400 research outputs found

    Global analysis of a continuum model for monotone pulse-coupled oscillators

    Full text link
    We consider a continuum of phase oscillators on the circle interacting through an impulsive instantaneous coupling. In contrast with previous studies on related pulse-coupled models, the stability results obtained in the continuum limit are global. For the nonlinear transport equation governing the evolution of the oscillators, we propose (under technical assumptions) a global Lyapunov function which is induced by a total variation distance between quantile densities. The monotone time evolution of the Lyapunov function completely characterizes the dichotomic behavior of the oscillators: either the oscillators converge in finite time to a synchronous state or they asymptotically converge to an asynchronous state uniformly spread on the circle. The results of the present paper apply to popular phase oscillators models (e.g. the well-known leaky integrate-and-fire model) and draw a strong parallel between the analysis of finite and infinite populations. In addition, they provide a novel approach for the (global) analysis of pulse-coupled oscillators.Comment: 33 page

    Kick synchronization versus diffusive synchronization

    Full text link
    The paper provides an introductory discussion about two fundamental models of oscillator synchronization: the (continuous-time) diffusive model, that dominates the mathematical literature on synchronization, and the (hybrid) kick model, that accounts for most popular examples of synchronization, but for which only few theoretical results exist. The paper stresses fundamental differences between the two models, such as the different contraction measures underlying the analysis, as well as important analogies that can be drawn in the limit of weak coupling.Peer reviewe

    Contraction of monotone phase-coupled oscillators

    Full text link
    This paper establishes a global contraction property for networks of phase-coupled oscillators characterized by a monotone coupling function. The contraction measure is a total variation distance. The contraction property determines the asymptotic behavior of the network, which is either finite-time synchronization or asymptotic convergence to a splay state.Comment: 10 page

    On the dichotomic collective behaviors of large populations of pulse-coupled firing oscillators

