group keys as a reasonable approach to retain a
compact header size (we will later address insider adversaries again).

Note that we are not concerned here with issues such as group access control, initial
distribution of the group key, or re-keying in case of group membership changes. These
are all relevant issues, but beyond the scope of this thesis.

4.3.4 ACK Authentication Problem

In the current scheme, all group nodes would create ACKs with the same ak, making
them indistinguishable. We could fix this by including di as second ACK field. This
allows for the following attack.

ack originator attack We must assume that the adversary knows about all or
part of the multicast group (which he can easily determine from any multicast PKT
header since we use explicit multicast). In addition, let us assume that an adversary re-
ceives an ACK from any legitimate multicast destination di. Since all ACKs for one PKT
have the same ak, the adversary could fake and send ACKs appearing to originate from
any other group member dj 6= di by simply changing the unsecured source address
field from di to dj. This will deceive intermediate relay nodes as well as the source
node into believing that the PKT was properly received by dj: The adversary is able to
cut off all but one destination (di) from the multicast group without the source noticing
(DoS).

The presented attack exploits the fact that intermediate nodes cannot authenticate the
originator of the message. They can only infer that at least one multicast destination
must have received the PKT if the received ak is valid. Thus, we need to alter the ACK
authentication mechanism.

Signed ACKs. One option that comes to mind is the use of signed ACKs: The receiver
signs each ACK with its private key. Intermediate nodes could then verify the

3 In contrast to the internal adversary (Section 3.2.3), who actively takes part in the routing protocol, we
define the insider adversary to be also part of the multicast group and in possession of the shared group
key.

4 Note that for unicast communication, this would not pose a problem: Both parties (source and destination)
know which messages originated from themselves. So, an unknown message authenticated with the shared
key must have originated from the other party (always assuming that neither node was compromised).

4.3 extending castor with multicast support 51

origin of any received ACK if they know the public key of the ACK source. This
requires every node to retrieve the public key of any other node in the network5.
Castor’s design is based on weaker security assumptions, i. e., the existence of
end-to-end SAs, only. We prefer a solution that maintains the original design
assumptions and relies on light-weight symmetric-key cryptography.

Individual Flows. Using independent per-destination flows solves the ACK identification
problem. In essence, this approach includes multiple independent Castor headers
in a single PKT. The only advantage of this approach compared to multicast via
unicast is that the payload is transmitted only once. While this might seem to be a
feasible solution, per-destination headers create a significant overhead: Individual
flows would require inclusion of multiple flow IDs and flow authenticators in the
PKT header.

Individual PKT identifiers. A more efficient solution is the following: Using Ksdi
s, we

introduce individual PKT identifiers bk,i for every di as

bk,i = H
⇣

EncKsdi
(ak)

⌘
. (4.4)

These individually encrypted and hashed versions of ak are appended to the orig-
inal bk:

b 0
k = hbk,bk,1, . . . ,bk,i, . . . ,bk,ni . (4.5)

The original bk needs to remain in the header since it is used for forward flow
verification, i. e., to validate that this PKT belongs to the indicated flow.

Upon PKT reception, a destination di calculates ak = DecKG

�
e 00k

�
(Equation 4.3),

and returns an ACK containing

a 0
k,i = EncKsdi

(ak) . (4.6)

Upon reception of a 0
k, each forwarding node can verify that the originator is in-

deed a specific, legitimate group member, i. e., check whether H(a 0
k,i) belongs a

corresponding bk,i.

We note that the order of b 0
k does not need to be protected. Consider the following

attack:

reordering attack Let an adversary swap bk,i and bk,j in a forwarded PKT,
then the returned a 0

k,i from di does not match the expected bk,j. The ACK is con-
sequently discarded.

The individual PKT identifiers offer several advantages: 1) PKT header size is
increased only by the size of bk,i per multicast receiver, i. e., a total additional size
of n⇥ |H(·)| compared to a standard Castor PKT; the ACK retains its size; 2) The
insider adversary problem is solved as a side effect since a 0

k,i cannot be forged by
other group members.

5 One method to achieve this is as follows: The destination’s public key is signed by the source and included
in the PKT. Then, the signed ACK can be verified by any node that previously forwarded the PKT.

52 design

4.3.5 Optimizing PKT Size

If we take a closer look at the current PKT format, we notice two things:

1. e 00k from Equation 4.3 does not need to be encrypted: An adversary is only able
to forge valid ACKs if it has access to both ak and Ksdi

. Consequently, we can
remove the encryption of e 00k such that the PKT authenticator is set to

e 000k = ak. (4.7)

As a result, we no longer require a group key KG for securing the header. However,
we still need it to provide data integrity protection or encryption.

2. Since ak is now transmitted in plaintext and bk = H(ak) which can be computed
locally by every node, we can remove bk from the header to save bandwidth:

b 00
k = hbk,1, . . . ,bk,i, . . . ,bk,ni . (4.8)

4.4 summary : xcastor

We have presented the design process including various alternatives in the previous
sections. Here, we want to summarize the final design. We call it Xcastor.

4.4.1 Packet Format

The packet format for Xcastor looks as follows:

pkt =
D
s,

forwarder mappingz }| {
hh1,F1i , . . . ,

⌦
hj,Fj

↵
, . . . , hhm,Fmi ,B,

H, hbk,1, . . . ,bk,i, . . . ,bk,ni , fk,ak,P
E

, (4.9)

ack = hek,ii , (4.10)

with

H, fk as the flow identifier and authenticator as in Castor,
ek,i = EncKsdi

(ak) as the ACK authenticator,

bk,i = H(ek,i) as the individual PKT identifiers, and
m[

j=1

Fj [B ✓
n[

i=1

di containing the destinations.

4.4.2 Packet Processing

When a node j receives a PKT, it checks whether it is included in the forwarder list. If
not, i. e., if Fj [B = ;, the PKT is discarded. Otherwise, j removes all Fi for i 6= j and
the corresponding bk,i values and then continues processing.

What follows, is duplicate checking: bk,is previously encountered are removed from
pkt and a matching ACK that has previously been received is retransmitted to the
sender.

4.4 summary : xcastor 53

flow verification Flow verification requires an additional hash operation com-
pared to Castor (Equation 4.1): ak has to be hashed so that bk = H(ak) can be verified.

H
⇣
. . .H(H(H(H(ak)) ||x1) ||x2) || . . . xlog2w

⌘
!
= H. (4.11)

pkt verification If the remaining destination set includes j, i. e., the PKT reached
a destination, dj and bk,j are removed from pkt and the pair

⌦
bk,j,ak

↵
is verified using

Equation 4.12.

H
⇣

EncKsdj
(ak)

⌘
!
= bk,j. (4.12)

If successful, ack = hEncKsdj
(ak)i is returned to the PKT sender.

pkt forwarding The remaining forwarding process is derived from Section 4.2.3.
The main difference is that an intermediate node essentially performs the Castor lookup
steps for all subflows Hi = hH,dii individually. The concrete changes include:

• Reliability estimators are stored and maintained as sHi,j.

• Hence, route lookup is performed individually for every Hi and the results are
stored in the appropriate forwarding sets F1, . . . ,Fm and B.

• Individual timers are started for every bk,i forwarded.

ack verification Since bk,is are unique, ACK processing does not need to change.
The only difference is that H(ek,i) is calculated instead of H(ak) and looked up in the
list of forwarded bk,i values.

4.4.3 Xcastor Security

We provide arguments for the security of Xcastor.

Requirement. ack is authentic, i. e.,

(1) each node is able to verify an ack, and
(2) only the destination (and the source) can produce an authentic ack.

Proof. The dependence of ack = hek,ii is as follows:

ak

EncKsdi
(·)

7������! ek,i
H(·)7��! bk,i. (4.13)

Verification is performed using the one-way6 hash function

H : ek,i

�������!
verify (easy)

7����������!
generate (hard) ���������

bk,i. (4.14)

The one-way property directly satisfies (1): Each node can easily verify ek,i by
knowing bk,i and H. (2) is satisfied by: (a) the one-way property of H, i. e.,

6 Property of a one-way function: It is easy to compute on every input, but hard to invert, i. e., to find a
preimage.

54 design

generating the preimage of bk,i is hard for every node; (b) only the destination
(and the source) can generate ek,i from ak (knowledge of shared secret Ksdi

);
(c) ek,i cannot be derived from both ak and bk,i due to the properties of Enc

and H. The argument for (c) is as follows: Since ak is chosen at random, and
assuming that Enc is secure, ek,i is a pseudo-random value7 that is unknown to
an adversary. Then, assuming “reasonable” properties of H, bk,i is pseudo-random
as well. Now suppose that an adversary is able to correctly guess ek,i using ak

and bk,i with a non-negligible probability. Then, bk,i is not pseudo-random since
the adversary can distinguish it from a truly random value (truly random values
cannot be inverted due to the one-way property of H). By this contradiction, ek,i
cannot be learned with non-negligible probability. ⌅

7 Informally, it means that an adversary cannot practically distinguish it from a (truly) random value.

5
I M P L E M E N TAT I O N

As already mentioned in Chapter 1, we implemented both, Castor and Xcastor. We were
provided a premature version of Castor in Click. We say premature since it exhibited
several bugs and was lacking some crucial features such as timeouts, ACK retransmis-
sions, and flow verification. After fixing these shortcomings, we extended it with the
components required for Xcastor.

In this chapter, we only describe the final version of Xcastor: We present implemen-
tation choices and describe the individual components of our Click router. The general
structure of s (Section 5.1.1) is the same for Castor.

5.1 the click modular router

The Click modular router architecture [60] was chosen as the development framework.
It offers several advantages compared to a direct implementation in a simulator frame-
work.

Flexibility. Click is based on C++, can be compiled as a kernel module and thus, the-
oretically, runs on any Linux-driven machine. At the same time, there exists an
integration with the ns-3 network simulator which is convenient for protocol eval-
uation. The same code can be used for either deployment.

Modularity. Since Click routers are based on “ ” classes, it is easy to extend exist-
ing protocols by new features. We exploit this property to adapt an existing Castor
Click implementation.

Facilitated Debugging. The modular design also allows for convenient debugging of a dis-
tributed router network. The framework provides s that dump packets to
a pcap-compatible trace file which can then be investigated using a sniffer program
such as Wireshark1.

