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ABSTRACT 

CAN A REMOTE SENSING APPROACH WITH HYPERSPECTRAL DATA 
PROVIDE EARLY DETECTION AND MAPPING OF SPATIAL PATTERNS OF 

BLACK BEAR BARK STRIPPING IN COAST REDWOODS? 
 
 

Shayne Ryan Magstadt 

 

The prevalence of black bear (Ursus americanus) bark stripping in commercial 

redwood (Sequoia sempervirens) timer stands has been increasing in recent years. This 

stripping is a threat to commercial timber production because of the deleterious effects 

on redwood tree fitness. This study sought to unveil a remote sensing method to detect 

these damaged trees early and map their spatial patterns. By developing a timely 

monitoring method, forest timber companies can manipulate their timber harvesting 

routines to adapt to the consequences of the problem. We explored the utility of high 

spatial resolution UAV-collected hyperspectral imagery as a means for early detection 

of individual trees stripped by black bears. A hyperspectral sensor was used to capture 

ultra-high spatial and spectral information pertaining to redwood trees with no 

damage, those that have been recently attacked by bears, and those with old bear 

damage. This spectral information was assessed using the Jeffries-Matusita (JM) 

distance to determine regions along the electromagnetic spectrum that are useful for 

discerning these three-health classes. While we were able to distinguish healthy trees 

from trees with old damage, we were unable to distinguish healthy trees from recently 
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damaged trees due to the inherent characteristics of redwood tree growth and the 

subtle spectral changes within individual tree crowns for the time period assessed. The 

results, however, showed that with further assessment, a time window may be 

identified that informs damage before trees completely lose value. 
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INTRODUCTION 

Coastal redwoods (Sequoia sempervirens) are a fundamental cultural and 

economic symbol in Humboldt County, CA and both conservation groups and timber 

resource companies have put forth efforts to protect this unique and important 

ecosystem. Redwood trees are one the largest coniferous tree species in the world and 

is one of four tree species that can grow to exceed 90 m [1]. Redwood trees are known 

for their fast growth rates and ability to stump sprout, giving them a reproductive 

advantage [1]. This species is found only along the Pacific Coast of Northern America 

providing unique habitat for a variety of species [1,2]. For instance, they are nesting 

sites for the Northern Spotted Owl (Strix occidentalis caurina), listed in 1990 as a 

threatened species under the Federal Endangered Species Act [3]. Redwood trees often 

experience disturbances such as fire, landslides, flooding and are also susceptible to 

pest damage such as fungal invasion [4], and herbivory such as bear bark stripping [5]. 

The black bear (Ursus amercanus) has been stripping the bark of redwoods for a long 

time, with official reports published as early as 1955 [6–8]. This disturbance threatens 

commercial timber production by decreasing tree health, increasing disease and pest 

susceptibility, decreasing growth rate, increasing the mortality rate and ultimately 

leading to financial loss [6]. In Humboldt County, 15% of annual allowable timber 

harvest loss in the Hoopa Valley Indian Reservation is due to bear damage resulting in 

one to two million dollars annual loss [9]. Spatial patterns of black bear bark stripping 
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are difficult to assess, but this behavior tends to occur in the spring and early summer 

months [6]. Bears will use their claws to remove the outer bark. Once the outer bark 

layer is removed, bears will use their incisors to scrape and remove the cambium layer, 

feeding on the nutritious sapwood [10]. Black bears attack the most vigorous pre-

rotation age trees, between 10 and 30 years, with a diameter at breast height of 25 – 50 

cm [11]. Bear bark stripping also more frequently occurs after stand improvements, 

such as thinning, thus defeating the purpose of silvicultural practices [6]. The damage 

is a result of bears searching for food, and single trees or clusters of trees may be 

selected often following geographic boundaries like roads, trails, or elevation gradients 

[7]. This forest disturbance is difficult to assess from ground surveys and satellite 

imagery alone due to both the spatial scale of redwood forests and the isolated and 

random nature of bear bark stripping [8]. 

