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ABSTRACT 
 

This research focuses on the design and control of a fleet of robotic kayaks, and presents 

experimental data regarding the functionality and performance of the system. One of the 

key technical challenges in fielding multi-robot systems for real-world applications is the 

coordination and relative motion control of the individual units. Coordinated formation 

control of the fleet is implemented through the use of the cluster space control 

architecture, which is a full-order controller that treats the fleet as a virtual, articulating, 

kinematic mechanism.  The resulting system is capable of autonomous navigation 

utilizing a centralized controller, currently implemented via a shore-based computer that 

wirelessly receives ASV data and relays control commands. Using the cluster space 

control approach, these control commands allow a cluster supervisor to oversee a flexible 

and mobile formation formed by the ASV cluster.  This paper includes an extended 

appendix which includes MatLab and Simulink code as well as two publications 

completed in the process of this research. 

 

Keywords: Cluster Space Control, Autonomous / Unmanned Surface Vessel, Obstacle 

Avoidance, Shielding 
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SECTION I: MULTI-ROBOT RESEARCH PROGRAM 

Robots are useful.  Really useful.  You just won't believe how vastly, hugely, 

mindbogglingly useful they are.  You might think a screwdriver is useful, but that's just 

peanuts to robots.  Listen, they offer a wide variety of functions over a large range of 

applications [1]  Due to their endurance, speed, precision, versatility and their ability to 

withstand conditions far beyond what a human would be able to, they are the perfect tool 

for research in extreme environments.  These environments range from the depths of the 

ocean to the far reaches of space.  In the marine environment specifically, robots like 

autonomous underwater vessels (AUVs), remotely operated vehicles (ROVs), or 

unmanned surface vessels (USVs) handle long term exposure and the pressures of the 

ocean’s depth with ease.  But these extreme environments can also create many 

challenges for the robotic systems and their designers.  Tasks for mobile robots, like path 

planning or obstacle avoidance can often become difficult in these remote operations (due 

to a lack of telepropreoception).   

There is increasing interest in applications where not just one but multiple robots are 

the ideal solution.  Spatially diverse operation, flexible arrangement and rearrangement, 

increased coverage area, increased data, and agent redundancy are just some of the 

features of multi-robot systems.  These features enable operations like simultaneously 

sampling multiple locations in a dynamic environment or optimizing sensor location and 

geometry to minimize errors in remote sensing application.  Numerous other in-situ, 

remote sensing and even physical manipulation tasks are enabled by utilizing multi-robot 

systems.   
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However, these benefits of multi-robot systems are not without their challenges.  

Hurdles like communication, sensing, and actuation are difficult with one robot.  But the 

difficulty is magnified exponentially by the inclusion of additional robots into the system.  

Another of these obstacles in fielding a mobile mult-robot system is the navigation 

strategy used to guide the group of robots.  Assuming that control of one robot is easy 

(which is often not the case), the task of a mission planner, supervisor, or real-time 

operator can become very difficult when increasing to just two or three robots under his 

or her control, and the task becomes nearly impossible as the cluster increases to greater 

numbers. 

The goal of the Santa Clara University Robotic Systems Laboratory’s (SCU RSL) work 

in the field of multi-robot systems is to facilitate the operation of multi-robot systems.  A 

variety of techniques have been suggested and explored for these systems by others 

working in this field.  Decentralized techniques excel when data exchange is limited [2]-

[3] and centralized approaches can exploit global information if it is available [4]-[5].  

Several different behavioral, nature inspired, and potential field techniques have been 

demonstrated [6]-[8].  Other less sophisticated systems use techniques like blind 

leader/follower, and spatially or temporally offset trajectories.  But the RSL has focused 

its efforts on one controller that provides a straightforward method of specifying and 

monitoring the formation as well as the ability to achieve highly connected and full order 

control [9]. 
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SECTION II: CLUSTER SPACE CONTROL 

The cluster space control approach uses the idea that the entire group is a single unit, 

“the cluster”, and motion commands are given as functions of cluster attributes.  The 

attributes can vary, but are commonly things like position, angle, distance and orientation.  

The motion of the cluster of mobile robots is similar to that of a virtual kinematic 

mechanism, and as such all the attributes are easily monitored and varied through a set of 

independent system state variables.  These state variables make up the systems cluster 

space and are correlated to the robot level variables through a set of kinematic 

transforms.  The kinematic transforms provide several functions including translation of 

cluster level commands into actuation of individual robots, and the ability to convert data 

from an assortment of different sensors into the cluster space [9]. 

The exact control type can vary from a basic PID controller to more sophisticated 

nonlinear dynamic controllers.  The basic PID controller determines the error from the 

desired cluster velocity or position for each cluster space variable and then uses an 

inverse Jacobean transform to convert to robot level velocity or position commands.  The 

versions employed in the works presented below are kinematic, resolved rate controllers 

with the robots handling velocity control on board.   

The RSL has demonstrated clusters of up to six vehicles with obstacle avoidance, and 

has simulations of higher numbers.  We have implemented designs using both holonomic 

and nonholonomic robots, piloted and supervised modes, and a variety of relative and 

absolute positioning systems and sensing methods.  The application reported on here, 

guarding and shielding, is a follow-on to earlier work in escorting and patrolling [10]-
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[13], and has also been applied to other tasks including gradient tracking [14]-[15] and 

reconfigurable sparse array communication. [16] 

Another new technique developed in this work is the application space.  Application 

space is a second layer of abstraction that transforms user-specified application variables 

into desired cluster space variables.  Application variables are typically more detailed and 

specific than cluster space variables, and often they are used to consolidate several 

degrees of freedom in the cluster space.  These variables can be controlled, prescribed, or 

tied to environmental interactions. 

 

SECTION III: RESEARCH OBJECTIVES 

Having established that robots are useful and that more robots are better, and provided a 

technique for controlling these groups of robots, we can now explore some of the 

applications of mobile muli-robot clusters.  Looking specifically at the marine 

environment, such systems include remote sensor nodes, energy harvesting systems, 

manned ships and their support equipment, and unmanned vehicles operating both under 

and on the water’s surface. 

In this work we use a cluster of five Unmanned Surface Vessels (USV) to establish a 

shield around a vessel.  This guarding technique was motivated by work done by the RSL 

in Lake Tahoe, where high boater traffic often makes it dangerous to operate.  In ROV 

operations when the tether is at the surface it can be very hard to see.  Recreational 

boaters can be unaware, inexperienced or distracted creating a hazard to both the boater 
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and the crew running the ROV.  The desire was for a group of mobile buoys that would 

create a visual barrier around the operation, a perfect application for cluster space control. 

Previous research has shown the robustness of the cluster space in controlling the 

dynamic motions of a small cluster of unmanned surface vessels [10]-[13] as well as 

proving obstacle avoidance for land based robots [17].  The objective of this research 

project was to demonstrate autonomous cluster space control on a larger group of 

unmanned surface vessels, explore the potential of the application space, to develop a 

new cluster formation and to implement an obstacle avoidance technique.  The resulting 

cluster space controller was verified in simulation, tested on land-based robots, and 

finally verified in field testing with a cluster of five USVs.  Furthermore the design of the 

USVs was advanced in several areas including increasing the overall robustness of the 

onboard electronics and mounting hardware, improvements to the transport mechanism 

and formalization of the deployment strategy. 

 

SECTION IV: USV TEST BED 

The development of the marine test bed has evolved over several iterations.  It has been 

a key design requirement from the beginning to maintain as much similarity with the land 

based robot test bed in terms of hardware, software, interface, and coordinate system. For 

example, the use of common bus architecture across all RSL robotic vehicles enables a 

rapidly reproducible control system capable of transparently controlling multiple 

platforms, including several different types of land rovers, aerial vehicles, and marine 

vessels.  The current system hardware can be seen in Fig. 1 and Fig. 2 on the next page. 
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Fig. 1 – Five of the RSL’s unmanned surface vessels ready for a test at Lake Del Valle near Livermore, CA 

 

The design of the vessels themselves has been primarily focused on ease of operation 

and low cost.  By mainly using off the shelf parts, like a readily available kayak requiring 

no permanent modifications, new vessels and replacement components are easily 

integrated if the need arises.  Utilizing plastics, fiberglass, and other corrosion and UV 

resistant materials ensure a long life in the marine environment.  

 
Fig. 2 – Hardware component block diagram example for two kayaks [11] 
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Upgrades and modifications have been made to the USVs as stated earlier.  The 

onboard electronics have been fully vetted and several components that had previously 

caused intermittent issues in some of the units have been replaced or eliminated.  The 

mounting structure has been modified to reduce the overall size, weight and required 

assembly time which has eased both the deployment and transportation of the vessels.  

Further details of the previous iteration as well as the current control hardware, protocol, 

propulsion, and power subsystems have been previously described [11]-[13]. 

 

SECTION V: PUBLICATIONS 

This section is primarily composed of two articles.  The first is a journal article 

describing the work done on this research project.  The paper describes the control 

architecture used to establish the guarding behavior.  It reviews the design of the robotic 

kayaks, and briefly discusses some of the hardware development.  Finally it presents 

simulated and experimental data of the system performance and functionality.  It has been 

accepted for publication in the February 2012 focus issue of IEEE/ASME Transactions 

on Mechatronics which has a Journal Citation Reports ranking of #1 in Manufacturing 

Engineering, #4 in Mechanical Engineering, and #4 in Automation & Control.   

The second paper was presented at OES/IEEE - AUV2010 in Monterey California on 

September 3, 2010.  It is a review of the initial work done on the most recent phase of the 

research project.  It similarly discusses the cluster space control architecture and briefly 

notes the hardware, but mainly focuses on the simulation of a smaller cluster of vessels 

which were then expanded and tested in the field as shown in the journal article. 



 

 

 
 
 

8 

 

In addition to these two publications several other articles, talks and posters have been 

generated from this research.  [12] is a journal publication and [20] is a conference 

publication and talk, both discussing cluster space control of surface vessels.  [18] and 

[19] focus on applications of cluster space control in both marine and non-marine 

applications.  [21] and [22] are respectively a conference paper and a poster, both 

focusing on using the cluster in a gradient tracking application.  

The articles included in appendices A and B have been formatted to fit your viewing 

device but retain all the original content and are subject to the following disclaimer:  

 This work was supported in part by the National Science Foundation under Grant 

CNS0619940, and by financial support from NASA, and Santa Clara University; any 

opinions, findings, and conclusions or recommendations expressed in this material are 

those of the author and do not necessarily reflect the views of the National Science 

Foundation, NASA, or Santa Clara University.  

Additionally the journal article is © 2012 IEEE. Reprinted, with permission, from IEEE 

Transaction on Mechatronics. 

 

SECTION VI: SUMMARY AND CONCLUSIONS 

In this research we focused on the design and control of a fleet of robotic kayaks, and 

presented experimental data regarding the functionality and performance of the system.  