5.1.1 Click Elements

Click receives its name from the possibility of “clicking” together a router using only
small classes that provide elementary functionality. s share a common
interface for pushing or pulling packets. The ports (which are part of the class
interface) are connected using a dedicated Click configuration file. Click even supports
the creation of more complex composite or compound s, which are comprised
of multiple basic s.

s in Click can have multiple input and output ports. This allows, for example,
the usage of dedicated ports for invalid packets, which are then discarded, or, using one
port for delivering a PKT and the other for pushing out a generated ACK.

1 Wireshark project homepage:

55

https://www.wireshark.org/

56 implementation

⇧
Listing 5.1: Xcastor PKT and ACK header in C++ syntax

A Click configuration visualizer can neatly show the flow of packets in the router
configurations, which helps when designing more complex systems.

5.2 implementing xcastor in click

We briefly introduce our implementation in Click. We describe the header format as
well as the Click configuration of a Xcastor router. The

5.2.1 Packet Format

Click uses the class for passing packets from to , which is essen-
tially a byte buffer that can also hold some meta data (“annotations”). We provide wrap-
per classes (and), which expose convenience methods
for accessing the Xcastor-specific header fields. This approach does not introduce addi-
tional overhead since the getter and setter methods only access the byte buffer
using appropriate offsets. The byte buffers for PKT and ACK are structured as described
in Listing 5.1.

5.2 implementing xcastor in click 57

In addition to the provided comments in the listings, we would like to point out some
implementation considerations.

• Our protocol implementation provides an interface that allows the application to
send IP packets to a specific multicast address. Internally, this multicast address is
mapped to a list of destinations. Contrary to our design proposal, we include the
multicast group address as a PKT header field: the field allows the
application to identify the multicast group addressed by the PKT.

• The field is needed to determine whether the hash values in are left
or right siblings in the Merkle hash tree, i. e., it is needed for flow authentication.

• The and fields are the result of our forwarding list. Together, they
provide a mapping of forwarders to destinations (see Section 4.3.2). defines
the range a destination is responsible for. It is implemented as follows:

is responsible for the destination range to ,
is forwarder for to ,
for to , etc.

This appears to be the most efficient choice w. r. t. header size. Considering the al-
ternative, i. e., map from destination to next hop, the array would have
fields which would always be equal to or larger than .

• Since we choose SHA-1 as a hash algorithm and AES-128 in ECB mode for encryp-
tion, the actual sizes for and are 20 and 32 bytes2, respectively.

• We adhered to a 4-byte aligned format for performance reasons.

• Some notes on the Xcastor header sizes compared to Castor:

– The PKT header increases by 20+ 4 = 24 bytes per destination.

– Since the types for PKT and ACK authenticators are swapped in Xcastor,
ACKs are 12 bytes larger, while 12 bytes are removed from PKTs.

5.2.2 Elements

We provide an overview of the Click configuration in Figure 5.1. All composite s
in this figure are presented in more detail in Figure 5.2 to 5.4. The figures were created
using the Clicky GUI program which is part of the Click framework and visualize the
Click configuration files.

For better coherence, we include the descriptions in the appropriate captions.
A readability note: The first line of each box contains the instance name and the second
line the ’s type. A single line ending with indicates an unnamed

instance of this type.

2 AES in ECB mode outputs ciphers that are multiples of its 16-byte block size. The smallest multiple of 16

larger than 20 is 32; the hash value needs to be padded.

58 implementation

ethin
InputEth

ethout
OutputEth

fromhost
FromHost

tohost
ToHost

sam
SAManagement

crypto
Crypto

flowDB
CastorFlowStub

flow_merkle
CastorFlowMerkle

routingtable
CastorRoutingTable

history
CastorHistory

castorclassifier
CastorClassifier

handlepkt
CastorHandleXcastPkt

handleack
CastorHandleAck

handleIpPacket
CastorHandleMulticastIpPacket

arpquerier
ARPQuerier

removeEthernetHeader
Strip

CastorXcastRemoveHeader@17

IP packets from the local host are pushed to to prepend the Xcastor header. The
following processing () is identical to that of other incoming PKTs: Forwarded PKTs and
ACKs () are sent to an which prepends an appropriate Ethernet header and
pushes the frames to the transmission queue. The header is removed from PKTs addressed to the
local host and pushed to . The unconnected s at the bottom are shared by some of the
above s. For example, the routing table is used in to look up next hops while it is
updated in .

Figure 5.1: Overview of our Xcastor Click implementation.

5.2 implementing xcastor in click 59

fromhost
FromHost

fromhost
FromSimDevice

CheckIPHeader2@2

CastorTranslateLocalhost@3

(a) From host.
pushes out IP packets that the
local host wants to transmit
using Xcastor. The IP header
is marked in the packet and
the source address is trans-
lated from 127.0.0.1 to the
node’s external IP address.

tohost
ToHost

hostdevice
ToSimDevice

CheckIPHeader2@2

(b) To host. This
simply delivers pack-
ets to the local host.

ethin
InputEth ethdev

FromSimDevice

arpclassifier
Classifier

HostEtherFilter@3

ARPResponder@4HostEtherFilter@5

(c) Ethernet input. Incoming Address Resolution Pro-
tocol (ARP) requests and replies are classified
and appropriately processed. Other frames (con-
taining Xcastor PKTs) are directly pushed to the
output. Since the is set to promiscuous
mode (see Section 5.2.3), no Ethernet filter is ap-
plied to Xcastor frames.

ethout
OutputEth

BroadcastDelayer@1

dstFilter
Classifier

JitterUnqueue@3 JitterUnqueue@5

Q
ue

ue
@
2

ethdev
ToSimDevice

Q
ue

ue
@
4

Q
ue

ue
@
2

(d) Ethernet output. Ethernet frames are pushed
to and classified based on the desti-
nation MAC address. Broadcast frames are
delayed as will be discussed in Section 5.2.3.

Figure 5.2: Click implementation details: Input/output elements.

60 implementation

castorclassifier
CastorClassifier

CheckIPHeader@1

annotateSourceAddress
GetIPAddress

annotateDestAddress
GetIPAddress

addressfilter
IPClassifier

ipclassifier
IPClassifier

StripIPHeader@6

cclassifier
Classifier

Discard@8

(a) Packet classifier. Incoming IP pack-
ets have their source and desti-
nation addresses annotated. The

is required since no
Ethernet filter was previously ap-
plied (devices operate in promiscu-
ous mode). out-
puts PKTs, ACKs, and non-Xcastor
IP packets.

handleack
CastorHandleAck

calcPid
CastorAnnotatePid

authenticate
CastorAuthenticateAck

updateEstimates
CastorUpdateEstimates

CastorAddAckToHistory@4

CastorSetAckNexthop@5

noLoopback
CastorNoLoopback

IPEncap@7

CastorXcastResetDstAnno@8

null
Discard

(b) ACK processing. The ACK authenticator is hashed
to calculate the corresponding PKT identifier. It is
then authenticated and eventually used to update
the reliability estimators of the appropriate subflow
and neighbor. If any test fails, the ACK is discarded.

is used to prevent source nodes from
rebroadcasting ACKs that are destined to them. In
this implementation, Xcastor packets are wrapped
in IP packets to support interoperability with ARP.

handleIpPacket
CastorHandleMulticastIpPacket

map
CastorXcastDestinationMap

CastorXcastSetFixedHeader@2

CastorXcastSetDestinations@3

(c) Handle IP packet from host. The first prepends the
fixed header part (including the Merkle tree logic), and then
translates the multicast IP address in the IP packet header to
an explicit list of destinations. The individual PKT identifiers
are created here as well.

Figure 5.3: Click implementation details: Classifier, ACK processing, and IP packet processing.

5.2 implementing xcastor in click 61

handlepkt
CastorHandleXcastPkt

filter
CastorPreprocessXcastPkt

forwarderClassifier
CastorXcastForwarderClassifier

checkDuplicate
CastorXcastCheckDuplicate

validate
CastorXcastAuthenticateFlow

destinationClassifier
CastorXcastDestClassifier

null
Discard

handleLocal
CastorLocalXcastPkt

CastorXcastAnnotateAckAuth@1

authPkt
CastorAuthenticatePkt

CastorAddXcastPktToHistory@3

genAck
CastorXcastCreateAck

CastorAddAckToHistory@5

null
Discard

sendAck
CastorSendAck

IPEncap@1

CastorRetransmitAck@4

forward
CastorForwardXcastPkt

CastorXcastLookupRoute@1

CastorAddXcastPktToHistory@2

CastorTimeout@3

IPEncap@4

CastorXcastResetDstAnno@5

The implements the handling of the forwarder sets and removes the ones that
the node itself is not responsible for. The duplicate check removes duplicate PKT identifiers and issues
ACK retransmissions if the node already received one. If flow authentication succeeds, the PKT is either
delivered (!), ed or both. A local PKT causes the node to authenticate the PKT
and, if successful, to add it to the history, to generate an ACK, and to push both the corresponding out-
puts. When ing, the next hop is chosen for every destination, each PKT identifier is added to the
history, a timer is started, and then the PKT is pushed to the third output. PKTs with multiple receivers
are addressed to the broadcast IP address 255.255.255.255 (). is used
to enable MAC layer unicasts for these network layer broadcasts (see Section 5.2.3.1).

Figure 5.4: Click implementation details: PKT processing.

62 implementation

5.2.3 Interworking with the MAC Layer: Broadcast Reliability

We rely on IEEE 802.11 broadcasts to transmit Xcastor PKTs to all nodes in the forwarder
list. This is a problem when comparing the performance of Xcastor with the original
Castor protocol. The 802.11 broadcast mechanism does not support acknowledgments,
and by implication, no retransmissions for MAC layer group communication [46]. This
has the consequence that Castor performs better in terms of reliability since it has the
chance to use MAC layer unicast for PKT transmission more often. To improve Xcas-
tor’s performance in this respect we use 802.11 unicasts whenever there is only a single
node in the forwarder list. Similarly, ACKs are unicast whenever possible, i. e., 1) a
destination is replying with an ACK to the sender of the PKT; 2) upon ACK forwarding,
if we received the corresponding PKT from a single node; 3) upon ACK retransmission.

5.2.3.1 Promiscuous Mode

To improve link reliability even further, we set the nodes’ network interfaces into promis-
cuous mode: Instead of using MAC layer broadcast when multiple nodes are in the
forwarder list, we unicast PKTs to the forwarder that is responsible for most destina-
tions (ĥ)3. The other nodes within transmission range will overhear the unicast PKT
and inspect the forwarder list to decide whether to further process the PKT. If ĥ was
unable to receive the PKT, a retransmission will be issued on the MAC layer, giving all
other forwarders a second chance to correctly receive it. These MAC layer unicasts are
enabled using a (Figure 5.4).