    Get PDF
    The study of populations of pulse-coupled firing oscillators is a general and simple paradigm to investigate a wealth of natural phenomena, including the collective behaviors of neurons, the synchronization of cardiac pacemaker cells, or the dynamics of earthquakes. In this framework, the oscillators of the network interact through an instantaneous impulsive coupling: whenever an oscillator fires, it sends out a pulse which instantaneously increments the state of the other oscillators by a constant value. There is an extensive literature on the subject, which investigates various model extensions, but only in the case of leaky integrate-and-fire oscillators. In contrast, the present dissertation addresses the study of other integrate-and-fire dynamics: general monotone integrate-and-fire dynamics and quadratic integrate-and-fire dynamics. The main contribution of the thesis highlights that the populations of oscillators exhibit a dichotomic collective behavior: either the oscillators achieve perfect synchrony (slow firing frequency) or the oscillators converge toward a phase-locked clustering configuration (fast firing frequency). The dichotomic behavior is established both for finite and infinite populations of oscillators, drawing a strong parallel between discrete-time systems in finite-dimensional spaces and continuous-time systems in infinite-dimensional spaces. The first part of the dissertation is dedicated to the study of monotone integrate-and-fire dynamics. We show that the dichotomic behavior of the oscillators results from the monotonicity property of the dynamics: the monotonicity property induces a global contraction property of the network, that forces the dichotomic behavior. Interestingly, the analysis emphasizes that the contraction property is captured through a 1-norm, instead of a (more common) quadratic norm. In the second part of the dissertation, we investigate the collective behavior of quadratic integrate-and-fire oscillators. Although the dynamics is not monotone, an “average” monotonicity property ensures that the collective behavior is still dichotomic. However, a global analysis of the dichotomic behavior is elusive and leads to a standing conjecture. A local stability analysis circumvents this issue and proves the dichotomic behavior in particular situations (small networks, weak coupling, etc.). Surprisingly, the local stability analysis shows that specific integrate-and-fire oscillators exhibit a non-dichotomic behavior, thereby suggesting that the dichotomic behavior is not a general feature of every network of pulse-coupled oscillators. The present thesis investigates the remarkable dichotomic behavior that emerges from networks of pulse-coupled integrate-and-fire oscillators, putting emphasis on the stability properties of these particular networks and developing theoretical results for the analysis of the corresponding dynamical systems.Les populations d’oscillateurs impulsivement couplés constituent un paradigme simple et général pour étudier une multitude de phénomènes naturels, tels que les comportements collectifs des neurones, la synchronisation des cellules pacemaker du coeur, ou encore la dynamique des tremblements de terre. Dans ce contexte, les oscillateurs interagissent au sein du réseau par le biais d’un couplage instantané: quand un oscillateur décharge, il envoie vers les autres oscillateurs une impulsion qui incrémente instantanément leur état par une valeur constante. Diverses extensions du modèle ont été intensément étudiées dans la littérature, mais seulement dans le cas d’oscillateurs leaky integrate-and-fire. Afin de pallier cette restriction, le présent manuscrit traite de l’étude d’autres dynamiques integrate-and-fire: les dynamiques générales integrate-and-fire monotones et les dynamiques integrate-and-fire quadratiques. La contribution principale de la thèse met en évidence le comportement d’ensemble dichotomique selon lequel s’organisent les populations d’oscillateurs: soit les oscillateurs atteignent un état de synchronisation parfaite (taux de décharge lent), soit ils convergent vers une configuration de clustering en blocage de phase (taux de décharge rapide). Ce comportement dichotomique est établi aussi bien pour des populations finies que pour des populations infinies, ce qui démontre un parallèle élégant entre des systèmes en temps-discret dans des espaces de dimension finie et des systèmes en temps-continu dans des espaces de dimension infinie. La première partie du manuscrit se concentre sur l’étude des dynamiques integrate-and-fire monotones. Dans ce cadre, nous montrons que le comportement dichotomique résulte de la propriété de monotonicité des oscillateurs. Cette dernière induit une propriété de contraction globale, elle-même engendrant le comportement dichotomique. En outre, l’analyse révèle que la propriété de contraction est capturée par une norme 1, au lieu d’une norme quadratique (plus usuelle). Dans la seconde partie de la thèse, nous étudions le comportement d’ensemble d’oscillateurs integrate-and-fire quadratiques. Bien que la dynamique ne soit plus monotone, une propriété de monotonicité “en moyenne” implique que le comportement collectif est encore dichotomique. Alors qu’une analyse de stabilité globale s’avère être difficile et conduit à plusieurs conjectures, une analyse locale permet de prouver le comportement dichomique dans certaines situations (réseaux de petite taille, couplage faible, etc.). De plus, l’analyse locale prouve que des oscillateurs integrate-and-fire particuliers ne s’organisent pas suivant un comportement dichotomique, ce qui suggère que ce dernier n’est pas une caractéristique générale de tous les réseaux d’oscillateurs impulsivement couplés. En résumé, la thèse étudie le remarquable comportement dichotomique qui émerge des réseaux d’oscillateurs integrate-and-fire impulsivement couplés, mettant ainsi l’emphase sur les propriétés de stabilité desdits réseaux et développant les résultats théoriques nécessaires à l’étude mathématique des systèmes dynamiques correspondants

    On the dichotomic collective behaviors of large populations of pulse-coupled firing oscillators