We described the use of a fleet of robotic marine vessels capable of guarding critical 

assets from threats.  Coordinated formation control of the fleet was implemented through 

the use of the cluster space controller. An application-specific layer was integrated with 
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the cluster space controller, allowing an operator to directly specify and monitor 

guarding-related parameters. 

This system has been experimentally verified in the field with a fleet of robotic kayaks 

in this research.  The control architecture used to establish the guarding behavior and the 

design of the robotic kayaks were reviewed, and experimental data regarding the 

functionality and performance of the system was presented. As a result, the five-robot 

cluster space definition and control architecture was validated and functionality was 

proven for this application.  This paper includes an extended appendix which includes 

MatLab and Simulink code as well as two publications completed in the process of this 

research. 
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APPENDIX A. JOURNAL ARTICLE 

Dynamic Guarding of Marine Assets 

through Cluster Control of Automated 

Surface Vessel Fleets 

 

Paul Mahacek, Student Member, IEEE, Christopher A. Kitts, Senior Member, IEEE,  

Ignacio Mas, Student Member, IEEE 

Abstract—There is often a need to mark or patrol marine areas in order to prevent boat traffic 

from approaching critical regions, such as the location of a high-value vessel, a dive site, or a fragile 

marine ecosystem.  In this paper we describe the use of a fleet of robotic kayaks that provides such a 

function: the fleet circumnavigates the critical area until a threatening boat approaches, at which 

point the fleet establishes a barrier between the ship and the protected area.  Coordinated formation 

control of the fleet is implemented through the use of the cluster space control architecture, which is 

a full-order controller that treats the fleet as a virtual, articulating, kinematic mechanism.  An 

application-specific layer interacts with the cluster space controller in order for an operator to 

directly specify and monitor guarding-related parameters such as the spacing between boats.  This 

system has been experimentally verified in the field with a fleet of robotic kayaks.  This paper 

describes the control architecture used to establish the guarding behavior, reviews the design of the 

robotic kayaks, and presents experimental data regarding the functionality and performance of the 

system. 

 

Index Terms—Multi-robot systems, formation control, collaborative control, robot teams, cluster 

space. 

 

I. INTRODUCTION 

 Mechatronic systems provide benefits in a wide range of applications given their 

strength, speed, precision, and ability to withstand extreme environments.  In the marine 

environment, such systems include remote sensor nodes, energy harvesting systems, 

manned ships and their support equipment, and unmanned vehicles operating under water 

and on the surface of the sea. 
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 Unmanned Surface Vessels (USVs) have been used for nearly 70 years in order to 

reduce the risks and costs associated with activities ranging from military operations to 

scientific characterization [1].  Early USV systems were remotely piloted and used for 

applications such as  serving  as gunnery targets or mine countermeasure drones [2].  

Over the past two decades, advances in GPS-based position sensing, wireless 

communication, navigation, and automation technologies have enabled a variety of new 

USV applications such as towing objects, mine-sweeping, exploration, and serving as 

communication relays between underwater assets and remote control nodes.  Excellent 

reviews of the many USV systems that have been developed for such applications are 

provided in [3-5]. 

 Recent advances in multi-robot control techniques have led to the development of 

several multi-USV systems.  Potential advantages of multi-USV systems include 

redundancy, increased coverage and throughput, flexible reconfigurability, spatially 

diverse functionality, and the fusing of physically distributed sensors and actuators; 

applications capable of exploiting such features range from remote and in situ sensing to 

the physical manipulation of objects [6]. 

 One of the first implemented multi-USV systems was the Massachusetts Institute 

of Technology’s SCOUT system, comprised of several robotic kayaks [7].  In addition to 

serving as a multi-USV navigation testbed, fleets of 2-4 SCOUT vehicles have been used 

to explore support applications for autonomous underwater vehicles, such as serving as a 

communications relay and providing long-baseline navigation services [8].  Researchers 

at Carnegie-Mellon University have networked two of their OASIS USVs to explore 

telesupervised aquatic sensing; this system has been demonstrated experimentally with 
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field studies detecting and characterizing simulated harmful algae blooms [9].  Work at 

the U.S. Naval Academy (USNA) has focused on using multiple tugboats to 

cooperatively manipulate and propel other ocean vehicles through the use of swarm 

navigation techniques [10].  In a 2009 demonstration during the Navy’s Trident Warrior 

exercise, the CARACaS (Control Architecture for Robotic agent Command and Sensing) 

autonomy architecture was used on several USVs in order to verify the use of this 

behavior-based control system for asset protection and riverine survey applications [11].  

Other concepts include the fleet of small-scale Drosobots developed for sampling 

applications [12], and the open source Protei development effort to field a fleet of sailing 

drones for oil and pollution clean-up services [13].   

 The work presented in this paper aligns with many of the themes presented in 

[14], which discussed the use of USVs as automated buoys, such as those used by the 

Naval Undersea Warfare Center [15].  In particular, this work envisioned multi-USV 

buoy systems for a variety of marine applications ranging from marine traffic 

management to distributed sensing.  Potential benefits identified for such a system 

included the ability to rapidly deploy a buoy line, the ability to dynamically reposition the 

buoys, and reduced deployment and maintenance costs. 

 There are many challenges to fielding multi-USV systems, to include providing 

robust communications, the incorporation and fusion of distributed sensing and actuation 

capabilities, the human-machine interfaces to enable efficient monitoring and 

specification of tasks, and achieving cost-effective production and operation.  One 

particularly challenging issue is the navigation strategy used to guide the absolute and 

relative motions of the fleet.  A wide variety of techniques have been and continue to be 
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explored for this capability for multi-robot systems in general.  When limited information 

exchange is a primary constraint (due to physical distribution or constrained bandwidth), 

decentralized control approaches are often pursued [16]-[17].  Behavioral, biologically 

inspired, and potential field techniques have been successfully demonstrated [18]-[20], 

although they often lack mathematical formality.  Centralized approaches exploiting 

global information exist, but they are often not preferred due to limited scalability; 

however, they may be ideal when tight robot interaction is required by applications such 

as the realtime fusing of sensors or actuators [21]-[22]. 

 Specific to the multi-USV systems previously cited, several systems use a very 

loose form of coordinated navigation in which each USV blindly follows its own 

trajectory, but the trajectories are spatially (as with the Drosobots) or temporally (as with 

OASIS) offset in order to divide and conquer the task at hand.  The USNA tugboat fleet, 

however, employs a much tighter coordination strategy in order to achieve manipulation 

tasks.   

 The work presented in this article employs a specific coordinated navigation 

control approach known as Cluster Space control [23], which we have previously 

demonstrated experimentally on land rover, aerial robot and surface ship systems.  We 

have developed this controller in order to enable benefits such as natural specification 

and monitoring of formation performance and the ability to achieve highly connected and 

full-order control.  Our current work introduces an application-layer above the centralized 

formation controller, transforming application-specific specifications into cluster space 

control specifications; these are used to implement the realtime cluster controller, which 

in turn determines the drive commands for each individual robot in the fleet.  Section II 
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of this paper reviews the cluster space control approach and its integration with a specific 

application, that of dynamically establishing a barrier between threatening marine traffic 

and an asset that must be protected.  Section III reviews the design of the multi-USV 

system.  Section IV presents experimental field data, and Section V discusses future work 

and draws conclusions about the significance of this work. 

II. THE CLUSTER SPACE CONTROLLER 

 Our research in Cluster Space Control is motivated by our vision of a specific 

class of multi-robot applications that require complete degree-of freedom control of the 

spatial and motion characteristics of a locally distributed mobile multi-robot system that 

tightly interacts in realtime.  At the same time, we desire transparency for the formation’s 

degrees of freedom in order for a realtime human pilot or supervisory controller to 

specify, control and/or monitor performance.   

 Because the cluster space technique allows direct specification of any spatial state 

variables of interest, it avoids potential drawbacks of other well-known multi-robot 

control strategies.  For example, compared to virtual bodies and artificial potentials 

approach [20], there is no need to iteratively tune potential fields or to select artificial 

leader positions in order to achieve the motion characteristics of interest.  Compared to 

leader-follower techniques [24], specification is not limited to the distance and/or angle 

between leader-follower pairs within the formation.  In contrast to virtual body 

techniques [25], all pose degrees of freedom may be continuously articulated.  Some of 

these advantages come at the cost of increased computation within the realtime control 

loop; however, the cluster space approach can be implemented with varying levels of 

(de)centralization [25], and we have had success exploring strategies such as multi-rate 
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control [26]; these strategies are both suitable for dramatically reducing computational 

load and the need for information sharing throughout the cluster. 

A. The Cluster Space Control Approach 

 Central to the cluster space strategy are the concepts of considering the n-robot 

system as a single entity, a “cluster,” and of specifying motions with respect to cluster 

attributes, such as position, orientation, and geometry; we note that all of these attributes 

may be easily varied such that a reasonable analogy is that a cluster of mobile robots 

moves like a virtual kinematic mechanism. Our approach is to use the cluster attributes to 

guide the selection of a set of independent system state variables suitable for 

specification, control, and monitoring.  This collection of state variables constitutes the 

system’s cluster space and can be related to robot-specific state variables through a 

formal set of kinematic transforms. A supervisory operator or realtime pilot specifies and 

monitors cluster motion, and control computations are executed with respect to the 

cluster space variables, (which leads to well-behaved motions in the cluster space).  

Kinematic transforms allow compensation commands to be derived for each individual 

robot, and they also allow data from a variety of sensor packages to be converted to 

cluster space state estimates.   

 As an example of this, consider the case of a simple, planar two-robot cluster, 

which is detailed in [23] and shown in Fig. 1.  A conventional robot space definition of 

the pose of this system would include the position and orientation of each robot as 

measured in the global frame: TG
yxyxR ),,,,,( 222111 θθ=

r
.  To consider the cluster 

perspective, assume that a cluster frame is placed at the midpoint between the two robots 

and oriented towards Robot 1.  A reasonable cluster space description of the cluster’s 
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pose would include the location and orientation of the cluster frame, a single variable 

representing the cluster geometry (in this case, we use the distance to each robot from the 

cluster origin), and the relative orientations of each robot with respect to the cluster 

frame; this results in a cluster pose vector of T

CCC dyxC ),,,,,( 21 φφθ=
r

.   

 
Fig. 1 – Representing the pose of a two-robot system using a cluster space description. 