We provide a performance comparison of Xcastor with promiscuous mode enabled
and disabled in the next chapter.

5.2.3.2 Adding Jitter to Broadcast Traffic

Initial route discovery is negatively affected by frequent broadcasts in the beginning of
a communication session, since they do not benefit from MAC layer retransmissions
after collisions. To attenuate the effect and avoid concurrent broadcast transmissions,
we introduce a in our Click router configuration (Figure 5.2d)
that allows us to delay the dissemination of broadcast traffic. The value for the delay
is uniformly chosen at random from the interval [0, Jittermax]. Based on the results of
Friedman et al. [29], reasonable values for Jittermax are in the order of 100µs—we set
Jittermax = 100µs in our experiments.

3 We choose uniformly at random if there exist several ĥ.

6
E VA L U AT I O N

We evaluate our implementation with respect to scalability and security. First, we state
the goal of our experiments. We then define our metrics of interest and describe the
baseline simulation setup. Finally, we present the simulation results.

6.1 goals

We state the intent of our experiments: We investigate the scaling capabilities of Xcastor
in Sections 6.4.1 to 6.4.3 by simulating different network sizes, group sizes, and number
of groups. Section 6.4.4 addresses the impact of node mobility compared to a static
scenario. Eventually, we evaluate the security (attack resilience) of our protocol by plac-
ing several blackholes in the network (Section 6.4.5). We summarize the experimental
findings in Table 6.1.

experiment section summary of results

Scalability with respect to
network size (number of
nodes).

6.4.1 Xcastor operates more efficiently and faster than
Castor and flooding in all tested network sizes.

Scalability with respect to
group size.

6.4.2 Flooding operates very inefficiently at small
group sizes but outperforms Xcastor in terms
of bandwidth utilization (BU) at a group size of
10; Xcastor’s delay is still significantly lower.

Scalability with respect to
number of groups (in-
creased network load).

6.4.3 Castor collapses under higher network load
while Xcastor is only marginally affected.

Impact of mobility. 6.4.4 Under no mobility, all protocols operate very
reliably; flooding performance is not affected
by mobility while Castor-like protocols perform
~ 20% less reliably.

Security: Attack resilience
based on the example of
blackholes.

6.4.5 Xcastor’s reliability is reduced by less than 5%
even in largely hostile environments; Castor suf-
fers from significantly higher packet loss and in-
creased bandwidth utilization at the same set-
ting.

Table 6.1: Evaluation summary: experiments and results.

63

64 evaluation

6.2 metrics

With the metrics described below, we intend to quantify the reliability (packet delivery
rate), efficiency (bandwidth utilization) and speed (delay) of our protocol.

6.2.1 Packet Delivery Rate

The packet delivery rate (PDR) indicates how well the routing protocol performs w. r. t.
its primary task: reliably delivering Data Packets (PKTs). We count the transmitted
messages at the sources and the successfully received ones at the destinations using the
individual PKT identifiers (PIDs). For example, a PKT addressed to 5 destinations will
be counted as +5 (number of individual PIDs in the PKT) at the source.

PDR =
no. of PIDs received

no. of PIDs sent
(6.1)

6.2.2 Bandwidth Utilization

Since we are mainly concerned with scalability, the BU, i. e., the total amount of bytes
transmitted for delivering a PKT to a single destination is our major interest. The global
bandwidth utilization BUglobal includes all transmissions above the physical layer (Tx).
It accounts for PKT and ACK transmissions, Ethernet headers and retransmissions on
the MAC layer.

BUglobal =
nX

i=1

Txi with n nodes in the network. (6.2)

The bandwidth utilization per PID is then calculated as:

BU =
BUglobal

no. of PIDs sent
(6.3)

6.2.3 Delay

The delay is related to the performance of the protocol, i. e., how fast recipients receive
their PKTs. We calculate the end-to-end delay of a single PID k as

Delayk = trecv (k)- tsend (k) (6.4)

with tsend and trecv being the transmission and reception timestamps, respectively. The
average delay over all successfully received PIDs1 is

Delayavg =
1

N

NX

k=1

Delayk. (6.5)

1 Failed transmissions have an infinite delay and are thus excluded from the calculation.

6.3 ns-3 discrete event network simulator 65

6.3 ns-3 discrete event network simulator

We select the renowned discrete event network simulator ns-3 for our evaluation. With
the extensions nsclick [63] and ns-3-click [90], it is possible to run Click configurations
in a simulated environment, making use of ns-3’s emulated IEEE 802.11 MAC layer [63]
and mobility models2.

6.4 simulation

In Table 6.2, we outline our simulation setup which is based on the setup chosen within
the Castor paper [31]. The simulation time is 10min. Results are averaged over 20 runs.
The error bars indicate 95% confidence intervals. Each run is independently seeded
in ns-3 as suggested by [62], with set to default and to the run
instance 1, . . . , 20.

With Table 6.2 as a baseline, we investigate the individual effects of 1) network size,
2) group size, 3) number of groups, 4) node mobility, and 5) presence of malicious nodes.

For comparison purposes, we present simulation results showing 1) Xcastor with and
2) without promiscuous mode-enabled interfaces, 3) a Castor implementation that sends
multicast packets as multiple unicast packets, and 4) a flooding protocol that provides
no means of security and simply rebroadcasts each packet. The flooding protocol only
features a simple duplicate filter. To comply with the notion of PIDs for the metrics’
definitions (Section 6.2), a source inserts an (unprotected) unique identifier in every
data packet flooded.

6.4.1 Impact of Network Size

Network size is a scalability-limiting factor, as we have discussed in Section 2.3. We
would like to quantify the impact of different network sizes. We compare the scenarios
listed in Table 6.3. The parameters are chosen in such a way that a constant node density
(n/ (w⇥ h)) and constant average neighbor count3 of n ⇡ r2

w⇥h - 1 ⇡ 7, 7 (ignoring the
neighbor count edge effect4 [62]) are maintained.

The network size has an impact on the PDR of Castor-like protocols: The difference
between small and medium setting is about 5%. Flooding remains unaffected.

BU grows linearly with the number of nodes when flooding is used (300% increase
from 50 to 200 nodes), while the Castor-like protocols scale sublinearly from 50 to 100

nodes: BU for Xcastor increases by approximately 80% (both variants), and by 60% for
Castor. At 200 nodes, Castor collapses: Bandwidth utilization is greatly increased and
the delay skyrockets beyond 1100ms. Xcastor scales better, still BU is more than doubled
from 100 to 200 nodes.

The delay is lowest for the unoptimized Xcastor both in absolute terms. Flooding is
slowest of all protocols by a large (except for Castor at the largest setting): It is more

2 Build instructions for both ns-3 and Click are included in Appendix A.
3 Kurkowski et al. [62] suggest a calculation of the average neighbor count according to n ⇡ r2

w⇥h . We argue
that a node is not a neighbor to itself, so we subtract 1.

4 The average neighbor count is reduced for nodes close to the network borders, e. g., a node in a corner of
the network area has neighbors only in 25% of its coverage area.

66 evaluation

Network
Dimensions w⇥ h 3000m⇥ 3000m

Number of nodes n 100

Transmission Range r 500m

Traffic

Sources 4% (= 4 nodes with 100 nodes in the network)

Group size 5

Payload size and rate 256 bytes per 0.25 s

Castor flow size 256 (flow restart every 64 s)

Jittermax 100µs

MAC layer IEEE 802.11b at 11Mbps (unicast and broadcast)

Mobility
Model Random Waypoint

Parameters Velocity:]0, 20]m/s, Pause time: 0 s

Table 6.2: Simulation setup: baseline configuration.

Number of nodes n 50 100 200

Dimensions w⇥ h [m2] 2121⇥ 2121 3000⇥ 3000 4242⇥ 4242

Transmission range r [m] 500 500 500

Table 6.3: Simulation setup: network configurations with a constant node density.

Group size 1 2 5 10

Number of sources 20 10 4 2

Resulting number of Castor flows 20 20 20 20

Table 6.4: Simulation setup: group size configurations with constant number of Castor flows;
group size and number of sources are inversely proportional.

6.4 simulation 67

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 200

Pa
ck

et
D

el
iv

er
y

R
at

io

Network size [nodes]

Xcastor (promisc.)
Xcastor
Castor
Flooding

0

5000

10000

15000

20000

25000

30000

50 100 200

Ba
nd

w
id

th
U

til
iz

at
io

n
[b

yt
es

]

Network size [nodes]

Xcastor (promisc.)
Xcastor
Castor
Flooding

0

50

100

150

200

50 100 200

D
el

ay
[m

s]

Network size [nodes]

Xcastor (promisc.)
Xcastor
Castor
Flooding

Figure 6.1: Protocol performance with different network sizes. Delay for Castor with 200 nodes
skyrockets beyond 1100ms (clipped at 200ms for readability).

68 evaluation

than 11 times slower than the unoptimized Xcastor at 100 nodes. Castor is slower than
Xcastor by a factor of 2.5 (at 50 and 100 nodes).

6.4.2 Impact of Group Size

In Section 2.5, we argued that stateless multicast such as Xcast is not suitable for sup-
porting large groups. We want to quantify the limits of our scheme by comparing it to a
simple flooding protocol with a negligible header size and a hop count per packet that
is close to n.

When changing the group size from the baseline setting, we have to be careful not to
affect other parameters, e. g., the network load: We adjust the number of groups (i. e.,
the number of sources) to the group size in such a way that the total source-generated
traffic in Castor (i. e., the number of unicast flows) remains constant (see Table 6.4).

As shown in Figure 6.2, all Castor-like protocols perform the same for the unicast
setting (group size of 1). PDR remains constant over all group sizes for all protocols
except for Xcastor without promiscuous mode enabled (-23%): MAC layer broadcasts
are more frequent in scenarios with larger groups.

Xcastor’s BU decreases as group sizes increase, by about 23% with a group size grow-
ing from 1 to 5. The impact of the group size on the flooding protocol is more dramatic:
Starting at ~ 30 000 bytes for unicast, the overhead falls off inversely proportionally to
the group size. At a group size of 5 nodes, BU is already close to what is achieved with
Xcastor. At 10 nodes, the flooding scheme outperforms all other protocols. The delivery
delay for flooding also decreases, but not as quickly as BU: at a group size of 10, flood-
ing is still slower than Xcastor by a factor of 5.2. Interestingly, Castor’s performance gets
worse with larger groups: Both BU and delay increase, which may be caused by local
traffic hot spots around the sources.

