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ABSTRACT OF THE DISSERTATION

Optimal Control and Synchronization of Dynamic Ensemble Systems

by

Anatoly Zlotnik

Doctor of Philosophy in Systems Science and Mathematics

Washington University in St. Louis, August 2014

Professor Jr-Shin Li, Chair

Ensemble control involves the manipulation of an uncountably infinite collection of struc-

turally identical or similar dynamical systems, which are indexed by a parameter set, by

applying a common control without using feedback. This subject is motivated by compelling

problems in quantum control, sensorless robotic manipulation, and neural engineering, which

involve ensembles of linear, bilinear, or nonlinear oscillating systems, for which analytical

control laws are infeasible or absent. The focus of this dissertation is on novel analytical

paradigms and constructive control design methods for practical ensemble control problems.

The first result is a computational method for the synthesis of minimum-norm ensemble

controls for time-varying linear systems. This method is extended to iterative techniques to

accommodate bounds on the control amplitude, and to synthesize ensemble controls for bi-

linear systems. Example ensemble systems include harmonic oscillators, quantum transport,

and quantum spin transfers on the Bloch system. To move towards the control of complex

ensembles of nonlinear oscillators, which occur in neuroscience, circadian biology, electro-

chemistry, and many other fields, ideas from synchronization engineering are incorporated.

xi



The focus is placed on the phenomenon of entrainment, which refers to the dynamic syn-

chronization of an oscillating system to a periodic input. Phase coordinate transformation,

formal averaging, and the calculus of variations are used to derive minimum energy and

minimum mean time controls that entrain ensembles of non-interacting oscillators to a har-

monic or subharmonic target frequency. In addition, a novel technique for taking advantage

of nonlinearity and heterogeneity to establish desired dynamical structures in collections of

inhomogeneous rhythmic systems is derived.
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Chapter 1

Introduction

The implementation of all scientific and engineering applications is complicated by uncer-

tainty or variation in system model parameters, for which known control techniques are often

unable to successfully compensate. This issue is especially challenging when a control task

must be accomplished without feedback, whether the control function must transfer a sin-

gle control system between states of interest without sensitivity to an uncertain parameter

set, steer a possibly uncountable collection of structurally identical systems with variation

in common parameters between states that may depend on the parameters, or establish a

complex dynamical configuration in a collection of interacting systems. Such highly under-

actuated ensemble systems appear in a variety of emerging areas in science and technology,

including quantum information science, circadian biology, neuroscience, and robotics, and

impact applications such as protein spectroscopy, deep brain stimulation for Parkinson’s

disease, and sensorless robotic manipulation. As a result, developing effective and, more-

over, optimal forcing signals or synthesizing coupling functions that drive complex systems

towards desired dynamical conditions is of fundamental importance [147, 119]. These and

many other emerging applications involve controlling collections of structurally similar sys-

tems by using a common external signal. The microscopic scale and inherent uncertainty

of the physical systems involved often makes it impractical to obtain state feedback, or the

types of feedback laws that can be used are severely restricted due to the complexity of the

system dynamics. These limitations present a fundamental challenge in robust and sensorless

manipulation of complex ensemble systems. Therefore techniques that take advantage of the

differences in dynamics or model parameters in collections of dynamical units will broadly

extend the ability to manipulate complex or large-scale systems.

1



Novel theoretical approaches, mathematical methods, and computational techniques are re-

quired for formulating, describing, and synthesizing controls for the complex dynamics of

ensemble systems in a manner that is both tractable and flexible in design. This dissertation

bridges two emerging notions related to the control of complex dynamical systems. One no-

tion is called ensemble control, and involves steering the state of very large indexed collections

of dynamical systems between given states of interest [140, 139]. A complementary concept

is referred to as synchronization engineering, which is the science of establishing complex pe-

riodic behavior in collections of rhythmic systems [121, 119]. In the following chapters, ideas

from ensemble control and synchronization engineering are fused to produce novel analytical

and computational devices for robust and optimal control of ensemble systems. Such prac-

tical and tractable ensemble control designs that are key to emerging applications including

quantum control [140, 144, 206], synchronization and entrainment of neuron and chemical

oscillators [95, 119, 128, 151], as well as in uncertain engineering systems [17, 18].

The control of complex ensemble systems presents several challenges. Relatively few control

inputs must be used to manipulate a large system composed of many subsystems without

using state feedback information, or using very limited or statistical feedback. The designed

controls must be optimal with regard to a cost objective and simultaneously robust to uncer-

tainties and disturbances inherent to the system. Finally, and most crucially, mathematical

models and control design methodologies must be tractable, computationally verifiable, and

readily applicable to diverse experimental systems. In this chapter, the motivating applica-

tions and basic ideas of ensemble control and synchronization engineering are reviewed.

1.1 Ensemble Control

The term ensemble control describes an emerging and challenging area in mathematical con-

trol theory that encompasses a class of problems involving the guidance of an uncountably

infinite collection of structurally identical dynamical systems, which are indexed by a param-

eter set, by applying a common control input without the use of state feedback information.

The subject originates from the study of complex spin dynamics in Nuclear Magnetic Res-

onance (NMR) spectroscopy and imaging (MRI), and has attracted recent interest for its

potential to facilitate the manipulation of nuclear spin systems for compelling applications

for quantum control and information processing.

2



1.1.1 Quantum Control and Information Processing

Rapidly progressing technologies based on quantum theory require the manipulation of very

large ensembles of quantum systems on the order of Avogadro’s number (6 × 1023), whose

states cannot be measured during the transfer, and whose dynamics are subject to disper-

sion in parameters such as frequency. The performance of the necessary controls must be

insensitive to parameter variation across the ensemble, as well as to inhomogeneity in the

applied radiofrequency (RF) control field [142, 140]. A long standing problem of significance

to NMR requires the design of RF excitations that steer a given quantum ensemble be-

tween initial and target states, and whose performance is insensitive to parameter variation

[125, 124, 173].

NMR exploits the property of atomic nuclei to re-emit absorbed electromagnetic energy at

specific resonance frequencies when subject to a magnetic field. It is widely used in medical

MRI for non-invasively visualizing organs and tissues, and for obtaining information about

their biochemical composition and dynamic activity. Applications also include chemical spec-

troscopy for determining the structure of molecules such as complex proteins and scanning

porous media in the petroleum industry. The importance of NMR has compelled significant

research, so the physical principles and mathematics behind NMR are very well-understood.

An acceptable control function must concurrently drive a collection of systems, with identical

dynamics but parameter values unknown up to a given range, between desired initial and tar-

get states. Designing and implementing time-varying excitations, i.e., electromagnetic pulses,

that steer a large quantum ensemble between states of interest is an indispensable step that

enables cutting-edge applications in NMR spectroscopy, MRI, quantum computation and

quantum information processing, and laser cooling [144, 140, 182, 115, 75, 38]. The capacity

of nuclear magnetic resonance for manipulating quantum phenomena has progressed notably

in the past decade due to powerful computational techniques for pulse design. By employing

principles from ensemble control, these capabilities can require much lower computational

cost, and become more flexible and widely available.

A standing goal is to enhance the sensitivity of measurement, in which the nuclear spins

of a sample within a magnetic field B are manipulated using a RF pulse u. The resonant

signals produced as the spin vectors realign with B are measured. The intensity depends

on B and, crucially, on how well u made the intended spin transfer. A few precise, strong

pulses suffice in basic cases, but not for complex transfers and biological samples, where B as

3



well as the maximum amplitude A and duration of u are restricted. In selective excitation,

u must reorient only those nuclei with specific spin frequencies while compensating for RF

field inhomogeneity. Mathematically, NMR is a control system where the state X(t, ω, ε) at

time t is the orientation of nuclear spins in the sample as a function of spin frequency ω and

RF attenuation ε. The system input is u(t), which is a parameter-independent function of

time that we design to steer the system to a target state. Using optimal control theory, a

pulse design problem is formulated to, e.g., minimize error in the final state given u(t) ≤ A.

While no analytical solutions exist for this problem, commercial MRI systems employ the

Shinnar-Le Roux (SLR) algorithm [173] for selective excitation. The RF field of modern

NMR devices is finely adjustable, so critical gains are possible using novel pulses.

Since SLR, impressive gains have been made, such as fine selective excitation in ω and ε

[124]. This involves gradient optimization of thousands of decision variables that represent

u, which requires supercomputer resources. An alternative is to employ the principles of

ensemble control, which is an area of mathematical control theory that concerns manipulation

of a continuum of structurally identical parameter-dependent dynamical systems using a

common control without feedback [140]. Inspired by this notion, pulse design was translated

by pseudospectral approximation into a discrete optimization problem, which was solved and

applied in experiments to enhance the excitation profile of broadband pulses [144, 143, 191].

This success has compelled the investigation of new design methods for optimal control

of ensembles for use in a new generation of highly sensitive and versatile MRI systems.

This method is effective for solving a variety of ensemble control problems, but may be

difficult to implement for large-scale systems with variation in many parameters because of

the computational complexity required for approximating control functions with sufficient

accuracy [192]. Therefore, a need exists for direct and computationally efficient numerical

methods for synthesizing ensemble controls that can accomplish various state transfers for

a variety of systems. In particular, constructive, customizable synthesis methods that do

not depend on gradient optimization are desirable. Such control synthesis methods for

linear and bilinear ensembles, which satisfy minimum-norm objectives and control amplitude

constraints, are presented in Chapters 2 and 3.

4



t ∈ [0, T ] ≡ time
β ≡ parameter
K ≡ parameter space
X ≡ state of ensemble
M ≡ state space manifold
u ≡ control
U ≡ admissible controls
X0 ≡ initial state
XF ≡ final state

L2(K,M) ≡ function space

Figure 1.1: An illustration of the concept of ensemble control, with explanation of notation.

1.1.2 Formulation of the Ensemble Control Problem

As described above, ensemble control refers to the guidance of an uncountable collection of

structurally identical dynamical systems, which are indexed by a parameter varying on a

continuous set, between desired initial and terminal configurations using a common control

without feedback. The most general way to precisely formulate this concept is as a continuum

of dynamical systems given by

Ẋ(t, β) = F (t, X(t, β), β, u(t)), (1.1)

where t ∈ [0, T ] denotes time, β ∈ K is an indexing parameter, X : [0, T ]×K →M ⊂ R
n is

an ensemble of state trajectories, and u : [0, T ] → U ⊂ R
d is a control input that is received

by each unit of the ensemble. The state of the ensemble may be restricted to a manifold

M ⊂ R
n, thereby inducing a nonholonomic constraint. In Chapter 2, control systems of

the form 1.1 with linear dynamics are examined, including examples such as ensembles

of harmonic oscillators and the frictionless cooling of atoms in harmonic traps subject to

parameter uncertainty in the spin frequency. Then in Chapter 3, systems with bilinear

dynamics are studied, with a particular focus on the Bloch system, which represents nuclear

spin dynamics of an atom subjected to a strong magnetic field, and which is ubiquitous in

quantum control [140].
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1.2 Synchronization Engineering

Natural and engineered systems that consist of ensembles of interacting nonlinear dynamical

components often require an optimal hierarchical organization and dynamical structure, such

as synchrony, for normal operation. Common examples include neural circuitry in the brain

[219], metabolic chemical reaction systems [166] in biology, and electrical power distribution,

communication, and traffic control systems [218, 54, 23, 4] in engineering. These systems are

governed by highly complex, multiscale dynamics that are impacted by external cyclical pro-

cesses. Their overall behavior, such as information processing by neural networks in the brain

[154, 104, 107, 106, 196, 80, 78] or the propagation of power grid failure [53, 52, 65], depends

on the subtle network topology of the connected units and the natural laws that control

the processes within them. Their dynamics are adjusted by external stimulation, typically

with predefined waveforms such as narrow pulses in deep brain stimulation (DBS) [213, 214]

and cardiac pacemaking [85], square-wave light protocols for sleep cycles in circadian biology

[73], or sinusoidal waveforms in phase locked loops [21].

The collective behavior of forced oscillator ensembles can be described and analyzed using

phase models [228, 131], which have been effectively used in theoretical, numerical, and more

recently, experimental studies [1, 122, 180, 165]. Phase resetting is a fundamental function for

biological rhythms, and when resetting signals are globally applied repeatedly to an oscillator

ensemble, dynamic patterns emerge, including oscillator death [228], desynchronization [213],

and cluster formation [232]. Such patterns have been observed in a variety of systems

including chemical oscillators [233, 232], plant and mammalian [70, 220] circadian clocks,

and neuronal spiking patterns [213, 62].

The use of phase coordinate transformation for studying nonlinear oscillations has a long

history [149], and was famously used with formal averaging to model collective dynamics in

coupled chemical oscillations [131]. Since then, phase models have been successfully applied

to investigate many synchronization phenomena [210], focusing on synchronization emerging

in networks of interacting oscillators and on the response of large collections of oscillators to

periodic external stimuli [186, 103]. The majority of this work has focused on modeling, so

that as our understanding of such dynamical systems has solidified, the means to control such

systems, and to do so in an optimal manner, have come within reach. Optimal waveforms

that entrain a collection of phase oscillators with the greatest range of frequencies by weak

periodic forcing have been characterized for certain oscillating chemical systems [95], and this
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approach has been extended to a method for optimal entrainment of oscillating systems with

arbitrary PRC [236]. In Chapter 4 the phase coordinate transformation is examined, novel

theoretical and practical approaches to solving fundamental problems of optimal entrainment

for a variety of objectives are derived in Chapter 5, and these concepts are extended to the

manipulation of ensembles of oscillating systems in Chapter 6.

1.2.1 Control and Synchronization of Neuronal Dynamics

Technologies for brain stimulation offer an ever increasing ability to perturb the activity in

small and large-scale neuronal populations. Clinical modalities such as DBS have demon-

strated the efficacy of such technology for treating neurological conditions such as Parkinson’s

disease [80]. Similarly, optogenetics is being used to characterize the basic neuronal function

in the healthy brain. Such methods have depended largely on clinical insight or experimental

trial and error to date [130], and merging them with control theory is necessary for advancing

beyond bulk stimulation to more precise modulation of neuronal dynamics [213, 214].

Controlling the dynamics of neuronal ensembles is a highly nontrivial engineering problem,

because complex nonlinearities and irregularities appear in individual neurons and the cou-

plings between them [213]. The under-actuated nature of most current brain stimulation

modalities adds to this complexity, because a single actuator (e.g., an electrode) typically

affects tens of thousands of neurons so that individual units in a population receive a com-

mon stimulus. Therefore, a tractable yet meaningful mathematical formulation and novel

approaches for manipulating individual neurons in an ensemble using the same external

input is crucial. The behavior of neurons and neuronal ensembles has motivated the devel-

opment of numerous mathematical models whose dynamics have been studied extensively

[112, 10, 189, 97, 126]. One notion that has gained wide acceptance among researchers in

neuroscience and mathematical biology is the modeling of neuronal dynamics in the human

brain as oscillating systems [26, 157].

In areas ranging from theoretical neuroscience to clinical neurology, devising minimum-power

external stimuli that synchronize a population of coupled or uncoupled neurons, or desyn-

chronize a network of pathologically synchronized neurons, is imperative for wide-ranging ap-

plications from the design of neurocomputers [105, 107] to neurological treatment of Parkin-

son’s disease and epilepsy [9, 19, 196]. Nonlinear oscillators have served as models of neuronal
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dynamics in neuroscience for many decades [179, 58, 99], and the intrinsic occurrence and

extrinsic imposition of entrainment in networked oscillators is of particular interest [20, 201].

Phase model reduction is an especially compelling approach for constructing simplified yet

accurate models that capture essential overall properties of such oscillating systems [228, 131].

Several studies have been motivated by the prospect of using dynamical systems theory to

improve the effectiveness of DBS as a clinical therapy for epilepsy and Parkinson’s disease

[214, 177, 80]. Concurrently, others have concentrated on the use of phase models in order to

attain desired design objectives for electrochemical [121, 163] and neural [105, 108] systems,

including recent work that approaches the use of phase models in neuroscience from a control

theoretic perspective [221, 160]. The control of neural spiking using minimum energy inputs

with constrained amplitude and charge balancing has also recently been examined with the

aid of phase models [46, 47]. These studies have demonstrated that phase-model reduction

provides a practical approach to synthesizing near-optimal controls that achieve design goals

for oscillating neural systems.

The desired outcome of such investigation is to understand how to manipulate neuronal dy-

namics in experiments, as well as in a clinical setting in order to treat neurological disorders

using therapies such as deep brain stimulation (DBS) [152, 145, 214]. As a result, interest is

increasing in developing methods for controlling neuronal ensembles, and outlining the limits

on possible actuation [155, 35]. This requires mathematical models that appropriately rep-

resent the phenomenology of neural ensembles and brain stimulation, and are also tractable

for control design. A modeling and control technique is presented in Chapter 6 that, together

with the model identification method in Section 4.4, is a promising step towards this goal.

1.2.2 Electrochemical Oscillators and Neurocomputing

In addition to the compelling scientific questions and clinical applications that motivate this

work from the perspective of neuroscience, the control of complex rhythmic systems has im-

portant implications for electrochemistry [116, 121, 119, 190]. Complex oscillatory behavior

is known to arise in many electrochemical systems, and such phenomena have been proposed

as the basis of an electrochemical computing device [105, 107]. Such devices, which are called

neurocomputers, are intended to function using the principles that govern computation in
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the human brain. Arrays of coupled electrochemical oscillators have been suggested as a plat-

form for construction such devices, with components on a micro- or even nano-scale. The

techniques in Chapter 6 provide robust principles for bringing complex collections of dynam-

ical systems to a desired condition using low amplitude controls that leave the local inherent

behavior intact. Methods for achieving phase-assigned synchronization in electrochemical

oscillator ensembles takes a step towards micro-scale electrochemical computing.

1.3 Organization

The rest of the dissertation is organized as follows. Chapter 2 formulates the most funda-

mental type of ensemble control problem, in which the dynamics of each system are linear.

The results on ensemble controllability for this case are reviewed, and a numerical method

for minimum-norm ensemble control synthesis is presented. In Chapter 3, the technique in

Chapter 2 is extended to bilinear ensembles, in which the dynamics of the individual systems

feature products of the state and control. The remaining chapters are devoted to the optimal

synchronization of oscillating systems. Chapter 4 contains a derivation of the phase coordi-

nate transformation, including a computational method for performing the model reduction,

examples, and a phase model identification technique for rhythmic systems with unknown

dynamics. In Chapter 5, phase reduction, ergodic averaging, and the calculus of variations

are used to formulate and solve optimal entrainment problems for nonlinear oscillating sys-

tems, with design objectives that including minimum input energy, fast entrainment, and

subharmonic forcing. Then in Chapter 6, these solutions are extended to problems involving

the optimal entrainment of ensembles of oscillators, and the design of dynamic configura-

tions in such ensembles. Finally, Chapter 7 contains concluding remarks and an outlook for

continuing work on open problems in ensemble control and synchronization engineering.

1.4 Contributions

Several novel contributions described in this dissertation merit attention. The first is the

computational ensemble control synthesis method for linear systems based on the singular
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value decomposition (SVD), which is described in Section 2.2 [239, 185]. This method pro-

vides a tractable means of computing high-resolution minimum-norm ensemble controls for

very large collections of dynamical systems, and lies at the interface between control theory,

integral operator theory, and numerical linear algebra. This method is extended to the it-

erative fixed-point technique for synthesizing ensemble controls for bilinear systems, which

is presented in Section 3.1. This method is tractable for solving large-scale fixed-endpoint

optimal control problems, and does not depend on computationally costly gradient optimiza-

tion steps [237]. Next, the straightforward computational technique for computation of the

phase response curve (PRC) of an oscillator in Section 4.2 and the practical model identi-

fication method in Section 4.4 constitute a robust framework for analyzing and controlling

synchronization in real physical systems [235]. The theoretical framework in Chapter 5 fa-

cilitates the modeling and solution of a variety of entrainment problems using weak forcing.

In particular, it is shown that minimum-energy frequency control of an oscillator is achieved

using a re-scaled PRC waveform in Section 5.2 [236], and that the fastest entrainment is

achieved using a re-scaled derivative of the PRC as the input waveform in Section 5.3 [235].

In addition, expressions for optimal subharmonic entrainment, where the frequency of the

input and state oscillations are related by a rational number, are derived in Section 5.4 [240].

Finally, optimal waveforms for the entrainment of ensembles of structurally similar nonlin-

ear oscillators are derived in Section 6.2 [238, 240], and a novel theoretical approach and

constructive technique for engineering phase-assigned synchronization in such ensembles is

presented in Section 6.4.
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Chapter 2

Control of Linear Ensemble Systems

The implementation of all control tasks in science and engineering is complicated by uncer-

tainty or variation in system model parameters, for which known control techniques are often

unable to successfully compensate. This issue is especially challenging when the control task

must be accomplished without feedback, whether the control input must transfer a single

control system between states of interest without sensitivity to an uncertain parameter set,

or steer a possibly uncountable collection of structurally identical systems with variation in

common parameters between states that may depend on the parameters. In this chapter, we

consider control design problems for which an acceptable control input must concurrently

drive a collection of systems, with identical dynamics but parameter values unknown up to

a given range, between desired initial and target states.

The theoretical investigation of ensemble control begins with the notion of ensemble con-

trollability, which determines the existence of controls that achieve various types of state

transfers for a system of interest. The necessary and sufficient conditions for ensemble con-

trollability of finite-dimensional time-varying linear systems for transfers between states in

Hilbert space have been recently derived [138]. These conditions depend on the singular

system [162] of the operator characterizing the system dynamics, which can in turn be used

to represent the minimum norm control that accomplishes the transfer as an infinite sum

of weighted eigenfunctions [139]. This method was used to synthesize optimal ensemble

controls for a harmonic oscillator system, for which the resulting eigenfunctions are the

well-known family of prolate spheroidal wave functions [139]. This special structure facili-

tates synthesis of the controls in this case, as well as the computation of optimal controls

with bounded amplitude by solving a constrained convex optimization problem [139]. How-

ever, more importantly for the realization of ensemble control applications, there is a need
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to develop numerical methods for synthesizing these ensemble controls, because analytical

solutions are available only in the simplest cases. In this chapter, an accurate, computation-

ally efficient, optimization-free algorithm based on the singular value decomposition (SVD)

is presented that approximates ensemble controls of minimum norm for finite-dimensional

time-varying linear systems. This method enables the application of ensemble control to

engineering problems involving complex, time-varying, and high-dimensional linear dynamic

systems [239, 185].

Although first motivated by the necessity to control large collections of similar systems,

the mathematical devices produced by investigating ensemble control can also be used to

approach any open-loop control application in which the system response must be immune

to uncertainty in model parameters. For instance, harmonic oscillators are widely used to

approximate periodic phenomena in a variety of scientific and engineering applications where

the frequency of oscillation may not be known exactly, but rather is confined to a given range

[14, 27]. Harmonic oscillators often appear in quantum-electrodynamics, and steering such

quantum systems using electromagnetic fields is a subject of widespread interest [156].

The following section contains a review of the notation and mathematical foundation for

ensemble control theory of finite-dimensional time-varying linear systems. Afterwards we

formulate an accurate, stable, and computationally efficient numerical method based on the

singular value decomposition for constructing minimum norm ensemble controls for finite-

dimensional time-varying linear systems [239]. The crucial innovation concerns the numerical

approximation of the singular system of the Fredholm integral operator of the first kind [162]

that characterizes the dynamics of a linear ensemble system, as well as the synthesis of the

unique minimum norm control that accomplishes a desired transfer in function space. In

addition, the technique is extended to a fast, iterative method for solving the same problem

when a constraint on the control amplitude is added. These techniques are promising because

they produce high resolution ensemble control functions, of fine time discretization, which

sidestep the need for computationally costly gradient optimization steps. The method is

applied to control the canonical ensemble control system, which consists of a continuum

of harmonic oscillators, in order to demonstrate the effectiveness of our new method for

accomplishing complex state transfers. Additional examples of linear systems with higher

dimension and with variation in several parameters are examined as well.
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2.1 Linear Ensemble Control Theory

The aim of ensemble control is to simultaneously manipulate a continuum of dynamical

systems, which are governed by internal and external dynamics that depend on a parameter

varying over a compact indexing set, by applying the same open-loop control input to each.

In this section, we review the basic definitions and the fundamental theoretical results that

enable ensemble control synthesis for finite-dimensional time-varying linear systems.

Consider a parameterized family of dynamical systems indexed by a parameter β varying

over a compact set K, given by

Ẋ(t, β) = A(t, β)X(t, β) +B(t, β)u(t), (2.1)

X ∈M ⊂ R
n, β ∈ K ⊂ R, u ∈ U ⊂ R

m,

where A(t, β) ∈ R
n×n and B(t, β) ∈ R

n×m have elements that are real L∞ and L2 functions,

respectively, defined on a compact set D = [0, T ] × K, and are denoted A ∈ Ln×n∞ (D) and

B ∈ Ln×m2 (D). The ensemble controllability conditions for the system (2.1) depend on the

existence of an open-loop control u : [0, T ] → U that can steer the instantaneous state of the

ensemble X(t, ·) : K →M between any points of interest in the Hilbert space of functions on

K. Let HT = Lm2 [0, T ] denote the set of m-tuples, whose elements are real square-integrable

functions defined on 0 ≤ t ≤ T , with an inner product defined by

〈g, h〉T =

∫ T

0

g′(t)h(t)dt, (2.2)

where ′ denotes the transpose. Similarly, let HK = Ln2 (K) be equipped with an inner product

〈p, q〉K =

∫

K

p′(β)q(β)dµ(β), (2.3)

where µ is the Lebesgue measure. With well-defined addition and scalar multiplication,

HT and HK are separable Hilbert spaces, where || · ||T and || · ||K denote their respective

induced norms. Ensemble controllability is formulated within this Hilbert space framework

as follows.

Definition 1: (Ensemble controllability [138]) We say that the family (2.1) is ensemble

controllable on the function space HK if for all ε > 0, and all X0, XF ∈ HK , there exists
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T > 0 and an open loop piecewise-continuous control u ∈ HT , such that starting from

X(0, β) = X0(β), the final state X(T, β) = XT (β) satisfies ||XT −XF ||K < ε.

In other words, the system (2.1) is ensemble controllable if it is possible to guide it from X0

to XF in the space HK , where the acceptable range of T ∈ (0,∞) may depend on ε, K, and

U . It is useful to note that ensemble controllability is defined in the sense of approximate

controllability [41, 37]. Necessary and sufficient conditions have been determined for the

ensemble controllability of finite-dimensional time-varying linear systems, and are based

on the Fredholm integral operator that characterizes the system dynamics [139], which is

obtained as follows. Given the initial state X(0, β) = X0(β) of the system (2.1), the variation

of parameters formula gives rise to the solution

X(T, β) = Φ(T, 0, β)X0(β) +

∫ T

0

Φ(T, σ, β)B(σ, β)u(σ)dσ, (2.4)

where Φ(t, 0, β) is the transition matrix for the system Ẋ(t, β) = A(t, β)X(t, β). Our goal is

for the terminal state to equal the target state in the function space HK , so setting X(T, β) =

XF (β), pre-multiplying by Φ(0, T, β) and rearranging results in the integral operator equation

(Lu)(β) =

∫ T

0

Φ(0, σ, β)B(σ, β)u(σ)dσ = ξ(β), (2.5)

where ξ(β) = Φ(0, T, β)XF (β) − X0(β). The theory of ensemble controllability for finite-

dimensional time-varying linear systems and the derivation of minimum norm controls can

be reduced to the solvability and applied solution of the above integral equation, in either the

exact or approximate sense. Implicit controllability conditions have been derived based on

the associated input-to-state operator L in (2.5) within the Hilbert space setting described

above [139]. This operator, as defined in equation (2.5), satisfies L ∈ B(HT ,HK), where

B(HT ,HK) is the set of bounded linear operators from HT to HK . Furthermore, because

the Hilbert spaces HT and HK with inner products defined by (2.2) and (2.3), respectively,

are both separable, it follows that L has the adjoint L∗ satisfying

〈ξ, Lu〉K = 〈L∗ξ, u〉T , ∀ ξ ∈ HK , u ∈ HT . (2.6)

We omit the subscript on the inner product when it is clear from the context. The conditions

characterizing ensemble controllability are related to the singular system of the operator L,

which requires the following important definition.
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A spectral decomposition, called the singular system, of the operator L is used to produce

an infinite eigenfunction series expansion for the u ∈ HT of minimum norm that satisfies

(2.5) with sufficient accuracy.

Definition 2: Singular System [79]: Let Y and Z be Hilbert spaces and L : Y → Z be

a compact operator. If (σ2
n, νn) is an eigensystem of LL∗ and (σ2

n, µn) is an eigensystem of

L∗L, namely, LL∗νn = σ2
nνn, νn ∈ Z, and L∗Lµn = σ2

nµn, µn ∈ Y , where σn > 0 (n ≥ 1),

and the two systems are related by the equations Lµn = σnνn and L∗νn = σnµn, we say that

(σn, µn, νn) is a singular system of L.

It can be shown that the operator L in (2.5) is compact [139], and hence LL∗ and L∗L are

both compact, self-adjoint, and nonnegative operators. By the Spectral theorem, L∗L can

be represented in terms of its positive eigenvalues, namely, L∗Ly =
∑

n σ
2
n〈y, µn〉µn for all

y ∈ HT . Moreover, because L∗Lµn = σ2
nµn, the relations Lµn = σnνn and L∗νn = σnµn

follow by taking νn = (1/σn)Lµn. Note that the singular system is the infinite dimensional

analogue of the singular value decomposition of a matrix.

Suppose that (σn, µn, νn) is a singular system of the operator L as defined in (2.5), which

is compact [138]. The following theorem provides necessary and sufficient conditions for

ensemble controllability of finite-dimensional time-varying linear systems with input-to-state

operator L.

Theorem 1: [139] The family of systems (2.1) is ensemble controllable on the function

space HK if and only if for any given initial and final state X0XF ∈ HK , at time t = 0 and

t = T <∞ respectively, and for ξ = Φ(0, T, β)XF −X0, the conditions

(i)

∞∑

n=1

|〈ξ, νn〉K |2
σ2
n

<∞, (2.7)

(ii) ξ ∈ R(L), (2.8)

hold, where L is the input-to-state operator of the system (2.1) defined in equation (2.5), with

R(L) denoting the closure of the range space of L, and the collection of triples (σn, µn, νn)

is a singular system of the linear operator L. Moreover, the control

u =
∞∑

n=1

1

σn
〈ξ, νn〉µn (2.9)
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satisfies 〈u, u〉 ≤ 〈u0, u0〉 for all u0 ∈ U and u0 6= u, where U is the set of solutions to (2.5)

given by U = {v |Lv = ξ with (i) and (ii)}. For further details we refer the reader to the

original work on this subject [138, 139].

Because singular systems and hence optimal ensemble controls cannot be derived analytically

except for in the simplest cases, such as that of the prolate spheroidal wave function [139],

an accurate and efficient numerical method for approximating the former is a prerequisite

for applying this new theory. Given an appropriate numerical approximation to the singular

system (σn, µn, νn) for the operator L of an ensemble controllable system, the series (3.17)

can be truncated to synthesize an approximation to u that results in ||XT − XF ||K < ε as

desired. In addition, a numerical test of the criteria (2.7) for ensemble controllability is a

natural extension of such a framework, which we present in the following section.