 Mathematical relationships that relate these robot and cluster space variables 

constitute the position kinematic functions; for example, the cluster’s x and y location is 

the average of the x and y locations of the two robots.  Furthermore, the robot and cluster 

space velocities, RG &r  and C
&r

, can also be formally related to each other.  For example, 

computing the partial derivatives of the cluster space pose variables allows the 

development of a Jacobian matrix, , that maps robot velocities to cluster velocities in the 

form of a time-varying linear function: 
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 The controller itself can take on several forms given the needs of the system and 

application.  For example, a simple form would consist of a linear PID controller that 

computes compensations in the form of instantaneous cluster velocity set-points, which 

are then transformed to individual instantaneous robot velocity set-points through the use 

of an inverse Jacobian transform; this is a kinematic, resolved-rate controller appropriate 

for robots with their own velocity-control capabilities.  This style of controller is depicted 

in Fig. 2, and it is the architecture employed for the work reported on in this article.  We 

have also developed and implemented more sophisticated nonlinear dynamic controllers.  

Such a controller uses a partitioned model-based strategy and computes compensations in 

the form of the abstracted cluster space forces and torques necessary to manipulate the 

virtual kinematic mechanism; these compensations are converted by a Jacobian transpose 

transform to individual robot-level control forces/torques for dynamic control of the 

individual vehicles [27].   

 
Fig. 2 – Inverse Jacobian Cluster Space Control Architecture for a Mobile Multi-Robot System. 
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 To date, we have successfully implemented cluster space control in experiments 

with clusters of up to 6 vehicles, for both holonomic and nonholonomic robots, for robots 

negotiating obstacle fields, for piloted and supervisory control modes, and for a variety of 

relative/absolute positioning and tracking pose sensing systems.  The guarding/shielding 

application reported here is an extension of our previous work in escorting/patrolling 

[28]-[30].  In addition, we are applying the control strategy to other applications such as 

gradient-based environmental sensing [31]-[32] and reconfigurable sparse array 

communication systems [33].   

B. Cluster Space Kinematic Transforms for the Dynamic Guarding Application 

 In exploring the dynamic guarding application, we have applied the cluster space 

control framework in numerous ways, each varying the selection of pose variables.  For 

the experiments presented in Section IV, the selection of these variables was driven by the 

guarding application.  This application involves the creation of a “fence” that becomes 

denser as a threat approaches and which is positioned between the threat and the asset 

being guarded.  From this perspective, the position of the asset being protected and the 

location of the threat (its bearing from the asset and its proximity) dictate the deployment 

of the robots in the creation of a fence that is properly positioned with an appropriately 

dense “fence spacing.” 

 Fig. 3 depicts the relevant reference frames and geometric layout for a planar 5-

USV cluster.  To complement the sensor data used in experimentation, the global frame 

was defined with XG pointing East and YG pointing North.  The robot space pose vector is 

RG
r

=(X0, Y0, ϕ0, …, X5, Y5, φ5)
T
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where (X0, Y0, φ0) is the pose of the protected object and (Xi, Yi, φi)  is the pose of each 

of the robots where i=(1,2,3,4,5).  We note that we are treating the protected asset as an 

element of the cluster, although it is not directly controlled by the cluster space dynamic 

guarding policy.  We also note that for this application, robot orientation is not critical in 

establishing a fence; in fact, given the non-holonomic constraints of the boats used in the 

application, they are not independently specified.  For this reason, and to simplify the 

presentation of the underlying mathematics, we drop them from consideration in 

independently specifying the pose of the fleet.  This leaves us with two degrees of 

freedom for each of the six fleet entities (five boats and the protected asset), yielding a 

total of 12 linear degrees of freedom for the robot group. 

 
Fig. 3 – 5-USV Cluster Geometry. 
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 From the cluster perspective, we place the cluster frame origin, denoted by (Xc, 

Yc), at the location of the protected object, and we orient the frame such that the cluster 

heading, θc, points the frame towards the location of robot 1.  The locations of robots 1 - 

5 are specified in part by the radial distances, R1 - R5, from the asset being protected to 

each individual robot.  In addition, the positions of robots 2 and 3 are defined by a 

spacing from robot 1 given as F2 and F3.  Similarly, robots 4 and 5 are each positioned by 

a spacing F4 and F5 from robots 2 and 3, respectively.  Further expansion of the cluster 

can be achieved by adding robots to either end of the cluster using this even-odd 

convention. 

The cluster space pose vector is therefore 

C
r

=(Xc,Yc,θc,R1,R2,R3,R4,R5,F2,F3,F4,F5,φ1,ϕ2,ϕ3,ϕ4,,ϕ5)
 T

. 

where each ϕi is the relative rotation of each robot with respect to the cluster frame, for 

i=1-5.  As previously stated, given that the kayaks are non-holonomic vehicles, robot 

orientations are removed as freely specified variables, and the mathematical development 

that follows is independent of these variables.  The controller used for this study uses an 

inner loop heading controller to orient each vehicle in the direction of desired motions.  

We have also developed a formally constructed non-holonomic controller for use in 

systems of this type [34].  Removing the ϕi angles from consideration leaves us with 12 

cluster degrees- of-freedom, matching the 12 linear degrees of freedom in robot space. 

Given RG
r

 and C
r

, the set of forward position kinematic equations, )( RKINC
G
rr

= , is given 

by Eqs (2)-(7): 

Xc=X0           (2) 

Yc=Y0           (3) 
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Rn=((Xn-X0)
2
+(Yn-Y0)

2
)

1/2
  for n=1,2,3,4,5   

  
(4) 

θ1=Atan2((X1-X0),(Y1-Y0))
                  

(5) 

F2=((X2-X1)
2
+(Y2-Y1)

2
)

1/2        
(6) 

Fm=((Xm-Xm-2)
2
+(Ym-Ym-2)

2
)

 1/2
 for 

 
m=3,4,5     (7) 

Inversely, the set of inverse position kinematic equations, )(CINVKINR
G

rr
= , is given by Eqs (8)-(15): 

X0=Xc           (8) 

Y0=Yc           (9) 

X1=Xc+R1* Sin(θ1)         (10) 

Y1=Yc+R1* Cos(θ1)         (11) 

Xi=Xc+Ri*Sin(θ1+acos((R1
2
+ Ri

2
- Fi

2
)/(2* R1* Ri)))           for i=2,3    (12) 

Yi=Yc+Ri* Cos(θ1+acos((R1
2
+ Ri

2
- Fi

2
)/2* R1* Ri)))          for i=2,3    (13) 

Xj=Xc+Rj*Sin(θ1+acos((R1
2
+ Rj-2

2
- Fj

2
)/2* R1* Rj-2)) +acos((Rj

2
+ Rj-2

2
- Fj

2
)/2* Rj* Rj-2)))     for j=4,5    (14) 

Yj=Yc+Rj* Cos(θ1+acos((R1
2
+ Rj-2

2
- Fj-2

2
)/2* R1* Rj-2)) +acos((Rj

2
+ Rj-2

2
- Fj

2
)/2* Rj* Rj-2)))     for j=4,5  (15) 

 The forward and inverse velocity kinematics provide the formal relationship 

between the robot and cluster space velocities, RG &r
 and C

&r
.  From (2)-(3), we may compute 

the partial derivatives of the cluster space pose variables, ci, and develop a Jacobian 

matrix, J , that maps robot velocities to cluster velocities in the form of a time-varying 

linear function: 
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In a similar manner, we may develop the inverse Jacobian, )(1 RJ GG
r

− ,, which maps 

cluster velocities to robot velocities.  Space prohibits the complete listing of J and 
1−

J . 
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C. Control Framework for the Dynamic Guarding Application 

 The general control architecture depicted in Fig. 2 is used for this application, 

with two modifications as shown in Fig. 4.   First, a basic robot-level obstacle avoidance 

function is added to protect the individual robots from colliding with each other, the 

object being protected, and the threatening object.  When this occurs, the threatened USV 

negotiates the obstacle in an independent fashion, momentarily breaking away from the 

formation.  Once the obstacle has been avoided, the USV returns to the cluster.  As is 

common for collision avoidance, the avoidance force is a repulsive function that is 

summed with other control forces.  For each USV, the detection radius and the avoidance 

potential can be independently specified; circular fields are typically used, but an 

elongated oval can be defined to better model the outer edge of the vessel.  It is 

interesting to note that we have developed a cluster-level obstacle avoidance algorithm, 

which allows for the entire cluster to move in unison, maintaining the cluster shape while 

avoiding a collision [34]; this approach, however, was deemed inappropriate for the 

guarding application since it would too easily allow the threat to simply “push” the entire 

barrier out of the way. 

 
Fig. 4. – Cluster Space Control Architecture for an n-Robot system. 
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 The second modification is the augmentation of the input to the controller with an 

application-space-to-cluster-space function that transforms user-specified application 

space variables to desired cluster variables.  For the implemented guarding application, 

Fig. 5 indicates the spatial quantities of interest.  The overall concept of operation is as 

follows.  The object being protected is at a location (Xobj, Yobj).  With no threat, the USVs 

patrol about the object being protected at a minimum specified radius, Rmin, and evenly 

spaced in a circle.  As a threat approaches from an observed bearing, T, and with a 

distance, DT, the USV formation shifts in three ways.  First, the USVs rotate about the 

circumference of the protected region in order to align themselves between the threat and 

the protected object.  Second, the USVs move closer together to form a denser barrier, 

with some minimum specified spacing, Fmin.  Third, they may also move out towards the 

threat in order to meet it at a maximum radius of Rmax.   

 
Fig. 5 – Application layer variables showing two cases where the threat is  either far away or not detected 

at all (left), or where the threat is close and the USVs have shifted to guard the protected object or area 

(right). 
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 Given these specifications, the instantaneous specification for the cluster space 

controller can be derived from an appropriate set of application-space-to-cluster-space 

transforms.  These transforms convert the application-relevant information, 

(Xobj,Yobj,Rmin,Rmax,DT,T,Fmin), to cluster space variable inputs. For the guarding 

application, these transforms are of the form represented in Eqs (17)-(21) assuming 

DT>Rmax: 

Xc=Xobj          (17) 

Yc=Yobj          (18) 

θC= θT            (19) 

Rn=Rmin + (Rmax-Rmin)/(DT - Rmax+1)  for n=1,2,3,4,5   (20) 

Fn=Fmax – (Fmax-Fmin)/(DT – Rmax+1)  for n=2,3,4,5    (21) 

 

where Fmax= 2*Rn*sin(π/m) for m=5 (the number of robots) ; Fmax is the distance 

between robots when evenly spaced in a pentagon around the protected asset. 

 In Fig. 4, this set of application layer transforms operate on the specifications 

provided by the supervisory operator and provide the resulting cluster space desired 

values to the cluster control loop.  The application transforms essentially act as a set of 

inverse position kinematics between these two spaces.   

 There are two critical observations to be made about this architecture.  First, 

realtime control computations are still being performed in the cluster space (e.g., realtime 

errors and controller compensation commands are cluster space variables).  Second, the 

application space specification of the task is independent of the number of robots.  This 

means that the multi-USV cluster will behave as desired no matter how many USVs are 
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in the fleet.  This is particularly important in order to ensure graceful constitution and 

degradation of the cluster as the fleet is incrementally fielded and when anomalies occur. 