6.4.3 Impact of Number of Groups

We evaluate the traffic load the protocols are able to handle. Castor collapses under
the load of 8 groups, i. e., the network is congested. The result is a vicious circle: Less
ACKs are coming through which causes the protocol to broadcast more often, leading to
amplified congestion (Figure 6.3). The average delay skyrockets to more than 1200ms.

The other protocols perform reasonably well under a doubled network load: The
average delay for both Xcastor variants is increased by 5ms and 2.5ms, respectively;
BU increase is 14% and 6%, while PDR is reduced by less than 5%. Flooding remains
largely unaffected by the higher load, except for the delay, which is increased by 15ms.

6.4.4 Impact of Mobility

The baseline setting with the random waypoint mobility model is compared against a
static setting. We show the correctness (PDR close to 1) of all protocols under no mobility.
In the mobile case, PDR drops by about 20% for all Castor-like protocols. Only flooding
maintains a PDR close to 1, as to be expected (Figure 6.4).

The results reveal an interesting effect: Both Xcastor variants experience a BU incre-
ment of ~ 45% while it is less than 10% for Castor. It shows that Xcastor’s advantage

6.4 simulation 69

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 5 10

Pa
ck

et
D

el
iv

er
y

R
at

io

Group size

Xcastor (promisc.)
Xcastor
Castor
Flooding

0

5000

10000

15000

20000

25000

30000

1 2 5 10

Ba
nd

w
id

th
U

til
iz

at
io

n
[b

yt
es

]

Group size

Xcastor (promisc.)
Xcastor
Castor
Flooding

0

20

40

60

80

100

120

140

1 2 5 10

D
el

ay
[m

s]

Group size

Xcastor (promisc.)
Xcastor
Castor
Flooding

Figure 6.2: Protocol performance with different group sizes.

70 evaluation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 8

Pa
ck

et
D

el
iv

er
y

R
at

io

Number of groups

Xcastor (promisc.)
Xcastor
Castor
Flooding

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

4 8

Ba
nd

w
id

th
U

til
iz

at
io

n
[b

yt
es

]

Number of groups

Xcastor (promisc.)
Xcastor
Castor
Flooding

0

50

100

150

200

4 8

D
el

ay
[m

s]

Number of groups

Xcastor (promisc.)
Xcastor
Castor
Flooding

Figure 6.3: Protocol performance with different numbers of groups. Delay for Castor with 8
sources skyrockets beyond 1200ms (clipped at 200ms for readability).

6.4 simulation 71

over Castor is larger in a static scenario. In the mobile case, Castor-like protocols experi-
ence more packet loss, which requires them to broadcast more often. This explains the
antithetical behavior of PDR and BU as mobility increases.

Mobility does not have a major impact on the delay of either protocol: There is a
slight degradation for all Castor-like protocols possibly due to the increased network
load, whereas for flooding the delay remains unaffected.

6.4.5 Impact of Blackhole Attacks

So far, we have considered the benign case, i. e., without the presence of an adversary
in the network. The attack resistance is evaluated by running the baseline setting with
different percentages of malicious nodes in the network (Figure 6.5). Note that we
consider sources and destinations as always benign in these scenarios; nodes to act as
blackholes are chosen uniformly at random from the remaining ones. Malicious nodes
conduct a blackhole attack as described in [31], i. e., broadcast PKTs are forwarded to
attract traffic while unicast PKTs are dropped. For the flooding protocol, a malicious
node simply drops all traffic.

The impact of attackers on both Xcastor variants is relatively small: With 40% of all
nodes as attackers, PDR is reduced by less than 5%. The success rate for flooding drops
by approximately 10%: Castor suffers the most with a drop of 30%, at the additional
price of an increased bandwidth utilization (+20.7%).

Xcastor consumes less bandwidth in the adversarial settings. This is due to less nodes
forwarding PKTs (blackholes), reducing overall traffic. This effect is more pronounced
for flooding: Bandwidth consumption drops by 46% so that it becomes the most efficient
in absolute terms at 40% blackholes among all protocols. The delay remains unaffected
for all protocols.

72 evaluation

0

0.2

0.4

0.6

0.8

1

static random waypoint

Pa
ck

et
D

el
iv

er
y

R
at

io

Mobility

Xcastor (promisc.)
Xcastor
Castor
Flooding

0

1000

2000

3000

4000

5000

6000

7000

8000

static random waypoint

Ba
nd

w
id

th
U

til
iz

at
io

n
[b

yt
es

]

Mobility

Xcastor (promisc.)
Xcastor
Castor
Flooding

0

10

20

30

40

50

60

70

80

90

100

static random waypoint

D
el

ay
[m

s]

Mobility

Xcastor (promisc.)
Xcastor
Castor
Flooding

Figure 6.4: Protocol performance without and with mobility.

6.4 simulation 73

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 20% 40%

Pa
ck

et
D

el
iv

er
y

R
at

io

Fraction of malicious nodes in the network

Xcastor (promisc.)
Xcastor
Castor
Flooding

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0% 20% 40%

Ba
nd

w
id

th
U

til
iz

at
io

n
[b

yt
es

]

Fraction of malicious nodes in the network

Xcastor (promisc.)
Xcastor
Castor
Flooding

0

10

20

30

40

50

60

70

80

90

100

0% 20% 40%

D
el

ay
[m

s]

Fraction of malicious nodes in the network

Xcastor (promisc.)
Xcastor
Castor
Flooding

Figure 6.5: Protocol performance under blackhole attacks.

7
D I S C U S S I O N

We discuss the simulation results from Chapter 6: We highlight the strengths of Xcastor
compared to the original Castor and a flooding protocol and suggest solutions to further
improve its performance.

7.1 xcastor has lowest delay

Xcastor is the fastest (lowest delay) of all evaluated protocols. This result is valid for
both variants—in all tested settings. Castor is slower than Xcastor except for the unicast
setting, where the average delay is almost equal. For Castor, the delay increases consid-
erably with the group size: As the same PKT needs to be transmitted multiple times,
traffic “hot spots” are created around the sources (Figure 7.1a), which cause the medium
to be busier and consequently result in large MAC-layer backoffs.

Flooding lags far behind the others in terms of delay. There are three reasons for
this: 1) Part of the delay is due to the jitter that we have introduced for broadcast
transmissions (Section 5.2.3). In comparison, all Castor-like protocols rely on MAC-
layer unicast for most transmissions, so jitter is applied less often. 2) Network-wide
transmissions clog the medium, causing excessive backoffs on the MAC layer. 3) Packets
do not necessarily take the shortest path to the destination: Packets might get lost over
the shortest path but arrive at the destination over a different (and potentially longer)
one.

7.2 limited bandwidth utilization gain

Applying Xcastor to multicast scenarios clearly decreases the bandwidth utilization
needed to serve all of the destinations compared to sending the same packet multiple
times to each node using Castor (multicast via unicast).

In the best case, BU gain could grow linearly with the group size (consider a chain-
like network scenario where all destinations are connected to the last node in the chain).
With our (randomized) network configurations, such linear scaling was not achieved. In
our scenarios without any mobility, BU in Xcastor was up to 45%lower than in Castor.
This discrepancy became smaller in mobile scenarios. At the largest tested group size
of 10 nodes, the flooding protocol even outperformed Xcastor by 37%. There are two
reasons for the latter observation:

1. The packets sent by Xcastor have approximately triple1 the size of the actual pay-
load: The major contributors to the large header are the Merkle hash tree and the
additional PIDs for every destination.

1 We calculate the upper bound as the maximum possible header size for 10 destinations: 220+ 24⇥ 10+ 5⇥
10 = 510 bytes. With a payload size of 256 bytes, this yields a header to payload ratio of (510+256)/256 ⇡ 3.

75

76 discussion

2. Xcastor PKTs with 10 destinations are forwarded by 50% of all nodes in our base-
line scenario: The PKTs are dispersed across the network to reach all randomly
placed destinations, which requires a large branching factor of the delivery tree.

Even though flooding outperforms Xcastor in large-group scenarios, it should be
noted that the flooding protocol we have evaluated lacks security features such as sender
and receiver authentication and acknowledgments. However, the results uncover the
weaker spots of Xcastor (header size and branching), which we address in the follow-
ing.

7.2.1 Flow Size

When a sender runs out of PIDs for the current flow—and wishes to continue to transmit
PKTs to the same destination(s)—it needs to create a new flow with a new set of PIDs.
The new flow has no association with the old flow, which essentially resets the current
reliability estimators of forwarding nodes. Subsequent PKTs have to be flooded through
the network until (again) a path has been found. The branching factor of the flooded
packets is quite high.

It seems reasonable to apply a mechanism that reuses the old routing state in order
to avoid information loss. As one possible solution, we suggest to include a “next flow
identifier” field in the PKT header such that nodes can initialize the new reliability
estimators with the old values.

Interesting questions to answer would be: What is the gain when using such a scheme
for long-lived connections? If the flow size is set too small, nodes might miss the next
flow identifier field and will have to flood again. If set too large, header size might
unnecessarily increase. Finding an optimal flow size could improve the efficiency of
both Xcastor and Castor alike.

7.2.2 Hash Length

The major contributor to the header size of both Castor and Xcastor is the Merkle hash
tree. Reducing the size of the hash values would consequently reduce the header over-
head. One option could be to salt the hash calculation and only include and operate on
the first half of the hash values. The rationale is that full-size hash values are only re-
quired for collision resistance, but the salt allows us to largely ignore collision resistance
for two reasons: 1) only the limited set of hashes within a flow need to be collision-free
for the short lifetime of a flow, which was 64 s in our test setting; and 2) adversaries
cannot choose the randomly selected input values of the hash tree, and so they can only
try to find another ore-image for a hash value.

7.2.3 Branching Factor of the Delivery Tree

Next-hop decisions for a specific destination are agnostic of decisions for other destina-
tions: Xcastor always chooses the most reliable neighbor for each destination. In the
worst case, the sender could select n different neighbors as forwarders for n destina-
tions. This leads to essentially n independent flows, which eliminates the advantage
over unicast Castor. We demonstrate the effect in a sample protocol run in Figure 7.1b.