    Full text link
    The study of populations of pulse-coupled firing oscillators is a general and simple paradigm to investigate a wealth of natural phenomena, including the collective behaviors of neurons, the synchronization of cardiac pacemaker cells, or the dynamics of earthquakes. In this framework, the oscillators of the network interact through an instantaneous impulsive coupling: whenever an oscillator fires, it sends out a pulse which instantaneously increments the state of the other oscillators by a constant value. There is an extensive literature on the subject, which investigates various model extensions, but only in the case of leaky integrate-and-fire oscillators. In contrast, the present dissertation addresses the study of other integrate-and-fire dynamics: general monotone integrate-and-fire dynamics and quadratic integrate-and-fire dynamics. The main contribution of the thesis highlights that the populations of oscillators exhibit a dichotomic collective behavior: either the oscillators achieve perfect synchrony (slow firing frequency) or the oscillators converge toward a phase-locked clustering configuration (fast firing frequency). The dichotomic behavior is established both for finite and infinite populations of oscillators, drawing a strong parallel between discrete-time systems in finite-dimensional spaces and continuous-time systems in infinite-dimensional spaces. The first part of the dissertation is dedicated to the study of monotone integrate-and-fire dynamics. We show that the dichotomic behavior of the oscillators results from the monotonicity property of the dynamics: the monotonicity property induces a global contraction property of the network, that forces the dichotomic behavior. Interestingly, the analysis emphasizes that the contraction property is captured through a 1-norm, instead of a (more common) quadratic norm. In the second part of the dissertation, we investigate the collective behavior of quadratic integrate-and-fire oscillators. Although the dynamics is not monotone, an “average” monotonicity property ensures that the collective behavior is still dichotomic. However, a global analysis of the dichotomic behavior is elusive and leads to a standing conjecture. A local stability analysis circumvents this issue and proves the dichotomic behavior in particular situations (small networks, weak coupling, etc.). Surprisingly, the local stability analysis shows that specific integrate-and-fire oscillators exhibit a non-dichotomic behavior, thereby suggesting that the dichotomic behavior is not a general feature of every network of pulse-coupled oscillators. The present thesis investigates the remarkable dichotomic behavior that emerges from networks of pulse-coupled integrate-and-fire oscillators, putting emphasis on the stability properties of these particular networks and developing theoretical results for the analysis of the corresponding dynamical systems.Les populations d’oscillateurs impulsivement couplés constituent un paradigme simple et général pour étudier une multitude de phénomènes naturels, tels que les comportements collectifs des neurones, la synchronisation des cellules pacemaker du coeur, ou encore la dynamique des tremblements de terre. Dans ce contexte, les oscillateurs interagissent au sein du réseau par le biais d’un couplage instantané: quand un oscillateur décharge, il envoie vers les autres oscillateurs une impulsion qui incrémente instantanément leur état par une valeur constante. Diverses extensions du modèle ont été intensément étudiées dans la littérature, mais seulement dans le cas d’oscillateurs leaky integrate-and-fire. Afin de pallier cette restriction, le présent manuscrit traite de l’étude d’autres dynamiques integrate-and-fire: les dynamiques générales integrate-and-fire monotones et les dynamiques integrate-and-fire quadratiques. La contribution principale de la thèse met en évidence le comportement d’ensemble dichotomique selon lequel s’organisent les populations d’oscillateurs: soit les oscillateurs atteignent un état de synchronisation parfaite (taux de décharge lent), soit ils convergent vers une configuration de clustering en blocage de phase (taux de décharge rapide). Ce comportement dichotomique est établi aussi bien pour des populations finies que pour des populations infinies, ce qui démontre un parallèle élégant entre des systèmes en temps-discret dans des espaces de dimension finie et des systèmes en temps-continu dans des espaces de dimension infinie. La première partie du manuscrit se concentre sur l’étude des dynamiques integrate-and-fire monotones. Dans ce cadre, nous montrons que le comportement dichotomique résulte de la propriété de monotonicité des oscillateurs. Cette dernière induit une propriété de contraction globale, elle-même engendrant le comportement dichotomique. En outre, l’analyse révèle que la propriété de contraction est capturée par une norme 1, au lieu d’une norme quadratique (plus usuelle). Dans la seconde partie de la thèse, nous étudions le comportement d’ensemble d’oscillateurs integrate-and-fire quadratiques. Bien que la dynamique ne soit plus monotone, une propriété de monotonicité “en moyenne” implique que le comportement collectif est encore dichotomique. Alors qu’une analyse de stabilité globale s’avère être difficile et conduit à plusieurs conjectures, une analyse locale permet de prouver le comportement dichomique dans certaines situations (réseaux de petite taille, couplage faible, etc.). De plus, l’analyse locale prouve que des oscillateurs integrate-and-fire particuliers ne s’organisent pas suivant un comportement dichotomique, ce qui suggère que ce dernier n’est pas une caractéristique générale de tous les réseaux d’oscillateurs impulsivement couplés. En résumé, la thèse étudie le remarquable comportement dichotomique qui émerge des réseaux d’oscillateurs integrate-and-fire impulsivement couplés, mettant ainsi l’emphase sur les propriétés de stabilité desdits réseaux et développant les résultats théoriques nécessaires à l’étude mathématique des systèmes dynamiques correspondants

