11 research outputs found

    A Novel Filter Approach for Band Selection and Classification of Hyperspectral Remotely Sensed Images Using Normalized Mutual Information and Support Vector Machines

    Full text link
    Band selection is a great challenging task in the classification of hyperspectral remotely sensed images HSI. This is resulting from its high spectral resolution, the many class outputs and the limited number of training samples. For this purpose, this paper introduces a new filter approach for dimension reduction and classification of hyperspectral images using information theoretic (normalized mutual information) and support vector machines SVM. This method consists to select a minimal subset of the most informative and relevant bands from the input datasets for better classification efficiency. We applied our proposed algorithm on two well-known benchmark datasets gathered by the NASA's AVIRIS sensor over Indiana and Salinas valley in USA. The experimental results were assessed based on different evaluation metrics widely used in this area. The comparison with the state of the art methods proves that our method could produce good performance with reduced number of selected bands in a good timing. Keywords: Dimension reduction, Hyperspectral images, Band selection, Normalized mutual information, Classification, Support vector machinesComment: http://www.scopus.com/inward/record.url?eid=2-s2.0-85056469155&partnerID=MN8TOAR

    Optimizing the Process Parameters for Eco-Friendly Minimum Quantity Lubrication-Turning of AISI 4340 Alloy with Nano-Lubricants Using a Grey Wolf Optimization Approach

    Get PDF
    Optimization of turning process parameters in minimum quantity lubrication (MQL)-assisted mode is obligatory for enhanced efficiency and product integrity. However, little attention has been paid to analyzing situations where high search precision is needed when evaluating the optimal turning process parameters. This article applies the grey wolf optimization (GWO) approach to optimize the turning of parameters AISI 4340 alloy to enhance cutting force, surface roughness and tool wear. Based on the literature data, turning was conducted with MQL-assisted CuO and Al2O3 nanofluids. The problem was formulated by mimicking six wolves in six different objective functions. The objective functions have the responses as the dependent variables and the parameters including cutting speed, feed and cutting depth as independent variables. The hunting behavior of the wolves as they encircle the prey is interpreted to the machining task optimization. It involves three hierarchically-evaluated guides- the alpha, beta and delta wolves- positioned optimally and other wolves are updated accordingly. The cutting speed, feed and cutting depth are bound in the lower and upper limits as 80 and 140m/min, 0.05 and 0.20m/m/rev and 0.1 and 0.4mm, respectively. The grey wolf optimization algorithm optimizes the parameters to yield the cutting force, surface roughness and tool wear using Al2O3 as 199.50N, -23.54mm and 0.06mm, respectively. For the CuO, the corresponding cutting force, surface roughness and tool wear, the CuO, Al2O3 and CuO nano lubricants produced the best results. However, for mass production, selective use of CuO and Al2O3 should be made. The usefulness of this research endeavor is to help process engineers to make decisions in producing low-cost components in manufacturing

    Can a remote sensing approach with hyperspectral data provide early detection and mapping of spatial patterns of black bear bark stripping in coast redwoods?

    Get PDF
    The prevalence of black bear (Ursus americanus) bark stripping in commercial redwood (Sequoia sempervirens) timer stands has been increasing in recent years. This stripping is a threat to commercial timber production because of the deleterious effects on redwood tree fitness. This study sought to unveil a remote sensing method to detect these damaged trees early and map their spatial patterns. By developing a timely monitoring method, forest timber companies can manipulate their timber harvesting routines to adapt to the consequences of the problem. We explored the utility of high spatial resolution UAV-collected hyperspectral imagery as a means for early detection of individual trees stripped by black bears. A hyperspectral sensor was used to capture ultra-high spatial and spectral information pertaining to redwood trees with no damage, those that have been recently attacked by bears, and those with old bear damage. This spectral information was assessed using the Jeffries-Matusita (JM) distance to determine regions along the electromagnetic spectrum that are useful for discerning these three-health classes. While we were able to distinguish healthy trees from trees with old damage, we were unable to distinguish healthy trees from recently damaged trees due to the inherent characteristics of redwood tree growth and the subtle spectral changes within individual tree crowns for the time period assessed. The results, however, showed that with further assessment, a time window may be identified that informs damage before trees completely lose value