2.2 Numerical Synthesis of Minimum-Norm Ensemble

Controls for Linear Systems

Theorem 1, together with Definition 2, suggests a natural method for approximating solutions

to (2.5) of minimum norm [239]. The integral operator equation Lu = ξ can be approximated

by a linear matrix equation, so that the singular system (σn, µn, νn) of L can be approximated

by the singular value decomposition of this matrix. The approximation is carried out using

the following discretization. Let {βj} be a collection of points that are uniformly distributed

throughout the space K for j = 0, 1, 2, . . . , P , and let {tk} be a collection of points that

linearly interpolate the time domain [0, T ] for k = 0, 1, . . . , N , including endpoints, with

tk − tk−1 = δ. Thus for each for each β ∈ {βj}, and using the time discretization {tk}, we

make the Riemann quadrature approximation

(Lg)(β) =

∫ T

0

Φ(0, t, β)B(t, β)g(t)dt

=
N∑

k=1

∫ tk

tk−1

Φ(0, t, β)B(t, β)g(t)dt

≈
N∑

k=1

δΦ(0, tk, β)B(tk, β)g(tk) (2.10)
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Hence the action of the operator L on a function g ∈ HT can be approximated by the

action of a block matrix W ∈ R
nP×mN , with n ×m blocks Wjk = δΦ(0, tk, βj)B(tk, βj), on

a vector ĝ ∈ R
mN , with N blocks ĝk = g(tk) of dimension m × 1. This can be seen by

observing that (Lg)(βj) is approximated by (2.10) for each βj by applying WjN to ĝ, where

Wjk = [ Wj1 Wj2 . . . Wjk ] ∈ R
n×mk.

Recall that the singular value decomposition (SVD) of the matrix W is given by W = UΣV ′,

where ūj and v̄j are the orthogonal columns of U and V , respectively, which correspond to

the singular value sj [50]. The diagonal matrix Σ contains the singular values sj on the

main diagonal. It then follows that WW ′ūj = s2j ūj and W ′Wv̄k = s2j v̄k. Therefore the SVD

(sj, v̄j , ūj) of the matrix W approximates the singular system (σj , µj, νj) of the operator L,

where v̄j and ūj are discretizations of µj and νj , respectively. It is important to note that the

use of the SVD to approximate solutions to Fredholm integral equations has been previously

investigated [223, 92, 91, 11], although primarily in the context of least-squares problems,

rather than minimum norm solutions.

Now suppose that ξ̂ ∈ R
nP is given by ξ̂k = ξ(βk) for a function ξ ∈ HK . As a result of

the projection theorem in normed linear spaces, the minimum norm solution ĝ∗ that satisfies

Wĝ = ξ̂ is given by ĝ∗ = W ′z where WW ′z = ξ̂ [146], so that applying basic properties of

the SVD yields

ĝ∗ =

q∑

j=1

ξ̂′ūj
sj

v̄j (2.11)

for an appropriate q < nP chosen to avoid the accumulation of roundoff errors. The com-

ponents û∗1, . . . , û
∗
m of the synthesized minimum norm control û∗ are therefore given by

û∗k = {ĝ∗k+m(j−1)}Nj=1. Note that the time and parameter discretizations N and P must

be chosen such that nP ≤ mN , so that the pair (W, ξ̂ ) represents an underdetermined

system and therefore a minimum norm and not a least squares approximation problem.

The use of a Riemann sum quadrature formula to approximate the action of a Fredholm

integral operator of the first kind by a matrix, so that the SVD can be used to approximate

the singular system of the operator, has previously been examined as part of a least-squares

type method [94]. An analysis of numerical methods for approximating solutions to such

integral equations, as well as an examination of accuracy and conditioning issues, has also

been performed [92]. The latter work includes a discussion of the Picard criterion, which
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Figure 2.1: Simulation of system ensemble (2.12) for N = 20000, T = 1, P = 20, and ω ∈ [−10, 10]. The
initial and target states are X0(ω) = (1, 0)′ and XF (ω) = (0, 0)′. The matrix W is computed in about 5
seconds, and the SVD is computed in under 1 second. (a) The optimal control law (u1(t), u2(t)) for t ∈ [0, 1]
(left), and the final states for all systems ω ∈ [−10, 10]. (b) The singular values {sj} of W on a log10 scale,
with the τr = 104 cutoff indicated. Here q = 18 (9 each for u1 and u2) singular vectors are used to synthesize
the control.

asserts that there exists a square integrable solution to the integral equation (2.5) only if

(2.7)(i) holds.

The most important computational issue is the prevention of the aggregation of numerical

errors. These first arise from computation of the transition matrix Φ, which must be done

using numerical integration unless Φ has a tractable analytical form. A practical relative error

tolerance for solving ODE systems is O(10−6). Another source of numerical error arises from

computation of the SVD. In essence, the solution (2.11) reflects the use of a pseudoinverse,

i.e., ĝ = W †ξ̂. In order to prevent numerical conditioning errors from dominating the

synthesized control, it is appropriate to choose q in (2.11) such that the corresponding first

and last singular values used satisfy s1/sq < 104. Let us denote this as the relative truncation

factor τr. This relative tolerance effectively guarantees that the resulting pseudoinverse

solution is well-conditioned. Certain convergence issues related to the optimal truncation of

SVD-based least squares solutions to first kind Fredholm equations have been investigated for

noisy data [223]. Further results of previous work on the consistency, stability, convergence,

and regularity of numerical solutions to Fredhom equations of the first kind are discussed in

Section 2.5.

2.3 Examples of Linear Ensemble Transfers

In order to illustrate the performance of the above method, several example simulations of

control synthesis for ensemble transfers are presented below.
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Figure 2.2: The simulation in Figure 2.1 is repeated for different values of time horizon T and time step δ,
where N = T/δ, and P = 40 is used in each instance. (a) The norm of the error in the final state is plotted
as a function of 1/δ = N/T . The slope of the lines is very close to 1, so that the error is proportional to δ.
The lines correspond to T = 0.1, 0.5, 2, 1, and 5, from top to bottom, hence a longer time horizon does not
necessarily result in improvement. (b) The number of significant singular values q is plotted as a function of
T .

2.3.1 Ensembles of Harmonic Oscillators

Consider the optimal control of an ensemble of harmonic oscillators, which has been pre-

viously examined in detail [139]. This system was proven to be ensemble controllable, and

the eigenfunctions of the operator that characterizes the system dynamics are related to the

family of prolate spheroidal wave functions. The dynamics are

d

dt

[
x(t, ω)

y(t, ω)

]
=

[
0 −ω
ω 0

][
x(t, ω)

y(t, ω)

]
+

[
u1(t)

u2(t)

]
, (2.12)

where ω ∈ K = [ω1, ω2] ⊂ R, the instantaneous state is X(·, ω) = (x(·, ω), y(·, ω))′ ∈ HK ,

and the control vector is U = (u1, u2)
′ ∈ HT . We apply the method described in Section 2.2

to solve an optimal ensemble control problem for the system (2.12), and the results are shown

in Figure 2.1. The transition matrix Φ is evaluated analytically for this example. The control

is computed more accurately than in previous results [139], and its performance is similar.

In addition, the results of further numerical experiments that determine the sensitivity of

the error ‖XT −XF‖K to the choice of time horizon T and time discretization δ = T/N are

shown in Figure 2.2. The error in the final state of the ensemble is proportional to the time

step δ, which provides a means to calibrate the number N of time discretization points.

This method can also be used to solve more challenging problems, for example where the

initial and target statesX0 andXF are non-constant functions of ω in the state space, which is
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Figure 2.3: Simulation of system ensemble (2.12) for N = 20000, T = 40, P = 89, and ω ∈ [−10, 10], where
the initial and target states X0 and XF are arrangements of the P + 1 oscillators in star and leaf shaped
images in the plane, respectively. The average error in the final states of the oscillators is 3.03× 10−4, and
the maximum error is 0.0167. (a) Initial (left) and actual final (right) states are plotted. (b) The control
that accomplishes the transfer (top), and the spectrum of the SVD (bottom) are shown. Observe that the
latter differs in form from that which results from the simulation in Figure 2.1, i.e., the singular values do
not decay to zero, and all of the singular vectors are used to synthesize the control.

referred to as a non-uniform transfer. The control synthesis technique can be applied to steer

an ensemble of harmonic oscillators (2.12) between arbitrary initial and target configurations

in the plane. An example result of such a simulation is shown in Figure 2.3, and we encourage

the reader to view a video of the transfer [234]. This example is in fact related to a complex

problem of importance to the field of NMR in which the initial and target states also depend

on system parameters. In certain experiments specific sub-collections of quantum systems

must be excited based on parameter values or the physical position in the sample under study

by using so-called selective pulses [124, 183]. Controls that can create arbitrary patterns in

the terminal state of the ensemble as a function of system parameters are desired.

An important question concerns the proper sampling over the space K, and whether the

resulting solution does in fact yield an appropriate allocation of the continuous ensemble in

the case of a non-uniform transfer. This issue will be further explored in Section 2.5. First,

observe that for the basic uniform ensemble transfer illustrated in Figure 2.1, the singular

values decay rapidly to zero, hence relatively few samples in K are required. In order to

examine the issue of sampling for non-uniform transfers, consider the example of steering

the same ensemble of harmonic oscillators from an arrangement in the form of a circle, i.e.,

X0(ω) = (cos(πω/10), sin(πω/10)), to the form of a square, as shown in Figure 2.4(a). For a

time discretization of N = 20000 for T = 15, using a sampling of P = 41 yields a control that

steers the sampled systems to the desired locations. When the same control is applied to an
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Figure 2.4: Simulation of system ensemble (2.12) using N = 10000, T = 15, and ω ∈ [−10, 10], where the
initial state as a function of ω is X0(ω) = (cos(πω/10), sin(πω/10)) and the target state XF is distributed
uniformly in a square figure centered at the origin. For the target state, the systems corresponding to ω = 10
and ω = −10 are both located at the Northeast corner, and samples are distributed uniformly along the
square shape. The top panels, for a simulation with P = 321 sample points on K, show (a) the initial
(green), target (red), and terminal (blue) states simulated using P = 3210, (b) the optimal control, and
(c) the corresponding singular values with relative truncation factor τr = 1012. Note that a high amplitude
control input is required. The bottom panels, for a simulation with P = 41 sample points on K, show (d)
the initial (green), target (red circles), and terminal (blue) states simulated using P = 410, (e) the optimal
control, and (f) the corresponding singular values with relative truncation factor τr = 104. Note that in
panel (d), the up-sampled points are not steered to the target location.

up-sampling of P = 410 systems, the additional systems are not guaranteed to be steered

to the target figure. The results of the simulation are shown in Figures 2.4(d) to 2.4(f),

where it can be seen that the singular values do not decay to zero. If a sampling of P = 321

is used in the control synthesis, then the resulting control has a very high amplitude, and

the sampled systems are not steered exactly to the desired terminal state. However, very

crucially, when the same control is applied to an up-sampling using P = 3210 systems, all of

these are steered to lie along the square-shaped line drawn out by the sampled systems. Note,

furthermore, that the singular values of the operator do eventually decay to negligible values.

A relative truncation factor of τr = 1012 is used to synthesize the control. The consistency

of representations of the prolate spheroidal wave function using discrete prolate spheroidal

sequences has been examined [174], and the latter were used to synthesize the same uniform

ensemble transfer as shown in Figure 2.1 [141]. Nevertheless, for general ensemble control
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problems the relationship between the discretizations of [0, T ] and K is an important open

question.

2.3.2 Applications to Quantum Transport Problems

Adiabatic processes are ubiquitous in cold atom physics, nuclear magnetic resonance, optics

and other fields [187, 200, 3, 39]. Although useful for preparing states robustly with respect to

perturbations, these processes may become impractical due to their long duration. This has

prompted a surge of theoretical and experimental activities to find shortcuts to adiabaticity.

At the heart of modern quantum technology lies the efficient frictionless cooling of trapped

atoms [135, 63, 33]. Frictionless cooling of atoms in a harmonic trap involves changing the

harmonic frequency of the trap to some lower final value, while keeping the populations of the

initial and final levels invariant, thus without generating friction and heating. Achieving this

goal in minimum time, instead of adiabatically, is highly desirable in order to minimize the

effect of decoherence, which is the undesirable interaction of the system with the environment.

Many important applications can be realized given such capability, which can be used to reach

extremely low temperatures inaccessible by standard cooling techniques [135], to reduce

the velocity dispersion and collisional shifts for spectroscopy and atomic clocks [63], and

to perform adiabatic quantum computation [3]. It is also closely related to the problem

of steering a system between two thermal states in minimum time, as for example in the

transition from graphite to diamond [193]. Optimal frictionless atom cooling in harmonic

traps has been recently examined. The goal was to optimally decrease (cool) the frequency

of the trapping potential while keeping the populations of the energy levels in the initial and

final configuration constant. Time-optimal controls of a bang-bang form and a synthesis of

optimal controlled trajectories for frictionless atom cooling were derived [204, 205].

Problems involving optimal quantum transport, such as those listed above, are also subject

to parameter variation and uncertainty, which may be of significance to control design. For

example, a particular optimal quantum transport problem may be formulated as the optimal

control of a linear time-invariant system [206], with uncertainty or inhomogeneity in the trap

velocity ω, so that the dynamics are given by

dX = A(t, ω)X +Bu, (2.13)
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Figure 2.5: Simulation of the ensemble system (2.13) with initial and target states X0 = (0, 0, 0)′ and
XF = (0, 0, 1)′. The control is computed for N = 25000, T = 25, and P = 26. The system is simulated using
a Runge-Kutta ODE solver, and the error between the terminal and target states is ||XT−XF ||K ≈ 2.7×10−3.
(a) The minimum norm control (top) synthesized using q = 14 eigenvectors, with corresponding singular
values plotted (bottom). The spectrum of the SVD decays quickly, as in the example in Figure 2.1. (b)
Manifold of ensemble trajectories.

A(t, ω) =




0 1 0

−ω2 0 ω2

0 0 0


 , B =




0

0

1


 ,

where X = (x1, x2, x3)
′ and u is a scalar control input. In the example shown in Figure 2.5,

the uncertain trap velocity is ω ∈ [0.5, 1], the transfer time is T = 25, and X0 = (0, 0, 0)′

and XF = (1, 0, 0)′ are initial and target states, respectively. The optimal ensemble control

generated using a discretization N = 25000 and sampling P = 26, as well as the correspond-

ing singular values, is shown in Figure 2.5(a). The trajectories depend continuously on the

parameter ω, so that the ensemble trajectory in effect sweeps through a manifold in R
3,

which is shown in 2.5(b).

2.4 Minimum-Norm Amplitude-Constrained Ensemble

Controls for Linear Systems

The method for synthesizing minimum-norm ensemble controls for linear systems that was

presented in Section 2.2 can be extended to solve problems where the amplitude of the

control input is constrained. An algorithm has been previously proposed for computing

bounded-variable least squares (BVLS) [203]. However, this algorithm was designed for
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highly over-determined systems with few variables and many constraints, such as in least

squares fitting of noisy data for the purpose of parameter estimation. In the present case,

the system is highly under-determined, with tens of thousands of variables corresponding

to the time-discretization of a control input, and many fewer constraints created through

approximation of (2.5) by applying (2.10). Therefore, a fast iterative technique is proposed

here to solve constrained linear ensemble control problems, which converges when a solution

exists.

Consider the addition of constraints to the minimum-norm ensemble control problem in

Section 2.2, to produce the modified problem

min J [ĝ] = ĝ′ĝ

s.t. W ĝ = ξ̂

li ≤ ĝi ≤ ui, i = 1, . . . , mN.

The key idea is to subdivide the time indices according to active constraint sets for the

control function at the kth iteration, which is denoted by ĝk. Let L and U denote the sets

of indices of ĝk for which the lower and upper bounds are active. That is, if ĝki = li then

i ∈ L, and if ĝki = ui then i ∈ U . In addition, let F contain indices where inequality

constraints are inactive, i.e., if li < ĝki < ui then i ∈ F . Along the same lines, let us

denote ĝkF = {ĝki | i ∈ F}, lL = {li | i ∈ L}, uU = {ui | i ∈ U} and let the matrices

WF ∈ R
nP×|F|, WL ∈ R

nP×|L|, and WU ∈ R
nP×|U| contain the columns of W corresponding

to the indices of F , L, and U , respectively. The iteration is initialized with all indices in

F , then the unconstrained minimum-norm control ĝ0 is found, and the iteration continues

in three alternating stages. First, any values of ĝk that violate the inequality constraints

are set to the extremal permitted value. Second, the KKT conditions are checked, and any

elements of ĝk in the active constraint sets L or U that do not satisfy the gradient conditions

for a given tolerance of ε∇ > 0 are returned to the free set U . Finally, ĝk+1 is found by

applying the SVD-based method of Section 2.2 by solving for ĝk+1
F where WF ĝ

k+1
F = ξF ,

where ξF = ξ −WLlL −WcUuU , and appropriately concatenating lL and uU .

Algorithm 1: Constrained minimum-norm ensemble control synthesis.

1. Set F = {1, . . . , mN}, and obtain ĝ0 = W †ξ using method in Section 2.2

2. ∀ i ∈ F : If ĝki ≥ ui, set ĝk+1
i = ui and i ∈ U . If ĝki ≤ li, set ĝk+1

i = li and i ∈ L.
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Figure 2.6: Simulation of system ensemble (2.12) for N = 3000, T = 2, P = 100, and ω ∈ [−10, 10]. The
initial and target states are X0(ω) = (1, 0)′ and XF (ω) = (0, 0)′. (a) The optimal control law (u(t), v(t))
computed using Algorithm 1 using lower and upper bounds of li = −20 and ui = 20, respectively. A relative
truncation threshold of τr = 104 is used to synthesize the control at the free indices at each step. (b)
Terminal states of the ensemble when the control is applied. The mean terminal error is 1.68× 10−4.

3. Check KKT gradient conditions: Let G = ∇J [ĝk] = W ′(ξ − Wĝk). ∀ i ∈ F : If

Gi ≥ ε∇ for i ∈ L or Gi ≤ −ε∇ for i ∈ U , set i ∈ F .

4. Find ĝk+1
F = W †

FξF by SVD method for WF and ξF = ξ −WLlL −WUuU . Reassemble

ĝk+1 using ĝk+1
F , ĝk+1

L = lL, and ĝk+1
U = uU . Go to 2

The Algorithm 1 was applied to the ensemble of harmonic oscillators of the form 2.12 using

upper and lower bounds of li = −20 and ui = 20, and the results are shown in Figure 2.6.

For the discretization parameters N = 3000 and P = 100 and the time horizon T = 2, the

algorithm terminated after k = 48 iterations.

2.5 Convergence Analysis and Open Problems

Finally, this chapter is concluded with a discussion of convergence issues and related open

problems for the numerical ensemble control synthesis method for linear systems described

in Section 2.2. The idea of approximating an integral operator using a quadrature approx-

imation is referred to as the Nystr om method [169]. A great deal of literature has been

devoted to characterize the consistency, stability, convergence, and regularity of numerical

solutions to Fredhom equations of the first kind [11, 12, 89, 181]. In addition, the SVD

of approximating matrix operators has been previously used to compute singular systems

for Fredholm integral equations [223, 92, 91, 11], although the applications have been pri-

marily in the context of least-squares problems, rather than minimum norm solutions. The
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implications for system identification and control have been examined in at least one study

[72].

For a Fredholm integral equation of the first kind with a continuous, Hermitian kernel k(x, y),

consider a family of quadrature rules {JN} with positive weights such that limN→∞ JN(φ) =∫ b
a
φ(y)dy for every function φ ∈ C[a, b], which is used to produce a family of square matrices

K̂N that approximate the integral operator (Kφ)(y) =
∫ b
a
k(x, y)φ(x)dx (using N samples of

both variables x and y). It is well established (see Theorems 3.4 and 3.5 in [11]) that as N →
∞, the eigenvalues and eigenvectors of K̂N converge to the eigenvalues and eigenfunctions

of the operator K. Observe that WW ′ and W ′W approximate LL∗ and L∗L, respectively.

Furthermore, the eigenvalues of LL∗ and L∗L are squares of the singular values of L. This

suggests a natural direction to explore the properties of the SVD-based method in Section

2.2, and possibly to obtain constructive controllability criteria for ensemble systems of more

explicit form than 2.7.

The theoretical treatment in previous work provides a foundation for examining ensemble

controllability [139], but a straightforward test for this property is not yet available. While it

is possible to test for ensemble controllability in certain cases by using Lie algebras [142, 184],

the complexity of the systems encountered in many applications makes this problematic in

general. It is important to explore the relationship between ensemble controllability, the

Picard criterion, and the singular values of the integral operator (2.5) and its matrix analogue

W . Investigation in this direction may lead to an implementable numerical controllability test

for general ensemble systems. In addition, a thorough numerical analysis is required to better

understand the accuracy and conditioning properties of this approach, in order to predict its

performance under various circumstances, and to determine whether a computational test

for ensemble controllability is indeed feasible.

26



Chapter 3

Control of Bilinear Ensemble Systems

The challenge of controlling continuously indexed system ensembles was originally motivated

by practical factors that arise in nuclear magnetic resonance (NMR) spectroscopy and imag-

ing (MRI) as well as the broader field of quantum control, and has given rise to a new

area of mathematical control theory called ensemble control [137]. These rapidly progressing

technologies require the manipulation of very large ensembles of quantum systems, e.g., on

the order of Avogodro’s number (6 × 1023), whose states cannot be measured during the

transfer, and whose dynamics are subject to dispersion in parameters such as frequency.

The performance of the necessary controls must be insensitive to parameter variation across

the ensemble, as well as to inhomogeneity in the applied radiofrequency (RF) control field

[142, 140, 38]. Furthermore, the techniques developed for ensemble control can be applied

to robust sensorless manipulation, which is of interest in machining and manipulation tasks

where feedback is unavailable and the performance must be immune to uncertainty in model

parameters [17]. Such problems are largely neglected in the literature on robust control,

which is oriented on the use of feedback [123, 222, 132].

The examination of ensemble control of bilinear systems begins with the notion of ensemble

controllability, which determines the existence of controls that achieve state transfers of

interest. It has been shown that a bilinear system evolving on SO(3) called the Bloch

system, which represents the transition over time of the bulk magnetization of a sample of

nuclear spins, is ensemble controllable [137, 140]. More fundamentally, the necessary and

sufficient conditions for ensemble controllability of finite-dimensional time-varying linear

systems have been derived [138], as described in the previous chapter, and extended to

stochastic systems [185]. These conditions depend on the singular system of the operator

that characterizes the system dynamics, which can in turn be used to represent the minimum
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norm control that accomplishes the transfer as an infinite sum of weighted eigenfunctions

[139]. The controllability conditions for general nonlinear ensemble control problems are

unknown, and analytical control design methods remain a challenging problem, although

analytical solutions exist for a few specific systems [16].

This chapter is devoted to developing constructive numerical methods for synthesizing opti-

mal ensemble controls, rather than to focus on issues of controllability. A recent optimization-

based approach is a pseudospectral method that translates an optimal control problem in

function space into a finite discrete nonlinear programming problem [143, 191, 144]. This

method has been effective for a variety of ensemble control problems, but relies heavily

on nonlinear programming techniques due to its inherent computational complexity [192].

Therefore, a need exists for optimization-free, stable, and computationally efficient numer-

ical methods for synthesizing ensemble controls that can accomplish diverse state transfers

for a variety of systems. The previous chapter contains a description of a method based on

the SVD to constructs minimum norm ensemble controls for finite-dimensional time-varying

linear systems [239], as well as stochastic linear systems [185]. In this approach the singular

system of the Fredholm integral operator of the first kind that characterizes the dynam-

ics of a linear ensemble system is approximated using the SVD, and the optimal control is

approximated as a weighted sum of singular vectors.

Although the former approach is effective for linear ensemble systems, the most compelling

practical ensemble control problems in quantum control and robotics involve systems of

bilinear form. A natural approach to such problems is to apply methods for linear systems

iteratively to linearized bilinear systems to produce a scheme for successive approximations.

Such techniques exist for feedback control design for finite-time, free endpoint problems

with quadratic cost functionals and bilinear dynamic constraints, and are based on iterative

solution of Riccati-type equations [100, 2]. In contrast, we are interested in designing open-

loop control solutions to fixed-endpoint problems for bilinear systems such that the control

performance is insensitive to system parameter variation, which requires a novel approach.

The subsequent sections describe an iterative fixed-point method for directly synthesizing

ensemble controls for bilinear systems [237]. At each step of the iteration, the bilinear

ensemble system is approximated by a time-varying linear ensemble system, and the SVD-

based method in Section 2.2 is used to synthesize the control used to generate the state

trajectory estimate, about which the system is linearized in the following iteration. The
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same approach can be adapted to accommodate constraints on the control amplitude by

using the method in Section 2.4 as well.

3.1 Ensemble Control Synthesis for Bilnear Systems

Many important problems in control engineering with applications to robotics, medicine, and

other fields require the manipulation of bilinear systems [143, 197, 30, 38, 158]. We focus here

on time-invariant systems because our approach is easily generalized to the non-autonomous

case. Consider the system

Ẋ = A(β)X +

[
m∑

i=1

ui(t)Bi(β)X

]
+B0(β)u(t), (3.1)

X ∈M ⊂ R
n, β ∈ K ⊂ R, u ∈ U ⊂ R

m,

where u = (u1, . . . , um)′, X = X(t, β), A(β) ∈ R
n×n has elements that are real L∞ func-

tions defined on a compact set K, and B1(β), . . . , Bm(β) ∈ R
n×n and B0(β) ∈ R

n×m

have elements that are real L2 functions also defined on K. We denote A ∈ Ln×n∞ (K),

B1, . . . , Bm ∈ Ln×n2 (K), and B0 ∈ Ln×m2 (K). Ensemble controllability for the system (3.1)

follows Definition 1. This system can be rewritten as

Ẋ = A(β)X +

[
n∑

j=1

xjB̃j(β) +B0(β)

]
u(t), (3.2)

where X = (x1, . . . , xn)′ and B̃1, . . . , B̃n ∈ Ln×m2 (K). Hence the one-step ensemble control

synthesis scheme for linear systems described in Section 2.2 can be extended to produce

an iterative fixed-point method that constructs ensemble controls for bilinear systems by

replacing at each iteration the autonomous inhomogeneous component with a time-varying

homogeneous approximation involving the output of the previous step. Suppose that the

ensemble (3.2) is controllable and is to be guided from X(0, β) = X0(β) to X(T, β) = XF (β).

Given an estimate (Xα, uα) of the trajectory-control pair where Xα = (xα1 , . . . , x
α
n)′, uα =

(uα1 , . . . , u
α
m)′ and α is an iteration index, substituting xj(t, β) = xαj (t, β) for j = 1, . . . , n in
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(3.2) yields the time-varying linear system

Ẋ(t, β) = A(β)X(t, β) +Bα(t, β)u(t), (3.3)

where

Bα(t, β) =
n∑

j=1

xαj (t, β)B̃j(β) +B0(β). (3.4)

The SVD-based method in Section 2.2 is used to synthesize a control uα+1 that solves the

integral operator equation

(Lαu)(β) =

∫ T

0

Φ(0, σ, β)Bα(σ, β)u(σ)dσ = ξ(β), (3.5)

where ξ(β) = Φ(0, T, β)XF (β) − X0(β) characterizes the desired state transfer for the lin-

earized system (3.3). This control is applied to (3.2) with X(0, β) = X0(β) to produce a

new trajectory Xα+1, and the next iterate (Xα+1, uα+1), and the process is repeated until

E(α) := ‖uα+1 − uα‖/‖uα‖ < γ where γ is a relative error tolerance.

In order to avoid the accumulation of numerical errors that cause the iteration to diverge,

the entire procedure must be conducted using the discretization scheme (2.10) in Section

2.2. Specifically, we define the vector ξ̂ ∈ R
nP with n×1 blocks ξ̂j = ξ(βj) that characterizes

the desired state transfer. At the next iteration, a vector ûα+1 ∈ R
mN with m × 1 blocks

ûα+1
k = u(tk) constitutes a discretization of the control. The action of Lα on a function

g ∈ HT is approximated by the action of a block matrix W α ∈ R
nP×mN , wih n ×m blocks

W α
jk = δΦ(0, tk, βj)B

α(tk, βj), on a vector ĝ ∈ R
mN , with N blocks ĝk = g(tk) of dimension

m × 1. Following the steps in Section 2.2, the minimum norm solution ûα+1 that satisfies

W αûα+1 = ξ̂ is given by

ûα+1 =

mq∑

j=1

ξ̂′ūj
sj

v̄j (3.6)

where (sj, v̄j , ūj) is the SVD of W α. We then require that the discrete approximation

X̂α+1 of Xα+1 is made on the same grid {βj} × {tk} that is used to synthesize W α as

the discrete approximation of Lα. In particular, we define the quadrature approximation
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X̂α+1
jk ≈ Xα+1(tk, βj) by

Xα+1
jk = Φ(tk, 0, βj)[X0(βj) + Wα

jkUα
k ] (3.7)

where

Wα
jk =

[
W α
j1 W α

j2 . . . W α
jk

]
∈ R

nP×mk,

Uα
k =

[
(ûα1 )′ (ûα2 )′ . . . (ûαk )′

]′
∈ R

mk×1.

If a control u∗ = (u∗1, . . . , u
∗
m)′ exists that accomplishes this transfer via the trajectory X∗ =

(x∗1, . . . , x
∗
n)′, it follows that u∗ is a solution to the integral operator (2.5) with

B(t, β) =
n∑

j=1

x∗j (t, β)B̃j(β) +B0(β). (3.8)

In certain cases, the successive approximations (X̂α, ûα) converge to a fixed point (X̂∗, û∗),

which approximates a trajectory-control pair (X∗, u∗) that accomplishes the desired transfer.

When Bi ≡ 0 for i = 1, . . . , m, the system (3.2) is linear in X and the iteration terminates

after a single step. In the following section, several example implementations of the above

technique are described, with a particular focus on the Bloch system.

3.2 Examples of Bilinear Ensemble Systems

In this section, several examples of ensemble control synthesis for bilinear systems are exam-

ined, beginning with the Bloch system, which is ubiquitous in quantum control applications.

3.2.1 The Bloch System

The canonical example of a bilinear control system of particular interest is the Bloch system

[30], which describes the evolution of the bulk magnetization of a sample of nuclear spins
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Figure 3.1: (a) Bloch system trajectories sampled from ω ∈ [−8, 8]. Trajectories for a control generated
for ω ∈ [−5, 5], N = 5000, and P = 20 for a 90o transfer in T = 1 (gray lines), and for a control generated
for the same transfer of a nominal system with ω = 0 (black lines). (b) Bloch system trajectories sampled
from ω ∈ [−1, 1], with applied control generated using N = 2000 and P = 20, viewed from positive z-axis.

immersed in a magnetic field, and which is given by

Ẋ =




0 −ω εu1

ω 0 −εu2
−εu1 εu2 0


X, (3.9)

where X = (x1, x2, x3)
′ is a unit vector in R

3, u = (u1, u2)
′ is a vector of control parameters,

and ω ∈ [−µ, µ] and ǫ ∈ [1 − δ, 1 + δ] represent dispersion in Larmor frequency and radio

frequency (RF) inhomogeneity, respectively, for µ > 0 and δ ∈ (0, 1). This system can be

re-written as

Ẋ =




0 −ω 0

ω 0 0

0 0 0


X + ε



x3 0

0 −x3
−x1 x2


u. (3.10)

It is a well established result that the Bloch system is ensemble controllable with respect

to both ω and ε [137, 142, 140, 124]. However, when formulated as in (3.3), the system

(3.10) is of the form Ẋ = A(ω)X + εBα(t, ω)u, and applying the variation of parameters

formula makes it clear that it is not ensemble controllable with respect to ε. This can also

be shown using a Lie algebraic argument ([139], Example 1). This observation highlights

a significant limitation of our method, namely, that the linearization of the bilinear system

must be ensemble controllable with respect to all uncertain parameters. We will let ε ≡ 1 be
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Figure 3.2: (a) Ensemble controls u for the Bloch system with several values of µ generated usingN = 5000,
P = 20, T = 1 for a 90o transfer in T = 1. (b) Log plot of relative change E(α) between successive control
iterates and (c) Log-log plot of terminal error as a function of discretization N for µ = 0.5, 1, and 2. Note
that the terminal error is smallest for µ = 1.

a constant, and apply the technique to successfully compensate for variation in the parameter

ω to produce a broadband excitation pulse.

