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Abstract

This article is an overview of recent developments in the Input-to-State Stability framework, dealing in particular with
the extension of the classical concept to systems with multiple invariant sets and possibly evolving on Riemannian
manifolds. Lyapunov-based characterizations of the properties are discussed as well as applications to the study of
cascaded nonlinear systems.
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1. Introduction

1.1. Notion and importance of multistability

The analysis of the stability and robustness properties
of nonlinear open dynamical systems exhibiting a variety
of non-trivial dynamical behaviors - multiple equilibria,
periodicity, almost-periodicity, chaos - has great impor-
tance to several scientific disciplines ranging from mechan-
ics, electronics, and physics to biology and neuroscience.
Indeed, the phenomenon known as multistability, i.e. the
coexistence of multiple attractors (with possibly very di-
verse nature) in a system of differential equations with a
given set of parameters, is frequently found in many real
physical systems. A thorough survey about the different
domains in which multistability occurs has been presented
in [40].

Among the reasons which make the study of multi-
stable systems appealing from the perspective of system
and control theory are a number of properties exhibited by
such systems, as in the following. Firstly, they possess a
“memory” of past states and, as components of larger sys-
tems, can act as switches or underlie relaxation oscillators
[20]. Secondly, as essential components of many biological
systems, they display functional flexibility in response to
various transitory stimuli and, furthermore, they play a
crucial role in cell differentiation and in the maintenance
of phenotypic differences in the abscence of environmental
distinctions [40]. Finally, again as components of larger
networks, their dynamics might be at the very core of the
mechanisms that entail information-processing or even in-
telligence [29]. The analysis of multistability thus appears
as a key preliminary step towards what can be envisioned
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as a new kind of control engineering, mainly oriented to
applications in biology and neuroscience.

1.2. Notion and importance of ISS

In this context, stability notions for nonlinear systems
with respect to exogeneous input disturbances become key
tools. In fact, they allow to analyze stability of intercon-
nected systems in terms of input-output gains of individual
subsystems and, at the same time, they provide quantita-
tive estimates of how each subsystem reacts to exogenous
disturbances [9]. In this direction, the Input-to-State Sta-
bility (ISS) approach [51, 53, 54] has extended the classical
Lyapunov methods - traditionally used to establish inter-
nal stability properties - to systems with inputs and out-
puts, by exploiting energy-like functions in order to assess
the stability and robustness of a system with respect to
internal and external perturbations. We briefly recall here
the classical notion of ISS together with a related notion
called integral Input-to-State Stability (iISS) [10].

(ISS). The definition of ISS implies the qualitative prop-
erty of having the state eventually trapped in a ball whose
radius is proportional to the magnitude of the input, and
thus represents a measure of performance in the qualitative
analog of “finite L∞ to L∞ induced norm”. In particular,
a general nonlinear system

ẋ(t) = f (x(t), u(t)) , y = h(x(t)), (1)

with state in Rn, inputs in Rm, and outputs in Rp is said
to be input-to-state stable if it satisfies the following L∞ →
L∞ property: there exist some β ∈ KL and γ ∈ K∞ such
that:

|x(t)| ≤ β (|x(0)|, t) + γ(∥u∥), (2)

for all inputs u(·) and all initial conditions x(0) ∈ Rn. In
(2), we have denoted the Euclidean norm with | · | and the
L∞ norm of signal u(·) with ∥u∥ := supt≥0 |u(t)|.
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(iISS). As a weaker but still very meaningful notion of
stability, the Integral Input-to-State Stability (iISS) has
been introduced in [50]. The definition of iISS implies the
qualitative property of small overshoot when disturbances
have finite energy and thus represents a measure of per-
formance in the qualitative analog of “finite H2 norm”.
System (1) is said to be iISS if there exist some β ∈ KL
and γ ∈ K∞ such that:

|x(t)| ≤ β (|x(0)|, t) +
∫ t

0

γ(|u(s)|) ds, (3)

for all inputs u(·) and all initial conditions x(0) ∈ Rn.
The iISS property has been presented in terms of asymp-
totic time-domain characterizations, Lyapunov dissipation
inequalities, and variants of the L2 → L∞ estimate in ref-
erences [10, 8, 11].

Applications We are now going to mention a number of
applications of the ISS property, and we refer the reader
to [51] for an extensive presentation of the subject. Appli-
cations of the ISS property to the stabilization of classes
of nonlinear systems [42], nonlinear cascades [49, 52] and
feedback interconnections [33, 32]. Moreover, it has been
shown in [49] that it is always possible for a GAS system to
be refined - by means of feedback redesign - into a system
which is ISS with respect to actuator disturbances. Ap-
plications of the iISS property are in the stabilization and
disturbance attenuation of systems with bounded controls
[34], nonlinear cascades [12], large-scale systems via de-
centralized output-feedback control [30], systems in block
strict-feedback form via output regulation [28, 31], and
hybrid switched systems [36].

1.3. ISS and multistability: the “wrong” direction

All classical formulations of the ISS property and its
related properties [51] characterize stability properties in
a global setting with respect to a single equilibrium at
the origin and for systems defined in Euclidean space. In
other words, classical ISS implies such system to evolve
on the “flat” Euclidean space and such equilibrium to be
globally asymptotically stable in absence of inputs. In-
terestingly enough, the classical definition of ISS allows in
principle to formulate and characterize stability properties
with respect to arbitrary compact invariant sets (and not
simply equilibria), which automatically implies these arbi-
trary compact invariant sets to be both Lyapunov stable
and globally attractive1. This requirement is applicable
only to a class of compact invariant sets which consist of
a single connected component [17]. Unfortunately, the in-
variant sets fail to consist of a single connected component
in many behaviors of interest such as: almost global sta-
bility [44], bistability, multistability, periodic oscillations,
convergence to almost-periodic attractors and to chaotic
attractors. It is important to recall that stability analy-
sis of each invariant solution can be conducted locally by
means of standard tools. Nevertheless, as mentioned be-
fore, a number of applications and open problems in many

domains of interest (theoretical biology, electro-mechanical
systems, etc.) call for a global analysis of stability for these
invariant solutions.

In regard to the global analysis of multistable systems,
several approaches are available in the literature. In addi-
tion to the first monograph on the subject [25], the papers
[38, 43] established the existence of Lyapunov functions
for multistable systems evolving on a compact manifold.
A modern approach is based on the aforementioned no-
tion of almost global stability [44], that is convergence to
an asymptotically stable equilibrium from all initial con-
ditions except for those lying in a zero-measure set. The
corresponding notion for nonautonomous systems is de-
noted as almost ISS [6]: the general nonlinear system (1)
is said to be almost ISS with respect to an invariant com-
pact set A ⊂ Rn if A is locally asymptotically stable and
there exists class-K∞ function γ such that:

∀u ∀a.a. ξ ∈ Rn lim sup
t→+∞

|x(t, ξ, u)|A ≤ γ(∥u∥).

The key idea of this approach is to replace Lyapunov func-
tions by suitable density functions and to impose a con-
dition on the way these are propagated by the flow. The
success of this approach has been validated both in terms
of converse dual Lyapunov results fully characterizing the
property [45], and in terms of software tools able to auto-
matically find such density functions for certain classes of
systems [41]. However, it has been shown in [5] that a fun-
damental limitation arises in the attempt of constructing
density functions for a specific class of systems, such class
encompassing the classical nonlinear pendulum model.