7.3 explicit multicast vs . flooding in large groups 77

We can see that a major portion of the destinations reside in the lower part of the net-
work. The separate route of flow in the upper half of the network is thus unnecessary:
The destination at position (67, 1972) could also be served by its neighbor at (75, 1670),
which would require only a single additional hop.

Informally, we would like to optimize the next-hop assignment from Equation 4.9
(page 52) of

hi ! Fi, i 2 {1, . . . , |N|} , with N as the neighbor set

for each PKT in such a way that the number of forwarding nodes

{hi, i 2 {1, . . . , |N|} | Fi 6= ;} ,

i. e., the branching factor, is minimal while the overall reliability is maximized.
One such solution could be the inclusion of a third reliability estimator soHi,j, which

is hj’s average reliability to all other destinations. More formally: Let pkt(D) be the
PKT to be forwarded, with D = hd1, . . . ,di, . . . ,dni containing the destinations, then
calculate

soHi,j =
1

|D|

|D|X

k=1
k 6=j

sHi,k and

s 0Hi,j =
saHi,j + sfHi,j + ⌘ soHi,j

2+ ⌘

with ⌘ being the parameter controlling the aggressiveness of the optimization (setting
⌘ = 0 ignores the optimization). Finally, select the next hop for di as before according
to pmax = maxj s 0Hi,j.

This metric gives preference to nodes that are reliable forwarders to multiple des-
tinations. Such a forwarder is consequently more likely to be selected for multiple
destinations, reducing the branching factor of the PKT.

Proper evaluation of this (or another) metric would be time-consuming due to ns-3’s
simulation times. Thus, we leave it as future work.

7.3 explicit multicast vs . flooding in large groups

The bandwidth overhead for Xcastor scales linearly with the group size (Figure 6.2b). We
want to identify the break-even point where header overhead outweighs the overhead
of flooding the entire network. In other words: When is flooding a sensible alternative
to Xcast?

Based on our results, this threshold is somewhere between a group size of 5 and 10.
We try to gain a deeper understanding on the location of this point.

We construct a simplified analytical equation to describe the break-even point. We
assume a perfect MAC layer not requiring retransmissions and ignore Xcastor ACKs
for simplicity. We denote m(D) as the number of rebroadcasts for Xcast packets and n

78 discussion

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

Source Destination Other

0

1 000 000

Ba
nd

w
id

th
U

til
iz

at
io

n
[b

yt
es

]

(a) Castor: A traffic hot spot is clearly visible around the sender.

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

Source Destination Other

0

400 000

Ba
nd

w
id

th
U

til
iz

at
io

n
[b

yt
es

]

(b) Xcastor: Traffic is more evenly spread across the forwarders.

Figure 7.1: Spatial distribution of bandwidth utilization in Castor and Xcastor. The figures were
taken from protocol run # 10 with 100 nodes, 1 sender and a group size of 10 nodes
with no mobility and 64 s simulation time (= lifetime of a single flow), but otherwise
complying to our baseline setting).

7.3 explicit multicast vs . flooding in large groups 79

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

�(D)

↵
(D

)

Break-even point
Xcast domain

Flooding domain

Figure 7.2: Operational domains: Xcast vs. flooding (plot of Equation 7.1)

as the number of rebroadcasts for the flooding protocol (= network size). H(D) is the
group size-dependent Xcast header size and P the common payload size.

m(D)⇥ (H(D) +P) = n⇥P ()
m(D)

n
⇥ H(D) +P

P
= 1 ()

m(D)

n| {z }
↵(D)

⇥

0

BB@
H(D)

P| {z }
�(D)

+1

1

CCA = 1 ()

↵(D)�(D) +↵(D)- 1 = 0 (7.1)

Even though Equation 7.1 is only a rough approximation, we can see that the break-even
point is not fixed but depends on

↵(D): The ratio of rebroadcasts m(D) to the network size n since a flooded packet is
rebroadcast n times (this factor is also related to the branching factor discussed in
Section 7.2.3); and

�(D): The ratio of the group-size-dependent Xcastor header size H(D) and the size of
the payload P.

Figure 7.2 shows that for small payloads, flooding increasingly becomes the better choice.
On the other hand, the better Xcast manages to keep the branching factor—and thus, the
number of rebroadcasts low–the more likely Xcast is to be preferred.

We give an example for Equation 7.1: Consider the baseline setting (Table 6.2) with a
group size |D| = 10 and payload size |P| = 256 bytes. Given an upper bound Xcastor
header size2 of 510 bytes, we approximate �(D) ⇡ 2 (neglecting bandwidth utilization
from MAC layer retransmissions and ACKs), and, according to Equation 7.1, ↵(D) ⇡
0.33. Empirically, the average hop count for such an Xcastor PKT is 50, that is, half of
the nodes in the network participate in PKT forwarding, so ↵empiric(D) = 0.50. Since
↵empiric(D) > 0.33 = ↵(D), flooding should be more efficient at |D| = 10, which is
confirmed by our results (Figure 6.2).

2 We calculate the upper bound as the maximum possible header size for 10 destinations: 220+ 24⇥ 10+ 5⇥
10 = 510 bytes.

80 discussion

7.4 mac layer reliability is important

During evaluation, it became evident that Xcastor’s packet delivery rate largely de-
pends on successful MAC layer transmissions when addressing larger groups (compare
promiscuous vs. non-promiscuous mode variants in Figure 6.2). Temporary link break-
age due to collisions, nodes not ready to receive, or other reasons can be mitigated by
local retransmissions. According to IEEE 802.11 [46], nodes shall attempt up to 7 retrans-
mission3 for unicast frames until an acknowledgment is received. Broadcast frames are
never retransmitted.

7.4.1 MAC Layer Multicast with Acknowledgments

Gossain et al. proposed MAC-layer acknowledgments and retransmissions for multicast
frames [34]: Acknowledgments are expected from every receiver, otherwise the frame
is retransmitted to the non-responding nodes. The authors propose a strict sequential
order of ACK transmissions to avoid collisions from multiple receivers sending ACKs at
the same time. Since we already saw a reliability improvement for “pseudo-multicast”
(promiscuous-mode Xcastor) over normal broadcast, we suggest to evaluate the effect of
full MAC-layer multicast support.

ACK delivery could also benefit from such a scheme (both Xcastor and Castor): When
forwarding ACKs, Castor relies on MAC layer broadcasts. However, usually not all but
only a few neighbors have previously forwarded the corresponding PKT. Thus, MAC-
layer multicast could be used to more reliably transmit ACKs to those (few) neighbors.

7.5 attack resilience improved

Resilience to the blackhole attack is not negatively affected but actually improved by our
Xcastor extension: At 40% blackholes, Xcastor’s PDR is reduced by just less than 5%,
whereas Castor suffers from a 30% in its PDR. Such a severe impact was not anticipated,
especially since Galuba et al. [31] indicated a smaller drop in their results. We assume
that the discrepancy is caused by our different traffic setting: Galuba et al. used node-
disjoint sender-receiver pairs while in our scenario a Castor source initiates multiple
flows. What follows is an increased BU around the sources which causes additional
packet loss.

3 for frames smaller than the RTS/CTS threshold defaults to 7, while
for larger frames defaults to 4.

8
C O N C L U S I O N

Decentralized ad-hoc networks are on the verge of becoming communication alterna-
tives to centralized systems such as the Internet or the mobile phone cellular network in
specific scenarios, e. g., in emergency communication. Due to the unmanaged nature of
such networks, secure routing is important to maintain operability of the system. Unfor-
tunately, while secure unicast routing has been a research issue for more than a decade,
secure multicast routing, important for reliably addressing groups of receivers, remains
understudied.

In this thesis, we first presented the state of the art in scalable and secure MANET rout-
ing. Based on the results, we then developed a secure multicast extension for Castor, a
promising secure and scalable unicast routing protocol. We call our extension Xcastor.
Using an Explicit Multicast-based approach, we enabled secure routing to multiple des-
tinations while reducing the bandwidth consumption by up to 45% compared to Castor.
Castor’s performance in terms of its packet delivery rate (PDR) was maintained and, in
some scenarios, even slightly improved due to reduced network load. The delivery de-
lay was significantly decreased by a factor of 2.5. By following Castor’s security by design
approach and because of Xcastor’s reduced impact on the network load, we achieved a
significantly better blackhole attack resilience than the original protocol. Xcastor’s per-
formance is identical to Castor when addressing a single destination, which means that
Xcastor could replace Castor as a combined unicast and multicast protocol without any
loss in efficiency.

However, we also identified room for improvement: Castor’s reliability metric, which
is used by Xcastor, is multicast-agnostic. We argue that a multicast-aware metric could
decrease bandwidth utilization even further with little reduction in overall reliability.
In addition, we found that the MAC-layer acknowledgment mechanism has a severe
impact on the PDR when the group size is increased.

Flooding is quite inefficient when it comes to unicast routing as every node in the
network will rebroadcast the packet. Similarly, it is inefficient when used to address a
small number of receivers with a single packet. Instead, an Xcast-based protocol such
as Xcastor can provide a much better performance. However, we have shown that there
exists a break-even point where the growing Xcast header size outweighs the additional
rebroadcasts necessary for flooding. We found that this break-even point is dependent
on the payload size as well as the branching factor of the delivery tree.

8.1 outlook

Based on our discussion in Chapter 7, we suggest future development of Xcastor to be
concerned with 1) developing and evaluating an adapted metric minimizing the size of
the forwarder list while maintaining a high degree of reliability; 2) solving the problem
of flow restarts; and 3) investigating the impact of a MAC-layer retransmission scheme
for multicast frames. In addition, evaluating Xcastor in a real testbed would further
support the credibility of the obtained simulation results.

81

Part III

A P P E N D I X

A
B U I L D I N S T R U C T I O N S

For completeness, we include the build instructions for Click and ns-3 in Listings A.1
and A.2, respectively. Building our Castor and Xcastor Click implementations requires
the Botan C++ crypto library1 in version 1.10.