 

III. HARDWARE 

 Several iterations of design have occurred to bring the USV system to its present 

design.  The design of the vessels emphasizes versatility, ease of operation, and low cost 

in all design segments.  The use of a common bus architecture across all Robotic Systems 

Lab cluster vehicles enables a rapidly reproducible control system capable of 

transparently controlling multiple platforms, including several different types of land 

rovers, an aerial vehicle, and two different types of USVs.  Off-the-shelf components and 

an adjustable structure facilitate both ease of integration and quick replacement in the 

case of a malfunctioning component. 

 

 
Fig. 6 – One of the robotic kayaks. 
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A. Electronics Hardware and Protocol 

 The common bus architecture includes all communication and navigation 

components for each robot in the cluster.  The computing stack is made up of two BasicX 

microcontroller boards.  One board accepts drive commands and controls the motor 

driver boards accordingly in order to run the boat's thrusters.  The other board collects 

position data and interfaces with the wireless communication system.  A digital 

Devantech compass provides heading data, and a Garmin 18 differential GPS unit 

determines the position and translational velocities; these are low-cost sensors with 

accuracies on the order of 3° and 3 meters.  The modem is a Metricom Ricochet 

128Kbits/s unit, which is capable of relatively long range (2+ miles) communication, 

handles multiple users well, and has frequency hopping for security, noise rejection and 

utilization of unlicensed frequencies. 

 

B. Propulsion, Power, and Structure 

 Propulsion is achieved through the use of two Minn Kota Endura 30 thrusters, 

configured on each side for differential drive.  The motor controller is a Roboteq AX1500 

interfaced via an RS 232 connection.  A standard marine deep-cycle battery is centrally 

mounted as shown in Fig. 6.  This gives the USV more than a three-hour run time at 

normal operations with a top speed of five knots.  The mounting structure is made from 

6061 aluminum tubing with a UHMW polyethylene motor mounting plate.  Several 

different sit-on-top style kayaks are currently in use and were selected for their short, 

wide hulls, which provide greater stability and more agile turning over longer, narrower 

models.  The wiring harness utilizes an automotive-type connector designed for high-
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current low DC voltage.  Though it is not rated to be submersible, it is waterproof and has 

been proven to handle brief submersions at shallow depths.   

 

C. Base station 

 The key element of the base station hardware is the workstation.  Several 

computers have been used over the course of the research and it has been proven on 

desktops, laptops and even netbooks.  Two Metricom Ricochet modems facilitate radio 

communications.  Several pieces of software including DataTurbine (a ring buffered 

network bus), Matlab, Simulink, and a VRML simulator (shown in Fig. 7 below), work 

together to retrieve, process, display and redistribute sensor data, system information and 

robot commands.   

 Threat detection is handled as a function of the base station, where the threats are 

manually tracked from shore or onboard the protected vessel.  The threats can easily be 

specified in the observer’s local reference frame and appropriate frame transformations 

are handled in the application layer. 

 
Fig. 7 – The VRML model is capable of replaying simulated cluster formations and trajectories as well as 

visualizing real-time robot positioning. 
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IV. TESTING AND RESULTS 

 The main objective of this research was to apply the cluster space control 

architecture to a larger multi-USV system with obstacle avoidance while determining the 

viability of a new shielding technique applied in application space.  Four main test cases 

were run over the course of a multi-day deployment at Lake Del Valle near Livermore, 

CA (Fig. 8).  The first three cases (basic shielding, varying shield size, and threat 

detection) were run with five robotic kayaks and a simulated boat being protected.  The 

fourth case is of threat detection using four kayaks to protect a SWATH mapping vessel. 

 
Fig. 8 – Testing in Lake Del Valle near Livermore, CA provided variable winds up to 20 

knots, low currents, and boat wakes for an excellent dynamic environment.  Kayaks showing standard 

shielding. 

 

 
Fig. 9 – Standard shielding, constant radius, no threat.  RMSE in table. 
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Fig. 10 – Standard shielding, constant radius, no threat (overhead view of same run as Fig. 9.)  Looping 

trail patterns are a function of non-optimized velocity gains, as well as lacking a dead-band around the 

desired position. Differences in trail patterns can be attributed to various kayak hulls used and the number 

of service hours on individual thrusters.  Further optimization will be attempted in future work. 

 

TABLE A – BASIC SHIELDING: RMS ERROR VALUES FOR THE CLUSTER RADIUS AND FENCE SPACING 

VARIABLES 

 

 

 

A. Basic Shielding 

 

 In the case of the basic shielding technique we are applying it to a simulated boat 

requiring protection.  Using the application space, the operator can set the standard shield 

radius, the maximum approach and the minimum fence spacing.  In this first instance the 

Cluster 

Radii 

RMS Error 

(m) 

 Cluster 

Fence 

Spacings 

RMS Errors 

(m) 

R1 1.57  -- -- 

R2 2.15  F2 2.62 

R3 1.57  F3 2.22 

R4 3.44  F4 3.46 

R5 1.48  F5 2.44 
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standard shield radius is set to 17m, and the minimum fence spacing and approach are 

disregarded, as there is no threat.  When there is no threat, the application space 

automatically sets the USV fleet into an evenly spaced circular formation and rotates 

them about the centroid at a constant rate. 

 The response of each parameter in the cluster space for the run is shown in Fig. 9 

and an overhead view is shown in Fig. 10, with initial positions marked by small shapes 

and the final positions marked by larger shapes.  In all overhead view figures shown in 

this work, the positions of the kayaks are displayed relative to the cluster centroid.  This 

removes any confusion caused in history trails by the cluster translating in the global 

frame.  It can be seen from the graphs that the controller is capable of compensating for 

dynamics added by the environment including wind, currents, and boat wakes. Table A 

summarizes the rms errors for the controlled radial and inter-robot spacing parameters; all 

rms errors are under 4 meters, which we consider to be outstanding given the limited 

sensor performance and disturbance environment. 

B. Shielding while changing size 

 Similar to the first case, in this scenario the fleet of USVs is rotating at a constant 

rate around a simulated protected object.  Due to changing conditions or in the case of 

protecting multiple objects, it may be desirable to modify the size of the cluster.  In Fig. 

11, the cluster variables show the constant rotation and varying radius.  Note that the 

fence spacing is automatically controlled by the application layer to maintain a uniform 

distribution around the protected object when no threat is present, as this case specifies.  

Fig. 12 shows an overhead view of the outward spiral maneuver, which is a portion of the 

test run shown in the preceding figure.  Table B summarizes the rms errors of the 
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controlled radius and spacing parameters; again, excellent results are shown, with all rms 

errors under 3 meters. 

C. Threat detection 

 The third experimental run demonstrates a case of shielding upon detection of a 

threat. In this instance the standard radius is set to 17m, the maximum approach is 25m, 

and the minimum fence spacing is set to 10m.   

 The overhead view in Fig. 13 shows the threat approaching the protected vessel.  

As the threat is identified, the cluster begins to rotate between the threat and the vessel.  

As the threat nears the fence spacing closes further.  At this point the threat has been 

deterred and decided to turn around.  In Fig. 14, the individual cluster space variables are 

shown for a longer portion of this scenario.  The later part of the experiment shows the 

kayaks returning to an evenly spaced rotation about the protected asset as the threat 

disappears.  Table C shows the rms errors to be less than 4 meters. 

 
Fig. 11 – Basic shielding cluster variables. Note that the jump in the top plot is caused as the heading 

wraps from –pi to pi at 180 degrees, and is not an actual discontinuity.  RMSE shown in table 
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Fig. 12 – Overhead view of a change in shielding radius. 

 

 
Fig. 13 – Overhead view of shielding technique with threat detection. 
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Fig. 14 – Shielding with threat detection cluster space variable.  Table showing RMSE does not include 

the initialization time from 0-20 

 

 

TABLE B – SHIELDING WHILE CHANGING SIZE: RMS ERROR VALUES FOR THE CLUSTER RADIUS AND FENCE SPACING 

VARIABLES 

Cluster 

Radii 

RMS 

Error (m) 

Cluster 

Fence Spacing 

RMS 

Errors (m) 

R1 2.02 -- -- 

R2 1.84 F2 2.60 

R3 1.79 F3 2.25 

R4 2.07 F4 2.88 

R5 1.55 F5 2.82 

 

TABLE C–THREAT DETECTION: RMS ERROR VALUES FOR THE CLUSTER RADIUS AND FENCE SPACING VARIABLES 

Cluster 

Radii 

RMS 

Error (m) 

Cluster 

Fence 

Spacings 

RMS 

Errors (m) 

R1 1.32 -- -- 

R2 1.32 F2 2.64 

R3 1.79 F3 2.48 

R4 1.81 F4 3.70 

R5 1.64 F5 2.97 
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D. Shielding a mapping vessel 

 While the previous cases have relied on a simulated cluster centroid, the fourth 

case uses an actual vessel to demonstrate shielding with threat detection (Fig. 15).  The 

protected vessel is another autonomous surface vessel, a SWATH (small waterplane area 

twin hull) boat, equipped with a multibeam sonar, AHRS, GPS, and heave sensors 

designed for shallow water bathymetry.  Standard operation typically involves following 

a preset path (mowing the lawn) to map the desired area.  More information can be found 

in [35].  This case uses four robots for the shielding fleet, using an appropriately modified 

set of kinematic transforms.  We note that the application specifications remain the same, 

independent of the fact that only four robots are now being used. 

 

 
Fig. 15 – Shielding with threat detection of a mapping vessel 

 

 The application variables for this case are set with the standard radius at 12 m, the 

maximum approach at 20 m, and the minimum fence spacing at 10 m.   

 The overhead view, shown in Fig. 16, is broken down into four time steps.  In the 

first step the fleet of four USVs have identified a threat (out of frame to the northeast) 

and the cluster has rotated to face it.  For this four USV case, the cluster heading is 
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aligned between robots 1 and 2.  The fleet has not yet adjusted fence spacing or radius 

since the threat is still far away. 

 In step 2, the threat approaches the protected vessel.  The kayaks begin to 

noticeably decrease the fence spacing.  At step 3 the threat has continued to approach.  

The USVs are still tracking along the heading, have come further out and are narrowing 

the fence spacing.   

 At step 4 the threat has almost reached the max approach and the USVs have set 

the fence spacing near the minimum value as set in the application space.  The kayaks 

loiter in these locations, tracking the heading and distance of the threat until it vacates the 

area. 

 The individual measured cluster variables are shown in Fig. 17.  Table D shows 

the rms errors for the controlled parameters; as before, all errors are under 4 meters. 