    Population Dynamics of Globally Coupled Degrade-and-Fire Oscillators

    Full text link
    This paper reports the analysis of the dynamics of a model of pulse-coupled oscillators with global inhibitory coupling. The model is inspired by experiments on colonies of bacteria-embedded synthetic genetic circuits. The total population can be either of finite (arbitrary) size or infinite, and is represented by a one-dimensional profile. Profiles can be discontinuous, possibly with infinitely many jumps. Their time evolution is governed by a singular differential equation. We address the corresponding initial value problem and characterize the dynamics' main features. In particular, we prove that trajectory behaviors are asymptotically periodic, with period only depending on the profile (and on the model parameters). A criterion is obtained for the existence of the corresponding periodic orbits, which reveals the existence of a sharp transition as the coupling parameter is increased. The transition separates a regime where any profile can be obtained in the limit of large times, to a situation where only trajectories with sufficiently large groups of synchronized oscillators perdure

    The link between coherence echoes and mode locking

    Get PDF
    We investigate the appearance of sharp pulses in the mean field of Kuramoto-type globally- coupled phase oscillator systems. In systems with exactly equidistant natural frequencies self- organized periodic pulsations of the mean field, called mode locking, have been described re- cently as a new collective dynamics below the synchronization threshold. We show here that mode locking can appear also for frequency combs with modes of finite width, where the natu- ral frequencies are randomly chosen from equidistant frequency intervals. In contrast to that, so called coherence echoes, which manifest themselves also as pulses in the mean field, have been found in systems with completely disordered natural frequencies as the result of two consecutive stimulations applied to the system. We show that such echo pulses can be explained by a stimula- tion induced mode locking of a subpopulation representing a frequency comb. Moreover, we find that the presence of a second harmonic in the interaction function, which can lead to the global stability of the mode-locking regime for equidistant natural frequencies, can enhance the echo phenomenon significantly. The non-monotonous behavior of echo amplitudes can be explained as a result of the linear dispersion within the self-organized mode-locked frequency comb. Fi- nally we investigate the effect of small periodic stimulations on oscillator systems with disordered natural frequencies and show how the global coupling can support the stimulated pulsation by increasing the width of locking plateaus

    Optimal Control and Synchronization of Dynamic Ensemble Systems

    Get PDF
    Ensemble control involves the manipulation of an uncountably infinite collection of structurally identical or similar dynamical systems, which are indexed by a parameter set, by applying a common control without using feedback. This subject is motivated by compelling problems in quantum control, sensorless robotic manipulation, and neural engineering, which involve ensembles of linear, bilinear, or nonlinear oscillating systems, for which analytical control laws are infeasible or absent. The focus of this dissertation is on novel analytical paradigms and constructive control design methods for practical ensemble control problems. The first result is a computational method %based on the singular value decomposition (SVD) for the synthesis of minimum-norm ensemble controls for time-varying linear systems. This method is extended to iterative techniques to accommodate bounds on the control amplitude, and to synthesize ensemble controls for bilinear systems. Example ensemble systems include harmonic oscillators, quantum transport, and quantum spin transfers on the Bloch system. To move towards the control of complex ensembles of nonlinear oscillators, which occur in neuroscience, circadian biology, electrochemistry, and many other fields, ideas from synchronization engineering are incorporated. The focus is placed on the phenomenon of entrainment, which refers to the dynamic synchronization of an oscillating system to a periodic input. Phase coordinate transformation, formal averaging, and the calculus of variations are used to derive minimum energy and minimum mean time controls that entrain ensembles of non-interacting oscillators to a harmonic or subharmonic target frequency. In addition, a novel technique for taking advantage of nonlinearity and heterogeneity to establish desired dynamical structures in collections of inhomogeneous rhythmic systems is derived
    • …
    corecore