Examining the economic impact of black bear bark stripping is cumbersome 

and often unreliable [11]. Cost estimates of bark peeling are difficult to assess due to 

the uneven spatial distribution of bear populations in the area [9]. Conventionally, 

aerial surveys are conducted to identify trees or groups of trees with visible canopy 

discoloration [12]. Observers in fixed wing aircraft manually digitized areas with red 

or gray crowns but are unable to detect trees in the early attack stage and often 

misclassify bark stripping with disease and other drivers also causing crown 

discoloration [11]. Presently, studies quantifying estimates of timber loss associated 

with bark stripping are limited. Aerial surveys in manned fixed wing aircraft were 
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conducted over 25,900 ha of Douglas-fir forest in Oregon and concluded black bear 

tree bark foraging resulted in an overall economic loss of $15.1 M or $585 per hectare 

[13]. Another study compared aerial surveys over 3,024 ha of Oregon Douglas-fir 

timberlands with ground truth data to develop models of the economic cost of damage 

and was perceived to be around $56 per hectare [12]. Human limitations make 

detecting tree crowns with recent bark peeling difficult. Therefore, developing new 

methods to identify early stress will not only eliminate human error but lead to more 

precise tree health predictions. 

Images collected using remote sensing can provide information about the 

landscape beyond what the human eye can ascertain from aircrafts. The availability of 

many narrow bands (6 nm FWHM) within hyperspectral data, enables the capturing of 

unique spectral signatures of healthy and stressed vegetation [14]. The main challenge 

of early detection of damage is that the changes in the foliage of recently stripped trees 

is subtle, thus making the detection difficult, especially using the multispectral images. 

The subtle foliar chemistry changes in the recent bark stripping phase is often 

manifested in specific narrow bands of the electromagnetic spectrum, which are only 

observable in hyperspectral sensors [15–18]. The primary benefit of hyperspectral 

imaging is, therefore, the large number of narrow acquisition bands, providing more 

detailed spectral signatures. A spectral signature is simply a measure of reflectance as 

a function of the reflected wavelength [19]. More specifically, hyperspectral sensors 

capture a dense, nearly continuous, spectral reflectance signature, collecting a much 
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more detailed data cube capable of discerning health variations caused by 

environmental stressors, such as bear bark stripping [18]. The narrow band widths are 

also useful for the derivation of vegetation indices (VI) and band ratios (BR) being 

correlated to stress levels, which was a proxy for recent tree attack. The key 

assumption here being that spectral anomalies related to plant phenology will affect all 

trees equally unless there are other localized stress inducers affecting tree health (i.e. 

insect or fungal intrusion). Examples of VIs/BRs developed for early detection of 

vegetation stress from insect attack, include the Vogelmann “red edge” index or VREI 

1 [20]; Red-edge Normalized Difference Vegetation Index (RENDVI) [21,22]; 

Modified Chlorophyll Absorption Ratio Index (MCARI) [23,24]; Plant Senescing 

Reflectance Index (PSRI) [25] and empirically derived Normalized Channel Ratios 

(e.g. Ra-Rb/Ra+Rb, where a and b are specific bands selected on the basis of class 

separability analysis) [26]. The key concept behind all these indices is the spectral 

signatures of healthy and damaged trees are significantly, and non-systematically 

different in enough narrow bands along the spectrum, to enable classification. Aside 

from the benefits of increased spatial and temporal resolution, unmanned aerial 

vehicles (UAVs) have been used to integrate higher spectral resolution sensors [18]. 

To obtain high resolution data, UAVs have emerged as a new and promising method 

for landscape level surveys [27]. UAV data acquisition and analysis are in their 

infancy and therefore possess several knowledge gaps in need of more exploration. 
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Research has attempted tree health detection from tree crowns using the remote 

sensing techniques. Hyperspectral data is useful for delineation of tree crowns with 

mean shift segmentation algorithm [28], pixel majority approach [29], watershed 

segmentation [30], forest discrimination index [31] and automatic object-based crown 

detection algorithms [32]. There are, however, some limitations with these techniques 

when delineating individual tree crowns resulting from, for example, overlapping 

crowns [30], defoliation and discoloration [33], variability of crown morphology, and 

leaf off and leaf on conditions. Tree health of isolated crowns can be detected using 

vegetation and disease indices [34], visual tree assessment [33] and reflecting scores 

[32].  

The main objective in this study was to determine which spectral features 

would be able to recognize and classify redwood trees that have been recently 

damaged by black bears to facilitate control measures. In particular, this research has 

focused on the possibility of combining high spectral resolution image sensors with 

the targeted approach of UAV data acquisition. With this combination of survey tools, 

land managers can more easily utilize remote sensing to quickly analyze the health and 

condition of natural resources. A method of early detection of bark stripped trees is 

crucial for sound forest management as it helps forest managers to anticipate a 

response to tree mortality by, for example; a) salvaging timber while it is still valuable, 

b) targeting affected trees during thinning operations, or c) modifying forestry 

functional unit allocations to address the threatened ecosystem services of interest. 
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More specifically, forestry functional unit allocations can be modified by deciding not 

to harvest commonly stripped areas and concentrate timber production in areas less 

vulnerable to bear attack.  
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MATERIALS AND METHODS 

Study Site 

The study was carried out in Humboldt County, California on land managed by 

the Green Diamond Resource Company. Initially, a larger property-wide search was 

carried out to identify a study area containing samples of healthy trees, trees with fresh 

damage, and trees with old damage. The area of interest (AOI), shown in Figure 1. 