V. ONGOING AND FUTURE WORK 

 Ongoing work on this project includes a significant level of Matlab/Simulink-

based simulation in order to explore alternate implementations of the cluster space 

controller, using different shape variables.  It is worth noting that the version reported on 

here fits within the leader-follower paradigm; other versions being explored clearly do 

not, such as defining a fleet centroid and using this as a reference for the center of the 

barrier.  We are also preparing to use a version of this controller during a real-world 

Summer 2011 mission involving protection of an underwater robot dive area in Lake 

Tahoe; recreational boaters pose an extreme hazard to these operations given the ability 

of a boat to catch the high-voltage tether running from the tender boat to the robot. 
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 In general, we continue to apply the cluster space control approach to systems 

with more robots and additional degrees of freedom in order to explore scalability issues.  

We are also working  to  generalize  the  application-space-to-cluster-space transform 

architecture by using this specification approach with other applications.  Related to this, 

we plan to integrate our anomaly management algorithms [36] in to the overall multi-

robot control system so that the system seamlessly adapts itself in the event of robot 

faults.  Finally, we continue to apply the cluster space control framework to real-world 

applications, such as our previously mentioned work in gradient-based environmental 

sensing and reconfigurable sparse communication antenna arrays. 

 
Fig. 16 – Overhead view of shielding technique with threat detection around mapping vessel. 
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Fig. 17 – Cluster variables shielding with threat detection of a mapping vessel 

 

 

TABLE D – SHIELDING A MAPPING VESSEL: RMS ERROR VALUES FOR THE CLUSTER RADIUS AND FENCE SPACING 

VARIABLES 

Cluster 

Radii 

RMS 

Error (m) 

Cluster 

Fence 

Spacings 

RMS 

Errors (m) 

R1 1.58 -- -- 

R2 2.21 F2 2.33 

R3 1.80 F3 2.56 

R4 1.90 F4 3.99 

 

VI. SUMMARY AND CONCLUSIONS 

 In this paper we described the use of a fleet of robotic marine vessels capable of 

guarding critical assets from threats.  Coordinated formation control of the fleet was 

implemented through the use of the cluster space control architecture. An application-
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specific layer was integrated with the cluster space controller, allowing an operator to 

directly specify and monitor guarding-related parameters. 

 This system has been experimentally verified in the field with a fleet of robotic 

kayaks.  The control architecture used to establish the guarding behavior and the design 

of the robotic kayaks were reviewed, and experimental data regarding the functionality 

and performance of the system was presented. As a result, the five-robot cluster space 

definition and control architecture was validated and functionality was proven for this 

application.   
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APPENDIX B. CONFERENCE ARTICLE 

Cluster Space Control of Autonomous Surface Vessels 

Utilizing Obstacle Avoidance and Shielding Techniques 
 

 Paul  Mahacek      Ignacio Mas   Dr. Christopher Kitts 

Santa Clara University Department of Mechanical Engineering 

500 El Camino Real 

Santa Clara, Ca. 95053 
 

Abstract- Multi-robot systems offer many advantages over a single robot system 

including redundancy, coverage and flexibility. One of the key technical challenges 

in fielding multi-robot systems for real-world applications is the coordination and 

relative motion control of the individual units. The cluster space control technique 

addresses the motion control challenge by providing formation control and 

promoting the simplified specification and monitoring of the motion of mobile 

multi-robot systems. Previous work has established this approach and has 

experimentally verified its use for dynamic marine surface vessels consisting of 2 or 

3 robots and with varying implementations ranging from automated cluster 

trajectory control to human-in-the-loop piloting.  In this research program, we 

apply the cluster space control technique to a larger group of marine vessels and 

include both obstacle avoidance and threat detection with shielding formations.  The 

resulting system is capable of autonomous navigation utilizing a centralized 

controller, currently implemented via a shore-based computer, that wirelessly 

receives ASV data and relays control commands. Using the cluster space control 

approach, these control commands allow a cluster supervisor to oversee a flexible 

and mobile perimeter formed by the ASV cluster or to detect a threat and establish a 

shield between the operation and the threat. Theoretical formulation and simulation 

results demonstrating these capabilities are provided, and plans for future work are 

discussed. 
  

I. INTRODUCTION 

Robotic systems offer many advantages to accomplishing a wide variety of tasks given 

their strength, speed, precision, repeatability, and ability to withstand extreme 

environments.  While most robots perform these tasks in an isolated manner, interest is 

growing in the use of tightly interacting multi-robot systems to improve performance in 
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current applications and to enable new capabilities.  In this application the robots are 

Autonomous Surface Vessels (ASVs). Creating a multi-ASV or any multi-boat cluster has 

many potential advantages including redundancy, increased coverage and throughput, 

flexible reconfigurability and spatially diverse functionality. 

For mobile systems, one of the key technical considerations is the coordination of the 

motions of the individual vehicles. Many techniques have been and continue to be 

explored. Because of the physical distribution of components and the potential for limited 

information exchange, decentralized control approaches hold great promise [1], and these 

techniques have been explored for a variety of systems.  Our work, explores a specific 

centralized approach for potential application to robot clusters of limited size and scope 

with the understanding that other control modes may be required for expansion to achieve 

higher performance (vehicles on the order of 1-10 units and several miles range) [2]. 

A.  Cluster Space Approach 

The motivation of the cluster space [3] approach is to promote the simple specification 

and monitoring of the motion of a mobile multi-robot system. This strategy 

conceptualizes the n-robot system as a single entity, a cluster, and desired motions are 

specified as a function of cluster attributes, such as position, orientation, and geometry. 

These attributes guide the selection of a set of independent system state variables suitable 

for specification, control, and monitoring.  These state variables form the system’s cluster 

space. Cluster space state variables may be related to robot-specific state variables, 

actuator state variables, etc. through a formal set of kinematic transforms. These 

transforms allow cluster commands to be converted to robot specific commands, and for 

sensed robot-specific state data to be converted to cluster space state data. As a result, a 
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supervisory operator or real-time pilot can specify and monitor system motion from the 

cluster perspective. Our hypothesis is that such interaction enhances usability by offering 

a level of control abstraction above the robot and actuator-specific implementation details 

[4-8]. 

B.  Multi- robot Obstacle Avoidance 

For any mulit-robot formation control strategy, avoiding collisions with obstacles and 

with other members of the formation is critical.  For cases where the environment is well 

known and predictable, a preset path can be used.  But most environments are dynamic 

and unknown.  Here we utilize a continuous collision algorithm as presented in references 

[9], [10] and [11].   While this technique can be applied at both the cluster level and the 

individual robot level, in this work it is only applied at the robot level. 

C.  The ASVs 

The design of the vessels emphasizes versatility, ease of operation, and low cost in all 

design segments.  The use of common bus architecture across all Robotic Systems Lab 

robotic vehicles enables a rapidly reproducible control system capable of transparently 

controlling multiple platforms, including several different types of land rovers, an aerial 

vehicle, and two different types of ASVs.  Off the shelf parts, like a readily available 

kayak requiring no permanent modifications, facilitate both ease of integration and quick 

replacement if the need arises. 

Minor upgrades and modifications have been made to the ASVs including a new 

deployment and transportation system as well as structural upgrades decreasing the 

required time for setup and deployment.  The details of the control hardware, protocol, 

propulsion, and power subsystems can be found in previous publications such as [2]. 
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II. THE CONTROLLER 

The motivation of this research is to promote the simple specification and monitoring of 

the motion of a mobile, multi-robot system. Our vision is to enable automated, formalized 

execution of operator directives based on information such as “Drive North at 5 m/sec in 

a side-by-side line with a 25 m separation,” or “Translate and rotate based on joystick 

inputs while decreasing the lateral size of the formation.”  In general, enabling features of 

a system providing such conceptual level specification include flexibility in the choice of 

specifications made to define the desired motion and the judicious selection of default 

values appropriate to the system design and application. 

A.  Cluster Space State Variables 

Fig. 1 depicts the reference frames for the planar 3-ASV problem.  To complement the 

sensor data used in experimentation, the global frame conventions were selected as 

follows: YG points north, XG points east.  The cluster frame is located at (X0, Y0) and its 

orientation is given by θ1 which is the angle about robot 0 from YG to the location of 

robot 1 as shown below.  Robots 1, 2 and 3 are defined by a radial distances, R1, R2 and 

R3 from robot 0. Robots 2 and 3 are each also defined by a fence spacing from robot 1 

given as F2 and F3.  Further expansion would be added in an even-odd pattern with robot 

4 and 5 referenced radially from robot 0.  Robot 4 would be fence spaced from robot 2, 

while robot 5 would be fence spaced from robot 3. 
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Fig. 1.  Cluster and robot 

 

B.  Kinematic Equations 

The forward position kinematics are a set of equations the allow the transformation 

from robot variables, X0, Y0, φ0, X1, Y1, φ1, X2, Y2, φ2, X3, Y3, and φ3, to cluster 

variables, Xbrc, Ybrc, φbrc, R1, θ1, φ1c, R2, F2, φ2c, R3, F3, and φ3c.  The inverse kinematics 

allow the cluster variables to be changed back into the robot variables.  The equations for 

the forward kinematics can be seen in (1-6).  And the inverse are shown in (7-12).  Note 

that the equations for X0, Y0, φ0, φ1, φ2, and φ3 trivially correspond directly to their 

respective cluster variables for the selected cluster definition and are not included. 

 

R1=((X1-X0)
2
+(Y1-Y0)

2
)
1/2

            (1) 

θ1=Atan2((X1-X0),(Y1-Y0))             (2) 

R2=((X2-X0)
2
+(Y2-Y0)

2
)
1/2                 

(3) 

F2=((X2-X1)
2
+(Y2-Y1)

2
)
1/2                

(4) 
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R3=((X3-X0)
2
+(Y3-Y0)

2
)
1/2                

(5) 

F3=((X3-X1)
2
+(Y3-Y1)

2
)
1/2                 

(6) 

X1=Xbrc+R1* Sin(θ1)             (7) 

Y1=Ybrc+R1* Cos(θ1)             (8) 

X2=Xbrc+R2* Sin(θ1+acos((R1
2
+ R2

2
- F2

2
)/2* R1* R2))          (9) 

Y2=Ybrc+R2* Cos(θ1+acos((R1
2
+ R2

2
- F2

2
)/2* R1* R2))       (10) 

X3=Xbrc+R3* Sin(θ1+acos((R1
2
+ R3

2
- F3

2
)/2* R1* R3))        (11) 

Y3=Ybrc+R3* Cos(θ1+acos((R1
2
+ R3

2
- F3

2
)/2* R1* R3))       (12) 

 

C.  Control Framework 

Fig. 2 presents the control architecture for trajectory based cluster space control of an n-

robot system.  A cluster level PID controller compares cluster position and velocity with 

desired trajectory values and outputs cluster commanded velocities, which are translated 

into individual ASV velocities through the inverse Jacobian.  Data from the ASVs are 

converted to cluster space information through the forward kinematics and Jacobian and 

fed back into the controller.  The non-holonomic constraint given by the differential drive 

motion of the ASVs effectively reduces each ASV from three degrees of freedom down to 

two.  For the cluster of ASVs it becomes a six DOF system.  As a consequence, an inner-

loop ASV level heading control is needed on each ASV and the cluster space controller 

does not regulate the cluster parameters corresponding to the yaw orientation of the ASV 

relative to the cluster. 
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Fig. 2.  Cluster Space Control Architecture for an n-Robot system 

 

D.  Obstacle Avoidance 

Different approaches can be used to avoid collisions with obstacles or other robots in 

the formation depending on the nature of the task.  When keeping the formation at all 

times is not a priority a robot level obstacle avoidance algorithm can be utilized.  In this 

case, the ASVs negotiate obstacles in an independent fashion, momentary breaking away 

from the formation.  Once the obstacle has been avoided the ASV will return to the 

cluster.  This algorithm is input the position of the obstacle and feeds an offset after the 

cluster space controller as shown in Fig. 2. 