    Omega grey wolf optimizer (ωGWO) for optimization of overcurrent relays coordination with distributed generation

    Get PDF
    Inverse definite minimum time (IDMT) overcurrent relays (OCRs) are among protective devices installed in electrical power distribution networks. The devices are used to detect and isolate the faulty area from the system in order to maintain the reliability and availability of the electrical supply during contingency condition. The overall protection coordination is thus very complicated and could not be satisfied using the conventional method moreover for the modern distribution system. This thesis apply a meta-heuristic algorithm called Grey Wolf Optimizer (GWO) to minimize the overcurrent relays operating time while fulfilling the inequality constraints. GWO is inspired by the hunting behavior of the grey wolf which have firm social dominant hierarchy. Comparative studies have been performed in between GWO and the other well-known methods such as Differential Evolution (DE), Particle Swarm Optimizer (PSO) and Biogeographybased Optimizer (BBO), to demonstrate the efficiency of the GWO. The study is resumed with an improvement to the original GWO’s exploration formula named as Omega-GWO (ωGWO) to enhance the hunting ability. The ωGWO is then implemented to the realdistribution network with the distributed generation (DG) in order to investigate the drawbacks of the DG insertion towards the original overcurrent relays configuration setting. The GWO algorithm is tested to four different test cases which are IEEE 3 bus (consists of six OCRs), IEEE 8 bus (consists of 14 OCRs), 9 bus (consists of 24 OCRs) and IEEE 15 bus (consists of 42 OCRs) test systems with normal inverse (NI) characteristic curve for all test cases and very inverse (VI) curve for selected cases to test the flexibility of the GWO algorithm. The real-distribution network in Malaysia which originally without DG is chosen, to investigate and recommend the optimal DG placement that have least negative impact towards the original overcurrent coordination setting. The simulation results from this study has established that GWO is able to produce promising solutions by generating the lowest operating time among other reviewed algorithms. The superiority of the GWO algorithm is proven with relays’ operational time are reduced for about 0.09 seconds and 0.46 seconds as compared to DE and PSO respectively. In addition, the computational time of the GWO algorithm is faster than DE and PSO with the respective reduced time is 23 seconds and 37 seconds. In Moreover, the robustness of GWO algorithm is establish with low standard deviation of 1.7142 seconds as compared to BBO. The ωGWO has shown an improvement for about 55% and 19% compared to other improved and hybrid method of GA-NLP and PSO-LP respectively and 0.7% reduction in relays operating time compared to the original GWO. The investigation to the DG integration has disclosed that the scheme is robust and appropriate to be implemented for future system operational and topology revolutions

    Swarm Intelligent in Bio-Inspired Perspective: A Summary

    Get PDF
    This paper summarizes the research performed in the field of swarm intelligent in recent years. The classification of swarm intelligence based on behavior is introduced.  The principles of each behaviors, i.e. foraging, aggregating, gathering, preying, echolocation, growth, mating, clustering, climbing, brooding, herding, and jumping are described. 3 algorithms commonly used in swarm intelligent are discussed.  At the end of summary, the applications of the SI algorithms are presented

    Swarm Intelligent in Bio-Inspired Perspective: A Summary

    Get PDF
    This paper summarizes the research performed in the field of swarm intelligent in recent years. The classification of swarm intelligence based on behavior is introduced. The principles of each behaviors, i.e. foraging, aggregating, gathering, preying, echolocation, growth, mating, clustering, climbing, brooding, herding, and jumping are described. 3 algorithms commonly used in swarm intelligent are discussed. At the end of summary, the applications of the SI algorithms are presented

    Early-season crop mapping using improved artificial immune network (IAIN) and Sentinel data