Identified (40.869652 ºN, -123.964520 °E) is a 515 m × 95 m (4.85 ha) strip 

that consists of a silvicultural mix of Redwood and Douglas-fir forests. This region of 

the Klamath Mountains is densely forested, containing some of the most productive 

timberlands in California. The climate geography of Northern California is greatly 

influenced by the ocean with moderate temperatures, an annual rainfall of 46 inches 

per year, and heavy fog throughout much of the year. 
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Figure 1. The area of interest (AOI) located in Humboldt County in Northern California. The extent of 
the hyperspectral imagery is shown on the right totaling 4.85 ha and the individual trees used to train the 
models. 

 
Figure 2. Workflow of data analysis in this study. 
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Field Survey 

Ground reference data of redwood trees that exhibited no damage, old damage, 

and fresh damage were collected in May and June of 2019. Training data collected in-

situ were then categorized into three damage classes: trees with no damage, trees with 

fresh damage (<1 year), and trees with old damage (>1 year). Old damage was 

assumed to be any damage incurred before the present year and trees with recent 

damage were determined in the field. Trees with no damage were selected based on 

having no visible bark damage. Trees stripped within the year were identified by 

surveyor knowledge, with recently stripped trees being distinguishable from 

previously damaged trees (Figure 3). To determine in the field if the damage was recent 

or old, bark characteristics, such as moisture and rigidity were assessed. The cambium 

layer and inner bark of freshly damaged trees are noticeably more hydrated and lighter 

in appearance (Figure 4). Conversely, older damaged trees have sealed off their damaged 

tissue and were dryer to the touch and had a darker, weathered appearance. Older 

damaged bark was also more rigid, while newly damaged bark was more malleable. 

Trees were marked in the field using an aluminum tree tag with ID. Individual tree 

health, ID, age of damage, visual canopy, and trunk symptoms were noted and 

organized using the Survey123 mobile application within ArcGIS 10.1 [35]. Tree-

location measurements were conducted in September and October of 2019, after UAV 

data collection. To accurately map individual trees, several precise ground control 

points (GCPs) were surveyed at the study site using an Emlid REACH RS+ RTK 



10 
 

 
 

GNSS base station and rover at an accuracy of 1-5 cm. The GCPs were then used to 

geographically orient a Nikon NPL-322+P total station to triangulate coordinates for 

individual trees.  

 
(a) 

 
(b) 

Figure 3. An example of fresh damage observed in the field: (a) A redwood tree completely girdled by a 
black bear; (b) A redwood tree with half of the bark removed from the trunk. 
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(a) (b) 

Figure 4. An example of characteristics used to determine fresh damaged observed in the field: (a) A 
photo of bark from old damage (left) and fresh damage (right); (b) A tagged redwood tree with fresh 
damage. 

 

UAV Data Collection and Processing 

UAV-based data collection was conducted on July 31st, 2019. The weather and 

illumination conditions were sunny, clear, and windless during the flight collection. 

The hyperspectral imagery was captured in 56 individual strips using a Headwall 

Nano-Hyperspec sensor mounted on a DJI Matrice 600 Pro Hexacopter. A Headwall 

Nano-Hyperspec imaging sensor collects a hypercube with a spectral range of 

approximately 400-1000 nm in 273 discrete spectral bands. Equipment characteristics 

are shown in Table 1. RGB imagery was collected using an RGB camera mounted on 
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a DJI Phantom 4 Pro and the mosaic was used as a high-resolution reference to 

calibrate the hyperspectral imagery. The RGB mosaic was generated using the 

photogrammetry software toolkit from Pix4D and ground reference data collected 

using an Emlid REACH RS+ RTK GNSS base station and rover. To align the 

hyperspectral imagery, an RGB file of each hyperspectral strip was generated and 

imported into QGIS along with the georeferenced RGB ortho images. This allowed for 

easy tiepoint placement using a smaller sized file. Tiepoints were created for each strip 

and then matched to the corresponding location in the georeferenced RGB. These 

tiepoints were placed on objects that were easily visible in both the hyperspectral and 

RGB images such as the tops of individual trees or the ends of branches. The tiepoints 

were placed in such a way as to reduce the mean distance error for the tiepoints 

between the hyperspectral and RGB data. The full spectral range hyperspectral files 

were then imported into QGIS and georeferenced using the created tiepoints from the 

RGB strips. 

