7,509 research outputs found

    M.I.N.G., Mars Investment for a New Generation: Robotic construction of a permanently manned Mars base

    Get PDF
    A basic procedure for robotically constructing a manned Mars base is outlined. The research procedure was divided into three areas: environment, robotics, and habitat. The base as designed will consist of these components: two power plants, communication facilities, a habitat complex, and a hangar, a garage, recreation and manufacturing facilities. The power plants will be self-contained nuclear fission reactors placed approx. 1 km from the base for safety considerations. The base communication system will use a combination of orbiting satellites and surface relay stations. This system is necessary for robotic contact with Phobos and any future communication requirements. The habitat complex will consist of six self-contained modules: core, biosphere, science, living quarters, galley/storage, and a sick bay which will be brought from Phobos. The complex will be set into an excavated hole and covered with approximately 0.5 m of sandbags to provide radiation protection for the astronauts. The recreation, hangar, garage, and manufacturing facilities will each be transformed from the four one-way landers. The complete complex will be built by autonomous, artificially intelligent robots. Robots incorporated into the design are as follows: Large Modular Construction Robots with detachable arms capable of large scale construction activities; Small Maneuverable Robotic Servicers capable of performing delicate tasks normally requiring a suited astronaut; and a trailer vehicle with modular type attachments to complete specific tasks; and finally, Mobile Autonomous Rechargeable Transporters capable of transferring air and water from the manufacturing facility to the habitat complex

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Developing a Framework for Semi-Autonomous Control

    Get PDF

    Spacecraft Dormancy Autonomy Analysis for a Crewed Martian Mission

    Get PDF
    Current concepts of operations for human exploration of Mars center on the staged deployment of spacecraft, logistics, and crew. Though most studies focus on the needs for human occupation of the spacecraft and habitats, these resources will spend most of their lifetime unoccupied. As such, it is important to identify the operational state of the unoccupied spacecraft or habitat, as well as to design the systems to enable the appropriate level of autonomy. Key goals for this study include providing a realistic assessment of what "dormancy" entails for human spacecraft, exploring gaps in state-of-the-art for autonomy in human spacecraft design, providing recommendations for investments in autonomous systems technology development, and developing architectural requirements for spacecraft that must be autonomous during dormant operations. The mission that was chosen is based on a crewed mission to Mars. In particular, this study focuses on the time that the spacecraft that carried humans to Mars spends dormant in Martian orbit while the crew carries out a surface mission. Communications constraints are assumed to be severe, with limited bandwidth and limited ability to send commands and receive telemetry. The assumptions made as part of this mission have close parallels with mission scenarios envisioned for dormant cis-lunar habitats that are stepping-stones to Mars missions. As such, the data in this report is expected to be broadly applicable to all dormant deep space human spacecraft

    Cluster Control of Automated Surface Vessels

    Get PDF
    This research focuses on the design and control of a fleet of robotic kayaks, and presents experimental data regarding the functionality and performance of the system. One of the key technical challenges in fielding multi-robot systems for real-world applications is the coordination and relative motion control of the individual units. Coordinated formation control of the fleet is implemented through the use of the cluster space control architecture, which is a full-order controller that treats the fleet as a virtual, articulating, kinematic mechanism. The resulting system is capable of autonomous navigation utilizing a centralized controller, currently implemented via a shore-based computer that wirelessly receives ASV data and relays control commands. Using the cluster space control approach, these control commands allow a cluster supervisor to oversee a flexible and mobile formation formed by the ASV cluster. This paper includes an extended appendix which includes MatLab and Simulink code as well as two publications completed in the process of this research

    Post-Westgate SWAT : C4ISTAR Architectural Framework for Autonomous Network Integrated Multifaceted Warfighting Solutions Version 1.0 : A Peer-Reviewed Monograph

    Full text link
    Police SWAT teams and Military Special Forces face mounting pressure and challenges from adversaries that can only be resolved by way of ever more sophisticated inputs into tactical operations. Lethal Autonomy provides constrained military/security forces with a viable option, but only if implementation has got proper empirically supported foundations. Autonomous weapon systems can be designed and developed to conduct ground, air and naval operations. This monograph offers some insights into the challenges of developing legal, reliable and ethical forms of autonomous weapons, that address the gap between Police or Law Enforcement and Military operations that is growing exponentially small. National adversaries are today in many instances hybrid threats, that manifest criminal and military traits, these often require deployment of hybrid-capability autonomous weapons imbued with the capability to taken on both Military and/or Security objectives. The Westgate Terrorist Attack of 21st September 2013 in the Westlands suburb of Nairobi, Kenya is a very clear manifestation of the hybrid combat scenario that required military response and police investigations against a fighting cell of the Somalia based globally networked Al Shabaab terrorist group.Comment: 52 pages, 6 Figures, over 40 references, reviewed by a reade

    University of Maryland walking robot: A design project for undergraduate students

    Get PDF
    The design and construction required that the walking robot machine be capable of completing a number of tasks including walking in a straight line, turning to change direction, and maneuvering over an obstable such as a set of stairs. The machine consists of two sets of four telescoping legs that alternately support the entire structure. A gear-box and crank-arm assembly is connected to the leg sets to provide the power required for the translational motion of the machine. By retracting all eight legs, the robot comes to rest on a central Bigfoot support. Turning is accomplished by rotating the machine about this support. The machine can be controlled by using either a user operated remote tether or the on-board computer for the execution of control commands. Absolute encoders are attached to all motors (leg, main drive, and Bigfoot) to provide the control computer with information regarding the status of the motors (up-down motion, forward or reverse rotation). Long and short range infrared sensors provide the computer with feedback information regarding the machine's relative position to a series of stripes and reflectors. These infrared sensors simulate how the robot might sense and gain information about the environment of Mars
    • …
    corecore