    Get PDF
    Substantial efforts have been made to identify crop types by region, but few studies have been able to classify crops in early season, particularly in regions with heterogeneous cropping patterns. This is because image time series with both high spatial and temporal resolution contain a number of irregular time series, which cannot be identified by most existing classifiers. In this study, we firstly proposed an improved artificial immune network (IAIN), and tried to identify major crops in Hengshui, China at early season using IAIN classifier and short image time series. A time series of 15-day composited images was generated from 10 m spatial resolution Sentinel-1 and Sentinel-2 data. Near-infrared (NIR) band and normalized difference vegetation index (NDVI) were selected as optimal bands by pair-wise Jeffries–Matusita distances and Gini importance scores calculated from the random forest algorithm. When using IAIN to identify irregular time series, overall accuracy of winter wheat and summer crops were 99% and 98.55%, respectively. We then used the IAIN classifier and NIR and NDVI time series to identify major crops in the study region. Results showed that winter wheat could be identified 20 days before harvest, as both the producer’s accuracy (PA) and user’s accuracy (UA) values were higher than 95% when an April 1–May 15 time series was used. The PA and UA of cotton and spring maize were higher than 95% with image time series longer than April 1–August 15. As spring maize and cotton mature in late August and September–October, respectively, these two crops can be accurately mapped 4–6 weeks before harvest. In addition, summer maize could be accurately identified after August 15, more than one month before harvest. This study shows the potential of IAIN classifier for dealing with irregular time series and Sentinel-1 and Sentinel-2 image time series at early-season crop type mapping, which is useful for crop management

    A New Enhanced Hybrid Grey Wolf Optimizer (GWO) Combined with Elephant Herding Optimization (EHO) Algorithm for Engineering Optimization

    Get PDF
    Although the exploitation of GWO advances sharply, it has limitations for continuous implementing exploration. On the other hand, the EHO algorithm easily has shown its capability to prevent local optima. For hybridization and by considering the advantages of GWO and the abilities of EHO, it would be impressive to combine these two algorithms. In this respect, the exploitation and exploration performances and the convergence speed of the GWO algorithm are improved by combining it with the EHO algorithm. Therefore, this paper proposes a new hybrid Grey Wolf Optimizer (GWO) combined with Elephant Herding Optimization (EHO) algorithm. Twenty-three benchmark mathematical optimization challenges and six constrained engineering challenges are used to validate the performance of the suggested GWOEHO compared to both the original GWO and EHO algorithms and some other well-known optimization algorithms. Wilcoxon's rank-sum test outcomes revealed that GWOEHO outperforms others in most function minimization. The results also proved that the convergence speed of GWOEHO is faster than the original algorithms

    A machine learning-remote sensing framework for modelling water stress in Shiraz vineyards