Table 1. Camera and flight characteristics of the equipment used in the study. 

Imaging Sensor Headwall Nano-Hyperspec 
Spectral bands 273 spectral bands from 398 to 1001 nm 
Focal Length 4.8 mm 

FWHM 
Bit depth 

 Spatial bands 

6 nm 
12-bit 
640 

Ground sampling distance 
(GSD)  2.5 cm 

Flight height 
Flight speed 

90 m 
4 m/s 
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Crown Delineation and Spectral Signature Extraction 

The imagery was captured from above, therefor it was important to select trees 

with canopies visible from above. Trees that were obstructed by adjacent canopies 

were removed from the sample. Locations of the field measured individual trees were 

identified by overlaying the point data on the hyperspectral imagery. Tree crowns were 

delineated manually using heads up digitizing and the resulting polygons were used as 

an extent to extract data values from the hyperspectral mosaic. A total of 108 trees 

belonging to the three health classes were delineated. This resulted in several thousand 

pixels related to each tree crown because of the high spatial resolution of the image 

data (i.e., ~2.5 cm/pixel). Information pertaining to tree crowns, pixels per tree crown, 

and total pixels per class are shown in Table 2. These extracted signatures were 

organized into a data frame for further analysis. A total of 368,958 signatures (pixels) 

across 273 bands, from 108 trees were used for feature selection (Figure 5). 

Table 2. Damage class for sample redwood trees, the total number of pixels, the number of individual 
tree crowns (ITCs), and the average number of pixels per individual tree crown. 

ID Damage Class ITCs Pixels Pixels/ITC 

1 No stress 
 

45 188,752 4,194 

2 Fresh Damage 1 25 68,695 2,747 
3  Old Damage 38 111,607 2,937 

1 Damage incurred within the month of survey. 
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a) 

b) 

c) 

Figure 5. A boxplot visualization of the spectral signatures extracted from the three classes: 
healthy tree (a), fresh damage (b), and old damage (c). The minimum quartile (0th 
percentile), the maximum quartile (100th percentile), the first quartile (25th percentile), and 
the third quartile (75th percentile), and the median (50th percentile) are shown as well as 
outliers (circles) for each class at each hyperspectral band. 
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Feature Selection and Vegetation Indices Based on Class Separability 

Feature selection is used to determine specific features or variables that 

maximize efficiency in machine learning models [36]. There are many reasons to 

employ feature selection techniques, the main premise being to identify redundant 

variables [36]. By removing irrelevant features, a subset of the data is used. This 

decreases training time and simplifies the model to avoid overfitting and ultimately the 

‘curse of dimensionality’ [37]. To reduce the number of bands and limit redundancy in 

the model, optimal features which best demonstrate the separation among the three 

health classes were determined statistically. To quantify the split in the data among the 

three health classes across all hyperspectral bands, the Jeffries-Matusita (JM) statistic 

was used to determine the amount of overlap two distinct datasets are experiencing. 

The JM distance seeks to determine how entangled or split two distributions of data 

are and is commonly used in feature selection of hyperspectral data. This statistic was 

calculated at each of the 237 bands, using a binary, one vs. one approach [36] between 

healthy and freshly damaged trees and between healthy and old damaged trees. The 

JM distance is a statistical separability measurement which values range from 0 (no 

separability between the two distributions of data) to the square root of 2 (complete 

separability between the two distributions of data) [38]. A JM distance of the √ 2 

implies the classification accuracy for that variable would be perfect between the two 

classes being compared because none of the data overlaps. A value below the √2 will 

have some level of uncertainty and some of the data between the two classes being 
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compared are overlapping. A JM value of zero implies the distribution of the data 

between the two classes being compared is completely intersecting. The JM values 

were calculated for each class combination (healthy vs. fresh damage and healthy vs. 

old damage) against each spectral band to determine features with greater class 

separation. JM distance was employed to find specific band combinations maximizing 

the dissimilarity of the reflectance values for our three classes [36]. This information 

was used to create a series of commonly used indices and a normalized channel ratio 

capable of discerning class boundaries (Table 3). 
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Table 3. Vegetation indices used in this study and the equation used to generate each. Note: The 
Normalized Channel Ratio was generated from the results of the JM statistical measure. 