We now examine the synthesis of an ensemble control that accomplishes a 90o (π/2) transfer

of the state from X0(β) = (0, 0, 1)′ to XF (β) = (1, 0, 0)′ for the Bloch system, which is a

canonical step in NMR. The time interval chosen is T = 1. Figure 3.1 compares trajectories

sampled from the ensemble with µ = 8, which are produced when the ensemble control

constructed for µ = 5 is applied, with those produced when the optimal control for the

nominal system with ω = 0 is applied. It is noteworthy that the control performance for

this broadband compensation pulse exceeds the specification. Figure 3.2 displays ensemble

controls for several values of µ, which achieve various broadband excitation profiles. In each

case the transfer is accomplished with v ≡ 0, using only the control u. A plot of the relative

change in successive control iterates uα and a log-log plot of the terminal error as a function

of discretization N are shown for several values of µ as well. These numerical convergence

results indicate that the method is accurate and consistent for this example.

In addition to a π/2 transfer, the method can rapidly synthesize control inputs that can

induce a uniform ensemble transfer between arbitrary points on the Bloch sphere, as well as

a nonuniform transfer. Figure 3.3 shows the ensemble controls and resulting trajectories for

transfers between arbitrary points on the Bloch sphere, and a non-uniform transfer of the

ensemble.
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Figure 3.3: (a) Ensemble controls u for the Bloch system with dispersion ω ∈ [−2, 2], ε ≡ 1, to be steered
from X0 = (.44, .8, .42)′ to XF = (.16, .67, .72)′ in T = 1.25, generated using N = 4000 and P = 20.
(b) Resulting trajectories. (c) Ensemble controls u for dispersion ω ∈ [−.5, .5], ε ≡ 1, to be steered from
X0 = (0, 0, 1)′ to XF = (cos(πω), sin(πω), 0)′ in T = 15, generated using N = 20000 and P = 100.

3.2.2 Coupled Bloch Systems

The method in Section 3.1 is also effective for controlling time-varying systems with multiple

uncertain parameters. Consider an ensemble consisting of pairs of Bloch systems with time-

varying coupling, with system dynamics given by

Ẋ =




0 −ξ u1 0 −ρt 0

ξ 0 −u2 ρt 0 0

−u1 u2 0 0 0 0

0 ρ(1 − t) 0 0 −λ u1

−ρ(1 − t) 0 0 λ 0 −u2
0 0 0 −u1 u2 0




X (3.11)

where X = (x1, x2, x3, x4, x5, x6)
′, and u = (u1, u2)

′ is a vector of control parameters. Given

initial and target states X0(β) = (0, 0, 1, 0, 0, 1)′ and XF (β) = (1, 0, 0, 1, 0, 0)′ and a time

horizon T = 1 and discretization N = 5000, we find an ensemble control for interaction

parameter ρ = 0.1 and frequency dispersions ξ ∈ [−0.2, 0.2] and λ ∈ [0.8, 1.2] using P = 25
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Figure 3.4: (a) Controlled trajectories of the ensemble of Bloch system pairs (3.11) on SO(3)×SO(3) with
X0(β) = (0, 0, 1, 0, 0, 1)′ and XF (β) = (1, 0, 0, 1, 0, 0)′; (b) Iteratively computed control for a time horizon
T = 1, discretization N = 5000, interaction parameter ρ = 0.1, frequency dispersions ξ ∈ [−0.2, 0.2] and
λ ∈ [0.8, 1.2], and P = 25 samples

samples. The resulting trajectories on SO(3) × SO(3), the ensemble control, and the log of

the relative change E(α) between successive control iterates is shown in Figure 3.4.

3.3 Discussion of Convergence and Open Problems

Several limitations to our approach suggest compelling theoretical research directions. First,

the necessary and sufficient conditions for controllability of general ensemble systems re-

mains an open problem, and therefore it cannot always be determined a priori for which

bilinear systems and state transfers in the space HK ensemble controls exist. In addition,

the convergence properties of the fixed-point iteration described in Section 3.1 are complex,

and problematic to characterize. In this section, we formulate the iterative control synthesis

technique for bilinear systems described in Section 3.1 as a nonlinear operator, and discuss

its properties.

Consider a controllable finite-dimensional bilinear system of the form

Ẋ(t) =

[
A(t) +

m∑

i=1

ui(t)Hi(t)

]
X(t) (3.12)

where X(t) ∈ R
n is the system state, U(t) ∈ R

m is a control input with components ui. In

addition, we require that A(t) ∈ R
n×n and Hi(t) ∈ R

n×n have elements that are real L∞

and  L2 functions, respectively. Suppose that we wish to steer (3.12) from an initial state
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X(0) = X0 to a desired final state X(T ) = XF . Towards this aim, we can formulate a fixed

point iteration whose fixed point accomplishes the desired state transfer.

The first step is to construct matrices Bj ∈ R
n×m such that (3.12) can be rewritten in the

form

Ẋ(t) = A(t)X(t) +

[
n∑

j=1

xj(t)Bj(t)

]
U(t). (3.13)

The trajectories of the system (3.13) lie in HS = Ln2 [0, T ], the set of real n-vector-valued

square-integrable functions on [0, T ], for which we define an inner product for X, Y ∈ HS by

〈X, Y 〉S =

∫ T

0

X ′(t)Y (t)dt. (3.14)

With well-defined addition and scalar multiplication, HS is a separable Hilbert space, where

|| · ||S denotes the induced norm, and dS denotes the induced metric, which is defined by

dS(X, Y ) = ||X − Y ||S =

(∫ T

0

||X − Y ||22dt
)1/2

. (3.15)

As a result of the Riesz-Fischer theorem [15], HS is a complete metric space. For any nominal

trajectory Y (t) ∈ HS with components yj(t), one can define B(Y (t)) =
∑n

j=1 yj(t)Bj(t) to

create a time-varying linear system of the form

Ẋ(t) = A(t)X(t) +B(Y (t))U(t). (3.16)

It is well-established [25] that the minimum norm control U∗(t) that steers (3.16) from

X(0) = X0 to X(T ) = XF is given by

U(t) = B′(Y (t))Φ′(0, t)[WY (0, T )]−1ξ, (3.17)

where Φ(t, 0) is the transition matrix for the homogeneous system Ẋ(t) = A(t)X(t), where

ξ = Φ(0, T )XF −X0, and where

WY (t0, t1) =

∫ t1

t0

Φ(t0, σ)B(Y (σ))B′(Y (σ))Φ′(t0, σ)dσ (3.18)
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is the controllability Gramian of (3.16). Then an iteration similar to that described in

Section 3.1 is formulated as follows. Substituting an initial nominal trajectory Y0(t) into

(3.17) results in the minimum norm input U0 = B′(Y0(t))Φ
′(0, t)[WY0(0, T )]−1ξ. Applying

U0 to (3.16) and using the variation of parameters formula yields

X(t) = Φ(t, 0)

(
X0 +

∫ t

0

Φ(0, σ)B(Y0(σ))U∗
0 (σ)dσ

)

= Φ(t, 0)

(
X0 +

∫ t

0

Φ(0, σ)B(Y0(σ))B′(Y0(t))Φ
′(0, t)[WY0(0, T )]−1ξdσ

)

= Φ(t, 0)
(
X0 +WY0(0, t)[WY0(0, T )]−1ξ

)
. (3.19)

The next trajectory iterate is obtained from (3.19), and is given by Y1(t) = Φ(t, 0)(X0 +

WY0(0, t)[WY0(0, T )]−1ξ). Successively generating the control (3.17) and trajectory (3.19)

results in a fixed point iteration Yk+1(t) = T [Yk](t) for the trajectory, where T : HS → HS

is an operator defined by

T [Y ](t) = Φ(t, 0)(X0 +WY (0, t)[WY (0, T )]−1ξ). (3.20)

We are interested in the conditions under which the sequence Yk converges to the trajectory

Y ∗ that corresponds to the minimum norm input U∗, which transfers (3.12) from X(0) = X0

to X(T ) = XF . For two distinct trajectories X1, X2 ∈ HS, we can write

T [X1](t) − T [X2](t) = Φ(t, 0)(WX1
(0, t)[WX1

(0, T )]−1 −WX2
(0, t)[WX2

(0, T )]−1)ξ, (3.21)

so that

||T [X1](t) − T [X2](t)||2 ≤ ||ξ||2 · ||Φ(t, 0)||2 · ||K(X1, X2, t)||2, (3.22)

where we define

K(X1, X2, t) = WX1
(0, t)[WX1

(0, T )]−1 −WX2
(0, t)[WX2

(0, T )]−1, (3.23)

and where ||A||2 , sup||x||2=1 ||Ax||2 denotes the matrix 2-norm. Observe that the matrix

K satisfies ||K(X, Y, t)||2 = ||K(aX, bY, t)||2 for any a 6= 0 and b 6= 0. As a result, the

convergence properties of the fixed-point operator 3.20 will be independent of the magnitude

of of trajectories, but rather will depend on their location on the unit n-ball. Consequently,
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this approach is especially well suited for bilinear systems with unitary evolution, such as the

Bloch system (3.9), for which the dynamics (3.12) will satisfy A(t) = −A′(t) and Hi(t) =

−H ′
i(t). Furthermore, note that the technique for ensemble control synthesis for bilinear

systems that is formulated in Section 3.1 is a discretized application of the iteration (3.20),

where the minimum norm input (3.17) is replaced with the SVD-based method of Section 2.2.

Nevertheless, the convergence properties of this approach remain a challenging open problem.

Finally, note that iterative techniques exist for feedback control design for finite-time, free

endpoint problems with quadratic cost functionals and bilinear dynamic constraints [2]. The

local convergence of this approach has been demonstrated [100], but because these techniques

are based on iterative solution to Riccati-type equations, the convergence is highly sensitive

to the initial guess, and is not scalable beyond low-dimensional systems due to numerical

conditioning issues.

3.4 Bloch System with Constrained Control Ampli-

tude

The iterative control synthesis approach in Section 3.1 can be modified to accommodate

constraints on the control amplitude by substituting the minimum-norm synthesis step that

uses the method in Section 2.2 with the constrained minimum-norm synthesis method de-

scribed in Section 2.4. The resulting nested iteration technique yields constrained ensemble

controls for bilinear systems, as shown in Figure 3.5 for the Bloch system example of Section

3.2.1. Due to the additional constraints, the iteration may be less stable, so that a regulariz-

ing modification can prevent cycling of the solution and expedite convergence. Specifically,

Mann’s iteration method [150] can be used to produce a recursion of the form

X̂α+1 = (1 − cn)X̂α + cnT̂ [X̂α](t), (3.24)

where cn ∈ (0, 1) and T̂ denotes one step of the iterative method in Section 3.1. Mann’s algo-

rithm was shown to converge weakly to fixed points of nonexpansive mappings if
∑∞

n=0 cn(1−
cn) = ∞ holds [229]. Employing Mann’s algorithm effectively slows changes between succes-

sive iterations of the method of Section 3.1 that may arise from the addition of constraints. In

the implementation used here, the coefficients cn are chosen adaptively to prevent dramatic

changes between iterations, while also avoiding stalling.
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Figure 3.5: Ensemble controls u for the Bloch system with ω ∈ [−1, 1], ε ≡ 1, to be steered from
X0 = (0, 0, 1)′ to XF = (1, 0, 0)′ in T = 3, generated using N = 20000 and P = 20. (a) Trajectories
obtained by applying (b) the unconstrained ensemble control with ||u||T = 4.604 found after 29 iterations
of the method in Section 3.1, with (c) terminal error on the order of 10−3. (d) Trajectories with (e) the
control constrained at |u| ≤ 6, which is obtained after 86 iterations of the method in Section 3.4 and has
||u||T = 5.016, with (f) terminal error also on the order of 10−3.
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Chapter 4

Phase Models for Nonlinear

Oscillators

Nonlinear oscillating systems are often studied by transforming the complex dynamic equa-

tions that describe their behavior into a phase coordinate representation [58, 210]. This

approach, which yields simplified yet accurate models that capture essential overall prop-

erties of an oscillating system with a stable periodic orbit, was first used to examine in-

teractions among rhythmic biological systems [28, 227, 228]. The classic phase coordinate

transformation of nonlinear oscillators [149] was combined with formal averaging [127] and

additional simplifications to develop the well-known Kuramoto model of coupled chemical

oscillations [131]. This model reduction technique has subsequently been extensively ap-

plied, with a particular focus on neural [58, 105] and electrochemical [131, 121, 163] systems.

Phase models are also widely used in physics, chemistry, and biology [178] to study systems

where the phase, but not the state, can be observed, and where PRC can be approximated

experimentally when the dynamics are unknown [71, 217, 122].

The reduction of a system model from a complicated set of differential equations to a sim-

ple scalar phase coordinate representation is especially compelling from a control-theoretic

perspective because it enables a corresponding reduction in the complexity of optimal con-

trol problems involving that system. Optimal control of phase models has been investigated

with various objectives, such as to alter the spiking of a single neuron using minimum energy

inputs [157] with constrained amplitude [46, 45] and charge balancing [42, 44], as well as to

control a network of globally coupled neurons [161]. Several studies have focused on optimal

waveforms for entrainment using basic models [195, 95], and recent work has resulted in op-

timal entrainment controls for general nonlinear oscillators that require no knowledge about
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the initial state or phase of the system [236], and can account for uncertainty in oscillation

frequency [238]. These investigations have demonstrated that phase coordinate reduction

provides a practical approach to the optimal control of complex oscillating systems.

This chapter contains a detailed derivation of the phase coordinate transformation for nonlin-

ear oscillating systems. A fundamental and mathematically rigorous examination of phase

reduction provides insight into the application of phase representations for modeling and

control of real dynamical systems, and also leads to a straightforward numerical algorithm

for computing the PRC. Phase reductions of several complex models of neuronal dynam-

ics, including bursting neurons, are examined. A description of an experimental procedure

for obtaining a phase model for the unknown dynamics of a periodic system from limited

state observations is also provided. This method has been successfully applied in model

identification for electrochemical oscillating systems in a laboratory setting.

4.1 Phase Model Reduction

Consider a full state-space model of an oscillating system, which is described by a smooth

ordinary differential equation system of the form

ẋ = f(x, u), x(0) = x0, t ∈ [0,∞) (4.1)

where x(t) ∈ R
n is the state and u(t) ∈ R

m is a control. Suppose further that (4.1) has

an attractive, non-constant limit cycle γ(t) = γ(t + T ), which satisfies γ̇ = f(γ, 0), on the

periodic orbit Γ = {y ∈ R
n : y = γ(t), 0 ≤ t < T} ⊂ R

n. In order to study the behavior of

the system (4.1), its dynamics are reduced to a scalar equation

ψ̇ = ω + Z(ψ)u, (4.2)

which is called a phase model, where ω is the natural frequency of oscillation, Z is the phase

response curve (PRC) and ψ(t) is the phase associated to the isochron on which x(t) is

located. An isochron is the manifold in R
n on which all points have asymptotic phase ψ(t) [26,

172]. The key idea of the transformation is that the phase ψ increases linearly with time on

the limit cycle at the rate ω, as seen in Figures 4.1(a) and 4.1(b). The PRC, also referred to as

the infinitesimal PRC or iPRC, quantifies the asymptotic phase shift due to an infinitesimal
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(a) Limit cycle (b) Transformation to S1 (c) Perturbation and phase shift

Figure 4.1: (a) Locations of oscillator on the limit cycle at equally spaced time intervals. (b) Topological
transformation of the limit cycle onto a circle. (c) Illustration of the phase shift that occurs due to a
perturbation of the system by an input pulse.

perturbation in the state applied at a given phase on the limit cycle, as illustrated in Figure

4.1(c). It is standard practice to define ψ(t) = 0 (mod 2π) when a designated variable in

the state vector x attains its maximum over the orbit Γ. This is due to the significant role

of mathematical neuroscience in the development of phase model theory. For biophysical

models of cellular neuron oscillators, the first state variable often denotes the membrane

potential, which exhibits spiking or relaxation behavior, so that ψ(t) = 2πk for k = 1, 2, . . .

occur concurrently with successive spikes. The conditions for validity and accuracy of phase

reduced models have been determined [56, 55], and the reduction is accomplished through

the well-studied process of phase coordinate transformation [57], which is based on Floquet

theory [176, 113]. The model is assumed valid for inputs u(t) such that the solution x(t, x0, u)

to (4.1) remains within a neighborhood U of Γ.

4.1.1 Phase Coordinate Transformation

The following is a basic summary of the technique for phase coordinate transformation, which

is derived from the method of Malkin [149]. This derivation leads to a straightforward method

for numerical computation of phase response curves, which is subsequently implemented to

automatically compute phase models for parameter-dependent nonlinear oscillating control

systems for numerous parameter sets. A collection of theorems regarding existence, accuracy,

and validity of phase-reduced models has recently been compiled [55].
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Recall the oscillating system (4.1) with a limit cycle γ(t) = γ(t + T ) on the periodic orbit

Γ. A bijection can be defined between Γ and the circle S1, which is homeomorphic to the

interval [0, 2π), hence any point x ∈ Γ can be associated with a scalar phase φ ∈ [0, 2π) by

the transformation α : Γ → [0, 2π) with action α(x) = φ. The key idea is to choose the map

α such that the phase is proportional to time on the the limit cycle, i.e., φ(t) = ωt, where

ω = 2π/T is the natural frequency of the oscillation. This requirement can be expressed as

α−1(φ) = γ(φ/ω) or as γ(t) = α−1(2πt/T ).

Denote by x(t, x0, u) the solution at time t to ẋ = f(x, u) for a control input u(t) and

an initial condition x(0) = x0. This results in γ(t) = x(t, α−1(0), 0), so that if x(0) =

x0 ∈ Γ then x(t, x0, 0) = γ(t + α(x0)/ω). It is then possible to define the phase variable

φ : [0,∞) → [0, 2π) corresponding to the trajectory x(t, x0, 0) with specific initial condition

x0 ∈ Γ by φ(t) = α(x(t, x0, 0)) = α(γ(t + α(x0)/ω)). Because γ(t) is periodic, then φ(t) is

periodic, and the given choice of α results in an affine system φ(t) = ωt + α(x0), so that

φ̇(t) = ω. Given a specific x0 ∈ Γ, one can define γ(0) = x0, so that α(x0) = α(γ(0)) = 0.

Next, denote by A = {y ∈ R
n : limt→∞ x(t, y, 0) ∈ Γ} ⊂ R

n the set attracted by the pe-

riodic orbit Γ, so if x0 ∈ A then x(t, x0, 0) ∈ A for t ≥ 0. This allows the transformation

α to be extended to solutions x(t, x0, 0) with x0 ∈ A, by implicitly defining an asymp-

totic phase map υ : A → [0, 2π) by limt→∞ ‖x(t, x0, 0) − γ(t + υ(x0)/ω)‖ = 0. In the case

that x0 ∈ Γ, then ‖x(t, x0, 0) − γ(t + α(x0)/ω)‖ = 0 for all t ≥ 0 as described above, so

that υ(x0) = α(x0). This leads to a natural definition of the asymptotic phase variable

ψ : [0,∞) → [0, 2π) by ψ(t) = υ(x(t, x0, 0)) for t ≥ 0, which is defined for x0 ∈ A. Therefore

if x1, x2 ∈ A satisfy υ(x1) = υ(x2), then υ(x(t, x1, 0)) = υ(x(t, x2, 0)) for all t ≥ 0. This

induces an equivalence class on A with equivalence x1 ∼ x2 if υ(x1) = υ(x2), which results

in class elements [x0] in the quotient space (A/ ∼) = Γ, so that υ(x0) = α([x0]). The class

element [x0] is commonly referred to as the isochron corresponding to the phase α([x0]).

This equivalence implies that the asymptotic phase is proportional to time for any trajectory

x(t, x0, 0) ∈ A. Let x1 ∈ A satisfy x1 ∈ [x0] for x0 ∈ Γ, so that υ(x1) = υ(x0). Then ψ(t) =

υ(x(t, x1, 0)) = υ(x(t, x0, 0)) = α(x(t, x0, 0)) = φ(t) = ωt+α(x0) = ωt+ υ(x0) = ωt+ υ(x1).

It follows that the asymptotic phase satisfies ψ̇(t) = ω, as desired. In addition, for any

x1 ∈ A one can define γ(0) = [x1] ∈ Γ so that υ(x1) = α([x1]) = α(γ(0)) = 0. The following
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diagram displays the relevant mappings and spaces:

t ∈ [0, T )

γ

��

α ◦ γ
// ψ(t) ∈ [0, 2π)

γ(t) ∈ Γ

α

77
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

x(t) ∈ A

υ

OO

α−1 ◦ υ
oo

(4.3)

Finally, the notion of asymptotic phase can be simply extended to the case when u(t) 6= 0,

provided that x(t, x0, u) ∈ A for t ≥ 0. One can define a new asymptotic phase map

ν : A → [0, 2π) that acts by ψ(t) = ν(x(t, x0, u)) = υ(x(t, x0, u)) = α([x(t, x0, u)]), so that

ψ(t) at a time t ≥ 0 evaluates the phase corresponding to the isochron [x(t, x0, u)].

4.1.2 Infinitesimal Phase Response

It is possible to use a linearization of the system ẋ = f(x, u) about its limit cycle γ(t)

to obtain the ODE for the asymptotic phase variable ψ(t) given infinitesimal inputs u(t).

Define the perturbation variable ∆x(t) = x(t) − γ(t), so that the linearization about γ is

∆ẋ(t) = A(t)∆ẋ(t) + b(t)u where

A(t) =
∂

∂x
f(x, 0)

∣∣∣
x=γ(t)

and b(t) =
∂

∂u
f(γ(t), u)

∣∣∣
u=0

. (4.4)

Note that A(t) and b(t) are T -periodic because they depend on γ(t), hence we can apply

Floquet theory to the linearized system [176]. Consider a transition matrix Φ(t) that satisfies

Φ̇(t) = A(t)Φ(t) with Φ(0) = I, and its adjoint Ψ̇(t) = −A†(t)Ψ(t) with Ψ(0) = I, where

† denotes the Hermitian transpose. Recall that Ψ†(t)Φ(t) = Ψ†(0)Φ(0) ≡ I, and that

y(t) = Φ(t)y(0) if ẏ(t) = A(t)y(t). Recall also Floquet’s theorem [113], which states that

because A(t) is a continuous, T -periodic matrix, then for all t ∈ R any fundamental matrix

solution Φ(t) for ẋ = A(t)x can be written in the form Φ(t) = Q(t)eBt where Q(t) is a

nonsingular, differentiable, T -periodic matrix and B is a constant matrix. Observe that

Q(0) = I holds due to Φ(0) = I.
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Define the monodromy matrix M(t) = Φ(t+ T )Ψ†(t), which is the linearized return map of

the dynamical system. Applying Floquet’s theorem yields

M(t) = Φ(t + T )Ψ†(t) = Φ(t+ T )Φ−1(t)

= Q(t + T )eB(t+T )e−BtQ−1(t) = Q(t)eBTQ−1(t). (4.5)

Therefore M(t) is T -periodic and isospectral, because M(t) is similar to the constant matrix

M(0) = eBT . The eigenvalues λi of M(t) are the Floquet multipliers of the linearization,

each of which corresponds to an eigenvalue ρi of B, called characteristic exponents, where

λi = eρiT . One of the Floquet multipliers is always 1, and by the stable manifold theorem

the other n− 1 multipliers are less than 1 [176].

In the case u(t) = 0, the limit cycle satisfies γ̇(t) = f(γ(t), 0), so that γ̈(t) = A(t)γ̇(t) and

hence γ̇(t) = Φ(t)γ̇(0). In particular,

γ̇(t) = γ̇(t+ T ) = Φ(t + T )γ̇(0)

= Φ(t + T )Φ−1(t)γ̇(t) = M(t)γ̇(t), (4.6)

hence γ̇(t) = f(γ(t), 0) is the unique eigenvector of M(t) corresponding to the Floquet

multiplier λ = 1, which has algebraic multiplicity of 1. Let m(t) ∈ R
n be the unique

eigenvector of M †(t) corresponding the eigenvalue λ = 1, so that M †(t)m(t) = m(t), and

scaled such that m†(t)γ̇(t) = ω. It follows that m†(t)f(γ(t), 0) = m†(t)γ̇(t) = ω.

Recall that the mapping ν acts by ψ(t) = ν(x(t, x0, u)), and which if chosen properly results

in ψ̇(t) = ω when u = 0. Then for x0 ∈ Γ,

m†(t)f(γ(t), 0) = ω = ψ̇ =
d

dt
ν(x(t, x0, 0))

=
∂

∂x
ν(x)

∣∣∣
x=γ(t)

· γ̇(t) =
∂

∂x
ν(x)

∣∣∣
x=γ(t)

· f(γ(t), 0) (4.7)

We may therefore infer that m†(t) = ∂
∂x
ν(x)

∣∣
x=γ(t)

, and deduce that m(t) is T -periodic

because γ(t) is. When u(t) 6= 0, the linearized trajectory satisfies

ψ̇(t) =
∂

∂x
ν(x)

∣∣∣
x=γ(t)+∆x(t)

· ẋ(t)

=
∂

∂x
ν(x)

∣∣∣
x=γ(t)+∆x(t)

· (f(γ(t), 0) + A(t)∆x(t) + b(t)u). (4.8)
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The infinitesimal PRC is obtained by setting the perturbation to ∆x(t) = 0, so that ψ̇(t) =

ω + m†(t)b(t)u. Now when ∆x(t) = 0 holds then x(t) = γ(t) does as well, in which case

ψ(t) = ωt as shown above, so setting t = ψ(t)/ω results in m†(t)b(t) = m†(ψ/ω)b(ψ/ω).

Consequently, the phase reduction of this linear system yields ψ̇(t) = ω + Z(ψ)u, where

Z(ψ) = m†(ψ/ω)b(ψ/ω) is the PRC.

Finally, observe that differentiating both sides of the equation m†(t)γ̇(t) = ω results in

ṁ†(t)γ̇(t) +m†(t)γ̈(t) = ṁ†(t)γ̇(t) +m†(t)A(t)γ̇(t) = 0, hence

ṁ(t) = −A†(t)m(t). (4.9)

Integrating both sides of the same expression results in

∫ T

0

m†(t)γ̇(t)dt =

∫ T

0

ωdt = 2π. (4.10)

Practical details involved in computing the PRC are discussed in the following section.

4.2 Computation of Phase Response Curves

One possible approach to obtaining the PRC is to integrate (4.9) and normalize the result

according to (4.10), as previously suggested [58]. An alternative is to use optimization

on a spectral representation of the PRC [82]. A software package called XPPAUT [59] is

commonly used by researchers to perform the computation. In the technique described below,

the PRC at each phase value is obtained directly from the eigenvector of the monodromy

matrix. This approach is similar to computation of the perturbation projection vector (PPV)

for noisy circuit elements [48].

First, the period T = 2π/ω and the limit cycle γ(t) must be approximated to a high degree of

accuracy. This can be done using a method for determining the steady-state response of non-

linear oscillators [6], which is based on perturbation theory [114] and gradient optimization

[175]. Observe first that

x(t, x0, 0) =

∫ T

0

f(x(τ, x0, 0), 0)dτ + x0, (4.11)
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and define an operator K : Rn+1 → R
n by

K(y, T ) :=

∫ T

0

f(x(τ, y, 0), 0)dτ + y, (4.12)

so that y and T satisfy K(y, T ) = y only if y ∈ Γ and T is a multiple of the period of

oscillation. The relation K(y, T ) = y provides n equations for n+ 1 unknown variables, but

because γ(t) traverses a range of values on Γ, the first coordinate y1 of y = (y1, . . . , yn)′ lies

in a broad range. Hence y1 can be fixed at any point in this range. Therefore defining the

operator H : Rn → R
n by H(v) = y−K(y, T ) where v = (T, y2, . . . , yn) and setting H(v) = 0

provides n equations in n unknowns. A gradient optimization method is used compute a

solution v∗ up to the required tolerance. Recall that a standard result on perturbation of

initial conditions yields ∂
∂y
x(t, y, 0) = Φ(t, 0; y) [114], where Φ(t, 0; y) is the transition matrix

of the linearization about x(t, y, 0). Therefore the Jacobian of the operator H is given by

∂H

∂y
=

∂

∂y
[y −K(y, T )] = I − ∂

∂y
x(T, y, 0) = I − Φ(T, 0; y). (4.13)

Additionally,

∂H

∂T
=

∂

∂T
[y −K(y, T )] = −f(x(T, y, 0), 0), (4.14)

therefore the Jacobian DH(v) = ∂H/∂v of the operator H is

∂H

∂v
=

[
−f(x(T, y, 0), 0); [I − Φ(T, 0; y)]2; . . . ; [I − Φ(T, 0; y)]n

]
(4.15)

where [I − Φ(T, 0; y)]k is the kth column of [I − Φ(T, 0; y)]. The following algorithm can be

used to compute T and Γ:

Algorithm 2: Computation of Limit Cycles.

1. Select y1 in the valid range of the steady state solution, and make an initial guess

v(0) = (T (0), y
(0)
2 , . . . , y

(0)
n ) ∈ R

n. The first coordinate of y(k) is always y1. Select a

tolerance ε.

2. For each step k, evaluate H(v(k)) = y(k) − K(y(k), T (k)) and compute the derivative

DH(v(k)) as in (4.15). Apply a gradient optimization step, such as Newton-Raphson,

v(k+1) = v(k) − (DH(v(k)))−1H(v(k)).
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3. If ‖v(k+1) −H(v(k+1))‖ > ε go to Step 1.

4. Set T ∗ = v
(k+1)
1 and y∗ = (y1, v

(k+1)
2 , . . . , v

(k+1)
n ). A limit cycle is given by γ(t) =

x(t, y∗, 0) for t ∈ [0, T ∗).

Once the limit cycle and period are computed, the PRC can be obtained as follows.

Algorithm 3: Computation of Phase Response Curve.

1. For each ψ ∈ [0, 2π), let xψ = α−1(ψ) = γ(ψ/ω), and compute x(t, xψ, 0) using ẋ(t) =

f(x(t), 0) for x(0) = xψ.

2. Let Aψ(t) be the linearization of f(x(t), 0) about γψ(t) = γ(t+ψ/ω), so that γψ(0) = xψ.

Compute Φψ(T ) where Φ̇ψ(t) = Aψ(t)Φψ(t) with Φψ(0) = I.

3. Set Mψ = Φψ(T ), and compute the eigenvector µψ of M †
ψ.

4. Let mψ = ω(µ†
ψf(xψ, 0))−1 · µψ, and finally Z(ψ) = m†

ψb(ψ/ω).

5. Verify computation using (4.10).

4.3 Examples of Phase Reduction

Algorithm 3 can be applied to compute the PRC for any oscillating system as described in

Section 4.1. The present modeling and control approach has been developed to be universally

applicable to arbitrary oscillating systems. However, the majority of the exploratory numer-

ical work is conducted using the Hodgkin-Huxley system [99], which is a canonical model of

complex nonlinear oscillatory behavior in neuroscience. The techniques have been verified

for several models of complex dynamics found in neuron and electrochemical systems, as

summarized below.