The difficulties in finding density functions pushed the
research towards a complementary set of tools for the global
analysis of stability and robustness in multistable systems
[9]. The approach followed in [9] heavily relies on the sta-
ble and unstable manifold theory of dynamical systems
and on their time-varying adaptation and, for this reason,
provides a very fine structure to the stability properties of
the invariant sets. In fact, the main result of the paper
guarantees almost ISS for ultimately-bounded multistable
systems whose linearization at each unstable equilibrium
has at least one eigenvalue with positive real part. Even
though a possible extension of this result to multiperiodic
systems could be conjured by drawing the theory of Flo-
quet multipliers in, such result would still be not only very
hard to test analytically but also merely a sufficient result,
thus not providing a full characterization of the almost ISS
property.

Moving from the almost ISS framework, the paper [17]
has shown that the most natural way of conducting a

1Non compact sets can somehow be tackled by considering output
maps, and defining appropriate input-to-output stability properties.
This is effective at least in the case of systems whose solutions are
eventually trapped in a compact set (UBIBS systems) and for this
case Lyapunov-like characterizations of the properties are possible
[48, 55].
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global stability analysis for systems with multiple invari-
ant sets is to relax the Lyapunov stability requirement
rather than the global nature of the attractivity property.
This intuition has led to a new line of research which
starts from the characterizations of ISS for this class of
systems in terms of usual Lyapunov-like inequalities [7],
thus generalizing the classical ISS theory as well as the
already-mentioned literature on autonomous flows evolv-
ing on compact manifolds [38]. This paper provides an
overview of this current line of research and its related
novel contributions. Furthermore, we would like to point
out that the developed theory has already shown to be of
great potential interest for applications in the domain of
power systems [19, 18] and robotics [26].

1.4. Notation

The Riemannian distance between two points x1, x2 of
a Riemannian manifold M will be denoted with d[x1, x2].
We will denote the distance between signalsX1, X2 : R≥0 →
M with d[0,+∞) [X1(·), X1(·)] := supt≥0 d[X1(t), X2(t)].
Given a set S ⊂ M and a point p ∈ M , the set-point
distance will be denoted as |p|S = infx∈S d[p, x]. Given
a function V : M → R≥0 and a compact connected set
S ⊂ M , the set

∪
x∈S V (x) will be denoted for short as

V (S). Given a continuously differentiable function V :
M → R≥0, the covector field DV (x) : M → T ⋆M will
denote the differential of V evaluated at x, according to
Definition 4.2.5 in [1]. Standard notation for comparison
functions is as follows: a class-K function α : R≥0 → R≥0

will denote a continuous and strictly increasing function
with α(0) = 0; if, furthermore, α is unbounded, then α is
said to be a class-K∞ function; a class-KL function will
denote any function β : R≥0 × R≥0 → R≥0 such that
β(·, s) ∈ K∞ for each t ≥ 0 and β(r, ·) is strictly decreas-
ing with limt→+∞ β(r, t) = 0 for each r ≥ 0.

2. ISS for systems on manifolds and with a decom-
posable invariant sets

2.1. Recalls on dynamical systems on manifolds

We start our analysis by recalling standard notions
about dynamical systems evolving on manifolds [16, 13, 1].
Let M be an n-dimensional connected and geodesically
complete Riemannian manifold without boundary and let
g be the Riemannian metric associated with M . A man-
ifold is said to be connected if it is not the union of two
disjoint open sets, and is said to have no boundary if every
point belonging to M has a neighborhood which is home-
omorphic to Rn. The property of geodesical completeness
is the property of every maximal geodesic γ(t) on M being
extendible for all t ∈ R. Geodesical completeness relates
to the notion of completeness of M as a metric space via
the Hopf-Rinow theorem and implies compactness of all
closed and bounded sets of M .

A vector field X onM is a section of the tangent bundle
TM , that is a mapping X : M → TM such that X(x) ∈

TxM for all x ∈ M . Typically,X is required to satisfy local
Lipschitz continuity2. A curve c at a point m ∈ M is a C1

map from an open interval I of R into M such that 0 ∈ I
and c(0) = m. We can then define an integral curve of X
at m ∈ M as a curve c at m such that d

dtc(t) = X(c(t)) for
each t ∈ I (see [1, Chapter 4]). Then, a dynamical system
on M is precisely the law of motion of the form dc

dt = X(c),
c(0) = m ∈ M whose integral curve is c(t).

2.2. The notion of decomposition and main assumption

ISS is essentially an analytical theory which character-
izes the input-to-state behavior of a system by means of
Lyapunov-like dissipation inequalities and, for this reason,
it can be seen as an energetic concept. Consistently with
the dissipative behavior of the systems onto which classi-
cal ISS typically applies, we will focus our attention to the
notion of decomposition of a compact invariant set and we
will make clear that such decomposition must exhibit no
cycles among its elements. In fact, a system cannot dissi-
pate energy all along the trajectories connecting the atoms
of a cycle. For this reason, whenever cycles are present and
provided that ultimate boundedness of trajectories holds
true, one might resort to coarser decompositions by em-
bedding any homoclinic or heteroclinic cycle within a sin-
gle atom of the decomposition. In particular, ultimate
boundedness alone potentially allows one to resort to the
coarsest decomposition, that is the one consisting of one
unique atom, the Milnor attractor (see Remark 3), which
is a globally asymptotically stable compact invariant set
[7, Section III.C].

The notion of a decomposition with no cycles automat-
ically rules out a number of conservative Hamiltonian sys-
tems which typically exhibit homoclinic/heteroclinic cy-
cles to equilibria and also do not satisfy ultimate bound-
edness of trajectories. Another interesting example is pro-
vided by the Lorenz system, which can only be studied by
embedding its chaotic attractor in a single invariant set,
the Milnor attractor, comprising also the equilibria and all
their connecting orbits.

Let D be a closed subset of Rm containing the origin.
Consider the system:

ẋ(t) = f(x(t), d(t)), (4)

where f(x, d) : M ×D → TxM is a locally Lipschitz con-
tinuous mapping2, with state x taking value in M and
d(·) any locally essentially bounded and measurable in-
put signal taking values in D. We denote by X(t, x; d) the
uniquely defined solution of (4) at time t fulfilling x(0) = x
under the input d(·).

2A vector field X on M is called locally Lipschitz continuous if,
for all compact sets K ⊂ M , there exists a constant CK ≥ 0 such
that expx : TxM → M is bijective on U and, for all v ∈ U , it holds∥∥∥Texpx(tv),1,0X(expx(v))−X(x)

∥∥∥
gx

≤ CK∥v∥gx . Here exp and T
respectively denote the standard operators of exponential map and
parallel transport on M [16, 13].
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The unperturbed system is defined by the following set
of equations:

ẋ(t) = f(x(t), 0). (5)

Solutions of the unperturbed system (5) may fail to be
defined for all t ∈ R. However, we assume without loss
of generality that any solution of (5) is globally defined
backwards and forward in time3. At the same time, all
α- and ω- limit sets of (5) are assumed to be compact
(and possibly empty). Moreover, we assume that for any
trajectory of (5) there exists ω- and α- limit sets4 which
are compact (possibly empty).

Definition 2.1 (W-limit set). Let W ⊂ M be a compact
invariant set containing all the α- and ω-limit sets of (5),
that is α(x) ∪ ω(x) ⊂ W, ∀x ∈ M . Then the set W is
called an W-limit set for (5).

Note that an W-limit set W is not required to satisfy
any global attractivity property a priori.

Definition 2.2 (Decomposition). Let W ∈ M be a com-
pact and invariant set for (5). A decomposition of W is a
finite, disjoint family of compact invariant sets W1, . . . ,WK

(the atoms of the decomposition) such that:

W =

K∪
i=1

Wi.

