424 research outputs found

    An integrative quantifier of multistability in complex systems based on ecological resilience

    Get PDF
    Acknowledgements This work was supported by the German Federal Ministry of Education and Research (BMBF) via the Young Investigators Group CoSy-CC2 (grant no. 01LN1306A). C.M. acknowledges the support of Bedartha Goswami, Jobst Heitzig and Tim Kittel.Peer reviewedPublisher PD

    Robust Synchronization for Multistable Systems

    Get PDF
    International audienceIn this note, we study a robust synchronization problem for multistable systems evolving on manifolds within an Input-to-State Stability (ISS) framework. Based on a recent generalization of the classical ISS theory to multistable systems, a robust synchronization protocol is designed with respect to a compact invariant set of the unperturbed system. The invariant set is assumed to admit a decomposition without cycles, that is, with neither homoclinic nor heteroclinic orbits. Numerical simulation examples illustrate our theoretical results

    Robustness of Delayed Multistable Systems with Application to Droop-Controlled Inverter-Based Microgrids

    Get PDF
    Motivated by the problem of phase-locking in droop-controlled inverter-based microgrids with delays, the recently developed theory of input-to-state stability (ISS) for multistable systems is extended to the case of multistable systems with delayed dynamics. Sufficient conditions for ISS of delayed systems are presented using Lyapunov-Razumikhin functions. It is shown that ISS multistable systems are robust with respect to delays in a feedback. The derived theory is applied to two examples. First, the ISS property is established for the model of a nonlinear pendulum and delay-dependent robustness conditions are derived. Second, it is shown that, under certain assumptions, the problem of phase-locking analysis in droop-controlled inverter-based microgrids with delays can be reduced to the stability investigation of the nonlinear pendulum. For this case, corresponding delay-dependent conditions for asymptotic phase-locking are given

    W

    Get PDF
    Motivated by the importance and application of discrete dynamical systems, this paper presents a new Lyapunov characterization which is an extension of conventional Lyapunov characterization for multistable discrete-time nonlinear systems. Based on a new type stability notion of W-stability introduced by D. Efimov, the estimates of solution and the Lyapunov stability theorem and converse theorem are proposed for multi-stable discrete-time nonlinear systems

    On the robust synchronization of Brockett oscillators

    Get PDF
    International audienceIn this article, motivated by a recent work of R. Brockett Brockett (2013), we study a robust synchronization problem for multistable Brockett oscillators within an Input-to-State Stability (ISS) framework. Based on a recent generalization of the classical ISS theory to multistable systems and its application to the synchronization of multistable systems, a synchronization protocol is designed with respect to compact invariant sets of the unperturbed Brockett oscillator. The invariant sets are assumed to admit a decomposition without cycles (i.e. with neither homoclinic nor heteroclinic orbits). Contrarily to the local analysis of Brockett (2013), the conditions obtained in our work are global and applicable for family of non-identical oscillators. Numerical simulation examples illustrate our theoretical results

    Perturbation theory and singular perturbations for input-to-state multistable systems on manifolds

    Get PDF
    We consider the notion of Input-to-State Multistability, which generalizes ISS to nonlinear systems evolving on Riemannian manifolds and possessing a finite number of compact, globally attractive, invariant sets, which in addition satisfy a specific condition of acyclicity. We prove that a parameterized family of dynamical systems whose solutions converge to those of a limiting system inherits such Input-to-State Multistability property from the limiting system in a semi-global practical fashion. A similar result is also established for singular perturbation models whose boundary-layer subsystem is uniformly asymptotically stable and whose reduced subsystem is Input-to-State Multistable. Known results in the theory of perturbations, singular perturbations, averaging, and highly oscillatory control systems, are here generalized to the multistable setting by replacing the classical asymptotic stability requirement of a single invariant set with attractivity and acyclicity of a decomposable invariant one
    corecore