4.3.1 Phase Reduction of Neuron Models

Biophysical modeling of neuronal dynamics has a long history, and has yielded many models

of the rich dynamical behavior that arises in neuronal systems at the cellular level [99, 159].
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Figure 4.2: (a) Hodgkin-Huxley phase response curve (PRC). The natural period and frequency of oscil-
lation are T ≈ 14.638 ms and ω ≈ 0.4292 rad/ms , respectively. (b) Hodgkin-Huxley voltage limit cycles,
which exhibit relaxation oscillation that is referred to as “spiking” behavior. The phase ψ = 0 corresponds
to “spikes”, or maxima, of this membrane potential. (c) Hodgkin-Huxley ion concentration limit cycles. (d)
Morris-Lecar PRC. The natural period and frequency of oscillation are T ≈ 22.1981 ms and ω ≈ 0.2831
rad/ms, respectively. (e) Morris-Lecar voltage limit cycles, which exhibit “spiking” similar to the Hodgkin-
Huxley model. (f) Morris-Lecar ion concentration limit cycles.

In particular, voltage gated conductance-based models for Beta synchrony in the subthalamic

nucleus (STN) are of significant interest [51, 34, 207], in particular for understanding burst

suppression phenomena [170]. Significant effort has recently been applied to develop highly

detailed biophysical models of Beta oscillations in the STN and basal ganglia [153, 188,

216]. Control methodologies that are enabled by the simplification of such models to phase

coordinates will provide a means for neuroscientists and medical technologists to leverage

these developments to develop and optimize clinical modalities [80, 117, 34].

Two voltage-gated conductance (VGC) models are considered here, specifically the Hodgkin-

Huxley model [99] and the Morris-Lecar model [159], which are described in detail in Ap-

pendices A.1 and A.2. The phase reductions of these systems are shown in Figure 4.2. In the

computational neuroscience community, a neuron model with a PRC that is strictly positive

is referred to as a Type I neuron. This category, for which positive stimuli can only advance

the phase on the limit cycle, includes the Morris-Lecar model as seen in Figure 4.2(d). If
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Figure 4.3: (a) Hindmarsh-Rose PRC. The natural period and frequency of oscillation are T ≈ 430.7756
and ω ≈ 0.0146 non-dimensionalized units, respectively. (b) Hindmarsh-Rose potential limit cycles, which
exhibit intermittent relaxation oscillations referred to as “bursting”. (c) Hindmarsh-Rose fast variable limit
cycles. (d) Hindmarsh-Rose slow variable limit cycles. The phase ψ = 0 corresponds to the point at which
the slow variable attains its maximum.

the PRC is both positive and negative on significant portions of the limit cycle, the model

is referred to as a Type II neuron. The Hodgkin-Huxley model, whose phase can be delayed

or advanced by positive stimuli depending on the position on the limit cycle, is a Type II

neuron, as shown in Figure 4.2(a).

In addition to VGC models, the phase coordinate transformation can also be applied to more

complex systems that exhibit bursting behavior. Neurons do not exhibit constant oscillation,

but rather are induced to produce bursts of oscillatory activity. Understanding and modeling

this phenomenon is crucial to developing the ability to control local field potentials in neural

tissues, and is consequently of significant interest to neuroscientists [49, 111, 133]. Such

phenomena also appear under certain conditions in electrochemical systems [171]. A widely-

studied example is the Hindmarsh-Rose model [98], which is described in Appendix A.3.

The complex limit cycle, seen in Figures 4.3(b) to 4.3(d), result in a highly complex PRC

for the system, which is shown in Figure 4.3(a). This computation of the Hindmarsh-Rose
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Figure 4.4: (a) Haim-Lev phase response curve (PRC). The natural period and frequency of oscillation
are T ≈ 13.8464 and ω ≈ 0.4538 nondimensionalized units, respectively. The domain is ψ ∈ [0, 2π]. (b)
Haim-Lev potential limit cycles, which exhibit mild relaxation oscillation. The phase ψ = 0 corresponds to
maxima of the potential variable E. (c) Haim-Lev chemical concentration limit cycles. (d) Increasing the
baseline potential to V0 = 20 increases the complexity in the PRC, and greater relaxation behavior in the
limit cycle, as seen in (e) and (f).

PRC confirms previous results [199], which were found using an alternate implementation

[82].

4.3.2 Phase Reduction of Haim-Lev Electrochemical System

Phase response curves are also important for modeling oscillatory phenomena in electrochem-

ical systems. The control methodologies derived here have been applied to an experimental

apparatus for studying the electrodissolution of nickel in sulfuric acid, whose dynamics can

be approximated by the Haim-Lev (HL) system given in Appendix A.4. The PRC of the

Haim-Lev system is shown in Figure 4.4(a), while the limit cycles of the potential and chem-

ical concentration variables are shown in Figures 4.4(b) and 4.4(c). Observe that increasing

the baseline electrode potential V0 from 15 to 20 results in a qualitative change in the phase

response, as seen in Figure 4.4(d).
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Figure 4.5: (a) Simulation of estimation of the PRC of the Haim-Lev electrochemical oscillator model
using the model identification technique in Section 4.4. The dots are obtained using (4.18) and (4.19) on
postprocessing of an input pulse train with M = 20, ∆t = 0.02, sampling frequency fs = 400, 200 pulses,
and a relaxation time of N = 3 periods. A Fourier series fit using order 5 is shown in black, compared to the
infinitesimal PRC in blue. (b) The same simulation for the Hodgkin-Huxley neuron model, with M = 10
and a Fourier series fit of order 8.

4.4 Model Identification for Oscillating Systems

In addition to its utility as a model reduction tool that facilitates analysis and control

design for complex oscillating systems, the phase model framework provides a very general

method for model identification of such systems for which the dynamics are unknown. Several

approaches have been used to estimate the PRC in real oscillating systems subject to noise

and disturbances [71, 165, 122]. In this section, a straightforward method for approximating

the PRC of noisy oscillators is presented. In particular, this approach does not require online

state observations or feedback, but rather relies on post-processing of a pseudo-random input

sequence and the observed output.

Suppose that a brief, strong pulse of duration ∆t and magnitude M is applied to an oscillator

at time t0, when the phase is ψ(t0). Specifically, suppose u(t) = M for t ∈ [t0, t0 + ∆t], and

u(t) = 0 elsewhere. Let ψ1(t0 + NT ) and ψ0(t0 + NT ) represent the phase value N natural

periods after the pulse is applied, and in the absence of a pulse, respectively. Because Γ is

strongly attractive, the system will relax back to the periodic orbit several cycles after the

pulse is applied. Assuming that the pulse duration ∆t is brief, Z(ψ(t)) is approximately
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Figure 4.6: Engineered experimental system for phase model based control of electrochemical oscillations.
(a) Schematic of experimental setup. (b) Typical PRC and waveform (inset) of the electrochemical oscillator
[95] for relaxation oscillations occurring at V = 1.200V , Rext = 1kΩ, computed using a method that requires
feedback [122]. (c) PRCs of an array of 79 electrochemical oscillators that were computed simultaneously
using the method in Section 4.4. The frequencies are approximately uniformly distributed between 0.4 and
0.46 Hz.

constant on t ∈ [t0, t0 + ∆t], so that integrating (4.2) results in

ψ0(t0 +NT ) = ωNT + ψ(t0), (4.16)

ψ1(t0 +NT ) = ωNT + ψ(t0) +

∫ t0+∆t

t0

Z(ψ(t))Mdt

≈ ωNT + ψ(t0) + Z(ψ(t0))M∆t. (4.17)

Subtracting (4.16) from (4.17) and solving for Z(ψ(t0)) results in

Z(ψ(t0)) =
ψ1(t0 +NT ) − ψ0(t0 +NT )

M∆t
(4.18)

The phase difference ψ1(t0 +NT ) − ψ0(t0 +NT ) can be approximated using a linear inter-

polation technique [178]. If y(t) is the observed oscillator output, let T−1 and TN denote

the latest time at which y(t) reaches a peak before time t0, and the time when y(t) reaches

the N th peak after the pulse is applied. Recall that phase is linearly proportional to time,

so that for two time points t1, t2 ∈ [0, T ) the transformations in the diagram (4.3) satisfy

(α ◦ γ)(t1 − t2) = (α ◦ γ)(t1) − (α ◦ γ)(t2). As a result, the linear interpolation yields

ψ1(t0 +NT ) − ψ0(t0 +NT ) ≈ (α ◦ γ)(TN − T−1) − (α ◦ γ)((N + 1)T )

= 2π · (TN − T−1) − (N + 1)T

T
, (4.19)
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Figure 4.7: (a) Input pulse sequence (green) and observed current (blue) of electrochemical apparatus.
Baseline potentiostat voltage is set at V0 = 1.1, pulses have amplitude M = .2 Volts and width ∆t = 0.05
seconds, and a sample rate fs = 1000 is used for measurement. (b) The PRC obtained using the model
identification method in Section 4.4. Period of oscillation is T ≈ 2.62 sec. (c) Common input and observed
current of two oscillators. Here V0 = 1.2, M = −.2 Volts, and sample rate fs = 200. (d) The estimated
PRCs of two oscillators with similar PRC but different periods of T1 = 2.385 and T2 = 2.480.

after sufficiently many, i.e., N , cycles have passed. Therefore, a sequence of pulses at intervals

of T (N + rj), where r ∈ (0, 1) is pseudo-random, can be applied to an oscillator, and the

peak times and pulse times can be used in a postprocessing step to create a plot of Z(ψ) vs.

ψ, which can be fitted using a Fourier series to estimate the PRC.

The above method for phase model identification can be simulated numerically. Figure 4.5

shows the results of such simulations for the Hodgkin-Huxley and Haim-Lev systems, which

are described in Appendices A.1 and A.4, respectively. Each data point is the phase shift

measured due to an applied pulse, and these points are fitted to a Fourier series, which is

compared to the infinitesimal PRC computed using Algorithm 3.

The true advantage of the phase modeling technique for oscillating systems lies in the ability

to estimate the phase dynamics of form (4.2). This technique was first validated through

numerical simulation as described above, and was subsequently applied to estimate phase

models in electrochemical oscillating systems, of which a description can be found in Ap-

pendix A.4. A schematic of the experimental apparatus, as well as an example PRC and

limit cycle, are shown in Figure 4.6. Examples of input pulses and measured current output
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in the apparatus are shown in Figure 4.7. One important advantage of this approach is to

enable the concurrent identification of the PRCs for a large ensemble of rhythmic systems

with simultaneously measurable output. The same pseudo-random pulse input sequence can

be applied to the entire ensemble, and the recorded output measurement signal for each os-

cillator can then subsequently be processed off-line to produce a collection of phase models,

as illustrated in Figure 4.6(c).
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Chapter 5

Optimal Entrainment of Nonlinear

Oscillators

The process of entrainment, which refers to the dynamic synchronization of an oscillating

system to a periodic input, is significant in biology [93, 60, 77, 83], with particular relevance

in neuroscience [49, 20, 201], and is also observed in reactive chemical systems [131, 8, 136].

The notion of entrainment is paramount for understanding rhythmic systems, as well as

for controlling such systems in an optimal manner [84, 95]. Optimization of this process

can significantly improve stimulation techniques in applications involving synchronization or

desynchronization of neural systems, such as deep brain stimulation (DBS) [213, 214]. The

periodic input can be adjusted to optimize an objective for a specific entrainment feature,

such as the rate of entrainment [84], circadian phase resetting [10, 68], and maximum energy

transfer between the input and the system [76]. Optimal entrainment also has compelling

applications in clinical medicine, such as protocols for coping with jet lag [224, 202], clinical

treatments for neurological disorders including epilepsy [118, 80], Parkinson’s disease [101],

and tinnitus [209], and optimization of cardiac pacemakers [164]. Techniques for controlling

the entrainment process can also be used in the design of vibrating mechanical structures

[22, 230] and nanoscale electromechanical devices [64, 13] that require frequency control or

phase locking, and can enable transformational technologies such as neurocomputers [107]

and chaos communication [66]. Various phenomena such as noise-induced synchronization

[225], time-scales in synchronization and network dynamics [32, 31], and transient phenomena

[84, 235] have been examined.
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The entrainment, and hence frequency control, of an oscillating system can be examined by

considering its phase response curve (PRC) [110, 109], which quantifies the shift in asymp-

totic phase due to an infinitesimal perturbation in the state. Phase models have become

indispensable in physics, chemistry, and biology for studying oscillating systems where the

full state-space model is complicated or even unknown, but where the phase can be esti-

mated from partial state observations, and the PRC can be approximated experimentally

[178]. They have been successfully applied to investigate many synchronization phenomena

[210], focusing on synchronization emerging in networks of interacting oscillators and on the

response of large collections of oscillators to periodic external stimuli [186, 103]. Such models

have long been of interest to neuroscientists [179, 58], for whom the intrinsic occurrence and

extrinsic imposition of entrainment in networked oscillators is of particular interest [20, 201].

Several studies have been motivated by the prospect of using dynamical systems theory to

improve the effectiveness of DBS as a clinical therapy for epilepsy and Parkinson’s disease

[214, 177, 80]. Concurrently, others have concentrated on the use of phase models in order to

attain desired design objectives for electrochemical [121, 163] and neural [105, 108] systems,

including recent work that approaches the use of phase models in neuroscience from a control

theoretic perspective [221, 160]. The control of neural spiking using minimum energy inputs

with constrained amplitude and charge balancing has also recently been examined [46, 47].

These studies have demonstrated that phase-model reduction provides a practical approach

to synthesizing near-optimal controls that achieve design goals for oscillating neural systems.

5.1 Theory of Entrainment by Weak Forcing

An essential objective in all entrainment applications is to force the frequency of an oscillator

to a desired value. While this can be accomplished using any sufficiently powerful rhythmic

signal, it is often desirable to do so using an input that consumes minimum energy, or satisfies

another optimization objective. The theory of entrainment by weak forcing is described in

this section.

Our goal is to entrain the system (4.2) to a target frequency Ω using a periodic forcing control

u(t) of the same frequency, so that the control input has the form u(t) = v(Ωt), where v is

2π-periodic. The weak forcing assumption is adopted, i.e., v = εv1 where v1 has unit energy

and ε << 1, so that given this control the state of the original system (4.1) is guaranteed
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to remain in a neighborhood U of Γ in which the phase model (4.2) remains valid [56]. We

then define a slow phase variable by φ(t) = ψ(t) − Ωt, and call the difference ∆ω = ω − Ω

between the natural and target frequencies the frequency detuning. The dynamic equation

for the slow phase is then

φ̇ = ψ̇ − Ω = ∆ω + Z(Ωt + φ)v(Ωt), (5.1)

where φ̇ is called the phase drift. In order to study the asymptotic behavior of (5.1) it is neces-

sary to eliminate the explicit dependence on time on the right hand side, which can be accom-

plished by using formal averaging [131]. Be denoting P = {x : R → R : x(θ) = x(θ + 2π)}
as the set of 2π-periodic functions on R, we can define an averaging operator 〈·〉 : P → R by

〈x〉 =
1

2π

∫ 2π

0

x(θ)dθ. (5.2)

Defining the forcing phase θ = Ωt, the weak ergodic theorem for measure-preserving dy-

namical systems on the torus [127] implies that for any periodic input v, the interaction

function

Λv(φ) = 〈Z(θ + φ)v(θ)〉

=
1

2π

∫ 2π

0

Z(θ + φ)v(θ)dθ (5.3)

= lim
T→∞

1

T

∫ T

0

Z(Ωt+ φ)v(Ωt)dt

exists as a continuous, 2π-periodic function in P. The formal averaging theorem [104] permits

us to approximate (5.1) by the averaged system

ϕ̇ = ∆ω + ΛNM

v (ϕ) + O(ε2) (5.4)

in the sense that there exists a change of variables ϕ = φ + εh(ϕ, φ) that maps solutions

of (5.1) to those of (5.4). The O(ε2) accuracy of the approximation (5.4) is derived in the

following section, as described in [238].
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Figure 5.1: Illustration of important properties of an interaction function Λv(ϕ). The maximum and
minimum values Λv(ϕ

+) and Λv(ϕ
−), which occur at the phases ϕ+ and ϕ−, respectively, determine the

range of frequency detuning for which the oscillator can be entrained using weak forcing. The roots of the
equation ∆ω+Λv(ϕ) = 0 determine the average phase shift, relative to Ωf t, at which the oscillation stabilizes
from a given initial phase. For initial phase in the pink (resp. blue) range, the asymptotic phase shift will
be ϕ∗

1 (resp. ϕ∗

2). The arrows indicate the evolution of the phase ϕ in equation 5.5.

5.1.1 Formal Averaging Approximation

Given a periodic input v(Ωt) with period T and frequency Ω = 2π/T , denote the forcing

phase θ = Ωt, so that dθ = Ωdt. Kuramoto [131] bases his theory on the idea that if the

forcing is “weak”, then the phase difference φ(t) = ψ(t) − Ωt is “slow”, so φ(t) is nearly

constant over a single period [0, T ]. Therefore we substitute θ = Ωt and write

φ̇ = ∆ω + Z(φ+ Ωt)v(Ωt) ≈ ∆ω +
1

T

∫ T

0

Z(φ+ Ωt)v(Ωt)dt

= ∆ω +
1

2π

∫ 2π

0

Z(φ+ θ)v(θ)dθ

By defining the interaction function Λv(φ) = 〈Z(φ+ θ)v(θ)〉, the phase drift dynamics be-

come φ̇ = ∆ω + Λv(φ). This approach can be justified more rigorously as follows. Let

ζ = φ− ∆ωt, so

ζ̇ = φ̇− ∆ω = Z(φ+ θ)k(θ) = εZ(ζ + ∆ωt+ θ)k1(θ)

= εZ(ζ + (∆ω/Ω + 1)θ)k1(θ) =: εg(ζ, θ) = εg(ζ,Ωt)

We now state the following theorem, which is a modification of Theorem 9.4 in [104].
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Theorem 2: Formal averaging. Consider a dynamical system ζ̇ = εg(ζ, θ) where g is

2π-periodic in both ζ and θ. Suppose the average of g, given by

g(ϕ) = lim
T→∞

1

T

∫ T

0

g(ϕ,Ωt)dt =
1

2π

∫ 2π

0

g(ϕ, θ)dθ = 〈g(φ, θ)〉

exists as a smooth function for ϕ ∈ R. Then ϕ̇ = εg(ϕ) + O(ε2) approximates ζ̇ = εg(ζ, θ),

in the sense that there is a change of variables ζ = ϕ+ εh(ϕ, θ) where

h(ϕ, θ) =
1

Ω

∫ θ

0

[g(ϕ, σ) − g(ϕ)]dσ

that maps solutions of ζ̇ = εg(ζ, θ) to those of ϕ̇ = εg(ϕ) + O(ε2).

Proof: We first note that g(ϕ) = 〈g(ϕ, θ)〉 is a result of the weak ergodic theorem for

measure-preserving dynamical systems on the torus [127]. Substitute ζ = ϕ + εh(ϕ, θ) into

ζ̇ = εg(ζ, θ), so

ζ̇ =

(
1 + ε

∂

∂ϕ
h(ϕ, θ)

)
ϕ̇+ ε

∂

∂θ
h(ϕ, θ) = εg(ϕ, θ) + O(ε2).

Because
(

1 + ε ∂
∂ϕ
h(ϕ, θ)

)−1

= 1 − ε ∂
∂ϕ
h(ϕ, θ) + O(ε2), then

ϕ̇ = εg(ϕ, θ) − ε
∂

∂θ
h(ϕ, θ)Ω + O(ε2)

= εg(ϕ, θ) − ε[g(ϕ, θ) − g(ϕ)] + O(ε2) = εg(ϕ) + O(ε2)

When ε << 1, the solution to ϕ̇ = εg(ϕ) approximates the solution to ζ̇ = εg(ζ, θ) up to

order O(ε). �

The averaged phase drift equations therefore satisfy

φ̇ = ζ̇ + ∆ω = ∆ω + εg(ζ, θ)

= ∆ω + εg(ζ) + O(ε2) = ∆ω + ε〈g(ζ, θ)〉 + O(ε2)

= ∆ω + 〈Z(φ+ θ)v(θ)〉 + O(ε2) = ∆ω + Λv(φ) + O(ε2),
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Figure 5.2: Illustration of Arnold tongues for the three cases listed in Table 5.1. The left boundary is
shown in blue, and the right boundary is shown in red.

and hence the weak forcing assumption v = εv1 with ε << 1 allows us to approximate the

phase drift equation by the time-independent averaged equation

ϕ̇ = ∆ω + Λv(ϕ). (5.5)

As a result, we say that the system is entrained by a control u = v(Ωt) when the phase drift

equation (5.5) satisfies ϕ̇ = 0. This will eventually occur if there exists a phase ϕ∗ satisfying

∆ω + Λv(ϕ∗) = 0. In the following section, we investigate and characterize the conditions

when entrainment occurs.

5.1.2 Locking Regions of Periodically Forced Oscillators

The averaged equation (5.5) is autonomous, and approximately characterizes the asymptotic

behavior of the system (4.2) under periodic forcing. Specifically, we say that the system is

entrained by a control u = v(Ωt) when the phase drift equation (5.5) satisfies ϕ̇ = 0,

which will occur as t → ∞ if there exists a phase ϕ∗ that satisfies ∆ω + Λv(ϕ
∗) = 0.

When both the control waveform v and PRC Z are non-zero, the function Λv(ϕ) is not

identically zero, so when the system is entrained there exists at least one ϕ∗ ∈ [0, 2π) that

is an attractive fixed point of (5.5). The stable fixed points {ϕ∗
i } of (5.5), which are the

roots of the equation ∆ω + Λv(ϕ) = 0, determine the average phase shift, relative to Ωt,

at which the oscillation stabilizes from a given initial phase. In addition, we define the

phases ϕ+ = arg maxϕ Λv(ϕ) and ϕ− = arg minϕ Λv(ϕ) at which the interaction function

achieves its maximum and minimum values, respectively. In order for entrainment to occur,
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Case A: 0 < Λṽ(ϕ
−) < Λṽ(ϕ

+)

Frequency: Ω > ω Ω < ω

Boundary: left/top right/bottom N/A

PNM

v (Ω) −∆ω/Λṽ(ϕ
−) −∆ω/Λṽ(ϕ

+) N/A

Case B: Λṽ(ϕ
−) < 0 < Λṽ(ϕ

+)

Frequency: Ω > ω Ω < ω

Boundary: left right

PNM

v (Ω) −∆ω/Λṽ(ϕ
−) −∆ω/Λṽ(ϕ

+)

Case C: Λṽ(ϕ
−) < Λṽ(ϕ

+) < 0

Frequency: Ω > ω Ω < ω

Boundary: N/A left/bottom right/top

PNM

v (Ω) N/A −∆ω/Λṽ(ϕ
−) −∆ω/Λṽ(ϕ

+)

Table 5.1: Arnold tongue boundaries derived from (5.6), where ∆ω , ω − Ω.

−Λv(ϕ
+) ≤ ∆ω ≤ −Λv(ϕ

−) must hold, so that at least one stable fixed point of Λv exists.

Thus the range of the interaction function determines which values of the frequency detuning

∆ω yield phase locking. These properties are illustrated in Figure 5.1.

The interaction function provides an expedient estimate for the value of the minimum root

mean square (RMS) energy Pv(Ω) =
√

〈v2〉 that results in locking of an oscillator to a given

frequency Ω using the waveform v. This is accomplished by substituting the expression

v(θ) = Pv(Ω)ṽ(θ) into the equation ∆ω + Λv(ϕ) = 0 and simplifying to obtain

ω − Ω + Pv(Ω) · Λṽ(ϕ) = 0, (5.6)

where ṽ is a unit energy normalization of v. This equation is then solved for Pv(Ω) at

ϕ = ϕ+ and ϕ = ϕ− to produce linear estimates of boundaries for the regions of pairs

(Ω, Pv) ∈ R
2 that yield entrainment. These regions are known as Arnold tongues, so named

after mathematician who first described a similar phenomenon for recurrent maps on the

circle (Section 12 of [7]). The RMS energy is used because the boundary of the entrainment

region is approximately linear for weak forcing, and yields a clear visualization [61, 195]. The

Arnold tongue boundary estimates obtained using (5.6) can be classified into three different

cases that depend on the signs of Λṽ(ϕ
+) and Λṽ(ϕ

−), which are listed in Table 5.1 and

illustrated in Figure 5.2.
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Based on the theoretical foundation and fundamental notations presented in this section,

we proceed to formulate and solve several design and optimization problems for entrainment

of an oscillating system. In the following section, we address the canonical problem of

establishing harmonic resonance of a single oscillator with a periodic input of minimum

energy at a desired frequency.

5.2 Minimum-Energy Entrainment

In practical applications, it is desirable to achieve entrainment with a control of minimum

energy. This problem can be formulated as a variational optimization problem in the follow-

ing manner. The objective function to be minimized is the energy 〈v2〉, and entrainment can

be achieved when ω + Λv(ϕ+) ≥ Ω if Ω > ω and ω + Λv(ϕ−) ≤ Ω if Ω < ω. This inequality

is active for the optimal waveform, and hence can be expressed as the equality constraint

∆ω + Λv(ϕ+) = 0 if Ω > ω,

∆ω + Λv(ϕ−) = 0 if Ω < ω.
(5.7)

We formulate the problem for Ω > ω to obtain the minimum energy control v+ using the

calculus of variations [74]. The derivation of the case where Ω < ω is similar, and results

in the symmetric control v−. The constraint (5.7) can be adjoined to the objective using a

multiplier λ, resulting in the cost

J [v] =
〈
v2
〉
− λ(∆ω + Λv(ϕ+)) (5.8)

=
〈
v2
〉
− λ

(
∆ω +

1

2π

∫ 2π

0

Z(θ + ϕ+)v(θ)dθ

)

=
1

2π

∫ 2π

0

[v(θ)(v(θ) − λZ(θ + ϕ+)) − λ∆ω]dθ.

Applying the Euler-Lagrange equation, Lx(θ, v(θ), v′(θ)) = d
dθ
Ly(θ, v(θ), v′(θ)) for L(t, x, y) =

x(t)(x(t) − λZ(t + ϕ+)) − λ∆ω, we obtain the necessary condition for an optimal solution,

which yields a candidate function

v(θ) =
λ

2
Z(θ + ϕ+), (5.9)
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Figure 5.3: Arnold tongues for minimum energy waveforms for frequency increase (v+) and decrease (v−)
of the Hodgkin-Huxley oscillator. Theoretical boundaries predicted by phase reduction theory are shown as
lines, and values computed using 5.3(a) the Hodgkin-Huxley PRC and 5.3(b) the Hodgkin-Huxley equations
are shown as points. These values are computed using a line search over the RMS forcing energy, and 5.3(a)
closely approximates 5.3(b).

which we substitute into the constraint (5.7) and solve for the multiplier, λ = −2∆ω/〈Z2〉.
Consequently the minimum energy controls are

v+(θ) = − ∆ω

〈Z2〉Z(θ + ϕ+) if Ω > ω,

v−(θ) = − ∆ω

〈Z2〉Z(θ + ϕ−) if Ω < ω.

(5.10)

In practice we omit the phase ambiguity ϕ+ or ϕ− in the solution (5.10) because entrainment

is asymptotic. The minimum energy input that entrains (4.2) to a frequency Ω in the

neighborhood of its natural frequency ω is given by (5.10) where θ = Ωt. A useful way to

characterize the limits on control design using phase models is to examine the boundaries

of the theoretical Arnold tongues for the controls v+ and v−, as well as computed values of

the RMS forcing energy required to entrain the Hodgkin-Huxley system using these controls,

which are shown in Figure 5.3.

In this section, we have shown that the minimum energy periodic control u(t) = v(θ) that

entrains a single oscillator with natural frequency ω to a target frequency Ω is a re-scaling of

the PRC, where θ = Ωt is the forcing phase [236, 238]. Observe that this control will entrain

oscillators with natural frequencies between ω and Ω to the target Ω as well.
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Figure 5.4: Illustration to explain the objective function for fast entrainment. The averaged equation (5.31)
is shown for two control waveforms y (red) and z (blue) that both result in the same attractive fixed phase
ϕ∗. Observe that − d

dϕ
Λz(ϕ

∗) > − d

dϕ
Λy(ϕ

∗), as indicated by the dashed lines. As a result, |ϕ̇| is greater in
the phase region between the dashed lines for the waveform z, as indicated by the shaded regions, so that the
system converges to ϕ∗ faster when forced using z. Therefore, we maximize the objective J [v] = − d

dϕ
Λv(ϕ

∗)

for fast entrainment in problem (5.11).

5.3 Fast Entrainment

An alternative essential objective to minimizing input energy is to minimize the time to

entrainment at a given forcing signal energy, in order to establish a fixed phase relationship

between the system and forcing signal as soon as possible after the forcing is applied [84].

This notion of fast entrainment can also be used to minimize the time required to re-establish

entrainment after interruptions caused by disturbances [96]. This problem is of particular

interest to researchers in circadian biology who are interested in optimal protocols for rapidly

correcting circadian misalignment [198].

In this section, an asymptotically optimal waveform is derived to maximizes the average rate

of entrainment for general weakly forced nonlinear oscillators [235]. The rate of entrainment

is characterized by the coefficient of exponential decay in the phase difference between the

system and forcing signal. We present a theory by which the entrainment time scale is

minimized for a specified forcing energy, where the optimal waveform is a sum of the PRC

and its derivative with weights that depend on the difference between the natural and forcing

frequencies. These findings can be applied to weakly nonlinear oscillators just past the Hopf
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bifurcation, as well as strongly nonlinear relaxation oscillators. We confirm our results with

numerical simulations using the Hodgkin-Huxley model, as well as in experiments on the

oscillatory chemical reaction arising through the electrodissolution of nickel in sulfuric acid,

which is described in Appendix A.4.

Our goal here is to entrain the system (4.2) to a target frequency Ω as quickly as possible by

using a periodic control v of fixed power P = 〈v2〉. Ideally, the interaction function would be

of a piecewise-constant form, so that the averaged slow phase ϕ converges to a fixed point

ϕ∗ at a uniform rate from any initial value. However, the discontinuity as ϕ → ϕ∗ would

result in a singularity in the control v, making it infeasible in practice. An alternative is to

maximize |ϕ̇∗|, the rate of convergence of the averaged slow phase in the neighborhood of its

attractive fixed point ϕ∗. The calculus of variations can then be used to obtain a smooth

optimal candidate solution that also performs well in practice. When the system (5.5) is

entrained by a control v, there exists an attractive fixed point ϕ∗ satisfying Λv(ϕ∗)+∆ω = 0

and Λ′
v(ϕ∗) < 0, where ′ is the differentiation operator, as illustrated in Figure 5.4.