For an atom Ww of the invariant set W, its attracting
and repulsing subsets are defined as follows:

A(W) = {x ∈ M : |X(t, x, 0)|Ww → 0 as t → +∞} ,
R(W) = {x ∈ M : |X(t, x, 0)|Ww → 0 as t → −∞} .

Define a relation on Wi and Wj by Wi ≺ Wj if A(Wi) ∩
R(Wj) ̸= ∅.

Definition 2.3 (r-cycle, 1-cycle, filtration). Let W1, . . . ,WK

be a decomposition of W, then:

1. An r-cycle (r ≥ 2) is an ordered r-tuple of distinct
indexes i1, . . . , ir such that Wi1 ≺ · · · ≺ Wir ≺ Wi1 .

2. A 1-cycle is an index i such that [R(Wi) ∩ A(Wi)]−
Wi ̸= ∅.

3. A filtration ordering is a numbering of the Wi so that
Wi ≺ Wj ⇒ i < j.

3Without loss of generality, system (5) can be made backward
and forward complete by slowing down the dynamics with ẋ =

1
1+|f(x)|g

f(x).
4The definition of α- and ω-limit sets is the following:

α(x) :=
{
y ∈ M : lim

tk→−∞
X(tk, x) = y for some diverging {tk}k∈N

}
,

ω(x) :=
{
y ∈ M : lim

tk→+∞
X(tk, x) = y for some diverging {tk}k∈N

}
.

Existence of a filtration ordering rules out existence of
any r- or 1-cycle among the atoms of the decomposition.
Existence of an r-cycle for (5) with r ≥ 2 implies existence
of a heteroclinic cycle, and existence of a 1-cycle implies
existence of a homoclinic orbit. The converse implication
is not true: one can always select one of the atoms as the
given heteroclinic cycle / homoclinic orbit itself so as to
delineate a coarser decomposition with no cycles.

Our main assumption onW, which will be used through-
out the paper, is the following:

Assumption 1 (No cycle condition). The set W admits

a finite decomposition without cycles, W =
∪K

i=1 Wi for
some non-empty disjoint compact sets Wi, which form a
filtration ordering of W, as detailed in Definitions 2.2 and
2.3.

Example. Consider the following system of differential
equations:

(
ẋ1

ẋ2

)
=


f1(x1, x2) for x1 ≤ −1
1
2 [(1 + x1)f1 + (1− x1)f2] for − 1 < x1 ≤ 1

f2(x1, x2) for x1 > 1

(6)

with f1(x1, x2) :=

(
x1 + 2
x2 − x3

2

)
,

and f2(x1, x2) :=

(
−x2 + (x1 − 2)(1− (x1 − 2)2 − x2

2)
x1 − 2 + x2(1− (x1 − 2)2 − x2

2)

)
.

The W-limit set for system (6) is:

W = {(−2, 0), (−2,−1), (−2, 1), (2, 0),Γ} , (7)

with Γ =
{
(x1, x2) ∈ R2 : (x1 − 2)2 + x2

2 = 1
}
. By study-

ing each vector field f1, f2 separately, it is easy to observe
that the phase portrait of (6), as depicted in Figure 1, dis-
plays no homoclinic/heteroclinic cycles and for this reason
satisfies Assumption 1. A filtration ordering for W is given
by:

W1 = Γ, W2 = {(2, 0)} , W3 = {(−2, 1)}
W4 = {(−2, 1)} , W5 = {(−2, 0)} .

Figure 1: Phase plot of dynamics (6) in the coordinates x1, x2. The
set W as in (7) is depicted in red.
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2.3. Main result and discussion

In the following, we will consider a particular robust-
ness notion for system (4) denoted as asymptotic gain
(AG) property. AG corresponds to the property of hav-
ing the state of the system eventually trapped within a
distance from the W-limit set which is proportional to
the infinity norm of the input. Similar notions include
the practical AG (pAG) property, where the distance from
the W-limit set is proportional to the infinity norm of the
input plus a constant, and the global zero-attractivity (0-
GATT) property that simply formalizes the property of W
being attractive for all initial conditions in the state space
whenever inputs are zeroed.

Definition 2.4 (pAG). The system (4) has the practical
asymptotic gain (pAG) property if there exists η ∈ K∞
and q ≥ 0 such that for all x ∈ M and all measurable
essentially bounded inputs d(·) solutions are defined for all
t ≥ 0 and the following holds:

lim sup
t→+∞

|X(t, x; d)|W ≤ η(∥d∥) + q. (8)

If q = 0, then we say that the asymptotic gain (AG) prop-
erty holds. If (8) holds with q = 0 and ∥d∥ = 0, we say that
the systems (4) and (5) satisfy the global zero-attractivity
(0-GATT) property.

In the classical framework [51], ISS is equivalently char-
acterized by the conjunction of the AG and 0-LS properties
[54], with the latter property denoting Lyapunov stability
of the origin whenever input are absent. The generalized
notion of ISS for multistable systems in [7] replaces the 0-
LS requirement with Assumption 1 and is then formalized
as

Definition 2.5. System (4) is said to be ISS with respect
to the input d and the invariant set W if and only if W
satisfies Assumption 1 and (4) has the AG property.

Remark 1 One may object that Definition 2.5 formalizes a
mere convergence property while ISS typically comprises
Lyapunov stability and uniform attractivity. However, we
have mentioned that the invariant set of a multistable sys-
tem typically lacks Lyapunov stability and also uniform
attractivity, and this is due to the so-called stickiness effect
in proximity of anti-stable manifolds5. For this reason, the
conjunction of the no-cycle assumption with the AG con-
vergence property seems to be the most natural option for
generalizing ISS to the domain of multistable systems. In
particular, Definition 2.5 actually implies Lyapunov sta-
bility of W whenever W consists of a single connected
component W0, and this result can be shown by proving
that global attractivity of W0 plus absence of homoclinic
trajectories to W0 are equivalent to global asymptotic sta-
bility of W0 [24]. Therefore, even if apparently no stability
is entailed by the novel generalized definition of ISS, this
very same definition is consistent with the standard one in
(2) and actually naturally generalizes it.

We will then consider a characterization of the AG
property in terms of a Lyapunov dissipation inequality.
The reader is referred to [7] for an exhaustive presentation
of this subject.

Definition 2.6 (ISS-Lyapunov function). A C1 function
V : M → R is a practical ISS-Lyapunov function for (4)
if there exists K∞ functions α1, α, γ and q ≥ 0 such that,
for all x ∈ M and all d ∈ D, the following holds:

α1(|x|W) ≤ V (x) (9)

DV (x)f(x, d) ≤ −α(|x|W) + γ(|d|) + q. (10)

If (10) holds with q = 0, then V is said to be an ISS-
Lyapunov function. If, in addition, V (Wi) is a singleton
for all i ∈ {1, 2, . . . ,K}, then V is said to be an ISS-
Lyapunov function constant on invariant sets. If, further-
more, DV (W) = 0, then V is said to be an ISS-Lyapunov
function flat on invariant sets.

Theorem 2.7 (Characterizations of ISS [7]). Consider a
nonlinear system as in (4) and let W be an W-limit set.
System (4) is ISS with respect to input d and set W if and
on if it admits a smooth ISS Lyapunov function constant
on invariant sets. Furthermore, if system (4) satisfies As-
sumption 1, then the following facts are equivalent:

1. the system satisfies the AG property;
2. the system satisfies the pAG property;
3. the system admits a smooth ISS Lyapunov function

flat on invariant sets;
4. the system admits an ISS Lyapunov function;
5. the system admits a practical ISS Lyapunov function.