⇧
Listing A.1: Building Click with ns-3 support

⇧
Listing A.2: Building ns-3 with Click support

1 Webpage of Botan C++ crypto library:

85

http://botan.randombit.net

L I S T O F F I G U R E S

Figure 2.1 Dimensions allowing for optimizing MANET scalability in the
model by Gupta and Kumar, Grossglauser and Tse. 7

Figure 2.2 Schematic comparison of flooding without and with Multipoint
Relays. 14

Figure 2.3 Demonstrating the core concept of COPE with a simple topology
and a total of three transmissions (compared to four with tradi-
tional forwarding). 18

Figure 3.1 Example of a wormhole attack: Source s reaches destination d

with only 3 hops. 35

Figure 5.1 Overview of our Xcastor Click implementation. 58

Figure 5.2 Click implementation details: Input/output elements. 59

Figure 5.3 Click implementation details: Classifier, ACK processing, and IP
packet processing. 60

Figure 5.4 Click implementation details: PKT processing. 61

Figure 6.1 Protocol performance with different network sizes. Delay for
Castor with 200 nodes skyrockets beyond 1100ms (clipped at
200ms for readability). 67

Figure 6.2 Protocol performance with different group sizes. 69

Figure 6.3 Protocol performance with different numbers of groups. Delay
for Castor with 8 sources skyrockets beyond 1200ms (clipped at
200ms for readability). 70

Figure 6.4 Protocol performance without and with mobility. 72

Figure 6.5 Protocol performance under blackhole attacks. 73

Figure 7.1 Spatial distribution of bandwidth utilization in Castor and Xcas-
tor. The figures were taken from protocol run # 10 with 100 nodes,
1 sender and a group size of 10 nodes with no mobility and 64 s
simulation time (= lifetime of a single flow), but otherwise com-
plying to our baseline setting). 78

Figure 7.2 Operational domains: Xcast vs. flooding (plot of Equation 7.1) . . 79

L I S T O F TA B L E S

Table 2.1 Applicability of unicast routing schemes. 21

Table 2.2 Compatibility of unicast routing schemes. 21

Table 2.3 Applicability of multicast routing schemes. 29

Table 2.4 Compatibility of multicast routing schemes. 29

Table 3.1 Resistance of unicast routing protocols against various attacks. . 38

Table 3.2 Resistance of multicast routing protocols against various attacks. 41

Table 3.3 Addressed issues of secure MANET multicast in the literature. . 41

Table 6.1 Evaluation summary: experiments and results. 63

86

Table 6.2 Simulation setup: baseline configuration. 66

Table 6.3 Simulation setup: network configurations with a constant node
density. 66

Table 6.4 Simulation setup: group size configurations with constant num-
ber of Castor flows; group size and number of sources are in-
versely proportional. 66

A C R O N Y M S

WMN Wireless Mesh Network

MANET Mobile Ad-Hoc Network

VANET Vehicular Ad-Hoc Network

DTN Delay Tolerant Network

GPS Global Positioning System

DVR Distance Vector Routing

LSR Link State Routing

LSU Link State Update

SR Source Routing

DSDV Destination-Sequenced Distance-Vector

AODV Ad hoc On-Demand Distance Vector

OLSR Optimized Link State Routing

DSR Dynamic Source Routing

Castor Continuously Adapting Secure Topology-Oblivious Routing

MAODV Multicast Ad Hoc On-Demand Distance Vector

Xcast Explicit Multicast

SGM Small Group Multicast

RREQ Route Request

RREP Route Reply

PKT Data Packet

ACK Acknowledgment

TTL Time To Live

PID PKT identifier

87

88 acronyms

DHT Distributed Hash Table

DoS Denial of Service

CA Certificate Authority

SA Security Association

MAC Media Access Control

PDR packet delivery rate

BU bandwidth utilization

B I B L I O G R A P H Y

[1] Imad Aad, Jean-Pierre Hubaux, and Edward W. Knightly. Denial of service re-
silience in ad hoc networks. In Proceedings of the 10th Annual International Confer-
ence on Mobile Computing and Networking, MobiCom, pages 202–215, New York,
NY, USA, 2004. ACM.

[2] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raymond W. Yeung. Net-
work information flow. IEEE Transactions on Information Theory, 46(4):1204–1216,
July 2000.

[3] Tony Ballardie. Scalable multicast key distribution. RFC 1949, IETF, May 1996.

[4] Tony Ballardie, Paul Francis, and Jon Crowcroft. Core based trees (CBT). In
Conference Proceedings on Communications Architectures, Protocols and Applications,
SIGCOMM, pages 85–95, New York, NY, USA, 1993. ACM.

[5] Stefano Basagni, Imrich Chlamtac, Violet R. Syrotiuk, and Barry A. Woodward.
A distance routing effect algorithm for mobility (DREAM). In Proceedings of the
4th Annual International Conference on Mobile Computing and Networking, MobiCom,
pages 76–84, New York, NY, USA, 1998. ACM.

[6] Mark Baugher, Ran Canetti, Lakshminath R. Dondeti, and Fredrik Lindholm. Mul-
ticast security (MSEC) group key management architecture. RFC 4046, IETF, April
2005.

[7] BBC News. Iraqis use Firechat messaging app to overcome net block, June
2014. URL . Accessed: August
28, 2014.

[8] Elizabeth M. Belding-Royer and Charles E. Perkins. Evolution and future direc-
tions of the ad hoc on-demand distance-vector routing protocol. Ad Hoc Networks,
1(1):125–150, 2003.

[9] Matt Bishop. A security analysis of the NTP protocol version 2. In Proceedings
of the 6th Annual Computer Security Applications Conference, pages 20–29, December
1990.

[10] Stefan Brands and David Chaum. Distance-bounding protocols. In Tor Helleseth,
editor, Advances in Cryptology—EUROCRYPT ’93, volume 765 of Lecture Notes in
Computer Science, pages 344–359. Springer Berlin Heidelberg, 1994.

[11] Levente Buttyan and Jean-Pierre Hubaux. Security and Cooperation in Wireless Net-
works. Cambridge University Press, 2007.

[12] Viveck R. Cadambe and Syed A. Jafar. Interference alignment and degrees of
freedom of the k-user interference channel. Information Theory, IEEE Transactions
on, 54(8):3425–3441, August 2008.

89

http://www.bbc.com/news/technology-27994309

90 bibliography

[13] Gianni Di Caro, Frederick Ducatelle, and Luca Maria Gambardella. AntHocNet:
an adaptive nature-inspired algorithm for routing in mobile ad hoc networks. Eu-
ropean Transactions on Telecommunications, 16(5):443–455, 2005.

[14] Kai Chen and Klara Nahrstedt. Effective location-guided tree construction algo-
rithms for small group multicast in MANET. In Proceedings of the IEEE Conference
on Computer Communications, volume 3 of INFOCOM, pages 1180–1189, 2002.

[15] Ching-Chuan Chiang and Mario Gerla. Routing and multicast in multihop, mo-
bile wireless networks. In IEEE 6th International Conference on Universal Personal
Communications Record, volume 2, pages 546–551, October 1997.

[16] Ching-Chuan Chiang, Mario Gerla, and Lixia Zhang. Forwarding group multicast
protocol (FGMP) for multihop, mobile wireless networks. Cluster Computing, 1(2):
187–196, 1998.

[17] Citizen Lab. Iraq information controls update: Analyzing internet filtering
and mobile apps, June 2014. URL

. Accessed: August 28, 2014.

[18] Thomas Heide Clausen and Philippe Jacquet. Optimized link state routing proto-
col (OLSR). RFC 3626, IETF, October 2003.

[19] Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Morris. A high-
throughput path metric for multi-hop wireless routing. Wireless Networks, 11(4):
419–434, July 2005.

[20] Gergely Ács, Levente Buttyán, and István Vajda. Provably secure on-demand
source routing in mobile ad hoc networks. IEEE Transactions on Mobile Computing,
5(11):1533–1546, November 2006.

[21] Reza Curtmola and Cristina Nita-Rotaru. BSMR: Byzantine-resilient secure multi-
cast routing in multihop wireless networks. IEEE Transactions on Mobile Computing,
8(4):445–459, April 2009.

[22] Editor David R. Oran. OSI IS-IS intra-domain routing protocol. RFC 1142, IETF,
February 1990.

[23] Carlos de Morais Cordeiro, Hrishikesh Gossain, and Dharma P. Agrawal. Multi-
cast over wireless mobile ad hoc networks: Present and future directions. IEEE
Network, 17(1):52–59, January 2003.

[24] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for repli-
cated database maintenance. In Proceedings of the 6th Annual ACM Symposium on
Principles of Distributed Computing, PODC, pages 1–12, New York, NY, USA, 1987.
ACM.

[25] Edsger Wybe Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1(1):269–271, 1959.

https://citizenlab.org/2014/07/iraq-information-controls-update-analyzing-internet-filtering-mobile-apps/#part2
https://citizenlab.org/2014/07/iraq-information-controls-update-analyzing-internet-filtering-mobile-apps/#part2
https://citizenlab.org/2014/07/iraq-information-controls-update-analyzing-internet-filtering-mobile-apps/#part2

bibliography 91

[26] Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, March 1983.

[27] John R. Douceur. The sybil attack. In Peter Druschel, Frans Kaashoek, and Antony
Rowstron, editors, Peer-to-Peer Systems, volume 2429 of Lecture Notes in Computer
Science, pages 251–260. Springer Berlin Heidelberg, 2002.

[28] Förderverein Freie Netzwerke e. V. Freifunk web page. URL .
Accessed: August 28, 2014.

[29] Roy Friedman, David Hay, and Gabriel Kliot. Jittering broadcast transmissions in
MANETs: Quantification and implementation strategies. Technical report, Depart-
ment of Computer Science, The Technion—Israel Institute of Technology, 2009.

[30] Wojciech Galuba, Panagiotis Papadimitratos, Marcin Poturalski, Karl Aberer, Zo-
ran Despotovic, and Wolfgang Kellerer. More on Castor: the scalable secure rout-
ing protocol for ad-hoc networks. Technical Report LSIR-REPORT-2009-002, EPFL,
2009.

[31] Wojciech Galuba, Panagiotis Papadimitratos, Marcin Poturalski, Karl Aberer, Zo-
ran Despotovic, and Wolfgang Kellerer. Castor: Scalable secure routing for ad
hoc networks. In Proceedings of the IEEE Conference on Computer Communications,
INFOCOM, pages 1–9, San Diego, CA, USA, March 2010.

[32] Jose Joaquin Garcia-Luna-Aceves and Ewerton L. Madruga. The core-assisted
mesh protocol. IEEE Journal on Selected Areas in Communications, 17(8):1380–1394,
August 1999.

[33] Jose Joaquin Garcia-Luna-Aceves and Dhananjay Sampath. Scalable integrated
routing using prefix labels and distributed hash tables for MANETs. In IEEE 6th

International Conference on Mobile Adhoc and Sensor Systems, MASS, pages 188–198,
October 2009.