In order to maximize the rate of entrainment in a neighborhood of ϕ∗ using a control of

power P , the value of |ϕ̇| should be maximized for values of ϕ near ϕ∗, which occurs when

−Λ′
v(ϕ∗) is large. This results in the following problem formulation for fast entrainment:

max
v∈P

J [v] = −Λ′
v(ϕ∗) (5.11)

s.t.
〈
v2
〉

= P (5.12)

Λv(ϕ∗) + ∆ω = 0. (5.13)

The constraints can be adjoined to the objective using multipliers λ and µ to yield

J [v] = −Λ′
v(ϕ∗) + λ(

〈
v2
〉
− P ) + µ(Λv(ϕ∗) + ∆ω)

= −〈Z ′(θ + ϕ∗)v(θ)〉 + λ(
〈
v2
〉
− P ) + µ(〈Z(θ + ϕ∗)v(θ)〉 + ∆ω)

=
1

2π

∫ 2π

0

(
v(θ)[µZ(θ + ϕ∗) − Z ′(θ + ϕ∗) + λv(θ)] − λP + µ∆ω

)
dθ. (5.14)

The associated Euler-Lagrange equation is

µZ(θ + ϕ∗) − Z ′(θ + ϕ∗) + 2λv(θ) = 0, (5.15)
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Figure 5.5: (a) PRC of the HH model; (b) Optimal fast entrainment waveform v for HH system at Ω = ω

and P = 0.1 mW.

and solving for v yields the candidate solution

v(θ) =
1

2λ
[Z ′(θ + ϕ∗) − µZ(θ + ϕ∗)]. (5.16)

The multipliers λ and µ can be found by substituting (5.16) into the constraints (5.12) and

(5.13). This yields the equations

1

4λ2
[〈

(Z ′)2
〉
− 2µ〈Z ′Z〉 + µ2

〈
Z2

〉]
= P, (5.17)

1

2λ

[
〈Z ′Z〉 − µ

〈
Z2

〉]
= −∆ω. (5.18)

Because Z is 2π-periodic, one can show, e.g., using Fourier series, that 〈Z ′Z〉 = 0, so that

(5.18) easily yields µ = 2∆ωλ/〈Z2〉. Substituting this result into (5.17) leads to a quadratic

equation (5.17) for λ. Now, by substituting (5.16) into Λ′(ϕ∗) = 〈Z(θ + ϕ∗)v(θ)〉 we obtain

Λ′(ϕ∗) = 〈(Z ′)2〉/(2λ), so we choose λ < 0 when solving (5.17) for λ in order to maximize

the objective in (5.11). Thus the optimal waveform and multiplier simplify to

v(θ) =
Z ′(θ)

2λ
− ∆ωZ(θ)

〈Z2〉 , λ = −1

2

√√√√ 〈(Z ′)2〉
P − (∆ω)2

〈Z2〉

, (5.19)

where we disregard the phase shift ϕ∗, because the entrainment process is asymptotic. For

zero frequency detuning, the optimal waveform is a re-scaling of the derivative Z ′ of the

PRC. As |∆ω| increases, v continuously transforms towards Z, which is the minimum en-

ergy waveform for frequency control [236]. This transition reflects the conceptual trade-off

between the fast entrainment objective (5.11) and frequency control constraint (5.13), which

can be satisfied only when P > (∆ω)2/〈Z2〉.
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The proposed technique for constructing optimal fast entrainment waveforms can be applied

to any nonlinear oscillator, and requires no knowledge about its initial state. Entrainment

is achieved over the minimum number of cycles possible for a given control energy such

that phase model approximation and averaging remain valid. The conditions required for

such approximations to be appropriate for entrainment have been explored in previous work

[56, 238]. When the initial slow phase of the system is far from a stable fixed point, several

cycles may be required for convergence to the phase-locked state to be realized, and this

occurs least on average for the optimal waveform. In contrast to previous studies on the

control of oscillators using phase models [26, 157, 95, 56, 46, 236], the derivative of the phase

response curve (PRC) plays an important role in addition to the PRC itself. The method-

ology is promising for fast re-establishment of entrainment in oscillators that intermittently

break phase locking due to environmental or internal effects, such as biological systems with

fluctuations in chemical reaction rates due to the small number of molecules in a cell [5].

Finally, observe that our methodology is suitable for weak phase resetting, while strong re-

setting requires control approaches that do not depend on averaging but involve substantial

changes to the state of the oscillator. In the following section, we present computational

simulations and experimental results that support our findings.

5.3.1 Fast Entrainment Experiments

Consider a system with a sinusoidal PRC, given by Z(θ) = a sin(θ). Using angle sum

identities and the fact that in this case 〈(Z ′)2〉 = 〈Z2〉, one can show that v is of form

v(θ) = P sin(θ). Indeed, for the case of a sinusoidal PRC, a sinusoidal input optimizes

the minimum energy [236] and rapid phase-locking objectives simultaneously. However, the

utility of our approach is most evident for oscillating systems with complex dynamics, in

particular those that exhibit relaxation, and hence higher harmonics in the PRC. As an

example, consider the Hodgkin-Huxley (HH) system [99], which is a fundamental model

used in the study of neural dynamics [238]. When the baseline current Ib injected into

the axon is sufficiently high, the voltage V spikes repeatedly. Our goal is to modulate the

additional injected current I(t) to entrain the spiking frequency to a desired target Ω in

as short a time as possible. We first reduce the HH system to a phase model as in (4.2)

where u = I(t), where ω ≈ 0.429 rad/sec, and the PRC Z is given in Figure 5.5(a). After

selecting the control power P and the target frequency Ω, we use (5.19) to compute the
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Figure 5.6: Simulations with the HH model: (a) Convergence of phase difference ∆ϕn between inter-spike

intervals; (b) Exponential fit for k when Ω = 1.01ω and P = 0.5. The k-values are 0.5415, 0.9510, and

1.4139 for sine, PRC, and optimal waveforms, respectively. (c) Initial convergence rates k (in color) for 5

cycles with Ω ∈ [0.98ω, 1.02ω] and θ(0) ∈ [0, 2π] when using the optimal waveform. (d) Average initial k on

(Ω, θ(0)) ∈ [0.98ω, 1.02ω]× [0, 2π] for sine, PRC, and optimal waveforms is 0.3933, 0.5365, and 0.7691, resp.

Initial divergence takes place in 7.69%, 12.73%, and 6.04% of initial conditions for sine, PRC, and optimal

waveforms, respectively.

optimal waveform v, which is shown in Figure 5.5(b). Numerically, we use the Fourier series

coefficients of Z to evaluate expressions derived from the PRC, such as Z ′, 〈Z2〉, and so on.

In this computational example, we focus on initial convergence rates for fast entrainment,

which can be quantified by the rate k at which the phase difference between successive inter-

spike intervals converges exponentially to zero, according to ∆ϕn = e−kn, as shown in Figure

5.6. The optimal waveform (5.19) achieves a significantly greater average rate k for all values

of Ω and initial states on Γ.

The experimental utility of the phase model technique for fast entrainment is demonstrated

by manipulating an oscillatory chemical process [136, 235]. The process was produced us-

ing a standard three-electrode setup that consisted of a 1 mm diameter nickel working, a

Hg/Hg2SO4/(sat)K2SO4 reference, and a Pt coated Ti rod counter electrode immersed in

3 mol/L sulfuric acid solution at 10 oC. The nickel working electrode was polarized with a
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(a) (b)

Figure 5.7: Electrodissolution experiments: (a) PRC and current waveform (inset) of the electrochemi-

cal oscillations. The PRC is measured by stimulating the system using a sequence of pulses (A=200mV

magnitude and τ =0.05 s pulsewidth) and measuring the corresponding phase shift (Φ) as a function of the

phase; Z = Φ/(Aτ) rad/mV/s measurements (dots) and Fourier fit with 5 harmonics (curve). (b) Optimal

waveform using (5.19) with Ω = ω, P = 0.5, and the PRC in (a).

potentiostat (Gamry Instruments, Reference 600) at a circuit potential V = V0 + AF (θ),

where A and F are the forcing amplitude and waveform, respectively, and V0 is the base

potential. Each forcing waveform F has power P = 0.5. The current, proportional to the

dissolution rate, was measured by the potentiostat at a rate of 200 Hz. When 1 kOhm

resistance was attached to the nickel wire, nonlinear current oscillations with a period of

2.11 s were obtained at V0 = 1.15 V as shown in the inset of Figure 5.7. In each instance of

the experiment, the PRC, such as the example in Figure 5.7a, was obtained using the pulse

perturbation method [95, 122]. The phase of the oscillation was obtained using the linear

interpolation technique [178] by setting the phase of the n-th current peak to 2πn. The

transformation of the PRC as the circuit potential increases has been previously analyzed in

detail [122].

Using (5.19), an optimal fast entrainment waveform was constructed for equal forcing and

natural frequencies, Ω = ω, in order to remove the effect of the frequency control constraint

(5.13). When the optimal waveform with amplitude of A = 12.5 mV was applied to entrain

the free-running chemical oscillator, the phase difference between the current oscillations

and the forcing signal, shown in Figure 5.8a, monotonically decreased until a final phase

difference of φf = 5.51 rad was attained after 30 seconds.
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Figure 5.8: Electrodissolution experiments: (a) Phase difference ∆φ(t) for sine (dashed), PRC (thin),

and optimal (thick) forcing at A = 12.5 mV. (b) Semilog plot of ∆φ(t) from (a). For t > 20 seconds

after forcing is applied, ∆φ(t) decays exponentially to zero. Rates of entrainment (slope of the linear fits):

k(sin) = 0.1093 s−1, k(Z) = 0.167 s−1, k(optimal) = 0.243 s−1. (c) Rate of entrainment as a function

of forcing amplitude for sin (◦), PRC (△), and optimal (�) forcing. The slopes κ in s−1mV−1 of the

fitted lines characterize the performance of the waveforms for fast entrainment. (d) Normalized entrainment

rates predicted from PRC estimates (blue: κ(sin)=0.68, κ(PRC)=0.89, κ(optimal)=2.00) and measured

experimentally (red: κ(sin)=1.19, κ(PRC)=1.39, κ(optimal)=2.38) are highest for the optimal waveform.

The behavior of the phase difference ∆φ(t) = φ(t) − φf after 20 seconds can be closely

described by an exponential decay ln[∆φ(t)/∆φ(0)] = −kt, which is shown in Figure 5.8b,

with a rate of entrainment k = 0.243 s−1 for the optimal waveform. This rate was found

to be lower for other waveforms such as sine and the PRC Z itself, as shown in Figures

5.8a and 5.8b. To compensate for measurement errors and data processing inaccuracies, we

measured the rate k at 7 amplitudes A between 2.5 and 15 mV. The slopes κ of the k vs. A

plots in Figure 5.8c correspond to −Λ′
v(ϕ∗) for normalized PRC and v, and are compared,

along with values predicted using the estimated PRC for each experiment, in Figure 5.8d.

The optimal waveform performs significantly better.
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5.4 Subharmonic Entrainment

Previous work on optimal control of the entrainment process has focused on the harmonic

case, which corresponds to a one-to-one (1:1) relationship between the frequencies of the

stimulus and oscillator. Many physical processes, however, undergo subharmonic N :M en-

trainment, which transpires when N cycles of the stimulus occur for every M cycles of the

oscillator [77]. Originally examined in the context of loudspeaker dynamics [40], subharmonic

synchronization can emerge among weakly coupled oscillators [61, 87], and can be induced in

forced or injection-locked oscillators to produce entrainment [43, 208]. Subharmonic locking

phenomena are of interest in a wide range of fields, and neuroscience in particular. Applica-

tions exist in magnetoencephalography [212], the study of brain connectivity [102], dynamic

neural regulation [108], as well as in the clinical treatment of epilepsy [101, 118, 129]. Sub-

harmonic entrainment plays a central role in our understanding of human perception of beat

and meter [134, 36, 168], as well as sound in general, and an ability to affect this phenomenon

will lead to innovative therapies for tinnitus [209, 215]. Indeed, the functional connectivity

of the cerebral cortex may be shaped by mutual entrainment of bursting neurons across

multiple time scales in a coevolutionary manner [102, 133, 88]. Previous studies have found

that subharmonic synchronization phenomena are ubiquitous in biological systems. In fact,

respiration and heartbeat in human beings is typically entrained at a 1:4 ratio [194], and evi-

dence exists that human sleep latency is entrained by the lunar cycle [29, 69], which is a 1:28

ratio. Other investigations have focused on engineering subharmonic locking in electronic

circuits [148, 211], antenna systems [231], and voice coil audio systems [24, 167]. In this

section, a method is derived for engineering weak, periodic signals that achieve subharmonic

entrainment in nonlinear oscillating systems without the use of state feedback.

5.4.1 Theory of subharmonic entrainment by weak forcing

The following derivation parallels the content of Section 5.1. The goal is to entrain the

system (4.2) to a target frequency Ω using a periodic forcing control u(t) of frequency Ωf ,

such that M cycles of the oscillator occur for every N cycles of the input. When such N :M

entrainment occurs, then the target and forcing frequencies satisfy MΩf = NΩ, so that

the control input has the form u(t) = v(N
M

Ωt), where v is 2π-periodic. From here on, it is

assumed that N and M are coprime integers. As in Section 5.1, the weak forcing assumption
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is used, and a slow phase variable is defined by φ(t) = ψ(t) − Ωt, and ∆ω = ω − Ω is again

the frequency detuning between the natural and target frequencies. The dynamic equation

for the slow phase is then

φ̇ = ψ̇ − Ω = ∆ω + Z(Ωt + φ)v

(
N

M
Ωt

)
, (5.20)

where φ̇ is called the phase drift. Here the forcing phase is η = Ωf t = N
M

Ωt, and a change

of variables θ = η/N is made. Then the weak ergodic theorem for measure-preserving

dynamical systems on the torus [127] implies that for any periodic function v, the interaction

function

ΛNM

v (φ) , 〈Z(Mθ + φ)v(Nθ)〉

=
1

2π

∫ 2π

0

Z(Mθ + φ)v(Nθ)dθ

= lim
T→∞

1

T

∫ T

0

Z(Ωt + φ)v

(
N

M
Ωt

)
dt (5.21)

exists as a continuous, 2π-periodic function in P. In addition, because both Z and v are

2π-periodic, ΛNM

v can be expressed by integrating with respect to η or to ξ = Mθ = Ωt to

yield two equivalent expressions given by

ΛNM

v (φ) =
1

2πN

∫ 2πN

0

Z

(
M

N
η + φ

)
v(η)dη

=
1

2πN

N−1∑

j=0

∫ 2π

0

Z

(
M

N
[2πj + η] + φ

)
v(η)dη, (5.22)

ΛNM

v (φ) =
1

2πM

∫ 2πM

0

Z(ξ + φ)v

(
N

M
ξ

)
dξ

=
1

2πM

M−1∑

ℓ=0

∫ 2π

0

Z(ξ + φ)v

(
N

M
[2πℓ+ ξ]

)
dξ. (5.23)

In particular, the expression (5.22) can be written as

ΛNM

v (φ) = 〈YNM(η, φ)v(η)〉 (5.24)
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where we define the function

YNM(η, φ) =
1

N

N−1∑

j=0

Z

(
M

N
[2πj + η] + φ

)
. (5.25)

We henceforth write YNM(η) , YNM(η, 0). At this point, let us establish several important

expressions that will be used throughout the following sections. First, we define a function

Q as the 1:1 interaction function of Z with itself by

Q(φ) , 〈Z(θ + φ)Z(θ)〉. (5.26)

By defining an inner product (·, ·) : P×P → R by (f, g) = 〈fg〉, the Cauchy-Schwarz inequal-

ity yields |Q(φ)| ≤ 〈Z2〉 = Q(0), and the periodicity of Z results in Q(φ) = 〈Z(θ + φ)Z(θ)〉 =

〈Z(θ)Z(θ − φ)〉 = Q(−φ). We can then define

VNM(φ) ,
1

N

N−1∑

j=0

Q

(
M

N
2πj + φ

)
, (5.27)

which inherits the properties |VNM(ϕ)| ≤ VNM(0) for all ϕ ∈ [0, 2π) and VNM(−ϕ) =

VNM(ϕ) from the properties of Q. We will subsequently write VNM

0 , VNM(0) and VNM

∗ =

minφ∈[0,2π] V
NM(φ). The expression (5.27) is important because using v(θ) = YNM(θ, ψ) in

(5.23) yields

ΛNM

YNM (θ,ψ)(φ) =
1

2πM

M−1∑

ℓ=0

∫ 2π

0

Z(ξ + φ)YNM

(
N

M
[2πℓ+ ξ], ψ

)
dξ

=
1

2πN

N−1∑

j=0

∫ 2π

0

Z(ξ + φ)Z

(
ξ +

M

N
2πj + ψ

)
dξ

=
1

N

N−1∑

j=0

Q

(
M

N
2πj + φ− ψ

)
= VNM(φ− ψ). (5.28)

In addition, using (5.24) we see that the energy of the function YNM is given by

〈YNMYNM〉 = ΛNM

YNM (0) = VNM

0 . (5.29)
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The functions YNM , Q, and VNM , as defined in (5.25), (5.26), and (5.27), respectively, will

appear repeatedly in the subsequent derivations of optimal subharmonic entrainment con-

trols.

As in the case of 1:1 entrainment, the formal averaging theorem [104] permits us to approx-

imate (5.20) by the averaged system

ϕ̇ = ∆ω + ΛNM

v (ϕ) + O(ε2) (5.30)

in the sense that there exists a change of variables ϕ = φ+ εh(ϕ, φ) that maps solutions of

(5.20) to those of (5.30). A detailed derivation for the 1:1 case is given in Section 5.1.1, and

this can be easily extended to the N :M case. Therefore the weak forcing assumption the

phase drift equation to be approximated by

ϕ̇ = ∆ω + ΛNM

v (ϕ). (5.31)

The averaged equation (5.5) is autonomous, and approximately characterizes the asymptotic

behavior of the system (4.2) under periodic forcing. Specifically, we say that the system is

entrained by a control u = v(Ωf t) when the phase drift equation (5.31) satisfies ϕ̇ = 0,

which will occur as t → ∞ if there exists a phase ϕ∗ that satisfies ∆ω + ΛNM

v (ϕ∗) = 0.

When both the control waveform v and PRC Z are non-zero, the function ΛNM

v (ϕ) is not

identically zero, so when the system is entrained there exists at least one ϕ∗ ∈ [0, 2π) that

is an attractive fixed point of (5.31). The stable fixed points {ϕ∗
i } of (5.31), which are the

roots of the equation ∆ω + ΛNM

v (ϕ) = 0, determine the average phase shift, relative to Ωf t,

at which the oscillation stabilizes from a given initial phase. As before, we define the phases

ϕ+ = arg maxϕ ΛNM

v (ϕ) and ϕ− = arg minϕ ΛNM

v (ϕ), so for at least one stable fixed point of

ΛNM

v to exist and entrainment to occur, −ΛNM

v (ϕ+) ≤ ∆ω ≤ −ΛNM

v (ϕ−) must hold. Thus

the range of the interaction function determines which values of the frequency detuning ∆ω

yield phase locking. These properties are illustrated in Figure 5.1 for the 1:1 case, which

also illustrates an N :M interaction function if Λv is replaced with ΛNM

v .

As in the 1:1 case, the interaction function can be used to estimate the values of the minimum

root mean square (RMS) energy PNM

v (Ωf ) =
√
〈v2〉 that results in locking of an oscillator

to a given frequency Ωf at a subharmonic N :M ratio using the waveform v. Parallel to

the derivation in Section 5.1.2, this is accomplished by substituting the expression v(θ) =

PNM

v (Ωf )ṽ(θ) and the relation Ωf = N
M

Ω into the equation ∆ω+ ΛNM

v (ϕ) = 0 and simplifying
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to obtain

ω − M

N
Ωf + PNM

v (Ωf ) · ΛNM

ṽ (ϕ) = 0, (5.32)

where ṽ is a unit energy normalization of v. This equation is then solved for PNM

v (Ωf) at

ϕ = ϕ+ and ϕ = ϕ− to produce the Arnold tongues, as described in Table 5.1. Based on

the theoretical foundation and fundamental notations presented in this section, we proceed

to formulate and solve optimization problems for subharmonic entrainment of an oscilla-

tor. In the following section, we address the canonical problem of establishing subharmonic

resonance of a single oscillator to a periodic input of minimum energy at a desired frequency.

5.4.2 Minimum energy subharmonic entrainment of an oscillator

The subharmonic entrainment of an oscillator by using a control of minimum energy can

be formulated as a variational optimization problem that generalizes the problem solved in

Section 5.2. The objective function to be minimized is the control energy 〈v2〉, and the

design constraint is ω + ΛNM

v (ϕ+) ≥ Ω if Ω > ω and ω + ΛNM

v (ϕ−) ≤ Ω if Ω < ω. This

inequality is active when optimal entrainment occurs, and hence can be expressed as the

equality constraint

∆ω + ΛNM

v (ϕ+) = 0 if Ω > ω, (5.33)

∆ω + ΛNM

v (ϕ−) = 0 if Ω < ω. (5.34)

We formulate the problem for Ω > ω to obtain the minimum energy control for frequency

increase v+ using the calculus of variations [74]. The derivation of the case where Ω < ω is

similar, and results in the symmetric control v−. The constraint (5.33) can be adjoined to

the cost 〈v2〉 using a multiplier λ, leading to the objective

J [v] =
〈
v2
〉
− λ(∆ω + ΛNM

v (ϕ+)) (5.35)

=
〈
v2
〉
− λ∆ω − λ

2π

∫ 2π

0

YNM(η, ϕ+)v(η)dη

=
1

2π

∫ 2π

0

(
v(η)

[
v(η) − λYNM(η, ϕ+)

]
− λ∆ω

)
dη,
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Figure 5.9: Minimum energy subharmonic entrainment controls v+ for increasing the frequency of the
Hodgkin-Huxley neuron model by 3%. The controls for N, M = 1, . . . , 5 are shown, and the domain and
range in each plot are [0, 2π] and [−.4, 1.2], respectively. The black line indicates the x-axis, and the red
dashed line is the average value of the control. The subharmonic ratio and RMS control power are indicated.
Observe that if N = 1, the control is simply repeated M times to effectively produce 1:1 entrainment, which
requires the lowest energy. As N grows large for a fixed M , the controls converge to a constant Υ given in
equation (5.40).

where the expression (5.24) is substituted for ΛNM

v . Applying the Euler-Lagrange equation

[74], we obtain the necessary condition for a candidate optimal solution

vm(η) =
λ

2
YNM(η, ϕ+). (5.36)

Recalling (5.28), we obtain

ΛNM

vm(ϕ) =
λ

2
ΛNM

YNM (θ,ϕ+)(φ) =
λ

2
VNM(ϕ− ϕ+). (5.37)

Therefore the constraint (5.33) results in

0 = ∆ω + ΛNM

vm(ϕ+) = ∆ω +
λ

2
VNM

0 , (5.38)

so the multiplier is given by λ = −2∆ω/VNM

0 . Consequently, we can express the minimum-

energy control that entrains the system (4.2) to a target frequency Ω using a periodic forcing
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Figure 5.10: Interaction functions ΛNM

v for minimum energy subharmonic entrainment controls v+ for
increasing the frequency of the Hodgkin-Huxley neuron model by 3%, where the domain and range in each
plot are [0, 2π] and [−0.012, 0.016], respectively. Interaction functions for subharmonic entrainment depend
only on N . The black line indicates the x-axis, and the red dashed line is placed at ΛNM

v+
(ϕ+), which is equal

to the frequency detuning ∆ω = ω − Ω by design. As N grows large, the interaction function converges to
small variation about ∆ω. Red and blue stars mark the phases {ϕ−

i } and stable fixed points {ϕ∗

i } of (5.31),
each of which occur N times.

control u(t) = v(Ωf t), where v is 2π-periodic and Ωf = N
M

Ω, as

vm(η) =





v+(η) = − ∆ω

VNM

0

· YNM(η, ϕ+) if Ω > ω,

v−(η) = − ∆ω

VNM

0

· YNM(η, ϕ−) if Ω < ω,

(5.39)

where η = Ωf t is the forcing phase. In practice, we may omit the phase ambiguity ϕ+

or ϕ− in (5.39) because entrainment is asymptotic. The optimal waveforms for minimum-

energy entrainment of the Hodgkin-Huxley system are shown in Figure 5.9 for values of

N, M = 1, . . . , 5, and the corresponding interaction functions are shown in Figure 5.10.

Observe that in Figure 5.9, the 1:M minimum-energy control will repeat the 1:1 optimal

waveform M times during the control cycle. As the ratio N/M grows large, the controls

converge to a constant given by

Υ = −∆ω ·
∫ 2π

0
Z(θ)dθ

∫ 2π

0
Q(ϕ)dϕ

, (5.40)

as seen by substituting the limiting expressions as N → ∞ for YNM and VNM from equations

(5.25) and (5.27) into the solution (5.39).

Finally, by invoking (5.29), we see that the minimum energy waveform (5.39) for subharmonic

entrainment of a single oscillator has energy given by

〈
v2m

〉
=

(
∆ω

VNM

0

)2〈
YNM(η, ϕ+)YNM(η, ϕ+)

〉
=

(∆ω)2

VNM

0

. (5.41)
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We have shown that the minimum energy periodic control u(t) = v(N
M

Ωt) that achieves

subharmonic entrainment of a single oscillator with natural frequency ω to a target frequency

Ω is a re-scaling of the function YNM(η) given in (5.25), where η = N
M

Ωt is the forcing phase.

In the case that N = M = 1, these results reduce to the solution in the harmonic (1:1) case

in Section 5.2, which is a re-scaling of the PRC Z [236, 238]. In addition, it is important to

note that very similar optimal inputs for altering the frequency of oscillating neural systems

in the phase model representation have been obtained using other methods in the harmonic

case [157, 46]. The fundamental conclusion is that when the desired change in the frequency

of the oscillator is small and the applied input to the system is weak, the optimal control in

the harmonic case is a re-scaling of the PRC. Therefore we expect that applying alternative

methods [157, 46] to compute inputs for minimum energy subharmonic control of oscillators

will also result in solutions similar to (5.39).

The above optimal waveforms are examined in several numerical simulations that validate

the theoretical results that have been derived above for minimum-energy subharmonic en-

trainment. Specifically, we compare the theoretical Arnold tongues for the waveforms that

were derived from the phase-reduced Hodgkin-Huxley system with computed Arnold tongues

for the phase-reduced and full state-space systems. Because of the periodicity of Z, v, and

ΛNM

v , all of these functions are conveniently represented using Fourier series, as described in

Appendix B. These representations are used to synthesize optimal waveforms, which are

then applied to simulations to test for entrainment of ordinary differential equation systems

for phase models and state-space systems. Numerical integrations are performed using the

4th order Runge-Kutta method.

For the waveform v− as in (5.39), which is used to entrain a single oscillator, the results are

shown in Figures 5.11 and 5.12. In this case the natural frequency ω of the oscillator is fixed,

and the minimum RMS energy PNM

v (Ωf) is obtained as a function of the forcing frequency Ωf .

The theoretical Arnold tongue is computed by using Table 5.1, with ΛNM

v used in stead of Λv,

while the actual Arnold tongues for the phase-reduced and state-space system are computed

by fixing values of Ωf and using a line search to compute the boundary of the entrainment

region. A bisection search is initialized using guesses of .9 and 1.1 times the theoretical

estimate of PNM

v (Ωf), and is terminated when the upper and lower bound are within 0.01

times that estimate. To determine whether a unit energy waveform ṽ entrains a phase model

(4.2) for a given pair (Ωf , P
NM

ṽ ) of forcing frequency and control energy, the control input

u(t) = PNM

ṽ · ṽ(Ωf t) is applied to the phase model, which is initialized at a solution of
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Figure 5.11: Arnold tongues for minimum energy subharmonic entrainment controls v− for Hodgkin-
Huxley neurons, where the target frequency is Ω = 0.99ω. The domain in each panel is the forcing frequency
Ωf on the interval of 90% to 110% of N

M
ω where ω is the natural frequency, and the range is [0, 1]. The

entrainment ratio is indicated at the bottom right. The shaded region is the theoretical Arnold tongue as
determined by Table 5.1. The actual boundaries of the Arnold tongues are computed as well for entrainment
of the phase model, as shown in blue, and for the full state-space model, as shown in red. For the 4:1 and
4:3 cases, the tongues become too narrow to compute for the state-space model.

∆ω+ ΛNM

v (ϕ) = 0, such as ϕ∗
1 in the illustration in Figure 5.1. The system (4.2) is integrated

numerically, and then the time-series ψk := ψ(kTe), k = 1, 2, . . ., where Te = 2π/Ω is the

desired period for the entrained system, is examined to check for convergence to a steady

state value. Convergence of this time-series implies that the forced system has the desired

period Tf . In practice, we check whether ψk for k = 46, . . . , 50 remains within an error

tolerance of ǫ1 = 10−1. This approach provides enough time to guarantee that the system

has converged to steady-state, in the case that entrainment occurs. Our experiments have

shown that this straightforward approach is sufficient to approximate the minimum RMS

energy PNM

v (Ωf) with error below 1% of the actual value. We extend the same technique

to compute Arnold tongues for the full state-space system (4.1) by applying to it the same

control, and examining the time-series yk := x1(kTe), k = 1, 2, . . ., where x1(t) is the first

state variable. To obtain a reasonably accurate estimate of the boundary, we accept that

convergence has occurred when yk for k = 200, . . . , 250 remains within an error tolerance of

ǫ2 = 10−2.

The effect of the subharmonic forcing ratio on the entrainment properties of a phase model

and given input waveform can be inferred directly from the definition of the interaction

function in (5.21). The locking range of a control waveform, and hence the Arnold tongue,
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Figure 5.12: Arnold tongues for minimum energy subharmonic entrainment controls vm for Hodgkin-
Huxley neurons, where the target frequency is Ω = 0.99ω. All of the Arnold tongues in Figure 5.11 are
shown together on one plot, where the domain is Ωf/ω, i.e., the ratio between the forcing and natural
frequencies.

depends on the properties of the interaction function, as illustrated in Figure 5.1 and Table

5.1. An examination of the cases where one or both of the PRC and input are sinusoidal is

particularly useful. If the PRC is Z(θ) = sin(θ), then it is evident that N :M entrainment

is not possible when N > M , because the orthogonality of the trigonometric basis functions

of the Fourier series would result in ΛNM

v (ϕ) = 0. Conversely, if the input is v(θ) = sin(θ),

then N :M entrainment is not possible when N < M for the same reason. This leads to the

lemma regarding the existence of subharmonic locking regions, which is given in Appendix

B.

Furthermore, observe also that as N increases in Figure 5.10, the interaction function quickly

narrows to a very small range, which no longer contains the origin, so that the Arnold tongue

will skew to one side. This is illustrated in Case C of Figure 5.2, and is observed in practice for

the 4:1 and 4:3 cases in Figure 5.11. This is due to the rapid decrease of energy in successive

terms of the Fourier series for the Hodgkin-Huxley PRC. In fact, N :M entrainment can be

established only if there is significant energy in the N th term of this series. Because the

coefficients of the Fourier series for the Hodgkin-Huxley PRC are nearly negligible beyond

the fourth order, the Arnold tongues also become extremely thin, and so that subharmonic

entrainment with N = 5 (and M < 5) cannot be established in practice for this system.

5.4.3 Fast subharmonic entrainment of an oscillator

An alternative objective to minimizing control energy is to entrain a system to a desired

frequency as quickly as possible using a control of given energy. This problem is examined

for the harmonic (1:1) case for arbitrary nonlinear oscillating systems in Section 5.3, and the
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solution for the subharmonic (N :M) case extends those results by applying the techniques

derived in Section 5.4.1.