Remark 2 There are two main differences between the Lya-
punov characterization in Theorem 2.7 and the one in [53].
The first difference lies in the fact that the existence of a
K∞ function of |x|W bounding V from above is not nec-
essary for ISS in the multistable context. In particular,
the existence of such a bound would imply global asymp-
totic stability of W, which in turn contradicts the absence
of Lyapunov stability in systems having an invariant set
with multiple disjoint components. In fact, the lack of
such bound in (9) allows V to take different values on the
different components of the decomposition of W. Since
V is strictly decreasing along the trajectories of the au-
tonomous system (5) starting outside W, V takes high
values on sources and low values on sinks. In other words,
V (Wi) < V (Wj) whenever Wi ≺ Wj . The second differ-
ence is the absence in (8) of a KL bound characterizing
the convergence to the invariant set as in (2). Such bound
cannot in fact exist in a system with an invariant set con-
sisting of multiple disconnected components, and this is in
fact due to the stickiness effect5.

5 Consider an invariant set y ∈ M which is attractive for
all initial conditions on its non-empty stable manifold S+. Fix
ε > 0 arbitrarily small. Define T (x) as the capture time T (x) :=
{T ≥ 0 : d[x, y] ≤ ε, ∀t ≥ T}. The stickiness effect is the phe-
nomenon of having T (x) growing arbitrarily large whenever x ap-
proaches a given x̄ ∈ M , i.e. limx→x̄ T (x) = +∞.
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2.4. Examples

2.4.1. The single diode circuit

Consider the example of a single diode electronic circuit
described by the following set of differential equations [37]:

L
d

dt
i(t) = E + d(t)−Ri(t)− v(t)

C
d

dt
v(t) = i(t)− f(v(t)), (11)

where i, v, E, d,R, L,C respectively denote current flow-
ing in the inductor, voltage across the capacitor, volt-
age supply, additive voltage supply, resistance, inductance,
and capacitance, and where i = f(v) denotes the non-
linear voltage/current characteristic of the negative resis-
tor. Function f(v) is smooth and satisfies the properties
f(0) = 0 and f(v)v ≥ 0 for all v ∈ R. Consider the func-
tion:

V (i, v) =
1

2

(
1

L
−

λ

R

)
φi(i, v)

2+
1

2C
φv(i, v)

2+
λ

2R
(E−v)2+λF (v),

with φi(i, v) := E − Ri− v, φv(i, v) := i− f(v), λ being
a positive constant, and F (v) =

∫ v

0
f(v). Observe that

c0
(
φi(i, v)

2 + φv(i, v)
2
)
≤ V (i, v), (12)

for sufficiently small c0 > 0. It has been shown in [37] that
V acts as a Lyapunov function for system (11) whenever

d(·) ≡ 0 and whenever λ > 0 satisfies − f ′(v)
C < λ < R

L
for all v ∈ R, with f ′(v) = ∂f(v)/∂v. We are going to
prove that V is actually an ISS-Lyapunov function for (11).
Indeed, by taking derivatives along solutions of (11), we
obtain:

V̇ (i, v) = − 1

L

(
R

L
− λ

)
φi(i, v)

2 − 1

C

(
f ′(v)

C
+ λ

)
φv(i, v)

2+

1

L

(
λ− R

L

)
φi(i, v) d+

1

LC
φv(i, v) d

≤ −c1
(
φi(i, v)

2 + φv(i, v)
2)+ c2 d

2, (13)

for sufficiently small c1 > 0, sufficiently large c2 > 0, and

− f ′(v)
C < λ < R

L . Define

W =
{
(i, v) ∈ R2 : φi(i, v) = φv(i, v) = 0

}
.

Due to the special form of φi and φv, W is compact, thus
we can denote with W1, . . . ,WK the K non-empty dis-
joint connected compact components of W. Observe that
φi(i, v)

2 = φv(i, v)
2 = 0 if and only if (i, v) ∈ W and

that φi(i, v)
2 → +∞ as |(i, v)| → +∞. Therefore, there

exists two K∞ functions α1, α such that inequalities (12)
and (13) can be formulated as:

α1 (|(i, v)|W) ≤ V (i, v)

V̇ ≤ −α (|(i, v)|W) + c2 d
2.

By virtue of Theorem 2.7, we can conclude that the set
W =

∪k
i=1 Wi satisfies Assumption 1. Moreover, system

(11) is ISS with respect to the set W and the disturbance
d.

Figure 2: Phase portrait, V , and V̇ of the single diode circuit with
E = 6, R = 1, C = 2, L = 1/2, λ = 3/2, f(v) = 10v − 6v2 + v3. The
corresponding invariant set is W = {(3, 3), (4, 2), (5, 1)}.

2.4.2. Non decomposable invariant sets

In the following example, we highlight the importance
of Assumption 1. Consider the system:

θ̇ = 1− cos(θ) + d (14)

with state θ identifying a point on the unit circle S ={
(x, y) ∈ R2 : x2 + y2 = 1

}
. In the autonomous case (d(t) ≡

0), all solutions converge to the unique equilibrium θ = 0
(up to multiples of 2π). Nevertheless, the equilibrium
θ = 0 is not asymptotically stable and, in fact, the system
admits a homoclinic orbit to itself. This implies that the
singleton {0} does not satisfy Assumption 1. This means
that in order to apply Theorem 2.7, the W-limit set has
to be enlarged to the whole S. However, one may wonder
if the system can still be ISS with respect to the singleton
{0}. To show that this is not possible we take a vanishing
disturbance d(t) = 1/(1 + t) and we consider that:∫ +∞

0
|θ̇(t)| dt =

∫ +∞

0
|1− cos(θ(t)) + d(t)| dt

≥
∫ +∞

0
|d(t)| dt = +∞,

thus proving that solutions never stop describing full ro-
tations around the circle. Hence, the choice of W = S is
in fact the tightest possible.

3. Integral ISS

3.1. L2 notions of stability

When characterizing the ISS property, a variety of equiv-
alent notions are available in the literature. In particular,
some results and applications have called for stability con-
cepts which take into account “energy” information. In
look for such integral variants of ISS, it has been shown in
[50] that the estimate∫ t

0

α (|X(t, x; d)|) ds = ξ(|x|) +
∫ t

0

σ (|X(t, x; d)|) ds,
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with α, ξ, σ ∈ K∞, not only shows finiteness of the H∞
norm of system (4) but is also equivalent to ISS.

It turns out that similar estimates involving the energy
of the input have actually been able to generate notions
of stability in presence of inputs which are different both
from stronger notions such as ISS and from weaker notions
such as 0-GAS (global asymptotic stability with zero in-
puts). Generalizing the concept of H2 norm, that is the
combination L2 to L∞ as in 3, yields in fact the integral
ISS property [10]. Furthermore, it has been shown in [11]
that mixed Lp to Lq norms with p ̸= q, that is(∫ t

0

(|X(t, x; d)|)q ds
) 1

q

=

(
|x|p +

∫ t

0

σ (|X(t, x; d)|)p ds
) 1

p

,

are actually equivalent to integral ISS property.

3.2. Main result and discussion

In the following, we will show how the integral ISS
concept naturally extends for systems with decomposable
invariant sets. Once again, the characterization will be
given in terms of asymptotic properties and Lyapunov dis-
sipation inequalities. The reader is referred to [22] for an
exhaustive presentation of this subject.

We start our characterization of integral ISS by intro-
ducing the UBEBS property in Definition 3.1 which por-
trays the behavior of having the distance of the state from
the W-limit set at all times growing no larger than the
injected energy.