Vegetation Indices Equation Reference 
Normalized Difference 

Vegetation Index 
(NDVI) 𝑁𝐷𝑉𝐼 = 	

𝜆()* − 𝜆,)*
𝜆()* + 𝜆,)*

 Rouse et al. [39] 

Modified Chlorophyll 
Absorption Ratio 
Index (MCARI) 

𝑀𝐶𝐴𝑅𝐼 = 𝜆(** − 𝜆,(*
− 0.2 𝜆(**
− 𝜆))*
∗ 𝜆(**/𝜆,(*  

Daughtry et al. [40] 

Red-edge Normalized 
Difference Vegetation 

Index (RENDVI) 𝑅𝐸𝑁𝐷𝑉𝐼 = 	
𝜆()* − 𝜆(*)
𝜆()* + 𝜆(*)

 Gitelson and Merzlyak 
[21] 

Plant Senescing 
Reflectance Index 

(PSRI) 𝑃𝑆𝑅𝐼 =
𝜆,:* − 𝜆)**

𝜆()*
 Merzlyak et al. [21] 

Vogelmann “red edge” 
Index (VREI1) 

Normalized Channel 
Ratio (NCR) 

𝑉𝑅𝐸𝐼 =
𝜆(;*
𝜆(<*

 Vogelmann et al. [41] 

𝑁𝐶𝑅 =
𝜆=
𝜆>

 Coops et al. [26] 

 
 

Classification 

The field data allowed for the calibration of our in-situ aerial data and our trees 

of interest on the ground. Different averaging methods were used to decide on the 

actual pixel values used for training (e.g. average or median of all pixels, or average or 

median of n number of brightest pixels within each tree extent) [17,42]. The average 

signature for each training tree was chosen and is shown in Figure 6. The vegetation 

indices calculated were also used as continuous features for model training. 
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Classification models such as Support Vector Machines [43] and Random Forests [44] 

were tested to determine the optimal model to use in this classification. 

 

 

Figure 6. The mean spectral signatures of each sample tree used as training: 
healthy class (a), fresh damage (b), and old damage (c). 

(a)

(c)

(b)
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The Support Vector Machine (SVM) learning approach is a supervised 

classification technique often used to classify data into two unique classes [45]. 

Published in 1963, SVM was primarily used to categorize classes based on values of 

linear combinations and characteristics of the data [46]. With the advent of computing 

power, SVMs have been implemented in remote sensing workflows for land 

classification applications [47–49]. SVMs use a kernel window to evaluate the general 

relationships in covariate datasets and define the margins among all classes [50]. 

SVMs use this kernel approach to define a hyperplane by splitting the data in covariate 

space where the separation in the individual classes of the dataset is maximized 

[49,51]. The relationship among the data is non-linear, therefore, the radial basis 

function was used as it has been shown to be the preferred function as demonstrated by 

Melgani and Bruzzone [51]. The tuning parameter required for the SVM function is 

cost. The maximum cost value for the radial based function is 1 and was chosen to 

minimize the training error in the model [52]. The SVM classifier has proven to be a 

successful land classification algorithm as it handles high dimensional feature spaces 

such as hyperspectral imagery, even when presented with small and imbalanced 

training datasets [51].  

Random Forest (RF) is a decision tree ensemble method seeking to classify 

multi-class datasets [53]. This classifier builds many individual decision trees, using a 

branching decision process to limit the amount of variance in the predictive power 

[37]. Decision trees are built from a matrix of input feature covariates and categorical 
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response variables. Several subsets of the matrix are created and structured using two 

parameters, k (number of trees) and n (number of branches). When determining the 

parameter values in the model, Rodriguez-Galiano et al. [54] demonstrated a decision 

forest with many trees (k) and a small number of branch nodes (n) will minimize the 

correlation among trees while reducing bias from complex training data. For this 

reason, the number of trees was held constant at 500 and the number of branch nodes 

was held constant at 2. RF uses a rational approach by combining several learning 

models to increase the accuracy of the classification, a method often called bagging 

[37]. For each decision tree of the random forest, a proportion of the data is used to 

build the tree and the remainder is used to validate the predicting capability of the tree 

[55]. After each tree in the forest has been built, the collective decision trees are used 

to make a prediction on the categorical outcome of the n-dimensional feature space, in 

this example the hyperspectral bands and indices. Random forest uses this bagging 

approach to average noisy models, creating a predictor with lower variance [56]. 