Our goal here is to entrain the system (4.2) to a target frequency Ω as quickly as possible by

using a periodic control v of fixed energy P = 〈v2〉 and forcing frequency Ωf that satisfies

MΩf = NΩ. Employing averaging theory as in Section 5.4.1 yields the phase drift equation

(5.31), where the interaction function would ideally be of a piecewise-constant form, so that

the averaged slow phase ϕ converges to a fixed point ϕ∗ at a uniform rate from any initial

value. However, a discontinuity at ϕ → ϕ∗ would result in an unbounded control v, as

explained in Lemma 2 of Appendix B, which makes such a control infeasible in practice. An

alternative is to maximize |ϕ̇∗|, the rate of convergence of the averaged slow phase in the

neighborhood of its attractive fixed point ϕ∗. The calculus of variations can then be used to

obtain a smooth optimal candidate solution that also performs well in practice. When the

system (5.31) is entrained by a control v, there exists an attractive fixed point ϕ∗ satisfying

ΛNM

v (ϕ∗) + ∆ω = 0 and d
dϕ

ΛNM

v (ϕ∗) < 0, similar to Figure 5.4. Observe that by inspecting

(5.24), one can write

d

dϕ
ΛNM

v (ϕ∗) =
d

dϕ
〈YNM(η, ϕ∗)v(η)〉 =

〈
YNM

ϕ (η, ϕ∗)v(η)
〉
, (5.42)

where YNM is as defined in (5.25) and YNM

ϕ (η, ϕ) is its derivative, given by

YNM

ϕ (η, ϕ) =
d

dϕ
YNM(η, ϕ) =

1

N

N−1∑

j=0

Z ′

(
M

N
[2πj + η] + ϕ

)
, (5.43)

with Z ′(θ+ϕ) = d
dϕ
Z(θ+ϕ). As was done for Z in Section 5.4.1, we can define the interaction

function of Z ′ with itself by

K(ϕ) , 〈Z ′(θ + ϕ)Z ′(θ)〉, (5.44)

which is maximized at ϕ = 0 with the maximum value K(0) = 〈Z ′Z ′〉. The periodicity of Z

implies that |K(ϕ)| ≤ 〈Z ′Z ′〉 for all ϕ ∈ [0, 2π), and K(ϕ) = K(−ϕ). We then define

SNM(ϕ) ,
1

N

N−1∑

j=0

K

(
M

N
2πj + ϕ

)
, (5.45)
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which inherits the properties |SNM(ϕ)| ≤ SNM(0) for all ϕ ∈ [0, 2π) and SNM(−ϕ) = SNM(ϕ)

from the function K. We will use the notation SNM

0 , SNM(0) and SNM

∗ = minφ∈[0,2π] S
NM(φ).

By substituting Z ′ for Z and YNM

ϕ for YNM in (5.28), we can obtain

d

dφ
ΛNM

YNM
ϕ (θ,ψ)(φ) =

1

N

N−1∑

j=0

K

(
M

N
2πj + φ− ψ

)
= SNM(φ− ψ). (5.46)

In addition, combining (5.42) and (5.46), the energy of the function YNM

ϕ is given by

〈
YNM

ϕ YNM

ϕ

〉
= ΛNM

YNM
ϕ

(0) = SNM

0 . (5.47)

The functions K and SNM , as defined in (5.44) and (5.45), respectively, will appear repeatedly

in the following derivation of fast subharmonic entrainment controls.

In order to maximize the rate of entrainment in a neighborhood of ϕ∗ using a control of

energy P , the value of |ϕ̇| should be maximized for values of ϕ near ϕ∗, which occurs when

− d
dϕ

ΛNM

v (ϕ∗) is large, as illustrated in Figure 5.4 for the 1:1 case. This results in the following

optimal control problem formulation for fast subharmonic entrainment:

max
v∈P

J [v] = − d

dϕ
ΛNM

v (ϕ∗) (5.48)

s.t.
〈
v2
〉

= P (5.49)

ΛNM

v (ϕ∗) + ∆ω = 0. (5.50)

The constraints can be adjoined to the objective using multipliers λ and µ to yield

J [v] = − d

dϕ
ΛNM

v (ϕ∗) + λ(
〈
v2
〉
− P ) + µ(ΛNM

v (ϕ∗) + ∆ω)

= −
〈
YNM

ϕ (η, ϕ∗)v(η)
〉

+ λ(
〈
v2
〉
− P ) + µ〈YNM(η, ϕ∗)v(η)〉 + µ∆ω

=
1

2π

∫ 2π

0

(
v(η)

[
µYNM(η, ϕ∗) − YNM

ϕ (η, ϕ∗) + λv(η)
]
− λP + µ∆ω

)
dη. (5.51)

The associated Euler-Lagrange equation is

µYNM(η, ϕ∗) − YNM

ϕ (η, ϕ∗) + 2λv(η) = 0, (5.52)
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and solving for v yields the candidate solution

vf (η) =
1

2λ

[
YNM

ϕ (η, ϕ∗) − µYNM(η, ϕ∗)
]
. (5.53)

The multipliers λ and µ can be found by substituting (5.53) into the constraints (5.49) and

(5.50). This yields the equations

1

4λ2
[〈
YNM

ϕ YNM

ϕ

〉
− 2µ

〈
YNM

ϕ YNM
〉

+ µ2〈YNMYNM〉
]

= P, (5.54)

1

2λ

[〈
YNM

ϕ YNM
〉
− µ〈YNMYNM〉

]
= −∆ω, (5.55)

where averaging is done with respect to the variable η. Because Z is 2π-periodic, then Z ′

is as well, as are YNM and YNM

ϕ in both arguments. Thus one can show, e.g., using Fourier

series, that 〈Z ′Z〉 = 0, and
〈
YNM

ϕ YNM
〉

= 0 also, so that (5.55) yields

µ =
2∆ωλ

VNM

0

, (5.56)

where VNM

0 = 〈YNMYNM〉 can be seen from (5.29). Substituting this result into (5.54) leads

to a quadratic equation for λ given by

1

4λ2
SNM

0 +
(∆ω)2

VNM

0

= P. (5.57)

Substituting (5.53) into the equation (5.42), and recalling that
〈
YNM

ϕ YNM
〉

= 0, yields

d

dϕ
ΛNM

vf
(ϕ∗) =

1

2λ

[〈
YNM

ϕ (η, ϕ∗)YNM

ϕ (η, ϕ∗)
〉
− µ

〈
YNM

ϕ (η, ϕ∗)YNM(η, ϕ∗)
〉]

=
1

2λ

〈
YNM

ϕ YNM

ϕ

〉
=

1

2λ
SNM

0 . (5.58)

In particular, SNM

0 > 0, so we choose λ < 0 when solving (5.57) for λ in order for the

expression (5.58) to be negative in order for the objective in (5.48) to be maximized. It

follows that the optimal waveform and multiplier can be obtained from (5.53), (5.56) and
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Figure 5.13: Fast subharmonic entrainment controls vf for the Hodgkin-Huxley neuron model with fre-
quency detuning of 0% (in red) to ±5% (in blue). The controls for N, M = 1, . . . , 5 are shown rescaled to
unit power, with the domain and range in each plot at [0, 2π] and [−3.7, 3.7], respectively. The black line
indicates the x-axis. The entrainment ratio and RMS control energy are indicated; higher power is necessary
to achieve a given detuning as the ratio N :M increases. The entrainment rate, which is characterized by the
slope of ΛNM

vf
(ϕ∗), is noted in blue at bottom left for maximum detuning at ±5%, and in red at bottom right

for zero detuning.

(5.57) as

vf(η) =
YNM

ϕ (η, ϕ∗)

2λ
− ∆ωYNM(η, ϕ∗)

VNM

0

, λ = −1

2

√√√√ SNM

0

P − (∆ω)2

VNM
0

, (5.59)

where phase-locking occurs fastest when the oscillator is in the neighborhood of the phase

ψ(t) = ϕ∗ at the start of entrainment with vf . For zero frequency detuning, the optimal

waveform is a re-scaling of YNM

ϕ , which is a sum of shifted derivatives of the PRC function. As

|∆ω| increases, v continuously transforms towards a rescaling of YNM , which is the minimum

energy waveform for subharmonic entrainment, as derived in the previous section. This

transition reflects the conceptual trade-off between the fast entrainment objective (5.48) and

frequency control constraint (5.50), which can be satisfied only when P > (∆ω)2/VNM

0 , as

shown in (5.41). When N = M = 1, these results reduce to the harmonic (1:1) case [235].

Figure 5.13 shows the fast subharmonic entrainment controls for the Hodgkin-Huxley model

for values of N, M = 1, . . . , 5 at detunings between −5% and 5%, and Figure 5.14 shows

several corresponding interaction functions. It is important to note that the choice of control
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Figure 5.14: Interaction functions ΛNM

v for fast subharmonic entrainment controls vf for the Hodgkin-
Huxley neuron model with frequency detuning of 0% (in red) and ±5% (in blue), where the domain and
range in each plot is [0, 2π] and [−0.04, 0.05], respectively. The entrainment ratio and control energy are
indicated, and the black line indicates the x-axis. As N grows large, the interaction function converges to
small variation about ∆ω, which is indicated in each case by a dashed line. Red and blue stars mark the
phases {ϕ−

i } and stable fixed points {ϕ∗

i } of (5.31), each of which occur N times.

energy P significantly impacts the control waveform in the case of non-zero detuning, as seen

in the panels on the diagonal of Figure 5.13.

The optimal waveforms for fast subharmonic entrainment given by (5.59) have been applied

to the Hodgkin-Huxley model in order to verify their performance. We compare the observed

entrainment rates near the asymptotic value of the slow phase with the theoretical value

predicted by the gradient of the interaction function, as illustrated in Figure 5.4. We first

note that near the attractive fixed point ϕ∗, we can model the dynamics of the averaged slow

phase ϕ, which evolves according to (5.5), using a first order Taylor series approximation

about ϕ∗. This takes the form

ϕ̇ = ∆ω + ΛNM

v (ϕ∗) +
d

dϕ
ΛNM

v (ϕ∗)(ϕ− ϕ∗) =
d

dϕ
ΛNM

v (ϕ∗)(ϕ− ϕ∗), (5.60)

where ∆ω + ΛNM

v (ϕ∗) ≡ 0 because ϕ∗ is the fixed point that yields ϕ̇ = 0 for (5.5). Setting

ϕ0 = ϕ− ϕ∗, the equation (5.60) becomes

ϕ̇0 =
d

dϕ
ΛNM

v (ϕ∗)ϕ0 (5.61)

when ϕ0 is near zero. Recall that the slow phase itself is defined by φ(t) = ψ(t) − Ωt =

ψ(t) − M
N

Ωf t, and follows the dynamics (5.1). Due to the weak forcing assumption, (5.1)

can be approximated near the steady state value φ∗ by (5.61) where ϕ0 is replaced with

φ0 = φ(t)−φ∗. Hence the slow phase φ decays exponentially to φ∗ according to ln |φ−φ∗| =

c0 + d
dϕ

ΛNM

v (ϕ∗)t, where c0 is independent of time. This leads to the following methods for

approximating entrainment rates when simulating phase models and state-space systems.

For simulations involving the phase model, we examine the slow phase by simulating the

phase model (4.2) where u is the subharmonic fast entrainment input given by (5.59). In

particular, we create a time-series φk := φ(kTe) = ψ(kTe)−ΩkTe, k = 1, 2, . . ., that samples
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Figure 5.15: Comparing entrainment rates for the Hodgkin-Huxley model. Left: Phase difference from
steady-state value ψk − ψ∞ as a function of period k for harmonic (1:1) fast entrainment simulations of the
phase model (blue) and state-space model (red). Dashed lines show exponential fits. The target frequency is
Ω = 1.01ω. Center: Linear fits with slopes κ1 and κ2 of the log of the phase difference from steady state for
the phase model and state-space model, according to (5.62) and (5.65), respectively. The phase converges
exponentially to the steady-state. Right: The dashed line is tangent to ϕ̇ = ∆ω + Λ(ϕ) at the attractive
phase ϕ = ϕ∗ = 0. The slope of the line is d

dϕ
ΛNM

v (ϕ∗), which is the theoretical value of the convergence
rate when the oscillator is in the neighborhood of ϕ∗. For the simulations, the system is initialized so that
φ(0) = ψ∗ − 0.4 radians. In this example κ1 = −0.0252, κ2 = −0.0229, and d

dϕ
ΛNM

v (ϕ∗) = −0.0256.

the slow phase system (5.1), where Te = 2π/Ω is the desired period for the entrained system.

The behavior of the phase difference φk−φ∗ in the neighborhood of φ∗ can be closely described

by an exponential decay

ln |φk − φ∗| = c0 + κ1kTe, (5.62)

where κ1 is a negative coefficient that quantifies entrainment rate for the phase model.

Alternatively, (5.62) leads to the relation

ln |φk+1 − φk| = c1 + κ1kTe, (5.63)

where c1 is independent of k.

When simulating entrainment of the state-space model, the slow phase φ(t) must be approx-

imated by locating the peaks of the first state variable x1. We first form the time-series

zj := x1(tj), j = 1, 2, . . ., where tj is the time of the jth peak. Recall that we define ψ(t) = 0

(mod 2π) to occur when x1 attains a peak in its cycle, so that ψ(tj) = 2πj. We can then de-

fine a new slow phase sequence by φj := φ(tj) = ψ(tj)−Ωtj , which yields tj = (2πj−φj)/Ω,
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Figure 5.16: Entrainment rates resulting from subharmonic fast entrainment controls vf in 5.59 for the
Hodgkin-Huxley neuron model. The domain in each panel is the forcing frequency Ωf on the interval of 97%
to 103% of N

M
ω where ω is the natural frequency, and the range is [0.007, 0.050]. The entrainment ratio is

indicated at the top left, and the control waveform energy, which is adjusted to be slightly greater than the
minimum to guarantee entrainment for all the detuning values for each subharmonic ratio, is given at the
bottom left. The red line is the theoretical entrainment rate d

dϕ
ΛNM

v (ϕ∗), and the computed values of κ1 and
κ2 are shown in blue and green, respectively.

and hence tj+1 − tj = Te − (φj+1 − φj)/Ω, which yields

φj+1 − φj = 2π
Te − (tj+1 − tj)

Te
. (5.64)

Using the slow phase sequence {φj} instead of {φk} in (5.63) and applying (5.64) yields

ln

∣∣∣∣2π
Te − (tj+1 − tj)

Te

∣∣∣∣ = c2 + κ2jTe, (5.65)

where c2 is independent of j and κ2 is a negative coefficient that quantifies the entrainment

rate for the state-space model.

The coefficients κ1 and κ2 are in practice very near to the theoretical entrainment rate
d
dϕ

ΛNM

v (ϕ∗), and we expect κ1 to be consistently closer to the theoretical value, because

the latter is derived from the phase model. The procedures for obtaining κ1 and κ2 are

illustrated in Figure 5.15, which illustrates an example of harmonic (1:1) fast entrainment of

the Hodgkin-Huxley system phase model and state-space model where Ω = 1.01ω, and where

the theoretical and computed entrainment rates are found to be very similar. In addition, the

same experiment is repeated for subharmonic (N :M) entrainment and for a range of values of
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the detuning ∆ω, and the results are given in Figure 5.16. The values are in close agreement,

although the computation becomes problematic at higher entrainment ratios. Observe that

the entrainment rate is highest near the center of each panel in Figure 5.16, which corresponds

to ∆ω ≡ 0. This is because the frequency of the oscillator does not need to be altered, so

that the entrainment rate maximization objective (5.48) takes precedence in the problem

formulation posed in (5.48)-(5.50). Conversely, when the detuning is greater, i.e., when Ω is

farther from ω, the optimal theoretical and observed entrainment rate is lower, because the

the frequency entrainment design constraint (5.50) influences the problem significantly.

The solution waveforms derived in this chapter are optimal in the case of the weak forcing

assumption, as described in Section 5.1. Many approximations are made in the process of

phase reduction and averaging, so that the controls presented above are optimal only in an

asymptotic sense, as the input energy 〈v2〉 approaches zero. An analysis of the accuracy and

divergence from optimality of the produced controls, taking into account control amplitude,

accuracy of phase reduction, and effects of averaging is a challenging problem that is left

for future work. It is important to emphasize that the techniques presented here provide a

straightforward way to compute near optimal controls numerically, and have been applied

successfully in an experimental setting [235]. Furthermore, the simulation shown in Figure

5.12 demonstrates that the optimal waveforms obtained using the phase modeling technique

produce a similar result to the theory when applied to both the phase model and original

model. This strongly supports the hypothesis that optimal entrainment controls derived

using a phase model are very near optimal for the original system, provided the oscillator

remains within a neighborhood of its limit cycle.

In this chapter, we have developed a methodology for the design of optimal entrainment

controls for a single oscillator by taking advantage of the phase model reduction technique.

In the following chapter, these results are extended to techniques for optimal entrainment of

ensembles of oscillators, as well as methods for manipulating their complex interactions to

produce dynamic patterns.
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Chapter 6

Entrainment of Nonlinear Oscillator

Ensembles

Much of the work on the control of nonlinear oscillators is based on the assumption that

each dynamical unit behaves according to pre-defined underlying dynamics, such as the

Hodgkin-Huxley equations [99], which constitute a widely studied model of action poten-

tial propagation in a squid giant axon. However, in practical applications of neural control

and engineering, the systems in question are collections of biological neurons that exhibit

variation in parameters that characterize the system dynamics, specifically the frequency of

oscillation and sensitivity to external stimuli. Although such a system consists of a finite

collection of subsystems, it contains so many unobservable elements, each with parameter

uncertainty, that its collective dynamics are most practically modeled by indexing the sub-

systems by a parameter varying on a continuum. The control of such neural systems therefore

lies within an emerging and challenging area in mathematical control theory called ensemble

control, which encompasses a class of problems involving the guidance of an uncountably

infinite collection of structurally identical dynamical systems with parameter variation by

applying a common open-loop control [137]. In the context of phase model reduction, the

appropriate indexing parameter for such a collection of oscillating systems is natural fre-

quency [238]. Therefore, a practical approach to the optimal design of inputs that entrain a

collection of neurons is to first consider a family of phase models with common nominal PRC

and natural frequency varying over a specified interval. Optimal waveforms that entrain a

collection of phase oscillators with the greatest range of frequencies by weak periodic forcing

have been characterized for certain oscillating chemical systems [95], and this approach has

been extended to a method for optimal entrainment of oscillating systems with arbitrary

PRC [236, 238]. In this chapter, we present a method for engineering weak, periodic signals
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that entrain ensembles of structurally similar uncoupled oscillators with variation in system

parameters to a desired target frequency without the use of state feedback. The theory is

developed in the context of subharmonic entrainment, in order to produce the most general

results possible, which can be reduced to the 1:1 case by using N = M = 1. The same

controls can also be viewed as optimal inputs for the entrainment of a single oscillating

system with parameter uncertainty in a known range. In the following section, we begin by

examining the reduction of an ensemble of oscillators to phase coordinates, and investigate

the utility of this approximation using the Hodgkin-Huxley neuron model as an example.

6.1 Phase Reduction Approximation for Oscillator En-

sembles

In practice, physical systems exhibit variation in parameters that characterize the system

dynamics, which must be taken into account when designing optimal entrainment controls.

We approach this issue by modeling an ensemble of systems as a collection of phase models

with a common PRC that is derived using a nominal parameter set, and the frequencies

span the range of natural frequencies resulting from phase model reduction of systems with

parameters in a specified range. A justification of this approach and a sensitivity analysis is

provided in Section 5 in [238]. The following extension of this modeling and control technique

to subharmonic (N :M) entrainment parallels our previous work [238] by incorporating the

theory derived in Section 5.4, as well as a more rigorous optimality proof and additional

generalizations.

Specifically, we consider a collection of systems

ẋ = f(x, u, p), (6.1)

where x ∈ R
n is the state, u ∈ R is a scalar control, and p ∈ D ⊂ R

d is a vector of

constant parameters varying on a hypercube D containing a nominal parameter vector p0.

Each system can be reduced to a scalar phase model

ψ̇ = ω(p) + Z(ψ, p)u, (6.2)
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Figure 6.1: 6.1(a) Phase response curves of the Hodgkin-Huxley neuron model and 6.1(b)
the same curves normalized to unit energy. Each of the 27 grey curves corresponds to a PRC
obtained when each of the parameters VNa, VK , VL, gNa, gK , gL, and c is perturbed by 2%
above or below its nominal value, i.e. to the corner points in a parameter space hypercube.
In plot 6.1(b) the PRCs of the perturbed systems are similar to the black curve, which is
the PRC corresponding to the nominal parameter set. 6.1(b) shows the energy PZ of PRC
at each corner point as a function of the corresponding natural frequency (dots), as well as
an exponential fit.

where the natural frequency and PRC depend on the parameter vector p. In order to design

a control that entrains the ensemble for all p ∈ D, we approximate it by

{θ̇ = ω(p) + Z(θ, p0)u : p ∈ D}, (6.3)

where Z(θ, p0) is the PRC obtained from (6.1) using the nominal parameter vector.

In this section, we provide the results of several numerical simulations that further justify

our approach to the entrainment of neural ensembles. In particular, we examine the effect

of parameter variation on the phase response curve and optimal entrainment control for an

ensemble of neurons. We also provide a visualization of the uncertainty in the entrainment

properties of a neuron ensemble that arises due to such parameter variation. This is done

by computing an Arnold tongue distribution, in which the minimum RMS energy required

for entrainment of the ensemble to a given target frequency Ω is a random variable with a

probability density on the positive real line, instead of a single value, for each ω ∈ (ω1, ω2).

We demonstrate that the optimal entrainment waveform is minimally sensitive to variation

in underlying system parameters, that it is always superior to a generic waveform such as a

sinusoid or square pulse train, and that its amplitude can be appropriately chosen to entrain

the neuron with the most problematic parameter set in the ensemble.

The following sensitivity analysis can be performed to examine the effect of parameter vari-

ation on the PRC of an oscillator. Suppose that p = (p1, . . . , pd) are the parameters that

characterize the system dynamics (6.1), with nominal values p0 = (p01, . . . , p
0
d). We compute
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the PRC Z(θ, p) at each corner of a hypercube D =
∏d

i=1(βi, γi), where (βi, γi) is a small con-

fidence interval for p0i . The corner points of D are examined in particular in order to analyze

the aggregate effect of uncertainty in all parameters. If the 2d curves so obtained are similar to

the nominal PRC, then the optimal controls derived using the latter will be near optimal for

entrainment of an uncertain ensemble. Such a robustness property is important in practical

neural entrainment applications, because biological oscillators exhibit significant variation

from any nominal model. Our analysis of the sensitivity of the Hodgkin-Huxley PRC to

parameter variation appears in Figure 6.1, in which we have used (βi, γi) = (0.98p0i , 1.02p0i )

for the d = 7 parameter values in the model. For each of the corner points of D we plot in

Figure 6.1(b) the PRC of the Hodgkin-Huxley system, normalized to unit energy, and find

that it does not vary significantly from the nominal curve. This supports our assertion that

the optimal entrainment waveform is minimally sensitive to variation in underlying system

parameters. Note that the energy of the PRC can take different values for the same value of

ω, depending on the original system parameters, and approximately follows an exponential

trend, as shown in Figure 6.1(c).

Although minor variations in Hodgkin-Huxley neuron model parameter values do not sig-

nificantly effect the shape of the PRC, they do have a significant effect on the amplitude,

and hence the entrainment properties of a neuron ensemble forced by a fixed waveform v.

The resulting uncertainty is visualized as an Arnold tongue distribution, which is the prob-

ability distribution of the minimum RMS control energy required to entrain an ensemble

of oscillators, with parameter set distributed on a given probability space D, as a function

of natural frequency ω. In practice, we can estimate this empirically for a hypercube D
with uniform probability measure by uniformly randomly generating samples pk ∈ D of the

parameter for k = 1, . . . , N , for which we compute the natural frequency ωk of the perturbed

Hodgkin-Huxley model and the minimum RMS control energy Pk(v) required to entrain the

kth model using v. This results in N samples that are plotted on the energy-frequency plane,

as shown in Figure 6.2(a), which displays the empirical Arnold tongue distribution, using

N = 500 samples, for a sinusoidal control waveform and for the optimal waveform v∗ that

maximizes the range of entrainment. From visual inspection one concludes that the optimal

waveform entrains the perturbed model using lower energy than the sinusoid in the majority

of cases. More distinctly, Figure 6.2(b) displays the ratio between the minimum RMS energy

levels required to entrain each parameter set pk using the optimal control and a sinusoid,

as a function of the natural frequency ωk. Not only is the ratio below unity in most cases,

with an average of 0.78, but there is also a clear trend line at 0.8 in the frequency range
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Figure 6.2: (a) Arnold tongue distributions for an ensemble of Hodgkin-Huxley neurons
with uniform random parameter variation on (βi, γi) = (.95p0i , 1.05p0i ), where p0(p01, . . . , p

0
7)

are nominal values for the parameter set VNa, VK , VL, gNa, gK , gL, and c. The target Ω
is the nominal natural frequency. There are N = 500 randomly perturbed parameter sets
used to generate empirical distributions (points) for entrainment with a sinusoid vs (red ◦),
and with v∗ (blue ·), the optimal waveform for entrainment to Ω = 1

2
(ω1 + ω2). Solid lines

are theoretical Arnold tongue boundaries. (b) The ratio ηk = Pk(v∗)/Pk(vs) plotted as a
function of ω/Ω, the natural frequency of the neuron with parameter set pk (rescaled by the
target frequency). (c) The optimal waveform requires an average of 22% less RMS energy
for entrainment than a sinusoid. Theoretical Arnold tongues for entrainment of Hodgkin-
Huxley neurons with parameter sets at the corner points of D with (βi, γi) = (0.98p0i , 1.02p0i ),
where the target Ω is the nominal natural frequency. The Arnold tongues for the nominal
parameter set (green) and the corner points (grey) are bounded by those of the best- and
worst- case scenarios. Each is generated using the PRC Zp for parameter set p.

0.95 < ω < 0.99, with a much lower ratio for natural frequencies near the target Ω. This

result strongly supports the assertion that the optimal ensemble entrainment waveform de-

rived using our method is superior to traditional waveforms such as the sinusoid, not only

for phase-reduced models, but also for the underlying non-reduced dynamical system model.

For a given oscillator ensemble, given a confidence region hypercube D for the parameter

set P , the PRC can be computed at each corner point of D and can be used to approximate

the corresponding Arnold tongue when the perturbed system is entrained by the optimal

waveform v∗ for the nominal parameter set. In order to assure robust entrainment of the

entire ensemble, the RMS energy of v∗ should be chosen such that it entrains the oscillator

with the worst case parameter set, whose theoretical Arnold tongue is indicated by the top

dashed line in Figure 6.2(c). The nominal oscillator is entrained with an RMS energy 24%

lower than the worst case scenario. This difference is very near the average of 22% less

RMS energy that the optimal waveform requires to entrain an oscillator with parameter

uncertainty. It follows that simply by using the waveform v∗ instead of a square wave or
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sinusoid one can significantly enhance the likelihood that entrainment of an ensemble will

be robust to such parameter variation. The technique for deriving such optimal waveforms

v∗ is presented in the following sections.

6.2 Minimum-Energy Entrainment of Oscillator En-

sembles

The following derivation of minimum-energy waveforms for the entrainment of oscillator

ensembles is presented in the general subharmonic context. A collection of parameterized

dynamical systems of the form (6.1) are assumed to be well-represented by an ensemble of the

form (6.3). Our strategy is to derive a minimum energy periodic control signal u(t) = v(Ωf t)

that guarantees entrainment for each system in the ensemble (6.3), which is of the form

F = {ψ̇ = ω + Z(ψ)u : ω ∈ [ω1, ω2]}, (6.4)

to a frequency Ω, where the target and forcing frequencies satisfy MΩf = NΩ. We approach

the subharmonic entrainment of oscillator ensembles by applying the theory in Section 5.4.1

to the derivation of optimal ensemble controls in Section 4 of [238], which appears in [240].

We call the range of frequencies that are entrained by the control v applied at the frequency

Ωf with subharmonic ratio N :M the subharmonic locking range RNM

Ω [v] = [ω−, ω+], and

when [ω1, ω2] ⊆ RNM

Ω [v] we say that the ensemble F is entrained. This requirement results

in two constraints, which can be visualized with the help of Figure 6.3, of the form

∆ω+ , ω+ − Ω = −ΛNM

v (ϕ−) ≥ ω2 − Ω , ∆ω2,

∆ω− , ω− − Ω = −ΛNM

v (ϕ+) ≤ ω1 − Ω , ∆ω1.
(6.5)

The objective of minimizing control energy 〈v2〉 given the constraints (6.5) gives rise to the

optimization problem

min J [v] = 〈v2〉, v ∈ P

s.t. ∆ω2 + ΛNM

v (ϕ−) ≤ 0,

−∆ω1 − ΛNM

v (ϕ+) ≤ 0.

(6.6)
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Figure 6.3: This graphic illustrates the constraints (6.5). The curve shown is Ω−ΛNM

v (ϕ), and the frequency
locking region RNM

Ω [v] = [ω−, ω+] is indicated by pink shading. When [ω1, ω2] ⊆ RNM

Ω [v], then the collection
(6.4) is entrained to Ω.

We refer to the event that one of v+ (when ω2 < Ω) or v− (when ω1 > Ω) in (5.39)

can solve the problem (6.6) as Case I. Understanding the Arnold tongues that characterize

subharmonic entrainment of ensembles in the form of F , as illustrated in Figure 6.4, will

clarify the conditions when (5.39) is optimal, and when another class of solutions, which we

call Case II, is superior. We derive this condition, which depends on the ensemble parameters

ω1 and ω2 and Z as well as the target frequency Ω and the subharmonic ratio N :M .

6.2.1 The ensemble Arnold tongue

In contrast to the description in Section 5.1.2 of the Arnold tongue associated with a single

oscillator and a given waveform, for an ensemble F we are interested in the relationship

between the locking range RNM

Ω [v] and the RMS control power. Therefore, we define the

ensemble Arnold tongue as the set of pairs (ω, PNM
v ) ∈ R

2 that result in entrainment of an

oscillator in F with natural frequency ω to a frequency Ωf at a subharmonic N :M ratio

using the waveform v, where w is the natural frequency of the oscillator. The equation (5.6)

is modified to ω−Ω+PNM

v (ω) ·ΛNM

ṽ (ϕ) = 0, where the left and right boundaries of the Arnold

tongue are approximated by solving for PNM

v (ω) as a function of ω and substituting ϕ = ϕ−
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v (ϕ−) and ΛNM
v (ϕ+) are active. Note that one-sided tongues as in

Figure 5.2 can occur in either case, depending on N , M , and the PRC Z. The range [ω1, ω2] of frequencies
in the ensemble F is marked with a red bar.

and ϕ = ϕ+, respectively. This yields

PNM

v (ω) =

{
(Ω − ω)/ΛNM

ṽ (ϕ−), right

(Ω − ω)/ΛNM

ṽ (ϕ+), left,
(6.7)

as a linear estimate of the ensemble Arnold tongue boundary, where ṽ = v/
√
〈v2〉 is the unit

power normalization of v as before. Illustrations of Arnold tongues for the two possible cases

are illustrated in Figure 6.4. The notion of ensemble Arnold tongues guides the derivation in

the following subsections of the possible optimal control solutions and criteria for optimality

of these different cases.

6.2.2 Case I: One constraint is active

To derive the conditions when (5.39) is optimal, we focus on the entrainment of F to a

frequency Ω ∈ [ω1, ω2] using v− when ∆ω+ = ∆ω2 > −∆ω1 (i.e., when ω2 is further from

Ω than ω1) while noting that the case where v+ is optimal for ∆ω2 < −∆ω1 = −∆ω−

(i.e., when ω1 is further from Ω than ω2) is symmetric. Because ω2 is the natural frequency

in the ensemble farthest from Ω, we use ∆ω = ∆ω2 in (5.39), and then check whether

[ω1, ω2] ⊆ RNM

Ω . Then the first constraint in (6.6) is active, which yields

−∆ω+ = ΛNM

v (ϕ−) = −∆ω2, (6.8)
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so that ω+ = ω2 is the upper bound on the locking range RNM

Ω [v], as desired. It remains to

determine ΛNM

v (ϕ+) = Ω − ω−, from which we obtain the lower bound ω− on RNM

Ω [v]. Using

the expression (5.24) for ΛNM

v (ϕ) together with the solution for v− in (5.39) using ∆ω = ∆ω2,

we find that

ΛNM

v
−

(ϕ) = 〈YNM(η, ϕ)v−(η)〉 = −∆ω2

VNM

0

VNM(ϕ− ϕ−). (6.9)

Observe that ΛNM

v (ϕ) is maximized when VNM(ϕ − ϕ−) is minimized, and hence to find

ΛNM

v (ϕ+) it suffices to find the minimum value VNM

∗ of VNM . It follows that

ΛNM

v
−

(ϕ+) = −∆ω2

VNM

0

VNM

∗ , (6.10)

and the lower bound of RNM

Ω [v] is ω− = Ω − ΛNM

v (ϕ+). If ω− < ω1, then [ω1, ω2] ⊆ RNM

Ω [v],

hence the control v− in (5.39), with ∆ω = ω2−Ω, is the minimum energy solution to problem

(6.6), and entrains F to the frequency Ω.