Definition 3.1 (UBEBS). System (4) is said to have the
uniform bounded-energy bounded-state (UBEBS) prop-
erty if, for some α, γ, σ ∈ K∞ and some positive constant
cubebs, the following estimate holds for all t ≥ 0, all x ∈ M
and all d(·) ∈ MD:

α(|X(t, x; d)|W) ≤ γ(|x|W)+

∫ t

0

σ(|d(s)|)ds+cubebs. (15)

In the classical framework, integral ISS is actually equiv-
alent to the conjunction of the UBEBS and 0-GAS prop-
erties [11]. Our generalized notion of ISS in [22] replaces
the latter property with Assumption 1 and the 0-GATT
property, and is formalized as follows.

Definition 3.2. System (4) is said to be integral ISS with
respect to the input d and the invariant set W if and only
if W satisfies Assumption 1, and (4) has the 0-GATT and
UBEBS properties.

The very same reasons provided in Remark 1 allows
the adoption of Definition 3.2 as a natural generalization
of the standard notion of integral iISS in [50, 10].

It has been shown [11] that integral ISS entails conver-
gence of the state whenever the energy of the input is finite
under a given weighting gain. This behavior has proven to
be especially useful in cascade systems [21] and continues
to hold in the multistable settings, as follows.

Definition 3.3 (BESCS). System (4) is said to satisfy
the Bounded Energy Strongly Converging State (BESCS)
property if there exists a function σ̃ ∈ K∞ such that the
following holds for all x ∈ M , and all d(·) ∈ MD:∫ +∞

0

σ̃ (|d(s)|) ds < +∞ ⇒ lim
t→+∞

|X(t, x; d)|W = 0.

(16)

The following definitions represent several Lyapunov-
like dissipation inequalities which equivalently characterize
integral ISS in the multistable settings, as formally stated
in Theorem 3.7.

Definition 3.4 (iISS-Lyapunov function). A C1 function
V : M → R is called an iISS-Lyapunov function for system
(4) if there exist functions α1, α2, γ ∈ K∞, and c ≥ 0, and
a continuous positive definite function α3 such that, for all
x ∈ M ,

α1(|x|W) ≤ V (x), (17)

and the following dissipation inequality hold for all (x, d) ∈
M ×D:

DV (x)f(x, d) ≤ −α3(|x|W) + γ(|d|). (18)

If, in addition, V (Wi) is a singleton for all i ∈ {1, 2, . . . ,K},
then V is said to be an iISS-Lyapunov function constant
on invariant sets. If, furthermore, DV (W) = 0, then V
is said to be an iISS-Lyapunov function flat on invariant
sets.

Definition 3.5 (Smooth dissipativity). System (4) is said
to be smoothly dissipative if there exists a C1 function
V : M → R, functions α1, α2, σ ∈ K∞, a continuous
positive-definite function α4, and a continuous output map
h : M 7→ Rq, such that (17) holds and the following dissi-
pation inequality holds for all (x, d) ∈ M ×D:

DV (x)f(x, d) ≤ −α4(|h(x)|) + σ(|d|). (19)

The following detectability notion will be useful in our
main result about integral ISS.

Definition 3.6 (Weak zero-detectability). Given a con-
tinuous output map h(x), system (4) is said to be weakly
zero-detectable if h(X(t, x; 0)) ≡ 0 for all t ≥ 0 implies
|X(t, x; 0)|W → 0 as t → +∞.

Theorem 3.7 (Characterizations of integral ISS [22]).
Consider a nonlinear system as in (4) and let W be a W-
limit set satisfying Assumption 1. System (4) is integral
ISS with respect to input d and set W if and only if it ad-
mits a smooth iISS-Lyapunov function constant on invari-
ant sets. Furthermore, if system (4) satisfies Assumption
1, then the following facts are equivalent:

1. the system satisfies the zero-GATT and UBEBS prop-
erties;

2. existence of a smooth iISS-Lyapunov function flat on
invariant sets;
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3. existence of an iISS-Lyapunov function;

4. existence of an output function that makes the system
smoothly dissipative and weakly zero-detectable;

5. BESCS;

Remark 3 The proof of the necessity of existence of an
iISS-Lyapunov function V involves the understanding of
two fundamental insights about zero-GATT and UBEBS
properties. First insight is that zero-GATT implies the
existence of a smooth function U : M → R, a K not K∞
- function ν1, a K∞ function δ, and a positive definite
function ϖ such that:

ν1(|x|W) ≤ U(x)

DU(x)f(x, d) ≤ −ϖ(|x|W) + δ(|d|), (20)

for all x ∈ M and d ∈ D (Section C in [7] and Lemma 3
in [22]). Since ϖ might not be a proper function, dissipa-
tion at “larger” values of the state might not be able to
properly counteract the injected energy. For this reason,
zero-GATT alone does not guarantee boundedness of tra-
jectories for bounded input signals. Second insight is that
zero-GATT always guarantees the existence of a 0-GAS
invariant set called the Milnor attractor (Section C in [7])
and defined as

D =
+∞∪
n=1

∩
t≥0

X(t,Mn),

where we have denoted with M1 ⊂ M2 ⊂ · · · ⊂ M a
monotonically increasing sequence of compact subsets such
that M =

∪+∞
n=1 int {Mn}. It turns out that 0-GAS of

D together with UBEBS with respect to W implies the
existence of an integral ISS Lyapunov function W in the
sense of classical integral ISS, that is

ᾱ1(|x|D) ≤ W (x) ≤ ᾱ2(|x|D)
DW (x)f(x, d) ≤ −ᾱ3(|x|D) + σ̄(|d|), (21)

with ᾱ1, ᾱ2, σ̄1 being a K∞ functions and ᾱ3 being a pos-
itive definite function. Intuitively, we may say that the
behavior of the system outside D is largely determined by
dissipation (21) while the behavior inside D is determined
by dissipation (20). Not unexpectedly, the integral ISS
Lyapunov function of Definition 3.4 will be given by the
sum of U and W .

We bring to the attention of the reader that Remark 2
continues to hold true for Theorem 3.7 as well.

3.3. Strong iISS

ISS entails the so called bounded-input bounded-state
(BIBS) property which typically makes ISS a very strong
requirement in many applications of interest [14]. As a
weaker requirement, but still matching several systems of
practical interest, the notion of Strong iISS was introduced
in [14] as an intermediate property, halfway between ISS
and iISS. A strong iISS system is in fact an iISS system

which exhibits the ISS behavior whenever the magnitude
of the input is less or equal to a certain threshold. In the
following, we will be focusing on a sufficient condition for
Strong iISS in the context of multistable systems [22].

Definition 3.8 (Strong iISS). System (4) is said to be
Strongly iISS if it has the properties:

• zero-GATT and UBEBS;

• asymptotic gain (AG) with respect to small inputs,
namely there is a function η ∈ K and a positive con-
stant R such that:

∥d∥ ≤ R ⇒ lim sup
t→+∞

|X(t, x; d)|W ≤ η(∥d∥) , (22)

for all x ∈ M and all d(·) ∈ MD.

Theorem 3.9 (Sufficient Lyapunov conditions for Strong
iISS). Assume that there exists a proper C1 function V :
M → R, functions α1, α2 ∈ K∞, α ∈ K, a continuous
positive-definite function γ, and a positive constant c such
that (17) holds together with the following dissipation in-
equality:

DV (x)f(x, d) ≤ −α(|x|W) + γ(|d|) , (23)

for all (x, d) ∈ M × D. Then the system (4) is Strongly
iISS.