For each ASV, the detection radius and the avoidance potential can be set.  The function 

as shown in [8] has a zero value outside the detection radius, and an infinite at the 

minimum circle enveloping the ASV.  Typically circles are used, but for a non-circular 

shape, like a ship, an elongated oval can be defined to better model the outer edge of the 

vessel. 

E.  Application Space and Shielding 
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Application Space is an additional layer between the cluster space controller and the 

user interface.  It is a more versatile way to modify the interaction of the user with the 

cluster space variables.   

 

III. SIMULATION AND RESULTS 

The main objective of this research was to validate the cluster space control architecture 

for a multi-ASV System while utilizing obstacle avoidance and to determine the viability 

of a new shielding technique applied in application space.  Two main cases were run, 

basic shielding, and shielding with threat detection. 

A. Basic Shielding 

In the case of the basic shielding technique we are applying it to a main vessel 

deploying an ROV.  Using the application space, the operator can set the standard shield 

radius, the maximum approach and the minimum fence spacing.  In this first instance the 

standard shield radius is set to 17m, the minimum fence spacing and approach are 

disregarded as there is no threat.  When there is no threat, the application space 

automatically sets the ASVs into an evenly spaced formation and rotates them about the 

boat and ROV centroid as shown in Fig. 3. 

With the random selection of the ASV starting points the initialization might cause 

them to be on a path that would make them collide with the boat or cross over the ROV.  

The obstacle avoidance algorithm successfully pushes each of the ASVs away from the 

boat and rov, avoiding any potential collisions. 
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Fig. 3.  Standard shielding, no threat. 

 

The response of each parameter in the cluster space for the run shown in Fig. 3. is 

shown in Fig. 4.  It can be seen from the graphs that the controller is capable of 

compensating for dynamics added by the ASVs even when starting from random 

locations. 
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Fig. 4. Basic shielding cluster variables 
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A. Shielding with Threat Detection 

An overhead view of the second case, shielding with threat detection, is shown in Fig. 

5, and the individual components of the cluster space variables are shown in Fig. 6.  In 

this instance the standard radius is set once again to 17m, the maximum approach is 50m, 

and the minimum fence spacing is set to 5m.  The overhead view is broken down into 

five time segments.  At step 1 the ASVs are in a standard formation around the boat and 

ROV centroid.  The threat is identified and they rotate to position in between the threat 

and the boat and ROV centroid.   

At step 2 the threat has continued to approach.  The ASVs are still tracking along the 

heading, have come further out and are narrowing the fence spacing.  At step 3 the threat 

has reached the max approach and the ASV have set the fence spacing to the minimum 

value as set in the application space.  It can also be seen that the obstacle avoidance is 

playing a part, with ASV 1 backing away to avoid a collision with the threat.  At step 4 

the threat has begun to stand down and the ASVs reduce the radius and increase the fence 

spacing while still staying between the threat and the boat and the ROV.  At step 5 the 

threat is outside the visible range.  The ASVs have fully disengaged and resumed the 

basic shield around the boat and ROV.  

 
Fig. 5. Overhead view of shielding technique with threat detection. 
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Fig. 6. Shielding with threat detection cluster space variable 
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IV.CONCLUSION 

 The cluster space state representation of mobile multi-robot systems was applied 

and evaluated for a three-ASV system as a means of specifying and controlling the 

desired mobility characteristics for surface vessels.  Both obstacle avoidance algorithms 

and shielding techniques were successfully implemented and displayed.  As a result, the 

three-robot cluster space definition and control architecture was validated and basic 

functionality was proven for this application.   

 Our ongoing and future work in this field is focused on enhancing motion control 

performance, increasing the number of vehicles, and integrating the motion-control 

oriented cluster space controller with application layer controllers.  We believe that this 

will lead to enhanced performance for real-world marine applications as well as cost-

effective improvements in operating such systems through the reduction of the 

operator/robot ratio required to control such systems.  Field experimental tests of the 

simulations presented here are scheduled for the next few months. 
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APPENDIX C. SIMULINK 

 

 



 

 

 
 
 

59 

 

APPENDIX D. FORWARD KINEMATICS 
 

function Output = five_robot_cen 

troid_forward_kin_v1(u) 
%This function computes the cluster position based on the robot 

%positions. 

%arguments:     u = [X_0 Y_0 X_1 Y_1 X_2 Y_2 X_3 Y_3 X_4 Y_4 X_5 Y_5  

phi_0 phi_1 phi_2 phi_3 phi_4 phi_5] 

  
%Initialize variables 

X_0 = u(1); 

Y_0 = u(2); 

X_1 = u(3); 

Y_1 = u(4); 

X_2 = u(5); 
Y_2 = u(6); 
X_3 = u(7); 

Y_3 = u(8); 
X_4 = u(9); 

Y_4 = u(10); 
X_5 = u(11); 
Y_5 = u(12); 

phi_0 = u(13); 
phi_1 = u(14); 

phi_2 = u(15); 
phi_3 = u(16); 
phi_4 = u(17); 

phi_5 = u(18); 

  
%compute forward kinematics 
X_brc = X_0; 

Y_brc = Y_0; 
R_1 = sqrt((X_1-X_0)^2+(Y_1-Y_0)^2); 

Theta_1 = atan2(X_1-X_0,Y_1-Y_0); 
R_2 = sqrt((X_2-X_0)^2+(Y_2-Y_0)^2); 
F_2 = sqrt((X_2-X_1)^2+(Y_2-Y_1)^2); 

R_3 = sqrt((X_3-X_0)^2+(Y_3-Y_0)^2); 
F_3 = sqrt((X_3-X_1)^2+(Y_3-Y_1)^2); 

R_4 = sqrt((X_4-X_0)^2+(Y_4-Y_0)^2); 

F_4 = sqrt((X_4-X_2)^2+(Y_4-Y_2)^2); 
R_5 = sqrt((X_5-X_0)^2+(Y_5-Y_0)^2); 

F_5 = sqrt((X_5-X_3)^2+(Y_5-Y_3)^2); 

phi_brc = phi_0; 

phi_1c = phi_1; 

phi_2c = phi_2; 
phi_3c = phi_3; 

phi_4c = phi_4; 
phi_5c = phi_5; 

  
Output = [X_brc; Y_brc; R_1; Theta_1; R_2; F_2; R_3; F_3; R_4; F_4; 

R_5; F_5; phi_brc; phi_1c; phi_2c; phi_3c; phi_4c; phi_5c;]; 
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APPENDIX E. INVERSE KINEMATICS 
 

function Output = five_robot_centroid_inverse_kin_v1(u) 

%This function computes the robot positions based on the cluster 
%position. 

%arguments:     u = [X_brc Y_brc R_1 Theta_1 R_2 F_2 R_3 F_3 R_4 F_4 

R_5 F_5 phi_brc phi_1c phi_1c phi_2c phi_3c phi_4c phi_5c] 

%Initialize variables 

X_brc = u(1); 

Y_brc = u(2); 

R_1 = u(3); 

Theta_1 = u(4); 

R_2 = u(5); 

F_2 = u(6); 

R_3 = u(7); 
F_3 = u(8); 

R_4 = u(9); 
F_4 = u(10); 

R_5 = u(11); 
F_5 = u(12); 
phi_brc = u(13); 

phi_1c = u(14); 
phi_2c = u(15); 

phi_3c = u(16); 
phi_4c = u(17); 
phi_5c = u(18); 

X_0 = X_brc; 
Y_0 = Y_brc; 

X_1 = X_brc+R_1*sin(Theta_1); 
Y_1 = Y_brc+R_1*cos(Theta_1); 
X_2 = X_brc+R_2*sin(Theta_1+acos((R_1^2+R_2^2-F_2^2)/(2*R_1*R_2))) ; 

Y_2 = Y_brc+R_2*cos(Theta_1+acos((R_1^2+R_2^2-F_2^2)/(2*R_1*R_2))) ; 
X_3 = X_brc+R_3*sin(Theta_1-acos((R_3^2+R_1^2-F_3^2)/(2*R_3*R_1))) ; 

Y_3 = Y_brc+R_3*cos(Theta_1-acos((R_3^2+R_1^2-F_3^2)/(2*R_3*R_1))) ; 
X_4 = X_brc+R_4*sin(Theta_1+acos((R_1^2+R_2^2-

F_2^2)/(2*R_1*R_2))+acos((R_2^2+R_4^2-F_4^2)/(2*R_2*R_4))) ; 

Y_4 = Y_brc+R_4*cos(Theta_1+acos((R_1^2+R_2^2-

F_2^2)/(2*R_1*R_2))+acos((R_2^2+R_4^2-F_4^2)/(2*R_2*R_4))) ; 

X_5 = X_brc+R_5*sin(Theta_1-acos((R_3^2+R_1^2-F_3^2)/(2*R_3*R_1))-

acos((R_5^2+R_3^2-F_5^2)/(2*R_5*R_3))) ; 

Y_5 = Y_brc+R_5*cos(Theta_1-acos((R_3^2+R_1^2-F_3^2)/(2*R_3*R_1))-

acos((R_5^2+R_3^2-F_5^2)/(2*R_5*R_3))) ; 
phi_0 = phi_brc; 

phi_1 = phi_1c; 
phi_2 = phi_2c; 

phi_3 = phi_3c; 
phi_4 = phi_4c; 

phi_5 = phi_5c; 

  
Output = [  

X_0;Y_0;X_1;Y_1;X_2;Y_2;X_3;Y_3;X_4;Y_4;X_5;Y_5;phi_0;phi_1;phi_2;phi_3

;phi_4;phi_5;]; 
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APPENDIX F. JACOBIAN PROCESSING 

 
function Output = five_bots_jacobian(u) 
%This computes the cluster velocities based on robots velocities. 