Therefore to determine whether the problem is optimally solved by v−, the decision criterion

is obtained by combining the definition ΛNM

v (ϕ+) = −∆ω− with (6.8) and (6.10) to yield the

boundary estimate ∆ω− = ∆ω+V
NM

∗ /VNM

0 . Thus if the relation

∆ω1 > ∆ω− =
∆ω2

VNM

0

VNM

∗ (6.11)

is satisfied, then v− with ∆ω = ∆ω2 will be optimal. The derivation of the condition when

v+ is optimal is symmetric, and results in a boundary estimate ∆ω+ = ∆ω1V
NM

∗ /VNM

0 . It

follows that if the condition

∆ω2 < ∆ω+ =
∆ω1

VNM

0

VNM

∗ (6.12)

holds, then the control v+ with ∆ω = ∆ω1 is optimal for entraining F to the frequency Ω.

When neither (6.11) or (6.12) holds, then neither v− or v+ in (5.39) is the solution to (6.6).

In the following subsection, we derive the optimal solution for that case.
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6.2.3 Case II: Both constraints are active

In Case I above, when (5.39) is optimal for entraining the ensemble (6.4), only one of the

constraints in problem (6.6) is active. When neither of the conditions (6.11) and (6.12) is

satisfied, the solution to problem (6.6) occurs when both constraints are active. To derive

this solution, we adjoin the constraints in (6.6) to the minimum energy objective function

using multipliers µ− and µ+, which gives rise to the cost functional

J [v] =
〈
v2
〉
− µ−(∆ω2 + ΛNM

v (ϕ−)) − µ+(−∆ω1 − ΛNM

v (ϕ+))

=
1

2π

∫ 2π

0

(
v(η)[v(η) − µ−Y

NM(η, ϕ−) + µ+Y
NM(η, ϕ+)]

− µ−∆ω2 + µ+∆ω1

)
dη, (6.13)

where we have used the expression (5.24) for ΛNM

v . Solving the Euler-Lagrange equation

yields

ve(θ) = −1

2
[µ+Y

NM(η, ϕ+) − µ−Y
NM(η, ϕ−)], (6.14)

which we substitute back into problem (6.6) to obtain

〈
v2e
〉

=
1

4
〈
(
µ+Y

NM(η, ϕ+) − µ−Y
NM(η, ϕ−)

)2〉 (6.15)

=
1

4
(µ2

+ + µ2
−)VNM

0 − 1

2
µ+µ−V

NM(∆ϕ),

ΛNM

ve (ϕ+) = −1

2
µ+V

NM

0 +
1

2
µ−V

NM(∆ϕ), (6.16)

ΛNM

ve (ϕ−) =
1

2
µ−V

NM

0 − 1

2
µ+V

NM(∆ϕ), (6.17)

where ∆ϕ = ϕ+ − ϕ− is the range spanned by ΛNM

v (ϕ) for ϕ ∈ [0, 2π]. Using the expres-

sions (6.15), (6.16), and (6.17) transforms the functional optimization problem (6.6) into a
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nonlinear programming problem in the variables µ−, µ+, and VNM(∆ϕ), given by

min J [µ−, µ+, V (∆ϕ)] = 1
4
(µ2

+ + µ2
−)VNM

0 − 1
2
µ+µ−V

NM(∆ϕ)

s.t. ∆ω2 + 1
2
µ−V

NM

0 − 1
2
µ+V

NM(∆ϕ) ≤ 0,

−∆ω1 + 1
2
µ+V

NM

0 − 1
2
µ−V

NM(∆ϕ) ≤ 0.

(6.18)

We focus in Case II on optimal solutions to problem (6.18) for which both constraints are

active. Indeed, when Case I is in effect, one of conditions (6.11) or (6.12) is satisfied, so that

µ+ = 0 or µ− = 0, and problem (6.18) is reduced to problem (5.35) with λ = µ− or λ = −µ+,

respectively. Otherwise, both constraints in problem (6.18) are active, with multipliers given

by

µ+ =
2(∆ω1V

NM

0 − ∆ω2V
NM(∆ϕ))

(VNM

0 − VNM(∆ϕ))(VNM

0 + VNM(∆ϕ))
,

µ− =
2(∆ω1V

NM(∆ϕ) − ∆ω2V
NM

0 )

(VNM

0 − VNM(∆ϕ))(VNM

0 + VNM(∆ϕ))
.

(6.19)

For these multipliers, the objective in problem (6.18) is reduced to function of β = VNM(∆ϕ)

given by

J [β] =
(∆ω1V

NM

0 − ∆ω2β)2 + (∆ω1β − ∆ω2V
NM

0 )2

(VNM

0 − β)2(VNM

0 + β)2
VNM

0

−2(∆ω1V
NM

0 − ∆ω2β)(∆ω1β − ∆ω2V
NM

0 )β

(VNM

0 − β)2(VNM

0 + β)2
. (6.20)

Differentiating the cost (6.20) with respect to β results in

dJ [β]

dβ
= −2

(VNM

0 ∆ω1 − β∆ω2)(V
NM

0 ∆ω2 − β∆ω1)

(VNM

0 − β)2(VNM

0 + β)2
. (6.21)

Recall that because neither of the conditions (6.11) or (6.12) holds, then

VNM

0 ∆ω1 − VNM

∗ ∆ω2 < 0 and VNM

0 ∆ω2 − VNM

∗ ∆ω1 > 0. (6.22)

We are restricted to β = VNM(∆ϕ) ∈ [VNM

∗ , VNM

0 ], so we write VNM

∗ − β = p(VNM

∗ − VNM

0 )

for some p ∈ [0, 1]. In addition, the fact that ω1 < ω2 results in ∆ω1 − ∆ω2 < 0 and
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∆ω2 − ∆ω1 > 0. Therefore the quantities in the numerator of (6.21) satisfy

VNM

0 ∆ω1 − β∆ω2 = VNM

0 ∆ω1 − VNM

∗ ∆ω2 + (VNM

∗ − β)∆ω2 (6.23)

= VNM

0 ∆ω1 − VNM

∗ ∆ω2 + p(VNM

∗ − VNM

0 )∆ω2

= p(∆ω1 − ∆ω2)V
NM

0 + (1 − p)(VNM

0 ∆ω1 − VNM

∗ ∆ω2) < 0,

VNM

0 ∆ω2 − β∆ω1 = VNM

0 ∆ω2 − VNM

∗ ∆ω1 + (VNM

∗ − β)∆ω1 (6.24)

= VNM

0 ∆ω2 − VNM

∗ ∆ω1 + p(VNM

∗ − VNM

0 )∆ω1

= p(∆ω2 − ∆ω1)V
NM

0 + (1 − p)(VNM

0 ∆ω2 − VNM

∗ ∆ω1) > 0.

The relations (6.23) and (6.24) imply that (6.21) is positive for all values of β = VNM(∆ϕ) ∈
[VNM

∗ , VNM

0 ], so that the cost (6.20) increases when VNM(∆ϕ) does. Therefore the objective

(6.20) is minimized when VNM(∆ϕ) is, which occurs when VNM(∆ϕ) = VNM

∗ . Therefore the

problem (6.18) is solved when

∆ϕ = ϕNM

∗ = argmin
ϕ∈[0,2π]

VNM(ϕ), (6.25)

and the multipliers are as in (6.19). The locking range for this control is then exactly

RNM

Ω [ve] = [ω1, ω2], which satisfies the entrainment constraints (6.5).

By combining the results in Sections 6.2.2 and 6.2.3 for Cases I and II we can completely

characterize the minimum energy control that entrains the ensemble F in (6.4) to a target

frequency Ω with subharmonic ratio N :M . This full solution is

ve(η) =






−∆ω1

VNM

0

YNM(η, ϕ+) if ∆ω2 <
∆ω1

VNM

0

VNM

∗ ,

(∆ω2V
NM

∗ − ∆ω1V
NM

0 )

(VNM

0 − VNM
∗ )(VNM

0 + VNM
∗ )

YNM(η, ϕNM

∗ )

+
(∆ω1V

NM

∗ − ∆ω2V
NM

0 )

(VNM

0 − VNM
∗ )(VNM

0 + VNM
∗ )

YNM(η, 0)

if






∆ω1 <
∆ω2

VNM

0

VNM

∗

and

∆ω2 >
∆ω1

VNM

0

VNM

∗

−∆ω2

VNM

0

YNM(η, ϕ−) if ∆ω1 >
∆ω2

VNM

0

VNM

∗ .

(6.26)
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Finally, the energy of ve, which is the minimum value of the objective (6.13), is

〈
v2e
〉

=






(∆ω1)
2

VNM

0

if ∆ω2 <
∆ω1

VNM

0

VNM

∗ ,

(∆ω2
1 + ∆ω2

2)VNM

0 − 2∆ω1∆ω2V
NM

∗

(VNM

0 − VNM
∗ )(VNM

0 + VNM
∗ )

if






∆ω1 <
∆ω2

VNM

0

VNM

∗

and

∆ω2 >
∆ω1

VNM

0

VNM

∗

(∆ω2)
2

VNM

0

if ∆ω1 >
∆ω2

VNM

0

VNM

∗ .

(6.27)

We have shown that the minimum energy periodic control u(t) = v(N
M

Ωt) that achieves

subharmonic entrainment of an ensemble of oscillators (6.4) to a target frequency Ω is an

appropriately weighted sum of shifted functions YNM , as given in (5.25), where η = N
M

Ωt =

Ωf t is the forcing phase. When N = M = 1, these results reduce to the optimal solution for

the harmonic (1:1) case [238]. Figure 6.5 shows the minimum energy subharmonic controls for

ensembles of Hodgkin-Huxley neurons for N,M = 1, . . . , 5 and several ranges of [ω1, ω2]. We

have also presented generalized criteria for using the two derived classes of optimal controls,

which can be applied to systems with Type I (strictly positive) and Type II PRCs, while

the derivation in our previous work on 1:1 entrainment required Q∗ < 0. It is important to

note that using Ω = 1
2
(ω1 +ω2) allows the ensemble to be entrained with a minimum control

energy, as in the case of [ω1, ω2] = [0.95ω, 1.05ω]. One can then consider a dual objective

of maximizing the locking range of entrainment given a fixed power, as described in the

following section.

6.3 Maximum locking range for subharmonic entrain-

ment

In some applications, the frequency range [ω1, ω2] of the oscillators in F in (6.4) is not

known, or it is desirable to entrain the largest collection of oscillators with similar PRC but

uncertain frequency. For such cases, we seek a control v that maximizes the locking range

of entrainment RNM

Ω [v] for a fixed control energy 〈v2〉 = P . Because RNM

Ω [v] = [ω−, ω+], we

wish to maximize ω+ − ω− = ∆ω+ − ∆ω− = ΛNM

v (ϕ+) − ΛNM

v (ϕ−), where the latter equality
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Figure 6.5: Minimum energy subharmonic entrainment controls for Hodgkin-Huxley neuron ensem-
bles with frequency ranges [0.925ω, 1.025ω], [0.9375ω, 1.0375ω], [0.95ω, 1.05ω], [0.9625ω, 1.0625ω], and
[0.975ω, 1.075ω], colored in order from red to blue, and target frequency Ω = ω equal to the nominal
natural frequency in Appendix A.1. In each panel, the controls are rescaled so that the greatest energy
waveform has unit energy, and the domain and range in each plot is [0, 2π] and [−3.7, 3.7], respectively. The
entrainment ratio is indicated at the top, while the lowest energy (for vr (purple)) and highest energy (for
v− (red) or v+ (blue)) are shown at bottom left and right, respectively.

1:1 2:1 3:1 4:1 5:1

Figure 6.6: Interaction functions for the controls shown in Figure 6.5, where the domain and range in each
plot is [0, 2π] and [−0.05, 0.05], respectively. The entrainment ratio is indicated, and the black line denotes
the x-axis.

is due to the constraints 6.5. The resulting optimization problem can be formulated as

max
v∈P

J [v] = ΛNM

v (ϕ+) − ΛNM

v (ϕ−) (6.28)

s.t.
〈
v2
〉

= P. (6.29)
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By adjoining the constraint to (6.29) to the objective using a multiplier λ, we obtain a cost

functional given by

J [v] = ΛNM

v (ϕ+) − ΛNM

v (ϕ−) − λ(
〈
v2
〉
− P )

=
〈
YNM(η, ϕ+)v(η)

〉
−

〈
YNM(η, ϕ−)v(η)

〉
− λ(

〈
v2
〉
− P )

=
1

2π

∫ 2π

0

(
v(η)

[
YNM(η, ϕ+) − YNM(η, ϕ−) − λv(η)

]
+ λP

)
dη. (6.30)

Solving the Euler-Lagrange equation yields a candidate solution in the form

vr(η) =
1

2λ

[
YNM(η, ϕ+) − YNM(η, ϕ−)

]
. (6.31)

By applying (5.28), the interaction function is shown to be

ΛNM

vr (ϕ) =
1

2λ
[VNM(ϕ− ϕ+) − VNM(ϕ− ϕ−)], (6.32)

so the objective (6.28) is given by

ΛNM

vr (ϕ+) − ΛNM

vr (ϕ−) =
1

λ
[VNM(0) − VNM(∆ϕ)]. (6.33)

It follows that to maximize the entrainment range, the phase ∆ϕ must minimize VNM in

order to maximize the span of the interval RNM

Ω [v], hence ∆ϕ = ϕNM

∗ as in (6.25). In addition,

substituting the candidate solution (6.31) into the constraint (6.29) yields

P =
〈
v2r
〉

=
1

4λ2
[
2〈YNMYNM〉 − 2

〈
YNM(η, ϕ+)YNM(η, ϕ−)

〉]
=

1

2λ2
[VNM

0 − VNM

∗ ], (6.34)

so that solving for the multiplier λ yields

λ =
1√
2P

√
VNM

0 − VNM
∗ . (6.35)

Therefore the waveform of energy P with maximum locking range RNM

Ω [v] for an ensemble of

the form (6.4) is given by

vr(η) =

√
P√

2(VNM

0 − VNM
∗ )

[YNM(η, ϕNM

∗ ) − YNM(η, 0)]. (6.36)
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Figure 6.7: Arnold tongues for minimum-energy subharmonic entrainment ensemble controls ve for
Hodgkin-Huxley neurons, where the target frequency is Ω = 0.99ω. The domain in each panel is the forcing
frequency Ωf on the interval of 90% to 110% of N

M
ω where ω is the natural frequency, and the range is [0, .5].

The entrainment ratio is indicated at the bottom right. The shaded region is the theoretical Arnold tongue
as determined by (6.7). The computed boundaries of the Arnold tongues are shown in blue for entrainment
of the phase model, and minimum entrainment energies for the state-space model with parameter values at
the corner points of D are shown in red.

Note that although a phase ambiguity exists because we have solved for ∆ϕ, but not for ϕ+

and ϕ−, the initial phase at which the control is applied is unimportant because entrainment

is an asymptotic process. The waveform (6.36) is actually a special case of (6.27) when

Ω = 1
2
(ω1 + ω2), and the extremal detunings ∆ω2 = −∆ω1 are related to the control energy

by P = 2(∆ω2)
2/(VNM

0 − VNM

∗ ). Such controls are shown in purple in Figure 6.5. We

may deduce that the control (6.36) results in the greatest locking range for a fixed control

energy, and can be applied at subharmonic forcing frequency Ωf = N
M

1
2
(ω1 + ω2) to entrain

the ensemble F with minimum control energy. These dual objectives are optimized by the

same waveform, and this link clarifies the relationship between the interaction function and

the maximal frequency locking range, which was first observed for harmonic entrainment

[95, 236].

Examination of entrainment regions for the waveforms ve in (6.26) that entrain ensembles of

oscillators is complicated by the alternative notion of entraining an ensemble, as illustrated in

Figure 6.4. Rather than varying the forcing frequency to compute Arnold tongue of a single

oscillator with fixed natural frequency, this notion of an ensemble Arnold tongue requires

the forcing frequency to remain fixed while the forcing energy required to entrain oscillators

with varying natural frequency is determined. Recall that in Section 6.1 we considered a
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Figure 6.8: Arnold tongues for minimum energy subharmonic entrainment ensemble controls ve for
Hodgkin-Huxley neurons, where the target frequency is Ω = 0.99ω. All of the Arnold tongues in Figure
6.7 are shown together on one plot, where the domain is Ωf/ω, i.e., the ratio between the forcing and
natural frequencies.

collection of systems ẋ = f(x, u, p) where p ∈ D ⊂ R
d is a vector of constant parameters

varying on a hypercube D containing a nominal parameter vector p0. This collection was

reduced to the ensemble F in (6.4). Thus the ensemble Arnold tongues for the phase-reduced

ensemble can be computed by varying ω in F and computing the boundaries as described

above. For the ensemble of state-space oscillators, we consider the parameter hypercube

D :=
∏7

i=1[.98p0i , 1.02p0i ], where p0 = (p01, . . . , p
0
7) represents the nominal set of parameters

VNa, VK , VL, gNa, gK , gL, and c of the Hodgkin-Huxley system. Each corner of D corresponds

to a frequency of oscillation, for which we find the minimum power PNM

ṽ (ω) that results in

entrainment. These points are plotted along with the shaded theoretical Arnold tongues in

Figures 6.7 and 6.8, which arise from simulations in which the target frequency is set to 99%

of the nominal frequency for the Hodgkin-Huxley system.

Figures 5.11 and 5.12 show close agreement between the phase-locking regions predicted from

the theory and the computed boundaries when the forcing frequency Ωf is within several

percent of N
M
ω, and the first order approximation for the phase dynamics given by the model

4.2 is accurate. For larger frequency detuning, the nonlinear behavior of the oscillation is not

captured by the phase model. Figures 6.7 and 6.8 show that the theoretical and computed

ensemble Arnold tongues agree as well.

The above results on the entrainment of oscillator ensembles can be interpreted as a means

of shaping the Arnold tongue characterizing the entrainment of an oscillatory ensemble. By

adjusting the forcing waveform while keeping the forcing frequency Ωf fixed, it is possible

to significantly alter the frequency range (w1, w2) of the collection of oscillators F subjected

to subharmonic phase-locking. The main focus here is on accomplishing such manipulation

in an optimal manner. By using an input of appropriate frequency, entrainment of a given
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ensemble F may be achieved using a biased sinusoid of the form u(t) = b0 + b1 sin(Ωf t)

with appropriate constants b0, b1, and Ωf . However, the derived waveforms accomplish this

design goal using significantly less energy. Furthermore, the analysis of Arnold tongues for

minimum-energy waveforms provides a framework for studying the possibilities and limita-

tions of engineering entrainment of rhythmic systems on multiple time scales, for instance in

an interacting network. Such analysis may also shed light on the evolved optimal periodic

activity of complex multi-scale biological systems. For example, experimentally measured

subharmonic entrainment regions were approximated by injecting single Aplysia motoneu-

rons with sinusoidal inputs of varying frequency and amplitude [108], resulting in plots

similar to Figures 6.7 and 6.8.

An indirect implication of the above results concerns the phase-locking properties of a col-

lection of simultaneously entrained oscillators. Specifically, the interaction function between

the PRC of one or more oscillators and the common control input can be used to determine,

and moreover design, the relative phases of such a collection. So far, the focus here has been

entirely on the frequency locking aspect of entrainment, and the fixed point of the average

slow phase ϕ to which oscillators converge was not considered as long as the frequency con-

trol objective is satisfied. However, as one can see in Figure 5.1, the form of the interaction

function determines the asymptotic phases of entrained oscillators, which is of particular

interest when manipulating the synchronization of multiple rhythmic units. The techniques

presented above are extended in the following section to engineer synchronization in collec-

tions of oscillators using weak forcing without feedback information, which is of compelling

interest in electrochemistry [119], neuroscience [219], and circadian biology [81]. The impact

may be greatest on the ability to manipulate collections of biological circadian and neural

systems, for which the entrained phases may need to be designed in a nonuniform manner,

by using common inputs.

6.4 Phase Assignment for Oscillator Ensembles

In this section, we describe an innovative perspective on modeling and control of complex

and uncertain rhythmic dynamical systems in which a common input is applied to produce a

dynamical pattern in a collection of oscillators without requiring a certain coupling structure.

In addition, the oscillators involved may have arbitrary dynamics, as long as they exhibit
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sufficient nonlinear relaxation for the control design to be realizable. Furthermore, knowledge

of the initial state of the oscillators is not required, and control input designs are robust to

uncertainty in the parameters of each oscillating system, as well as to disturbances, in a way

that can be directly quantified. Finally, a desired synchronization structure can often be

established and subsequently maintained for a collection of oscillators simply by applying

the appropriate periodic waveform. Therefore, switching between synchronization patterns

in a collection of oscillators can be as simple as switching between input waveforms.

Crucially, the fundamental results in Section 5.1 provide insight into the use of ergodic theory

to engineer synchronization structures in real collections of rhythmic dynamical units. These

techniques do not depend on the particular model or system involved, and can be applied to

weakly nonlinear oscillators even when the system dynamics are uncertain or even unknown.

The results in Chapter 5 and Sections 6.1 through 6.3 focus entirely on manipulating the

frequency of one or more oscillating systems. They have been confirmed computationally

[236, 238, 240] as described in detail in Chapter 5, as well as in practice [235] for the experi-

mental electrochemical apparatus in Section 5.3, for which a representation of the form (4.2)

can only be inferred experimentally. These results are subsequently extended to account for

the phase structures that can result in periodically forced collections of heterogeneous oscil-

lators, and are applied to produce control design techniques that are constructive, tractable,

and verifiable in real laboratory dynamical systems.

The following section describes a method for establishing a desired phase relationship among

a collection of non-interacting nonlinear dynamical oscillating systems that are mutually

synchronized by an external forcing signal without the use of feedback information. In

addition, it is of interest to derive conditions, based on the dynamics of the oscillators, on

the ability to produce a desired pattern. As before, phase model reduction and an ergodic

averaging approximation form the foundation for the technique.
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6.4.1 Stability of Synchronization Structures in Oscillator Ensem-

bles

The theory in Section 5.1 can be extended to understand the long-run behavior of a collection

of P nonlinear oscillators with phase-reduced dynamics given by

F = {ψ̇i = ωi + Z(ψi)u, i = 1, . . . , P} (6.37)

which all share an identical PRC. If an input of the form u(t) = v(Ωt), where v is 2π-periodic,

entrains all of the oscillators in F to a frequency Ω, then the pattern that emerges in the

asymptotic relative phase of the oscillators can be computed from the interaction function

and the frequencies ωi. Specifically, in the steady state the phase of each synchronized

oscillator will evolve with a fixed relation φ∞
i to the forcing phase θ = Ωt, i.e., ψi(t) = Ωt+φ∞

i ,

or equivalently φi(t) = φ∞
i , where φi(t) = ψi(t) − Ωt. Such a configuration is shown in

Figure 6.11(c). The synchronization dynamics that result from the entrainment of F can

be understood by examining the interaction function between v and Z. By applying the

averaging procedure in Section 5.1 to each system in F , we obtain a collection of averaged

dynamics of the form (5.5), which we denote 〈F〉, and which is given by

〈F〉 = {ϕ̇i = ∆ωi + Λv(ϕi), i = 1, . . . , P}. (6.38)

Because we consider oscillators for which the limit cycles are strongly attractive, we may

assume that limt→∞ ϕi(t) = limt→∞ φi(t) = φ∞
i holds. When synchronization of the collection

〈F〉 to the fixed points φ∞
i occurs, then ϕ̇i = ∆ωi + Λv(ϕi) = 0, with

(i) Λv(φ
∞
i ) = −∆ωi and (ii) Λ′

v(φ
∞
i ) < 0, i = 1, . . . , P, (6.39)

where condition (ii) guarantees that the dynamical configuration is attractive and stable.

Conversely, it follows that if Λv satisfies (6.39), and the initial phases of the oscillators in

F satisfy ψi(0) = φ∞
i for i = 1, . . . , P , then the synchronization pattern will be maintained.

The pattern is also established and maintained when the initial conditions are relaxed to

ψi(0) ∈ Ai(φ
∞
i ) for i = 1, . . . , P , where Ai(φ

∞
i ) is the set of initial phases for which the

ith oscillator of 〈F〉 is attracted to the asymptotic phase difference φ∞
i . These regions are

illustrated for an example interaction function in Figure 6.9. Note that for a given collection

(6.38) of entrained oscillators the stable synchronization pattern may not be unique, but
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Figure 6.9: Illustration of an interaction function Λv(ϕ) that satisfies the conditions (6.39). The desired
synchronization pattern is established if ψi(0) falls within the attractive set Ai(φ

∞

i ) for all i = 1, . . . , N ,
which is indicated by shading between dots, corresponding to the desired synchronization pattern.

rather depends on the initial conditions ψi(0) of the collection (6.37). In the following

section, we present a method for constructing an input v using the conditions (6.39) as

design requirements in order to produce a desired synchronization structure.

6.4.2 Design of Phase Structures in Synchronized Oscillators

The analysis in Section 6.4.1 characterizes the synchronization pattern that arises when a

collection of heterogenous oscillators with the same PRC and different natural frequencies

are entrained by a periodic input signal. This suggests a method for creating an input signal

v that maintains a desired pattern in the collection F by first designing the interaction

function Λv to satisfy the conditions in (6.39), and then computing an input v that results in

the designed Λv. In this way, a desired pattern with relative phase φ∞
i for the ith oscillator

will persist if ψi(0) ∈ Ai(φ
∞
i ) holds for i = 1, . . . , P . Moreover, if v can also be chosen

such that Λv satisfies Ai(φ
∞
i ) = [0, π), then the pattern with relative phases φ∞

i will be

established for any set of initial conditions ψi(0), as illustrated in Figure 6.10. A technique

for designing a control that satisfies these conditions is presented below. The approach

involves approximate Fourier synthesis and inversion of the desired interaction function.

Because the PRC Z(θ), input waveform v(θ), and interaction function Λv(ϕ) are all 2π-

periodic, they are conveniently represented using Fourier series, and Λv(ϕ) can readily be

computed using (5.3), trigonometric identities, and the orthogonality of the Fourier basis, as
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Figure 6.10: Illustration of a monotone step interaction function Λv(ϕ) that satisfies the design require-
ments (6.39), and Ai(φ

∞

i ) = [0, π) for i = 1, . . . , N . The desired synchronization pattern is globally attrac-
tive, and is established for any initial conditions ψi(0) for i = 1, . . . , N .

described in Appendix B. The functions Z and v are represented in using truncated Fourier

series expansions

Z(θ) ≈ Zr(θ) =
a0
2

+
r∑

n=1

[an cos(nθ) + bn sin(nθ)], (6.40)

v(θ) ≈ vr(θ) =
c0
2

+
r∑

n=1

[cn cos(nθ) + dn sin(nθ)], (6.41)

where the appropriate order r is chosen based on Z(θ), as discussed below. Applying trigono-

metric angle sum identities and the orthogonality of the Fourier basis yields

Λr
v(ϕ) =

f0
2

+
1

2

r∑

n=1

fn cos(nϕ) +
1

2

r∑

n=1

gn sin(nϕ), (6.42)

where

f0 =
a0c0

4
, fn = ancn + bndn, gn = bncn − andn. (6.43)

Therefore given truncated Fourier expansions Λr
v(θ) and Zr(θ), the Fourier coefficients of the

corresponding truncated control waveform vr(θ) are given by

c0 = 4
f0
a0
, cn = 2

fnan + bngn
a2n + b2n

, dn = 2
fnbn − angn
a2n + b2n

. (6.44)
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It is thus crucial for the expansion order r to be appropriately chosen such that a2n+ b2n > δZ

for r ≤ n, and any order n for which a2n+b2n = 0 occurs to be omitted from the approximation.

This guarantees that numerical conditioning errors do not arise, and so that the designed

vr(θ) satisfies the weak forcing assumption. An appropriate value for the tolerance is δZ =

〈Z2〉 · 10−4. Hence given the input u(t) = vr(Ωt), the asymptotic configuration of the

entrained oscillators of (6.38) will approximately satisfy the conditions (6.39).

We call the entrainment input design described here the monotone step function method.

Consider a phase assignment task for a collection F of P oscillators with the design require-

ments (6.39) with Ai(φ
∞
i ) = [0, π) for i = 1, . . . , P . A monotone step interaction function

Λv(ϕ) is constructed to correspond to the desired phase relationship, such as the one illus-

trated in Figure 6.10, as follows. The sum of scaled and shifted sigmoid functions, such as

the error function or the inverse tangent function, can be used to synthesize such a Λv(ϕ),

which is then approximated using a truncated Fourier series expression Λr
v(ϕ), as in Ap-

pendix (B.3). It follows that the corresponding control waveform vr(θ) that results in the

desired phase pattern can be synthesized using the Fourier coefficients (6.44). The input

vr(θ) functions as intended as long as the PRC exhibits sufficient higher order harmonics

{a0, an, bn} in order for the design (6.39) to be realizable using a waveform with truncated

Fourier expansion of order r.

6.4.3 Phase Assignment Examples

In this section, several numerical simulations that verify the technique are presented, as well

as a preliminary experimental study involving electrochemical oscillators. First, consider

the Hodgkin-Huxley system with the nominal parameters given in Appendix A.1 and PRC

shown in Figure 4.2(a), for which the tolerance of δZ = 〈Z2〉 · 10−4 = 7.401 · 10−7 on the

magnitude of included orders of the Fourier expansion results in a truncation at r = 5. The

monotone step interaction function technique was applied for this system with P = 3, r = 6,

{φ∞
1 , φ

∞
2 , φ

∞
3 } = {0, 2π/3, 4π/3}, and {ω1, ω2, ω3} = {.99ω, ω, 1.01ω} where ω is the natural

frequency, with Λr
v(ϕ) and vr(θ) shown in Figures 6.11(a) and 6.11(b), respectively. The

desired phase structure stabilizes after about 50 input cycles, as shown in Figure 6.11(a).
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Figure 6.11: (a) Interaction function Λr
v(ϕ) designed using a r = 5 order Fourier series fit to an ideal Λv(ϕ)

designed using the monotone step interaction function technique. Horizontal lines indicate values of −∆ωi,
and vertical lines indicated values of φ∞i . Inset: PRC of Hodgkin-Huxley (HH) System. (b) Input waveform
v(θ) resulting from Fourier inversion of Λr

v(ϕ). (c) The ideal, designed and actual phase pattern resulting
from applying v(θ) to HH phase models with frequencies at 1.01, 1, and .99 times the natural frequency ω.

An additional numerical experiment can be done to demonstrate that arbitrarily complex

phase structures can indeed be created, and that the only limitation arises from the nonlin-

earity of the system PRC. That is, the number of oscillators whose fixed phase relationship

can be exactly specified is limited by the number of significant modes in the Fourier expan-

sion of the PRC, with energy greater than δZ = 〈Z2〉 · 10−4, as specified in Section 6.4.2.