    Get PDF
    Thesis (MA)--Stellenbosch University, 2018.ENGLISH ABSTRACT: Water is a limited natural resource and a major environmental constraint for crop production in viticulture. The unpredictability of rainfall patterns, combined with the potentially catastrophic effects of climate change, further compound water scarcity, presenting dire future scenarios of undersupplied irrigation systems. Major water shortages could lead to devastating loses in grape production, which would negatively affect job security and national income. It is, therefore, imperative to develop management schemes and farming practices that optimise water usage and safeguard grape production. Hyperspectral remote sensing techniques provide a solution for the monitoring of vineyard water status. Hyperspectral data, combined with the quantitative analysis of machine learning ensembles, enables the detection of water-stressed vines, thereby facilitating precision irrigation practices and ensuring quality crop yields. To this end, the thesis set out to develop a machine learning–remote sensing framework for modelling water stress in a Shiraz vineyard. The thesis comprises two components. Component one assesses the utility of terrestrial hyperspectral imagery and machine learning ensembles to detect water-stressed Shiraz vines. The Random Forest (RF) and Extreme Gradient Boosting (XGBoost) ensembles were employed to discriminate between water-stressed and non-stressed Shiraz vines. Results showed that both ensemble learners could effectively discriminate between water-stressed and non-stressed vines. When using all wavebands (p = 176), RF yielded a test accuracy of 83.3% (KHAT = 0.67), with XGBoost producing a test accuracy of 80.0% (KHAT = 0.6). Component two explores semi-automated feature selection approaches and hyperparameter value optimisation to improve the developed framework. The utility of the Kruskal-Wallis (KW) filter, Sequential Floating Forward Selection (SFFS) wrapper, and a Filter-Wrapper (FW) approach, was evaluated. When using optimised hyperparameter values, an increase in test accuracy ranging from 0.8% to 5.0% was observed for both RF and XGBoost. In general, RF was found to outperform XGBoost. In terms of predictive competency and computational efficiency, the developed FW approach was the most successful feature selection method implemented. The developed machine learning–remote sensing framework warrants further investigation to confirm its efficacy. However, the thesis answered key research questions, with the developed framework providing a point of departure for future studies.AFRIKAANSE OPSOMMING: Water is 'n beperkte natuurlike hulpbron en 'n groot omgewingsbeperking vir gewasproduksie in wingerdkunde. Die onvoorspelbaarheid van reënvalpatrone, gekombineer met die potensiële katastrofiese gevolge van klimaatsverandering, voorspel ‘n toekoms van water tekorte vir besproeiingstelsels. Groot water tekorte kan lei tot groot verliese in druiweproduksie, wat 'n negatiewe uitwerking op werksekuriteit en nasionale inkomste sal hê. Dit is dus noodsaaklik om bestuurskemas en boerderypraktyke te ontwikkel wat die gebruik van water optimaliseer en druiweproduksie beskerm. Hyperspectrale afstandswaarnemingstegnieke bied 'n oplossing vir die monitering van wingerd water status. Hiperspektrale data, gekombineer met die kwantitatiewe analise van masjienleer klassifikasies, fasiliteer die opsporing van watergestresde wingerdstokke. Sodoende verseker dit presiese besproeiings praktyke en kwaliteit gewasopbrengs. Vir hierdie doel het die tesis probeer 'n masjienleer-afstandswaarnemings raamwerk ontwikkel vir die modellering van waterstres in 'n Shiraz-wingerd. Die tesis bestaan uit twee komponente. Komponent 1 het die nut van terrestriële hiperspektrale beelde en masjienleer klassifikasies gebruik om watergestresde Shiraz-wingerde op te spoor. Die Ewekansige Woud (RF) en Ekstreme Gradiënt Bevordering (XGBoost) algoritme was gebruik om te onderskei tussen watergestresde en nie-gestresde Shiraz-wingerde. Resultate het getoon dat beide RF en XGBoost effektief kan diskrimineer tussen watergestresde en nie-gestresde wingerdstokke. Met die gebruik van alle golfbande (p = 176) het RF 'n toets akkuraatheid van 83.3% (KHAT = 0.67) behaal en XGBoost het 'n toets akkuraatheid van 80.0% (KHAT = 0.6) gelewer. Komponent twee het die gebruik van semi-outomatiese veranderlike seleksie benaderings en hiperparameter waarde optimalisering ondersoek om die ontwikkelde raamwerk te verbeter. Die nut van die Kruskal-Wallis (KW) filter, sekwensiële drywende voorkoms seleksie (SFFS) wrapper en 'n Filter-Wrapper (FW) benadering is geëvalueer. Die gebruik van optimaliseerde hiperparameter waardes het gelei tot 'n toename in toets akkuraatheid (van 0.8% tot 5.0%) vir beide RF en XGBoost. In die algeheel het RF beter presteer as XGBoost. In terme van voorspellende bevoegdheid en berekenings doeltreffendheid was die ontwikkelde FW benadering die mees suksesvolle veranderlike seleksie metode. Die ontwikkelde masjienleer-afstandwaarnemende raamwerk benodig verder navorsing om sy doeltreffendheid te bevestig. Die tesis het egter sleutelnavorsingsvrae beantwoord, met die ontwikkelde raamwerk wat 'n vertrekpunt vir toekomstige studies verskaf.Master
    corecore