[34] Hrishikesh Gossain, Nagesh Nandiraju, Kumar Anand, and Dharma P. Agrawal.
Supporting MAC layer multicast in IEEE 802.11 based MANETs: Issues and so-
lutions. In 29th Annual IEEE International Conference on Local Computer Networks,
pages 172–179, November 2004.

[35] Hrishikesh Gossain, Kumar Anand, Carlos Cordeiro, and Dharma P. Agrawal. A
scalable explicit multicast protocol for MANETs. Communications and Networks, 7

(3):294–306, September 2005.

[36] Matthias Grossglauser and David N. C. Tse. Mobility increases the capacity of ad
hoc wireless networks. In Proceedings of the IEEE Conference on Computer Communi-
cations, volume 3 of INFOCOM, pages 1360–1369, April 2001.

[37] Chao Gui and P. Mohapatra. Scalable multicasting in mobile ad hoc networks. In
Proceedings of the IEEE Conference on Computer Communications, volume 3 of INFO-
COM, pages 2119–2129, March 2004.

[38] Piyush Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Transac-
tions on Information Theory, 46(2):388–404, March 2000.

http://freifunk.net

92 bibliography

[39] Zygmunt J. Haas and Marc R. Pearlman. The performance of query control
schemes for the zone routing protocol. IEEE/ACM Transactions on Networking, 9

(4):427–438, August 2001.

[40] Zygmunt J. Haas, Joseph Y. Halpern, and Li Li. Gossip-based ad hoc routing.
IEEE/ACM Transactions on Networking, 14(3):479–491, June 2006.

[41] Xiaoyan Hong, Kaixin Xu, and Mario Gerla. Scalable routing protocols for mobile
ad hoc networks. IEEE Network, 16(4):11–21, July 2002.

[42] Yih-Chun Hu, David B. Johnson, and Adrian Perrig. SEAD: secure efficient dis-
tance vector routing for mobile wireless ad hoc networks. Ad Hoc Networks, 1(1):
175–192, 2003.

[43] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Packet leashes: A defense
against wormhole attacks in wireless networks. In Proceedings of the IEEE Confer-
ence on Computer Communications, volume 3 of INFOCOM, pages 1976–1986, March
2003.

[44] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Rushing attacks and defense
in wireless ad hoc network routing protocols. In Proceedings of the 2nd ACM Work-
shop on Wireless Security, WiSe, pages 30–40, New York, NY, USA, 2003.

[45] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Ariadne: A secure on-
demand routing protocol for ad hoc networks. Wireless Networks, 11(1-2):21–38,
January 2005.

[46] IEEE Computer Society. Part 11: Wireless LAN medium access control (MAC)
and physical layer (PHY) specifications. IEEE Std 802.11-2012, March 2012.

[47] IEEE Computer Society. Standard for ethernet. IEEE Std 802.3-2012, December
2012.

[48] Tomasz Imielinski and Julio C. Navas. GPS-based addressing and routing. RFC
2009, IETF, November 1996.

[49] ISO/IEC JTC 1 Information technology. Information processing systems—open
systems interconnection—basic reference model—part 2: Security architecture.
ISO 7498-2, 1989.

[50] Atsushi Iwata, Ching-Chuan Chiang, Guangyu Pei, Mario Gerla, and Tsu-Wei
Chen. Scalable routing strategies for ad hoc wireless networks. IEEE Journal on
Selected Areas in Communications, 17(8):1369–1379, August 1999.

[51] Philippe Jacquet, Paul Mühlethaler, Thomas Heide Clausen, Anis Laouiti, Amir
Qayyum, and Laurent Viennot. Optimized link state routing protocol for ad hoc
networks. In Proceedings of the IEEE Multi Topic Conference, INMIC, pages 62–68,
2001.

[52] Lusheng Ji and M. Scott Corson. Differential destination multicast—a MANET
multicast routing protocol for small groups. In Proceedings of the IEEE Conference
on Computer Communications, volume 2 of INFOCOM, pages 1192–1201, 2001.

bibliography 93

[53] David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc wireless
networks. In Mobile Computing, volume 353 of The Kluwer International Series in
Engineering and Computer Science, pages 153–181. Springer US, 1996.

[54] David B. Johnson, Yih-Chun Hu, and David A. Maltz. The dynamic source routing
protocol (DSR) for mobile ad hoc networks for IPv4. RFC 4728, IETF, February
2007.

[55] Suyang Ju and Joseph B. Evans. Scalable cognitive routing protocol for mobile
ad-hoc networks. In Proceedings of the IEEE Global Telecommunications Conference,
GLOBECOM, pages 1–6, December 2010.

[56] Luo Junhai, Ye Danxia, Xue Liu, and Fan Mingyu. A survey of multicast routing
protocols for mobile ad-hoc networks. IEEE Communications Surveys Tutorials, 11

(1):78–91, First Quarter 2009.

[57] Brad Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wire-
less networks. In Proceedings of the 6th Annual International Conference on Mobile
Computing and Networking, MobiCom, pages 243–254, New York, NY, USA, 2000.
ACM.

[58] Sachin Katti, Hariharan Rahul, Wenjun Hu Dina Katabi, Muriel Médard, and Jon
Crowcroft. XORs in the air: Practical wireless network coding. In Proceedings of
the Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, SIGCOMM, pages 243–254, New York, NY, USA, 2006. ACM.

[59] Young-Bae Ko and Nitin H. Vaidya. Location-aided routing (LAR) in mobile ad
hoc networks. Wireless Networks, 6(4):307–321, 2000.

[60] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
The Click modular router. ACM Transactions on Computer Systems, 18(3):263–297,
August 2000.

[61] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-hashing for mes-
sage authentication. RFC 2104, IETF, February 1997.

[62] Stuart Kurkowski, Tracy Camp, and Michael Colagrosso. MANET simulation
studies: The incredibles. ACM SIGMOBILE Mobile Computing and Communications
Review, 9(4):50–61, October 2005.

[63] Mathieu Lacage and Thomas R. Henderson. Yet another network simulator. In
Workshop on ns-2: The IP Network Simulator, WNS2, New York, NY, USA, 2006.
ACM.

[64] Sung-Ju Lee and Mario Gerla. Split multipath routing with maximally disjoint
paths in ad hoc networks. In Proceedings of the IEEE International Conference on
Communications, volume 10 of ICC, pages 3201–3205, 2001.

[65] Sung-Ju Lee, William Su, Julian Hsu, Mario Gerla, and Rajive Bagrodia. A per-
formance comparison study of ad hoc wireless multicast protocols. In Proceedings
of the IEEE Conference on Computer Communications, volume 2 of INFOCOM, pages
565–574, 2000.

94 bibliography

[66] Sung-Ju Lee, William Su, and Mario Gerla. On-demand multicast routing protocol
in multihop wireless mobile networks. Mobile Networks and Applications, 7(6):441–
453, 2002.

[67] Adrian Loch, Thomas Nitsche, Alexander Kuehne, Matthias Hollick, Joerg Wid-
mer, and Anja Klein. Practical interference alignment in the frequency domain for
OFDM-based wireless access networks. In International Symposium on a World of
Wireless, Mobile and Multimedia Networks, WoWMoM, June 2014.

[68] Jun Luo, Patrick Th. Eugster, and Jean-Pierre Hubaux. Route driven gossip: Prob-
abilistic reliable multicast in ad hoc networks. In Proceedings of the IEEE Conference
on Computer Communications, volume 3, pages 2229–2239, March 2003.

[69] Mahesh K. Marina and Samir R. Das. On-demand multipath distance vector rout-
ing in ad hoc networks. In Proceedings of the 9th IEEE International Conference on
Network Protocols, ICNP, pages 14–23, November 2001.

[70] John M. McQuillan, Ira Richer, and Eric C. Rosen. The new routing algorithm for
the ARPANET. IEEE Transactions on Communications, 28(5):711–719, May 1980.

[71] John Moy. OSPF version 2. RFC 2178, IETF, April 1998.

[72] Stephen Mueller, Rose P. Tsang, and Dipak Ghosal. Multipath routing in mobile ad
hoc networks: Issues and challenges. In Maria Carla Calzarossa and Erol Gelenbe,
editors, Performance Tools and Applications to Networked Systems, volume 2965 of
Lecture Notes in Computer Science, pages 209–234. Springer Berlin Heidelberg, 2004.

[73] Axel Neumann, Corinna Aichele, Marek Lindner, and Simon Wunderlich. Bet-
ter approach to mobile ad-hoc networking (B.A.T.M.A.N.). Internet-Draft draft-
openmesh-b-a-t-m-a-n-00, IETF, March 2008.

[74] Hoang Lan Nguyen and Uyen Trang Nguyen. A study of different types of attacks
on multicast in mobile ad hoc networks. Ad Hoc Networks, 6(1):32–46, 2008.

[75] Open Garden. FireChat web page. URL . Ac-
cessed: August 28, 2014.

[76] Open-mesh. B.A.T.M.A.N. protocol concept. URL
. Accessed: May 21, 2014.

[77] Panagiotis Papadimitratos and Zygmunt J. Haas. Secure routing for mobile ad hoc
networks. In Proceedings of the SCS Commnication Networks and Distributed Systems
Modeling and Simulation Conference, pages 193–204, San Antonio, TX, USA, January
2002.

[78] Panagiotis Papadimitratos and Zygmunt J. Haas. Secure link state routing for
mobile ad hoc networks. In Symposium on Applications and the Internet Workshops,
pages 379–383, 2003.

[79] Panagiotis Papadimitratos and Zygmunt J. Haas. Secure message transmission in
mobile ad hoc networks. Ad Hoc Networks, 1(1):193–209, July 2003.

https://opengan.com/firechat
http://www.open-mesh.org/projects/open-mesh/wiki/BATMANConcept
http://www.open-mesh.org/projects/open-mesh/wiki/BATMANConcept

bibliography 95

[80] Panagiotis Papadimitratos and Zygmunt J. Haas. Secure data communication in
mobile ad hoc networks. IEEE Journal on Selected Areas in Communications, 24(2):
343–356, February 2006.

[81] Panagiotis Papadimitratos and Aleksandar Jovanovic. GNSS-based positioning:
Attacks and countermeasures. In Proceedings of the IEEE Military Communications
Conference, MILCOM, pages 1–7, 2008.