Accuracy Assessment 

Using a K-fold cross validation approach, the data extracted from the tree 

crowns in the study site were classified and validated for accuracy, using a portion of 

the data to train the model and the remainder to test the model fit [57]. To validate the 

RF and SVM model, a ten-fold repeated cross validation was implemented. The 

dataset was split using 90% of the data to train the model and 10% of the data to 
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validate the accuracy of the model. This approach was repeated ten times ensuring all 

data was used in the validation process. A pixel level classification was performed, so 

performance was determined by computing the ratio of correct to incorrect predictions 

and the kappa statistic. Accuracy was determined at the pixel level but also assessed 

visually at the tree crown level. The field data was compared to the highest performing 

model to assess performance across a stand rather than assessing pixel level 

classifications alone. All data processing was completed in the statistical package R, 

version 3.5.1 [58]. Model training and cross-validation was completed using the 

‘caret’ package [59]. 
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RESULTS 

Feature Selection 

Figure 7 (a) illustrates the VNIR variable importance between healthy 

redwoods and freshly damage redwoods. In the visible range, there is a slight increase 

in separation among these two classes near 500 nm and 685 nm, and in the near-

infrared portion, there is a slightly more distinct difference between the two health 

classes. Near 550 nm, a trend of nearly no distinction among the healthy and present 

damage classes is seen. There is no region in the VNIR where the JM distance 

between healthy and recently damaged canopies approaches √ 2, which would ensure 

classification. This implies the hyperspectral data between these two classes is 

overlapping. This likely inhibited classification of freshly damaged redwood trees 

because the spectral information is too similar. In Figure 7 (b), the JM criterion for the 

VNIR variables between the healthy and old damage class is shown. There is almost 

no distinction along the red-edge (~700 nm) indicating complete class overlap in that 

region. Just beyond the red edge, there is a slight increase in this statistic around 750 

nm and a considerable difference near 685 nm, indicating the greatest class separation 

in the data between healthy redwoods and old damaged redwoods. When comparing 

our tree health classes, there are no VNIR features that approaches √ 2, suggesting the 

data is too similar to enable an accurate classification (Figure 7). 
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(a) 

 
(b) 

Figure 7. The Jeffries-Matusita distance measure for each of the 273 spectral bands (400 nm to 1000 
nm): (a) JM measure between healthy class and freshly damage class; (b) JM measure between healthy 
class and old damage class.   

 

Classification Accuracy  

Table 4 shows the pixel-level OA and Kappa statistic for each of the feature 

datasets tested using the SVM and RF classifier. The most informative result was 

reached using VNIR features in an SVM model, with an OA of 83.8% and a kappa 

statistic of 0.75. None of the individual vegetation indices surpassed the accuracies 

attained using the VNIR features. Using all VIs improved model accuracy compared to 

using individual indices but was considerably less accurate than using the VNIR 

features. Performance decreased when using the full dataset which included the VNIR 

and VIs. For each feature set used, the SVM classifier outperformed the RF classifier 

in both OA and kappa.  
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Table 4. Overall accuracy (OA) and Kappa statistic and the associated features used with the SVM and 
RF classification algorithm. 

Features Accuracy 
(%) SVM 

Kappa  
SVM 

Accuracy (%)  
RF 

Kappa  
RF 

VNIR 83.8 0.75 73.4 0.60 
VIs 57.6 0.36 54.8 0.32 
λ685; λ750 49.6 0.24 43.1 0.15 
NDVI 45 0.17 38.8 0.08 
MCARI 33.9 0.09 36.5 0.04 
RENDVI 47.4 0.21 42.3 0.13 
PSRI 45.5 0.18 38.4 0.07 
VREI 1 45.8 0.18 37.8 0.06 
NCR 
full 

45.1 0.26 38.1 0.09 
78.1 0.67 77.9 0.66 

Note: VNIR - Visible and Near-Infrared bands; Vis - All Vegetation Indices; λ685; λ750 - result of JM 
distance; MCARI - Modified Chlorophyll Absorption Ration Index; RENDVI - Red Edge Normalized 

Vegetation Index; PSRI - Plant Senescence Reflectance Index; VREI 1 - Vogelmann Red Edge Index 1; 
NCR - Normalized Channel Ratio derived from JM statistics; full - complete feature dataset; 

Model Prediction  

Figure 8 shows two areas in the study site to compare the classification results 

to what was observed in the field. Due to the statistically similar and overlapping 

spectral signatures between the healthy and presently damaged class, the model 

struggled to predict trees in the early attack stage and generally classified those trees 

as healthy or old damage (Figure 8). Within individual tree crowns, the model often 

misclassified pixels or classified individual pixels within an individual tree crown into 

two classes, healthy and old damage, but rarely classified an entire tree crown as one 

class. Spectrally, healthy, and presently damaged classes were too similar to 

distinguish using the hyperspectral imagery.  