3.4. Examples

3.4.1. Tracking velocity fields in robotic manipulators

Consider the general equations of motion for a robotic
manipulator:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + d (24)

with q, q̇, q̈ the joint angles, velocities and accelerations,
M(q) the inertia matrix, C(q, q̇) the Coriolis matrix, G(q)
the potential vector field, τ the vector of all available con-
trol torques, and d disturbances occurring in the joint dy-
namics. Suppose that it is desired for the robotic ma-
nipulator to track a reference velocity field with desired
reference dynamics:

q̇ = fd(q) . (25)

Let Wq denote the set of all invariant solutions of (25).
Let W denote the following set:

W =

{(
q
q̇

)
∈ Sn × Rn | q ∈ Wq , q̇ = fd(q)

}
. (26)

Suppose that for the desired reference dynamics (25) an
iISS-Lyapunov function µ(qd) exists, namely there exists
K∞ functions µ1, µ2, a continuous positive-definite func-
tion µ3 and a positive constant cq such that the following
holds:

µ1(|qd|Wq ) ≤ µ(qd) ≤ µ2(|qd|Wq + cq)

Dµ(qd)fd(qd) ≤ −µ3(|qd|Wq ) .
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Let F (q, q̇) := q̇ − fd(q). Consider the control law:

τ = −KF (q, q̇)−Dµ(q)

+M(q) (Dfd(q)q̇) + C(q, q̇)fd(q) +G(q), (27)

with a positive-definite gain matrix K. We want to prove
that the closed-loop system obtained by applying the con-
trol law (27) to the plant (24), namely

M(q)Ḟ (q, q̇, q̈) +C(q, q̇)F (q, q̇) +KF (q, q̇) +Dµ(q) = d ,
(28)

has the UBEBS and zero-GATT properties with respect
to the invariant set W and the disturbance d. To this end,
let V (q, q̇) be the following Lyapunov function:

V (q, q̇) = µ(q) +
1

2
F (q, q̇)⊤M(q)F (q, q̇). (29)

Let the state x be defined as x := (q⊤, q̇⊤)⊤. The distance
from the invariant set W is then given by:

|x|W :=
√

|q|2Wq
+ |F (q, q̇)|2 . (30)

Due to M(q) being the inertia matrix of a mechanical sys-
tem, we can conclude that there exists functions α1, α2 ∈
K∞ and a positive constant c such that:

α1(|x|W) ≤ µ1(|qd|Wq ) + ε|F (q, q̇)|2 ≤ V (q, q̇)

≤ µ2(|qd|Wq + cq) + ε|F (q, q̇)|2 ≤ α2(|x|W + c) .

By making use of skew-symmetry of Ṁ(q(t))−2C(q(t), q̇(t))
in taking the derivative of V along the solutions of (28),
we obtain:

V̇ (q, q̇) = Dµ(q)q̇ − F (q, q̇)⊤KF (q, q̇) + F (q, q̇)⊤d

≤ −µ3(|q|Wq )− c1|F |2 + c2|d|2 , (31)

for sufficiently small positive constant c1 and sufficiently
large positive constant c2. By setting α3(|x|W) = µ3(|q|Wq )+
c1|F |2, we can conclude that V (q, q̇) is an iISS-Lyapunov
function for system (28), therefore system (28) has the
UBEBS and zero-GATT properties.

Remark 4 Note that, in case of µ3 ∈ K∞ (respectively
µ3 ∈ K \ K∞), system (28) would be ISS (respectively
Strongly iISS, as in Theorem 3.9).

3.4.2. The nonlinear pendulum

Inequality (31) highlights the role of friction (respec-
tively damping injection) in characterizing the stability
properties of a general mechanical system in open-loop (in
closed-loop). Consider the case of the nonlinear pendulum:

θ̇ = ω

ω̇ = −a sin(θ)− b(ω) + d, (32)

with state x := (θ, ω) ∈ S × R, disturbance d, positive
constant a, and b(ω) denoting (possibly nonlinear) friction.
In case of linear friction, i.e. b(ω) = bω, the nonlinear
pendulum has been proved to be ISS with respect to the

input d and the invariant set W = {(0, 0), (π, 0)} in [9,
19, 18]. In case of vanishing friction, i.e. b(ω) = bω/(1 +
ω2), the nonlinear pendulum is iISS and not Strong iISS
(Section V A in [22]). In case of friction saturation, i.e.
b(ω) = bω2/(1 + ω2), the nonlinear pendulum is Strong
iISS and the result is proved by using the same Lyapunov
function as in [9, 19, 18]).

4. Cascades

4.1. Introduction

One of the most successful features of the classical ISS
framework is its straightforward applicability to cascades
of ISS systems [52]. The ease with which such result can
be established is a direct consequence of two properties
of ISS: the bounded-input bounded-state (BIBS) and the
converging-input converging-state (CICS) properties.

In the next Subsections, we derive sufficient conditions
for the ISS stability of the cascade system (33), when
assuming the multistable behavior of the driving system
(34a). Special attention will be paid to the modalities
with which the filtration ordering of the cascade is inher-
ited from the filtration orderings of each subsystem. The
reader is referred to [23] for an exhaustive presentation of
the subject.

4.2. Multistability

Let Mx and Mz be two connected Riemannian mani-
folds without boundary and having dimension nx and nz

respectively. Let D be a closed subset of Rm containing
the origin. The subject of our study is the cascade system:

ẋ(t) = g(x(t), d(t)) (33a)

ż(t) = f(z(t), x(t)), (33b)

where g(x, d) : Mx × D → TxMx and f(z, x) : Mz ×
Mx → TzMz are two Lipschitz continuous mappings, and
d(·) is any locally essentially bounded and measurable in-
put signal taking values in D. We denote by X(t, x; d)
the uniquely defined solution of (33a) at time t fulfilling
X(0, x; d) = x, under the input d(·). In a similar way, we
denote by Z(t, z;X) the uniquely defined solution of (33b)
at time t fulfilling Z(0, z;X) = z, under the input X(·).
Finally, we denote by y = (x, z) ∈ Mx×Mz the joint state
and by Y (t, y; d) the uniquely defined solution of (33) at
time t fulfilling Y (0, y; d) = y under the input d(·). We
also consider the unperturbed cascade system:

ẋ(t) = g(x(t), 0) (34a)

ż(t) = f(z(t), x(t)). (34b)

Let Wx denote a W-limit set of the driving system (34a).
The set Wx is assumed to satisfy the following

Assumption 2. (Multistability without cycles of driving
system) The driving system (34a) satisfies the no-cycle
condition and, moreover, each atom of the decomposition
of Wx is a singleton, namely Wx,i = {xi} with xi ∈ Mx

for all i = 1, . . . ,K.
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Remark 5 The assumption of having fixed points only in
the decomposition of Wx can actually be removed, see [23,
Section 5]. For ease of presentation, here we consider fixed
points only.

We are looking for a W-limit set which satisfies the
no-cycle condition under the flow of the cascade system
(34). In order to characterize such set in terms of its finest
decomposition, we observe that, if ISS holds for subsystem
(33a), all trajectories X(t, x; 0) eventually approach one of
the ω-limit sets in Wx, namely one of the xis. Therefore, it
makes sense to study the stability of each “limit equation”:

ż(t) = Fi(z(t)) := f(z(t), xi) , i = 1, . . . ,K . (35)

Let W(i)
z denote a W-limit set of the limit equation (35)

for i = 1, . . . ,K.