%arguments:     u = [x1_dot y1_dot x2_dot y2_dot x3_dot y3_dot 

theta_r1_dot theta_r2_dot theta_r3_dot x1 y1 theta_1 x2 y2 theta_2 x3 

y3 theta_3] 

%output=[xc_dot yc_dot theta_c_dot phi_1_dot phi_2_dot phi_3_dot p_dot 

q_dot beta_dot] 

X_0_dot  = u(1); 

Y_0_dot  = u(2); 

X_1_dot  = u(3); 

Y_1_dot  = u(4); 

X_2_dot  = u(5); 

Y_2_dot  = u(6); 
X_3_dot  = u(7); 

Y_3_dot  = u(8); 
X_4_dot  = u(9); 
Y_4_dot  = u(10); 

X_5_dot  = u(11); 
Y_5_dot  = u(12); 

phi_0_dot  = u(13); 
phi_1_dot  = u(14); 
phi_2_dot  = u(15); 

phi_3_dot  = u(16); 
phi_4_dot  = u(17); 

phi_5_dot  = u(18); 
X_0  = u(19); 
Y_0  = u(20); 

X_1  = u(21); 
Y_1  = u(22); 

X_2  = u(23); 
Y_2  = u(24); 
X_3  = u(25); 

Y_3  = u(26); 
X_4  = u(27); 

Y_4  = u(28); 
X_5  = u(29); 

Y_5  = u(30); 

phi_0  = u(31);   

phi_1  = u(32); 

phi_2  = u(33); 
phi_3  = u(34); 

phi_4  = u(35); 

phi_5  = u(36); 
c=five_robot_centroid_forward_kin_v1([X_0 Y_0 X_1 Y_1 X_2 Y_2 X_3 Y_3 

X_4 Y_4 X_5 Y_5 phi_0 phi_1 phi_2 phi_3 phi_4 phi_5]); 

v_robots=[X_0_dot; Y_0_dot; X_1_dot; Y_1_dot; X_2_dot; Y_2_dot; 

X_3_dot; Y_3_dot; X_4_dot; Y_4_dot; X_5_dot; Y_5_dot; phi_0_dot; 

phi_1_dot; phi_2_dot; phi_3_dot; phi_4_dot; phi_5_dot]; 

J_inv = five_bots_centroid_inv_jacobian_matrix_exact(c); 

J = inv(J_inv); 

Output = J * v_robots; 
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APPENDIX G. INVERSE JACOBIAN PROCESSING 

 
function Output = five_bots_inv_jacobian(u) 
%This computes robot velocities based on the cluster velocities. 

%arguments:     u = [X_brc_dot Y_brc_dot R_1_dot theta_1_dot R_2_dot 

F_2_dot R_3_dot F_3_dot phi_brc_dot phi_1_dot phi_2_dot; phi_3_dot 

X_brc Y_brc R_1 theta_1 R_2 F_2 R_3 F_3 phi_brc phi_1 phi_2 phi_3] 

%output:     output = [J_inv]*[V_c] 
%Initialize variables 

X_brc_dot = u(1); 

Y_brc_dot = u(2); 

R_1_dot = u(3); 

theta_1_dot = u(4); 

R_2_dot = u(5); 

F_2_dot = u(6); 
R_3_dot=u(7); 

F_3_dot=u(8); 
R_4_dot=u(9); 
F_4_dot=u(10); 

R_5_dot=u(11); 
F_5_dot=u(12); 

phi_brc_dot=u(13); 
phi_1c_dot=u(14); 
phi_2c_dot=u(15); 

phi_3c_dot=u(16); 
phi_4c_dot=u(17); 

phi_5c_dot=u(18); 
X_brc = u(19); 
Y_brc = u(20); 

R_1=u(21); 
theta_1=u(22); 

R_2=u(23); 
F_2=u(24); 
R_3=u(25); 

F_3=u(26); 
R_4=u(27); 

F_4=u(28); 
R_5=u(29); 

F_5=u(30); 

phi_brc=u(31); 

phi_1c=u(32); 

phi_2c=u(33); 
phi_3c=u(34); 

phi_4c=u(35); 

phi_5c=u(36); 
v_cluster=[X_brc_dot; Y_brc_dot; R_1_dot; theta_1_dot; R_2_dot; 

F_2_dot; R_3_dot; F_3_dot; R_4_dot; F_4_dot; R_5_dot; F_5_dot; 

phi_brc_dot; phi_1c_dot; phi_2c_dot; phi_3c_dot; phi_4c_dot; 

phi_5c_dot]; 

J_inv = five_bots_centroid_inv_jacobian_matrix_exact([X_brc Y_brc R_1 

theta_1 R_2 F_2 R_3 F_3 R_4 F_4 R_5 F_5 phi_brc phi_1c phi_2c phi_3c 

phi_4c phi_5c]); 

Output = J_inv * v_cluster; 
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Appendix H. Exact Inverse Jacobian 

 
function Output = five_bots_centroid_inv_jacobian_matrix_exact(u) 
%This function computes the robot velocities based on the cluster 

velocities. 

%arguments:     u = [X_brc Y_brc R_1 theta_1 R_2 F_2 R_3 F_3 R_4 F_4 

R_5 F_5 phi_brc phi_1c phi_2c phi_3c phi_4c phi_5c] 

%output:     output = [J_inv] 
%Initialize variables 

%X_brc = u(1); 

%Y_brc = u(2); 

R_1 = u(3); 

theta_1 = u(4); 

R_2 = u(5); 

F_2 = u(6); 

R_3 = u(7); 
F_3 = u(8); 

R_4 = u(9); 
F_4 = u(10); 

R_5 = u(11); 
F_5 = u(12); 
%phi_brc = u(13); 

%phi_1c = u(14); 

%phi_2c = u(15); 

%phi_3c = u(16); 
%phi_4c = u(17); 
%phi_5c = u(18); 

Y_1_R_1 = cos(theta_1); 
Y_1_theta_1 = -R_1*sin(theta_1); 

X_1_R_1 = sin(theta_1); 
X_1_theta_1 = R_1*cos(theta_1); 

  
Y_2_R_1 = (R_2*(1/R_2-(-F_2^2+R_1^2+R_2^2)/(2*R_1^2*R_2))*sin(acos((-

F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+theta_1))/sqrt(1-(-

F_2^2+R_1^2+R_2^2)^2/(4*R_1^2*R_2^2)); 
Y_2_theta_1 = -R_2*sin(acos((-F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+theta_1); 

Y_2_R_2 = cos(acos((-

F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+theta_1)+(R_2*(1/R_1-(-

F_2^2+R_1^2+R_2^2)/(2*R_1*R_2^2))*sin(acos((-

F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+theta_1))/sqrt(1-(-

F_2^2+R_1^2+R_2^2)^2/(4*R_1^2*R_2^2)); 

Y_2_F_2 = -((F_2*sin(acos((-

F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+theta_1))/(R_1*sqrt(1-(-

F_2^2+R_1^2+R_2^2)^2/(4*R_1^2*R_2^2)))); 

  
X_2_R_1 = -((cos(acos((-

F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+theta_1)*R_2*(1/R_2-(-

F_2^2+R_1^2+R_2^2)/(2*R_1^2*R_2)))/sqrt(1-(-

F_2^2+R_1^2+R_2^2)^2/(4*R_1^2*R_2^2))); 
X_2_theta_1 = cos(acos((-F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+theta_1)*R_2; 

X_2_R_2 = -((cos(acos((-

F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+theta_1)*R_2*(1/R_1-(-

F_2^2+R_1^2+R_2^2)/(2*R_1*R_2^2)))/sqrt(1-(-

F_2^2+R_1^2+R_2^2)^2/(4*R_1^2*R_2^2)))+sin(acos((-

F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+theta_1); 
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X_2_F_2 = (cos(acos((-

F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+theta_1)*F_2)/(R_1*sqrt(1-(-

F_2^2+R_1^2+R_2^2)^2/(4*R_1^2*R_2^2))); 

  
Y_3_R_1 = (R_3*(1/R_3-(-F_3^2+R_1^2+R_3^2)/(2*R_1^2*R_3))*sin(acos((-

F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))-theta_1))/sqrt(1-(-

F_3^2+R_1^2+R_3^2)^2/(4*R_1^2*R_3^2)); 

Y_3_theta_1 = R_3*sin(acos((-F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))-theta_1); 

Y_3_R_3 = cos(acos((-F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))-

theta_1)+(R_3*(1/R_1-(-F_3^2+R_1^2+R_3^2)/(2*R_1*R_3^2))*sin(acos((-

F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))-theta_1))/sqrt(1-(-

F_3^2+R_1^2+R_3^2)^2/(4*R_1^2*R_3^2)); 

Y_3_F_3 = -((F_3*sin(acos((-F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))-

theta_1))/(R_1*sqrt(1-(-F_3^2+R_1^2+R_3^2)^2/(4*R_1^2*R_3^2)))); 

  
X_3_R_1 = (cos(acos((-F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))-

theta_1)*R_3*(1/R_3-(-F_3^2+R_1^2+R_3^2)/(2*R_1^2*R_3)))/sqrt(1-(-

F_3^2+R_1^2+R_3^2)^2/(4*R_1^2*R_3^2)); 
X_3_theta_1 = cos(acos((-F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))-theta_1)*R_3; 

X_3_R_3 = (cos(acos((-F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))-

theta_1)*R_3*(1/R_1-(-F_3^2+R_1^2+R_3^2)/(2*R_1*R_3^2)))/sqrt(1-(-

F_3^2+R_1^2+R_3^2)^2/(4*R_1^2*R_3^2))-sin(acos((-

F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))-theta_1); 
X_3_F_3 = -((cos(acos((-F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))-

theta_1)*F_3)/(R_1*sqrt(1-(-F_3^2+R_1^2+R_3^2)^2/(4*R_1^2*R_3^2)))); 

  
X_4_R_1 = -((cos(acos((-F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+acos((-

F_4^2+R_2^2+R_4^2)/(2*R_2*R_4))+theta_1)*(1/R_2-(-

F_2^2+R_1^2+R_2^2)/(2*R_1^2*R_2))*R_4)/sqrt(1-(-

F_2^2+R_1^2+R_2^2)^2/(4*R_1^2*R_2^2))); 
X_4_theta_1 = cos(acos((-F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+acos((-

F_4^2+R_2^2+R_4^2)/(2*R_2*R_4))+theta_1)*R_4; 
X_4_R_2 = cos(acos((-F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+acos((-