Consider a collection of theoretical example systems with sawtooth shaped PRCs and fre-

quencies in the neighborhood of ω = 2π/T with T = 25. This PRC can be fairly accurately

represented using a Fourier series of order 100, as shown in the inset panel in 6.12(a). The

numerical simulation shown in Figure 6.12 involves 10 oscillators with a sawtooth PRC and

with frequencies uniformly distributed on [0.995ω, 1.005ω]. By designing the appropriate

waveform using the monotone step interaction function method described in Section 6.4.2,

it is possible to achieve a splay state, such as in Figure 6.12(c), or an arbitrary phase struc-

ture, as shown in Figure 6.12(f). Because the attractive fixed phase of each oscillator in

the collection is unique, the desired engineered phase structure arises from any vector of

arbitrary initial conditions of the oscillators, and will be robust to disturbances, as well as

slight variations in the frequency parameters.

In addition to the simulation in Figure 6.11, the above technique was used to create phase

assigned synchronization in two heterogeneous electrochemical oscillators in the laboratory.

The experimental setup in Figure 4.6(a) consists of two electrodes that behave as oscillators.

Their relative remoteness results in a relatively small potential drop in the electrolyte, and

consequently there is no measurable interaction between them [121]. Because of surface

heterogeneities, the oscillators typically have about 10-20 mHz frequency difference [226].
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Figure 6.12: (a) Interaction function Λr
v(ϕ) designed using a r = 20 order Fourier series fit to an ideal

Λv(ϕ) designed using the monotone step interaction function technique to correspond to a splay state.
Horizontal lines indicate values of −∆ωi, and vertical lines indicated values of φ∞i . Inset: Sawtooth PRC.
(b) Input waveform v(θ) resulting from Fourier inversion of Λr

v(ϕ). (c) The ideal, designed and actual phase
pattern resulting from applying v(θ) to sawtooth PRC phase models with frequencies uniformly distributed
on [0.995ω, 1.005ω], where ω = 2π/T is the natural frequency for a period of T = 25. (d) Interaction function
designed to correspond to an arbitrarily chosen phase pattern. (e) Input waveform resulting in interaction
function in (d). (f) Ideal, designed, and actual phase pattern resulting from application of the waveform (e)
to the same collection as in (c).

Two relaxation oscillators with phase response characteristics as shown in Figure 4.6(b)

but heterogeneous natural frequencies were entrained to the same frequency with a desired

phase difference ∆φ ∈ [0, 2π). The PRC and frequency of each was estimated using the

method in Section 4.4, and the control was synthesized by using the average of the two PRCs

using the monotone step function technique as illustrated in Figure 6.10. Two preliminary

experiments shown in Figure 6.13 resulted in rapid entrainment of the oscillators to ∆φ ≈ 0

(in-phase) and ∆φ ≈ π (anti-phase). The in-phase state is relatively easy to engineer,

since both oscillators entrain to the input. However, Figure 6.13(a) demonstrates anti-phase

synchronization, which confirms that the method above is promising for applications that

require efficient phase difference control without the use of any state observations or feedback.

The methodology is expected to supersede previous techniques that require real-time control

and identical oscillators [190].
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(a) Anti-phase synchronization
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(b) In-phase synchronization

Figure 6.13: Phase assignment of two electrochemical oscillators. Panel (a) shows anti-phase oscillations,
and panel (b) shows phase assignment for in-phase oscillations. In each panel, a snapshot of the phase
difference of the two oscillators is shown inset to a plot of current oscillations vs time at left. The applied
control signal is shown to the right.

Observe that in the above experiments, the phase structures have all involved orderings of

the oscillators with ascending natural frequencies ωi corresponding to ascending asymptotic

phases φ∞
i , as shown in Figure 6.10. These cases satisfy Ai(φ

∞
i ) = [0, π) for all i = 1, . . . , N ,

hence only a single input waveform is required to produce the arrangement. However, a non-

monotone pattern where phases φ∞
i are not necessarily ascending for ascending frequencies

ωi, such as that corresponding to the interaction function in Figure 6.9, is possible as well.

In that case, a sequence of preliminary input waveforms can be applied to arrange increasing

subsets of the oscillators until the desired phase structure is achieved, and then a single

waveform suffices to maintain the configuration. Developing an automatic algorithm for

generating such waveform sequences remains for future work.
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Chapter 7

Conclusion

7.1 Computational Methods for Ensemble Control

In Chapter 2, an accurate, stable, and computationally efficient numerical method for synthe-

sizing minimum norm ensemble controls for finite-dimensional time-varying linear systems is

presented. Using the singular value decomposition (SVD) and appropriately conditioning the

outcome guarantees accuracy and numerical stability of the method, and leverages the effi-

ciency of widely-used numerical routines. Furthermore, because the SVD is a finite algorithm,

the method does not require any additional optimization steps. Its effectiveness is demon-

strated for designing controls for a variety of system ensembles and state transfers under

various challenging conditions, including complicated state transfers and high-dimensional

time-varying dynamics, as well as constraints on the control amplitude.

Chapter 3 extends the results of Chapter 2 to produce a computationally efficient iterative

fixed-point method for synthesizing ensemble controls for bilinear systems. Employing suc-

cessive linear time-varying approximations of the bilinear system dynamics, and the resulting

control iterates synthesized using the SVD-based method, yields a consistent, optimization-

free algorithm. We have demonstrated its effectiveness for designing controls that accomplish

state transfers for bilinear ensemble systems, in particular the Bloch system, and have con-

ducted multiple simulations to illustrate the sensitivity of the method with respect to the

chosen discretization parameters and time horizon. This work provides a novel numerical

method for designing excitations for the manipulation of quantum spin systems. Further

development of this technique will accelerate the quickly broadening scope of ensemble con-

trol theory by contributing powerful new tools for solving forefront problems in numerous
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fields from neuroscience to quantum computing. Extension of our approach to a univer-

sal algorithm for ensemble control of general nonlinear systems, as well as systems involving

constraints or stochastic components, can contribute to applications in fields including chem-

istry, robotics, and medicine.

7.2 Novel Paradigms for Synchronization Engineering

The Chapters 4 through 6 investigate approaches to designing optimal periodic inputs for

synchronization of nonlinear oscillators, culminating in a novel technique for locally structur-

ing interactions between the phase dynamics of collections of highly nonlinear oscillators and

the input. The key concept is the construction of globally attracting, spatially organized

stationary patterns in such oscillator ensembles. Phase model reduction and the ergodic

averaging approximation facilitate the use of the calculus of variations to derive optimal

entrainment waveforms, and to design synchronizing inputs that establish a desired phase

relationship among a collection of nonlinear dynamical oscillating systems without the use

of feedback information.

Chapter 5 describes methods for deriving minimum-energy inputs for entrainment of ar-

bitrary oscillators to a desired frequency using weak periodic forcing. We also derive an

approximation of the locking region in energy-frequency space for a periodically forced oscil-

lator, called an Arnold tongue. The entrainment of phase-reduced Hodgkin-Huxley neurons

is considered as an example problem, and Arnold tongues are computed to evaluate the ef-

fectiveness of the derived inputs. The results closely match the theoretical bounds when the

weak forcing requirement is fulfilled. The optimal waveforms produce a similar result when

applied to the original model, which suggests that optimal entrainment controls derived us-

ing a phase model are optimal for the original system, provided the oscillator remains within

a neighborhood of its limit cycle. In addition, for many biological and engineered systems, a

central function or design goal is to abbreviate the time required to synchronize a rhythmic

process to an external forcing signal. This has inspired our theory for deriving the input that

effectively minimizes the average transient time required to entrain a phase model, which

enables a practical technique for constructing fast entrainment waveforms for general non-

linear oscillators. This result is verified in numerical simulations using the Hodgkin-Huxley

neuron model, and in experiments on an oscillatory electrochemical system. The technique

117



can be applied to any nonlinear oscillator, and requires no knowledge about its initial state.

Entrainment is achieved over the minimum number of cycles possible for a given control

energy such that phase model approximation and averaging remain valid. In contrast to

previous studies on the control of oscillators using phase models, the derivative of the PRC

plays an important role in addition to the PRC itself. The methodology is promising for fast

re-establishment of entrainment in oscillators that intermittently break phase locking due to

environmental or internal effects, such as biological systems with fluctuations in chemical re-

action rates due to the small number of molecules in a cell. This methodology is suitable for

weak phase resetting, while strong resetting requires control approaches that do not depend

on averaging but involve substantial changes to the state of the oscillator.

In addition, a methodology for designing optimal waveforms for subharmonic entrainment,

or N :M , entrainment is developed, where M cycles of the oscillator occur for every N con-

trol input cycles. Diverse objectives such as minimizing input energy, maximizing the rate

of entrainment, and designing the entrainment frequency and control power are considered.

In order to characterize the phenomenon of subharmonic entrainment, we also derive an

approximation of the Arnold tongues. The entrainment of phase-reduced Hodgkin-Huxley

neurons is considered as an example problem, and boundaries of Arnold tongues are com-

puted for various subharmonic entrainment ratios and controls to compare to the theoretical

regions. Detailed descriptions and illustrations are provided to connect the behavior of en-

trained systems to the corresponding Arnold tongues and interaction functions. Simulations

to compute actual Arnold tongues are described and carried out for minimum energy subhar-

monic entrainment controls for single oscillators, and the measurement of entrainment rates

of simulations is described and carried out to examine the performance of fast entrainment

waveforms. In all cases, the computational results closely correspond to what is predicted by

the derived theory. This work provides a comprehensive study of subharmonic entrainment

of weakly forced nonlinear oscillators, as well as a practical technique for control synthesis.

In Chapter 6, the approach of considering an ensemble with common phase response curve

and varying frequency is justified by a sensitivity analysis of the phase response curve and

optimal waveform to variation in model parameters. The results of our simulations suggest

that stimuli based on inherent dynamical properties of neural oscillators can result in sig-

nificant improvement in energy efficiency and performance over traditional pulses both in

theory and in practical neural engineering applications. This work provides a basis for eval-

uating the effectiveness of phase reduction techniques for the control of oscillating systems
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with parameter uncertainty. The theory of optimal entrainment of oscillator ensembles is

also extended to the case of subharmonic, or N :M entrainment, and the minimum-energy

entrainment of large ensembles of oscillators with uncertain parameters is explored. The

asymptotic behavior of the ensemble is studied by examining an ensemble Arnold tongue,

which characterizes the synchronization properties of oscillator ensembles.

A result of particular note is the ability to design a common periodic input that produces

a desired fixed phase relationship in a collection of entrained oscillators. The key feature of

this technique is to take advantage of the nonlinearity of the oscillator dynamics, which may

be arbitrary as long as they exhibit sufficient nonlinear relaxation for the control design to be

realizable. Furthermore, knowledge of the initial state of the oscillators is not required, and

control input designs are robust to uncertainty in the parameters of each oscillating system,

as well as to disturbances, in a way that can be directly quantified. Most interestingly for

applications, switching between synchronization patterns in a collection of oscillators can

be as simple as switching between input waveforms that establish and maintain the desired

configuration.

7.3 Future Work

The work in Chapters 2 and 2 forms the basis for a new set of numerical methods for quantum

control by providing an approach to designing excitations for guidance of quantum spin

systems. Future work in this direction will involve investigation of the contractive properties

of the relevant integral operator equations to derive theorems characterizing the convergence

properties of these algorithms. Another direction is the extension of computational methods

for ensemble control to nonlinear systems. Many open questions remain regarding the control

of dynamic equations of bilinear form, which govern many widely studied quantum dynamical

phenomena. A computationally efficient numerical scheme to synthesize controls for this

type of problem will facilitate the improvement of pulse design for NMR, and would be of

immediate use to experimentalists.

The optimal synchronization methodology developed in Chapters 4 through 6 bypasses the

limitations of present synchronization engineering techniques, such as the requirements of

real-time feedback, knowledge of exact initial conditions and a comprehensive model, and
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lack of paradigms for constructing multi-scale patterns. The exploration of stable and ro-

bust phase structures that can be achieved by external forcing without feedback, and that

are robust for each oscillator within an ensemble is compelling, because many of the moti-

vating applications for research into the dynamics of rhythmic systems, including circadian

pacemakers and particularly neuronal dynamics, exhibit disturbances, variations, and incom-

plete models of dynamics, and provide limited state information. An important extension of

this work is to generalize synchronization engineering techniques to coevolutionary networks

[86], with topologies that adapt in response to the dynamics of interacting network units,

by designing adaptive strategies to manipulate fully or partially observable networks given

complete or limited feedback. These methods can also be extended to analyze and optimize

synchronization in interacting rhythmic systems across different time-scales.

The analytical tools and practical system identification and control methodology developed

in this project will be of particular value for neural engineering. For example, the techniques

of Chapters 4 through 6 can be used to design stimulus patterns for optimally treating the

effects of Parkinson’s disease. Parkinson’s disease (PD) is a major neurological disorder

in terms of prevalence and morbidity. In the U.S. there are 500,000 people with PD, and

the socioeconomic burden of PD is set to rise as the elderly population increases. DBS

neurostimulation of the is a powerful yet costly treatment that effectively alleviates the

burden of advanced PD symptoms, but can induce unwanted effects on working memory

and other cognitive functions. Despite the benefits of DBS and its implantation in over

75,000 patients, the optimization of the stimulation waveform to maximize therapeutic effect

while minimizing total energy delivery in vivo has not been attempted. Such an advance

will prolong the battery life of the implant while reducing unwanted stimulator-induced

cognitive deficits. More generally, altering neuronal spiking activity using external stimuli is a

subject of active research with the intent of developing therapeutic stimulation procedures for

treating neurological conditions such as essential tremor, dystonia, and psychiatric disorders.
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Appendix A

Complex Oscillator Models

A.1 Hodgkin-Huxley Neuron Model

The Hodgkin-Huxley model describes the propagation of action potentials in neurons, specif-

ically the squid giant axon, and is used as a canonical example of neural oscillator dynamics

[99]. The equations are

cV̇ = Ib + I(t) − gNah(V − VNa)m
3 − gK(V − Vk)n

4 − gL(V − VL)

ṁ = am(V )(1 −m) − bm(V )m,

ḣ = ah(V )(1 − h) − bh(V )h,

ṅ = an(V )(1 − n) − bn(V )n,

am(V ) = 0.1(V + 40)/(1 − exp(−(V + 40)/10)),

bm(V ) = 4 exp(−(V + 65)/18),

ah(V ) = 0.07 exp(−(V + 65)/20),

bh(V ) = 1/(1 + exp(−(V + 35)/10)),

an(V ) = 0.01(V + 55)/(1 − exp(−(V + 55)/10)),

bn(V ) = 0.125 exp(−(V + 65)/80).

The variable V is the voltage across the axon membrane, m, h, and n are the ion gating

variables, Ib is a baseline current that induces the oscillation, and I(t) is the control input.

The units of V and time are millivolts and milliseconds, respectively. Nominal parameters

are VNa = 50 mV, VK = −77 mV, VL = −54.4 mV, gNa = 120 mS/cm2, gK = 36 mS/cm2,

gL = 0.3 mS/cm2, Ib = 10 µA/cm2, and c = 1 µF/cm2, for which the period of oscillation is

T = 14.63842 ± 10−5 ms, corresponding to frequency ω ≈ 0.4292 rad/ms.
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A.2 Morris-Lecar Neuron Model

The Morris-Lecar model describes the voltage oscillations in the barnacle giant muscle fiber

[159]. The dynamics are given by

CV̇ = Ib + I(t) + gCam∞h(VCa − V ) + gKw(Vk − V ) − gL(VL − V )

ẇ = φ(w∞ − w)/τw(V ),

m∞(V ) = 0.5(1 + tanh((V − V1)/V2)),

w∞(V ) = 0.5(1 + tanh((V − V3)/V4)),

τ∞(V ) = = 1/ cosh((V − V3)/(2V4)).

The variable V is the membrane potential, w is a so-called recovery variable corresponding

to the potassium ion conductance, Ib is a baseline current that induces the oscillation, and

I(t) is the control input. The units of V are millivolts and the units of time are milliseconds.

The nominal parameters are given by φ = 0.5, Ib = 0.09µA/cm2, V1 = −0.01mV, V2 =

0.15mV, V3 = 0.1mV, V4 = 0.145mV, gCa = 1mS/cm2, VK = −0.7mV, VL = −0.5mV,

gK = 2mS/cm2, gL = 0.5mS/cm2, C = 1µF/cm2, VCa = 1mV.

A.3 Hindmarsh-Rose Bursting Neuron Model

The Hindmarsh-Rose model is a generic model of bursting neuron dynamics that is widely

used in neuroscience [98]. A slow variable is augmented to the Fitzhugh-Nagumo planar

model, which is a reduction of the Hodgkin-Huxley model [67]. The equations are

V̇ = Ib + I(t) + n− aV 3 + bV 2 − h

ṅ = c− dV 2 − n

ḣ = r(σ(V − V0) − h)

The non-dimensional variable V is the voltage across the axon membrane, while n and h

are fast and slow ion gating variables, respectively, Ib is a baseline current that induces the

oscillation, and I(t) is the control input. The units of V are millivolts and the units of

time are milliseconds. Nominal dimensionless parameters are a = 1, b = 3, c = 1, d = 5,

122



r = 0.001, σ = 4, V0 = −1.6, and Ib = 2, for which a full period of oscillation is T = 430.7757,

corresponding to angular frequency ω ≈ 0.0145857.

A.4 Anodic Dissolution of Nickel in Sulfuric Acid

Complex oscillatory behavior has been shown to arise in an electrochemical apparatus con-

sisting of a collection of nickel electrodes immersed in sulfuric acid [90]. When constant

circuit potential V (t) = V0 is applied through a potentiostat, the 1 mm diameter metal wires

undergo a dissolution process with variation in the rate, which induces oscillations in the

measured currents i(t) of the electrodes [136, 120]. A control signal δV (t) can be super-

imposed onto the potentiostat, so that the circuit potential V (t) = V0 + δV (t) affects the

reaction rate of the electrode as a perturbation [95, 119]. The dynamics of potentiostatic

nickel dissolution in sulfuric acid can be modeled using a system of differential equations

that describe the dynamics of non-dimensionalized potential and chemical concentration

variables. It is important to note that although the model does not completely represent

the detailed chemistry underlying the oscillatory behavior, it does capture the underlying

dynamical behavior [120]. The system equations are given by

Ė =
V − E

R
− (1 − θ)

[
Che

E/2

1 + CheE
+ aeE

]
,

Γθ̇ = (1 − θ)
eE/2

1 + CheE
− θ

bChe
2E

cCh + eE
.

The variable E is the dimensionless electrode potential, and θ is a dimensionless chemical

concentration variable. The circuit potential V and cell resistance R can be adjusted in the

experimental apparatus. In synchronization studies, R is fixed while the circuit potential

V (t) = V0 + δV (t) is engineered so that V0 induces an oscillation and δV (t) is treated as a

control input. The parameter set Γ = 0.01, Ch = 1600, a = 0.3, b = 6 × 10−54, V0 = 15,

R = 20, and c = 1 × 10−3 results in relaxation oscillations with a period of 13.85.
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Appendix B

Interaction functions for subharmonic

entrainment

Because the PRC Z(θ), input waveform v(θ), and interaction function

ΛNM

v (φ) , 〈Z(Mθ + φ)v(Nθ)〉 =
1

2π

∫ 2π

0

Z(Mθ + φ)v(Nθ)dθ

are all 2π-periodic, they are most conveniently represented using Fourier series, and inter-

action functions can easily be computed by inspecting the equation 5.3. Let us denote the

Fourier series for Z and v by

Z(θ) =
1

2
a0 +

∞∑

n=1

an cos(nθ) +

∞∑

n=1

bn sin(nθ), (B.1)

v(θ) =
1

2
c0 +

∞∑

n=1

cn cos(nθ) +

∞∑

n=1

dn sin(nθ). (B.2)

By applying trigonometric angle sum identities and the orthogonality of the Fourier basis,

we can obtain ΛNM

v (ϕ) by first computing

ΛNM

v (Mϕ) =
a0c0

4
+

1

2

∞∑

j=1

[aMj cNj + bMj dNj ] cos(jϕ)

+
1

2

∞∑

j=1

[bMj cNj − aMj dNj ] sin(jϕ), (B.3)

then making the appropriate re-scaling. It is assumed that the integers N and M are coprime.

The equation (B.3) leads to the following lemmas:
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Lemma 1: Condition for existence of subharmonic entrainment. Given a phase

model (4.2) and an input waveform v(θ), subharmonic (N :M) entrainment to a target fre-

quency Ω 6= ω using a forcing frequency Ωf = N
M

Ω is possible if and only if aMj cNj +bMj dNj 6=
0 or bMj cNj − aMj dNj 6= 0 for at least one j ∈ N in (B.3).

Proof: If aMj cNj + bMj dNj = 0 and bMj cNj − aMj dNj = 0 for all j ∈ N, then ΛNM

v (ϕ) ≡ 0 by

(B.3). Therefore if ∆ω = ω − Ω 6= 0, then ΛNM

v (ϕ) + ∆ω = 0 has no solution and (5.5) has

no fixed point. Therefore entrainment cannot occur.

Conversely, suppose that N :M entrainment is possible for ∆ω 6= 0. It follows that ΛNM

v (ϕ) +

∆ω = 0 must have a solution, hence ΛNM

v (ϕ) is not identically zero, and therefore aMj cNj +

bMj dNj 6= 0 or bMj cNj − aMj dNj 6= 0 for at least one j ∈ N. �

Lemma 2: Continuity of interaction function. Interaction function ΛNM

v is continuous

when v is bounded.

Proof: Suppose v is bounded but ΛNM

v in (5.3) is discontinuous at φ ∈ [0, 2π). Then ∃M > 0

such that |v(θ)| < M ∀ θ ∈ [0, 2π), and ∃ σ > 0 such that |ΛNM

v (φ + δ
2
) − ΛNM

v (φ − δ
2
)| > σ

∀ δ ∈ (0, d) for some d > 0. Because Z is continuous, it follows that ∀ ǫ > 0, ∃ δ > 0 such

that |Z(θ + δ) − Z(θ)| < ǫ. Then for arbitrary fixed ε > 0,

0 < σ < |ΛNM

v (φ+ δ
2
) − ΛNM

v (φ− δ
2
)|

=

∣∣∣∣
1

2π

∫ 2π

0

[Z(Mθ + φ+ δ
2
) − Z(Mθ + φ− δ

2
)]v(Nθ)dθ

∣∣∣∣

≤ 1

2π

∫ 2π

0

|Z(Mθ + φ+ δ
2
) − Z(Mθ + φ− δ

2
)| · |v(Nθ)|dθ

≤ 1

2π

∫ 2π

0

εMdθ = εM.

Therefore εM > σ, and choosing ε = σ/(2M) yields a contradiction. �
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trainment of neocortical neurons and gamma oscillations by the hippocampal theta
rhythm. Neuron, 60:683–697, 2008.

[202] M. A. St. Hilaire, J. J. Gooley, S. B. S. Khalsa, R. E. Kronauer, C. A. Czeisler, and
S. W. Lockley. Human phase response curve to a 1 h pulse of bright white light. The
Journal of Physiology, 2012.

[203] P. B. Stark and R. L. Parker. Bounded-variable least-squares: an algorithm and
applications. Computational Statistics, 10:129–129, 1995.

[204] D. Stefanatos and J.-S. Li. Frictionless atom cooling in harmonic traps: A time-optimal
approach. Physical Review A, 82:063422, 2010.

[205] D. Stefanatos and J.-S. Li. Minimum-time frictionless atom cooling in harmonic traps.
SIAM Journal on Control and Optimization, 49:2440–2462, 2011.

[206] D. Stefanatos and J.-S. Li. Minimum-time quantum transport with bounded trap
velocity. arXiv:1107.1691v1, July 2011.

[207] M. L. Steyn-Ross, D. A. Steyn-Ross, and J. W. Sleigh. Modelling general anaesthesia
as a first-order phase transition in the cortex. Prog Biophys Mol Biol, 85(2-3):369–85,
2004.

[208] D. Storti and R.H. Rand. Subharmonic entrainment of a forced relaxation oscillator.
International journal of non-linear mechanics, 23(3):231–239, 1988.

[209] D. J. Strauss, W. Delb, R. D’Amelio, and P. Falkai. Neural synchronization stability
in the tinnitus decompensation. In Neural Engineering, 2005. Conference Proceedings.
2nd International IEEE EMBS Conference on, pages 186–189. IEEE, 2005.

[210] S. H. Strogatz. From Kuramoto to Crawford: exploring the onset of synchronization
in populations of coupled oscillators. Physica D, 143(1-4):1–20, 2000.

[211] K. Takano, M. Motoyoshi, and M. Fujishima. 4.8 ghz cmos frequency multiplier
with subharmonic pulse-injection locking. In Solid-State Circuits Conference, 2007.
ASSCC’07. IEEE Asian, pages 336–339. IEEE, 2007.

[212] P. Tass, M. G. Rosenblum, J. Weule, J. Kurths, A. Pikovsky, J. Volkmann, A. Schnit-
zler, and H. J. Freund. Detection of n:m phase locking from noisy data: application
to magnetoencephalography. Physical Review Letters, 81(15):3291–3294, 1998.

140



[213] P. A. Tass. Phase Resetting in Medicine and Biology. Stochastic Modeling and Data
Analysis. Springer, Berlin, 1999.

[214] P. A. Tass. A model of desynchronizing deep brain stimulation with a demand-
controlled coordinated reset of neural subpopulations. Biol. Cybern, 89:81–88, 2003.

[215] P. A. Tass, I. Adamchic, H. J. Freund, T. von Stackelberg, and C. Hauptmann. Coun-
teracting tinnitus by acoustic coordinated reset neuromodulation. Restorative neurol-
ogy and neuroscience, 30(2):137–159, 2012.

[216] D. Terman, J. E. Rubin, A. C. Yew, and C. J. Wilson. Activity patterns in a model
for the subthalamopallidal network of the basal ganglia. J Neurosci, 22(7):2963–2976,
2002.

[217] I. T. Tokuda, S. Jain, I. Z. Kiss, and J. L. Hudson. Inferring phase equations from
multivariate time series. Physical Review Letters, 99(6):64101, 2007.

[218] K. Turitsyn, P. Sulc, S. Backhaus, and M. Chertkov. Options for control of reactive
power by distributed photovoltaic generators. Proceedings of the IEEE, 99(6):1063–
1073, 2011.

[219] P. J. Uhlhaas and W. Singer. Neural synchrony in brain disorders: relevance for
cognitive dysfunctions and pathophysiology. Neuron, 52(1):155–168, 2006.

[220] H. Ukai, T. J. Kobayashi, M. Nagano, K.-H. Masumoto, M. Sujino, T. Kondo,
K. Yagita, Y. Shigeyoshi, and H. R. Ueda. Melanopsin-dependent photo-perturbation
reveals desynchronization underlying the singularity of mammalian circadian clocks.
Nature Cell Biology, 9(11):1327–1334, 2007.

[221] G. Ullah. Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review
E, 79:040901(R), 2009.

[222] B. van Keulen. H∞-Control for Distributed Parameter Systems: A State-Space Ap-
proach. Birkh auser Boston, 1993.

[223] C. Vogel. Optimal choice of a truncation level for the truncated svd solution of linear
first kind integral equations when data are noisy. SIAM journal on numerical analysis,
23(1):109–117, 1986.

[224] A. M. Vosko, C. S. Colwell, and A. Y. Avidan. Jet lag syndrome: circadian organiza-
tion, pathophysiology, and management strategies. Nature, 2:187–198, 2010.

[225] M. Wacker and H. Witte. On the stability of the n: m phase synchronization index.
Biomedical Engineering, IEEE Transactions on, 58(2):332–338, 2011.

[226] M. Wickramasinghe, E. M. Mrugacz, and I. Z. Kiss. Dynamics of electrochemical
oscillators with electrode size disparity: asymmetrical coupling and anomalous phase
synchronization. Phys. Chem. Chem. Phys., 13:15483, 2011.

141



[227] A. T. Winfree. Biological rhythms and the behavior of populations of coupled oscilla-
tors. Journal of Theoretical Biology, 16(1):15–42, 1967.

[228] A. T. Winfree. The Geometry of Biological Time. Springer-Verlag, New York, 1980.

[229] Y. Yao, V. Colao, G. Marino, and H.-K. Xu. Implicit and explicit algorithms for
minimum-norm fixed points of pseudocontractions in hilbert spaces. Taiwanese Journal
of Mathematics, 16(4):1489–1506, 2012.

[230] M. Zalalutdinov, K. Aubin, A. Zehnder, R. Hand, H. Craighead, J. Parpia, and
B. Houston. Frequency entrainment for micromechanical oscillator. Applied Physics
Letters, 83(16):3281–3283, 2003.

[231] A. Zarroug, P. S. Hall, and M. Cryan. Active antenna phase control using subharmonic
locking. Electronics Letters, 31(11):842–843, 1995.

[232] Y. Zhai, I. Z. Kiss, H. Kori, and J. L. Hudson. Desynchronization and clustering
with pulse stimulations of coupled electrochemical relaxation oscillators. Physica D,
239(11):848–856, 2010.

[233] Y. Zhai, I. Z. Kiss, P. A. Tass, and J. L. Hudson. Desynchronization of coupled
electrochemical oscillators with pulse stimulations. Physical Review E, 71:065202, 2005.

[234] A. Zlotnik. http://appliedmath.engineering.wustl.edu/research/ensemble-control/.

[235] A. Zlotnik, Y. Chen, I. Z. Kiss, H.-A. Tanaka, and J.-S. Li. Optimal waveform for fast
entrainment of weakly forced nonlinear oscillators. Phys. Rev. Lett., 111:024102, Jul
2013.

[236] A. Zlotnik and J. Li. Optimal asymptotic entrainment of phase-reduced oscillators.
In 2011 ASME Dynamic Systems and Control Conference, volume 1, pages 479–484,
Arlington, VA, October 2011.

[237] A. Zlotnik and J.-S. Li. Iterative Ensemble Control Synthesis for Bilinear Systems.
In 51st IEEE Conference on Decision and Control, pages 3484–3489, Maui, Hawaii,
December 2012.

[238] A. Zlotnik and J.-S. Li. Optimal entrainment of neural oscillator ensembles. J. Neural
Eng., 9(4):046015, 2012.

[239] A. Zlotnik and J.-S. Li. Synthesis of Optimal Ensemble Controls for Linear Systems
using the Singular Value Decomposition. In 2012 American Control conference, pages
5849–5854, Montreal, June 2012.

[240] A. Zlotnik and J.-S. Li. Optimal subharmonic entrainment. arXiv:1401.1863, 2014.

142



Vita
Anatoly Zlotnik

Degrees Ph.D. Systems Science & Mathematics, August 2014

M.S. Applied Mathematics, August 2009

M.S. Systems & Control Engineering, August 2006

B.S. Magna Cum Laude, Systems & Control Engineering, May 2006

Publications A. Zlotnik, Y. Chen, I.Z. Kiss, H.-A. Tanaka, J.-S. Li. (2013). Opti-

mal waveform for fast entrainment of weakly forced nonlinear oscil-

lators, Physical Review Letters 111(2): 024102.

J. Qi, A. Zlotnik, J.-S. Li. (2013). Optimal ensemble control of stochas-

tic time-varying linear systems, Systems & Control Letters, 62(11): 1057-

1064.

A. Zlotnik, J.-S. Li. (2012). Optimal entrainment of neural oscillator

ensembles, Journal of Neural Engineering, 9(4): 046015.

A. Piryatinska, G. Terdik, W. Woyczynski, K. Loparo, M. Scher, A.

Zlotnik. (2009). Automated detection of neonate EEG sleep stages,

Computer Methods and Programs in Biomedicine, 95(1): 31–46.

August 2014

143


	Washington University in St. Louis
	Washington University Open Scholarship
	Summer 9-1-2014

	Optimal Control and Synchronization of Dynamic Ensemble Systems
	Anatoly Zlotnik
	Recommended Citation


	thesis-avz-main.dvi