Assumption 3. (No-cycle condition of each limit equa-
tions) For all i = 1, . . . ,K, each limit equation (35), thus

each set W(i)
z is decomposed in Ki compact invariant sub-

sets and satisfies the no-cycle condition.

A natural question that arises from this setting is whether
the sought W-limit set for (34) can be selected as the set:

WΘ :=

K∪
i=1

(
{xi} ×W(i)

z

)
. (36)

Indeed, we have the following result:

Theorem 4.1 (Cascades of ISS systems [23]). Let As-
sumptions 2 and 3 hold. If (H1) the driving system (33a)
is ISS wrt input d and set Wx; (H2) the driven system

(33b) is ISS wrt input |x| 1 and one of the sets W(i)
z ; then

(T1) WΘ qualifies as a W-limit set for system (34) and
admits a finite decomposition without cycles under the flow
of (34); (T2) the cascade system (33) is ISS wrt input d
and the set WΘ.

The same kind of result holds in case of Strongly iISS
subsystems in the classical Euclidean setting [15]. To esta-
bilish the same result in the multistable context, a prelimi-
nary observation is that compactness of the set Wx entails
the existence of a function ν3 ∈ K∞ and a constant c3 > 0
such that:

|x| ≤ ν3(|x|Wx) + c3. (37)

Theorem 4.2 (Cascades of Strongly iISS systems). Let
Assumptions 2 and 3 hold. If (H1) the driving system
is Strongly iISS wrt input d and with input threshold Rx;
(H2) the driven system is Strongly iISS wrt input |X(·)|

1In the definition of |x| for x ∈ Mx we use the following result.
For a Riemannian manifold Mx, the Euclidean metric is uniformly
equivalent to the Riemannian metric, i.e. there exists ν1, ν2 ∈ K∞
such that ν1(d[x, x0]) ≤ |x| ≤ ν2(d[x, x0]), with x0 denoting the
“origin” element of Mx. Therefore, we define |x| as the Euclidean
norm if Mx is Euclidean, and |x| := d[x, x0] if Mx is not Euclidean,
thus implicitly making use of ν1, ν2 in all subsequent proofs.

and with input threshold Rz; (H3) it holds that Rz = c3+ c̃
for some c̃ > 0; then (T1) WΘ qualifies as a W-limit set
for system (34) and admits a finite decomposition without
cycles under the flow of (34); (T2) the cascade system is
Strongly iISS wrt input d and with input threshold R :=
min

{
κ−1
x

(
ν−1
3 (c̃)

)
, Rx

}
, where κx ∈ K∞ denotes the AG

gain of the driving system for small inputs.

Remark 6 Our previous example (Subsection 2.4.2) has
remarked the importance of Assumption 1 and the filtra-
tion ordering to prove ISS of a given W-limit set. It is
then worth to observe that the filtration ordering of WΘ

in both Theorems 4.1 and 4.2 is given by:

W(i)
z,h ≺ W(i)

z,k ⇔ {xi} ×W(i)
z,h ≺ {xi} ×W(i)

z,k,

for all i ∈ {1, . . . ,K}, all h ∈ {1, . . . ,Ki}, and all k ∈
{1, . . . ,Ki}.

4.3. Multiperiodicity

In this Subsection, we move our attention to a wider
class of attractors to which the driving subsystem (33a)
converges, namely periodic orbits.

A periodic orbit Γx,j , j = 1, . . . , Np of the driving sys-
tem (34a) will denote a compact invariant subset satisfying
the following property:

∀ i = 1, . . . , Np ∃Ti > 0 such that

X(t+ Ti, x; 0) = X(t, x; 0) ∀x ∈ Γi ∀ t ∈ R.

For the analysis of this scenario, a very natural option
is to consider the notion of incremental ISS [4], which we
briefly recall here.

Definition 4.3. ( Incremental ISS) System (34b) is said
to be incrementally input-to-state stable (δISS) if the state
manifold is the Euclidean space (Mz = Enz) and there
exists a KL function β and γ ∈ K∞ such that for any
t ≥ 0, any z1, z2 ∈ Rnz and any couple of input signals
X1(·), X2(·), the following estimate holds true:

|Z(t, z1;X1)− Z(t, z2;X2)| ≤
β(|z1 − z2|, t) + γ

(
d[0,+∞)[X1(·), X2(·)]

)
. (38)

Without loss of generality, is is assumed f(0, 0) = 0.

Incremental ISS belongs to the palette of approaches
(such as contraction analysis [35], convergent dynamics
[39], or incremental stability in the framework of Input-
Output operators theory [47]) to systems which exhibit
incremental stability properties in presence of inputs. The
adjective “incremental” here refers to the fact that solu-
tions of a dynamical systems are compared with one an-
other, rather than with a single special trajectory of in-
terest (such as an equilibrium point). It turns out the
incremental stability properties are especially suited to
achieve synchronization of dynamical systems [56] and en-
trainment to periodic inputs [4, 46].

We are now going to introduce sufficient conditions for
the ISS stability of the cascade system (33), based on the
following two key assumptions.
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Assumption 4. (Multiperiodicity without cycles of driv-
ing system) The driving system (34a) satisfies the no-cycle
condition and, moreover, the decomposition of its W-limit
set Wx reads as the disjoint union of the following sets:

Np+Nf∪
k=1

Wx,k =

Np∪
j=1

Γx,j +

Nf∪
h=1

{xh}, (39)

where Γx,j ⊂ Mx for j = 1, . . . , Np is a periodic orbit, and
xi ∈ Mx for h = 1, . . . , Nf is an isolated fixed point.

Assumption 5. ( Incremental ISS of driving system) Sys-
tem (34b) is incrementally ISS.

In this framework, it makes sense to study the response
of an incremental ISS system under the different types
of forcing signals in consideration. As mentioned before,
incremental ISS entails entrainment to constant inputs and
periodic orbits, as detailed in the following:

• if the input converges to a constant signal, then the
state converges to a unique equilibrium point. In
case of system (33b), we will have that ifX(t, x; 0) →
xi as t → +∞ for some xi as in (39), then there
exists a unique equilibrium point zi ∈ Mz such that
Z(t, z;X(·)) → zi as t → +∞;

• if the input converges to a periodic signal, then the
state converges to a unique periodic orbit with same
phase; in particular, shifting the phase of the pe-
riodic input signal will shift the phase of the cor-
responding state periodic orbit. In case of system
(33b), we will consider the periodic input X(i)(t)
as in (39), and the initial condition z(i),0 such that
Z(i)(t) := Z(t, z(i),0, X(i)(·)) is the periodic state re-
sponse of subsystem (34b) to input X(i)(t). Exis-
tence of such initial condition is proved in [4, Propo-
sition 4.4]. Now, if for some x ∈ Mx and some
θ ∈ [0, 2π) it holds that

lim
t→+∞

d

[
X(t, x; 0) , X(i)(t+

θ

2π
Ti)

]
= 0,

then

lim
t→+∞

∣∣∣∣Z(t, z;X(·, x; 0))− Z(i)(t+
θ

2π
Ti)

∣∣∣∣ = 0

for all z ∈ Mz.

As done in Section 2, our goal is to find a W-limit set
for the cascade system (34) whose decomposition is the
finest possible and, at the same time, satisfies the no-cycle
condition under the flow of (34). To the aim of character-
izing such set, we consider:

WΘ :=

Np∪
j=1

Γj ∪
Nf∪
h=1

{yh} (40)

where Γi :=

{(
X(i)(t)
Z(i)(t)

)
, t ∈ [0, Ti)

}
is the periodic orbit

corresponding to Γx,i in the decomposition (39) for all i =
1, . . . , Np, whereas yi := (xi, zi) is the isolated fixed point
corresponding to {xi} in the decomposition (39) for all
i = 1, . . . , Nf .