[82] Guangyu Pei, Mario Gerla, Xiaoyan Hong, and Ching-Chuan Chiang. A wireless
hierarchical routing protocol with group mobility. In IEEE Wireless Communications
and Networking Conference, volume 3 of WCNC, pages 1538–1542, 1999.

[83] Guangyu Pei, Mario Gerla, and Tsu-Wei Chen. Fisheye state routing: A routing
scheme for ad hoc wireless networks. In IEEE International Conference on Commu-
nications, volume 1 of ICC 2000, pages 70–74, 2000.

[84] Guangyu Pei, Mario Gerla, and Xiaoyan Hong. LANMAR: Landmark routing
for large scale wireless ad hoc networks with group mobility. In Proceedings of
the 1st ACM International Symposium on Mobile Ad Hoc Networking and Computing,
MobiHoc, pages 11–18, Piscataway, NJ, USA, 2000.

[85] Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers. In Proceedings of the Confer-
ence on Communications Architectures, Protocols and Applications, SIGCOMM, pages
234–244, New York, NY, USA, 1994. ACM.

[86] Charles E. Perkins and Elizabeth M. Royer. Ad-hoc on-demand distance vector
routing. In Second IEEE Workshop on Mobile Computing Systems and Applications,
WMCSA, pages 90–100, February 1999.

[87] Charles E. Perkins, Elizabeth M. Belding-Royer, and Samir R. Das. Ad hoc on-
demand distance vector (AODV) routing. RFC 3561, IETF, July 2003.

[88] Jon Postel. Transmission control protocol. RFC 793, IETF, September 1981.

[89] Marcin Poturalski, Panagiotis Papadimitratos, and Jean-Pierre Hubaux. Towards
provable secure neighbor discovery in wireless networks. In Proceedings of the 6th

ACM Workshop on Formal Methods in Security Engineering, FMSE, pages 31–42, New
York, NY, USA, 2008. ACM.

[90] Lalith Suresh Puthalath and Ruben Merz. NS-3-Click: Click modular router inte-
gration for NS-3. In Proceedings of the 4th International ICST Conference on Simulation
Tools and Techniques, SIMUTools, pages 423–430, ICST, Brussels, Belgium, Belgium,
2011. ICST.

[91] Amir Qayyum, Laurent Viennot, and Anis Laouiti. Multipoint relaying: An effi-
cient technique for flooding in mobile wireless networks. Rapport de recherche
RR-3898, INRIA, 2000.

[92] Bo Rong, Hsiao-Hwa Chen, Yi Qian, Kejie Lu, Rose Qingyang Hu, and Sghaier
Guizani. A pyramidal security model for large-scale group-oriented computing
in mobile ad hoc networks: The key management study. IEEE Transactions on
Vehicular Technology, 58(1):398–408, January 2009.

96 bibliography

[93] Sankardas Roy, Venkata Gopala Krishna Addada, Sanjeev Setia, and Sushil Jajodia.
Securing MAODV: Attacks and countermeasures. In SECON, pages 521–532, 2005.

[94] Elizabeth M. Royer and Charles E. Perkins. Multicast operation of the ad-hoc
on-demand distance vector routing protocol. In Proceedings of the 5th Annual Inter-
national Conference on Mobile Computing and Networking, MobiCom, pages 207–218,
New York, NY, USA, 1999. ACM.

[95] Dhananjay Sampath and Jose Joaquin Garcia-Luna-Aceves. PROSE: Scalable rout-
ing in MANETs using prefix labels and distributed hashing. In 6th Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and
Networks, SECON, pages 1–9, June 2009.

[96] César A. Santiváñez, Ram Ramanathan, and Ioannis Stavrakakis. Making link-
state routing scale for ad hoc networks. In Proceedings of the 2nd ACM International
Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc, pages 22–32,
New York, NY, USA, 2001.

[97] Kimaya Sanzgiri, Bridget Dahill, Brian Neil Levine, Clay Shields, and Elizabeth M.
Belding-Royer. A secure routing protocol for ad hoc networks. In Proceedings of
the 10th IEEE International Conference on Network Protocols, pages 78–87, November
2002.

[98] Jaydip Sen. Security and privacy issues in wireless mesh networks: A survey.
In Shafiullah Khan and Al-Sakib Khan Pathan, editors, Wireless Networks and Se-
curity, Signals and Communication Technology, pages 189–272. Springer Berlin
Heidelberg, 2013.

[99] Sudipta Sengupta, Shravan Rayanchu, and Suman Banerjee. Network coding-
aware routing in wireless networks. IEEE/ACM Transactions on Networking, 18

(4):1158–1170, August 2010.

[100] Thrasyvoulos Spyropoulos, Rao Naveed Rais, Thierry Turletti, Katia Obraczka,
and Athanasios Vasilakos. Routing for disruption tolerant networks: Taxonomy
and design. Wireless Networks, 16(8):2349–2370, November 2010.

[101] Athichart Tangpong, George Kesidis, Hung yuan Hsu, and Ali Hurson. Robust
sybil detection for MANETs. In Proceedings of 18th Internatonal Conference on Com-
puter Communications and Networks, ICCCN, pages 1–6, August 2009.

[102] Tzeta Tsao, Roger K. Alexander, Mischa Dohler, Vanesa Daza, and Angel Lozano.
A security threat analysis for routing protocol for low-power and lossy networks
(RPL). Internet-Draft draft-ietf-roll-security-threats-10, IETF, September 2014.

[103] Kamin Whitehouse, Alec Woo, Fred Jiang, Joseph Polastre, and David Culler. Ex-
ploiting the capture effect for collision detection and recovery. In Proceedings of the
2nd IEEE workshop on Embedded Networked Sensors, pages 45–52, 2005.

[104] Bing Wu, Jie Wu, Eduardo B. Fernandez, Mohammad Ilyas, and Spyros Magliv-
eras. Secure and efficient key management in mobile ad hoc networks. Journal of
Network and Computer Applications, 30(3):937–954, August 2007.

bibliography 97

[105] Jason Xie, Rajesh R. Talpade, Anthony McAuley, and Mingyan Liu. AMRoute:
Ad hoc multicast routing protocol. Mobile Networks and Applications, 7(6):429–439,
December 2002.

[106] Dingwen Yuan, Michael Riecker, and Matthias Hollick. Making ‘glossy’ networks
sparkle: Exploiting concurrent transmissions for energy efficient, reliable, ultra-
low latency communication in wireless control networks. In Bhaskar Krishna-
machari, Amy L. Murphy, and Niki Trigoni, editors, Wireless Sensor Networks,
volume 8354 of Lecture Notes in Computer Science, pages 133–149. Springer Inter-
national Publishing, 2014.

[107] Manel Guerrero Zapata and N. Asokan. Securing ad hoc routing protocols. In
Proceedings of the 1st ACM Workshop on Wireless Security, WiSe, pages 1–10, New
York, NY, USA, 2002.

[108] Nianjun Zhou, Huaming Wu, and Alhussein A. Abouzeid. Reactive routing over-
head in networks with unreliable nodes. In Proceedings of the 9th Annual Interna-
tional Conference on Mobile Computing and Networking, MobiCom, pages 147–160,
New York, NY, USA, 2003. ACM.

	Abstract
	Zusammenfassung
	Declaration
	Contents

	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Outline

	State of the Art: Scalability and Security of MANET Routing
	2 Scalability of MANET Routing
	2.1 Definition
	2.2 System Model
	2.3 Limits of Scalability
	2.3.1 Network Layer Scalability Limits Imposed by Lower Layers
	2.3.2 Circumventing the Scalability Curse

	2.4 Scalability of MANET Unicast Routing
	2.4.1 Fundamentals
	2.4.2 Improving Scalability
	2.4.3 Discussion

	2.5 Scalability of MANET Multicast Routing
	2.5.1 Fundamentals
	2.5.2 Improving Scalability
	2.5.3 Discussion

	3 Security of MANET Routing
	3.1 Definition
	3.2 Assumptions
	3.2.1 Secure Neighbor Discovery
	3.2.2 Key Distribution and Management
	3.2.3 Adversary Model

	3.3 Security of MANET Unicast Routing
	3.3.1 Attacks
	3.3.2 Securing Route Discovery
	3.3.3 Securing Data Transmission
	3.3.4 Discussion

	3.4 Security of MANET Multicast Routing
	3.4.1 Attacks on Multicast
	3.4.2 Securing Multicast
	3.4.3 Discussion

	Xcastor: A Scalable and Secure Explicit Multicast Routing Protocol
	4 Design
	4.1 Choosing the Substrate
	4.2 Castor in Detail
	4.2.1 Packet Format
	4.2.2 Cryptographic Mechanisms
	4.2.3 Forwarding
	4.2.4 Reliability Estimators

	4.3 Extending Castor with Multicast Support
	4.3.1 A First Approach using Xcast
	4.3.2 Packet Merging
	4.3.3 Group Keys: Header Size Revisited
	4.3.4 ACK Authentication Problem
	4.3.5 Optimizing PKT Size

	4.4 Summary: Xcastor
	4.4.1 Packet Format
	4.4.2 Packet Processing
	4.4.3 Xcastor Security

	5 Implementation
	5.1 The Click Modular Router
	5.1.1 Click Elements

	5.2 Implementing Xcastor in Click
	5.2.1 Packet Format
	5.2.2 Elements
	5.2.3 Interworking with the MAC Layer: Broadcast Reliability

	6 Evaluation
	6.1 Goals
	6.2 Metrics
	6.2.1 Packet Delivery Rate
	6.2.2 Bandwidth Utilization
	6.2.3 Delay

	6.3 ns-3 Discrete Event Network Simulator
	6.4 Simulation
	6.4.1 Impact of Network Size
	6.4.2 Impact of Group Size
	6.4.3 Impact of Number of Groups
	6.4.4 Impact of Mobility
	6.4.5 Impact of Blackhole Attacks

	7 Discussion
	7.1 Xcastor has Lowest Delay
	7.2 Limited Bandwidth Utilization Gain
	7.2.1 Flow Size
	7.2.2 Hash Length
	7.2.3 Branching Factor of the Delivery Tree

	7.3 Explicit Multicast vs. Flooding in Large Groups
	7.4 MAC Layer Reliability is Important
	7.4.1 MAC Layer Multicast with Acknowledgments

	7.5 Attack Resilience Improved

	8 Conclusion
	8.1 Outlook

	Appendix
	A Build Instructions
	List of Figures
	List of Tables
	Acronyms
	Bibliography