25 
 

 
 

 

Figure 8. Comparing field observations (outline) to the tree health class prediction determined using the 
SVM classifier (pixel). 
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DISCUSSION 

Redwood tree Characteristics 

The main challenge to validate this study was the assumption that damage to 

each redwood tree was sustained simultaneously. Bears will select groups of trees but 

unlike other pests, e.g. bark beetles, will target trees over several weeks to months. 

Therefore, the training trees in the model did not incur damage at the same rate, thus 

some trees may have had a longer period to show signs of stress in the canopy layer. 

Several studies have examined the intraspecies spectral variability of health and 

damaged trees in a variety of applications (i.e. albeit focusing on bark beetles) [17] 

with the main assumption being that the infected trees senesce similarly. In this study, 

however, it was difficult to validate this assumption since the timing of redwood trees 

being damaged and the resulting effect on the tree canopy varied due to the 

independent and isolated nature of this disturbance.  

Unlike Douglas-fir, which are also susceptible to black bear bark stripping attack, 

redwoods have a unique ability to recover from these disturbances. Some trees that 

were attacked were able to recover with no visible signs of damage, whereas other 

attacked trees were unable to recover and showed signs of early senescence. Unlike 

other forest disturbances, such as bark beetle, there is not necessarily a high mortality 

rate, but the damage incurred likely only slowed the trees growth as it heals itself. 

With bark beetle outbreaks, if a tree is infested, the tree will likely perish and the 
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timing is fairly uniform across the stand [16]. Bear bark stripping occurs over several 

months and is patchy in nature. Trees may only be partially girdled, especially near the 

bottom which adds inherent complexity to the model.  

Feature Selection, Variable Importance and Early Detection of Damage 

This study was implemented to determine the possibility of discerning healthy 

and recently attacked redwood trees using hyperspectral imagery acquired from a 

UAV platform. Several studies have explored the use of hyperspectral imagery to 

estimate chlorophyll content, which is used as a proxy for tree health [19,60–62]. 

Abundant chlorophyll pigments of healthy plant leaves are responsible for 

photosynthesis, playing a major role in the absorption of light in the red and blue 

wavelengths, and its reflection in the Near-infrared (NIR) portion of the 

electromagnetic spectrum [63]. Several months after the bear bark stripping event, 

completely girdled redwood tree canopies may begin to turn yellow, then red, and then 

finally grey as the chlorophyll content degrades, revealing the leaf carotenoids and 

resulting in senescence [19]. Partially girdled trees often recover and may show no 

signs of stress, making them undetectable, but will experience decreased growth rates 

and increased susceptibility to various fungal diseases [6]. When a tree is stressed, the 

leaf surface reflectance in the blue, green and red regions of the visible (VIS) portion 

increases while decreasing in the NIR wavelengths [19,64]. This stress-induced 

increase of reflectance in the VIS interval is most observed between the red and red 
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edge region (650-700 nm) making it a critical range for early detection of vegetation 

stress, and thus a focus for early forest damage detection [65]. This trend was 

noticeable in this study, but only between healthy and old damaged redwood trees 

(Figure 7). Among our two classes of interest, healthy and recently damaged, the JM 

distances did not show importance among the band indices, suggesting the need to 

extend the recent damage window. This also suggests the spectral overlap among our 

health classes is significant enough, thus creating model uncertainty and confusion.  

UAV-Based Image Acquisition in Forest Health Monitoring 

Imagery collected using UAV technology is showing promise in providing 

similar metrics to traditional on-the-ground sampling methods seeking to monitor 

forest health [15,17,66]. The use of UAVs to monitor forest health does have its set of 

strengths and limitations. With the ability to control flight height, spatial resolution is 

greatly increased. This detail is helpful when examining forest characteristics at the 

individual tree level, but the tradeoff with increased spatial resolution is limited spatial 

extent making UAVs useful for targeted monitoring limited to small areas or stands. 