We are now ready to state the main result of this Sec-
tion.

Theorem 4.4 (Cascades of ISS systems - multiperiodic
case [23]). Let Assumptions 4 and 5 hold. If the driv-
ing system (33a) is ISS wrt input d and the set Wx, then
(T1) the set WΘ qualifies itself as a W-limit set and ad-
mits a finite decomposition without cycles (in the sense of
Assumption 1) under the flow of (34); (T2) the cascade
system (33) is ISS wrt input d and the set WΘ.

Remark 7 The filtration ordering is inherited here as:

Wx,i ≺ Wx,j ⇔ Wi ≺ Wj .

for all i, j ∈ {1, . . . ,K}.

4.3.1. Example - The nonlinear pendulum

Consider the nonlinear pendulum example in (32) with
b(ω) := bω2/(1 + ω2).

4.4. Example - Central Pattern Generators in robotics

Figure 3: Phase plot of dynamics (46) in the coordinates e1, e2. The
set We as in (47) is depicted in red.

As an example of an incrementally ISS system driven
by an oscillating source, we study here the case of a robotic
manipulator tracking a trajectory provided by the so-called
Central Pattern Generators (CPGs). CPGs represent a
powerful method for the robust generation of rhythmic
patterns and for this reason they are widely used in lo-
comotion control of robots [27]. Consider a 3 degrees-
of-freedom mechanical manipulator whose motion is de-
scribed by the equations:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ, (41)
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with q, q̇, q̈ ∈ R3 the joint angles, velocities and accelera-
tions, M(q) the inertia matrix, C(q, q̇) the Coriolis matrix,
G(q) the potential vector field, τ the vector of all available
control torques, and d disturbances occurring in the joint
dynamics. The standard computed torque control algo-
rithm is implemented on (41):

τ = M(q)ν + C(q, q̇)q̇ +G(q)

ν = qr(2) +Kd

(
qr(1) − q̇

)
+Kp (qr − q) , (42)

whereKd = diag [kd1, kd2, kd3] andKp = diag [kp1, kp2, kp3]
are tunable controller gains. In (42), variables

qr =

qr1
qr2
qr3

 , qr(1) =

qr1(1)
qr2(1)
qr3(1)

 , qr(2) =

qr1(2)
qr2(2)
qr3(1)

 (43)

respectively denote the reference trajectory and its filtered
first and second time derivative, as specified in the follow-
ing:

qri(1)(s)

qri(s)
=

p s

p+ s
,

qri(2)(s)

qri(s)
=

p s2

(p+ s)2
, (44)

with i = 1, 2, 3 and p > 0 the tunable pole of the filter.
By combining equations (41), (42), and a minimal state-
space representation of (44), we obtain the following linear
system for each joint i = 1, 2, 3:

ż = Az +Bqr, (45)

with

A =


−p 0 0 0
−p2 −p 0 0
0 0 0 1

kdi + p 1 −kpi −kdi

 , B =


−p2

−p3

0
p2 + kpi + kdip

 .

The reference trajectory qr for the torque-controlled ma-
nipulator is generated by the CPGs, which are implemented
as a set of coupled nonlinear oscillators (typically Ku-
ramoto model), as follows:

θ̇1 = ω + d1 +K sin(θ2 − θ1) +K sin(θ3 − θ1 + π)

θ̇2 = ω + d2 +K sin(θ1 − θ2) +K sin(θ3 − θ2 + π)

θ̇3 = ω + d3 +K sin(θ1 − θ3 − π) +K sin(θ2 − θ3 − π)

qri = q̄i + q̂i cos(θi), (46)

where θi ∈ S denotes the phase of oscillator i = 1, 2, 3,
ω > 0 is the common frequency for all oscillators, di ∈ R
represents a generic disturbance, K > 0 is the coupling
strength, and q̄i, q̂i ∈ R respectively denote bias and am-
plitude of the oscillation driving joint i = 1, 2, 3. Model
(46) has been studied in [7] where the authors have shown
that, by rewriting the dynamics wrt the synchronization
errors e1 := θ2 − θ1, e2 := θ3 − θ1 + π, the W-limit set for
the transformed dynamics takes the form:

We =

{
(0, 0), (0, π), (π, 0), (π, π), (

2π

3
,
4π

3
), (

4π

3
,
2π

3
)

}
, (47)

and, moreover, satisfies the no cycle condition (1), as
shown in Figure 3. This in turn implies that the W-limit

set Wx of the original system (46) consists of periodic or-
bits in a one-to-one correspondence with the elements of
(47) and satisfies the no cycle condition.

The authors in [7] have proved that system (46) is ISS
wrt to disturbances di and the set Wx. It can be easily
proved that system ż = Az + B(q̄i + q̂i cos(θi)) is incre-
mentally ISS wrt to input θi by noticing that it is a linear
system and |cos(θi)| ≤ 1 is bounded. Therefore the results
of Theorem 4.4 can be applied to infer the ISS property
for the cascade (45), (46) wrt disturbances di.

5. Conclusions and open research directions

This paper has surveyed a number of recent results on
the ISS approach to the analysis of stability and robust-
ness of nonautonomous systems with decomposable invari-
ant sets and evolving on manifolds. We have shown how
the classical notions of ISS, integral ISS, and Strong iISS
can be generalized in the context of multistable systems,
whenever a decomposition for its compact invariant set is
selected so as to exhibit no cycle among the components
of the decomposition itself. Further results on the conser-
vation of the ISS property under cascade interconnection
have been provided.

A number of open research directions can be envisioned
within this novel ISS framework for multistable systems.
It is worth to mention two of them, as follows.

Feedback of ISS systems with multiple invariant sets).
The two fundamental interconnections for the stability
analysis of large networks are cascades and feedback sys-
tems. In the context of classical ISS theory, both types of
interconnections are well understood. In regard to feed-
back interconnections in particular, a basic contribution
has been established with a small gain theorem [33] and its
related Lyapunov formulation [32]. Conversely in the con-
text of ISS for multistable systems, while cascades display
properties that are somehow similar to the ones displayed
by classical ISS systems, the study of feedback intercon-
nections seems a far more challenging area to research.
Indeed, consider the following setting:

ẋ1(t) = f1(x1(t), x2(t)) (48a)

ẋ2(t) = f2(x2(t), x1(t)) (48b)

where f1(x1, x2) : M1 ×M2 → Tx1M1, f2(x2, x1) : M2 ×
M1 → Tx2M2 are two class C1 mappings, and M1,M2 re-
spectively are two connected Riemannian manifolds with-
out boundary. We denote by W1 and W2 the compact
invariant sets containing all α- and ω-limit sets of sys-
tems ẋ1 = f1(x1, 0) and ẋ2 = f2(x2, 0) respectively. In
this setting, a novel and remarkably non-trivial obstacle is
represented by the definition itself of theW-limit set of the
feedback system (48). However, assuming ISS for each sub-
system (48a) and (48b) yields boundedness of trajectories
of the feedback interconnection (48) under suitable small-
gain-like conditions, though we do not prove this result

12



here. This research direction has been partially addressed
by the contributions [3, 2].

ISS-related stability notions) The classical ISS frame-
work encompasses a number of different stability notions
[51] such as: ISS with respect to Input Derivatives, Input-
Output Stability, Input-Measurement-to-Error Stability,
Output-to-Input Stability. Extending each of these no-
tions to multistable systems would contribute in expand-
ing the current novel framework.
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