F_4^2+R_2^2+R_4^2)/(2*R_2*R_4))+theta_1)*R_4*(-((1/R_1-(-

F_2^2+R_1^2+R_2^2)/(2*R_1*R_2^2))/sqrt(1-(-

F_2^2+R_1^2+R_2^2)^2/(4*R_1^2*R_2^2)))-(1/R_4-(-

F_4^2+R_2^2+R_4^2)/(2*R_2^2*R_4))/sqrt(1-(-

F_4^2+R_2^2+R_4^2)^2/(4*R_2^2*R_4^2))); 

X_4_F_2 = (cos(acos((-F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+acos((-

F_4^2+R_2^2+R_4^2)/(2*R_2*R_4))+theta_1)*F_2*R_4)/(R_1*R_2*sqrt(1-(-

F_2^2+R_1^2+R_2^2)^2/(4*R_1^2*R_2^2))); 

X_4_R_4 = -((cos(acos((-F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+acos((-

F_4^2+R_2^2+R_4^2)/(2*R_2*R_4))+theta_1)*R_4*(1/R_2-(-

F_4^2+R_2^2+R_4^2)/(2*R_2*R_4^2)))/sqrt(1-(-

F_4^2+R_2^2+R_4^2)^2/(4*R_2^2*R_4^2)))+sin(acos((-

F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+acos((-

F_4^2+R_2^2+R_4^2)/(2*R_2*R_4))+theta_1); 

X_4_F_4 = (cos(acos((-F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+acos((-

F_4^2+R_2^2+R_4^2)/(2*R_2*R_4))+theta_1)*F_4)/(R_2*sqrt(1-(-

F_4^2+R_2^2+R_4^2)^2/(4*R_2^2*R_4^2))); 

  
Y_4_R_1 = ((1/R_2-(-F_2^2+R_1^2+R_2^2)/(2*R_1^2*R_2))*R_4*sin(acos((-

F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+acos((-

F_4^2+R_2^2+R_4^2)/(2*R_2*R_4))+theta_1))/sqrt(1-(-

F_2^2+R_1^2+R_2^2)^2/(4*R_1^2*R_2^2)); 
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Y_4_theta_1 = -R_4*sin(acos((-F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+acos((-

F_4^2+R_2^2+R_4^2)/(2*R_2*R_4))+theta_1); 

Y_4_R_2 = -R_4*(-((1/R_1-(-F_2^2+R_1^2+R_2^2)/(2*R_1*R_2^2))/sqrt(1-(-

F_2^2+R_1^2+R_2^2)^2/(4*R_1^2*R_2^2)))-(1/R_4-(-

F_4^2+R_2^2+R_4^2)/(2*R_2^2*R_4))/sqrt(1-(-

F_4^2+R_2^2+R_4^2)^2/(4*R_2^2*R_4^2)))*sin(acos((-

F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+acos((-

F_4^2+R_2^2+R_4^2)/(2*R_2*R_4))+theta_1); 

Y_4_F_2 = -((F_2*R_4*sin(acos((-F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+acos((-

F_4^2+R_2^2+R_4^2)/(2*R_2*R_4))+theta_1))/(R_1*R_2*sqrt(1-(-

F_2^2+R_1^2+R_2^2)^2/(4*R_1^2*R_2^2)))); 

Y_4_R_4 = cos(acos((-F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+acos((-

F_4^2+R_2^2+R_4^2)/(2*R_2*R_4))+theta_1)+(R_4*(1/R_2-(-

F_4^2+R_2^2+R_4^2)/(2*R_2*R_4^2))*sin(acos((-

F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+acos((-

F_4^2+R_2^2+R_4^2)/(2*R_2*R_4))+theta_1))/sqrt(1-(-

F_4^2+R_2^2+R_4^2)^2/(4*R_2^2*R_4^2)); 

Y_4_F_4 = -((F_4*sin(acos((-F_2^2+R_1^2+R_2^2)/(2*R_1*R_2))+acos((-

F_4^2+R_2^2+R_4^2)/(2*R_2*R_4))+theta_1))/(R_2*sqrt(1-(-

F_4^2+R_2^2+R_4^2)^2/(4*R_2^2*R_4^2)))); 
X_5_R_1 = (cos(acos((-F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))+acos((-

F_5^2+R_3^2+R_5^2)/(2*R_3*R_5))-theta_1)*(1/R_3-(-

F_3^2+R_1^2+R_3^2)/(2*R_1^2*R_3))*R_5)/sqrt(1-(-

F_3^2+R_1^2+R_3^2)^2/(4*R_1^2*R_3^2)); 

X_5_theta_1 = cos(acos((-F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))+acos((-

F_5^2+R_3^2+R_5^2)/(2*R_3*R_5))-theta_1)*R_5; 
X_5_R_3 = -cos(acos((-F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))+acos((-

F_5^2+R_3^2+R_5^2)/(2*R_3*R_5))-theta_1)*R_5*(-((1/R_1-(-

F_3^2+R_1^2+R_3^2)/(2*R_1*R_3^2))/sqrt(1-(-

F_3^2+R_1^2+R_3^2)^2/(4*R_1^2*R_3^2)))-(1/R_5-(-

F_5^2+R_3^2+R_5^2)/(2*R_3^2*R_5))/sqrt(1-(-

F_5^2+R_3^2+R_5^2)^2/(4*R_3^2*R_5^2))); 

X_5_F_3 = -((cos(acos((-F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))+acos((-

F_5^2+R_3^2+R_5^2)/(2*R_3*R_5))-theta_1)*F_3*R_5)/(R_1*R_3*sqrt(1-(-

F_3^2+R_1^2+R_3^2)^2/(4*R_1^2*R_3^2)))); 
X_5_R_5 = (cos(acos((-F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))+acos((-

F_5^2+R_3^2+R_5^2)/(2*R_3*R_5))-theta_1)*R_5*(1/R_3-(-

F_5^2+R_3^2+R_5^2)/(2*R_3*R_5^2)))/sqrt(1-(-

F_5^2+R_3^2+R_5^2)^2/(4*R_3^2*R_5^2))-sin(acos((-

F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))+acos((-F_5^2+R_3^2+R_5^2)/(2*R_3*R_5))-

theta_1); 
X_5_F_5 = -((cos(acos((-F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))+acos((-

F_5^2+R_3^2+R_5^2)/(2*R_3*R_5))-theta_1)*F_5)/(R_3*sqrt(1-(-

F_5^2+R_3^2+R_5^2)^2/(4*R_3^2*R_5^2)))); 

  
Y_5_R_1 = ((1/R_3-(-F_3^2+R_1^2+R_3^2)/(2*R_1^2*R_3))*R_5*sin(acos((-

F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))+acos((-F_5^2+R_3^2+R_5^2)/(2*R_3*R_5))-

theta_1))/sqrt(1-(-F_3^2+R_1^2+R_3^2)^2/(4*R_1^2*R_3^2)); 

Y_5_theta_1 = R_5*sin(acos((-F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))+acos((-

F_5^2+R_3^2+R_5^2)/(2*R_3*R_5))-theta_1); 

Y_5_R_3 = -R_5*(-((1/R_1-(-F_3^2+R_1^2+R_3^2)/(2*R_1*R_3^2))/sqrt(1-(-

F_3^2+R_1^2+R_3^2)^2/(4*R_1^2*R_3^2)))-(1/R_5-(-

F_5^2+R_3^2+R_5^2)/(2*R_3^2*R_5))/sqrt(1-(-

F_5^2+R_3^2+R_5^2)^2/(4*R_3^2*R_5^2)))*sin(acos((-
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F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))+acos((-F_5^2+R_3^2+R_5^2)/(2*R_3*R_5))-

theta_1); 

Y_5_F_3 = -((F_3*R_5*sin(acos((-F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))+acos((-

F_5^2+R_3^2+R_5^2)/(2*R_3*R_5))-theta_1))/(R_1*R_3*sqrt(1-(-

F_3^2+R_1^2+R_3^2)^2/(4*R_1^2*R_3^2)))); 

Y_5_R_5 = cos(acos((-F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))+acos((-

F_5^2+R_3^2+R_5^2)/(2*R_3*R_5))-theta_1)+(R_5*(1/R_3-(-

F_5^2+R_3^2+R_5^2)/(2*R_3*R_5^2))*sin(acos((-

F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))+acos((-F_5^2+R_3^2+R_5^2)/(2*R_3*R_5))-

theta_1))/sqrt(1-(-F_5^2+R_3^2+R_5^2)^2/(4*R_3^2*R_5^2)); 

Y_5_F_5 =-((F_5*sin(acos((-F_3^2+R_1^2+R_3^2)/(2*R_1*R_3))+acos((-

F_5^2+R_3^2+R_5^2)/(2*R_3*R_5))-theta_1))/(R_3*sqrt(1-(-

F_5^2+R_3^2+R_5^2)^2/(4*R_3^2* 

R_5^2)))); 

  
J_inv =  

[1,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0] 
[0,  1,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0] 

[1,  0,X_1_R_1,X_1_theta_1,0,0,0,0,  0,  0,  0,  0,  0,  0, 0, 0, 0, 0] 
[0,  1,Y_1_R_1,Y_1_theta_1,0,0,0,0,  0,  0,  0,  0,  0,  0, 0, 0, 0, 0] 
[1,  0,X_2_R_1,X_2_theta_1,X_2_R_2,X_2_F_2,0,0,0,0,0,0,0,0, 0, 0, 0, 0] 

[0,  1,Y_2_R_1,Y_2_theta_1,Y_2_R_2,Y_2_F_2,0,0,0,0,0,0,0,0, 0, 0, 0, 0] 
[1,  0,X_3_R_1,X_3_theta_1,0,0,X_3_R_3,X_3_F_3,0,0,0,0,0,0, 0, 0, 0, 0] 

[0,  1,Y_3_R_1,Y_3_theta_1,0,0,Y_3_R_3,Y_3_F_3,0,0,0,0,0,0, 0, 0, 0, 0] 
[1,0,X_4_R_1,X_4_theta_1,X_4_R_2,X_4_F_2,0,0,X_4_R_4,X_4_F_4,0,0,0,0,0,

0,0,0] 

[0,1,Y_4_R_1,Y_4_theta_1,Y_4_R_2,Y_4_F_2,0,0,Y_4_R_4,Y_4_F_4,0,0,0,0,0,

0,0,0] 

[1,0,X_5_R_1,X_5_theta_1,0,0,X_5_R_3,X_5_F_3,0,0,X_5_R_5,X_5_F_5,0,0,0,

0,0, 0]  

[0,1,Y_5_R_1,Y_5_theta_1,0,0,Y_5_R_3,Y_5_F_3,0,0,Y_5_R_5,Y_5_F_5,0,0,0,

0,0, 0] 
[0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0] 

[0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0] 
[0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0] 

[0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0] 
[0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0] 

[0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 0, 1]]; 

Output = J_inv;  

 

TL;DR -Robots are cool 
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