Field methods of detecting bear bark stripping are laborious and time-consuming 

[12,67]. Remote sensing technology offers the ability to estimate vegetation health 

with precision and detail, and the above ground nature of the data allows for the 

assessment of anomalies in crown health over extensive areas at varying spatial and 

temporal scales. Remote sensing of forest health has largely focused on insect 
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infestations using a wide range of datasets, including passive multispectral imagery, 

synthetic aperture radar, lidar [24,42,65,68–70], and at moderate to coarse scale using 

pixel level approaches [26,70]. However, bear bark stripping occurs on single, isolated 

trees or small clusters of trees even when generally associated with linear features such 

as roads or trails, or broad scale drainage areas [6]. As such, high spatial resolution 

remote sensing data and methods capable of single tree detection are crucial for 

identifying bear bark stripping at the finest scale to develop more accurate upscaled 

models.  

Presently, no studies have examined bear damage using UAV acquired data, 

but similar approaches have been demonstrated in applications such as monitoring 

bark beetle outbreaks [17,18]. Researchers utilized UAV-based high-resolution 

hyperspectral image data to assess bark beetle infestation in Norway spruce (Picea 

abies) in Finland [17]. The study identified different stages of health (i.e., healthy, 

infested, and dead trees) using machine vision technologies with an overall accuracy 

of 76 % when using three classes (healthy, infested, and dead) and 90 % when using 

only two classes (healthy and dead) [17]. This same study was later expanded upon, to 

compare the high resolution UAV data to moderate resolution aircraft data using a 

variety of vegetation indices and reported a best overall accuracy of 73 % (Kappa 

0.56) with aircraft data compared to a best overall accuracy of 81 % (Kappa 0.7) with 

the UAV data for the above mentioned three classes [18]. There are few studies in this 

area of forest health monitoring, but the encouraging results shown in these examples 
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demonstrate novel, low-cost remote sensing technologies offer a great potential for 

affordable and timely assessments of tree health condition.  

Recent advancements in UAV technology have opened a new scientific 

endeavor, offering novel data collection approaches with lower operating costs than 

manned aircraft data acquisition systems [71]. UAVs can be flown at much lower 

altitudes and over narrow time intervals, capturing ultra-high spatial and temporal 

resolution data [72]. With this gain in spatial and spectral resolution, tree-level 

redwood variation can be analyzed more effectively over larger spatial extents [68]. 

Collecting spectral data using UAVs verified the advantages of this method of image 

acquisition [22]. The benefit of using hyperspectral sensors is the increased spectral 

resolution, providing a more detailed data cube capable of discerning marginal 

changes in intraspecies variation. The use of hyperspectral bands to classify diverse 

landscapes at the species level has been demonstrated with promising results [25]. In 

this study, however, intraspecies spectral variation was for only one tree species, the 

redwood. The main question being asked was whether trees with recent damage could 

be detected and isolated among healthy trees. The capabilities of UAVs in remote 

sensing workflows will likely improve, with the advent of computing power and UAV 

technology, but in this example detecting trees with recent damage could not be 

achieved. 
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CONCLUSIONS 

 This study explored the capacity of UAV-based hyperspectral imaging to 

identify redwood trees in the early attack stage of senescence. The results showed 

there is little distinction between healthy redwoods and presently damaged redwoods 

in the four-month window between survey and image collection suggesting the time 

allotted in this experiment may be insufficient to see a response in the canopy via 

remote sensing. One benefit of UAVs is the increase temporal resolution. Going 

forward, it would be of interest to model this disturbance over time to develop a better 

understanding of the timing of senescence and the effect this disturbance has on 

growth and recovery rates. Bear bark stripping is a particularly common and puzzling 

disturbance in redwood forests of Northern California, occurring in seemingly random 

patches and irregular time intervals. Although it is unclear what causes bears to target 

the cambium layer of certain trees as a food source, developing methods to identify 

individual trees and ultimately identify the spatial patterns of this disturbance may aid 

future research in understanding the fundamental link driving this behavior. An 

understanding of the spatial patterns of bear bark stripped trees is a critical step in 

identifying the causes and possible solutions to this wildlife-forest interaction. If 

identified correctly, patterns of damaged trees can be used to customize harvesting 

operations. High-resolution data may be the link to spatially optimizing land use, 

accommodating both timber production and habitat preservation. In the long term, the 
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products of this research will contribute to more efficient and sustainable forest 

management, by helping to identify early tree stress at a landscape level. 
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